APPENDIX A

HEALTH-BASED MAXIMUM CONTAMINANT LEVEL SUPPORT DOCUMENT: PERFLUOROOCTANE SULFONATE (PFOS)

(CAS #: 1763-23-1; Chemical Formula: C₈HF₁₇O₃S)

New Jersey Drinking Water Quality Institute Health Effects Subcommittee June 5, 2018

Subcommittee Members:
Jessie A. Gleason, M.S.P.H., Chair
Keith R. Cooper, Ph.D.
Judith B. Klotz, M.S., Dr.P.H.
Gloria B. Post, Ph.D., D.A.B.T.
George Van Orden, Ph.D.

Page intentionally left blank

Acknowledgements

This document is based on the Health Effects Subcommittee's review of an earlier draft document by Brian Pachkowski, Ph.D. and Alan Stern, Dr.P.H., DABT, with contributions from Lori Lester, Ph.D., of the NJDEP Division of Science, Research and Environmental Health. We thank Sandra Goodrow, Ph.D. of DSREH for assistance with analysis of New Jersey PFOS drinking water occurrence data and Theresa Tucker and Heidi O'Neill of DSREH for technical and editorial assistance. Finally, this work would not have been possible without the ongoing support of the librarians of the NJDEP Environmental Research Library - Dorothy Alibrando and Tonia Wu.

Page intentionally left blank

TABLE OF CONTENTS

ABSTRACT	i
EXECUTIVE SUMMARY	ES-1
INTRODUCTION	1
BACKGROUND INFORMATION	2
GUIDANCE AND STANDARDS DEVELOPED BY USEPA AND OTHER STATES	4
ENVIRONMENTAL FATE, TRANSPORT, AND OCCURRENCE	6
HUMAN BIOMONITORING	10
SOURCES OF HUMAN EXPOSURE	14
TOXICOKINETICS	16
HAZARD IDENTIFICATION	27
MODE OF ACTION	208
POINTS OF DEPARTURE FOR NON-CANCER AND CANCER ENDPOINTS	215
DEVELOPMENT OF POTENTIAL HEALTH-BASED MCLs FOR NON-CANCER ENDPOINTS	238
ESTIMATION OF CANCER RISK FOR PFOS IN DRINKING WATER	
RECOMMENDED HEALTH-BASED MCL	265
DISCUSSION OF UNCERTAINTIES	265
Citations	267
Appendix 1: Literature search strategy and results	296
Appendix 2: Comparison of USEPA Office of Water Health Advisory and DWQI Health-ba	sed
Appendix 3: Alternate Derivation of the PFOS-Specific Clearance Factor	316
Basis for USEPA (2016) clearance factor used in Health-based MCL development	316
Appendix 4: Animal evidence tables	319
Appendix 5: Animal tabular review tables	435
Appendix 6: Epidemiology evidence tables	511
Appendix 7: Benchmark dose modeling results	801
Butenhoff et al. (2012) Benchmark Dose Analysis	
Dong et al. (2009) Benchmark Dose Analysis - Relative Liver Weight	845
Dong et al. (2009) Benchmark Dose Analysis - Plaque Forming Cell Response	891

Dong et al. (2012a) Benchmark Dose Analysis - Relative Liver Weight	973
Wang et al. (2011c) Benchmark Dose Analysis - Offspring Total T4 (at PND7)	1029
Butenhoff et al. (2012) and Thomford et al. (2002) - Hepatocellular Adenomas and Carcinomas in Female Rats	1054
List of Tables	
Table E-1. Calculation of Target Human Serum Levels	ES-13
Table E-2. RfDs derived from Target Human Serum Levels	ES-13
Table E-3. Calculation of Potential Health-based MCLs	ES-14
Table 1. PFOS concentration in raw or finished water from PWS included in NJDEP database*	9
Table 2. New Jersey versus national UCMR3 PFC occurrence data as of January 2016	10
Table 3. Total serum PFOS concentrations reported by NHANES for 2011-2012 and 2013-2014 (CDC,	
2017)	
Table 4. Summary of data for PFOS elimination half-life (USEPA, 2016b-Table 2-20)	19
Table 5. Increase in serum PFOS concentrations predicted from various concentrations of PFOS in	
drinking water	
Table 6. Study summary table for body weight effects in animals	
Table 7. Summary of Epidemiology Studies of Body weight/BMI	
Table 8. Study summary table for endocrine/metabolic effects in animals	
Table 9. Summary of Epidemiology Studies of Thyroid Function	
Table 10. Summary of Epidemiology Studies of Metabolic Function	
Table 11. Summary of Epidemiology Studies of Sex Hormones	
Table 12. Study summary table for hepatic effects in animals	
Table 13. Summary of Epidemiology Studies of Hepatic Effects	
Table 14. Study summary table for immune system effects in animals	
Table 15. Summary of Epidemiology Studies of Immune Effects	
Table 16. Study summary table for neurological effects in animals	
Table 17. Summary of Epidemiology Studies of Neurologic Effects	
Table 18. Study summary table for renal effects in animals	99
Table 19. Summary of Epidemiology Studies of Renal Effects	102
Table 20. Study summary table for clinical chemistry parameters in animals	
Table 21. Summary of Epidemiology Studies of Serum Lipids	
Table 22. Study summary table for hematological effects in animals	118
Table 23. Summary of Epidemiology Studies of Blood Chemistry (non-lipid)	120
Table 24. Study summary table for reproductive/developmental effects in animals	136
Table 25. Summary of Epidemiology Studies of Reproductive Effects	200
Table 26. Summary of Epidemiology Studies of Developmental Effects	
Table 27. Summary of select tumor data from Butenhoff et al. (2012)	204
Table 28. List of endpoints with serum PFOS concentration of \leq 10,000 ng/mL at the LOAEL	222
Table 29. List of cancer and non-cancer endpoints carried forward into dose-response assessment	227

Table 30. Summary of AUC and time-weighted average serum concentration for male and female rats	
from Butenhoff et al. (2012) and 3M Environmental Laboratory (2001)	230
Table 31. Summary of dose-response data for the four non-cancer endpoints that underwent benchmark	
dose modeling	230
Table 32. Summary of BMD modeling results for hepatocellular hypertrophy in male rats (Butenhoff et	
al., 2012); BMR = 10% change from the control response	232
Table 33. Summary of BMDLs and AIC values for hepatocellular hypertrophy in male rats (Butenhoff et	
al., 2012)	233
Table 34. Summary of BMD modeling results for relative liver weight in male mice	234
Table 35. Summary of BMD modeling results for relative liver weight in male mice	235
Table 36. Summary of BMD modeling results for plaque forming cell response in male mice	236
Table 37. Summary of BMD modeling results for plaque forming cell response in male mice, excluding	
the highest dose	237
Table 38. PODs, NOAELs and LOAELs (based on serum PFOS concentration) for endpoints identified	
for dose-response assessment	239
Table 39. PODs for endpoints selected for criterion development	239
Table 40. Calculation of Target Human Serum Levels	244
Table 41. RfDs derived from Target Human Serum Levels	244
Table 42. Calculation of potential Health-based MCLs.	246
Table 43. Summarized results of epidemiology of serum PFOS concentration and vaccine response	249
Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respect	
to uncertainties in the interpretation of Dong et al. (2009)	
Table 45. Summary of hepatocellular tumor data in male rats from Butenhoff et al. (2012)	259
Table 46. Summary of hepatocellular tumor data in female rats from Butenhoff et al. (2012)	261
Table 47. Benchmark Dose modeling of hepatocellular adenomas plus carcinomas in female rats (data	
from Butenhoff et al. (2012) and Thomford et al. (2002)	
Table A-1. Summary of PubMed and Toxline database search strategies	
Table A-2. Summary of additional databases and website searched	
Table A-3. Criteria used to identify references for further consideration or for exclusion	
Table A-4. Backward searches	300
List of Figures	
List of Figures	
Figure E-1. Increases in serum PFOS concentrations predicted from mean and upper percentile	
consumption of drinking water with various concentrations of PFOS, as compared to U.S median and	
95th percentile serum PFOS levels (NHANES, 2013-14).	
Figure E-2. Graphical representation of representation of the approach used to derive the Health-based	
MCLES-12	
Figure 1. Increases in the median U.S. serum PFOS concentration (right of dotted line) predicted from	
mean and upper percentile consumption of drinking water for PFOS concentrations in drinking water at	
the Health-based MCL (13 ng/L) and the USEPA Health Advisory (70 ng/L) levels, as compared to U.S	
median and 95th percentile serum PFOS levels (NHANES, 2013-14)	5
Figure 2. Major transport pathways of perfluorinated compounds to the Arctic (and other remote	
locations), by Annika Jahnke (Butt et al., 2010)	7

Figure 3. Geometric mean serum PFOS concentration as reported by NHANES by reporting cycle, 1999-	
2014	12
Figure 4. PFOS concentration in cord blood and blood collected in infants around six and nineteen	
months after birth (Fromme et al., 2010)	22
Figure 5. Serum PFOS concentrations over time in 12 infants from Mogensen et al. (2015). Data shown	
by dotted blue line are from an infant who was not breastfed.	23
Figure 6. Monte Carlo simulations (n = 10 000) of child/mother ratios of plasma PFOS levels (ng/ml;	
right side of figure) and doses (ng/kg/day; left side of figure) for a breastfeeding period of 30 months	24
Figure 7. Increases in serum PFOS concentrations predicted from mean and upper percentile	
consumption of drinking water with various concentrations of PFOS, as compared to U.S median and	
95th percentile serum PFOS levels (NHANES, 2013-14)	26
Figure 8. Graphical representation of approach taken to identify most sensitive endpoints	217
Figure 9. Graphical array of body weight, clinical chemistry, and hepatic effects in adult animals within	
the first quartile of serum PFOS concentrations.	218
Figure 10. Graphical array of immune effects in adult animals within the first quartile of serum PFOS	
concentrations	219
Figure 11. Graphical array of endocrine/metabolic effects in adult animals within the first quartile of	
serum PFOS concentrations.	219
Figure 12. Graphical array of body weight, hepatic, and mortality effects in offspring animals within the	
first quartile of serum PFOS concentrations	220
Figure 13. Graphical array of endocrine/metabolic and respiratory effects in offspring animals within the	
first quartile of serum PFOS concentrations	220
Figure 14. PFOS - Area Under Curve (AUC) (data from Table 7 of Butenhoff et al., 2012) and 3M	
Environmental Laboratory (2001; week 53 female serum PFOS concentration in the 20 ppm group)	
Figure 15. Graphical representation of the approach used to derive the Health-based MCL	
Figure 16. Comparison of plaque forming cell response studies	
Figure 17. Serum PFOS- plaque forming cell response response (PFCR) (male mice; diamonds)	
Figure 18. Fit of gamma multi-hit model to data on increased hepatocellular tumors in male rats	
Figure A-1. Graphical representation of literature search	302

