

REMEDIAL ALTERNATIVES SELECTION EVALUATION

FORMER Z2 CLEANERS SITE 1502/1515 ROUTE 37 EAST TOMS RIVER, NEW JERSEY 08753 BLOCK 1085.02, LOT 5

NJDEP PI # G000062662 NJDEP RI/RD/RAS TERM CONTRACT #A-86327 – NJDEP PROJECT # A1776590

MAY 2016

Copyright 2016 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED

Prepared for:

New Jersey Department of Environmental Protection Site Remediation Program - Bureau of Site Management P.O. Box 420, Mail Code 401-5R 401 East State Street Trenton, New Jersey 0862-0420

REMEDIAL ALTERNATIVES SELECTION EVALUATION FORMER Z2 CLEANERS SITE 1502/1515 ROUTE 37 EAST TOMS RIVER, NEW JERSEY 08753 BLOCK 1085.02, LOT 5

NJDEP PI # G000062662 NJDEP RI/RAS TERM CONTRACT # A-86327 NJDEP PROJECT # A1776590

Prepared by:

Brian Tortorete, P.G.

Remedial Investigation Leader

Reviewed by:

Daniel E. Kent, IV Project Manager

Robert M. Croydon, P.G.

Program Manager

KLEINFELDER

3 AAA Drive, First Floor Hamilton, New Jersey 08691

Phone: 609.584.5271 Fax: 609.584.7498

May 2016

Kleinfelder Project No. 20155144.001A

TABLE OF CONTENTS

1.0	INTRO	DUCTION	. 1
2.0	BACK	GROUND	.2
3.0	HISTO	RICAL ENVIRONMENTAL INVESTIGATIONS	. 3
	3.1	NJDEP Investigations	. 3
	3.2	Kleinfelder Soil and Groundwater Investigations	. 3
	3.3	Kleinfelder Vapor Intrusion Investigation	. 4
4.0	SUMM	ARY OF FINDINGS AND ASSUMPTIONS	. 6
5.0	REME	DIAL ALTERNATIVES	.7
	5.1	Alternative 1: Active Subsurface Depressurization System	.7
	5.2	Alternative 2: Active Sub Surface Depressurization System with Source Area Excavation	.8
	5.3	Alternative 3: Active Sub Surface Depressurization System, Source Area Excavation and Soil Vapor Extraction System Installation	.8
6.0	RECO	MENDATIONS	10
7.0	LIMITA	ATIONS	11
8.0	REFER	RENCES	12
FIGUR	RES		
Figure Figure Figure Figure Figure Figure Figure Figure	2: 3: 4: 5: 6: 7:	Site Location Map Soil Sampling Analytical Results Summary PCE Isoconcentration Map: Shallow (32-35 feet BGS) PCE Isoconcentration Map: Deep (47-50 feet BGS) TCE Isoconcentration Map: Shallow (32-35 feet BGS) TCE Isoconcentration Map: Deep (47-50 feet BGS) TCE Isoconcentration Map: Deep (47-50 feet BGS) Alternative 1 Subsurface Depressurization Alternative 2 Subsurface Depressurization with Source Area Excavation Alternative 2 Subsurface Depressurization with Source Area Excavation and S Vapor Extraction System Installation	oil

Table 1: March 2014 Soil Analytical Results Summary March 2015 Groundwater Analytical Results Summary Table 2: Table 3: May 2014 Off-Site Groundwater Analytical Results Summary Table 4:

July 2015 Soil Analytical Results Summary

July 2015 Groundwater Analytical Results Summary Table 5: Table 6: November 2015 Groundwater Analytical Results Summary

June 2015 Soil Gas Analytical Results Summary Table 7: Table 8: June 2015 Indoor Air Analytical Results Summary

Table 9: 90 Breton Harbor Soil Gas and Indoor Air Analytical Results Summary 9 First Bayway Soil Gas and Indoor Air Analytical Results Summary Table 10:

Table 11: February 2016 Indoor Air Analytical Results Summary

1.0 INTRODUCTION

Kleinfelder East, Inc. (Kleinfelder) was contracted by the New Jersey Department of Environmental Protection (NJDEP, Term Contract #A-86327) to perform site-specific Remedial Investigation (RI) activities at the Former Z2 Cleaners property (the "site"), located at 1502/1515 Route 37 East (Block 1085.2, Lot 5), Toms River, Ocean County, New Jersey. RI activities were conducted in 2014-2015 and chlorinated volatile organic compounds (CVOCs) were identified in soil, groundwater, soil gas, and indoor on and adjacent to the site. As a result, the NJDEP retained Kleinfelder to prepare a Remedial Alternatives Selection Evaluation.

2.0 BACKGROUND

The former Z2 Cleaners site is located at 1502/1515 Route 37 East (Block 1085.02, Lot 5), Toms River, Ocean County, New Jersey. The site is situated at approximately 39° 57' 10" north latitude, 74° 09' 27" west longitude and at an elevation of approximately 40 feet North American Vertical Datum (NAVD, 1988). The site location, surface topography, and nearby surface water bodies are depicted on **Figure 1**, an annotated section of the United States Geological Survey (U.S.G.S.) 7.5 minute series topographic quadrangle map for Toms River, New Jersey. The site is approximately 160 feet by 100 feet and is currently developed with a one-story strip mall with four units. The former Z2 Cleaners was located in the center unit of the mall in what is now a used appliance store. The other units consist of a pet groomer, barber shop, and adult novelty shop. The majority of the site consists of the building or asphalt parking area, with two small landscaped areas along the eastern edge of the property.

During routine potable well sampling conducted as part of a property transaction in 1988, tetrachloroethene (PCE) and trichloroethene (TCE) were detected in a home owner's potable water well in the Breton Harbors neighborhood of Toms River. The Ocean County Health Department (OCHD) initiated domestic well sampling of neighboring properties to determine the extent of the contamination. By May 10, 1988, OCHD had collected 147 potable well samples. The results of the sampling revealed that 59 samples exceeded the maximum contaminant level for one or more volatile organic compounds (VOCs). The NJDEP began investigating in the vicinity of the former Z2 Cleaners in October 1999 as part of an investigation to determine the source of the Breton Harbors contamination. Borings installed immediately south of the former Z2 Cleaners site contained PCE at a maximum concentration of 152 micrograms per liter (µg/l), indicating that a source was likely nearby. During the 2000 groundwater investigation, an interview with a long-time resident revealed that a dry cleaner formerly operated in the strip mall located at 1502/1515 Route 37, up gradient of the Breton Harbors neighborhood. A search of historical tax, sewage and occupancy records by the NJDEP indicated that a dry cleaner named Z2 Cleaners existed at the site as early as 1966. Sanitary sewer service was not available in the vicinity of the site until 1971, therefore it is speculated that PCE-containing waste was discharged to an on-site septic system prior to connection to the municipal sewer system.

3.0 HISTORICAL ENVIRONMENTAL INVESTIGATIONS

3.1 NJDEP Investigations

In October and November 1999, the NJDEP installed five borings in the Breton Harbors neighborhood to confirm the presence and concentration of contamination identified during the 1988 residential well sampling. The borings were installed to a maximum depth of 76 feet below ground surface (bgs) with up to five groundwater samples collected per boring. Three of the five borings contained PCE in excess of the NJDEP Groundwater Quality Criteria (GQC), with a maximum concentration of 8.29 parts per billion (ppb) detected at the 49-52 foot interval.

In January 2001, five groundwater borings were installed down-gradient of the property that was later determined to be the former Z2 Cleaners. The borings were installed to a maximum depth of 72 feet bgs. PCE was detected in each of the five borings. The maximum concentration was detected in the 33-36 foot interval of GW-19 near the corner of Breton Harbor and First Bayway at a concentration of 152.76 ppb.

In June 2000, the NJDEP conducted a site investigation which included on-site soil sampling. Four continuous core borings were advanced in the area where the historic septic field (southwest corner of the site) was believed to exist. None of the core samples displayed any visual evidence of a septic system, nor did they exhibit any VOC readings above background while using a photoionization detector (PID) or organic vapor analyzer (OVA). As a result, none of these samples were sent to the laboratory for analysis. On June 21, 2001 three on-site prepacked monitoring wells were installed to 36 feet bgs, one side-gradient (MW-1) and two down-gradient of the site (MW-2 and MW-3).

In August 2001, two up-gradient soil borings [GW-1 (Z2) and GW-2 (Z2)], and one down-gradient soil boring [GW-3 (Z2)] were installed and sampled from 30-35 feet along with monitoring wells MW-1, MW-2, and MW-3. Up-gradient borings GW-1 and GW-2 contained PCE at concentrations of 9.5 and 8.2 ppb and TCE at concentrations of 1.1 and 2 ppb, respectively, in groundwater. Side-gradient well MW-1 contained PCE and TCE at concentrations of 62 and 3.9 ppb, respectively. Down-gradient boring GW-3 contained PCE at a concentration of 8.1 ppb and TCE at a concentration of 2 ppb. Down-gradient wells MW-2 and MW-3 contained PCE at concentrations of 160 and 250 ppb and TCE at concentrations of 5 and 3.2 ppb, respectively.

3.2 <u>Kleinfelder Soil and Groundwater Investigations</u>

Kleinfelder initiated investigation activities at the site in March 2014. A geophysical survey of the site revealed the presence of what were determined to be three drywells below the parking lot on the north side of the property. The investigation included the installation of 11 on-site soil and groundwater borings with the collection of 13 soil samples and up to two groundwater samples per boring. The groundwater samples were collected from two zones: the first water bearing zone at 32-35 feet bgs and a deeper zone at 47-50 feet bgs interval for vertical delineation. These two groundwater zones are hereafter referred to as the shallow and deep water bearing zones, respectively.

The soil samples collected from the first six-inch soil interval within the drywells (12.0-12.5 ft bgs) in borings SB-9 and SB-10, , revealed PCE and/or TCE in excess of the NJDEP default impact to groundwater soil screening level (DIGSSL). Additionally, sample SB-10 contained PCE in excess of the NJDEP Nonresidential Direct Contact Soil Remediation Standard in the first six-inch soil interval. The remainder of the soil samples collected from the six-inch soil interval above groundwater did not contain any contaminants of concern in excess of the NJDEP DIGWSSL. Groundwater samples indicated the presence of PCE in excess of the NJDEP GQC in each of the eleven shallow groundwater samples, with the highest concentration, 630 micrograms per liter (μ g/L) in GW-5 located in the southwest corner of the site. TCE exceeded the NJDEP GQC in ten of the eleven shallow samples. Seven of the eight deep samples contained PCE in excess of the NJDEP GQC, with the highest concentration of 280 μ g/L in boring GW-5. TCE was detected in excess of the NJDEP GQC in in three of the 8 deep samples, with the highest concentration of 17 μ g/L in boring GW-5. **Tables 1 and 2** present a summary of the March 2015 soil and groundwater sampling analytical results, respectively.

In May 2015, Kleinfelder installed a series of groundwater borings on First and Second Bayway to delineate the horizontal extent of the PCE and TCE contamination observed on-site. Of the six borings installed along First Bayway, two contained PCE in excess of the NJDEP GQC in the shallow groundwater interval. None of the deep interval samples contained PCE in excess of the NJDEP GQC. TCE was not detected in either the shallow or deep samples in excess of the NJDEP GQC. Neither PCE nor TCE were detected in the shallow or deep interval in any of the six borings installed along Second Bayway. **Tables 3** presents a summary of the May 2015 groundwater sampling analytical results.

Additional soil and groundwater delineation was completed by Kleinfelder in July 2015. Seven soil and 13 groundwater borings were installed during this phase of investigation. Sixteen soil samples were collected in the vicinity of the drywells with samples collected from the 12-12.5 foot interval, corresponding to the contamination identified in the drywells. None of the soil delineation samples contained PCE in excess of the most stringent NJDEP Site Remediation Standards (SRS). Additional samples were collected from the 15.5-16.0 foot interval in boring SB-12 and the 17.5-18.0 foot interval in boring SB-17. These samples did not contain any exceedances indicating that the soil contamination is confined to the soil directly at the base (12.0-12.5 feet bgs) of the drywells. Results of the groundwater sampling further refined the PCE exceedances identified in the initial round of investigation. **Tables 4 and 5** present a summary of the July 2015 soil and groundwater sampling analytical results, respectively. The location and summary results of all soil sampling conducted at the site are presented on **Figure 2**.

