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Figure 6. Rose diagram of joint strikes in Mesoproterozoic rocks
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Figure 5. Rose diagram of joint strikes in Paleozoic rocks.
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Figure 4.  Examples of fold styles in rocks of the Newfoundland quadrangle.
(A, above)  Upright to slightly overturned anticline and syncline pair in Green Pond. 
Conglomerate along Route 23, near Newfoundland.
(B, below)  Superimposed folds in layered pyroxene gneiss west of Clinton Reservoir. 
Pens are oriented along the plunge direction of two principal fold phases.
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Figure 3. Rose diagram of foliation strikes in Mesoproterozoic rocks.
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Figure 2. Rose diagram of cleavage strikes in Paleozoic rocks.
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Figure 1. Rose diagram of bedding strikes in Paleozoic rocks.
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INTRODUCTION

 The Newfoundland quadrangle is located in northern New Jersey, in Passaic, Morris, and 
Sussex Counties, in the north-central part of the New Jersey Highlands province. It is situated within the 
Pequannock River watershed, and this stream drains the area from northwest to southeast. The quad-
rangle constitutes an important part of the regional groundwater and surface water supply. Damming 
of the Pequannock River created the Oak Ridge and Charlotteburg Reservoirs, and impoundment of 
smaller streams created the Canistear, Clinton, Echo Lake, and Splitrock Reservoirs. 
 The map area is divided into western, central, and eastern parts by the northeast-trending Green 
Pond Mountain Region. The western and eastern parts are underlain by rocks of Mesoproterozoic age. 
The topography there is characterized by ridges and stream valleys with variable orientations that reflect 
the structural complexity and non-linear trend of the bedrock. The central part of the map is underlain by 
rocks of Paleozoic age. There, the topography is dominated by a series of broad, linear, northeast-trending 
ridges (Green Pond, Copperas, Kanouse, and Bearfort Mountains) and intervening stream valleys that are 
influenced by the uniform trend of the bedrock. 
 All of the bedrock was modified by the effects of glaciation during the Pleistocene. The surficial 
geologic history, and the distribution, thickness, and composition of unconsolidated glacial deposits over-
lying bedrock is discussed by Stanford (1991). Bedrock continues to be modified through the processes 
of weathering and erosion. 

STRATIGRAPHY
Paleozoic rocks

 The youngest rocks in the map area are in the Green Pond Mountain Region, a block of down-
faulted and folded sedimentary rocks that extends northeast-southwest and divides the Mesoproterozoic 
rocks into two sub-equal areas. The origin and stratigraphic relationships of Paleozoic formations of the 
Green Pond Mountain Region was discussed by Darton (1894), Kümmel and Weller (1902), Barnett 
(1970), and Herman and Mitchell (1991), and is summarized below. 
 Paleozoic formations record the paleoenvironmental changes spanning breakup of the Rodinian 
supercontinent through the end of the Acadian orogeny. The Early Cambrian Hardyston Quartzite 
documents an initial fluvial sedimentation across the older regolith and the subsequent drowning of the 
eastern North American continental margin during a marine transgression (Aaron, 1969). The overlying 
dolomite of the Leithsville Formation marks the stabilization of a carbonate passive margin. A long hiatus 
took place before deposition of the Silurian-age Green Pond Conglomerate which, in the quadrangle, 
unconformably overlies the Leithsville Formation as well as Mesoproterozoic gneisses. South of the map 
area, Green Pond Conglomerate stratigraphically rests on Middle and Upper Ordovician Martinsburg For-
mation (Barnett, 1976; Herman and Mitchell, 1991). The Green Pond Conglomerate has been correlated 
to the Shawangunk Formation along Kittatinny Mountain in the Valley and Ridge Physiographic Province 
to the west (Kümmel and Weller, 1902; Yeakel, 1962; Smith, 1970). Both units represent braided stream 
deposits (Smith, 1970) eroded from uplands to the east and southeast created during the Taconic orog-
eny (Yeakel, 1962; Smith, 1970, Gray and Zeitler, 1997). Silurian sedimentary rocks record a change in 
depositional environments from fluvial (Green Pond Conglomerate), through marginal marine (Longwood 
Shale), into shallow marine, and formation of a carbonate passive margin (Poxono Island and Bershire 
Valley Formations). An unconformity separating the Berkshire Valley Formation and overlying Connelly 
Conglomerate, which correlates to the widespread Wallbridge unconformity of the Appalachian Basin, 
marks the approaching influence of the Acadian orogeny (Ver Straeten and others, 1995; Ver Straeten 
and Brett, 2000; Ver Straeten, 2001). 
 Lower Devonian sedimentary rocks in the map area suggest several small sea level cycles 
(Esopus Formation and Kanouse Sandstone) before becoming a foredeep (Cornwall Shale). The Middle 
Devonian Bellvale Sandstone and Skunnemunk Conglomerate mark a progression back into shallower 
marine conditions, and then into a fluvial environment in which sediments were sourced from uplifted 
eastern mountains that resulted from the Acadian orogeny (Kirby, 1981). 
 On the east side of the Green Pond Mountain Region, Green Pond Conglomerate rests 
unconformably on Mesoproterozoic rocks along Copperas and Kanouse Mountains. An exception is 
north of Echo Lake, where Hardyston Quartzite is in unconformable contact with both the Silurian and 
Mesoproterozoic rocks. On the west side of the Green Pond Mountain Region, Paleozoic rocks are in 
fault contact with Mesoproterozoic rocks along the Reservoir fault. 