Abbreviations

AFFF – aqueous fire fighting foam, also known as aqueous film forming foam

AIC — Akaike Information Criterion

ALP — alkaline phosphatase

ALT — alanine aminotransferase

APFO — ammonium perfluorooctanoate, the ammonium salt of PFOA

AST — aspartate aminotransferase

ATSDR – Agency for Toxic Substances and Disease Control

AUC — area under the curve

BMD — Benchmark Dose

BMDL — lower 95% confidence limit on the Benchmark Dose

BMDS — Benchmark Dose software

BMI — body mass index

BMR — Benchmark Response

BUN — blood urea nitrogen

C8 — a synonym for PFOA

C9 — a synonym for PFNA

CAR — constitutive androstane receptor

CDC — Centers for Disease Control

CL – clearance factor

DSREH — NJDEP Division of Science, Research and Environmental Health

DWQI — New Jersey Drinking Water Quality Institute

ER – estrogen receptor

FOSA — perfluorooctane sulfonamide

FOSE — perfluorooctane sulfonamidoethanol

FSH — follicle stimulating hormone

GAC — granular activated carbon

GD — gestational day

GFR — glomerular filtration rate

GGT — gamma-glutamyl transferase

HDL — high-density lipid cholesterol

HNF- 4α — hepatocyte nuclear factor $4-\alpha$

HOMA-IR —

IARC — International Agency for Cancer Research

IRIS — USEPA Integrated Risk Information System

LDL — low-density lipid cholesterol

LH — luteinizing hormone

LOAEL — Lowest Observed Adverse Effect Level

MCL — Maximum Contaminant Level

MOA – mode of action

NHANES — National Health and Nutrition Examination Survey

NJDEP — New Jersey Department of Environmental Protection

NJDOH — New Jersey Department of Health

NOAEL — No Observed Adverse Effect Level

NTP — National Toxicology Program

OR — odds ratio

PFAA — perfluoroalkyl acid

PFAS — per- and polyfluoroalkyl substances

PFC — perfluorinated compound

PFHxS — perfluorohexane sulfonate

PFNA — perfluorononanoic acid

PFOA — perfluorooctanoic acid

PFOS — perfluorooctane sulfonate

PND — postnatal day

POD — Point of Departure

PPAR — peroxisome proliferator activated receptor

PTFE – polytetrafluoroethylene

PWS – public water supplies

PXR — pregnane X receptor

RfD — Reference Dose

RL — Reporting Level

RR — relative risk

RSC — Relative Source Contribution

SDWA — Safe Drinking Water Act

SHBG — sex hormone binding globulin

SMR — standardized mortality ratio

TSH — thyroid stimulating hormone

T3 — triiodothyronine

T4 — thyroxine

UCMR3 — Unregulated Contaminant Monitoring Rule 3

UF — uncertainty factor

V_d — volume of distribution

VLDL — very low-density lipid cholesterol

WT — wild type

USEPA — United States Environmental Protection Agency

WY — Wyeth 14,643; (4-Chloro-6-[2,3-xylidino]-2-pyrimidinylthio)acetic acid), a model

PPAR-alpha activating compound

ABSTRACT

A Health-based Maximum Contaminant Level (Health-based MCL) for perfluorooctane sulfonate (PFOS) was developed using a risk assessment approach intended to protect for chronic (lifetime) drinking water exposure. A public health-protective approach in developing a Health-based MCL based on animal toxicology data is supported by epidemiological associations of PFOS with health effects in the general population, as well as its biological persistence and bioaccumulation from drinking water in humans. Both non-carcinogenic and carcinogenic effects were evaluated for Health-based MCL development. PFOS causes a number of different types of toxicological effects in animals including hepatic, endocrine, developmental, immune system toxicity, and hepatocellular and thyroid tumors. The most sensitive non-cancer effect with data needed for Health-based MCL development was identified as immune suppression, specifically, a decrease in antibody response to an exogenous antigen challenge (i.e., plaque-forming cell response) following 60 days of PFOS exposure in adult male mice (Dong et al., 2009). Use of Dong et al. (2009) as the quantitative basis for the Health-based MCL is supported by decreased plaque-forming cell response in mice in other studies and by the association of PFOS with decreased vaccine response in humans within the general population. A Target Human Serum Level (analogous to a Reference Dose but on a serum level basis) of 23 ng/ml was developed by applying a total uncertainty factor of 30 to the PFOS serum level, 674 ng/ml, at the No Observed Adverse Effect Level (NOAEL) in Dong et al. (2009). A clearance factor (8.1 x 10⁻⁵ L/kg/day) which relates serum PFOS concentrations to human external PFOS doses was applied to the Target Human Serum Level to develop a Reference Dose of 1.8 ng/kg/day. Default values for drinking water exposure assumptions (2 L/day water consumption; 70 kg body weight) and Relative Source Contribution factor (20%) were used to develop a Health-based MCL of 13 ng/L. PFOS caused liver and thyroid tumors in a chronic rat study and was characterized as having "suggestive evidence of carcinogenic potential," consistent with the conclusion of USEPA Office of Water. Cancer risk was estimated based on dose-response modeling of liver tumors in female rats. It was concluded that the cancer risk assessment is too uncertain for use as the basis of the Health-based MCL. However, the estimated cancer risk at the Health-based MCL of 13 ng/L is close to the New Jersey cancer risk goal of one in one million. The Health-based MCL of 13 ng/L based on immune system toxicity is therefore considered to be both scientifically appropriate and health protective.

EXECUTIVE SUMMARY

Introduction

Perfluorooctane sulfonate (PFOS) is a member of the group of substances called perfluorinated compounds, chemicals that contain a totally fluorinated carbon chain which varies in length and a functional group such as carboxylic or sulfonic acid. Perfluorinated compounds are part of a larger group of chemicals called poly- and perfluoroalkyl substances (PFAS).

The chemical structure of PFOS is:

On March 21, 2014, New Jersey DEP Commissioner Bob Martin requested that the New Jersey Drinking Water Quality Institute recommend an MCL for PFOS and two other perfluorinated compounds, perfluorononanoic acid (PFNA, C9) and perfluorooctanoic acid (PFOA). The Subcommittee's evaluation and Health-based MCL recommendation for PFOS are presented in this document.

Health-based MCLs recommended by the DWQI are based on the goals specified in the 1984 Amendments to the New Jersey Safe Drinking Water Act (SDWA) at N.J.S.A. 58:12A-20. This statute specifies a one in one million (10⁻⁶) risk of cancer from lifetime exposure to carcinogens, and that no "adverse physiological effects" are expected to result from lifetime ingestion for non-carcinogenic effects. Human health risk assessment approaches used by the DWQI to develop Health-based MCLs generally follow USEPA risk assessment guidance.

Production and Use

Because carbon-fluorine bonds are among the strongest found in organic chemistry, PFOS and other PFCs are extremely stable and resistant to chemical reactions. Its structure gives PFOS both hydrophobic/lipophilic and hydrophilic properties that make it useful commercially and industrially. PFOS was produced in the U.S. for use in commercial products and industrial processes for over 50 years. The main worldwide producer of PFOS completed phasing out the manufacture of PFOS and its precursors in the U.S. and in other nations in 2002, although production continues in some Asian countries.

Many of the uses of PFOS stem from its surfactant properties and from its ability to repel both water and fats/oils. The following are some major uses of PFOS (continuing and discontinued):

- Stain/water repellants on clothing, bedding materials, upholstered furniture, carpets, and automobile interiors (e.g., ScotchGardTM)
- Metal plating and finishing (continuing use)

- Aqueous film forming foams (AFFF, also known as aqueous fire fighting foams; continuing use; used for firefighting)
- Photograph development (continuing use)
- Aviation fluids (continuing use)
- Food containers and contact paper

The use of PFOS in AFFF is of particular importance as a source of environmental contamination. Whereas the U.S. no longer produces or imports PFOS-based AFFF, the use of existing stocks of these foams continues. This use results in release of PFOS to the environment, leading to contamination of soil, surface water, and groundwater. This is particularly the case at military bases, and military and civilian airports, where fire-fighting training and drills are carried out regularly.

Environmental Fate and Transport

Because of the extreme stability of their carbon—fluorine bonds, PFOS and other PFCs are extremely resistant to degradation in the environment and thus persist indefinitely. PFOS and other PFCs are found in many environmental media and in wildlife worldwide including in remote polar regions. PFOS is bioaccumulative in fish, and it is the PFC most commonly detected in fish monitoring studies. PFOS and other PFCs can be taken up into plants from contaminated soil or irrigation water. In general, PFOS and other longer chain PFCs are preferentially taken up into the root and shoot parts of the plant.

PFOS and some other PFCs are distinctive from other persistent and bioaccumulative organic compounds because of their importance as drinking water contaminants. PFOS migrates readily from soil to ground water and is highly water-soluble. These properties of PFOS differ from those of other well-known persistent and bioaccumulative organic pollutants such as polychlorinated dioxins and polychlorinated biphenyls (PCBs) that have a high affinity for soil and sediments but low water solubility.

PFOS that is released into the environment can contaminate surface water and groundwater used as drinking water sources. Environmental sources include industrial discharge; release of AFFF; disposal in landfills; wastewater treatment plant discharge; and land application of biosolids. PFOS also enters the environment through the breakdown of precursor compounds. These precursor compounds are or were used industrially and are found in AFFF.

Although the production of PFOS and its precursors (e.g., perfluorooctanesulfonyl fluoride, POSF) were voluntarily phased out by the major global manufacturer of PFOS, environmental contamination and resulting human exposure to PFOS are anticipated to continue for the foreseeable future due to its environmental persistence, formation from precursor compounds, and continued production by other manufacturers.

Occurrence in Drinking Water

PFOS and other PFCs are not effectively removed from drinking water by standard treatment processes but can be removed from drinking water by granular activated carbon (GAC) or reverse osmosis. Therefore, unless specific treatment for removal of PFCs is in place, concentrations of PFOS detected in raw drinking water can be considered representative of concentrations in finished drinking water.

The occurrence of PFOS and other PFCs in public water supplies (PWS) has been evaluated more extensively in New Jersey than in most or all other states. More than 1,000 samples from 80 NJ PWS were analyzed with relatively low Reporting Levels (RLs; generally \leq 5 ng/L) from 2006-2016. PFOS was a frequently detected PFC and was found in samples from approximately 42% of the 76 NJ PWS tested. In the 2013-2015 USEPA Unregulated Contaminant Monitoring Rule 3 (UCMR3) survey of all large PWS (>10,000 users) and a subset of smaller PWS in the U.S., PFOS was detected more frequently in New Jersey PWS (3.4%) than nationally (1.9%). The RL in UCMR3 was 40 ng/L, much higher than the RLs for most other NJ PWS monitoring. PFOS has also been detected in NJ private wells near sites where contamination has occurred.

Human Biomonitoring

PFOS and other PFCs are found ubiquitously in the blood serum of the general population in the U.S. and worldwide. The most recent (2013-2014) National Health and Nutrition Examination Survey (NHANES), a representative sample survey of the U.S. general population conducted by the U.S. Centers for Disease Control and Prevention (CDC), determined the geometric mean and 95th percentile serum PFOS concentrations as 4.99 and 18.5 ng/ml, respectively. Serum PFOS levels in the U.S. general population have decreased over time, with an 84% decrease in the geometric mean in NHANES 2013-14 from the first NHANES monitoring in 1999-2000. In communities exposed through contaminated drinking water, serum PFOS levels are elevated compared to the general population. Exposures to industrially-exposed workers or others with occupational exposure are much higher than in the general population. Serum PFOS concentrations of greater than 10,000 ng/ml (10 ppm) have been reported in industrially exposed workers, although levels in most workers were lower.

Sources of Human Exposure

The human body burden of PFOS results from exposure to both PFOS itself and to precursor compounds that can be metabolized to PFOS. In the absence of the influence of specific sources of PFOS release to the environment, it appears that food and possibly house dust (reflecting consumer products use and breakdown) are the major sources of human exposure to PFOS. For high end consumers of fish and specifically for those who consume recreationally caught freshwater fish from contaminated waters, fish may be a particular source of PFOS in the diet.

The contribution of ingested drinking water to total exposure from all sources (e.g. diet, consumer products, etc.) is dependent on the concentration of PFOS in the drinking water, and

relatively low concentrations in water substantially increase human body burden. Inhalation from showering, bathing, laundry, and dishwashing, and dermal absorption during showering, bathing, or swimming, are not expected to be significant sources of exposure from contaminated drinking water.

