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3.0 ABUNDANCE AND DENSITY ANALYSES 
 
3.1 DATA PREPARATION AND ASSUMPTIONS  
 
3.1.1 Sightings Data Criteria 
 
The sightings included in the density/abundance analyses had to meet the following criteria: 
 

1) Sightings were recorded by on-duty observers while the team was searching in on-effort mode. 
Sightings data recorded from other surveys not associated with this baseline study could not be 
combined with the sightings data collected during this baseline study to generate abundance/ 
density estimates because we could not assume that the detection function remained constant 
throughout the different surveys simply due to different weather conditions, observer teams, 
survey platforms, and protocols. In addition, opportunistic sightings could not be included in the 
analyses because they were not collected under line transect protocols. 
 

2) Perpendicular sighting distances had to be calculated for each of the on-effort sightings included 
in the abundance/density analyses. 
 

3) Sightings and effort recorded during a BSS ≤5 were included in the density/abundance modeling 
of all species or groups except the harbor porpoise (Phocoena phocoena). The 
abundance/density analysis for the harbor porpoise was based only on effort conducted in the 
best survey conditions (BSS ≤2). Harbor porpoises are difficult to detect in a higher BSS because 
their sighting cue (small, dark dorsal fin) is hard to see, particularly as the distance from the 
vessel increases (Polacheck 1995). In addition, harbor porpoises typically do not spend much 
time at the surface and often occur singly or in very small groups which adds to the difficulty in 
detecting this species (Polacheck 1995). 
 

Conservative modeling of data with high precision (low variance) requires an adequate sample size (n). 
Generally, as sample size increases, variance decreases and precision improves. A sample size of at 
least 60 sightings is typically recommended for estimating a detection function (Buckland et al. 2001), and 
15 sightings may be the absolute minimum number of sightings that can be used to fit a detection function 
(Barlow et al. 2006). Due to some of the low number of sightings during this baseline study, we specified 
a minimum sample size of around 20 sightings in order to model a detection function. Species with fewer 
than 20 sightings were pooled into taxonomic groups with species of similar sighting characteristics when 
possible, and modeling of a group detection function was then conducted. The data were then stratified 
by species to estimate abundance/density of individual species using the pooled detection function. In 
one case, a minimum of 18 sightings was used to fit a detection function. 
 
Aerial and shipboard survey data could not be combined for density/abundance estimation because of the 
differences in survey techniques and perception bias (animals were at the surface but were not seen). 
Therefore, separate analyses were conducted for the aerial and shipboard sightings data. The 
Conventional Distance Sampling (CDS) method was used to generate abundance/density estimates for 
the overall Study Area, and the Density Surface Modeling (DSM) method was used to generate surface 
maps of predicted density at a finer spatial resolution using various environmental covariates as 
predictors of density. All analyses were carried out using Distance 6.0 release 2 (Thomas et al. 2010)2 
and the statistical program R.3 Note that the PAM results could not be used to generate 
density/abundance estimates since these results only provided information on the presence of certain 
species and did not meet the criteria mentioned above.  
 
3.1.2 Modifications to Sightings Data  

 
We estimated detection functions after filtering the data based on the above criteria. During the 
exploratory data analysis phase, it is important to identify any “spikes” in the data and what the cause 
may be since different models will give very different abundance/density estimates for spiked data 
(Thomas et al. 2010). We plotted histograms of the perpendicular distance data, and selected various 
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cutpoints to identify suitable truncation points (for removal of spurious data and outliers) for perpendicular 
distances in order to conform to the conditions of the “ideal” probability detection function. Buckland et al. 
(2001) recommend truncation of the most distant 5 to 10% of sightings from the right-hand tail of the 
detection function to remove outliers and improve the ability to fit the detection function; however, due to 
our small sample sizes, a 5 to 10% right truncation may remove too many sightings and hinder our ability 
to fit a detection function. Thus, when considering truncation of some of the data, trade-offs must be 
weighed between the benefits of removing spurious data (which can reduce variance) and the costs of a 
reduced sample size (which can increase variance). Instead of truncating 5 to 10% of sightings, right 
truncations were based on specific distances from the trackline which were determined on a case-by-
case basis for the different species/group analyses by assessing the Q-Q plots and histogram plots using 
various truncation lengths. In some cases, spurious data can cause spikes of detections near the 
trackline. These spikes often arise when animals (e.g., dolphins) are attracted to the survey vessel and 
detections were not made before any responsive movement occurred (Thomas et al. 2010). Spikes can 
also be caused by inaccurate estimation of sighting angles for detections ahead of the vessel (often 
rounding of perpendicular sighting distances to zero; Thomas et al. 2010). For the shipboard survey 
analyses, the spiked data were not removed with a left truncation because we did not want to eliminate 
data with a near-100% detection probability at short distances. A left truncation was used for the aerial 
survey data collected in 2009 not because of a spike near the trackline but because of the limited visibility 
of the trackline due to the lack of bubble and belly windows on the survey plane. In this case, a left 
truncation position was chosen where detection was certain. 
 
Distance data are either recorded as exact measurements or are grouped (“binned”) into distance 
categories (Buckland et al. 2001). During the shipboard surveys, sighting distances and angles were 
recorded as exact measurements and were transformed to perpendicular sighting distances for analysis. 
Therefore, the shipboard sightings data could be analyzed as exact data in Distance; however, the aerial 
survey data were collected as both exact data and binned data. During the 2008 aerial surveys, the 
declination angle of each sighting from the plane was recorded either as an exact distance (measured 
with an inclinometer) or as a bin number which corresponded to a range of declination angles. During the 
2009 aerial surveys, the GPS locations of the plane on the trackline and of the sighting were used to 
calculate the exact perpendicular sighting distance for each sighting. For some analyses it was necessary 
to combine the aerial survey data from both years to have an acceptable sample size to use for the 
density/abundance analyses. Therefore, we had to combine the survey data that was collected in bins 
and the data that was collected as exact distances. To do so, we had to analyze all the data as though it 
were collected as binned data. When we analyzed data from only the 2009 aerial surveys, we were able 
to use the exact distance data (unbinned) in our abundance/density analyses.  
 