Kleinfelder collected five additional shallow groundwater delineation samples in November 2015 which further delineated the on and off-site shallow PCE and TCE plumes. **Table 6** contains a summary of the November 2015 groundwater sampling analytical results. **Figures 3-6** depict the extent of the shallow and deep PCE and TCE plumes in groundwater, based on all rounds of investigation conducted by Kleinfelder

3.3 Kleinfelder Vapor Intrusion Investigation

Based on the results of the soil and groundwater investigation, Kleinfelder conducted a vapor intrusion investigation of the on-site strip mall in June 2015. Five sub-slab soil vapor and indoor air samples were collected, one from each of the strip mall units. Sub-slab PCE results ranged

from 1,360 micrograms per cubic meter (μ g/m³) to 45,500 μ g/m³ with four of the five sub-slab PCE concentrations exceeding the NJDEP Non-Residential Soil Gas Screening Level (NRSGSL). The highest PCE concentration was detected in the former drycleaner unit. None of the indoor air samples exceeded the NJDEP Non-Residential Indoor Air Screening Level (NRIASL) during the June 2015 sampling event. **Tables 7 and 8** contain a summary of the June 2015 vapor intrusion sampling analytical results.

In October 2015, sub-slab soil gas and indoor air samples were collected from the residences at 90 Breton Harbor Drive and 9 First Bayway. The sub-slab sample collected at 90 Breton Harbor Drive contained PCE at a concentration of 2,790 µg/m³ which exceeds the NJDEP Residential Soil Gas Screening Level (RSGSL). No other contaminants of concern exceeded the corresponding NJDEP RSGSL. An air sample collected from the dirt floor of the crawl space at 19 First Bayway contained TCE at a concentration below the NJDEP RSGSL. **Tables 9 and 10** contain a summary of the results of the June 2015 vapor intrusion sampling analytical results.

Based on the results of the sub-slab vapor samples collected at the strip mall in June 2015, an additional round of indoor air samples were collected at the strip mall on February 24, 2016. Results of this round of indoor air sampling revealed PCE in four of the five units in excess of the NJDEP NRIASL at a maximum concentration of 202 μ g/m³. **Table 11** contains a summary of the results of the February 2016 vapor intrusion sampling analytical results. Based on the result of the February 2016 indoor air sampling event, the site was transferred to the NJDEP Site Remediation Program Bureau of Site Management for remediation.

4.0 SUMMARY OF FINDINGS AND ASSUMPTIONS

Based on the investigations conducted by the NJDEP and Kleinfelder, the mass of residual PCE and TCE contamination in groundwater is concentrated at the south east corner of the property and extends off-site. A geophysical investigation identified three drywells on the north side of the site. The installation of the drywells prior to the site's connection to the public sewer system indicates that they could have received waste water from the historical on-site dry cleaning operation. Soil samples collected from the first 6-inch soil interval (12.0-12.5 feet bgs) within two of the drywells revealed PCE and TCE in one or both of the drywells in excess of the NJDEP DIGWSSL. Although no samples were collected from the third drywell, due to concerns about its structural integrity, it is assumed that the third drywell could also have received waste water from historical operations. This assumption is based on the third drywell being located between the building and the two know contaminated drywells. The presence of PCE and TCE in the drywells and in no other on-site soil samples supports the assumption that the drywells are the likely source of the groundwater contamination. However, the presence (or absence) of CVOC contamination in soil directly beneath the strip mall building slab could not be confirmed, because no samples were collected beneath the building.

A vapor concern is present in the indoor air of four of the five units of the strip mall and is likely attributable to the elevated PCE in the shallow groundwater underlying the site and a potential residual soil source below the building footprint. Vapor intrusion sampling conducted at 90 First Bayway, located down-gradient of the site, indicated that the vapor concern appears to be migrating off-site.

The purpose of this report is to evaluate the most effective and cost efficient remedial strategy to address the vapor intrusion issue and the source of the contamination identified at the Site. Based on discussions with the NJDEP project manager, the following three Remedial Alternatives will be evaluated:

- Alternative 1: Active Subsurface Depressurization System
- Alternative 2: Active Subsurface Depressurization System with Source Area Excavation
- Alternative 3: Active Subsurface Depressurization System, Source Area Excavation and Soil Vapor Extraction System Installation

5.0 REMEDIAL ALTERNATIVES

Based on Kleinfelder's understanding of the nature and extent of contamination and the NJDEP's desire to address the vapor intrusion issue at the site, the following Remedial Alternatives are being evaluated for the site.

5.1 <u>Alternative 1: Active Subsurface Depressurization System</u>

The objective of an active subsurface depressurization system (ASDS) is to apply a negative pressure field or vacuum beneath and/or around the building of concern, thereby preventing vapor intrusion into the building. Active subsurface depressurization systems utilize a fan or blower to create a continuous negative pressure field (vacuum) below the slab. The Department does not consider this action to separately constitute a remedial action of site contaminants found in soil or groundwater. (NJDEP 2013)

ASDS when combined with reasonable sealing of significant infiltration points, is typically the most effective mitigation method for basement slab or slab-on-grade foundation. Concentration reductions of 99.5% or greater have been obtained in carefully designed and installed systems in existing residential buildings. (NJDEP 2013)

To achieve this goal five ASDS vapor extraction points will be installed through the concrete slab of the on-site strip mall building. One extraction point will be installed in each of the four strip mall units with the final point installed through the basement floor below the fifth unit. The extraction points will be constructed of two-inch slotted polyvinyl chloride (PVC) pipe extended two feet below the building slab or basement floor. The piping from the extraction points will be extended through the rear wall of the various units and run through a trench below the rear parking lot to the basement at the western end of the building. The pipes will be connected to a manifold and to a blower capable of suppling sufficient vacuum to achieve the desired negative pressure field beneath the building. The exhaust from this blower will be treated with granular activated carbon (GAC) before being released to the atmosphere.

To assess the effectiveness of the system in achieving a negative pressure gradient, 10 vacuum monitoring points will be installed around the perimeter of the building. These points will extend to 12 feet bgs and be constructed of ¾ inch PVC with seven feet of slotted screen. In addition 18, ½ inch steel or PVC vapor monitoring points will be installed through the building slab. These points will allow for direct measurement of the induced vacuum as well as collection of repeated sub-slab vapor samples for evaluation of system termination. Four vapor monitoring points will be installed in each of the first three slab on grade strip mall units and six will be installed within the basement of the fourth strip mall unit.

Based on an estimate provided by the NJDEP's remediation contractor, Handex Consulting and Remediation, the cost of installing the ASDS will be approximately \$110,000. These costs include labor and material for installation of the five ASDS extraction points, 10 exterior monitoring points, and 18 interior points. Also included are the cost of trenching and associated piping, the remediation system and site restoration. The cost also includes labor for system optimization, two years of system operation and maintenance and the cost of one GAC change-out. **Figure 7** contains the proposed layout of the ASDS and vacuum monitoring points.

5.2 <u>Alternative 2: Active Sub Surface Depressurization System with Source Area</u> Excavation

The second Alternative includes installation of the ASDS as detailed above with the addition of excavation and offsite disposal of the three drywells and associated soil on the north side of the site. The addition of excavation will eliminate the identified soil contamination which is potentially continuing to contribute to the groundwater contamination and acting as a source of the vapor concern.

The excavation will include removing the three drywells and associated soil to a depth of 15 feet bgs corresponding to the uncontaminated soils observed at the in sample SB-12. The excavation area is anticipated to be approximately 600square-feet (sf) in area and include the removal of approximately 333 cubic yards (cy) of soil (Figure 8). Groundwater is not anticipated to be encountered in the excavation. Because of the primarily sandy soils, the excavation will likely requiring shoring or sloping for stability; this cost is included in the estimate. During backfilling of the excavation, three shallow (15 feet bgs) soil vapor extraction (SVE) wells will be installed within the excavation for future use as remediation wells if deemed necessary. The SVE wells will be installed to a depth of 15 feet bgs and constructed of 4-inch PVC with 10 feet of slotted screen. In addition, four groundwater monitoring wells will be installed as part of Alternative 2. The wells will be installed to a total depth of 35 feet and screened from 25-30 feet bgs across the groundwater interface. This depth corresponds to the highest levels of contamination observed in the shallow groundwater zone. One well will be installed on the north side of the site in the excavation area and three wells will be installed along the southern property boundary along First Bayway. These wells will be utilized to confirm groundwater flow across the site and assess the effectiveness of the remediation strategy.

The additional cost associated with excavation of the source area is approximately \$150,000, based upon Handex pricing. This cost includes labor, machinery and disposal costs to excavate approximately 333 cy of soil along, backfilling the excavation with an equal volume of certified clean fill material, and restoration of the site. The cost estimate also includes the labor and material to install the three SVE wells and four groundwater monitoring wells. The total cost for Alternative 2 is approximately \$260,000. **Figure 8** contains the proposed layout of the ASDS, vacuum monitoring points, SVE wells, groundwater monitoring wells, and proposed excavation area.

5.3 <u>Alternative 3: Active Sub Surface Depressurization System, Source Area Excavation</u> and Soil Vapor Extraction System Installation

The Third Alternative includes installation of the ASDS, excavation of the source area as detailed above, and the addition of a soil vapor extraction (SVE) system. The installation of a soil vapor extraction system will address contamination not removed during the excavation phase, including unidentified residual soil contamination below the building foot print. The SVE system is also intended to mitigate the migration of vapors offsite.

SVE utilizes a vacuum applied to the vadose zone to remediate soils by enhancing the volatilization of adsorbed, dissolved and free phase VOCs. The contaminants transform into vapor phase and are removed and treated above ground. The underlying site geology plays a major role in the effectiveness of SVE technologies. SVE is best used in cases where the vadose zone is permeable and homogeneous, and the extractability of the induced air flow is influenced by porosity, soil structure, and air permeability. Based on soil borings advanced by Kleinfelder and the NJDEP the site is underlain by a homogeneous mix of sand and gravel to

approximately 30 feet bgs while groundwater at the site is approximately 28 feet bgs. These subsurface conditions make the site a good candidate for remediation by SVE.

The SVE system will consist of the installation of four SVE wells along the south side of the building and utilize the three shallow SVE wells installed in the former drywell exaction on the north side of the property. The installation of SVE wells in the former drywell excavation will assist in removing residual soil contamination not removed during the soil the excavation. The installation of four SVE wells along the south side of the building will address any unidentified soil contamination present below the building foot print. The additional SVE wells will also address vapors emanating from the area of high shallow PCE concentration at the southeast side of the site and prevent the migration of these vapors off-site.

The SVE wells will be installed to a depth of 20 feet bgs and constructed with 15 feet of four inch PVC slotted screen. Piping would be extended from these wells using the trench for the ASDS and connected to the manifold in the basement. The addition of the seven SVE wells will require a larger blower than specified for the ASDS to achieve the desired pressure gradient but will utilize the same GAC treatment proposed in Alternative 1. Six additional vacuum monitoring points will be installed to evaluate the effectiveness of the SVE system. The points will be installed along the southern edge of the site and two down-gradient of the site across First Bayway

The additional cost of installing the SVE system is estimated to be approximately \$35,000, based upon Handex pricing. This includes the labor and material necessary to install the four SVE wells and additional vacuum monitoring points and pipe connection of the SVE wells and previously installed remediation wells to the treatment system. This alternative includes the cost to install a larger blower and scale up the treatment system to accommodate the additional SVE wells. The total cost for Alternative 3 is approximately \$295,000. **Figure 9** contains the proposed layout of the ASDS, vacuum monitoring points, proposed excavation area, groundwater monitoring wells and SVE system layout.

6.0 RECOMENDATIONS

Based on the NJDEPs goal of protecting the occupants of the property, removing the source of the contamination and preventing off-site migration of vapors the following remedial alternatives were evaluated for the site:

- Alternative 1 is the installation of an ASDS.
- Alternative 2 includes the ASDS along with excavation of contaminated soil from the suspected source area in front of the site building.
- Alternative 3 includes the ASDS, excavation of the source area soil and installation of a SVE System.

Alternative 1, while protective of building occupants and the least expensive, does not address the source of the contamination or prevent the off-site migration of vapors. The implementation of Alternative 2 is expected to cost more than twice that of Alternative 1 and this remedial alternative does not address off-site vapor migration. Alternative 3 is the most expensive but less than 15% more expensive then Alternative 2 and Alternative 3 meets all three of the Department's objectives. Therefore, Alternative 3 is considered to be the appropriate remedial alternative for the site.