Exposures to PFOS may be higher in young children than in older individuals because of agespecific behaviors such as greater drinking water and food consumption on a body weight basis, hand-to-mouth behavior resulting in greater ingestion of house dust, and more time spent on floors where treated carpets are found.

Toxicokinetics

PFOS is well absorbed orally in animal studies, and it is reasonable to assume that PFOS is orally absorbed in humans with close to 100% efficiency. Unlike most other bioaccumulative organic compounds, it does not distribute to fat. Across species, liver accumulates the highest concentration of PFOS. However, with sufficiently long exposures and/or sufficiently sensitive analytical methods, PFOS is generally found in all tissues and organs. Although the brain is not a major site of PFOS accumulation, PFOS crosses the blood-brain barrier, and is found in the brain in humans and rodents. In the serum, PFOS is almost totally bound to albumin and other proteins. Since it is chemically non-reactive, it is not metabolized. PFOS is slowly excreted in humans, and, with the exceptions of lactation and menstrual blood loss, urine is the most significant route of PFOS elimination in humans. The rate of excretion is likely dependent on the extent of secretion and reabsorption by organic anion transporters in the kidney. Although a significant fraction of PFOS is found in the bile in humans, PFOS is reabsorbed from the bile in the gastrointestinal tract, and, therefore, the feces is not a significant route of elimination. In rodents, however, the feces appears to be significant route of PFOS elimination.

The human half-life of PFOS is estimated at about five years. Because of its long half-life, it remains in the human body for many years after exposures ceases. The half-life of PFOS in laboratory animals is shorter than in humans, and varies widely among species. Because of the large variation in half-lives, the internal dose resulting from a given administered dose varies widely among species and, in some cases, genders of the same species. For this reason, interspecies (e.g. animal-to-human) comparisons are made on the basis of internal dose, as indicated by serum level, rather than administered dose.

Relationship between drinking water exposure and human serum levels

A human clearance factor for PFOS of 8.1 x 10⁻⁵ L/kg/day was developed by USEPA (2016a) to relate serum PFOS concentration to administered dose. Assuming an average U.S. daily water consumption rate, the clearance factor predicts a serum:drinking water ratio of 197:1.

Continued exposure to even low drinking water concentrations results in substantially increased serum PFOS levels. Based on the clearance factor, each 10 ng/L in drinking water is predicted to

increase serum PFOS by 2.0 ng/ml with an average water consumption rate, and 3.6 ng/ml with an upper percentile water consumption rate. These increases in serum PFOS from drinking water can be compared to the most recent NHANES medians, 5.2 ng/ml, and 95th percentile, 18.5 ng/ml, serum PFOS concentrations. Increases in serum PFOS levels predicted from average and upper percentile drinking water consumption at various drinking water PFOS concentrations are shown in Figure E-1.



Figure E-1. Increases in serum PFOS concentrations predicted from mean and upper percentile consumption of drinking water with various concentrations of PFOS, as compared to U.S median and 95th percentile serum PFOS levels (NHANES, 2013-14).

Exposures to infants

In humans, PFOS has been measured in amniotic fluid, maternal serum, umbilical cord blood, and breast milk. Serum PFOS concentrations in infants at birth are lower than those in maternal serum. Both breast-fed infants whose mothers ingest contaminated drinking water and infants fed with formula prepared with contaminated drinking water receive much greater exposures to PFOS than older individuals who consume drinking water with the same PFOS concentration. PFOS exposure in breast-fed infants is greatest during the first few months of life because both PFOS concentrations in breast milk and the rate of fluid consumption are highest then. As a result, serum PFOS concentrations in breast-fed infants increase several-fold from levels at birth within the first few months of life. Exposures to infants who consume formula prepared with contaminated water are also highest during this time period. While serum PFOS levels peak during the first year of life, they remain elevated for several years. These elevated exposures during infancy and early childhood are of particular concern because early life may be a sensitive time period for the toxicity of PFOS.

Health Effects

Literature Search and Screening

A comprehensive literature search was conducted for literature published through the end of 2014 using the PubMed and Toxline databases and was updated with relevant literature through 2016. Additional databases or websites of other state, federal, and international regulatory or authoritative health entities were searched for relevant references. This literature search aimed to identify all references relevant to health effects of PFOS in animals or humans.

Based on screening of the approximately 2860 references identified in the literature search, approximately 700 references were ultimately considered as potentially useful for the assessment of the health effects of PFOS.

Hazard Identification

Animal toxicology studies identified from the literature search and screening were categorized into different levels of review for use in risk assessment. Approximately 75 studies that fulfilled a set of criteria (for example, but not limited to, subchronic or greater exposure duration or *in utero* exposure, multiple dose groups, assessment of appropriate observable endpoints) were reviewed in detail and summarized in evidence tables. These studies were used to identify potential health hazards (i.e., hazard identification) and were evaluated for potential use for doseresponse modeling. The remaining approximately 40 animal studies that did not meet the criteria mentioned above, but were nonetheless potentially useful as supporting studies underwent a less intensive review and were summarized in tabular form. These studies were used to further inform the weight of evidence for identified health hazards.

All human (epidemiology) studies that were identified (approximately 120) were reviewed in detail and summarized in evidence tables for use in identifying potential health hazards.

The mode of action evaluation of PFOS was based on relevant studies identified through the literature search, as well as other sources (e.g., previous evaluations by NJDEP and DWQI, review articles, other regulatory or health effects documents).

Non-cancer endpoints

The toxicological effects of oral PFOS exposure were assessed in studies of varying duration in several species including mice, monkeys, rabbits, and rats. In adult animals, endocrine/metabolic (e.g., thyroid hormone), hepatic (e.g., liver enlargement, histopathological lesions, and changes in serum chemistry), immune, and neurological effects were determined to be toxicologically important endpoints based on consistency across studies and appropriate for consideration of dose-response analysis. Following gestational exposure to PFOS, increased mortality, body weight, developmental (e.g., delays in eye opening, neurotoxicity, structural defects), endocrine/metabolic (e.g., changes in thyroid hormone levels, insulin resistance, increased fasting serum glucose), hepatic, and immune effects were observed in perinatal or adult offspring and were determined to be toxicologically important endpoints appropriate for consideration of dose-response analysis.

A number of human populations have been investigated for potential health effects from PFOS exposure in epidemiology studies. Such investigations have included the general population,

occupationally exposed individuals, and people living within communities contaminated with high levels of PFOA but with general population level exposures to PFOS. Notably, epidemiological studies have not been conducted in communities with drinking water contaminated by PFOS. In most studies, serum PFOS levels are used as the exposure metric. Epidemiologic studies of PFOS have investigated associations with developmental, endocrine/metabolic, hepatic, immune, lipid metabolism, renal, and reproductive effects. However, some of these studies have yielded inconsistent results, lacked proper controlling for confounding, or could only provide weak suggestions of causality. Among the epidemiologic studies, the studies of immune effects, and most particularly those investigating effects on vaccine response, were generally consistent in showing adverse responses to PFOS. There was also a consistency of findings among studies of PFOS exposure and increased serum uric acid/hyperuricemia as well as increased total cholesterol.

The epidemiologic data for PFOS are notable because of the consistency between results among human epidemiologic studies in different populations, the concordance with toxicological findings from experimental animals, the use of serum concentrations as a measure of internal exposure, the potential clinical importance of the endpoints for which associations are observed, and the observation of associations within the exposure range of the general population. These features of the epidemiologic data distinguish PFOS from most other organic drinking water contaminants and justify concerns about exposures to PFOS through drinking water. Notwithstanding, the human data have limitations and therefore are not used as the quantitative basis for the Health-based MCL. Instead, the Health-based MCL is based on a sensitive and well-established animal toxicology endpoint, decreased plaque forming cell respose which is an indicator of decreased immune response. This effect is considered relevant to humans based on epidemiological and mode of action data.

Cancer endpoints

In animals, only one study was identified that assessed tumor formation following PFOS exposure. Following chronic PFOS exposure, hepatocellular tumors in male and female rats, and thyroid tumors in male rats, were observed.

In humans, a limited number of epidemiological studies assessed cancer risk from PFOS exposure in occupationally exposed populations or in the general population. Although individual studies have shown borderline or weak (albeit statistically significant) associations between PFOS exposure and specific cancer types (e.g., bladder, breast, prostate) or cancer-related mortality (e.g., liver), there is no consistent indication of an association between PFOS exposure and cancer in general, or any specific form of cancer. Nonetheless, the database cannot be considered strong. Exposure characterization and case ascertainment was problematic in the occupational studies with high levels of exposure, and the non-occupational studies generally had small sample sizes.

Based on the tumors observed in rats, DWQI concluded that the designation of "Suggestive Evidence of Carcinogenic Potential" as described the 2005 USEPA Guidelines for Carcinogen Risk Assessment is appropriate for PFOS.

Mode of Action

At a minimum, strong evidence exists from animal and/or epidemiological studies for effects on the liver, the immune system, birth weight, and neonatal survival. In addition, PFOS causes liver tumors and possibly thyroid tumors in rats. The breadth of these effects suggests that PFOS may cause toxicity through multiple modes of action (MOAs). However, the mode(s) of action of PFOS have not been fully characterized. Based on the information reviewed by the Health Effects Subcommittee, the toxicological effects of PFOS are considered relevant to humans for the purposes of risk assessment.

PFOS is not chemically reactive. Thus, it is not metabolized to reactive intermediates and does not covalently bind to nucleic acids and proteins. Consistent with these properties, available data indicate that it is not genotoxic.

Hepatic effects

Much attention has been focused on the potential human relevance of hepatic effects of xenobiotics that occur through activation of the nuclear receptor, peroxisome proliferatoractivated receptor-alpha (PPARa). Since many PPARa activating compounds cause rodent liver tumors: the human relevance of these tumors is subject to debate due to lower levels and/or differences in intrinsic activity of PPARa in human liver. While MOA data are most abundant for PFOS effects on the liver, most of the evidence relates to ruling out PPARα-dependent MOAs. Based on some hepatic effects (e.g., increased liver weight) in rodents that are similar to those caused by potent PPARa activators, cancer and non-cancer liver effects of PFOS have sometimes been assumed to be PPARα-dependent. However, several lines of evidence do not support a conclusion that liver effects due to PFOS exposure are PPARα-dependent. For some PPARα activators, non-cancer and cancer liver effects are clearly linked to PPARα activation. In contrast, PFOS effects on the rodent liver do not appear to primarily operate through a PPARαdependent MOA, including at doses resulting in liver tumors. PPARa may make only a minor contribution, if any, to PFOS liver effects in rodents. Thus, there does not appear to be clear evidence to discount the human relevance of PFOS to cause hepatic effects in rodents. Other receptors including PPARβ/δ, PPARγ, constitutive activated receptor (CAR), pregnane X receptor (PXR), hepatocyte nuclear factor $4-\alpha$ (HNF- 4α), and possibly estrogen receptor (ER α), may also be activated by PFOS, suggesting alternative, non-PPARα-dependent MOAs.

Immune effects

Following PFOS exposure in animals, immunosuppression as well as effects on immune organs, cell populations, and mediators have been observed. In humans, an association with suppression of vaccine response has been reported. Despite research efforts, the mode(s) of action by which PFOS exposure results in immune effects is unclear.

It appears that PPAR α may play a role in some immune effects caused by PFOS in rodents. Unlike the case for liver effects, there are no data to suggest that immune effects mediated by PPAR α are not relevant to humans. Therefore, these effects are assumed relevant to humans for the purposes of risk assessment. In addition to the possible role of PPAR α , other mechanistic considerations may inform the MOA for PFOS-mediated immunotoxicity. Some evidence suggests a possible involvement of an alteration of cell signaling response. Stress is known to influence immune effects following chemical exposure. However, as reviewed in this

assessment, an increase in serum corticosterone, a marker of stress, was a high dose phenomenon, whereas immune effects (i.e., decrease in plaque forming cell response) occurred at lower PFOS doses. The possibility has also been suggested that changes in lipid balance resulting from PFOS activity in the liver could affect the immune response. However, there does not appear to be specific evidence to support this hypothesis.