3.1.3 Assumptions 
 
The key assumptions for line transect surveys are as follows (Buckland et al. 2001): 
 

1) The detection function (see Section 3.2.1) was the same for all animals/detections. 
 
2) Animals were detected at their initial location. Marine mammals and sea turtles are highly mobile; 

therefore, it can be difficult to determine initial locations. For example, some species, such as 
harbor porpoises, tend to move away from vessels (Barlow 1988; Polacheck and Thorpe 1990; 
Palka and Hammond 2001) and other species, such as short-beaked common dolphins 
(Delphinus delphis), are attracted to vessels and often approach ships to bow ride (Palka et al. 
2005). To minimize the potential bias of responsive behavior of animals to the ship, the observers 
used high-powered (bigeye) binoculars so that they could see a great distance from the trackline 
and detect animals before they reacted (positively or negatively) to the presence of the ship. 

 
3) All measurements recorded during the surveys are exact and not subject to rounding (heaping), 

measurement errors, or recording errors. For grouped or binned data, the measurements are 
assumed to be assigned to the correct category (or bin). No measurements are likely to be exact 
on the moving platforms of the plane and ship; however, we attempted to minimize error in our 
measurements by using the azimuth rings, reticle scales, and inclinometers. Every effort was 
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made to avoid rounding any measurements. In regards to group size estimates, we were not able 
to compare our observer estimates with aerial photographs of sightings; however, we did obtain 
group size estimates from as many of the observers as possible and used the average of the best 
group size estimates for each sighting. 

 
4) Animals on the trackline (at zero distance) were detected with certainty such that g(0)=1. At zero 

perpendicular distance y=0 (i.e., when the animal is on the trackline), the detection probability 
should be at or near 100% (i.e., all or nearly all animals on the trackline should be detected). 
Over a moderate range of short distances, the detection probability should be ideal (100%) or 
near ideal (i.e., a broad shoulder in the detection function), meaning that all animals that are 
actually present are detected by the observer for some distance from the trackline. Instruments 
that aid in detection at short distances (such as high-power binoculars) can increase the distance 
range of the “broad shoulder”. Naturally, as sighting distance increases over longer distances, the 
number of sightings/detections should begin to decrease, and at a given distance, large animals 
and animal clusters are more likely to be detected than smaller animals and animal clusters. 
Assumption of g(0)=1 can lead to bias and underestimation of abundance and density (since 
density is inversely related to g[0]). This assumption rarely holds true during marine mammal and 
sea turtle surveys due to availability bias and perception bias. Perception bias results when an 
observer fails to detect an animal on the trackline when the animal is actually at the surface on 
the trackline. Factors that can influence perception bias include viewing conditions (e.g., BSS, 
glare, swell height), observer condition (e.g., experience, fatigue), and platform characteristics 
(e.g., pitch, roll, yaw, altitude). Availability bias results when an animal is submerged or otherwise 
hidden from view while on the trackline and, hence, is unable to be detected. Factors that can 
affect availability bias include species-specific behavior, group size, blow and dive characteristics, 
and dive intervals. Availability bias is particularly a problem for long divers, such as sperm whales 
(Physeter macrocephalus) and beaked whales (family Ziphiidae), and is not as much of a 
problem for species that have shorter dive times, such as common dolphins.  

 
A discussion of g(0), factors affecting animal detectability, and methods of accounting for 
detection bias are discussed in Thomsen et al. (2005). Estimates of g(0) for shipboard and aerial 
surveys are used to calculate less biased estimates of population size. To estimate g(0) for 
shipboard surveys, there are two methods that can be used. The first uses a two-team approach 
(double platform) where two independent teams of observers scan the same trackline 
simultaneously (see Borchers et al. 1998). This approach is very costly in personnel and 
equipment and requires a ship large enough to accommodate the two platforms of the observer 
teams. The second method utilizes a survey aircraft to survey the ship’s trackline three to four 
times during a single day. The NMFS has used this method successfully (e.g., Palka 2005). This 
technique involves simultaneous ship and aerial surveys that cover the same spatial and 
temporal area. The sightings from the ship and aircraft are then compared to estimate the number 
sightings missed by the ship but seen from the aircraft. This method is normally used to estimate 
g(0) for aircraft but can be used to approximate this metric in reverse. Although this was the most 
cost effective method that could be used for our baseline study due to budgetary constraints, this 
method of conducting ship-plane experiments for every species was not practical for our study 
due to the relatively low encounter rate recorded from the ship and plane. This method is more 
conducive to an area with a relatively high density of marine mammals and high encounter rate 
which would allow for sufficient simultaneous recordings of sightings from the plane and ship. 
Otherwise, the costs of this method greatly increase due to the amount of simultaneous effort the 
ship and plane would need to run in order to record enough sightings of each species for 
calculating g(0). 
 
To estimate g(0) for aerial surveys, one of the following three methods is typically used. The Hiby 
circle-back data collection method uses a double-platform approach in which the aircraft 
periodically circles back on itself, and thus acts as both platform 1 (on the first pass) and platform 
2 (when it circles back; Hiby 1999). Therefore, once a group of animals is sighted, the aircraft will 
continue to fly the trackline for 30 s, break trackline and fly the reciprocal heading past the 
sighting for another 30 s, and then rejoin the trackline. This trackline segment is then repeated 
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and the presence/absence of the animals is recorded. The ratio of initial sightings to resighting 
events provides an estimate of g(0). This method is unbiased in low density areas but requires a 
large sample size; therefore, it is not applicable to most species (Palka et al. 2005). Although this 
method was originally proposed for the baseline aerial surveys, estimates g(0) were not obtained 
due to several factors. The method was originally designed to be used with at least two observers 
and a data recorder onboard the aircraft. For safety reasons a co-pilot was added to the crew for 
the 2009 flights. Because of the seating limitations of a Skymaster aircraft (four seats), the seat 
for the data recorder was eliminated. During initial attempts to consistently implement the Hiby 
circle-back method, the additional data recording requirements and the circle-back protocol 
resulted in unconfirmed or loss of sightings due to the multi-tasking of observers. A second 
method for estimating g(0) for aerial surveys uses two independent observer teams; this method 
is similar to the double platform approach discussed above for ship surveys; however, this 
method requires an airplane that can accommodate two teams of observers. Our aircraft did not 
meet this requirement. The third approach involves the use of the ship as mentioned above. 
These ship-plane experiments are not conducive to our Study Area due to the relatively low 
encounter rates.  
 