7.0 LIMITATIONS

This work was performed in a manner consistent with that level of care and skill ordinarily exercised by other members of Kleinfelder's profession practicing in the same locality, under similar conditions and at the date the services are provided. Our conclusions, opinions and recommendations are based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no other representation, guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

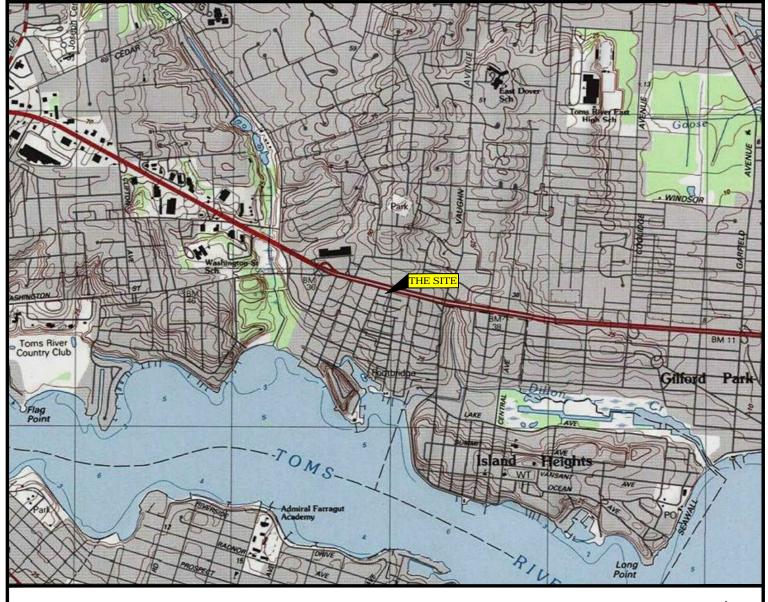
This report may be used only by the Client and the registered design professional in responsible charge and only for the purposes stated for this specific engagement within a reasonable time from its issuance.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk.

8.0 REFERENCES

New Jersey Department of Environmental Protection (NJDEP), <u>Vapor Intrusion Technical Guidance Document</u>, 2005. (updated March 2013)

New Jersey Department of Environmental Protection (NJDEP), <u>Field Sampling Procedures Manual</u>, August 2005. (updated April 2011)


New Jersey Department of Environmental Protection (NJDEP), <u>Ground Water Quality Standards</u>, N.J.A.C. 7:9C, amended July 22, 2010.

New Jersey Department of Environmental Protection (NJDEP), <u>Remediation Standards</u>, <u>N.J.A.C. 7:26D</u>, amended May 7, 2012.

New Jersey Department of Environmental Protection (NJDEP), <u>Technical Requirements For Site Remediation</u>, N.J.A.C. 7:26E, amended May 7, 2012.

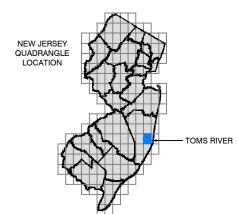
FIGURES

SITE COORDINATES:

LATITUDE :

39° 57' 9.88" N

LONGITUDE :