Neoproterozoic rocks
 Diabase dikes of Neoproterozoic age are located southeast of the Canistear and Charlotteburg 
Reservoirs, and also east of Hoot Owl Lake, in the southeast part of the map, where they intrude Mesopro-
terozoic rocks but not Cambrian or younger rocks. Dikes strike predominantly N.43oW. to N.56oW., and 
very locally N.33oE. Those at Charlotteburg Reservoir were mapped by Parrillo (1959) during construction 
but they are no longer exposed. Dikes are as much as three feet wide, and they have fine-grained to apha-
nitic chilled margins and sharp contacts against Mesoproterozoic rocks.  Elsewhere in the Highlands dikes 
display columnar jointing and contain xenoliths of Mesoproterozoic rocks, confirming they are younger in 
age than Mesoproterozoic. Dikes are interpreted as having been emplaced into a rift-related, extensional 
tectonic setting in the Highlands at about 600 Ma during breakup of the supercontinent Rodinia (Volkert 
and Puffer, 1995).  

Mesoproterozoic rocks 
The majority of the quadrangle is underlain by rocks of Mesoproterozoic age that include various granites 
and gneisses metamorphosed to granulite facies at ca.1045 to 1024 Ma (Volkert and others, 2010). Tem-
perature estimates for this high-grade metamorphic event are ~769oC based on a regional study using 
calcite-graphite thermometry (Peck and others, 2006). 
 Among the oldest Mesoproterozoic rocks are those of the Losee Suite (Drake, 1984; Volkert 
and Drake, 1999), a calc-alkaline assemblage formed in a magmatic arc (Volkert, 2004). These include 
quartz-rich rocks mapped as quartz-oligoclase gneiss, biotite-quartz-oligoclase gneiss, hypersthene-
quartz-plagioclase gneiss, albite-oligoclase alaskite, and quartz-poor rocks mapped as amphibolite and 
diorite gneiss, all of which were formed from plutonic and volcanic protoliths (Volkert and Drake, 1999; 
Volkert, 2004). Representative rocks of the Losee Suite from elsewhere in the Highlands yield sensitive 
high-resolution ion microprobe (SHRIMP) U-Pb zircon ages of 1282 to 1248 Ma (Volkert and others, 
2010).
 Magmatic arc rocks of the Losee Suite are spatially associated with a succession of supracrustal 
rocks formed in a back-arc basin that was located along the continental margin west of the Losee magmatic 
arc (Volkert, 2004). Supracrustal rocks include a bimodal suite of volcanic rocks and metasedimentary 
gneisses. Volcanic rocks formed from rhyolite protoliths are mapped as potassic feldspar gneiss, and mafic 
volcanic rocks formed from basalt protoliths are mapped as amphibolite. Metasedimentary rocks formed 
mainly from clastic protoliths are mapped as biotite-quartz-feldspar gneiss, clinopyroxene-quartz-feldspar 
gneiss, and pyroxene gneiss. Mineralogical variants of pyroxene gneiss form distinct units that contain 
abundant biotite, hornblende, or both minerals, and they are mapped separately in order to define fold 
structures in the northwest part of the map. Supracrustal rocks west of the map area yield SHRIMP U-Pb 
zircon ages of 1299 to 1259 Ma (Volkert and others, 2010) that closely overlap the age of rocks of the 
Losee Suite.   
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Kanouse Sandstone, Esopus Formation and Connelly Conglomerate, undivided 
(Lower Devonian) 

Kanouse Sandstone (Kümmel, 1908) – Medium-gray, light-brown, and grayish-red, fine- to 
coarse-grained, thin- to thick-bedded sandstone and pebble conglomerate. Basal conglomer-
ate is interbedded with siltstone and contains well-sorted, subangular to subrounded, gray 
and white quartz pebbles less than 0.4 in. long. Lower contact with Esopus Formation grada-
tional. Unit is about 46 ft. thick. 

