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3 water
142 surficial 
183 Kp3

Dc45-02
12 water
128 surficial
156 Kp3

Dc45-05
11 water
115 surficial 
142 Kmg-Kp3

Dd 41-02
28 water
60 surficial 
65 Kmv
90 Kmg
183 Kp3

Dd 41-07
17 water
78 surficial 
84 Kmv
175 Kmg-Kp3

30-52, 33-108 G
38 surficial 
86 Kwb
102 Kmv
144 Kmg
320 Kp3

FORT MOTT
CORE HOLE
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A

Kmv

Kwb

Ket
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51 Kwb
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30-2049
72 surficial 
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70 Kw
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Kmt

Kw
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Kw
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72 Kw

Kw
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55 Kml
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190 Kmv
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265 Kp3

Kml
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15 surficial
53 Kml-Kw 
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105 Kmt-Ket
142 Ket

30-7428
11 surficial s
51 Kml

30-7424
4 surficial 
51 Kml

SL-6
5 Tkw
16 Tvt
28 Tht

30-8284
11 Tkw
36 Tvt
70 Tht-Kns
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36 Tvt
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15 Tkw
45 Tvt
85 Tht-Kns
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79 Tht-Kns
131 Kml
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68 Tht-Kns
110 Kml

30-6405
12 Tkw
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70 Kns-Kml
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17 surficial
42 Tht-Kns
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60 Kml
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60 Kw
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62 Kml

30-10456
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44 Tht
127 Kns-Kml
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SL-9
6 surficial
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31 Tht

33-256, G
28 surficial
48 Tht-Kns
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20 Tkw
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7 surficial
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30-4670
3 surficial
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30-5947
15 surficial
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30 Tkw
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18 surficial
38 Tkw
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18 surficial
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50 Tkw
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65 Tch

34-1982
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52 Tkw
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10 surficial
90 Tkw
240 Tvt
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240 Tht-Kns
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19 surficial
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115 Tht-Kns
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145 Kml

SL-14
24 surficial
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125 Tvt
155 Tht-Kns
198 Kml
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135 Kml
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34-1113
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59 Tkw
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30 surficial-Tkw
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195 Tvt
225 Tht-Kns
264 Kml

34-3230
12 surficial
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6 surficial
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SL-15
8 surficial
16 Tkw
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34-1961
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INTRODUCTION

Bedrock of the Salem and Delaware City quadrangles includes unconsolidated 
Coastal Plain formations that consist of sand, clay, and glauconite clay laid 
down in coastal, nearshore-marine, and continental-shelf settings between 120 
and 10 million years ago (Ma). The lithology and age of the formations are 
provided in the Description of Map Units. Age relations are also summarized in 
the Correlation of Map Units. Cross sections AA' and BB' show the subsurface 
geometry of the formations along the line of section. Further detail on the 
regional stratigraphy of the Coastal Plain formations is provided by Owens and 
others (1998). Surficial deposits of late Miocene, Pliocene, and Quaternary age 
overlie the bedrock formations in most of the map area. The surficial deposits 
were mapped by Stanford (2009).

DESCRIPTION OF MAP UNITS

COHANSEY FORMATION--Fine-to-coarse sand, some very coarse  sand and 
very fine to fine pebbles. White, very pale brown, yellow, brownish-yellow, 
reddish-yellow, light gray. Massive to cross-bedded. Sand consists of quartz 
with a trace of weathered chert. Pebbles consist of subangular to subrounded 
quartz and minor weathered chert. As much as 70 feet thick. Middle Miocene in 
age, based on pollen (Owens and others, 1998). Unconformably overlies the 
Kirkwood Formation.

KIRKWOOD FORMATION--Silty clay, clay, minor silty very fine sand. 
Yellow, brownish-yellow, white, gray, very pale brown, reddish-yellow. As 
much as 90 feet thick. The Kirkwood sediments in the map area are within the 
informal lower member of the Kirkwood Formation (Owens and others, 1998), 
also known as the Alloway Clay in outcrop in the Salem region (Isphording and 
Lodding, 1969). The lower member is of early Miocene age (22-21 Ma) based 
on strontium stable-isotope ratios  (Sugarman and others, 1993). Unconformably 
overlies the Manasquan, Vincentown, and Hornerstown formations.

MANASQUAN FORMATION--Glauconite clay to sandy clay. Olive, green, 
olive-brown. As much as 60 feet thick in map area (estimated). In subsurface 
only, covered by Kirkwood Formation. Inferred from well logs. Described by 
drillers as brown, gray, or green clay, or marl. Early Eocene in age, based on 
calcareous nannofossils (Owens and others, 1998). Unconformably overlies the 
Vincentown Formation. 

VINCENTOWN FORMATION--Glauconitic clayey quartz sand, medium- 
grained. Locally calcareous and  fossiliferous, with shells and bryozoan detritus. 
Glauconite occurs primarily in soft grains of medium sand size. Yellowish-
brown, olive, light gray. As much as 100 feet thick. Described by drillers as 
coral sand, limestone, lime rock, cement sand, and black-and-white sand.  Late 
Paleocene in age, based on foraminifera  (Olsson and Wise, 1987). 
Unconformably overlies the Hornerstown Formation.