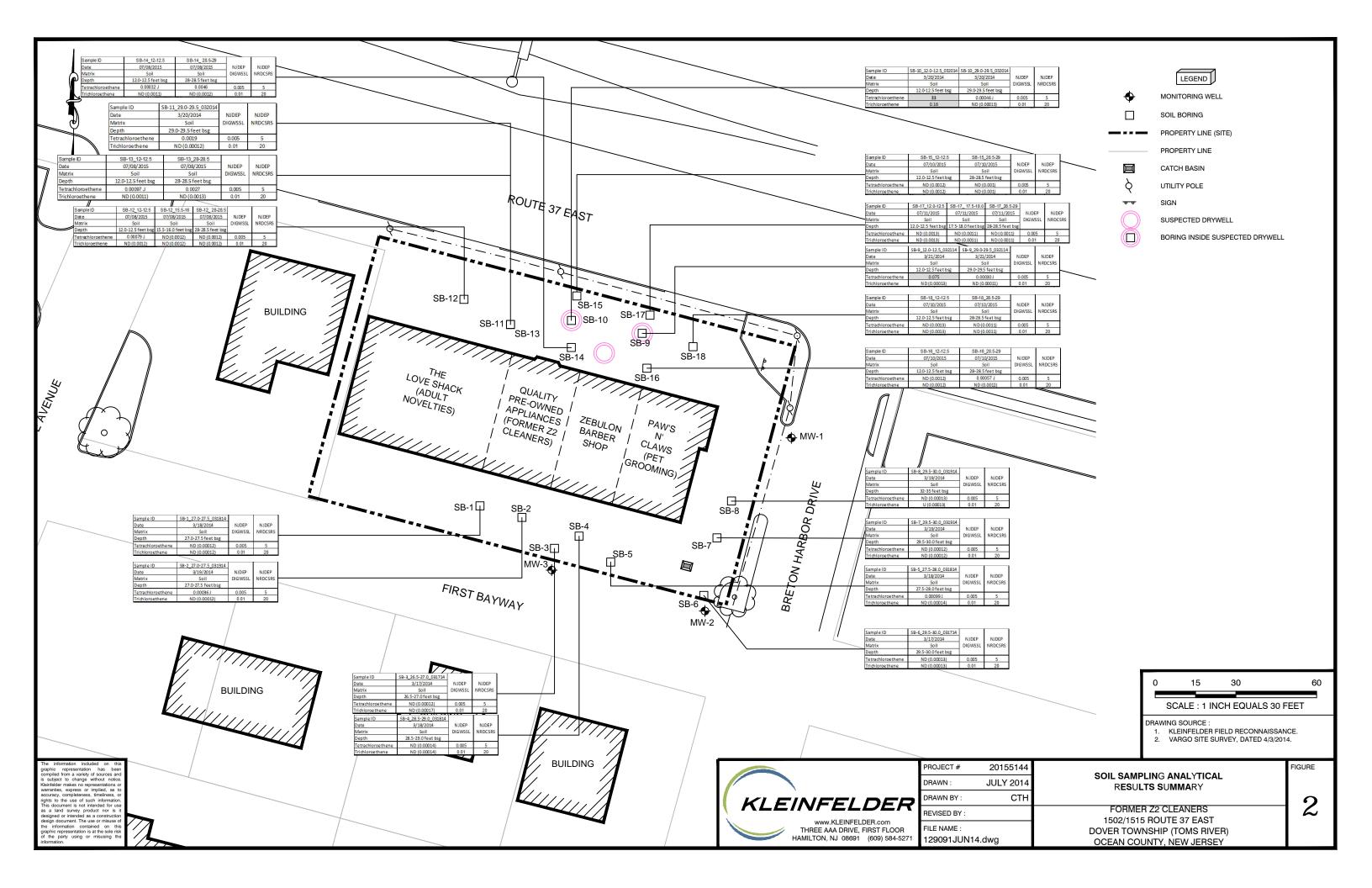

74° 9' 27.32" W

0 1000 2000 4000

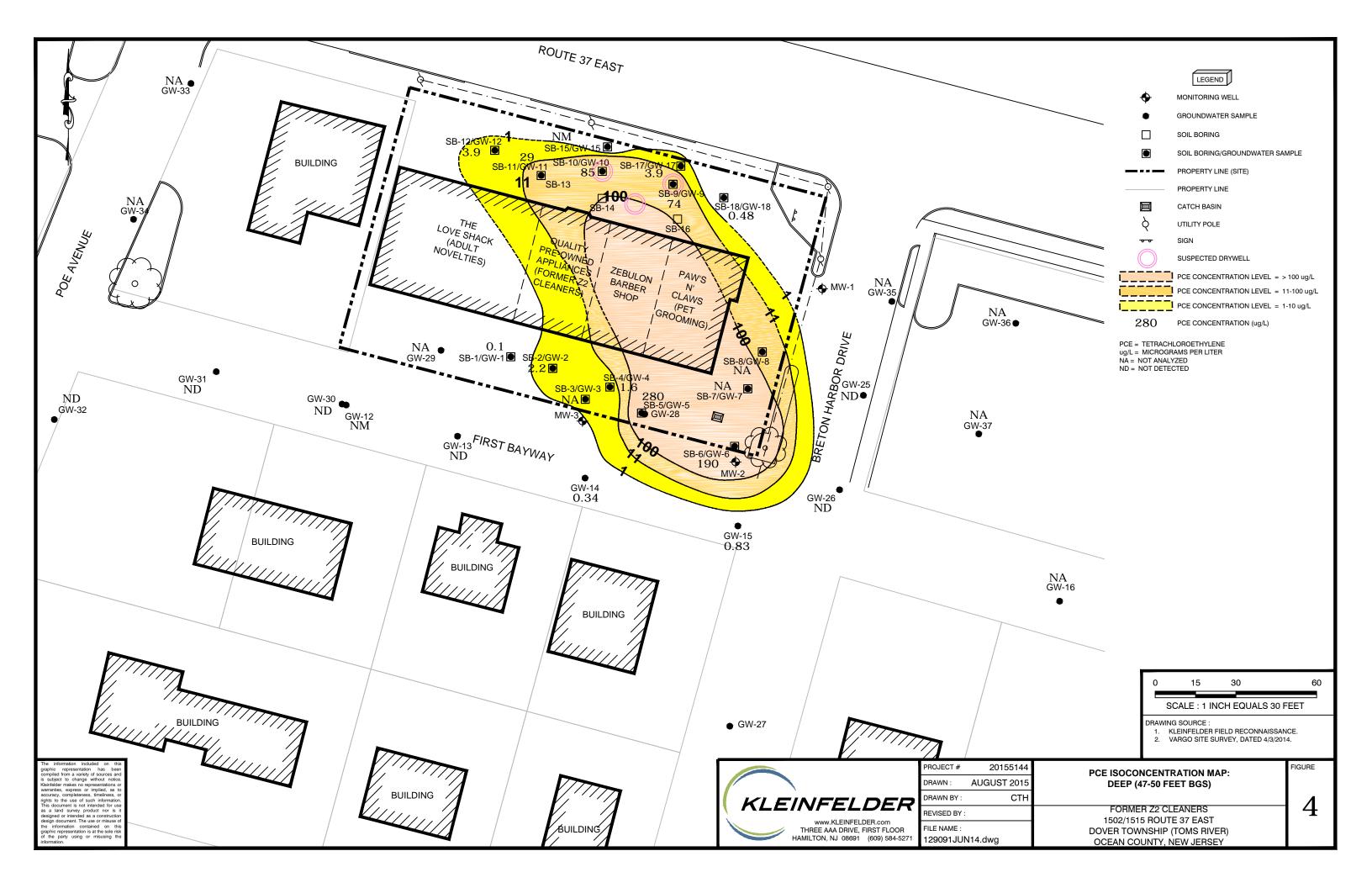
SCALE: 1 INCH EQUALS 2000 FEET

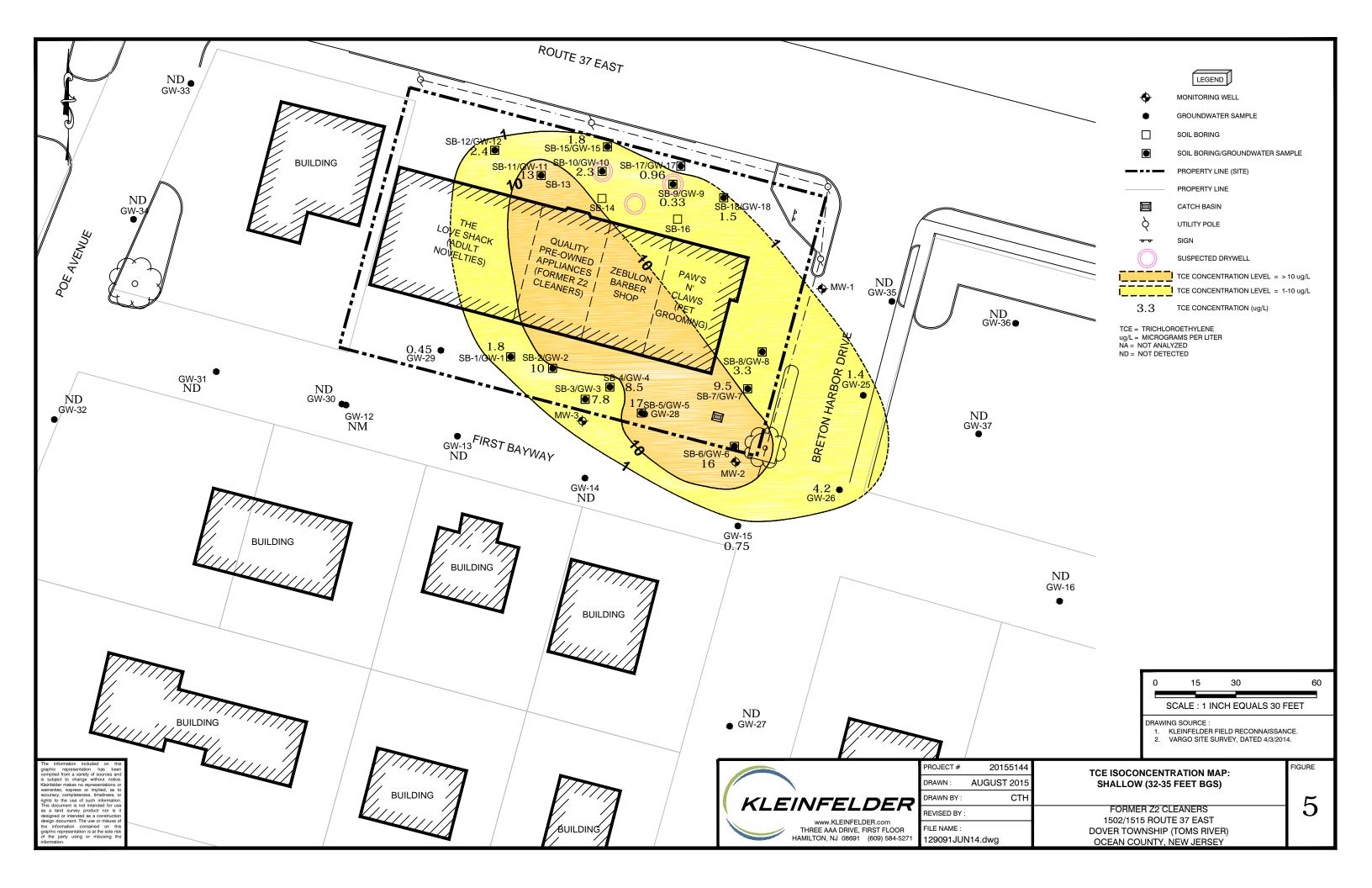
DRAWING SOURCE :