Esopus Formation (Vanuxem, 1842; Boucot, 1959) – Light- to dark-gray, laminated to 
thin-bedded siltstone interbedded with dark-gray to black mudstone, dusky-blue sandstone 
and siltstone, and yellowish-gray, fossiliferous siltstone and sandstone. Lower contact is 
probably conformable with Connelly Conglomerate. Unit is about 180 ft. thick in the map area. 

Connelly Conglomerate (Chadwick, 1908) – Grayish-orange-weathering, very light-gray to 
yellowish-gray, thin-bedded quartz-pebble conglomerate. Quartz pebbles are subrounded to 
well rounded, well sorted, and as much as 0.8 in. long. Unit is about 36 ft. thick. 

Berkshire Valley and Poxono Island Formations, undivided (Upper Silurian)

Berkshire Valley Formation (Barnett, 1970) – Yellowish-gray-weathering, medium-gray to 
pinkish-gray, very thin-to thin-bedded fossiliferous limestone interbedded with gray to 
greenish-gray calcareous siltstone and silty dolomite, medium-gray to light-gray dolomite 
conglomerate, and grayish-black thinly laminated shale. Lower contact is conformable with 
Poxono Island Formation. Unit ranges in thickness from 90 to 125 ft. 

Poxono Island Formation (White, 1882; Barnett, 1970) – Very thin-to medium-bedded 
sequence of medium-gray, greenish-gray, or yellowish-gray, mud-cracked dolomite; light-
green, pitted, medium-grained calcareous sandstone, siltstone, and edgewise conglomerate 
containing gray dolomite; and quartz-pebble conglomerate containing angular to subangular 
pebbles as much as 0.8 in. long. Interbedded grayish-green shales at lower contact are 
transitional into underlying Longwood Shale. Unit ranges in thickness from 160 to 275 ft. 

Longwood Shale (Upper and Middle Silurian) (Darton, 1894) – Dark reddish-brown, thin- 
to very thick-bedded shale interbedded with cross-bedded, very dark-red, very thin- to 
thin-bedded sandstone and siltstone. Lower contact is conformable with Green Pond 
Conglomerate. Unit is 330 ft. thick.

Green Pond Conglomerate (Middle and Lower Silurian) (Rogers, 1836) – Medium- to 
coarse-grained quartz-pebble conglomerate, quartzitic arkose and orthoquartzite, and thin- to 
thick-bedded reddish-brown siltstone. Grades downward into less abundant gray, very dark 
red, or grayish-purple, medium- to coarse-grained, thin- to very thick bedded pebble to 
cobble-conglomerate containing clasts of red shale, siltstone, sandstone, and chert; 
yellowish-gray sandstone and chert; dark-gray shale and chert; and white-gray and pink milky 
quartz. Quartz cobbles are as much as 4 in. long. Unconformably overlies the Leithsville 
Formation or Mesoproterozoic rocks in the map area. Unit is about 1,000 ft. thick. 

Leithsville Formation (Middle and Lower Cambrian) (Wherry, 1909) – Light- to dark-gray 
and light-olive-gray, fine- to medium-grained, thin- to medium-bedded dolomite. Grades 
downward through medium-gray, grayish-yellow, or pinkish-gray dolomite and dolomitic 
sandstone, siltstone, and shale to medium-gray, medium-grained, medium-bedded dolomite 
containing quartz sand grains as stringers and lenses near the base. Lower contact grada-
tional with Hardyston Quartzite. Unit ranges from 0 to 185 ft thick regionally.

Hardyston Quartzite (Lower Cambrian) (Wolff and Brooks, 1898) – Light- to medium-gray 
and bluish-gray conglomeratic sandstone. Varies from pebble conglomerate, to fine-grained, 
well-cemented quartzite, to arkosic or dolomitic sandstone. Conglomerate contains subangu-
lar to subrounded white quartz pebbles as much as 1 in. long. Lower contact unconformable 
with Mesoproterozoic rocks. Unit ranges from 0 to 30 ft. thick regionally. 

NEW JERSEY HIGHLANDS
Diabase dikes (Neoproterozoic) (Volkert and Puffer, 1995) – Light gray- to brownish-gray-
weathering, dark-greenish-gray, aphanitic to fine-grained dikes that intrude Mesoproterozoic 
rocks. Composed principally of labradorite to andesine, augite, and ilmenite and (or) mag-
netite.  Small pyrite blebs are common. Contacts are chilled and sharp against enclosing  
Mesoproterozoic rocks. 