For the purposes of this report, we assumed a g(0) of 1 because we were not able to calculate 
estimates of g(0) due to the limitations discussed above. We chose not to use g(0) estimates that 
have been calculated from other similar surveys since detection probability has been shown to 
vary substantially among observers, platforms, weather conditions, etc. (Borchers 2005). 
Therefore, the density and abundance estimates calculated for this report should be considered 
underestimated due to both perception and availability bias.  

 
3.2 CONVENTIONAL DISTANCE SAMPLING 
 
CDS is a design-based approach in which the abundance/density estimates that are generated are based 
on the survey design which is assumed to provide a representative sample of the entire Study Area. 
Therefore, we used this method to extrapolate from the sampled strips in our line transect sampling. More 
information about the CDS approach is discussed below. Additional information can be found in Buckland 
et al. (2001; 2004) and Thomas et al. (2010). 
 
3.2.1 Detection Function 
 
The CDS engine in Distance uses a flexible semi-parametric detection function modeling framework 
(Thomas et al. 2010). Sightings data were modeled as a probability detection function g(y), a plot of 
sightings versus distance between the sighting and the perpendicular distance from the sighting to the 
trackline on which the ship/plane is traveling. Estimates of density and abundance were based on 
estimates of encounter rate, detection probability, and mean cluster (group) size.  
 
3.2.1.1 Detection Probability Estimation  
 
An ideal probability detection function has the following characteristics (Buckland et al. 2001): 
 

1)  An intercept of g(0) = 1.0 (100% probability of detection) at zero perpendicular distance y=0 
(where g[0] is the probability of detecting an animal on the trackline), 

2)  A broad shoulder over a range of short distances before beginning to taper off, 
3)  A monotonically decreasing function g(y) with increasing perpendicular distance y, and 
4)  An upward shift in the detection function g(y) as animal/cluster size increases (when animal size 

or cluster size is included in the modeling). 
 
The decrease in detection probability as a function of increasing perpendicular distance from the transect 
line was modeled using a half-normal or hazard-rate key function along with cosine series expansion 
terms as required. This model optimization analysis was conducted for each species/group in which there 
were around 20 sightings that met the criteria described in Section 3.1.1. During the model optimization 
analysis, the detection functions for each species/group were modeled using different combinations of the 
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half-normal and hazard-rate key functions with the expansion terms. In most cases, the optimal model 
was chosen as that model which yielded the smallest value of the Akaike’s Information Criterion (AIC) 
index (Buckland et al. 2001, 2004), given by: AIC = -2*ln(L) + 2*q, where ln(L) is the log-likelihood 
function evaluated at the maximum likelihood estimates of the model parameters and q = number of 
estimated model parameters. AIC quantifies the bias-variance trade-off. The first term quantifies how well 
the model fits the data, which can also be quantified via the chi-square (X2) goodness-of-fit (GOF) test. 
The second term quantifies the penalty (increased variance) associated with addition of model 
parameters. Model parameter addition (increase in q) improves model fit and reduces bias at a cost of 
increasing variance and model complexity. To aid in model selection, the model with the lowest AIC is 
identified as the optimal model, which has the best combination of a good fit to the data without too many 
parameters (parsimony principle). In some cases where the behavioral observations indicated a problem 
with avoidance or attraction to the survey platform, the optimal model was subjectively chosen. For 
example, when a spike near the trackline was thought to be caused by the attraction of the animals to the 
platform, the optimal model chosen was the one that did not fit the detection function to the whole spike. 
Fitting the spike near the trackline results in inflated abundance/density estimates.  
 
3.2.1.2 Mean Group Size Estimation 
 
We are estimating the density/abundance of animals which often occur in groups or clusters. Therefore, 
the mean group size of the sightings may be subject to size bias. Large groups are often detected at 
greater distances from the trackline than small groups which can lead to positively-biased estimates of 
the mean size of detected groups. In general, the arithmetic mean group size may be an overestimate of 
the true mean group size and could lead to positively-biased density and abundance estimates. To 
account for group-size bias, the size-bias regression approach was used to estimate an expected mean 
group size using Distance. In this approach, the expected mean group size of the population is estimated 
by using a regression method in which the logarithm of cluster size of observation "i", log(si), is regressed 
against the estimated detection probability, g(yi), where yi = perpendicular distance of object "i" from the 
trackline: log(si) = a + b*g(yi), where "a" (intercept) and "b" (slope) are regression coefficients. Mean 
cluster size in the population is estimated from the predicted mean size of detected clusters in the region 
where the detection probability is at or near 100% (i.e., g[yi=0] = 1.0, at zero perpendicular distance from 
the trackline). Thus, from the above regression equation, mean cluster size is approximated by s(mean) = 
a + b, where g(yi) is set equal to 1. This regression method corrects for size-biased detections and for the 
underestimation of size of detected groups (Buckland et al. 2001). A statistical hypothesis test was 
applied to the regression of group size on distance, and the expected mean group size was only used in 
the analysis if it was significantly (P<0.15) smaller than the arithmetic mean group size. If it was not 
significantly smaller, then the observed mean group size was used. 
 