HORNERSTOWN  FORMATION--Glauconite clay. Olive, green, black where 
unweathered, olive-brown with brown to reddish-brown mottles where 
weathered. Glauconite occurs primarily in soft grains of fine-to-medium-sand 
size, with botryoidal and accordion shapes. Quartz, mica, feldspar, and 
phosphatic material also occur as minor constituents. Between 20 and 25 feet 
thick. Described by drillers as black marl, green marl, or green clay. Early 
Paleocene in age based on foraminifera (Olsson and Wise, 1987). 
Unconformably overlies the Navesink Formation.

NAVESINK FORMATION--Glauconite clay to sandy clay. Locally 
fossiliferous, with calcareous shell beds. Olive, green, black where 
unweathered; olive-brown to olive-yellow where weathered. Between 15 and 20 

feet thick. Described by drillers as shell marl or black marl and shells. 
Glauconite occurs primarily in soft grains of medium-to-coarse-sand size. 
Quartz sand, medium-grained, is the principal accessory.  Pyrite, mica, and 
phosphatic material are minor constituents. The basal few feet of the Navesink 
contain a glauconitic quartz sand with granules and black phosphate pebbles. 
Late Cretaceous (Maastrichtian) in age based on foraminifera (Olsson, 1964).  
Strontium stable-isotope age estimates range from 69 to 67 Ma (Sugarman and 
others, 1995). Unconformably overlies the Mount Laurel Formation. The 
unconformity is marked by a sharp positive gamma-ray response on geophysical 
logs.

MOUNT LAUREL FORMATION--Quartz sand, slightly glauconitic (5-10 
percent by volume), medium-grained. Yellowish-brown to reddish-yellow where 
weathered, gray where unweathered. Between 80 and 90 feet thick. Contains 
traces of feldspar, mica, and phosphate pebbles. The upper several feet consists 
of coarse sand containing granules and pebbles; this interval also contains 
glauconite from the overlying Navesink Formation concentrated in burrows. 
Described by drillers as pepper sand, salt-and-pepper sand, and black-and-white 
sand.  Late Cretaceous (late Campanian) in age based on  nannoplankton 
(Sugarman and others, 1995). Grades downward into the Wenonah Formation.

WENONAH  FORMATION--Quartz sand, micaceous, slightly glauconitic, fine-  
to very fine-grained. Yellow to very pale brown where weathered, gray  to pale-
olive where unweathered. Between 60 and 70 feet thick. Late Cretaceous (late 
Campanian) in age based on pollen (Wolfe, 1976) and ammonite fossils 
(Kennedy and Cobban, 1994). Grades downward into the Marshalltown 
Formation.

MARSHALLTOWN  FORMATION--Glauconitic clayey quartz sand, fine- to 
medium-grained. Olive to dark gray where unweathered, brown to olive-brown 
where weathered. Between 15 and 25 feet thick. Late Cretaceous (middle 
Campanian) in age, based on nannoplankton (Sugarman and others, 1995). 
Unconformably overlies the Englishtown Formation. 

ENGLISHTOWN FORMATION--Quartz sand, fine- to medium-grained, with 
thin beds of  clay and silt.  Sand is white, yellow, and light gray where 
weathered, gray where unweathered. Silt and clay are light gray to brown where 
weathered, dark gray to black where unweathered. Between 20 and 30 feet 
thick. Sand contains some lignite and mica, and minor glauconite; silt and clay 
contain some mica and lignite. Late Cretaceous (early Campanian) in age, based 
on pollen (Wolfe, 1976). Grades downward into the Woodbury Formation.

WOODBURY  FORMATION--Clay with minor thin beds of very fine quartz 
sand. Dark gray and black where unweathered, yellowish-brown to brown 
where weathered. Between 30 and 40 feet thick. Clay is micaceous, with some 
pyrite and lignite, and traces of glauconite. Late Cretaceous (early Campanian) 
in age based on pollen (Wolfe, 1976). Grades downward into the Merchantville 
Formation. Minard (1965) includes this clay in the Merchantville or 
Englishtown formations in the adjacent Woodstown quadrangle, as did Owens 
and others (1998) regionally. It is mapped separately here because the general 
absence of sand beds distinguishes it from the overlying Englishtown Formation 
and the absence of glauconite distinguishes it from the underlying Merchantville 
Formation.

MERCHANTVILLE FORMATION--Glauconitic fine-sandy silty clay to clayey 
silt. Olive, dark gray, black where unweathered, olive-brown to yellowish-
brown where weathered. Between 15 and 35 feet thick. Glauconite occurs 
primarily as soft grains of fine-to-medium-sand size. Sand fraction is chiefly 
quartz; feldspar, mica, and pyrite are minor constituents.  Iron cementation is 
common. Late Cretaceous (early Campanian) in age based on ammonite fossils 
(Owens and others, 1977). Unconformably overlies the Magothy Formation.