Vernon Supersuite (Volkert and Drake, 1998)
Byram Intrusive Suite (Drake, 1984)

Hornblende granite (Mesoproterozoic) – Pinkish-gray- or buff-weathering, pinkish-white or 
light-pinkish-gray, medium- to coarse-grained, massive, foliated granite and sparse granite 
gneiss composed of mesoperthite, microcline microperthite, quartz, oligoclase, and hastingsite. 
Common accessory minerals include zircon, apatite and magnetite. Bodies of pegmatite too 
small to be shown on the map are common. 

Microperthite alaskite (Mesoproterozoic) – Pale pinkish-white- or buff-weathering, pale
pinkish-white, medium- to coarse-grained, massive, foliated granite composed of microcline 
microperthite, quartz, oligoclase, and trace amounts of hastingsite, biotite, zircon, apatite, 
and magnetite. 

Lake Hopatcong Intrusive Suite (Drake and Volkert, 1991)
Pyroxene granite (Mesoproterozoic) – Buff- or white-weathering, greenish-gray, medium- 
to coarse-grained, foliated granite containing mesoperthite to microantiperthite, quartz, 
oligoclase, and hedenbergite. Common accessory minerals include titanite, magnetite, 
apatite, and trace amounts of zircon and pyrite. 
 

Back Arc Supracrustal Rocks
Potassic feldspar gneiss (Mesoproterozoic) – Buff or pale pinkish-white-weathering, buff, 
pale pinkish-white or light-pinkish-gray, medium-grained, massive, foliated gneiss composed 
of quartz, microcline microperthite, oligoclase, biotite, and magnetite. Garnet and sillimanite 
occur locally. 

Biotite-quartz-feldspar gneiss (Mesoproterozoic) – Pale pinkish-white, pinkish-gray, or 
gray-weathering, locally rusty-weathering, pinkish-gray, tan, or greenish-gray, fine-to 
coarse-grained, layered and foliated gneiss containing microcline microperthite, oligoclase, 
quartz, biotite, and garnet. Very locally contains kornerupine. Graphite and pyrrhotite are 
confined to the variant that weather rusty. The rusty variant commonly contains thin quartzite 
layers composed of quartz, biotite, feldspar, graphite, and pyrrhotite. 

Clinopyroxene-quartz-feldspar gneiss (Mesoproterozoic) – Pinkish-gray or pinkish-
buff-weathering, white, pale-pinkish-white or light-gray, medium- to coarse-grained, foliated 
gneiss composed of microcline, quartz, oligoclase, diopside, and trace amounts of titanite, 
magnetite, biotite, and epidote. 

Pyroxene gneiss (Mesoproterozoic) – Light-gray or white-weathering, greenish-gray or 
light-greenish-gray, medium-grained, layered and foliated gneiss containing oligoclase, 
diopside, varied amounts of quartz and titanite, and trace amounts of magnetite and epidote. 
Some variants also contain abundant biotite (Ypb), hornblende (Yph) or both (Ypbh). Unit is 
locally interlayered with lenses and layers of dark green, medium- to coarse-grained diopsi-
dite composed mainly of diopside. 

Magmatic Arc Rocks
Losee Metamorphic Suite (Drake, 1984; Volkert and Drake, 1999)

Quartz-oligoclase gneiss (Mesoproterozoic) – White-weathering, light-greenish-gray, 
medium- to coarse-grained, layered to massive, foliated gneiss composed of oligoclase or 
andesine, quartz, and varied amounts of hornblende, augite, biotite, and magnetite. Locally 
contains layers of amphibolite too thin to be shown on map. Unit commonly has gradational 
contacts with biotite-quartz-oligoclase gneiss and hypersthene-quartz-plagioclase gneiss, 
and occurs as thin, conformable layers within bodies of diorite. 

Albite-oligoclase alaskite (Mesoproterozoic) – Pale pink, or white-weathering, light-
greenish-gray or light-pinkish-green, medium- to coarse-grained, foliated rock composed of 
pink albite or oligoclase, quartz, and varied amounts of hornblende, augite and magnetite. 
Locally contains rutile. Commonly contains conformable layers of amphibolite.  

Biotite-quartz-oligoclase gneiss (Mesoproterozoic) – Light-gray-weathering, light-
greenish-gray, medium- to coarse-grained, layered and foliated gneiss composed of 
 oligoclase or andesine, quartz, biotite, and local hornblende. Locally contains conformable
 layers of biotite amphibolite.