Developmental/fetal effects

Gestational exposure to PFOS is associated with several different endpoints, including decreased birth weight, malformations, and most notably, neonatal mortality. The MOAs for these effects are not known. However, it appears that the observed developmental effects do not necessarily share similar MOAs.

Research in WT and PPAR α null mice suggests that developmental effects following gestational PFOS exposure are PPAR α -independent. Neonatal mortality following gestational PFOS exposure has been noted in several rodent studies and is a striking and salient endpoint. The underlying toxicity for this effect occurs with maternal exposure during late gestation. Due to the observation of labored breathing associated with this mortality and the late developmental nature of the toxicity, immature lung development, possibly related to PFOS interference with lung surfactant has been suggested as a possible MOA. Oxidative stress and apoptosis have also been implicated in offspring lung injury that may be responsible for neonatal mortality. Additionally, defects in cardiopulmonary function observed following gestational PFOS exposure have also been postulated as possible contributors to neonatal mortality. Nonetheless, there is no clear MOA responsible for PFOS-mediated newborn mortality.

Carcinogenicity

Hepatocellular

PFOS does not appear to be genotoxic or mutagenic. There is limited evidence that the formation of hepatocellular tumors from PFOS exposure may operate through a MOA involving sustained cell proliferation and inhibited apoptosis. However, given the lack of additional PFOS-specific data, it is not clear that this hypothesized MOA is either necessary or relevant. In rats, in addition to hepatic tumors, many PPARα activators produce Leydig cell and pancreatic acinar cell tumors. These tumor types are commonly referred to as the tumor triad. Although hepatic tumors were observed in the single chronic exposure study in rats there was no increased incidence of either Leydig cell or pancreatic acinar cell tumors. Along with other data discussed above, this provides further evidence for a PPARα-independent hepatic cancer MOA. In addition, similar to the discussion of the potential role of PPARa in non-cancer liver toxicity, PFOS does not demonstrate key molecular markers of PPARα activity/peroxisome proliferation. Further, PFOS and WY-14,643, a strong PPARα agonist and peroxisome proliferator that is often used as a model for PPARα-related liver effects cause grossly different effects on gene expression in mice. In summary, there is little evidence that PFOS operates through a PPARαdependent MOA, at least at the doses that have been observed to cause liver tumors. As with non-cancer liver effects, other nuclear receptors, such as PXR and CAR, may play a role. In all, there does not appear to be evidence to suggest that the (unknown) MOA that is operative in rat liver tumors is not relevant to human cancer risk.

Thyroid follicular cell

In the only chronic PFOS exposure study, thyroid follicular cell tumors were observed in male rats only at the highest dose following recovery from dosing. The human relevance of these PFOS-mediated tumors is not clear and there is no evidence to inform a possible MOA.

Identification of Most Sensitive Endpoints

Dose-response analysis focused on health endpoints from animal studies with exposure durations greater than 30 days, as well as on shorter-term reproductive and developmental endpoints from animal studies involving exposures during gestation and/or the immediate post-natal period (i.e., reproductive/developmental studies). Endpoints were selected for dose-response analysis based on their reporting of serum PFOS concentrations at relevant timepoints. Only those endpoints in the animal studies associated with LOAELs in the lower end of the range of serum PFOS concentrations were considered for dose-response modeling, and potentially for RfD derivation. These most sensitive endpoints were identified by stratifying the endpoints from animal studies into quartiles of serum PFOS concentrations. In the lowest quartile, the maximum LOAEL serum PFOS concentration was approximately 24,000 ng/mL. Within that quartile, there was a general clustering of animal endpoints with a LOAEL serum PFOS concentration $\leq 10,000$ ng/mL. Endpoints occurring at or below this serum PFOS concentration were considered to be within the group of most sensitive animal endpoints (n = 21). Not all of these endpoints were considered for dose-response modeling due to study-specific concerns and/or lack of biological significance. Ultimately, four endpoints were carried forward to non-cancer dose-response analysis:

- increased relative liver weight, adult mice (Dong et al., 2009)
- decreased plaque forming cell response, adult mice (Dong et al., 2009)
- increased hepatocellular hypertrophy, adult rats (Butenhoff et al., 2012)
- increased relative liver weight, adult mice (Dong et al., 2012a)

For the cancer endpoints, dose-response analysis was performed on the incidence of hepatocellular tumors in male and female rats in Butenhoff et al. (2012). The thyroid follicular cell tumors in rats were excluded from dose-response assessment due to questionable biological significance and inconsistencies in dose-response.

Dose-Response Analysis for non-cancer endpoints

For PFOS and other contaminants for which animal-to-human comparisons are based on serum concentrations (internal dose), dose-response analysis is based on serum PFOS concentrations (internal dose) rather than administered doses. The dose-response for the non-cancer and cancer endpoints was investigated using USEPA benchmark dose modeling (BMD) software (ver. 2.6.0.1). Fitting and assessing the benchmark dose model fit was carried out using USEPA benchmark dose modeling guidance.

For the non-cancer increased hepatocellular hypertrophy endpoint and the hepatocellular tumors, from Butenhoff et al. (2012), serum PFOS concentrations measured over the course of this 105-week study rose and then declined. The serum PFOS concentration at each dose was summarized across the study duration based on area under the curve (AUC) of serum concentration and time. For quantal data, the recommended benchmark response (BMR) value of 10% was used. For continuous data, except for liver weight endpoints, the recommended

BMR of 1 SD was used. For liver weight endpoints, a BMR of 10% was used to accommodate relatively small increases in liver weight that could be considered adaptive. All available models in the USEPA software were evaluated.

Non-cancer

Data for two of the four endpoints provided acceptable fits to one or more of the available dose-response models included in the BMD software. The following BMDLs (as serum PFOS concentrations) were derived and were considered as points of departure (PODs) for potential Reference Dose (RfD) development:

- Relative liver weight increase 5,585.5 ng/ml (Dong et al., 2009)
- Hepatocellular hypertrophy 4,560.8 ng/ml (Butenhoff et al., 2012)

For two other endpoints, BMD modeling did not yield a valid POD. The PODs for these studies were based on the NOAELs:

- Relative liver weight increase 4,350 ng/ml NOAEL (Dong et al., 2012a)
- Decreased plaque-forming cell response 674 ng/ml NOAEL (Dong et al., 2009)

There were PODs for relative liver weight from two studies, both from the same laboratory (Dong et al., 2009; Dong et al., 2012a). The POD from Dong et al. (2012a) was lower than the POD from Dong et al. (2009) and was therefore carried forward for RfD development.

Dose-response analysis for hepatocellular tumors is presented in the section on <u>Estimation of Cancer Risk from PFOS in Drinking Water below.</u>

Health-based MCL Derivation

The following graphic describes the process followed in criterion derivation.

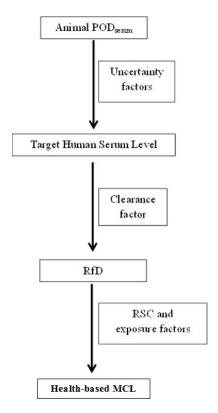


Figure E-2. Graphical representation of representation of the approach used to derive the Health-based MCL

Non-Cancer Endpoints

Development of Target Human Serum Levels and Reference Doses

Target Human Serum Levels are analogous to Reference Doses (RfDs) but in terms of internal dose rather than administered dose. While Reference Doses (RfDs) are developed by applying uncertainty factors (UFs) to PODs (NOAELs, LOAELs, or BMDLs) based on administered dose (mg/kg/day), Target Serum Levels are developed by applying UFs are applied to POD serum concentrations.

For each of the three candidate non-cancer PODs, a UF of 3 was applied to account for interspecies differences in toxicodynamics. The typical UF of 3 for toxicokinetic variability between species was not included because the risk assessment is based on comparison of internal dose (serum levels) rather than administered dose. In addition, for each of the candidate studies the default UF of 10 was applied to account for potential differences in sensitivity to PFOS among humans including sensitive sub-populations. These two UFs result in a total UF of 30.

For the POD for increased liver weight, a UF of 3 was also applied. This POD was derived from a study that was of less than chronic duration, and longer duration exposures could potentially result in the same or additional effects at lower doses. Since two UFs of 3 are considered to be equivalent to a UF of 10, the additional UF of 3 applied to this endpoint yielded

a total UF of 100.

Although the POD for decreased plaque forming cell response is from a subchronic study, a UF for the less than chronic duration of the endpoint was not applied because the dose-response for this effect was similar in several studies of shorter duration. This suggests that this effect does not become more severe or occur at lower internal doses with longer durations of exposure.

The following table shows the POD, total UF and Target Human Serum Level for each of these endpoints.

Table E-1. Calculation of Target Human Serum Levels					
Study	Animal POD _{serum} (ng /ml)	UFTOTAL	Target Human Serum Level (ng/ml)		
Butenhoff et al. (2012) (Hepatocellular hypertrophy)	4,561	30	152		
Dong et al. (2012a) (Increased relative liver weight)	4,350	100	43.5		
Dong et al. (2009) (Decreased plaque forming cell response)	674	30	22.5		

Deriving an RfD as a human intake dose that corresponds to the Target Human Serum Level at steady state requires a constant that relates the two parameters. This constant is referred to as the Clearance Factor (CL). USEPA derived a CL for PFOS of 8.1 x 10⁻⁵ L/kg/day based on empirical data. This value was used to derive the RfD for each of the candidate studies.

The following table shows the Target Human Serum Level and corresponding RfD for each of the candidate studies after application of the CL.

Table E-2. RfDs derived from Target Human Serum Levels					
Study	Target Human Serum Level (ng/ml)	RfD (ng/kg/day)	RfD (mg/kg/day)		
Butenhoff et al. (2012)	152	12.3	1.23 x 10 ⁻⁵		
(Hepatocellular hypertrophy)					
Dong et al. (2012a)	43.5	3.5	3.5 x 10 ⁻⁶		
(Increased relative liver weight)					
Dong et al. (2009)	22.5	1.8	1.8 x 10 ⁻⁶		
(Decreased plaque forming cell					
response)					

Relative Source Contribution Factor (RSC)

A Relative Source Contribution (RSC) factor that accounts for non-drinking water sources including food, soil, air, water, and consumer products is used by USEPA, NJDEP, and the

DWQI in the development of health-based drinking water concentrations based on non-carcinogenic effects. The default value for the RSC is 20%, meaning that 20% of total exposure is assumed to come from drinking water and 80% from non-drinking water sources. If supported by available data, a higher chemical-specific value (up to 80%) can be used. The Health Effects Subcommittee concluded that there are insufficient data to develop a chemical-specific RSC for PFOS. USEPA UCMR3 monitoring shows that PFOS occurs (at concentrations greater than 40 ng/L) more frequently in PWS located throughout New Jersey (3.4%) than nationwide (1.9%), and PFOS has also been found in additional NJ PWS in NJDEP occurrence studies and other data reported to NJDEP.

There are no New Jersey-specific biomonitoring data for PFOS, and the more frequent occurrence in NJ PWS suggests that New Jersey residents, particularly in communities with contaminated drinking water, may also have higher exposures from non-drinking sources, such as contaminated soils, house dust, or other environmental media, than the U.S. general population. Importantly, residents may be exposed through consumption of recreationally caught fish from contaminated waters.