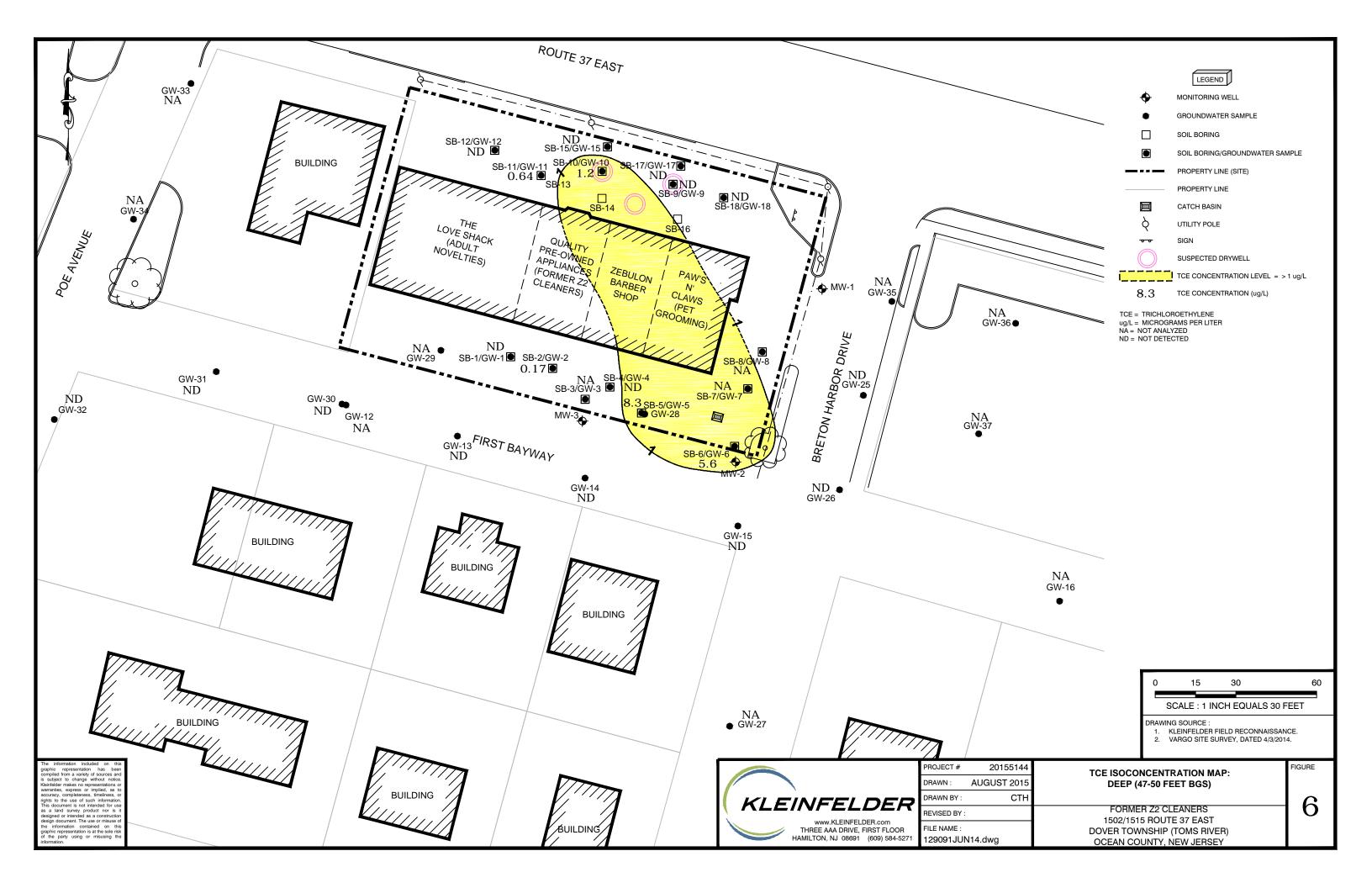
USGS 7.5 ' TOPOGRAPHIC MAP TOMS RIVER, NEW JERSEY QUADRANGLE

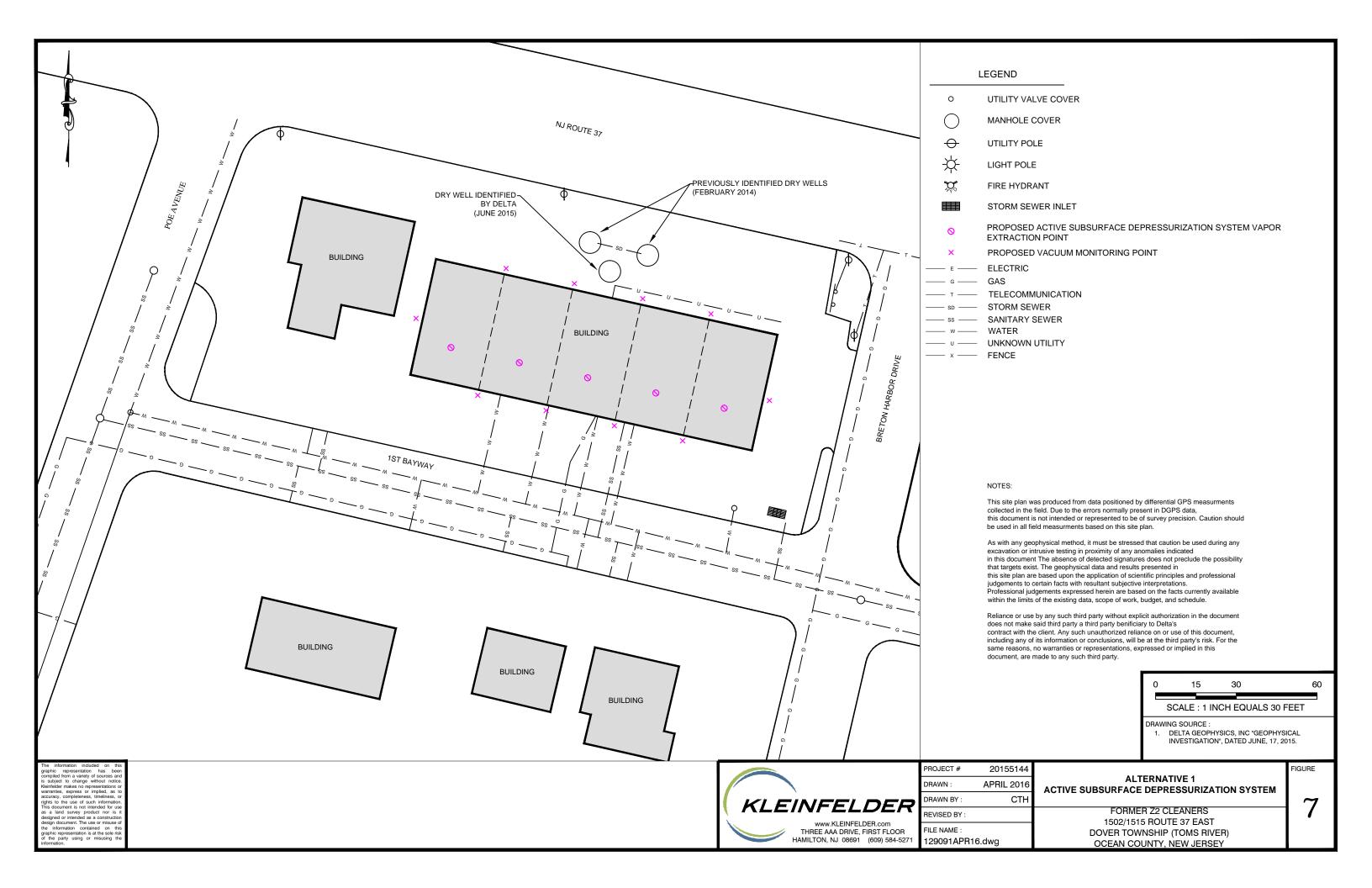

1

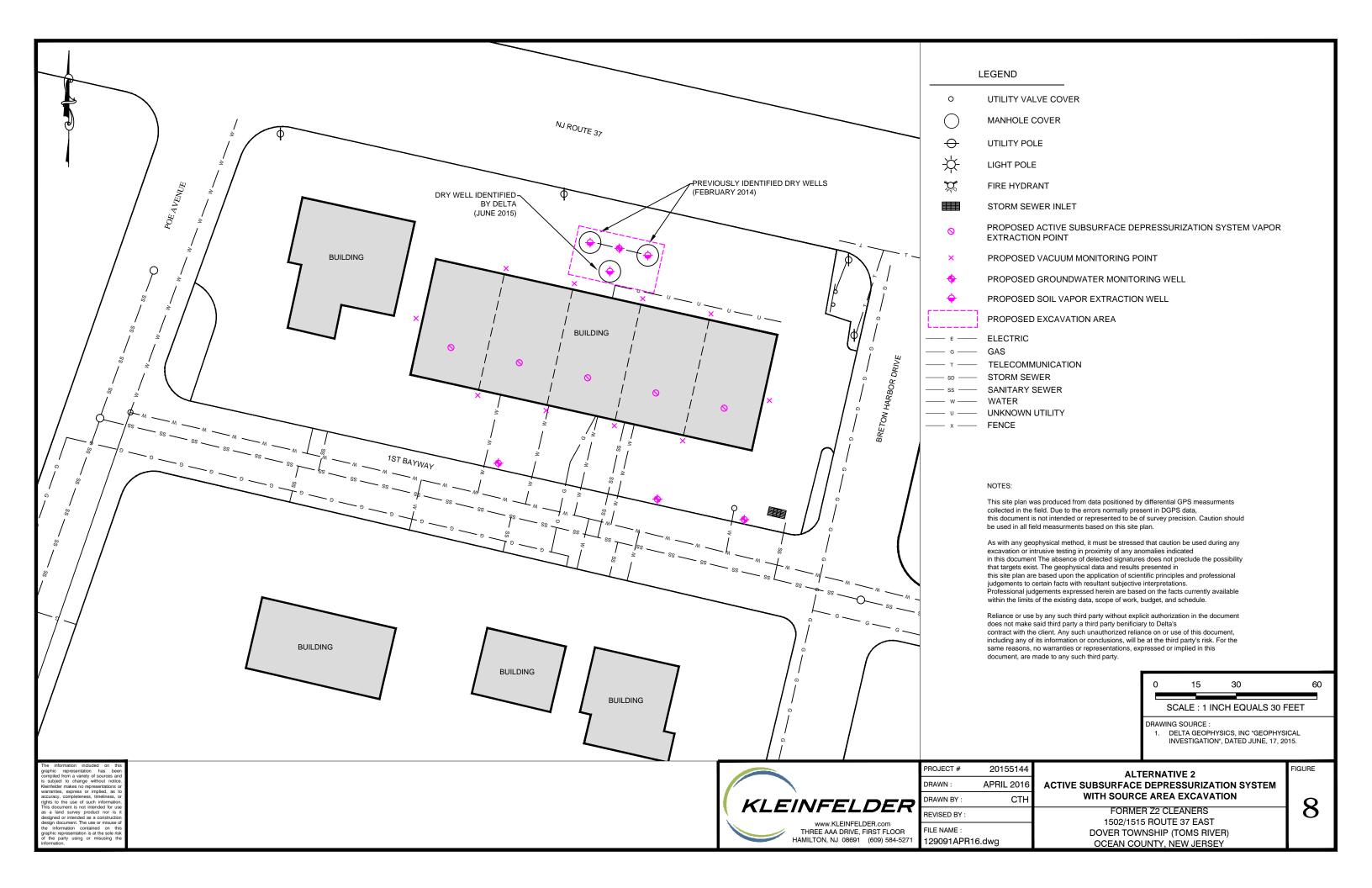

KLE	INFELDER
	www.KLEINFELDER.com THREE AAA DRIVE, FIRST FLOOR HAMILTON, NJ 08691 (609) 584-5271

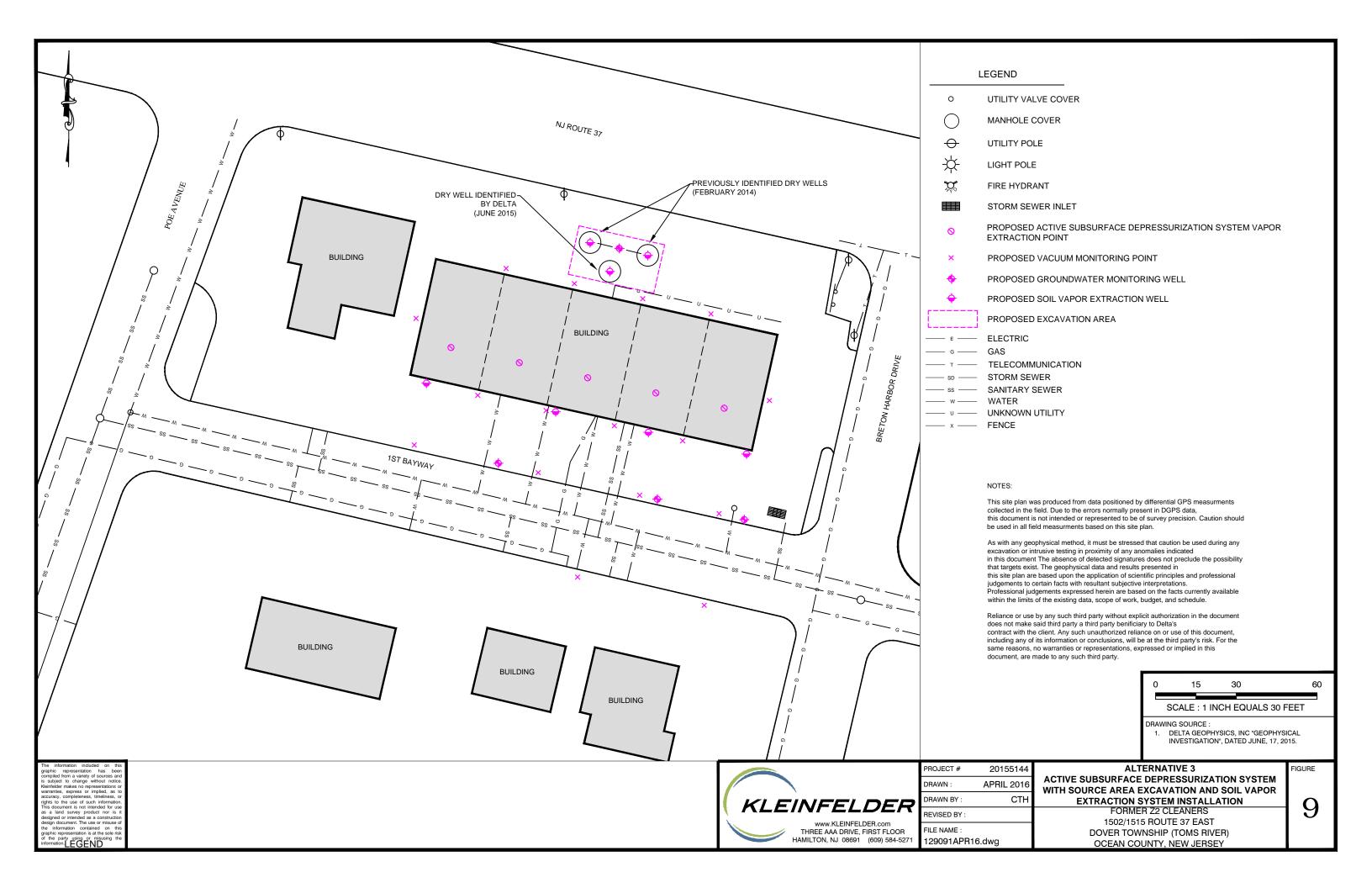

PROJECT #	129091/136647
DRAWN:	OCTOBER 2014
DRAWN BY :	CTH
REVISED BY	:
FILE NAME :	
129091JU	N14.dwg


	FIGURE
SITE LOCATION MAP	
	4


FORMER Z2 CLEANERS 1502/1515 ROUTE 37 EAST DOVER TOWNSHIP (TOMS RIVER) OCEAN COUNTY, NEW JERSEY







March 2014 Soil Analytical Results Summary Former Z2 Cleaners 1515 Route 37 East Toms River, Ocean County, New Jersey

Sample ID	SB-1_27.0-27.5_031814	SB-2_27.0-27.5_031914	SB-3_26.5-27.0_031714	SB-4_28.5-29.0_031814	SB-5_27.5-28.0_031814		
Date	3/18/2014	3/19/2014	3/17/2014	3/18/2014	3/18/2014	NJDEP NRDCSRS	NJDEP DIGWSSL
Matrix	Soil	Soil	Soil	Soil	Soil	NIDEP NRDCSRS	MIDEL DIGM22F
Depth	27.0-27.5 feet bsg	27.0-27.5 feet bsg	26.5-27.0 feet bsg	28.5-29.0 feet bsg	27.5-28.0 feet bsg		
Total EPH	NA	NA	NA	NA	NA	5100	-
Tetrachloroethene	ND (0.00012)	0.00036 J	ND (0.00012)	ND (0.00014)	0.00099 J	5	0.005
Trichloroethene	ND (0.00012)	ND (0.00012)	ND (0.00017)	ND (0.00014)	ND (0.00014)	20	0.01
Cis-1,2-Dichloroethene	ND (0.00011)	ND (0.00011)	ND (0.00011)	ND (0.00013)	ND (0.00013)	560	0.3
Vinyl Chloride	ND (0.00033)	ND (0.00033)	ND (0.00035)	ND (0.00039)	ND (0.00040)	2	0.005
Sample ID	SB-6_29.5-30.0_031714	SB-7_29.5-30.0_031914	SB-8_29.5-30.0_031914	SB-9_12.0-12.5_032114	SB-9_29.0-29.5_032114		
Date	3/17/2014	3/19/2014	3/19/2014	3/21/2014	3/21/2014	NIDED NBDCSBS	NIDED DIGWEST

5B-6_29.5-30.0_031/14	SB-7_29.5-30.0_031914	5B-8_29.5-30.0_031914	SB-9_12.0-12.5_032114	SB-9_29.0-29.5_032114		
3/17/2014	3/19/2014	3/19/2014	3/21/2014	3/21/2014	NIDED NBDCSBS	NJDEP DIGWSSL
Soil	Soil	Soil	Soil	Soil	NJDEF NKDC3K3	NJDEF DIGW33L
29.5-30.0 feet bsg	29.5-30.0 feet bsg	32-35 feet bsg	12.0-12.5 feet bsg	29.0-29.5 feet bsg		
NA	NA	NA	24	ND (2.0)	5100	-
ND (0.00013)	ND (0.00012)	ND (0.00013)	0.075	0.00030 J	5	0.005
ND (0.00013)	ND (0.00012)	ND (0.00013)	ND (0.00013)	ND (0.00011)	20	0.01
ND (0.00012)	ND (0.00011)	ND (0.00012)	ND (0.00012)	ND (0.00010)	560	0.3
ND (0.00038)	ND (0.00035)	ND (0.00036)	ND (0.00037)	ND (0.00032)	2	0.005
	3/17/2014 Soil 29.5-30.0 feet bsg NA ND (0.00013) ND (0.00013) ND (0.00012)	3/17/2014 3/19/2014 Soil Soil 29.5-30.0 feet bsg 29.5-30.0 feet bsg NA NA ND (0.00013) ND (0.00012) ND (0.00013) ND (0.00012) ND (0.00012) ND (0.00011)	3/17/2014 3/19/2014 3/19/2014 Soil Soil Soil 29.5-30.0 feet bsg 32-35 feet bsg NA NA NA ND (0.00013) ND (0.00012) ND (0.00013) ND (0.00013) ND (0.00012) ND (0.00013) ND (0.00012) ND (0.00012) ND (0.00012)	3/17/2014 3/19/2014 3/19/2014 3/21/2014 Soil Soil Soil Soil 29.5-30.0 feet bsg 29.5-30.0 feet bsg 12.0-12.5 feet bsg NA NA NA 24 ND (0.00013) ND (0.00012) ND (0.00013) 0.075 ND (0.00013) ND (0.00012) ND (0.00013) ND (0.00013) ND (0.00012) ND (0.00012) ND (0.00012) ND (0.00012)	3/17/2014 3/19/2014 3/19/2014 3/21/2014 3/21/2014 Soil Soil Soil Soil Soil 29.5-30.0 feet bsg 29.5-30.0 feet bsg 12.0-12.5 feet bsg 29.0-29.5 feet bsg NA NA NA 24 ND (2.0) ND (0.00013) ND (0.00012) ND (0.00013) 0.075 0.00030 J ND (0.00013) ND (0.00013) ND (0.00013) ND (0.00011) ND (0.00012) ND (0.00012) ND (0.00012) ND (0.00012)	3/17/2014 3/19/2014 3/19/2014 3/21/2014 3/21/2014 NJDEP NRDCSRS Soil Soil

Sample ID	SB-10_12.0-12.5_032014	SB-10_29.0-29.5_032014	SB-11_29.0-29.5_032014		NJDEP DIGWSSL	
Date	3/20/2014	3/20/2014	3/20/2014	NIDEP NRDCSRS		
Matrix	Soil	Soil	Soil	NJDEP NRDCSRS		
Depth	12.0-12.5 feet bsg	29.0-29.5 feet bsg	29.0-29.5 feet bsg			
Total EPH	ND (2.0)	ND (2.0)	NA	5100	-	
Tetrachloroethene	33	0.00046 J	0.0019	5	0.005	
Trichloroethene	0.16	ND (0.00013)	ND (0.00012)	20	0.01	
Cis-1,2-Dichloroethene	ND (0.018)	ND (0.00012)	ND (0.00011)	560	0.3	
Vinyl Chloride	ND (0.014)	ND (0.00036)	ND (0.00035)	2	0.005	

Note: All results in Miligrams per Kilogram

J: Estimated Concentration

U: Indicates the analyte was analyzed for but not detected

 $NJDEP\ NRDCSRS:\ New\ Jersey\ Department\ of\ Environmental\ Protection\ Non\ Residential\ Direct\ Contact\ Soil\ Remediation\ Standard\ Contact\ Soil\ Soil\ Remediation\ Soil\ Soil\ Soil\ Soil\ Soil\ Soil\ Soil\ Soil\ S$

NJDEP DIGWSSL: New Jersey Department of Environmental Protection Default Impact to Groundwater Soil Screening Leve