Hornblende-quartz-plagioclase gneiss (Mesoproterozoic) – White or light-gray weather-
ing, medium-gray or greenish-gray, medium- to coarse-grained, moderately foliated gneiss 
composed of oligoclase or andesine, quartz, hornblende, and local biotite. Locally contains 
thin layers of amphibolite.  

Hypersthene-quartz-plagioclase gneiss (Mesoproterozoic) – Light-gray or tan-weathering, 
greenish-gray or greenish-brown, medium-grained, moderately layered and foliated, greasy-
lustered gneiss composed of andesine or oligoclase, quartz, augite, hornblende, hypersthene, 
and magnetite. Commonly contains conformable layers of amphibolite and quartz-plagioclase 
gneiss containing hornblende and augite. 

Diorite gneiss (Mesoproterozoic) – Light-gray or tan-weathering, greenish-gray or 
greenish-brown, medium-grained, greasy-lustered, massive, foliated rock containing ande-
sine or oligoclase, augite, hornblende, hypersthene, and magnetite. Thin mafic layers having 
the composition of amphibolite and leucocratic to mafic layers of quartz-oligoclase gneiss 
occur locally. 

Other Rocks
Amphibolite (Mesoproterozoic) – Grayish-black-weathering, black or grayish-black, 
medium-grained gneiss composed of hornblende, andesine, and magnetite. Some variants 
contain biotite and others contain augite and local hypersthene. Amphibolite associated with 
the Losee Suite is metavolcanic in origin. Amphibolite associated with supracrustal rocks 
may be metavolcanic or metasedimentary in origin. All types are undifferentiated on the map.

Mesoproterozoic rocks, undifferentiated – Shown beneath Green Pond and in cross 
section only.  

dips southwest and, less commonly, northeast. A subordinate set strikes about N.45oE. (fig. 6) and dips 
northwest, and less commonly southeast. The dip of all joints ranges from 26o to 90o and averages 73o. 

ECONOMIC RESOURCES
 Some Mesoproterozoic rocks in the quadrangle are host to economic deposits of magnetite 
mined predominantly during the 19th century. Mines are distributed throughout the quadrangle but are 
most abundant in the northwest and southwest parts. Detailed descriptions of these mines are given in 
Bayley (1910) and Sims (1958).
 Mesoproterozoic rocks were quarried for crushed stone west of Canistear Reservoir and at 
locations north and southeast of Echo Lake. Surficial deposits of sand and gravel were mined at a few 
locations in the area, and peat was extracted from a single location in the valley north of Echo Lake
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STRUCTURE
Paleozoic bedding and cleavage

 Bedding in the Paleozoic formations of the Green Pond Mountain Region strikes mainly northeast 
at an average of N.42oE. (fig. 1). Most beds are upright and dip northwest, and less commonly southeast, 
and locally are overturned steeply southeast. Beds range in dip from 4o to 90o and average 54o. 
 Cleavage deforms some of the finer grained sedimentary rocks and also those where localized 
faulting is present. The average strike of cleavage is N.44oE. (fig. 2). The dip ranges from 8o to 90o and  
averages 65o Generally, cleavage dips southeast, but northwest-dipping to vertical measurements were 
also recorded. Locally, a crenulation cleavage, or second spaced cleavage, has been observed in some 
units in the map.

DESCRIPTION OF MAP UNITS
GREEN POND MOUNTAIN REGION

Skunnemunk Conglomerate (Middle Devonian) (Darton, 1894) – Grayish-purple to 
grayish-red, thin- to very thick-bedded, locally cross-bedded, polymictic conglomerate and 
sandstone containing clasts of white vein quartz, red and green quartzite and sandstone, red 
and gray chert, and red shale; interbedded with medium-gray, thin-bedded sandstone and 
greenish-gray and grayish-red, mud-cracked shale. Conglomerate and sandstone matrix is 
primary hematite and microcrystalline quartz. Conglomerate cobbles range to 6.5 in. long, 
and average cobble size increases in upper part of unit. Lower contact is conformable and 
gradational as defined by Kümmel and Weller (1902). Unit is about 3,000 ft thick. 