Additionally, the default RSC of 20%, while not explicitly intended for this purpose, also partially accounts for the greater exposures to infants who are breast-fed or consume formula prepared with contaminated drinking water, as compared to older individuals. These higher exposures during infancy must be considered because short term exposures to infants are relevant to the most sensitive effect (decreased immune response). Therefore, the default RSC of 20% was used to develop the Health-based MCL.

Potential Health-based MCLs (Health-based Maximum Contaminant Levels)

The Health-based MCL is calculated based on the following equation, using default exposure assumptions of 2 L/day drinking water consumption, 70 kg adult body weight, and 20% (0.2) Relative Source Contribution (RSC).

$$MCL(ng/L) = \left(\frac{RfD(ng/kg/day) \times Body \ weight(kg)}{Daily \ drinking \ water \ intake(L/day)}\right) \times RSC$$

For each of the three candidate endpoints, the following table gives the RfD and corresponding potential Health-based MCL.

Table E-3. Calculation of Potential Health-based MCLs					
Study	Endpoint	RfD (ng/kg/day)	Health-based MCL (ng/L = ppt)		
Butenhoff et al. (2012)	Hepatocellular hypertrophy	12.0	84		
Dong et al. (2012a)	Increased relative liver weight	3.5	25		
Dong et al. (2009)	Decreased plaque forming cell response	1.8	13		

Health-based MCL

The Health-based MCL of 13 ng/L value based on decreased plaque forming cell response from Dong et al. (2009) is the lowest of the potential Health-based MCLs for non-carcinogenic effects. This endpoint is an appropriate basis for the Health-based MCL because of the clear toxicological relevance of decreased immune response to foreign antigens and the substantial epidemiological evidence for the association of decreased vaccine response with general population level exposure to PFOS. Due to the uncertainties associated with the cancer risk assessment of PFOS (discussed below), the non-cancer endpoint (immune system toxicity) was judged to be the most appropriate basis for the Health-based MCL.

Estimation of cancer risk from PFOS in drinking water

The Health Effects Subcommittee concluded that PFOS is most appropriately described as having "Suggestive Evidence of Carcinogenic Potential," and that estimated cancer risks for PFOS are too uncertain for use as the basis of a Health-based MCL. The only chronic study of PFOS reported an increased incidence of liver and thyroid tumors in rats (Butenhoff et al., 2012). The hepatocellular tumor data is appropriate for dose-response analysis to develop a cancer slope factor, while the thyroid tumor data could not be used for cancer slope factor development. The cancer risk estimates were based on data from female rats, since the cancer slope factor for male rats is highly uncertain because liver tumors occurred only in the high dose group, while they occurred in all dosed groups in females.

The cancer potency factor for hepatocellular tumors in female rats was 9.0 x 10⁻⁶(ng/kg/day)⁻¹. Among the uncertainties associated with the cancer slope factor for liver tumors in females are uncertainties regarding inclusion of the recovery group data in dose-response analysis and uncertainties about the dose metric based on AUC serum levels.

The lifetime cancer risk at the recommended Health-based MCL of 13 ng/L, based on default assumptions for body weight (70 kg) and drinking water consumption (2 L/day), was estimated as 3×10^{-6} (3 in one million)

The estimated cancer risk of 3 in one million is slightly above the cancer risk goal for New Jersey MCLs of one in one million. DWQI and the NJ Drinking Water Quality Institute have a policy of applying an additional uncertainty factor of 10 to an RfD for a non-cancer endpoint to account for potential cancer risk when a cancer potency factor (slope factor) is not available or is considered uninformative. However, since the estimated cancer risk at the Health-based MCL based on a sensitive non-carcinogenic effect is close to the New Jersey cancer risk goal of one in one million, application of this uncertainty factor is not necessary.

Potential for additive toxicity with other PFCs

The Health Effects Subcommittee notes that available information indicates that the target organs and modes of action may be generally similar for PFOS and some other PFCs. Therefore, the toxicity of PFOS and other PFCs may be additive. Although PFOS and other PFCs are known to co-occur in some NJ public water supplies, the potential for additive toxicity of PFOS and other PFCs was not considered in development of the Health-based MCL.

The recommended Health-based MCL is 13 ng/L (0.013 µg/L).

INTRODUCTION

Development of Health-based MCLs by New Jersey Drinking Water Quality Institute

The New Jersey Drinking Water Quality Institute (DWQI) was established by the 1984 amendments to the New Jersey Safe Drinking Water Act (SDWA) at N.J.S.A. 58:12A- 20. It is charged with developing standards (Maximum Contaminant Levels; MCLs) for hazardous contaminants in drinking water and for recommending those standards to the New Jersey Department of Environmental Protection (NJDEP). The Health Effects Subcommittee (formerly "Lists and Levels Subcommittee") of the DWQI is responsible for developing health-based drinking water levels (Health-based MCLs) as part of the development of MCL recommendations (e.g. DWQI, 1987; 1994; 2009; 2015a; 2017).

Health-based MCLs are based on the goals specified in the 1984 Amendments to the NJ SDWA. For carcinogens, it is generally assumed that any level of exposure results in some level of cancer risk, and a one in one million (10⁻⁶) risk level from lifetime exposure is specified in the statute. Health-based MCLs for carcinogens are thus set at levels that are not expected to result in cancer in more than one in one million persons ingesting the contaminant for a lifetime. For non-carcinogenic effects, it is generally assumed that exposure below a threshold level will not result in adverse effects. As specified in the statue, Health-based MCLs are set at levels which are not expected to result in "any adverse physiological effects from ingestion" for a lifetime. The risk assessment approach used to develop Health-based MCLs is generally consistent with USEPA risk assessment guidance.

Other factors such as analytical quantitation limits and availability of treatment removal technology are also considered in the final MCL recommendation. For carcinogens, the 1984 Amendments to the NJ SDWA require that MCLs are set as close to the one in one million lifetime risk goal as possible "within the limits of medical, scientific and technological feasibility." For non-carcinogens, MCLs are set as close to the goal of no adverse effects as possible "within the limits of practicability and feasibility."

To support the development of an MCL recommendation by the DWQI, the Health Effects Subcommittee has developed a draft Health-based Maximum Contaminant Level for PFOS. As specified in the 1984 Amendments to the NJ SDWA, this Health-based MCL is intended to be protective for chronic (lifetime) drinking water exposure.

Document Development Process

Timeline

On March 21, 2014, New Jersey DEP Commissioner Bob Martin requested that the DWQI recommend MCLs for three perfluorinated compounds: perfluorononanoic acid (PFNA, C9), PFOA, and perfluorooctane sulfonic acid (PFOS). The Health Effects Subcommittee commenced its evaluation of PFOS after completing its work on PFNA and PFOA (DWQI, 2015a; 2017).

The 1984 Amendments to the New Jersey Safe Drinking Water Act provide that the services of employees of New Jersey state agencies are to be available to the DWQI. As such, NJDEP staff

have historically developed initial drafts of DWQI Health-based MCL Support Documents (DWQI, 1987; 1994), as well as providing ongoing technical support to other DWQI Subcommittees. Accordingly, toxicologists from the NJDEP Division of Science, Research and Environmental Health (DSREH) completed an initial draft risk assessment for chronic exposure to PFOS in drinking water in 2017. The current document was developed by the Health Effects Subcommittee based on review of the earlier DSREH document. The literature search and screening process used to develop the Health-based MCL Support Document is described below.

Literature Search and Screening

A comprehensive literature search was conducted for literature published through the end of 2014 using the PubMed and Toxline databases and was updated with relevant literature through 2016. Additional databases or websites of other state, federal, and international regulatory or authoritative health entities were searched for relevant references. This literature search aimed to identify all references relevant to health effects of PFOS in animals or humans. Detailed documentation of the database and website literature searches can be found in Appendix 1 (Tables A-1 and A-2).

Approximately 2860 references were identified from the literature search. These references were manually screened (i.e., by title, abstract and/or full text) for relevance to the areas of hazard identification, toxicity value derivation, or human exposure to determine whether they provided information on at least one of the following: effects in animals or humans; toxicokinetics; exposure to humans; or mode of action. References considered relevant to informing these areas were selected for further consideration during the preparation of this document. Table A-3 in Appendix 1 describes the criteria used to decide whether each reference will be further considered or excluded.

Backward searches (i.e., searches of citations to identified previously unidentified references) of selected key references (i.e., review articles or health assessments published from 2012 onwards) identified from the literature screening were employed to augment the database and website searches (Appendix 1, Table A-4).

Based on this screening, approximately 700 references were ultimately considered as potentially useful for the assessment of the health effects of PFOS. Some references that were excluded as not being relevant to hazard identification, toxicity values derivation, or human exposure were used to inform supporting sections of this assessment, such as the "Background Information" and "Environmental Sources, Fate, and Occurrence" sections.

Additional references, including general background references (e.g., review articles) not specific to PFOS but germane to relevant scientific issues, guidance documents, and other health assessments not identified from the above literature search, were identified based on previous knowledge or *ad hoc* literature or website searches.

Figure A-1 in Appendix 1 summarizes the results of the literature search and screening.

BACKGROUND INFORMATION

PFOS is a member of a class of anthropogenic chemicals called perfluorinated chemicals (PFCs) or perfluoroalkyl acids (PFAAs). These chemicals have structures consisting of a totally

fluorinated carbon chain of varying length and a charged functional group, such as carboxylate or sulfonate (Lindstrom et al., 2011). PFCs are members of a larger class of compounds, polyand perfluoroalkyl substances (PFAS) which also includes fluorinated compounds with structures that differ from PFCs (Buck et al., 2011). The eight- carbon PFCs, PFOA and PFOS, were the most extensively investigated compounds in earlier studies, while current research focuses on a wider range of PFAS.

Physical and Chemical Properties

ATSDR (2015) and USEPA (2016a) have summarized the physical and chemical properties of PFOS. The backbone of the PFOS molecule is an eight-carbon chain that is fully fluorinated except for a terminal carbon, two of whose available bonds are fluorinated and the remaining bond of which forms a sulfonate. PFOS has a molecular weight of 500.03 Da, and its molecular structure of PFOS:

The fluorocarbon portion of the molecule is hydrophobic and lipophilic. However, the sulfonate end of the molecule is hydrophilic. The combination of these properties allows PFOS to bridge lipid/water interfaces and to act as a surfactant. PFOS is a fully fluorinated sulfonic acid. Because carbon-fluorine bonds are among the strongest found in organic chemistry due to fluorine's electronegativity, PFOS and other PFCs are extremely stable and resistant to chemical reactions. Therefore, PFOS is extremely stable in the environment, and it is resistant to biodegradation, direct photolysis, atmospheric photooxidation, and hydrolysis. Its melting temperature is $\geq 400^{\circ}$ C. The potassium salt of PFOS is relatively soluble in water (570 mg/L (ATSDR, 2015); 680 mg/L (USEPA, 2016a). Its vapor pressure is very low, and has been reported variously as 2.48 x 10^{-6} mm Hg at 20° C (ATSDR, 2015) and 2.0 x 10^{-3} mm Hg at 25° C (USEPA, 2016a). The octanol-water partition coefficient (log K_{ow}) for PFOS is not measurable (USEPA, 2016b). Its p K_a is reported as <1 (PubChem, 2017).

Production and Use

The main worldwide producer of PFOS began production of "PFOS equivalents" (PFOS and/or starting materials such as perfluorooctane sulfonyl fluoride [POSF] that are used to produce to PFOS) in 1949 and completed phasing out the manufacture of these compounds in 2002 (Lindstrom et al., 2011). In 1994 and in 2002, the U.S. production of PFOS as reported in the USEPA Inventory Update Rule was 10,000-500,000 lbs (ATSDR, 2015). USEPA has also taken several actions (Significant New Use Rules; SNURs) to require EPA notification and review of the manufacture or import of a number of chemicals that related to PFOS or can degrade to PFOS, with exceptions for "a few specifically limited, highly technical uses of these chemicals for which no alternatives were available, and which were characterized by very low volume, low exposure, and low releases." (USEPA, 2017). As of the 2015 ATSDR review, the only country still producing PFOS was China.