3.2.1.3 Density, Abundance, and Variance Estimation 
 
According to line transect theory (Buckland et al. 2001), density (abundance per unit area) is estimated as 
a function of: 
 

1) Encounter rate n/L (where n = sample size or number of sightings and L = line transect length or 
effort),  

2) Probability density function at zero perpendicular distance f(0),  
3) Mean group or cluster size E(s), and 
4) Probability detection function at zero perpendicular distance (g[0]). 

 
The estimated density (D) is given by the following equation: 
 

D = N/A = n*E(s)*f(0)/2L*g(0) 
 
where N = abundance, A = Study Area, E(s) = mean group size, and the other parameters are as defined 
previously. The term g(0) (the availability bias) is assumed to be 1.0. Assuming g(0) is constant, the 
sources of variance associated with abundance/density estimation in the CDS method include 
contributions of encounter rate (n/L), detection probability f(0), and mean group size E(s). Encounter rate 
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(n/L) is defined as the ratio of the number of animals observed (n) to the effort L (i.e., transect length) 
associated with those sightings. Group size (E[s]) is effectively the ratio of the total number of individual 
animals observed (abundance) to the number of observations (see Section 3.2.1.2). Density (i.e., ratio of 
abundance N to Study Area A) is estimated as the ratio of the number of animals sighted (n) to the survey 
coverage area (a), where a = 2wL, w = strip half-width (truncation distance), and L = transect length. The 
effective strip half-width (ESW), µ, is defined as the sighting distance such that the number of animals at 
distances less than µ that were missed by the observer is equal to the number of animals at distances 
greater than µ that were detected by the observer. The ESW µ is equal to 1/f(0). Using the parameters 
f(0) and µ derived from the optimal detection function and assuming g(0)=1, the above density equation 
can be simplified to the following:  
 

D = n*E(s)/2µL 
 
The error or uncertainty associated with each estimated parameter (D, n/L, f[0], E[s]) can be quantified by 
the variance (Var), coefficient of variation (CV), and the 95% confidence interval (CI). The CV is the ratio 
of the square root of variance to the value of the parameter estimate. For example, CV(x) = Var(x)0.5/x, 
where x = D, n/L, f(0), or E(s). The CDS engine in Distance uses the delta method to estimate the 
analytical variance of a density or abundance estimate. According to the delta method, the squared 
coefficient of variation for density (D) is equal to the sum of the squared CVs for encounter rate (n/L), 
detection probability f(0), and mean group size E(s): 
 

CV(D)2 = CV(n/L)2 + CV(f[0])2 + CV(E[s])2 
 
After CV(D) is calculated, then, for the 100*(1 - 2*a) CI, the lower (Dl) and upper (Du) confidence limits for 
estimated density D are given by Dl = D/C and Du = D*C, where C = exp(za*[ln{1 + CV(D)2}]) and where za 
is the critical z value of the Gaussian normal distribution for the “a” confidence level (Buckland et al. 2001, 
2004). For example, for the 95% CI, a = 0.025 and za = 1.96. 
 
In addition to the estimates of density (D) and abundance (N), the model reports the CV, degrees of 
freedom (DF), and the 95% CI statistics associated with each density and abundance estimate. In 
addition, the optimal model parameters (of the optimal model used in the density estimates) are reported 
along with associated variances. Statistics on the components of density (i.e., n/L and f[0]) are also 
reported. In addition, model output includes the percentages of the variance associated with the global 
density estimate that is attributed to the encounter rate (n/L), density function f(0), and mean group size 
E(s). 
 
3.3 DENSITY SURFACE MODELING 
 
The CDS method provides robust estimates of abundance/density of species or groups but cannot give 
any information about the potential influences on those estimates. The DSM method provides additional 
information on distribution and abundance/density of marine species in the Study Area at a finer spatial 
resolution. DSM is a model-based approach in which animal abundance/density can be modeled as a 
function of spatially-indexed environmental covariates. This method is also known as spatial modeling or 
habitat modeling (Thomas et al. 2010). The key step in the first phase of DSM is partitioning the survey 
effort (tracklines) into segments. The DSM analysis engine in Distance utilizes the “count method” in 
which segment counts (sightings/detections) are modeled as a function of covariates (Hedley and 
Buckland 2004). The sightings within each segment are converted into an abundance estimate for each 
segment. The area of the segment (based on chosen segment length and the truncation distance) serves 
as an offset (Thomas et al. 2010). Generalized additive models (GAMs; Wood 2006) are used to estimate 
the spatial distribution of abundance/density or counts (the response variable) as a function of numerous 
geographical, physical, and environmental covariates (explanatory variables), such as longitude, latitude, 
water depth, distance from shore, bathymetry, SST, and surface chlorophyll concentration. After fitting 
GAMs to the survey data, the resulting DSM (the chosen model) is applied to a prediction grid 
superimposed upon the Study Area so that animal abundance/density can be predicted for any portion of 
the Study Area and related to specific covariates. The variance of the predicted abundance/density is 
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estimated using the bootstrapping resampling technique (Hedley and Buckland 2004). A brief description 
of these methods is included below. For more information, please see Hedley and Buckland (2004).  
 
3.3.1 Data Preparation 
 
3.3.1.1 Segmentation Process 
 
The DSM analysis engine in Distance requires all tracklines to be divided into segments (Thomas et al. 
2010). There is no objective way to choose the length of segments; however, they should be sufficiently 
small so that habitat does not vary much within the segments, and expected density is not likely to vary 
much within the segments (Hedley and Buckland 2004). Due to gaps in search effort along the tracklines 
(e.g., when the survey team would switch to off-effort mode to approach a sighting to get group size 
estimates), effort cannot always be split into equal segment lengths. Therefore, the size of each segment 
may vary. 
 