Bellvale Sandstone (Middle Devonian) (Bellvale Flags of Darton, 1894; Willard, 1937) –
Upper beds are grayish-red to grayish-purple sandstone containing quartz pebbles as large 
as 1 in. in diameter. Lower beds are light-olive-gray- to yellowish-gray- and greenish-black-
weathering, medium-gray to medium-bluish-gray, very thin- to very thick-bedded siltstone and 
 sandstone crossbedded, graded, and interbedded with black to dark-gray shale. More san-
dstone in upper beds and becomes finer downward. Lower contact conformable with the Cor-
nwall Shale and placed where beds thicken and volume of shale and siltstone are about equal.
 Unit is 1,750 to 2,000 ft. thick

Cornwall Shale (Middle Devonian) (Hartnagel, 1907) – Black to dark-gray, very thin- to 
thick-bedded, fossiliferous, fissile shale, interbedded with medium-gray and light-olive-gray to 
yellowish-gray, laminated to very thin-bedded siltstone that increases in upper part. Lower 
contact with Kanouse Sandstone probably conformable. Unit is about 950 ft. thick

 The Newfoundland quadrangle also contains abundant granite of the Byram and Lake Hopatcong 
Intrusive Suites that comprise the Vernon Supersuite (Volkert and Drake, 1998). It includes monzonite, 
quartz monzonite, granite, and alaskite that have A-type geochemical compositions (Volkert and others, 
2000). These suites are well exposed throughout the map area, where they intrude rocks of the Losee 
Suite and supracrustal rocks. A sample of Byram granite from along Route 23, southeast of Echo Lake 
yields a SHRIMP U-Pb zircon age of 1182 Ma, similar to ages of 1188 to 1184 Ma for Byram and Lake 
Hopatcong rocks from elsewhere in the Highlands (Volkert and others, 2010). 
 The youngest Mesoproterozoic rocks in the area are small, irregular bodies of granite pegmatite 
that have intruded other Mesoproterozoic rocks. Pegmatites are unfoliated, and they have sharp, discor-
dant contacts, confirming their emplacement following the thermal metamorphic peak of the Ottawan 
orogeny at 1024 Ma. Pegmatites elsewhere in the Highlands yield U-Pb zircon ages of 1004 to 986 Ma 
(Volkert and others, 2005). 
 Other Mesoproterozoic rock in the quadrangle includes amphibolite of several different origins. 
Most amphibolite that is spatially associated with the Losee Suite is metavolcanic, whereas amphibolite 
that is interlayered with the supracrustal rocks may be metavolcanic or metasedimentary in origin. All 
variants of amphibolite are shown undifferentiated on the map.
 

BEDROCK GEOLOGIC MAP OF THE NEWFOUNDLAND QUADRANGLE

            GEOLOGIC MAP SERIES GMS 13-4
PASSAIC, MORRIS, AND SUSSEX COUNTIES, NEW JERSEY

Proterozoic foliation
 Crystallization foliation in the Mesoproterozoic rocks (formed by the parallel alignment of constitu-
ent mineral grains) strikes predominantly northeast at an average of N.20oE. (fig. 3). Foliations locally are 
variable, especially in the northwest part of the map, owing to the presence of folds that range in scale from 
outcrop to major regional extent. Foliations dip mainly southeast, and locally northwest, although in the 
hinge area of fold structures dips are north. The dip of all foliations ranges from 21o to 90o and averages 
55o.  

Folds
 Folds in Paleozoic rocks of the Green Pond Mountain Region are part of a major northeast-
plunging synclinorium, the axis of which passes through Bearfort Mountain. Folds on either side of the 
axis consist of upright synclines that plunge northeast, southwest, or are doubly plunging. Folds on 
Kanouse Mountain are gently inclined to recumbent. 
 Outcrop-scale folds are exceptionally well exposed along Route 23 near the town of Newfound-
land and these folds have been a classic field trip stop for decades. The folds deform the Green Pond 
Conglomerate, and they include an anticline and syncline (fig. 4) that plunges 6o southwest. Beds strike 
about N53oE and dip 40o northwest on the west limb and 56o southeast on the east limb. A pervasive 
subvertical axial planar cleavage cuts both of the folds. Folding is likely a result of westward-verging 
compression during the Alleghanian orogeny, because the folds deform siliciclastic and carbonate rocks 
of both Silurian and Devonian age.
 The dominant fold geometry in Mesoproterozoic rocks consists of antiforms and synforms that 
have northeast-striking axial surfaces. These folds are northeast-plunging and upright or northwest 
overturned, and less commonly southeast overturned. Other folds have north-striking axial surfaces and 
are northeast-plunging and upright or northwest overturned. The overall sequence of folding is uncertain, 
but at least three phases of folding are preserved (fig. 4), particularly in the northwest part of the map. 
They may be a continuation of the same fold phase that resulted from differences in the vector of 
compressional stress at about 1045 Ma, or superimposed folding related to separate Mesoproterozoic 
tectonothermal events. Regardless, the folds deform crystallization foliation, but not postorogenic 
pegmatites, and thus were formed no later than the Ottawan orogeny. 
 The plunge of mineral lineations in Mesoproterozoic rocks is parallel to the axial surface of each 
of the fold phases. The plunge trend displays three populations that average 24o N.31oE., 28o N.48oE. 
and 38o N.75oE., with 50 percent of all lineations plunging N.41oE. to N.57oE.  No southwest plunging 
lineations or folds in Mesoproterozoic rocks were recognized. 

