AGRICULTURAL PESTICIDE USE IN NEW JERSEY: 1988 SURVEY

Introduction

The New Jersey Pesticide Control Program (NJPCP) began a series of pesticide use surveys in 1985. These surveys address pesticide use in the state of New Jersey for agriculture, golf courses, termite control, right-of-way, mosquito control, and lawn care. The agricultural use survey is conducted every three years and targets agricultural, nursery, and greenhouse use of general and restricted pesticides. This report focuses on the second survey completed in this series (1988).

All statewide pesticide use surveys are performed under the authority of the New Jersey Pesticide Control Code, N.J.A.C. 7:30-1 et.seq., requiring applicators to maintain pesticide records for two years and to submit use records to the state when requested. This regulative authority provides an accuracy and level of response that is difficult to duplicate in a voluntary, nationwide survey. In fact, these New Jersey surveys almost represent a pesticide usage census rather than a probabilistic survey.

The information collected from the NJPCP pesticide use surveys is used by agencies within the NJ Department of Environmental Protection along with other state agencies to aid in research, exposure management and monitoring efforts in areas such as ground water protection, farm worker protection and education, and residual pesticide sampling. The survey data are also entered into state and federal geographical information systems for geographical distribution.

Methods

The NJPCP's registration records were used to identify all 3137 licensed private applicators. "Private applicators" (persons using pesticides on agricultural commodities) include farmers, ranchers, sod farmers, Christmas tree growers, and nursery and greenhouse operators. A survey form was sent to each applicator, but since two or three applicators can work on the same agricultural establishment, the accompanying cover letter requested that only one form be returned for each agricultural establishment to avoid duplication of response. An initial mailing to all applicators and two subsequent mailings to non-respondents were sent during the first six months of 1989.

The survey requested information on each pesticide product used, including trade name, EPA registration number, active ingredient percentage, amount applied for the year, number of acres treated, and type of crop(s) treated.

Survey information was entered into a database file. This information file was then merged with a second database that linked chemical names with trade names, and a sub-program converted total product amounts to active ingredient amounts.

Results

Overall, 3007 of 3137 (96%) of the surveys were returned. Table I lists the chemicals and their amounts reported in the 1988 survey. Total agricultural pesticide use in New Jersey for 1988 was 1,783,181 pounds active ingredient.

Table II lists the most frequently used compounds by pesticide category. The single most used compound in 1988 was sulfur, which makes up more than half (60%) of New Jersey's agricultural fungicide use and one quarter (25%) of the state's total agricultural pesticide use.

Table III lists the percentage of the total pesticide use on each crop type. Herbicides dominate soybean, grain, field corn, and sod production treatments. Fungicides dominate peach, grape, cranberry, and to a certain extent blueberry treatments. Insecticides were relatively uniform in distribution but dominate potato production. Certain crops were dominated by a few chemicals. Peaches received the highest weight of pesticide application with 75% of the treatment being sulfur. Scale oils made up 63% of all insecticide applications to apples. Sodium aluminofluoride made up 87% of all insecticide treatments to potatoes.

Table IV lists by county the amounts and percentages of the state's total pesticide use. The southern half of New Jersey makes up most of the state's agricultural production. Atlantic, Burlington, Cumberland, Gloucester and Salem counties, all located in the south, show the highest pesticide use. Camden and Monmouth counties show a moderate amount of pesticide use. Warren county, the strongest agricultural county in the north, shows only half the use of the smaller Camden county to the south. The heavily-industrialized northern counties such as Essex, Hudson and Union showed an expected small usage.

Discussion

Any review or discussion of the data collected in the 1988 agricultural pesticide use survey must focus on the uniqueness of New Jersey's agriculture. A primary point to consider is the absence of a major crop. Due to New Jersey's geographical location, climatic conditions allow the production of a tremendous selection of vegetables and fruits, and the state incorporates a vast collection of what are termed "truck farms," where a variety of small crops are grown on the same farm. Therefore, although individual pesticides may dominate use on a particular crop, there is no group of pesticides that dominate use in the state. This is in contrast to many midwestern states, where corn herbicides represent the predominant use.

In reporting and evaluating pesticide use, it is important to consider the many, diverse influences on pesticide use. No single factor, or even set of factors, can completely account for fluctuations in the amounts of pesticide active ingredients used from survey to survey. Weather conditions such as temperature and rainfall, in terms of duration, timing and amounts or degrees, influence pest pressure and the associated response. In agricultural settings, issues such as cropping patterns and the associated pest impacts vary from year to year. Economic factors play a significant role, ranging from crop demand to golf course playability to product and/or service cost. The changing face of land use also plays a part. While agricultural acreage has been

declining, new home building starts and the associated lawns around those new homes have been increasing.