0.075 Concentration in excess of the NJDEP DIGWSSL
22 Concentration in excess of the NJDEP NRDCSRS

March 2014 Groundwater Analytical Results Summary Former ZZ Cleaners 1515 Route 37 East Toms River, Ocean County, New Jersey

Sample ID	GW-1_32.0-35.0_031814	GW-1_47.0-50.0_031814	GW-2_32.0-35.0_031914	GW-2_47.0-50.0_031914	GW-3_32.0-35.0_031714		
Date	3/18/2014	3/18/2014	3/19/2014	3/19/2014	3/17/2014	NJDEP GWQC	NJDEP VISL
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	NJDEP GWQC	NJDEF VISL
Depth	32-35 feet bsg	47-50 feet bsg	32-35 feet bsg	47-50 feet bsg	32-35 feet bsg		
Tetrachloroethene	56	0.1	240	2.2	340	1	31
Trichloroethene	1.8	ND (0.090)	10	0.17J	7.8	1	2
Cis-1,2-Dichloroethene	3.9	ND (0.18)	4.5	ND (0.18)	0.82J	70	NS
Vinyl Chloride	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	1	1
,							
Sample ID	GW-4_32.0-35.0_031814	GW-4_47.0-50.0_031814	GW-5_32.0-35.0_031814	GW-5_47.0-50.0_031814	GW-6_35.0-38.0_031714		
Date	3/18/2014	3/18/2014	3/18/2014	3/18/2014	3/17/2014	NJDEP GWQC	NJDEP VISL
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	NJDEP GWQC	NJDEP VISL
Depth	32-35 feet bsg	47-50 feet bsg	32-35 feet bsg	47-50 feet bsg	35-38 feet bsg		
Tetrachloroethene	330	1.6	630 D(5)	280	560 D(10)	1	31
Trichloroethene	8.5	ND (0.090)	17	8.3	16	1	2
Cis-1,2-Dichloroethene	1.1	ND (0.18)	2.3	1.1	1.9	70	NS
Vinyl Chloride	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	1	1
Sample ID	GW-6_47.0-50.0_031814	GW-7_32.0-35.0_031914	GW-8_32.0-35.0_031914	GW-9_32.0-35.0_032114	GW-9_47.0-50.0_032114		
Date	3/18/2014	3/19/2014	3/19/2014	3/21/2014	3/21/2014	NJDEP GWQC	NDEP VISL
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	NJDEP GWQC	NDEP VISE
Depth	47-50 feet bsg	32-35 feet bsg	32-35 feet bsg	32-35 feet bsg	47-50 feet bsg		
Tetrachloroethene	190	330	150	22	7.4	1	31
Trichloroethene	5.6	9.5	3.3	0.33J	ND (0.090)	1	2
Cis-1,2-Dichloroethene	0.85J	1.2	0.25J	ND (0.18)	ND (0.18)	70	NS
Vinyl Chloride	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	1	1
Sample ID	GW-10_32.0-35.0_032014	GW-10_47.0-50.0_032014	GW-11_32.0-35.0_032014	GW-11_47.0-50.0_032014			
Date	3/20/2014	3/20/2014	3/20/2014	3/20/2014	NJDEP GWQC	NDEP VISL	
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	NJDEP GWQC	NDEP VISE	
Depth	32-35 feet bsg	47-50 feet bsg	32-35 feet bsg	47-50 feet bsg			
Tetrachloroethene	130	85	260	29	1	31	
Trichloroethene	2.3	1.2	13	0.64J	1	2	
Cis-1,2-Dichloroethene	0.33J	ND (0.18)	19	0.68J	70	NS	
Vinyl Chloride	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	1	1	

Note: All results in Micrograms per Liter

D(5): Run at a dilution factor of 5 D(10): Run at a dilution factor of 10

J: Estimated Concentration

NJDEP GWQC: New Jersey Department of Environmental Protection Goundwater Quality Criterion

NJDEP VISL: New Jersey Department of Environmental Protection Vapor Intrusion Screening Level

Concentration in excess of the NJDEP GWQC
 Concentration in excess of the NJDEP VISL

May 2014 Off-Site Groundwater Analytical Results Former 22 Cleaners 1515 Route 37 East Toms River, Ocean County, New Jersey

Sample ID	GW-12_30.0-33.0_051914	GW-13_30.0-33.0_051914	GW-13_50.0-53.0_051914	GW-14_30.0-33.0_051914	GW-14_50.0-53.0_051914		
Date	5/19/2014	5/19/2014	5/19/2014	5/19/2014	5/19/2014	NJDEP GWQC	NJDEP VISL
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	NJDEP GWQC	
Depth	30-33 feet bsg	30-33 feet bsg	32-35 feet bsg	30-33 feet bsg	50-53 feet bsg		
Tetrachloroethene	11	ND (0.10)	ND (0.10)	0.40J	0.34J	1	31
Trichloroethene	ND (0.090)	1	2				
Cis-1,2-Dichloroethene	ND (0.18)	70	NS				
Vinyl Chloride	ND (0.14)	1	1				
Sample ID	GW-15_30.0-33.0_052014	GW-15_50.0-53.0_031814	GW-16_30.0-33.0_051914	GW-17_30.0-33.0_052014	GW-18_30.0-33.0_052114		
Date	5/20/2014	5/20/2014	5/19/2014	5/20/2014	5/21/2014		NJDEP VISL
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	NJDEP GWQC	
Depth	30-33 feet bsg	50-53 feet bsg	30-33 feet bsg	30-33 feet bsg	30-33 feet bsg		
Tetrachloroethene	28	0.83J	ND (0.10)	0.12J	ND (0.10)	1	31
Trichloroethene	0.75J	ND (0.090)	ND (0.090)	ND (0.090)	ND (0.090)	1	2
Cis-1,2-Dichloroethene	ND (0.18)	70	NS				
Vinyl Chloride	ND (0.14)	1	1				
Sample ID	GW-19_30.0-33.0_052114	GW-19_50.0-53.0_052114	GW-20_30.0-33.0_052114	GW-21_30.0-33.0_052014	GW-22_30.0-33.0_052214		
Date	5/21/2014	5/21/2014	5/21/2014	5/20/2014	5/22/2014	NJDEP GWQC	NDEP VISL
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	NJDEP GWQC	NDEP VISL
Depth	30-33 feet bsg						
Tetrachloroethene	0.38J	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	1	31
Trichloroethene	ND (0.090)	1	2				
Cis-1,2-Dichloroethene	ND (0.18)	70	NS				
Vinyl Chloride	ND (0.14)	1	1				

Sample ID	GW-23_30.0-33.0_052214	GW-24_30.0-33.0_052114			
Date	5/22/2014	5/21/2014	NJDEP GWQC	NDFP VISL	
Matrix	Groundwater	Groundwater	NJDEP GWQC	INDEP VISE	
Depth	30-33 feet bsg	30-33 feet bsg			
Tetrachloroethene	0.64J	ND (0.10)	1	31	
Trichloroethene	ND (0.090)	ND (0.090)	1	2	
Cis-1,2-Dichloroethene	ND (0.18)	ND (0.18)	70	NS	
Vinyl Chloride	ND (0.14)	ND (0.14)	1	1	

Note: All results in Micrograms per Liter D(5): Run at a dilution factor of 5 D(10): Run at a dilution factor of 10 J: Estimated Concentration

1.8

NJDEP GWQC: New Jersey Department of Environmental Protection Goundwater Quality Criterion NJDEP VISL: New Jersey Department of Environmental Protection Vapor Intrusion Screening Level

Concentration in excess of the NJDEP GWQC
Concentration in excess of the NJDEP VISL

July 2015 Soil Analytical Results Summary Former Z2 Cleaners 1515 Route 37 East

Toms River, Ocean County, New Jersey

SB-12_12-12.5 07/08/2015 Soil 12.0-12.5 feet bsg ND (0.0012) 0.00079 J ND (0.0012) ND (0.0012) SB-14_28.5-29 07/08/2015	SB-12_15.5-16 07/08/2015 Soil 15.5-16.0 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-15_12-12.5 07/10/2015	SB-12_28-28.5 07/08/2015 Soil 28.0-28.5 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-15_28.5-29	SB-13_12-12.5 07/08/2015 Soil 12.0-12.5 feet bsg ND (0.0011) 0.00097 J ND (0.0011) ND (0.0011) SB-16_12-12.5	SB-13_28-28.5 07/08/2015 Soil 28.0-28.5 feet bsg ND (0.0013) 0.0027 ND (0.0013) ND (0.0013) SB-16_28.5-29	SB-14_12-12.5 07/08/2015 Soil 12.0-12.5 feet bsg ND (0.0011) 0.00032 J ND (0.0011) ND (0.0011) SB-17_12.0-12.5	0.3 0.005 0.01 0.005	560 5 20 2
Soil 12.0-12.5 feet bsg ND (0.0012) 0.00079 J ND (0.0012) ND (0.0012) SB-14_ 28.5-29	Soil 15.5-16.0 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-15_12-12.5	Soil 28.0-28.5 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-15_28.5-29	Soil 12.0-12.5 feet bsg ND (0.0011) 0.00097 J ND (0.0011) ND (0.0011) SB-16_12-12.5	Soil 28.0-28.5 feet bsg ND (0.0013) 0.0027 ND (0.0013) ND (0.0013)	Soil 12.0-12.5 feet bsg ND (0.0011) 0.00032 J ND (0.0011) ND (0.0011)	0.3 0.005 0.01	560 5 20
12.0-12.5 feet bsg ND (0.0012) 0.00079 J ND (0.0012) ND (0.0012) SB-14_ 28.5-29	15.5-16.0 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-15_12-12.5	28.0-28.5 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-15_28.5-29	12.0-12.5 feet bsg ND (0.0011) 0.00097 J ND (0.0011) ND (0.0011) SB-16_12-12.5	28.0-28.5 feet bsg ND (0.0013) 0.0027 ND (0.0013) ND (0.0013)	12.0-12.5 feet bsg ND (0.0011) 0.00032 J ND (0.0011) ND (0.0011)	0.3 0.005 0.01	560 5 20
ND (0.0012) 0.00079 J ND (0.0012) ND (0.0012) SB-14_ 28.5-29	ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-15_12-12.5	ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012)	ND (0.0011) 0.00097 J ND (0.0011) ND (0.0011) SB-16_12-12.5	ND (0.0013) 0.0027 ND (0.0013) ND (0.0013)	ND (0.0011) 0.00032 J ND (0.0011) ND (0.0011)	0.005 0.01	5 20
0.00079 J ND (0.0012) ND (0.0012) SB-14_28.5-29	ND (0.0012) ND (0.0012) ND (0.0012) SB-15_12-12.5	ND (0.0012) ND (0.0012) ND (0.0012) SB-15_28.5-29	0.00097 J ND (0.0011) ND (0.0011) SB-16_12-12.5	0.0027 ND (0.0013) ND (0.0013)	0.00032 J ND (0.0011) ND (0.0011)	0.005 0.01	5 20
ND (0.0012) ND (0.0012) SB-14_ 28.5-29	ND (0.0012) ND (0.0012) SB-15_12-12.5	ND (0.0012) ND (0.0012) SB-15_28.5-29	ND (0.0011) ND (0.0011) SB-16_12-12.5	ND (0.0013) ND (0.0013)	ND (0.0011) ND (0.0011)	0.01	20
ND (0.0012) SB-14_ 28.5-29	ND (0.0012) SB-15_12-12.5	ND (0.0012) SB-15_28.5-29	ND (0.0011) SB-16_12-12.5	ND (0.0013)	ND (0.0011)		
SB-14_ 28.5-29	SB-15_12-12.5	SB-15_28.5-29	SB-16_12-12.5	,	, ,	0.005	2
_		_	_	SB-16_28.5-29	SB-17_12.0-12.5		
_		_	_	SB-16_28.5-29	SB-17_12.0-12.5		
07/08/2015	07/10/2015	07/10/0015					
		07/10/2015	07/10/2015	07/10/2015	07/11/2015	NJDEP DIGWSSL NJDEP NRDO	N IDED NIBDOSES
Soil	Soil	Soil	Soil	Soil	Soil		NODEL NILDOSIIS
28.5-29 feet bsg	12.0-12.5 feet bsg	28.5-29 feet bsg	12.0-12.5 feet bsg	28.5-29 feet bsg	12.0-12.5 feet bsg		
ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0013)	0.3	560
0.0046	ND (0.0012)	ND (0.0012)	ND (0.0012)	0.00057 J	ND (0.0013)	0.005	5
ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0013)	0.01	20
ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0013)	0.005	2
SB-17_ 17.5-18.0	SB-17_28.5-29	SB-18_12-12.5	SB-18_28.5-29				
07/11/2015	07/11/2015	07/10/2015	07/10/2015	N IDEP DIGWSSI	N IDEP NRDCSRS		
Soil	Soil	Soil	Soil	NODEL BIGWOOL	NODEL WILDOOMS		
17.5-18.0 feet bsg	28.5-29 feet bsg	12.0-12.5 feet bsg	28.5-29 feet bsg				
ND (0.0011)	ND (0.0011)	ND (0.0013)	ND (0.0011)	0.3	560		
ND (0.0011)	ND (0.0011)	ND (0.0013)	ND (0.0011)	0.005	5		
ND (0.0011)	ND (0.0011)	ND (0.0013)	ND (0.0011)	0.01	20		
	28.5-29 feet bsg ND (0.0012) 0.0046 ND (0.0012) ND (0.0012) SB-17 17.5-18.0 07/11/2015 Soil 17.5-18.0 feet bsg ND (0.0011) ND (0.0011)	28.5-29 feet bsg 12.0-12.5 feet bsg ND (0.0012) ND (0.0012) 0.0046 ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-17_17.5-18.0 SB-17_28.5-29 07/11/2015 07/11/2015 Soil Soil 17.5-18.0 feet bsg 28.5-29 feet bsg ND (0.0011) ND (0.0011) ND (0.0011) ND (0.0011)	28.5-29 feet bsg 12.0-12.5 feet bsg 28.5-29 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) 0.0046 ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-17_ 17.5-18.0 SB-17_ 28.5-29 SB-18_ 12-12.5 07/11/2015 07/11/2015 07/10/2015 Soil Soil Soil 17.5-18.0 feet bsg 28.5-29 feet bsg 12.0-12.5 feet bsg ND (0.0011) ND (0.0011) ND (0.0013) ND (0.0011) ND (0.0011) ND (0.0013)	28.5-29 feet bsg 12.0-12.5 feet bsg 28.5-29 feet bsg 12.0-12.5 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) 0.0046 ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-17_ 17.5-18.0 SB-17_ 28.5-29 SB-18_ 12-12.5 SB-18_ 28.5-29 07/11/2015 07/11/2015 07/10/2015 07/10/2015 Soil Soil Soil Soil 17.5-18.0 feet bsg 28.5-29 feet bsg 12.0-12.5 feet bsg 28.5-29 feet bsg ND (0.0011) ND (0.0013) ND (0.0011) ND (0.0011) ND (0.0013) ND (0.0011)	28.5-29 feet bsg 12.0-12.5 feet bsg 28.5-29 feet bsg 12.0-12.5 feet bsg 28.5-29 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) 0.0046 ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) SB-17_ 17.5-18.0 SB-17_ 28.5-29 SB-18_ 12-12.5 SB-18_ 28.5-29 NJDEP DIGWSSL Soil Soil Soil Soil Soil 17.5-18.0 feet bsg 28.5-29 feet bsg 12.0-12.5 feet bsg 28.5-29 feet bsg ND (0.0011) ND (0.0011) ND (0.0013) ND (0.0011) 0.3 ND (0.0011) ND (0.0011) ND (0.0013) ND (0.0011) 0.005	28.5-29 feet bsg 12.0-12.5	Soil Soil Soil Soil Soil Soil Soil Soil 28.5-29 feet bsg 12.0-12.5 feet bsg 28.5-29 feet bsg 12.0-12.5 feet bsg 12.0-12.5 feet bsg ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0013) 0.3 0.0046 ND (0.0012) ND (0.0013) 0.005 ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0013) 0.01 ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0012) ND (0.0013) 0.005 SB-17_15-18.0 SB-17_28.5-29 SB-18_12-12.5 SB-18_28.5-29 NJDEP DIGWSSL NJDEP NRDCSRS Soil Soil Soil Soil NJDEP DIGWSSL NJDEP NRDCSRS ND (0.0011) ND (0.0011) ND (0.0011) 0.3 560 ND (0.0011) ND (0.0011) ND (0.0011) 0.005 5