A variety of segment lengths were assessed for each species/group analysis. We set a goal to have 15% 
of the segments contain sightings; this goal has been used in other marine mammal DSM analyses (e.g., 
DoN 2007). The segment length for each analysis was selected to minimize the number of segments with 
zero sightings and to minimize the variation in habitat within each segment. Due to gaps in search effort 
along transects, effort could not always be split into segments of the desired length. Therefore, the size of 
each segment varied, and the model was weighted by segment area. Most segments were around 7 km 
in length. 
 
For each trackline with and without sightings, effort (transect length L) was calculated as the spatial 
distance between the starting and ending longitude and latitude coordinates. Efforts were calculated for 
all tracklines in the survey and summed over the number of tracklines to obtain a total effort (Ltot). Marine 
mammal sightings were summed to obtain the total number of sightings (Ntot). Total overall encounter 
rate ER = Ntot/Ltot, and segment length (l) was calculated as: 
 

l = 0.15*Etot/Ntot = 0.15/ER 
 
where the coefficient "0.15" was chosen so that approximately 15% of the segments would contain a 
sighting. Each trackline of length L was divided up into equal-sized segments of length "l", where the 
number of segments in the trackline is Nseg = L/l (i.e., ratio of transect length L to segment length l). The 
longitude/latitude coordinates of the midpoint of each segment in each trackline were selected based on 
the length of the segment, and sightings were assigned to the segment whose midpoint was closest to 
the location of the sightings. The static and dynamic covariates included in the model (see below) were 
matched to each segment based on the covariate values for the midpoint of each segment. 
 
3.3.1.2 Selection of Covariates (Predictor Variables) 
 
The estimated number of individual animals per segment can be related to environmental covariates by 
fitting a GAM (Section 3.3.3; Wood 2006). A variety of oceanographic and topographic variables can be 
included in the model as potential predictors of abundance/density; however, the covariate data must be 
available for the entire Study Area (i.e., not just the segmented tracklines) and the entire study period. 
Suitable environmental data that meet the criteria can be difficult to obtain. Biological variables, such as 
the distribution and abundance of prey species, are known factors that influence the distribution of marine 
mammals but such data are difficult to obtain over a large area (Payne et al. 1986; Kenney et al. 1996). 
Therefore, remotely sensed data, such as SST and surface chlorophyll a (chl a) concentrations, and static 
variables, such as bathymetry and distance from shore, are often the only type of covariates that are 
available to be included in marine mammal models (e.g., Hamazaki 2002; Cañadas et al. 2005; Ferguson 
2005; Redfern et al. 2006; Paxton et al. 2009). Physical oceanographic data are often used as proxies for 
prey abundance which is thought to directly influence marine mammal distributions (Redfern et al. 2006). 
 
Marine mammal distribution patterns are complex and affected by various demographic, evolutionary, 
ecological, habitat-related, and anthropogenic factors (Forcada 2002). Prey distribution is one of the main 
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influences of marine mammal distribution; marine mammals are usually found in areas with high densities 
of principal prey species (Payne et al. 1986; Kenney et al. 1996; Forcada 2002). Fine resolution spatial 
information on the distribution and abundance of prey species is often unavailable over large areas and 
time periods. Therefore, indirect indicators of prey distribution (SST, topography, chl a, etc.) are often 
used to study potential influences on the distribution and abundance of marine mammal species (Fiedler 
2002; Ferguson 2005; Redfern et al. 2006). Important oceanographic variables that influence the 
distribution of prey and characterize marine mammal habitats include SST and chl a. In addition, ocean 
floor topography and bathymetry are often associated with oceanographic phenomena that influence 
marine mammal distribution (Forcada 2002). We chose a variety of static and dynamic habitat covariates 
to include in our abundance/density prediction models. Static covariates included water depth, distance 
from shore, slope of the seafloor, latitude, and longitude while dynamic covariates included SST and chl a 
(Table 3-1).  
 
Static Covariates 
 
Latitude, longitude, distance from shore, depth, and slope of the seafloor are static variables which may 
influence marine mammal distribution and abundance. There are known variations in geographic 
distributions based on seasonal migrations and movement patterns. For instance, North Atlantic right 
whales and humpback whales are known for their well-defined seasonal migratory patterns between 
feeding grounds off the northeast U.S. and breeding/calving grounds off the southeast U.S. (right whales) 
and in the Caribbean (humpback whales; Dawbin 1966; Winn et al. 1986; Clapham and Mead 1999; 
Kenney et al. 2001; Clapham 2009). Smaller-scale migratory movements are also evident in other 
cetacean species such as the bottlenose dolphin which spends the summer and fall months off New 
Jersey and higher latitudes and moves southward to Virginia and North Carolina during the winter and 
spring months (CETAP 1982; Kenney 1990; Garrison et al. 2003; Hohn and Hansen 2009; Waring et al. 
2009; Toth et al. in press). Fine-scale movements of this species within the Study Area are also 
documented based on specific distances from shore (Toth-Brown et al. 2007). Topography (slope and 
depth) is also a critical factor in marine mammal distribution. Bottom topography can influence the 
abundance of prey; a change in depth on the shelf is often associated with higher concentrations of 
zooplankton. Baleen whales are known to be associated with shallow waters with high topographic 
variation in which prey accumulates at frontal interfaces between mixed and stratified waters (Forcada 
2002). Humpback whales, for example, are known to base their foraging strategies on areas with high 
topographic variation (Payne et al. 1986). The static covariates included in Table 3-1 were attached to 
each segment by using the covariate value that is closest to the midpoint of each segment. 
 
Dynamic Covariates 
 
SST and chl a are two types of dynamic variables known to influence marine mammal distribution and 
abundance (Smith et al. 1986; Baumgartner et al. 2001; Kaschner et al. 2006; Redfern et al. 2006). 
Several marine mammal species have temperature-limited distributions. For instance, harbor porpoises 
occur in sub-polar to cool-temperate waters and are seldom found in waters warmer than 17ºC (63ºF) 
(Read 1999). In addition, nearshore bottlenose dolphins shift their distribution in response to changes in 
water temperatures (Barco et al. 1999). Therefore, SST may help to predict abundance/density of certain 
species in the Study Area. Chl a concentrations may also influence marine mammal abundance/density in 
the Study Area. High chl a values are associated with upwelling centers located offshore of the Hudson-
Raritan estuary, Barnegat Inlet, the Mullica River estuary, and Townsend/Hereford Inlet (Glenn et al. 
2004). Primary production concentrates within upwelled waters and may attract prey species.  
 