Faults
 Northeast-trending faults are the most common type in the quadrangle and they deform both 
Mesoproterozoic and Paleozoic rocks. From northwest, the major faults are the Reservoir, Russia, Long-
wood Valley, Brown Mountain, Gorge, Tanners Brook-Green Pond, Union Valley, and Green Turtle Pond. 
Faulting of Mesoproterozoic rocks is characterized mainly by brittle deformation fabric that includes 
breccia, gouge, retrogression of mafic mineral phases, chlorite or epidote-coated fractures or slicken-
sides, and (or) close-spaced fracture cleavage. Locally, Mesoproterozoic rocks along the Reservoir and 
Brown Mountain faults preserve a ductile deformation fabric that consists of steeply-dipping to vertical 
mylonite or protomylonite that is subparallel to the crystallization foliation.
 The Reservoir fault extends from New York State southwest to Schooleys Mountain (Drake and 
others, 1996). In the map area the fault contains Paleozoic rocks on the hanging wall and Mesoprotero-
zoic rocks on the footwall, but to the south it contains Mesoproterozoic rocks on both sides of the fault. 
The fault strikes about N.40oE. and ranges in dip from steep northwest or southeast to vertical. It records 
a history of multiple reactivations dating from the Mesoproterozoic that display a movement sense 
ranging from normal to strike slip and reverse, with latest movement having been normal. The Reservoir 
fault is characterized by ductile deformation fabric overprinted by a pervasive brittle deformation fabric 
that envelops the mylonite. An unnamed splay, located east of Buckabear Pond, is cut off by, or merges 
with, the Reservoir fault. The splay strikes N.20oE. to N.30oE. and dips about 90o. It has a ductile fabric 
that is overprinted by brittle fabric, similar to deformation features observed along the Reservoir fault.
 The timing of reactivation of the Reservoir fault using 40Ar/39Ar isotope analysis reflects a 
complex deformation history subsequent to cooling from Ottawan metamorphism, likely due to hydrother-
mal fluid movement along the fault. Amphibole age spectra yield disturbed patterns, suggesting possible 
resetting of amphibole at about 722 Ma and of biotite inclusions in amphibole at about 322 Ma (Price, 
2005).   
 The Russia fault (Herman and Mitchell, 1991) strikes N.50oE., closely paralleling the adjacent 
Reservoir fault, and dips southeast at about 80o. It contains Paleozoic rocks on both sides. South of the 
map area the fate of the fault is unknown, and to the north, in the map area, it merges with, or is cut off by 
the Reservoir fault. Latest movement on the fault appears to have been normal. The fault is characterized 
by brittle deformation fabric.
 The Longwood Valley fault strikes about N.45oE. and dips steeply northwest to vertically. It has 
Mesoproterozoic rocks on the footwall and Paleozoic rocks on the hanging wall along most of its length. 
Kinematic indicators suggest the latest movement on the fault was reverse, although south of the map 
area dip-slip normal movement is predominant. The fault is characterized by brittle deformation fabric.
 The Brown Mountain fault (Herman and Mitchell, 1991) extends along the west side of Green 
Pond Mountain. Along most of its length it contains Paleozoic rocks on both sides, but west of the town 
of Newfoundland it has a small lens of Mesoproterozoic rock on the hanging wall. The fault strikes about 
N.50oE. and dips steeply northwest at about 75o. The fault is characterized by an early ductile fabric that 
is overprinted by brittle deformational fabric. Kinematic indicators suggest that latest movement on the 
fault was predominantly reverse.
 The Gorge fault was named for the prominent gorge at Picatinny Arsenal to the south (Volkert, 
2012), where the structure was first recognized. The fault has a strike length of about 6 miles, extending 
along the southeast side of Green Pond Mountain, where it merges with, or is cut off by, the Tanners 
Brook-Green Pond fault. The Gorge fault contains Mesoproterozoic rocks on the hanging wall and Green 
Pond Conglomerate on the footwall. The fault strikes N.40oE. and dips about 60o southeast. Latest move-
ment appears to have been reverse. The fault is characterized by ductile deformation fabric that is 
overprinted by brittle deformation fabric. 
 The Tanners Brook-Green Pond fault extends along the valley between Copperas and Green 
Pond Mountains, from near the town of Newfoundland south to Picatinny Lake (Kummel and Weller, 
1902; Barnett, 1976; Herman and Mitchell, 1991). The Tanners Brook fault extends from Picatinny Lake 
southwest to Califon where it bounds the south side of Long Valley (Volkert and others, 1990). The 
combined Tanners Brook-Green Pond fault has a strike length of about 30 miles. It contains mainly Paleo-
zoic rocks on both sides in the north and Mesoproterozoic rocks on both sides from the Chester quad-
rangle southwest to the Califon quadrangle. The fault strikes N.40oE. and dips northwest at about 75o. 
Kinematic indicators suggest that latest movement on the fault was predominantly reverse. The Tanners 
Brook-Green Pond fault is characterized mainly by brittle deformation fabric.
 The Union Valley fault (Herman and Mitchell, 1991) extends along the northwest side of 
Kanouse Mountain, from Greenwood Lake south to the vicinity of Echo Lake. The fault strikes N.30oE. 
and dips southeast at about 50o. It contains Paleozoic rocks on both sides along its entire length. 
Kinematic indicators suggest that latest movement on the fault was reverse. The fault is characterized by 
brittle deformation fabric.
 The Green Turtle Pond fault extends through the northeast corner of the map. It was first recog-
nized by R. A. Volkert (unpublished data) in the Greenwood Lake quadrangle to the north where it was 
exposed during rehabilitation of the dam at Green Turtle Pond. The fault strikes northeast and dips about 
70o northwest. Kinematic indicators record a reverse sense of movement. The fault is characterized by 
brittle deformation fabric. 
 Mesoproterozoic and Paleozoic rocks throughout the map area are also deformed by small 
faults that strike northeast or northwest and have widths of a few feet to tens of feet. Most faults are 
confined to single outcrops, but some of the wider faults may be a result of the merging of smaller, parallel 
faults. 