Many of the uses of PFOS stem from its surfactant properties and from its ability to repel both water and fats/oils. The USEPA (2016a) reports the following as among the significant uses of PFOS:

Stain/water repellants on clothing, bedding materials, upholstered furniture, carpets, and automobile interiors (e.g., ScotchGardTM); these materials can be a particularly important exposure route for infants and children because of their hand-to-mouth behaviors.

- Metal plating and finishing (continuing use)
- AFFF (continuing use; used for firefighting)
- Photograph development (continuing use)
- Aviation fluids (continuing use)
- Semiconductor industry
- Flame repellants
- Food containers and contact paper
- Oil and mining
- Cleaning products
- Paints, varnishes, sealants
- Textiles and leather

Of particular note on this list, is the use of PFOS in AFFF. Whereas the U.S. no longer produces or imports PFOS-based AFFF, the use of existing stocks of these foams continues (Seow, 2013). As discussed in the section on Environmental Fate and Transport, discharge of AFFF to the environment is a major source of PFOS drinking water contamination.

GUIDANCE AND STANDARDS DEVELOPED BY USEPA AND OTHER STATES

USEPA Drinking Water Health Advisory

In May 2016, the USEPA Office of Water finalized a drinking water Health Advisory for PFOS of 70 ng/L (USEPA, 2016a). This Health Advisory is intended to apply to both lifetime exposure and short-term exposure. It replaces the earlier 2009 USEPA Office of Water (USEPA, 2009) Provisional Health Advisory for PFOS of 200 ng/L which was intended to protect for "short-term exposure" (defined by the USEPA Integrated Risk Information System (IRIS) as up to 30 days; USEPA, 2011a).

USEPA (2016c) also finalized a Health Advisory for PFOA of 70 ng/L, and USEPA (2016d) states that the total combined concentration of PFOS and PFOA in drinking water should not exceed 70 ng/L.

A detailed discussion of the basis for the USEPA (2016a) Health Advisory for PFOS and a comparison with the recommended DWQI Health-based MCL are provided in Appendix 2. In summary, the USEPA Health Advisory is based on a Reference Dose (RfD) of 20 ng/kg/day based on decreased neonatal body weight in the F₂ generation (Luebker et al., 2005a). The

default Relative Source Contribution factor of 20% was used to account for non-drinking water exposures. The USEPA Health Advisory uses a drinking water consumption rate of 0.054 L/kg/day, based on the 90th percentile for lactating women, which is higher than the default consumption rate based on adult exposure factors.

Figure 1 shows the predicted increases in serum PFOS levels from ongoing exposure in drinking water at the USEPA Health Advisory (70 ng/L) and the Health-based MCL (13 ng/L) recommended in this document. Predictions based on both average (0.016 L/kg/day) and upper percentile (0.029 L/kg/day) drinking water ingestion rates are shown. A clearance factor (1.4 x 10⁻⁴ L/kg/day) developed by USEPA (2016d) to relate human PFOS exposures to human serum PFOS levels was used to predict the increases in serum PFOS from exposures to these levels in drinking water. With average water consumption, ongoing exposure to 70 ng/L (the USEPA Health Advisory) is predicted to increase serum PFOS by 13.8 ng/ml, a 3.7-fold increase from the U.S. general population (NHANES) median of 5.2 ng/ml (CDC, 2017). With upper percentile water consumption, the increase in serum PFOS level from 70 ng/L is predicted as 25.1 ng/ml, resulting in a 5.8-fold increase from the general population (NHANES) median.

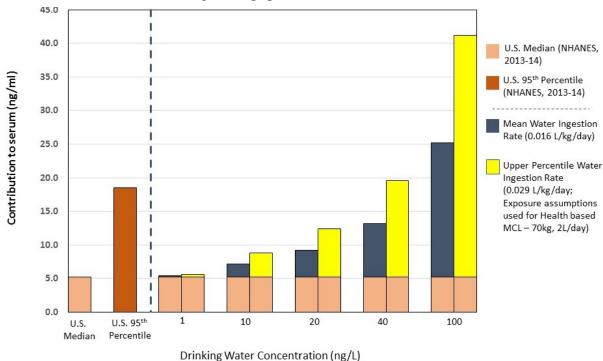


Figure 1. Increases in the median U.S. serum PFOS concentration (right of dotted line) predicted from mean and upper percentile consumption of drinking water for PFOS concentrations in drinking water at the Health-based MCL (13 ng/L) and the USEPA Health Advisory (70 ng/L) levels, as compared to U.S median and 95th percentile serum PFOS levels (NHANES, 2013-14). Mean and upper percentile water ingestion rates are based on consumers of community water (USEPA, 2011b). The upper percentile consumption rate is between the 75th and 90th percentile.

Guidance and standards of other states

Vermont has adopted drinking water and ground water standards (Vermont DEC, 2017) for PFOS, PFOA, and the total of the two compounds of 20 ng/L. These Vermont values are based

on the Reference Dose (RfD) of 2 x 10⁻⁵ mg/kg/day from the draft USEPA (2014) PFOS Health Advisory (which is the same as the RfD in the final USEPA [2016a] PFOS Health Advisory), drinking water exposure assumptions for a child less than 1 year of age (instead of default adult exposure assumptions), and the default Relative Source Contribution (RSC) factor of 20%.

Minnesota Department of Health (2017) has updated its earlier Health Risk Limit (HRL) for PFOS in drinking water to 27 ng/L. This value is based on a Reference Dose of 5.1 ng/kg/day and exposure modeling for breast-fed and formula-fed infants. The Reference Dose was derived by incorporation of an additional database uncertainty factor of 3, for potentially more sensitive immunotoxic effects, into the USEPA PFOS Reference Dose which is based on decreased offspring weight as described above.

Several other states use the USEPA (2016) Health Advisory of 70 ng/L for PFOS, PFOA, or the total of both compounds as drinking water guidance or have adopted it as an enforceable standard.

ENVIRONMENTAL FATE, TRANSPORT, AND OCCURRENCE

Environmental Fate and Transport

PFOS and other perfluorinated compounds are found in many environmental media (e.g. drinking water, surface water, groundwater, air, sludge, soils, sediments, outdoor and indoor dust, and ice caps) in locations around the world including remote polar regions (Lau et al., 2007). PFOS in these environmental media arises from discharges of both PFOS and precursors that can convert to PFOS in the environment (Paul et al., 2017). Because of the extreme stability of their carbon—fluorine bonds, PFOS and other PFCs are extremely resistant to degradation in the environment and thus persist indefinitely (Buck et al., 2011; Lindstrom et al., 2011). Although the production of PFOS and its starting materials (e.g., perfluorooctanesulfonyl fluoride, POSF) were voluntarily phased-out by the major global manufacturer of PFOS (USEPA 2000a), environmental contamination and resulting human exposure to PFOS are anticipated to continue for the foreseeable future due to its environmental persistence, formation from precursor compounds, and continued production by other manufacturers.

PFOS has been found in soil, surface water, and groundwater near fluorochemical manufacturing facilities and disposal sites (USEPA, 2016a). Similarly, PFOS contamination has been observed in soil, surface water, and groundwater near sites where AFFF was used, such as civilian and military airports, industrial sites, and firefighting training facilities (Health Canada, 2016; USEPA, 2016a). Wastewater treatment plants are another source of PFOS to the environment as PFOS has been detected in treatment plant effluent and receiving waters (Health Canada 2016; USEPA, 2016a). Additionally, the land application of PFOS-containing biosolids from wastewater treatment plants has resulted in the contamination of agricultural fields and nearby surface and well water (USEPA, 2016a).

Two major pathways have been proposed for long-range transport of PFOS and other perfluorinated compounds to remote locations worldwide, including the Arctic (Figure 2; Lau et al., 2007, 2012; Butt et al., 2010). The relative contributions of each of these pathways are not known. The first pathway involves the atmospheric transport of volatile precursors such as

perfluorinated sulfonamide alcohols, followed by oxidation of the precursors to PFOS and other perfluorinated compounds which are then deposited onto the land or the water. The second pathway involves long-range aqueous transport of emitted perfluorinated sulfonates such as PFOS in their anionic forms to remote locations by currents on the ocean's surface.

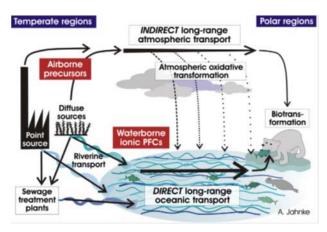


Figure 2. Major transport pathways of perfluorinated compounds to the Arctic (and other remote locations), by Annika Jahnke (Butt et al., 2010)

Perfluorinated compounds are also found in wildlife (fish, birds, mammals) in studies from many locations throughout the world including in remote polar regions. PFOS and long chain perfluorocarboxylates (e.g., PFNA; perfluoroundecanoic acid, C11; perfluorotridecanoic acid, C13) generally predominate in wildlife in remote locations (Butt et al., 2010). PFOS and other PFCs with eight or more fluorinated carbons (e.g. PFNA) are considered to be bioaccumulative in fish, while those with seven or fewer fluorinated carbons (e.g. PFOA; perfluorohexane sulfonate, PFHxS) do not bioaccumulate signficantly (Martin et al., 2003; Conder et al., 2008). Additionally, PFOS is more bioaccumulative than the perfluorocarboxylate of the same fluorinated carbon chain length (i.e., PFNA) (Conder et al., 2008). In fish, PFOS is the PFC found most frequently and at the highest concentrations (Houde et al., 2011), although long chain perfluorocarboxylates are frequently reported. USEPA conducted a national study of PFCs in fish from 164 urban rivers in 38 states in 2008-09 (Stahl et al., 2014). PFOS was detected (>5.35 ppb) in 70% of 162 composite samples of 682 fish (skin-on fish fillets; 25 species represented with the majority smallmouth bass, largemouth bass, and channel catfish). The highest level detected was 127 ppb. PFOS levels in fish can be extremely high (i.e. > 9000 ppb; 9 ppm) in locations impacted by major contamination (e.g. Wurtsmith AFB, MI - MDHHS, 2015; Barksdale AFB, LA - Lanza et al., 2017).

Occurrence in drinking water

PFOS and other PFCs occur in raw and finished drinking water from both groundwater and surface water sources in New Jersey, other parts of the United States, and nations around the world (reviewed by Mak et al., 2009; Post et al., 2013; Hu et al., 2016). As discussed above, sources of PFOS in drinking water can include discharges from industrial facilities, release of AFFF, wastewater treatment plant effluent, and contaminated biosolids applied to agricultural land.

PFOS and other PFCs are not effectively removed from drinking water by standard treatment

processes such as coagulation/flocculation, sand filtration, sedimentation, medium-pressure ozonation, chloramination, and chlorination. However, PFOS and other PFCs can be removed from drinking water by granular activated carbon (GAC) or reverse osmosis (Rumsby et al., 2009, Tagaki et al., 2011; Eschauzier et al., 2012; Appleman et al., 2014; DWQI, 2015b). Therefore, unless specific treatment for removal of PFCs is in place, concentrations of PFOS and other PFCs detected in raw drinking water are representative of concentrations in finished drinking water (Post et al., 2013).