The dynamic covariates SST and chl a were evaluated for each segment by first generating 1 km by 1 km 
(1.9 NM by 1.9 NM) spatial grid maps of seasonal average SST and chl a using the same seasons as 
defined in Section 2.3.1 and then comparing the longitude and latitude coordinates of each segment’s 
midpoint with the longitude and latitude coordinates of each pixel in the gridmap corresponding to the 
season associated with the segment. The pixel with valid SST and chl a values that is in closest proximity 
to the segment midpoint was identified, and the seasonal average SST and chl a values associated with 
that pixel were assigned to the given segment. If no data were available for the closest pixel (due to cloud 
cover, etc.), then the next-closest pixels were assessed until a pixel with valid SST and chl a was found.  
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Table 3-1. Environmental covariates included in the DSM analyses. 

 
 

Covariate Description Source 

Depth Average depth of water in meters 

NOAA geophysical data system for gridded 
bathymetric data, National Geophysical Data 
Center 
(NOAA 1999) 

Offshore 
Distance Distance, in meters, from the shoreline 

Calculated with the Point Distance 
Geoprocessing tool available in ESRI’s 
Arc/Info® Toolbox 9.3 using NOAA 
bathymetric data 

Slope Slope, in degrees, of the sea floor 
Calculated with the Surface Analyst function 
from ArcGIS® 9.3 Spatial Analyst Extension 
using NOAA bathymetric data 

SST 

Seasonal and annual averages of SST 
(in degrees Celsius [°C]) for the Study 
Area derived from remotely-sensed 
data from 01 January 2007 through 31 
December 2009  

Sensor: Moderate Resolution Imaging 
Spectroradiometer (MODIS) Aqua. 
Resolution: 1.0 km.  
(NASA 2010) 

chl a 

Seasonal and annual averages of 
surface chl a concentrations (in 
milligrams per cubic meter [mg/m3]) for 
the Study Area derived from remotely-
sensed data from 01 January 2007 
through 31 December 2009 

Sensor: Moderate Resolution Imaging 
Spectroradiometer (MODIS) Aqua. 
Resolution: 1.0 km.  
(NASA 2010) 

Latitude Latitude in decimal degrees  

Longitude Longitude in decimal degrees  
 
 
3.3.1.3 Construction of Prediction Grid 
 
After fitting GAMs to the survey data (see Section 3.3.3), the resulting DSM was applied to a prediction 
grid superimposed upon the Study Area. Therefore, animal abundance/density could be predicted for the 
entire Study Area for each season of interest. To construct the prediction grid, a spatial grid of 1-km by 1-
km (1.9-NM by 1.9-NM) cells was created using ArcGIS® and overlaid onto the Study Area. The cells 
were evenly distributed throughout the Study Area, and a point shapefile of the grid was generated using 
ArcGIS®. This point file was comprised of 5,000 points which were the centroids of the 1-km by 1-km (1.9-
NM by 1.9-NM) grid cells. The centroids of each cell were matched to their corresponding latitude and 
longitude and their values for the following static covariates: water depth, distance from shore, and the 
slope of the sea floor (Table 3-1).  
 
The dynamic covariates SST and chl a were generated for each for the 5,000 centroids in the prediction 
grid by comparing the longitude and latitude coordinates of the given centroid with the longitude and 
latitude coordinates of each pixel in the gridmap corresponding to the season associated with the 
prediction grid. The pixel with valid SST and chl a values that is in closest proximity to the centroid was 
identified, and the seasonal average SST and chl a values associated with that pixel were assigned to the 
given centroid. If no data were available for the closest pixel (due to cloud cover, etc.), then the next 
closest pixels were assessed until a pixel with valid SST and chl a was found.  
 
Separate prediction grids were developed for each seasonal analysis of abundance/density of the species 
or groups. The values for the static covariates remained the same for each prediction grid. The values for 
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the dynamic covariates (SST and chl a) were averaged across each grid cell for the season in question. A 
total of four prediction grids were developed, one for each of the following seasons: year-round (SST and 
chl a averaged across all seasons), winter (SST and chl a averaged across only the winter season), 
spring (SST and chl a averaged across only the spring season), and summer (SST and chl a averaged 
across only the summer season). Note that there were not enough sightings data to model marine 
mammal abundance/density for the fall season alone. 
 
3.3.2 Fitting a Density Surface  
 
The estimated probabilities of detection were obtained from the fitted models for the detection functions 
chosen from the CDS analyses (see Section 3.2) using the Mark-Recapture Distance Sampling (MRDS) 
engine in Distance. When using a GAM to model the relationship between the response variable and 
various covariates, it is ideally desirable to detect all objects (animals) in the segment; however, this is 
rarely the case, as reflected in monotonically decreasing probability detection functions. Two methods are 
available to account for objects not detected in a segment: The first method involves estimating the total 
number (as opposed to the detected number) of objects in the segment, ni, via the Horvitz-Thompson 
estimator: ni = SUM (1/pij), where pij = probability of detection of object j in segment i, and the summation 
is conducted from j = 1 to ni. This method is useful if the detectability is different for objects within the 
same segment. The second method involves decreasing the segment area (ai) to reflect the effective area 
surveyed rather than the covered area (count), using the effective strip half-width µ (or ESW = 1/f[0]): ai = 
2 µi li, where li = length of segment i. The µ value is defined as the sighting distance such that the number 
of undetected animals at distances less than µ is equal to the number of detected animals at distances 
greater than µ. After using these two methods to account for undetected objects in a segment in the ni 
and ai terms, density in segment i is then calculated as Di = ni/ai. 
 