Joints
 Joints are a common feature in both Paleozoic and Mesoproterozoic rocks in the quadrangle. 
They are characteristically planar, moderately well formed, and moderately to steeply dipping. Surfaces 
are typically unmineralized, except  near faults, and are smooth and, less commonly, slightly irregular. 
Joints are varied in their spacing and range from 1 foot to tens of feet. Those developed in massive rocks, 
such as Mesoproterozoic granite or Paleozoic conglomerate and quartzite, tend to be more widely 
spaced, irregularly formed and discontinuous than joints in Mesoproterozoic layered gneisses and 
fine-grained Paleozoic rocks. Joints formed near faults are spaced 2 feet or less apart. 
 In the Paleozoic rocks, northwest-trending cross joints are the most common. They strike at an 
average of N.37oW. (fig. 5) and dip mainly northeast at an average of 71o.  
 The dominant joint trend in the Mesoproterozoic rocks is nearly perpendicular to the strike of 
crystallization foliation (Volkert, 1996). As a result, joint trends in the Mesoproterozoic rocks are some-
what varied because of folding. The dominant set strikes northwest at an average of N.55oW. (fig. 6) and  
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EXPLANATION OF MAP SYMBOLS

                        Contact  - Dotted where concealed.   

                        Fault  - Dotted where concealed.  Queried where uncertain. 

                        
                  Normal fault - U, upthrown side; D, downthrown side                               
                   
                               Reverse fault - U, upthrown side; D, downthrown side   
                      

FOLDS

           Folds in Paleozoic rocks showing trace of axial surface, direction of dip of 
    limbs, and direction of plunge                        

    Minor syncline

    Minor anticline
                      
              Syncline
  
    Anticline

  Gently inclined to recumbent anticline
  
           Folds in Proterozoic rocks showing trace of axial surface, direction of dip of 
    limbs, and direction of plunge

                               Synform 

                               Antiform
                        
                               Overturned synform

                               Overturned antiform

PLANAR FEATURES

                        Strike and dip of beds     
         
                              Inclined                 

                               Vertical
    
    Overturned
                      
                        Strike and dip of cleavage

                              Inclined                 

                               Vertical

           Strike and dip of crystallization foliation

                              Inclined                 

                               Vertical          

           Strike and dip of inclined mylontic foliation

LINEAR FEATURES

                        Bearing and plunge of intersection of bedding and cleavage in Paleozoic rocks

           Bearing and plunge of mineral lineation in Proterozoic rocks

OTHER FEATURES
                                                                                 
                        Abandoned rock quarry                        
           Form line showing foliation in Proterozoic rocks. Shown in cross sections.
           Well or boring in Proterozoic granite     
                
 4A,B   Location of photographs in figure 4 A and B
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