Occurrence in New Jersey drinking water

Considerable information is available on the occurrence of PFOS and other PFCs in New Jersey public water systems (PWS). This includes data from 53 PWS included in two NJDEP occurrence studies of PFCs, substantial additional data submitted to NJDEP by PWS and other parties, and data from the nationwide USEPA Unregulated Contaminant Monitoring Rule 3 (UCMR3) survey. For the two NJDEP occurrence studies and most of the additional data submitted to NJDEP, analysis of samples was performed by certified laboratories with Reporting Levels (RLs) that were generally 4-5 ng/L or lower. To the knowledge of the Health Effects Subcommittee, statewide drinking water studies of PFOS with sensitive RLs such as these have not yet been completed in states other than New Jersey. In contrast, the RL for PFOS in USEPA UCMR3 is much higher (40 ng/L).

NJDEP studies of occurrence in New Jersey public water systems

Following detection of PFOA in a New Jersey PWS at up to 190 ng/L in a groundwater source and up to 64 ng/L in tap water, two statewide studies of the occurrence of PFOA, PFOS, and other PFCs in drinking water were conducted by NJDEP in 2006 and 2009-10. The 2006 study tested 23 PWS for PFOA and PFOS, and the 2009-10 study tested 33 additional PWS for PFOA, PFOS, and eight other PFCs (NJDEP, 2007b; NJDEP, 2014; Post et al., 2009a; Post et al., 2013).

The 2006 NJDEP study included 29 samples of raw and/or finished water from 23 NJ PWS including 14 with groundwater sources, 8 with surface water sources, and one using both groundwater and surface water. Of the PWS in this study, PFOS was detected in both surface water and ground water sources, with the highest detected concentration of 19 ng/L. It was found in 7 of 23 systems (30%) at or above the RL (4 ng/L), and in 6 of 23 systems (27%) below the RL. In this study, PFOA was detected (>4 ng/L) more frequently (65% of PWS) than PFOS (NJDEP, 2007; Post et al., 2009a).

The 2009-2010 NJDEP study tested raw water from 30 PWS for PFOA, PFOS, and 8 other PFCs. The sites for this study were chosen for geographic diversity, representing 19 of NJ's 21 counties. The study included 18 PWS with groundwater sources (17 unconfined, one confined) and 12 PWS with surface water sources. One or more PFC was detected (>5 ng/L) at 21 sites (70%), with the number of individual compounds detected varying from one (in 8 samples) to a maximum of 8 in one sample. PFOS was found in 8 of 29 PWS sampled (28%), including in 5 of 18 ground water sources (28%) at up to 12 ng/L and 3 of 11 surface water sources (27%) at up to 43 ng/L. As in the 2006 study, PFOA was the most commonly detected PFC (55% of the PWS tested).

NJDEP database of PFCs in New Jersey public water systems

The NJDEP Division of Science, Research, and Environmental Health maintains an internal database of PFC results from NJ PWS including the two NJDEP occurrence studies, additional raw and finished water data submitted to NJDEP by PWS and other parties, and detections from UCMR3 data. As of January 2016, the database included 1035 samples (423 raw water, 549 finished water, and 63 distribution system) from 282 sampling locations in 80 PWS (including 72 PWS with data from NJDEP studies and/or submitted to NJDEP, and 8 additional PWS with PFC detections in UCMR3). Of these samples, 374 were analyzed for only PFOA and PFOS, and 661 were analyzed for a broader suite of PFCs.

Table 1. PFOS concentration in raw or finished water from PWS							
included in NJDEP database*							
PFOS Concentration (ng/L) Number of PWS % of PWS							
ND**	44	57.89%					
RL-<10**	14	18.42%					
10-<20**	8	10.53%					
20-<40**	3	3.95%					
>40	7	9.21%					

^{*}Data shown are highest concentration found in raw or finished water from the PWS. Levels in finished water from some water supplies included may be lower because several raw water sources are blended in the treatment plant.

Comparison of NJ occurrence to nationwide UCMR3 data and studies from other nations

Data on PFOS in PWS in New Jersey and nationwide is available through the USEPA UCMR3. Under UCMR3, nationwide monitoring of finished water for 30 unregulated contaminants, including PFOS and five other PFCs, was conducted in 2013−2015 by all large PWS (serving more than 10,000 people) and 800 representative smaller PWS (serving less than 10,000 people) (USEPA, 2012b). UCMR3 data therefore provide useful information on occurrence of PFCs in NJ in comparison to the rest of the United States. However, comparison of the UCMR3 PFC data with other New Jersey PFC occurrence data is complicated by the fact that the UCMR3 RLs for PFOS (40 ng/L) and other PFCs (generally 10-90 ng/L) are much higher than the RLs for other PFC data in the NJDEP database (generally ≤5 ng/L).

UCMR3 monitoring in New Jersey includes all 165 large community PWS and a small number of small community PWS. A comparison of national versus New Jersey PFC data from UCMR3 is shown in Table 2 (data obtained from USEPA, 2016e). PFOS was detected (≥ 40 ng/L) in 6 of 175 PWS tested at locations throughout the state, including PWS using ground water and surface water sources. The occurrence frequency of PFOS in NJ PWS was 3.4%, which is slightly higher than the national frequency of 1.9%. In contrast, PFOA and PFNA were found much more frequently (5-10 fold) in NJ than nationally.

^{**}Reporting levels (RLs) vary among samples and range from 1-40 ng/L. Therefore, the percentage of PWS with RL-<10, 10-<20, 20-<40 may actually be higher than shown.

Table 2. New Jersey versus national UCMR3 PFC occurrence data as of January 2016							
					United States (other than NJ)		
Compound*	Level (RL) (ng/L)	Number of PWS	Number above RL	Percent above RL	Number of PWS	Number above RL	Percent above RL
PFOA	20	175	18	10.2 %	4734	90	1.9 %
PFNA	20	175	4	2.3 %	4734	10	0.2 %
PFHpA	10	175	6	3.4 %	4734	79	1.7 %
PFOS	40	175	6	3.4 %	4734	89	1.9 %
PFHxS	30	175	2	1.1 %	4734	53	1.1 %
PFBS	90	175	0	0 %	4734	8	0.2 %

^{*}PFHpA – perfluoroheptanoic acid (C7); PFBS – perfluorobutane sulfonate

Occurrence in NJ private wells

A statewide study of PFOS or other PFCs in New Jersey private wells has not been conducted. Information from the NJDEP Site Remediation Program shows that PFOS has been found at levels above the USEPA Health Advisory (total of PFOA and PFOS of 70 ppt), and above the recommended Health-based MCL (13 ng/L), in several private wells near New Jersey sites where groundwater has been contaminated by PFOS through discharge of AFFF.

HUMAN BIOMONITORING

Human biomonitoring studies show that exposure to PFOS and/or its precursors is ubiquitous in the U.S. and throughout the world. PFOS has a human half-life of several years and remains in the body for many years after exposure ends. Data on blood serum concentrations from the general population, communities with contaminated drinking water, and workers with occupational exposure are summarized below. PFOS is detected in human breast milk, amniotic fluid, and umbilical cord blood, demonstrating that exposure occurs during prenatal and postnatal development, and it has also been detected in human seminal fluid.

Blood serum

General population

PFOS and other long chain perfluorinated chemicals are persistent in the human body and are found ubiquitously in various world-wide populations. This topic was recently comprehensively reviewed by Kato et al. (2015). Through 2007-2008, PFOS was found in over 99% of a representative sample of the general U.S. population ages \geq 12 years old (Kato et al., 2011). PFOS was also detected in essentially 100% of blood samples from individuals living in Asia, Europe, and or South America (Kannan et al., 2004).

The U.S. Centers for Disease Control and Prevention (CDC) conducts an ongoing assessment of health and nutrition of adults and children in the U.S., the National Health and Nutrition Examination Survey (NHANES). NHANES generates data on demographic, socioeconomic, dietary, and health-related parameters as well as medical, dental, and physiological

measurements, and laboratory tests. The data collected from NHANES is intended to provide a cross-sectional view of selected health and nutrition data for the entire U.S. population. This is accomplished by a complex sampling scheme that begins with 15 nationwide counties identified on the basis of a series of characteristics and proceeds through selected areas in each county to individual selected households (CDC, 2016). Because the 15 counties are selected to be representative of pre-selected population and geographic characteristics rather than individual states, the aggregate data generated provide an estimate that is intended to be generalizable to the U.S. population, but is not necessarily specific to any given state (including New Jersey).

One component of NHANES has consisted of measurement of human exposure to selected environmental chemicals (CDC, 2017). Measurement of exogenous substances in human media is referred to as biomonitoring. This component analyzes blood and urine samples collected as part of the larger NHANES effort to determine the concentration of these chemicals using state of the art analytical methods and quality control procedures. Serum PFOS concentration data have been included since 1999. The most currently available NHANES serum PFOS data are from 2013-2014 (CDC, 2017). The 2013-2014 NHANES serum PFOS data are provided for total PFOS, linear (n-PFOS), and branched PFOS isomers. Unless otherwise indicated, PFOS serum concentrations discussed in this document refer to total PFOS. Because the population selected for NHANES is selected without reference to specific sources of PFOS exposure, it is assumed that serum PFOS concentrations reported by NHANES reflect general population level exposures. That is, they represent exposure to essentially ubiquitous levels of PFOS in the environment (e.g., from consumer products, food, soil, air, and water) and do not represent PFOS exposure from specific sources of release (e.g. industrial facilities that made or used PFOS; discharge of AFFF at airports, military bases, or fire training facilities). Table 3 presents a summary of the 2011-2012 and 2013-2014 data taken from the NHANES Fourth Annual Report on Human Exposure to Environmental Chemicals (CDC, 2017). In 2013-14, the median and 95th percentile serum PFOS concentrations were 5.2 ng/L and 18.5 ng/L, respectively.

Table 3. Total serum PFOS concentrations reported by NHANES for 2011-2012 and 2013-
2014 (CDC, 2017)