In the CDS/MRDS methods, the statistical criterion for model selection (i.e., probability detection function) 
is AIC minimization. In the subsequent DSM analysis, the criteria for selection of the optimal GAM model 
is (among other criteria) GCV/UBRE minimization (GCV = generalized cross-validation; UBRE = unbiased 
risk estimator). To fit a GAM to the observed data, we specified the following information: 1) the 
explanatory variables (covariates) to include in the model (see Section 3.3.1.2); 2) the dimension of the 
smooth functions (univariate which includes one covariate versus bivariate which includes two 
covariates); 3) the degree of smoothness of the functions (controlled by the number of knots (k): DF = # 
knots-1; 4) error distribution (quasipoisson); and 5) the logarithmic link function. A small number of knots 
increases smoothness while suppressing the expression of small-scale variability; this is desired if the 
function exhibits sharp gradients (i.e., high sensitivity of the response variable to changes in the given 
covariate) over small scales. Conversely, a large number of knots decreases smoothness while 
enhancing small-scale variability; this is desired if the functional dependence of the response variable on 
the given covariate exhibits very low sensitivity. We chose to limit the number of knots used in the 
analyses to k=7 for univariate smooth functions and k=14 for bivariate smooth functions in order to allow 
moderate flexibility while reducing the likelihood of fitting unnecessarily complicated functions. 
 
Identification of the “optimal” GAM was aided with the following information and model output: 1) 
minimization of the GCV/UBRE score; 2) maximization of the % of deviance explained by the model; 3) 
inspection of the diagnostic plots of the residuals (e.g., normal Q-Q plot, residuals versus linear predictor, 
frequency histogram of residuals, response versus the fitted values); 4) inspection of the plots of smooth 
functions (increase or decrease the maximum number of knots, include as a linear term, etc.); 5) 
assessment of the response surface summary (sensitivity of the density surface/abundance to different 
models); and 6) assessment of the significance of the covariates in the GAM. 
 
Different GAMs that incorporate various combinations of smooth functions of covariates were tested and 
compared to each other using the above criteria for ideal model selection. The total number of different 
combinations of covariates is quite large. In addition to univariate (1-dimensional) functions of the 
individual covariates, bivariate (2-dimensional) functions were applied to various pairwise combinations of 
covariates (e.g., longitude and latitude, depth and offshore distance, SST and chl a). Generally, for N 
covariates there are N(N-1)/2 pairwise combinations (i.e., 21 pairs for the total seven covariates). It was 
not necessary to test every possible combination of smooth functions of covariates. As GAMs were 
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formulated on a trial-and-error basis, we were able to discern which covariates were more significant than 
others. The decision to include a given covariate in the model was made based on a tradeoff between 
model fit (using the above statistical criteria characterizing an “optimal” model) and model complexity. A 
given covariate was excluded from the GAM if: 1) the estimated DF for the covariate were close to 1; 2) 
the plotted confidence band for the covariate included zero everywhere; and 3) the GCV/UBRE score 
decreased when the covariate was omitted from the GAM. After the excluded covariates were identified, a 
(significantly smaller) list of potential GAMs that include combinations of the remaining covariates were 
developed, while the combinations involving the excluded covariate(s) were eliminated from further 
consideration. From this restricted list of potential GAMs, optimal model selection was based on the 
above statistical criteria (e.g., GCV/UBRE minimization, maximization of % deviance explained, etc.). 
 
3.3.3 Predictions of Density and Abundance  
 
In the DSM analysis, GAM models were developed and an optimal model was chosen based on 
numerous selection criteria. This optimal GAM was chosen as the best fit to the observations of the 
response variable (density, abundance) as a function of smooth functions of the various covariates at the 
available sampled sites, and was used to generate predictions of density and abundance at unsampled 
sites (i.e., sites where estimates of the covariates are available but where the response variable has not 
been observed or measured) on a prediction grid that encompasses the entire Study Area. 
 
Caution should be exercised when extrapolating model predictions from regions with observational data 
to regions far removed from observational data, particularly in situations where sharp spatial gradients in 
density/abundance and covariates occur. It is probable that the GAM will be applied to regions within the 
Study Area that are not sufficiently surveyed (i.e., areas with little or no survey effort). In this case, it is 
imperative that covariate data be collected at these unsampled sites (rather than interpolated from 
sampled sites) if possible, so that the GAM can be adequately applied to obtain predictions (estimates) of 
density and abundance. For example, the GIS database stores an abundance of data on static covariates 
(depth, offshore distance, bathymetric slope) at every conceivable offshore longitude and latitude 
location. Given the availability and time-invariance of these covariate data, it is more accurate to obtain 
values of these covariates at the exact locations of the unsampled sites (rather than interpolating from 
values at sampled sites) and using these exact values in the GAM to generate estimates of abundance 
and density at these unsampled sites. Using this procedure of covariate data collection at unsampled 
sites (i.e., every grid cell in the prediction grid), the GAM is applied to estimate density and abundance 
and extrapolate these predictions to each grid cell, thus generating a density surface (spatial map of 
density) covering the entire Study Area. 
 
Generally, the accuracy and validity of predictions (of abundance or density) in regions with no 
observational data (or in regions far removed from observations) depends on model robustness and 
reliability (model-based analysis) and on the availability of measurements of covariates that are included 
in the model. At the smallest spatial scale (i.e., within each cell of the prediction grid), the GAM is used to 
estimate density. Estimated density in each cell is calculated as the ratio of estimated abundance to the 
cell area. In specified regions of larger spatial scale (i.e., containing several cells of the prediction grid), 
abundance and density are estimated by density surface integration in which the predicted abundances of 
all cells in the given region are summed, and density is estimated as the ratio of the summed abundances 
to the summed areas of all cells in the given region. 
 