Another factor is the adoption of IPM (Integrated Pest Management). Short term, some pest control situations may require increased pesticide applications beyond the alternative means contained in an IPM program. Long term, however, IPM should result in overall pesticide use reduction. This may be confounded by the increased use of reduced-risk alternatives that may have higher application rates than the materials they replace.

TABLE I. Pesticide amounts (lbs active ingredient) reported in the New Jersey 1988 Agricultural Pesticide Use Survey.

HERBICIDES:		Metolachlor	98379
		Metribuzin	3549
2,4-D, 2,4-DP	16117	Napropamide	6384
Acifluorfen	2961	Naptalam	1473
Alachlor	49050	Norflurazon	4055
Allidochlor	55	Oryzalin	2930
Amitrol	8	Oxadiazon	296
Ammonium Sulfamate	8	Oxyfluorfen	453
Atrazine	45812	Paraquat	9711
Benfluralin	150	Pebulate	397
Bensulide	9338	Pendimethalin	4970
Bentazone	1900	Phenmedipham	22
Bromacil	2	Prometon	92
Bromoxynil	586	Pronamide	3645
Butylate	5660	Propachlor	565
Chloramben	5926	Quizalofop-ethyl	8
Chlorimuron Ethyl	637	Sethoxydim	278
Chloroxuron	170	Siduron	250
Chlorpropham	993	Simazine	3311
Chlorthal-dimethyl	20656	Sodium chlorate	745
Clomazone	402	Tebuthiuron	5
Cyanazine	17143	Terbacil	13193
Cycloate	1419	Thifensulfuron methyl	2
Dalapon	8	Triclopyr	3
Dicamba	4331	Trifluralin	3729
Dichlobenil	522	TOTAL HERBICIDES:	447577
Diethatyl Ethyl	47677		
Dinoseb	540		
Diphenamide	3457		
Diquat	274	INSECTICIDES:	
Diuron	7336		
DSMA, MSMA	82	Abamectin	7
EPTC	3725	Acephate	15739
Fenoxaprop-ethyl	23	Aldicarb	3403
Fluazifop-butyl	285	Amitraz	42
Glyphosate	10009	Azinphos-methyl	26034
Hexazinone	755	Bendiocarb	90
Imazaquin	1476	Bifenthrin	32
Imazethapyr	61	Bt	508
Lactofen	402	Carbaryl	18694
Linuron	28191	Carbofuran	29954
Mecoprop	991	Chlorpyrifos	13340

Crotoxyphos	<1	Pirimiphos-methyl	16
Cyfluthrin	3	Propargite	943
Cyhexatin	8	Propoxur	3
Cypermethrin	<1	Pyrethrin	1
Diazinon	9258	Resmethrin	43
Dichlorvos	28	Rotenone	1243
Dicofol	1277	Soap	463
Dienochlor	200	Sodium aluminoflrd	158947
Diflubenzuron	1	Terbufos	4906
Dimethoate	16300	Thiodicarb	1704
Disulfoton	274	Trichlorfon	2576
Dymet	5	TOTAL INSECTICIDES:	531793
Endosulfan	18227		001,50
Ethion	114		
Ethoprop	808		
Fenamiphos	501	FUNGICIDES:	
Fenbutatin oxide	308	TOTOTELES.	
Fensulfothion	4437	Anilazine	22
Fenvalerate	2855	Barium polysulfide	1362
Flucythrinate	1	Benomyl	9032
Fluvalinate	234	Captafol	8709
Fonophos	1551	Captan	63943
Formetanate HCL	1239	Chlorothalonil	40723
Isofenphos	1084	Copper salts	11288
Lindane	336	Dichlone	302
Malathion	6106	Dicloran	2204
Methamidophos	5862	Dinocap	1639
Methiocarb	40	Dodemorph acetate	130
Methomyl	24683	Dodine Dodine	262
Methoxychlor	112	Etridiazole	471
Mevinphos	5151	Fenaminosulf	1541
Mexacarbate	3	Fenarimol	102
Naled	11	Ferbam	29161
Nicotine	26	Folpet	221
Oil	74398	Fosetyl-al	529
Oxamyl	13084	Glyodin	86
Oxydemeton-methyl	492	Iprodione	2715
Parathion	30784	Mancozeb/Mnb/Znb	79473
Parathion-methyl	4945	Metalaxyl	10385
Permethrin	16935	Metiram	21460
Phenothrin	51	Oxythioquinox	496
Phorate	6889	Propiconazole	12
Phosalone	22	Quintozene	10394
Phosmet	4219	Sulfur	459142
Phosphamidon	243	Thiabendazole	178
Pirimicarb	243	Thiophanate	178
1 IIIIIICAI U	2	i mophanate	1/20

Thiophanate-methyl	629
Thiram	462
Triadimefon	271
Triforine	1393
Vinclozolin	2214
Ziram	1187
TOTAL FUNGICIDES:	763859