MAGOTHY FORMATION--Quartz sand, fine- to very coarse-grained, and clay 
and silt, thin-bedded.  Sand is white, yellow, light gray where weathered, gray 
where unweathered. Clay and silt are white, yellow, brown, rarely reddish-
yellow where weathered, gray to black where unweathered. Gray colors 
dominate. Sand includes some lignite, pyrite, and minor feldspar and mica. Silt 
and clay beds include abundant mica and lignite. Between 30 and 50 feet thick. 
In subsurface only. Late Cretaceous (Turonian-Coniacian) in age based on 
pollen (Christopher, 1979, 1982; Miller and others, 2004). In the Fort Mott core 
hole (well 30-14904), pollen from the Magothy Formation at a depth of 137 feet 
indicates a late Turonian age (Sugarman and others, 2004). Unconformably 
overlies the Potomac Formation.  Contact with Potomac Formation placed at 
change from predominantly gray clay and silt in Magothy Formation to red clay 
in the Potomac, as reported in well or boring logs, or at increased gamma-ray 
intensity on geophysical logs, recording the thicker clays in the Potomac. The 
upper 10-15 feet of the Magothy Formation, as mapped here, may include the 
Cheesequake Formation, which is identified in the Fort Mott core hole 
(Sugarman and others, 2004). The Cheesequake, as a largely non-glauconitic 
silt, it cannot be distinguished lithically from the Magothy in the map area based 
on the available outcrop and well data.  

POTOMAC  FORMATION--Quartz sand, fine- to very coarse-grained, and clay 
and silt, thin- to thick-bedded; minor pebble-to-cobble gravel.  Sand is white, 
yellow, light gray where weathered, gray where unweathered. Clay and silt are 
white, yellow, brown, reddish-yellow, red where weathered, gray where 
unweathered. White and red colors dominate. Clay beds are as much as 10 feet 
thick, sand beds are as much as 50 feet thick.  Clay beds are more abundant than 
sand beds. Total thickness of formation is more than 700 feet in map area. May 
be as much as 1000 feet thick, based on the lithologic log of a City of Salem test 
well drilled in 1935 (well 19 of Johnson, 1961). In subsurface only.The Potomac 
Formation in the map area is divided into three informal subunits (Kp3, Kp2, 
Kp1) based on analyses of pollen from clays sampled in the Fort Mott corehole 
(Sugarman and others, 2004) using the pollen zonations of Doyle and Robbins 
(1977). It is not known if the boundaries between the units are unconformities. 
Unit 3 (Kp3) is of Late Cretaceous (early Cenomanian) age. Unit 2 (Kp2) is 
mapped based on a regionally traceable 30-to-50-foot-thick sand at the base of 
unit 3, as identified in geophysical and lithologic well logs (McKenna and 
others, 2004; Sugarman and others, 2004). Unit 2 is of Early Cretaceous 
(Albian) age. Unit 1 is mapped based on a similar sand at the base of unit 2. 
Unit 1 is of Early Cretaceous (Aptian) age. The Potomac Formation 
unconformably overlies Late Proterozoic and early Paleozoic bedrock. 
Weathered schist of the Wissahickon Formation was penetrated from a depth of 
1376 to 1440 feet in the Salem test well (Johnson, 1961). Depth to metamorphic 
basement bedrock ranges from about 800 feet in the northwest corner of the map 
area to about 1600 feet in the southeast corner (Volkert and others, 1996).

MAP SYMBOLS

Contact--Approximately located. Triangle indicates contact observed in outcrop.

Subcrop contact--Contact of Manasquan and Vincentown Formations beneath 
Kirkwood Formation. Approximately located.  

Formation observed in outcrop, excavation, or hand-auger hole.

Well or boring, location accurate to within 200 feet--Number followed by map-
unit symbol is depth, in feet below land surface, of base of unit (or total depth of 
well, if last number) as inferred from driller's log or gamma-ray log (indicated 
by "G"). Depths may differ from those on map and sections owing to variations 

in drillers’ descriptions. Map units are not listed for wells shown on sections. 
Identifiers of the form 33-xxx are U. S. Geological  Survey Ground Water Site 
Inventory numbers. Identifiers of the form 30-xxxx or 34-xxxx are New Jersey 
Department of Environmental Protection well permit numbers. Identifiers of the 
form SL-xx and DC-xx are auger borings drilled by D. S. Powars and J. P. 
Owens of the U. S. Geological Survey. Identifiers of the form Dcxx-xx and 
Ddxx-xx are from Talley (1985). Well 19 in Salem City is from Johnson (1961). 
Unit "OCZu" shown for this log indicates weathered schist of the Wissahickon 
Formation of late Proterozoic and early Paleozoic age. 

Well or boring, location accurate to within 500 feet--Identifiers and symbols as 
above.

Gamma-ray log--On sections. Intensity increases to right.

Surficial deposits--On sections.
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