ND (0.0011)

0.005

2

Legend:

Vinyl Chloride

Note: All results in Miligrams per Kilogram

J: Estimated Concentration

ND (0.0011)

ND: Indicates the analyte was analyzed for but not detected

ND (0.0011)

NJDEP NRDCSRS: New Jersey Department of Environmental Protection Non Residential Direct Contact Soil Remediation Standard NJDEP DIGWSSL: New Jersey Department of Environmental Protection Default Impact to Groundwater Soil Screening Level

ND (0.0013)

Concentration in excess of the NJDEP DIGWSSL Concentration in excess of the NJDEP NRDCSRS 0.075 22

July 2015 Goundwater Analytical Results Summary Former Z2 Cleaners 1515 Route 37 East Toms River, Ocean County, New Jersey

Sample ID	GW-12_30-33	GW-12_47-50	GW-15_30-33	GW-15_47-50	GW-17_30-33	GW-17_47-50	GW-18_30-33	GW-18_47-53	- NJDEP GWQC	
Date	07/07/2015	07/07/2015	07/09/2015	07/09/2015	07/10/2015	07/10/2015	07/09/2015	07/09/2015		NJDEP VISL
Matrix	Groundwater		NUDEF VISE							
Depth	30-33 feet bgs	47-50 feet bgs								
Cis-1,2-Dichloroethene	15	1.6	0.56 J	ND (1.0)	2.4	2.1	0.92 J	ND (1.0)	70	NS
Tetrachloroethene	57	3.9	66	ND (1.0)	16	2.5	30	0.44 J	1	31
Trichloroethene	2.4	ND (1.0)	1.8	ND (1.0)	0.76	ND (1.0)	1.5	ND (1.0)	1	2

ND (1.0)

ND (1.0)

ND (1.0)

ND (1.0)

Sample ID	GW-25_30-33	GW-25_47-50	GW-26_30-33	GW-26_47-50	GW-27_30-33	GW-28_72-75	GW-28_97-100	GW-28_127-130		
Date	07/10/2015	07/10/2015	07/10/2015	07/10/2015	07/14/2015	07/13/2015	07/13/2015	07/13/2015	NJDEP GWQC	NJDEP VISL
Matrix	Groundwater	Groundwater	NUDEF GWQC	NODEF VISE						
Depth	30-33 feet bgs	47-50 feet bgs	30-33 feet bgs	47-50 feet bgs	30-33 feet bgs	72-75 feet bgs	97-100 feet bgs	127-130 feet bgs		
Cis-1,2-Dichloroethene	1	ND (1.0)	2.5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	70	NS
Tetrachloroethene	26	ND (1.0)	52	ND (1.0)	1.3	ND (1.0)	3.2	0.58	1	31
Trichloroethene	1.4	ND (1.0)	4.2	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	1	2
Vinyl Chloride	ND (1.0)	ND (1.0)	1	1						

Sample ID	GW-29_30-33	GW-30_47-50	GW-31_30-33	GW-31_47-50	GW-32_30-33	GW-32_47-50		NJDEP VISL
Date	07/13/2015	07/14/2015	07/14/2015	07/14/2015	07/14/2015	07/14/2015	NJDEP GWQC	
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	NUDEF GWQC	
Depth	30-33 feet bgs	47-50 feet bgs	30-33 feet bgs	47-50 feet bgs	30-33 feet bgs	47-50 feet bgs		
Cis-1,2-Dichloroethene	ND (1.0)	70	NS					
Tetrachloroethene	21	ND (1.0)	1.4	ND (1.0)	0.45 J	ND (1.0)	1	31
Trichloroethene	0.46	ND (1.0)	1	2				
Vinyl Chloride	ND (1.0)	1	1					

ND (1.0)

Legend:

Vinyl Chloride

Note: All results are in Micrograms per Liter bgs: Below Ground Surface

J: Estimated Concentration

ND (1.0)

ND: Indicates the analyte was analyzed for but not detected

NJDEP GWQC: New Jersey Department of Environmental Protection Goundwater Quality Criterion

ND (1.0)

ND (1.0)

NJDEP VISL: New Jersey Department of Environmental Protection Vapor Intrusion Screening Level

8 Concentration in excess of the NJDEP GWQC Concentration in excess of the NJDEP VISL

November 2015 Groundwater Analytical Results Summary Former Z2 Cleaners 1515 Route 37 East Toms River, Ocean County, New Jersey

Sample ID	GW-33 (30-33)	GW-34 (30-33)	GW-35 (30-33)	GW-36 (32-35)	GW-37 (32-35)			
Date	11/24/2015	11/24/2015	11/24/2015	11/24/2015	11/25/2015	NJDEP GWQC	NJDEP VISL	
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Nobel awao	NODEL VISE	
Depth	30-33 feet bsg							
Cis-1,2-Dichloroethene	ND (0.260)	70	NS					
Tetrachloroethene	15	1.75	0.56 J	1.38	2.17	1	31	
Trichloroethene	ND (0.398)	1	2					
Vinyl Chloride	ND (0.259)	1	1					

Note: All results in Micrograms per Liter

J: Estimated Concentration

NJDEP GWQC: New Jersey Department of Environmental Protection Goundwater Quality Criterion NJDEP VISL: New Jersey Department of Environmental Protection Vapor Intrusion Screening Level
Concentration in excess of the NJDEP GWQC
Concentration in excess of the NJDEP VISL

1.8 56

June 2015 Soil Gas Analytical Results Summary Former Z2 Cleaners 1515 Route 37 East Toms River, Ocean County, New Jersey

Client Sample ID		SG-1_062515	SG-2_062515	SG-3_062515	SG-4_062515	SG-5_062515	NJDEP
Building Unit	Units	Paws and Claws	Barber Shop	Vacant Unit	Love Shack Basement	Love Shack SE Corner	Nonresidential Soil
Date Received	Ullits	06/27/2015	06/27/2015	06/27/2015	06/27/2015	06/27/2015	Gas Screening
Analyte		Result	Result	Result	Result	Result	Level
ACETONE	ug/m3	78.4	209	ND (95.1)	133	119	6,800,000
BENZENE	ug/m3	1.95	ND (5.11)	ND (5.11)	2.27	2.91	79
ETHANOL	ug/m3	603	735	175	71.6	321	-
ETHYLBENZENE	ug/m3	ND (1.73)	ND (6.94)	ND (6.94)	ND (1.73)	18.6	250
4-ETHYLTOLUENE	ug/m3	ND (1.96)	ND (7.85)	ND (7.85)	ND (1.96)	8.83	-
HEPTANE	ug/m3	ND (1.64)	401	ND (6.54)	4.09	ND (1.64)	-
N-HEXANE	ug/m3	1.76	423	ND (5.64)	5.64	ND (1.41)	150,000
2-BUTANONE (MEK)	ug/m3	7.96	17.1	16.5	32.4	21.8	1,100,000
4-METHYL-2-PENTANONE (MIBK)	ug/m3	5.73	22.1	17.2	34.4	16.8	660,000
2-PROPANOL	ug/m3	ND (615)	1030	246	113	320	-
STYRENE	ug/m3	ND (1.7)	ND (6.81)	ND (6.81)	ND (1.7)	42.5	220,000
TETRACHLOROETHENE	ug/m3	16,300	23,100	45,500	4,010	1,360	2,400
TOLUENE	ug/m3	7.91	ND (6.03)	7.16	9.04	33.5	1,100,000
1,1,1-TRICHLOROETHANE	ug/m3	ND (2.18)	ND (8.7)	ND (8.7)	ND (2.18)	4.46	1,100,000
TRICHLOROETHENE	ug/m3	129	209	198	8.57	ND (2.14)	150
1,2,4-TRIMETHYLBENZENE	ug/m3	ND (1.96)	ND (7.85)	ND (7.85)	2.26	4.32	-
1,3,5-TRIMETHYLBENZENE	ug/m3	ND (1.96)	ND (7.85)	ND (7.85)	ND (1.96)	3.53	-
M&P-XYLENE	ug/m3	ND (4.34)	ND (17.3)	ND (17.3)	ND (4.34)	16.5	22,000
O-XYLENE	ug/m3	ND (1.73)	ND (6.94)	ND (6.94)	ND (1.73)	18.6	-

Legend:

ug/m3 Micrograms per cubic meter

ND: Indicates the analyte was analyzed for but not detected

16,300 Concentration in excess of the NJDEP Non-Residential Soil Gas Screening Levels