3.3.4 Variance Estimation 
 
The variance associated with the prediction grid estimates of density and abundance was estimated using 
bootstrapping, a technique involving random resampling with replacement (Efron and Tibshirani 1993). 
Bootstrapping is advantageous in that it is a robust method of variance estimation when variance cannot 
be calculated analytically. A large number of bootstrap samples are typically generated (to ensure an 
adequate sample size). The minimum number of resamples should be no less than 200, and 400 to 1,000 
resamples are preferred to generate reliable confidence intervals (Buckland et al. 2001). Abundance is 
estimated from each bootstrap estimate, and these bootstrap abundance estimates are ranked from 
highest to lowest. The mean of these bootstrap estimates is calculated, and the 95% CI is calculated such 
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that it is bounded by the 2.5% quantile and the 97.5% quantile. Because of this nonparametric measure 
of uncertainty, the bootstrapping method is not affected by a few extreme outliers. 
 
Different types of bootstrapping methods include nonparametric, parametric, and moving block. The 
nonparametric method requires no distributional assumptions, whereas the parametric and moving block 
methods are based on a fitted model (GAM) that incorporates some distributional assumptions and 
estimated model parameters. The Distance software is currently able to run only the parametric moving 
block bootstrap in its variance estimation method. The following is a discussion of the advantages and 
disadvantages of each method, leading to justification of the choice of method used in Distance. 
 
Nonparametric bootstrapping involves random resampling with replacement of some independent 
sampling unit whose spatial/temporal scale is sufficiently large that autocorrelation between adjacent 
sampling units is negligible. Sampling units should be numerous, with a sufficiently fine spatial/temporal 
scale to capture small-scale variability in the data structure; however, adjacent sampling units should also 
be spatially/temporally independent of each other, and too fine a scale poses the risk of significant 
autocorrelation between adjacent sampling units since the degree of correlation generally increases with 
a decrease in spatial/temporal scale (e.g., decrease in separation distance between adjacent units on a 
spatial scale or decrease in time difference on a temporal scale). Thus, the sampling units should be 
constructed on a scale sufficiently fine as to be numerous while also sufficiently coarse as to be 
independent from each other. The transect (which is spatially finer than the Study Area and region levels 
and coarser than the segment level) is typically chosen as the independent sampling unit since its data 
structure is both sufficiently fine to be numerous while also sufficient coarse to be independent. The 
segment data structure is numerous (since transects are divided up into segments) but may not be 
independent since its relatively smaller spatial scale renders it susceptible to spatial autocorrelation 
between adjacent segments (e.g., positively correlated objects in adjacent segments). The data structure 
at the larger levels of Study Area and region are not sufficiently numerous due to their relatively coarser 
spatial scales. Nonparametric bootstrapping is advantageous in that it preserves spatial correlation, but it 
does not preserve spatial coverage and can lead to extreme bootstrap abundance estimates. 
 
Parametric bootstrapping uses a model (e.g., a GAM in the DSM analysis) fitted to the observed data to 
generate new data values which are then used to generate the bootstrap sample. A GAM uses smooth 
functions (with model parameters) relating the response variable (i.e., abundance or density) to a number 
of covariates or explanatory variables (e.g., longitude, latitude, depth, offshore distance, bathymetric 
slope, SST, chl a). The residuals (defined as the difference between the observed value and model-
estimated value of the response variable) are selected randomly and with replacement in parametric 
bootstrapping. Whereas nonparametric bootstrapping preserves spatial correlation but not spatial 
coverage, parametric bootstrapping preserves spatial coverage but not spatial correlation. 
 
In seeking to address the shortcomings of the nonparametric and parametric methods, the moving block 
method (which is the method of choice in Distance) preserves both spatial correlation and spatial 
coverage. This method uses a moving block comprised of a number of sampling units (e.g., segments). 
Block size m (number of segments in a block) should be sufficiently large so that segments more than m 
units apart (i.e., in different blocks) are independent (i.e., no spatial correlation between blocks), yet also 
sufficiently small to retain spatial correlation and structure among the segments within a given block (i.e., 
spatial correlation within blocks). Information on optimal block size can be obtained from a semivariogram 
of residuals. Semivariance between a pair of points increases (i.e., autocorrelation decreases) 
asymptotically with increasing separation distance, reflecting decreased similarity until the points become 
independent (spatially uncorrelated) at a sufficiently large separation distance. 
 
The moving block is selected randomly and with replacement and is then randomly placed back together 
to generate the bootstrap sample. The original response variable values cannot be moved since they are 
connected to spatial location and other explanatory variables; however, the residuals can be moved, thus 
generating bootstrap samples via random resampling with replacement using a moving block as the 
sampling unit. Then, many bootstrap samples are randomly generated, a mean value of these samples is 
calculated, and the 95% CI is estimated to obtain the variance estimate associated with the prediction 
grid estimate of the response variable (abundance). 
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Due to its inherent advantages and ease of application, the parametric moving block method is currently 
the method of choice in Distance for variance estimation. Required user-specified parameters include 
block size m (typically 3), number of bootstraps (10, 99, 199, 499, or 999), confidence interval desired 
(0.95, 0.90, 0.85, or 0.80) and inter-quartile range for outlier detection (1.5, 2.0, 2.5, or 3.0). Effects of 
outliers on variance estimation is generally insignificant, especially if a large number of bootstraps are 
used, since the relatively rare occurrences of anomalously low and high values will be concentrated in the 
lower and upper tailings, respectively, which are cut off at the 2.5 and 97.5 quantiles in the estimation of 
the 95% CI. To balance the tradeoff between spatial detail and time constraints, 499 bootstraps is 
typically optimal. Using a larger number of bootstraps requires more computation time, whereas using 
fewer bootstraps runs the risk of an inadequate sample size and renders the method increasingly 
susceptible to outliers. We chose a block size of 2 or 3 and desired confidence interval of 95% and ran 
999 bootstraps for each of our DSM analyses. 
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