

Sections 5 & 6

Site Characterization and Lines of Evidence

Steve Posten

Overview – Section 5

- Site Characterization
 - Conceptual site model
 - Aquifer characteristics
 - Hydraulic conductivity/gradient
 - Porosity
 - Organic carbon content
 - Contaminant spatial & temporal distribution
 - Plume geometry
 - Seasonal trends
 - Perturbations

Overview – Section 6

MNA Lines of Evidence

- **Primary**: Plume characteristics

- Plume behavior (shrinking/stable/expanding)
- Contaminant trends
 - Spatial/graphical analysis
 - Statistical tests
 - Mass flux/discharge
- Secondary: Geochemical characteristics
 - Organic
 - Inorganic

Overview – Section 6

- MNA Lines of Evidence
 - Tertiary: Microbiological & isotopic studies
 - MBTs
 - CSIA
- Protective ground water remedies with nondecreasing levels of ground water contamination
 Attachment 2 of RAO guidance

Site Characterization - CSM

- Conceptual Site Model (CSM)
 - Technical guidance document available
 - Not a required submittal
 - Written or illustrative representation of the physical, chemical and biological processes that control the transport, migration and potential impacts to receptors.

Example of Incomplete Characterization

NOTE: BOTH WELLS OPEN FROM 5 TO 15' BELOW GRADE SURFACE

Site Characterization - Aquifer Characteristics

- Basic data needed for evaluation of contaminant transport
 - Seepage velocity
 - Fate and transport modeling
- Aquifer characterization (Appendix D)
 - Hydraulic conductivity (field: slug tests)
 - Hydraulic gradient (field: WL measurements)
 - Porosity (literature or field measurements)
 - Organic carbon content (f_{oc} literature or field)

Characterize Contaminant Plume

High Resolution Screening Techniques

- Membrane Interface Probe (MIP)
- Ultraviolet Optical Screening Tool (UVOST)

Monitoring Well Array

- Lateral
 - Upgradient, source area, longitudinal along plume, transverse across plume
- Vertical
 - Stratigraphy, "diving plume", "back diffusion"

Characterize seasonal variability

- Eight rounds of monitoring well sampling
 - Includes 4 quarterly rounds
- Performed <u>after</u> active remediation complete
- Identify "Perturbations"
 - Pumping
 - Surface waters
 - Tidal influences

- Design long term monitoring array
 - Subset of characterization array
 - Complex site
 - Upgradient, source area, plume longitudinal, plume transverse, plume fringe, sentinel
 - Simple/Area constrained site
 - Source area, plume fringe, sentinel
 - Source area, plume fringe/sentinel

MNA effectiveness is determined primarily by decreasing contaminant concentrations over time in conjunction with a stable or receding ground water plume.

- Plume behavior
 - Shrinking or stable, vs. expanding
- Contaminant trends
 - Spatial analysis
 - Comparison of projected vs. actual plume migration
 - Analytical: AT123D, BIOChlor, REMChlor
 - Numerical: MODFLOW/MT3DS
 - Calculation of contaminant plume mass
 - Contour map "volumes" (Ricker, 2008)
 - Appendix C

Graphical Analysis

- Statistical Tests
 - Regression analysis (linear, exponential, etc.)
 - Non-parametric tests:
 - Mann-Kendall (Seasonal Kendall Test)
 - Mann-Whitney (Tech Regs)
 - Sen Test
 - Additional examples, references and guidance in Appendix E

Lines of Evidence - Secondary

- Geochemistry
 - Organic compounds
 - Biodegradation: Microorganisms obtain energy by transferring electrons from electron donors to electron acceptors.
 - Electron donor compounds
 - Electron acceptor compounds
 - Metabolic by-products
 - Inorganic compounds
 - Adsorption, precipitation, decay

Secondary Lines of Evidence -Geochemistry

Organic Compound Biodegradation

- Electron Donors: Electron donor compounds are relatively reduced and include fuel hydrocarbons and native organic carbon (TOC)
- Electron Acceptors: Electron acceptor compounds are relatively oxidized and include DO, nitrate, ferric iron (III), manganese (IV), sulfate, and in some cases chlorinated aliphatic hydrocarbons (PCE, TCE)
- Metabolic By-Products/Indicators: VFAs, CAH degradation products, methane, chloride, CO₂

Lines of Evidence - Secondary

Geochemistry

Organic Compound Biodegradation

- Fuel hydrocarbons (= electron donor)
 - Electron acceptor limited (usually adequate supply)
 - <u>Aerobic</u>: DO -> Anaerobic: Nitrate -> Iron (III) -> Sulfate -> Methanogenesis (CO₂-EA -> Methane)

Chlorinated aliphatic hydrocarbons (PCE, TCE, DCE)

- Reductive dechlorination (Appendix A):
 - Electron donor (TOC) limited: CAH used as electron acceptor, and CI atoms removed and replaced by H
 - Primarily anaerobic process (best under sulfate reducing and methanogenic conditions)

Conceptualization of TEA Zones in Groundwater Contamination Plume

Lines of Evidence - Secondary

Geochemistry

Inorganic Compounds

Appendix A

Adsorption

Reactive minerals, organic matter, ion exchange, pH

Precipitation

Nucleation, crystal growth, co-precipitation (redox, pH)

Radioactive decay

Microbiological Tools (MBTs)

Techniques that target biomarkers (nucleic acids, proteins, etc.) to provide information about organisms and processes relevant to the assessment & remediation of contaminants

- Identify & quantify ribosomal DNA of *Dehalococcoides* (genus of solvent degrading organisms)
- TCE and vinyl chloride reductase genes
- Microbiological community structure and diversity

- Compound Specific Isotope Analysis (CSIA)
 - Powerful tool to assess/validate biodegradation
 - Organic Carbon (C¹³/C¹²) and Chlorine (Cl³⁷/Cl³⁵)
 - Oxygen (O¹⁸/O¹⁶) and Hydrogen (H²/H)
 - Hydrocarbons contain molecules with both heavier and lighter isotopes
 - During biodegradation, molecules with lighter isotopes are consumed preferentially by microorganisms

- Compound Specific Isotope Analysis (CSIA)
 - Biodegradation results in "enrichment" of residual hydrocarbon with heavier isotopes (fractionation)
 - No fractionation occurs through processes of dilution, volatilization and sorption
 - Recent advances in analytical methods have significantly reduced cost & TAT
 - Appendix B

Anaerobic Degradation of Toluene under Sulfate Reducing Conditions with Strain TRM1,

Meckenstock, et al., 1999.

Source: Microseeps, Inc.

Protective Ground Water Remedies with Non-Decreasing Levels of Ground Water Contamination

"Guidance for the Issuance of Response Action Outcomes" (RAO) Attachment 2

6 Criteria:

- Concentration cap
- No receptors are impacted or threatened
- All sources of ground water contamination have been identified and remediated
- Site is a candidate for a natural remediation program pursuant to N.J.A.C. 7:26E-6.3(e)
- Analytical data set is representative of ground water elevation fluctuations (seasonal, tidal, etc.)
- Minimum 8 rounds data collected

Questions?