-: No standard

TABLE 8

June 2015 Indoor Air Analytical Results Summary Former Z2 Cleaners 1515 Route 37 East Toms River, Ocean County, New Jersey

Client Sample ID		IA-1-6/24/15	IA-2-6/24/15	IA-3-6/24/15	IA-4-6/24/15	IA-5-6/24/15	AA-1-6/24/15	NJDEP
Building Unit	Units	Paw and Claws	Barber Shop	Vacant Unit	Love Shack W Counter	Love Shack SE Corner	Ambiant Air	Nonresidential
Date Received	Ullits	06/27/2015	06/27/2015	06/27/2015	06/27/2015	06/27/2015	06/27/2015	Indoor Air Screening
Analyte		Result	Result	Result	Result	Result	Result	Level
ACETONE	ug/m3	ND (300)	ND (300)	40.4	52.3	40.4	19	140,000
BENZENE	ug/m3	2.68	0.735	ND (0.64)	ND (0.64)	0.799	ND (0.64)	2
1,3-BUTADIENE	ug/m3	1.46	ND (0.44)	ND (0.44)	ND (0.44)	ND (0.44)	ND (0.44)	1
CHLOROETHANE	ug/m3	ND (1.3)	ND (1.3)	1.82	6.6	3.69	ND (1.3)	44,000
CHLOROMETHANE	ug/m3	3.3	1.61	1.3	1.26	1.43	1.26	390
ETHANOL	ug/m3	ND (2400)	ND (2400)	84.8	1230	94.3	13.2	-
ETHYLBENZENE	ug/m3	1.13	1.21	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	5
TRICHLOROFLUOROMETHANE	ug/m3	1.35	1.29	1.12	1.29	2.08	1.29	3,100
DICHLORODIFLUOROMETHANE	ug/m3	2.77	2.62	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	440
HEPTANE	ug/m3	0.941	2.45	ND (0.82)	ND (0.82)	ND (0.82)	ND (0.82)	-
N-HEXANE	ug/m3	1.73	1.23	ND (0.71)	0.74	1.9	ND (0.71)	3,100
METHYLENE CHLORIDE	ug/m3	ND (1.7)	ND (1.7)	ND (1.7)	ND (1.7)	2.85	ND (1.7)	1,200
2-BUTANONE (MEK)	ug/m3	4.13	2.95	2.8	6.49	5.31	ND	22,000
2-PROPANOL	ug/m3	ND (3100)	ND (3100)	73.7	32	29.5	ND (3100)	-
STYRENE	ug/m3	2.42	ND (0.85)	ND (0.85)	ND (0.85)	ND (0.85)	ND (0.85)	4,400
TETRACHLOROETHENE	ug/m3	28.5	35.3	23.1	32.6	24.4	ND (1.5)	47
TOLUENE	ug/m3	13.6	12.4	37.7	45.2	32.8	1.51	22,000
1,1,1-TRICHLOROETHANE	ug/m3	ND (1.1)	ND (1.1)	ND (1.1)	ND (1.1)	1.14	ND (1.1)	22,000
1,2,4-TRIMETHYLBENZENE	ug/m3	1.72	1.52	1.52	ND (3.7)	ND (3.7)	ND (3.7)	-
2,2,4-TRIMETHYLPENTANE	ug/m3	1.03	1.31	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	-
M&P-XYLENE	ug/m3	4.12	4.34	ND (2.2)	2.21	2.47	2.21	440
O-XYLENE	ug/m3	1.21	1.47	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	-

Legend:

ug/m3 Micrograms per cubic meter

ND: Indicates the analyte was analyzed for but not detected above the laboratory method detection limit

-: No standard

3.23 Concentration exceeds the applicable NJDEP Vapor Intrusion screening level

TABLE 9

90 Breton Harbor Soil Gas and Indoor Air Analytical Results Summary Residential Property 90 Breton Harbor Drive Toms River, Ocean County, New Jersey

Client Sample ID		SG-6-102215	IA-6-102115	AA-2-102115	NJDEP Residential	N IDED Desidential
Sample Location	Units	Soil Gas	Indoor Air	Ambient Air	Indoor Air	NJDEP Residential Soil Gas Screening
Date Collected	UTILS	10/22/2015	10/22/2015	10/22/2015		Level
Analyte		Result	Result	Result	Screening Level	Levei
ACETONE	ug/m3	394	<11.9	75.8	32000	1600000
BENZENE	ug/m3	4.06	0.709	1.39	2	16
1,3-BUTADIENE	ug/m3	3.16	<0.443	< 0.443	1	11
CHLOROMETHANE	ug/m3	<2.07	1.32	1.85	94	4700
ETHANOL	ug/m3	988	10.8	798	-	-
ETHYLBENZENE	ug/m3	5.12	<0.867	2.24	2	49
4-ETHYLTOLUENE	ug/m3	1.98	<0.982	<0.982	-	-
TRICHLOROFLUOROMETHANE	ug/m3	2.61	1.42	2.04	730	36000
DICHLORODIFLUOROMETHANE	ug/m3	<4.95	<2.47	3.3	100	5200
HEPTANE	ug/m3	9.41	<0.818	1.93	-	-
N-HEXANE	ug/m3	10.6	<0.705	2.21	730	36000
2-BUTANONE (MEK)	ug/m3	75.2	<1.47	14.7	5200	260000
4-METHYL-2-PENTANONE (MIBK)	ug/m3	17.6	<2.05	<2.05	3100	160000
METHYL METHACRYLATE	ug/m3	<4.09	<2.05	2.62	-	-
2-PROPANOL	ug/m3	36.6	<12.3	14.1	-	-
STYRENE	ug/m3	<1.7	<0.851	3.43	1000	52000
TETRACHLOROETHENE	ug/m3	2790	<1.36	42.4	9	470
TOLUENE	ug/m3	15.8	1.17	17.5	5200	260000
1,2,4-TRIMETHYLBENZENE	ug/m3	7.9	<0.982	2.03	-	-
1,3,5-TRIMETHYLBENZENE	ug/m3	2.06	<0.982	<0.982	-	-
2,2,4-TRIMETHYLPENTANE	ug/m3	<1.87	< 0.934	2.04	-	-
M&P-XYLENE	ug/m3	23.5	<2.17	5.59	100	5200
O-XYLENE	ug/m3	7.24	<0.867	1.95	-	=

Legend:

ug/m3 Micrograms per cubic meter

ND: Indicates the analyte was analyzed for but not detected
4.06 Concentration in excess of the NJDEP Non-Residential indoor Air Screening Levels

2790 Concentration in excess of the NJDEP Non-Residential Soil Gas Screening Levels

-: No standard

9 First Bayway Soil Gas and Indoor Air Analytical Results Summary Residential Property 9 First Bayway Toms River, Ocean County, New Jersey

Client Sample ID		SG-7_102215	IA-7_10228	AA-3_102215	NJDEP	NJDEP
Location	units	Crawlspace	First Floor	Ambient	Residential Indoor	Residential Soil
Date Collected	uriits	10/22/2015	10/22/2015	10/22/2015	Air Screening	Gas Screening
Analyte		Result	Result	Result	Level	Level
ACETONE	ug/m3	17	68.9	13.3	32,000	1,600,000
BENZENE	ug/m3	1.18	1.11	0.802	2	16
CHLOROMETHANE	ug/m3	1.04	1.92	1.69	94	4,700
CYCLOHEXANE	ug/m3	0.785	ND (0.689)	ND (0.689)	6,300	310,000
1,2-DICHLOROETHANE	ug/m3	ND (0.81)	0.858	ND (0.81)	2	20
ETHANOL	ug/m3	ND (9.43)	1600	16.5	-	-
ETHYLBENZENE	ug/m3	ND (0.867)	1.14	ND (0.867)	2	49
TRICHLOROFLUOROMETHANE	ug/m3	1.67	1.46	1.81	730	36,000
DICHLORODIFLUOROMETHANE	ug/m3	ND (2.47)	ND (2.47)	2.82	100	5,200
HEPTANE	ug/m3	1.46	2.45	0.916	-	-
N-HEXANE	ug/m3	2.22	1.5	1.31	730	36,000
2-BUTANONE (MEK)	ug/m3	44.8	7.34	ND (1.47)	5,200	260,000
STYRENE	ug/m3	ND (0.851)	1.72	ND (0.851)	1,000	52,000
TETRACHLOROETHENE	ug/m3	21.8	ND (1.36)	1.73	9	470
TOLUENE	ug/m3	2.89	12.5	2.74	5,200	260,000
2,2,4-TRIMETHYLPENTANE	ug/m3	1.79	1.49	ND (0.934)	-	-
M&P-XYLENE	ug/m3	ND (2.17)	3.13	ND (2.17)	100	5,200
O-XYLENE	ug/m3	ND (0.867)	1.43	ND (0.867)	-	-

Legend:

ug/m3 Micrograms per cubic meter

ND: Indicates the analyte was analyzed for but not detected

21.8 Concentration in excess of the NJDEP Non-Residential Soil Gas Screening Levels

-: No standard

Table 11

February 2016 Indoor Air Analytical Results Summary Former Z2 Cleaners 1515 Route 37, East

Toms River, Ocean County, New Jersey

Client Sample ID		IA-8-022416	IA-9-022416	IA-10-022416	IA-11-022416	IA-12-022416	AA-4-022416	NJDEP
Sample Location	Units	Pet Groomer	Barber Shop	Vacant Unit	Love Shack	Love Shack	Rear of Property	Nonresidentail
Date Collected	Units	02/24/2016	02/24/2016	02/24/2016	02/24/2016	02/24/2016	02/24/2016	Indoor Air Screening
Analyte		Result	Result	Result	Result	Result	Result	Level
ACETONE	ug/m3	62.3	27300	15.8	27.6	21.6	19.9	140,000
BENZENE	ug/m3	3.23	0.671	0.712	ND (0.639)	ND (0.639)	ND (0.639)	2
1,3-BUTADIENE	ug/m3	2.35	ND (0.443)	ND (0.443)	ND (0.443)	ND (0.443)	ND (0.443)	1
CHLOROETHANE	ug/m3	2.69	4.14	9.02	40.4	29.8	ND (1.32)	44,000
CHLOROMETHANE	ug/m3	4.15	2.03	1.62	1.59	1.54	1.54	390
ETHANOL	ug/m3	2210	14000	247	324	ND (236)	25.3	-
TRICHLOROFLUOROMETHANE	ug/m3	1.54	1.54	1.58	1.54	1.52	1.52	3,100
HEPTANE	ug/m3	1.71	7.93	ND (0.818)	1.4	1.05	ND (0.818)	-
N-HEXANE	ug/m3	1.24	1.05	0.895	0.931	0.846	ND (0.705)	3,100
METHYLENE CHLORIDE	ug/m3	16.5	116	ND (1.74)	ND (1.74)	ND (1.74)	ND (1.74)	1,200
2-BUTANONE (MEK)	ug/m3	4.9	1.6	ND (1.47)	ND (1.47)	1.68	2.67	22,000
2-PROPANOL	ug/m3	1260	12400	153	14.8	15.3	ND (12.3)	-
STYRENE	ug/m3	1.01	ND (0.851)	ND (0.851)	ND (0.851)	ND (0.851)	ND (0.851)	4,400
TETRACHLOROETHENE	ug/m3	187	202	29.6	53	51	ND (1.36)	47
TOLUENE	ug/m3	16.3	89.7	3.39	6.44	6.78	0.863	22,000
1,1,1-TRICHLOROETHANE	ug/m3	ND (1.09)	ND (1.09)	ND (1.09)	1.62	3.07	ND (1.09)	22,000
TRICHLOROETHENE	ug/m3	1.28	1.51	ND (1.07)	ND (1.07)	ND (1.07)	ND (1.07)	3
1,2,4-TRIMETHYLBENZENE	ug/m3	ND (0.982)	ND (0.982)	1.24	ND (0.982)	ND (0.982)	ND (0.982)	-
M&P-XYLENE	ug/m3	2.57	ND (2.17)	2.28	ND (2.17)	ND (2.17)	ND (2.17)	440
O-XYLENE	ug/m3	ND (0.867)	ND (0.867)	0.958	ND (0.867)	ND (0.867)	ND (0.867)	-

Legend:

ug/m3 micrograms per meter cubed

3.23 Concentration exceeds the applicable NJDEP Vapor Intrusion screening level

-: No standard

ND: Indicates the analyte was analyzed for but not detected above the laboratory method detection limit