RODENTICIDES:

Zinc Phosphide 30 TOTAL RODENTICIDES: 30

BACTERICIDES:

Oxatetracycline	1688
Streptomycin	31
TOTAL BACTERICIDES:	1718

MISCELLANEOUS:

1898
5308
1182
8388

GROWTH REGULATORS:

Ancymidol	<1
Chlormequat chloride	171
Daminozide	1783
Ethephon	1272
Gibberellic acid	18
Methyl octanoate	207
NAA, NAD	4
Paclobutrazol	<1
TOTAL HORMONES:	3455

FUMIGANTS:

Aluminum phosphide	6
Metam-sodium	10892
Methyl bromide	1490
Methyl isothiocyanat	13778
Sulfotep	196
TOTAL FUMIGANTS:	26361

TOTAL PESTICIDE USE: 1783181

Herbicides:	25%
Insecticides:	30%
Fungicides:	43%
Rodenticides:	<1%
Growth Regulators:	<1%
Fumigants:	2%
Bactericides:	<1%
Miscellaneous:	<1%

TABLE II. Highest use compounds in 1988 from the main pesticide categories. Shown are compounds >=5 % of class.

Compound	Lbs active ingredient	% of class	% of total use
HERBICIDES:			
Metolachlor	98379	22%	5.5%
Alachlor	49050	11%	2.8%
Diethatyl ethyl	47677	11%	2.7%
Atrazine	45813	10%	2.6%
Linuron	28190	6%	1.6%
Chlorthal-dimethyl	20656	5%	1.2%
INSECTICIDES:			
Sodium Aluminoflur	158947	30%	8.9%
Oil	76182	14%	4.3%
Parathion	30784	6%	1.7%
Carbofuran	29954	6%	1.7%
Azinphos-methyl	26034	5%	1.5%
Methomyl	24683	5%	1.4%
FUNGICIDES:			
Sulfur	459142	60%	25.7%
Mancozeb	79473	10%	4.5%
Captan	63942	8%	3.6%
Chlorothalonil	40724	5%	2.3%
FUMIGANTS:			
M Isothiocyanate	13778	52%	0.8%
Metam-Sodium	10892	41%	0.6%
Methyl Bromide	1490	6%	0.1%

TABLE III. Total pesticide amounts (in pounds active ingredient) applied to crops in 1988.

CROP	AMOUNT	% of Pesticide Use
Apples	212485	12%
Peaches	533315	30%
Other T Fruit	9576	1%
Blueberries	44858	3%
Cranberries	27150	2%
Strawberries	5865	0%
Grapes	3678	0%
Sweet Corn	32835	2%
Field Corn	143522	8%
Grains	3973	0%
Soybeans	119317	7%
Beans/Peas	28181	2%
Solanaceous	80787	4%
Vine Crops	39060	2%
Cole Crops	42897	2%
Leafy Vegs	93982	5%
Potatoes	211865	12%
Ornamentals	81599	7%
Sod	20888	1%
Livestock	29	0%
Miscellaneous*	6289	0%
ALL CROPS	1783181	100%

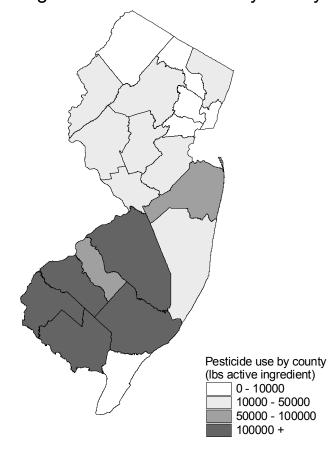

^{*}crop code was not indicated or commodity treated was not originally listed on survey. Frequently reported commodities not appearing on the list were root vegetables such as onions, carrots and radishes.

TABLE IV. Total pesticide amounts (lbs active ingredient) applied by county in 1988.

COUNTY	Amount	% of Total Use
A (1)	166502	00/
Atlantic	166592	9%
Bergen	10809	1%
Burlington	196716	11%
Camden	93620	5%
	93620 9526	3% 1%
Cape May		
Cumberland	323130	18%
Essex	773	<1%
Gloucester	435680	24%
Hudson	0	0%
Truuson	U	0 / 0
Hunterdon	38634	2%
Mercer	23709	1%
Middlesex	35723	2%
111144145	56725	- / v
Monmouth	92908	5%
Morris	10345	1%
Ocean	13254	1%
Passaic	720	<1%
Salem	256716	14%
Somerset	15829	1%
Sussex	8684	1%
Union	2512	<1%
Warren	46981	3%
not listed*	321	0.0%
TOTAL	1783181	100.0%

^{*}actual location of agricultural establishment is uncertain.

1988 Agricultural Pesticide Use by County