	al) (95% conf. interval)	90th Percentile (95% conf. interval)	95th Percentile (95% conf. interval)	Sample
84-6.82) 6.53 (5.99-7.13)	10.5 (9.78-11.1)	15.7 (14.7-17.5)	21.7 (19.3-23.9)	1904
50-5.52) 5.20 (4.80-5.70)	8.70 (7.90-9.40)	13.9 (11.9-15.5)	18.5 (15.4-22.0)	2165
70-4.68) 4.11 (3.48-4.65)	5.90 (5.14-7.25)	9.05 (6.49-10.8)	10.8 (8.52-14.2)	344
17-3.96) 3.60 (3.10-4.20)	5.20 (4.60-6.20)	7.80 (7.00-8.90)	9.30 (7.90-11.7)	401
24-7.20) 7.07 (6.65-7.52)	11.0 (10.4-11.9)	17.0 (15.3-18.5)	22.7 (20.4-24.8)	1560
70-5.81) 5.60 (5.10-6.00)	9.10 (8.20-10.2)	14.5 (12.9-16.1)	19.5 (15.8-23.0)	1764
19-8.70) 8.31 (7.35-9.15)	12.5 (11.4-13.5)	19.3 (15.7-21.4)	24.1 (22.2-28.5)	966
62-7.20) 6.40 (5.70-7.30)	10.2 (8.70-11.5)	15.5 (13.2-19.8)	22.1 (16.7-26.9)	1031
70-5.53) 5.27 (4.67-5.64)	8.57 (7.87-9.30)	12.5 (11.0-14.9)	17.5 (14.9-20.5)	938
60-4.35) 4.00 (3.60-4.60)	7.20 (6.40-7.70)	11.8 (9.70-13.6)	15.1 (13.9-17.3)	1134
07-5.64) 5.18 (3.92-6.33)	7.91 (6.18-9.48)	10.5 (8.50-12.6)	12.1 (10.0-14.4)	211
90-4.16) 3.70 (3.00-4.40)	5.20 (4.60-6.40)	8.80 (6.40-10.3)	10.8 (9.20-11.8)	332
41-7.46) 6.57 (5.71-7.65)	11.3 (9.74-13.9)	21.8 (13.9-31.3)	30.7 (21.6-45.1)	485
12-6.88) 5.30 (4.30-6.80)	10.2 (7.60-13.7)	17.4 (12.4-24.5)	24.5 (16.3-39.7)	455
15-7.32) 6.83 (6.07-7.73)	10.7 (9.89-12.2)	15.7 (14.8-18.1)	21.3 (18.7-23.5)	666
72-5.98) 5.70 (5.10-6.40)	8.90 (8.20-9.90)	14.1 (12.2-15.6)	18.0 (15.5-20.4)	861
86-5.55) 5.18 (4.41-6.19)	8.10 (6.64-9.78)	11.0 (9.96-12.6)	13.4 (11.5-16.1)	406
09-3.98) 3.70 (3.20-4.20)	5.50 (4.90-6.40)	8.80 (8.00-9.70)	10.8 (9.70-12.1)	537
80-8.68) 7.53 (5.96-9.25)	12.6 (10.8-17.0)	24.6 (19.1-33.3)	35.1 (26.4-42.3)	291
08-7.52) 6.30 (5.00-7.90)	13.2 (9.40-15.4)	23.8 (15.2-33.9)	33.6 (20.1-69.0)	234
-	09-3.98) 3.70 (3.20-4.20) 80-8.68) 7.53 (5.96-9.25) 08-7.52) 6.30 (5.00-7.90) ey year 11-12 is 0.2.	09-3.98) 3.70 (3.20-4.20) 5.50 (4.90-6.40) 80-8.68) 7.53 (5.96-9.25) 12.6 (10.8-17.0) 08-7.52) 6.30 (5.00-7.90) 13.2 (9.40-15.4)	09-3.98) 3.70 (3.20-4.20) 5.50 (4.90-6.40) 8.80 (8.00-9.70) 80-8.68) 7.53 (5.96-9.25) 12.6 (10.8-17.0) 24.6 (19.1-33.3) 08-7.52) 6.30 (5.00-7.90) 13.2 (9.40-15.4) 23.8 (15.2-33.9) by year 11-12 is 0.2.	09-3.98) 3.70 (3.20-4.20) 5.50 (4.90-6.40) 8.80 (8.00-9.70) 10.8 (9.70-12.1) 80-8.68) 7.53 (5.96-9.25) 12.6 (10.8-17.0) 24.6 (19.1-33.3) 35.1 (26.4-42.3) 08-7.52) 6.30 (5.00-7.90) 13.2 (9.40-15.4) 23.8 (15.2-33.9) 33.6 (20.1-69.0) bey year 11-12 is 0.2.

Figure 3 below presents the geometric mean serum PFOS concentration for the total NHANES (CDC, 2017) biomonitoring population from the NHANES biomonitoring data from 1999-2000; 2003-2004; 2005-2006; 2007-2008; 2009-2010; 2011-2012; and 2013-2014.

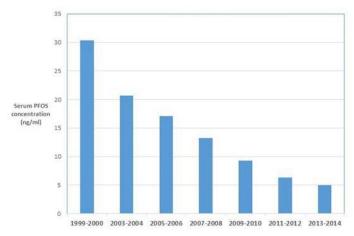


Figure 3. Geometric mean serum PFOS concentration as reported by NHANES by reporting cycle, 1999-2014.

Starting from the first PFOS serum data collected under NHANES in 1999, the geometric mean PFOS concentration for the total sample population has decreased continuously. The 2013-2014 value represents an approximately 84% decrease from 1999.

A similar pattern of decreasing serum PFOS concentrations over time was seen in three studies of American Red Cross blood donors in 2000-2001, 2006, 2010, and 2015 (Olsen et al., 2017). Each study included samples from 600-645 subjects from six locations throughout the U.S., with

an approximately equal number in each of five 10-year age categories (20-29 through 60-69 years of age) from each location. Age and sex-adjusted geometric means were 35.1 ng/ml in 2000-01, 14.5 ng/ml in 2006, 8.4 ng/ml in 2010, and 4.3 ng/ml in 2015. This represents an approximately 88% decrease between 2000-01 and 2015.

For perspective, a phase-out of PFOS production was completed in 2002 by the principal worldwide manufacturer of PFOS (ATSDR, 2015). However, manufacture of PFOS has continued in some locations, primarily in China (ATSDR, 2015). As discussed above, NHANES data are an estimate of the PFOS exposure in the U.S. as a whole and likely reflect relatively ubiquitous and non-specific sources of exposure. It is not clear to what extent they can be applied to any particular region or sub-population, including New Jersey. At present, PFOS biomonitoring studies have not been conducted in the New Jersey population.

Communities with drinking water exposure

As shown in Figure 1, continued exposure to even relatively low concentrations of PFOS in drinking water concentrations results in substantial increases in serum levels. The quantitative relationship between drinking water exposure and human serum PFOS levels is discussed in the Toxicokinetics section.

Mean and/or median PFOS serum levels were higher than in the general population in several communities with drinking water contaminated by PFOS from industrial discharge and waste disposal (MDH, 2013), contaminated biosolids applied to agricultural land (ATSDR, 2013), and use of AFFF (NH DHHS, 2015).

A recent study (Hurley et al., 2016) found substantially increased serum PFOS levels in individuals served by PWSs reporting detection of PFOS in UCMR3 monitoring. PFOS detections were relatively low, ranging from 41 ng/L (the UCMR3 RL=40 ng/L) to 156 ng/L, with a mean of 58 ng/L. The study group consisted of middle aged and older California women (n=1,333; 70% between 60 and 79 years of age). Of this group, 5.9% resided in a zipcode where a PWS reporting detection of PFOS in UCMR3 monitoring is located. The distribution of serum concentrations differed significantly (p = 0.0007) in those served by a PWS where PFOS was detected ("exposed") as compared to those served by a PWS without a detection ("unexposed"). The median serum PFOS concentrations in the "exposed" group was 29% higher (9.11 ng/ml) than in the "unexposed" group (7.08 ng/ml). The authors note that the contribution of drinking water to serum PFOS is actually likely to be greater than the increase reflected in the study results. Some subjects who were been classified as "exposed" because their PWS reported detection of PFOS may have received their drinking water from a point of entry (e.g. treatment plant) within the PWS that is not contaminated with PFOS. Additionally, the serum PFOS levels of some participants classified as "not exposed" may have been increased by PFOS in drinking water at concentrations below the UCMR3 RL of 40 ng/L.

Occupationally exposed workers

Serum PFOS levels in workers at facilities where PFOS or its starting material POSF were made or used were much higher than in the general population. Biomonitoring data from workers at such facilities were reviewed by Olsen (2015). Mean or median serum concentrations of several

hundred ng/ml were reported for some job categories at some facilities, with maximum serum concentrations of over 10,000 ng/ml (10 ppm).

Other human biological matrices

Seminal plasma

PFOS and other PFCs were found in human seminal plasma in a study of Sri Lankans. The mean and median PFOS concentrations were 0.118 and 0.103 ng/ml, respectively, and PFOS sermina plasma concentrations were significantly correlated with serum PFOS concentrations (Guruge et al., 2005).

Amniotic fluid

PFOS was detected in amniotic fluid in a study in the United States (Stein et al., 2012). The median blood serum:amniotic fluid concentration ratio was about 20:1.

Umbilical cord blood serum and breast milk

PFOS and other PFCs were detected in numerous studies of umbilical cord blood from the general population worldwide, as reviewed by Kato et al. (2015) and MDH (2017). The ratio of serum PFOS levels in cord blood:maternal blood in these studies was reported by Kato et al. (2015) as about 0.5:1, and MDH (2017) reported that the average ratio in studies reviewed was 0.42:1. These lower levels in cord blood than maternal blood for PFOS, are in contrast to PFOA, for which serum levels in cord blood and maternal blood were similar.

Breast milk

PFOS has been detected in human breast milk in studies from locations worldwide. ATSDR (2015) summarized data from studies from Massachusetts, Sweden, Germany/Hungary, and China published between 2006 and 2008. Concentrations in breast milk were generally similar in these studies from different parts of the world. PFOS was detected in almost all samples, with minimum concentrations in the four studies ranging from <32 - 60 ng/L, and maximums ranging from 360-639 ng/L.

SOURCES OF HUMAN EXPOSURE

The human body burden of PFOS results from exposure to both PFOS itself and to precursor compounds such as perfluorooctane sulfonamidoethanols (FOSEs) and perfluorooctane sulfonamides (FOSAs) used in consumer products that can be metabolized to PFOS. Sources of exposure to PFOS and/or its precursors include food, drinking water, treated fabrics (carpets, upholstery, and clothing), food packaging, house dust, and indoor air (USEPA, 2016a). Gebbink et al (2015) assessed the daily exposure to PFOS arising from PFOS and PFOS precursors and estimated that between 11 and 33% of daily PFOS exposure results from precursors that are metabolized into PFOS.

Food

Egeghy and Lorber (2011), as reviewed by USEPA (2016a), suggest that food may be the primary route of exposure to PFOS in the general U.S. population, and Gebbink et al. (2015) also

concluded that diet is the major pathway of exposure to PFOS. It appears that, in part, this is due to the historic use of PFOS in food packaging. D'Hollander et al. (2010), in a review of sources of human exposure to perfluorinated compounds note that among food items, the highest PFOS concentration was found in microwave popcorn (3.6 ng/g). They also note that in a Canadian study, a concentration of 2.7 ng/g was found in beef steak.

As mentioned above, PFOS is bioaccumulative in fish. It bioaccumulates in both freshwater and marine food chains, and is the PFC found most frequently in studies from worldwide locations. PFOS levels in fish can be extremely high (i.e. > 9000 ppb; 9 ppm) in locations impacted by major contamination (e.g. Wurtsmith AFB, MI. MDHHS, 2015; Barksdale AFB, LA. Lanza et al., 2017). Consumption of fish from such impacted waters can result in high exposures, and fish consumption advisories for PFOS have been issued by several states (ADPH, undated; MDH, 2008; MDHHS (2015); WDNR, 2011).

As reviewed by the USEPA (2016a), PFOS has been found in plants grown in contaminated soil. Available information suggests that PFOS levels in roots and shoots of plants are higher than in other compartments. Consumption of plants grown in soil contaminated with PFOS may serve as a source of exposure to PFOS.

House dust

Exposure to PFOS in house dust is believed to occur through the ingestion route (Egeghy and Lorber, 2011; Gebbink et al., 2015; Trudel et al., 2008). D'Hollander et al. (2010) discuss the occurrence of PFOS in house dust. Dust samples were generally collected from vacuum cleaner bags. The median PFOS levels from North Carolina and Ohio homes and day care facilities was 201 ng/g and the maximum level was 12,100 ng/g. Median levels of PFOS in house dust from Canada and western Europe cited by D'Hollander et al. (2010) ranged from 16-85 ng/g. Thus, house dust can also constitute an ongoing source of exposure. D'Hollander et al. (2010) suggest that PFOS in house dust in locations without specific sources of contamination can arise from perfluorinated compound-treated materials in the home such as stain resistant coatings on carpets and furniture. However, as shown by Su et al., (2016), in homes impacted by specific significant sources of perfluorinated compound release to soil and/or air, such as industrial releases, house dust concentrations and exposures from house dust can be much greater.

<u>Air</u>

PFOS has low volatility, and inhalation exposure is primarily to PFOS bound to aerosol particles (Trudel et al., 2010). Data on PFOS concentration in ambient air are very limited. EPA (2016a) cites data from summertime air sampling in Albany, New York showing a concentration of 1.7 pg/m^3 in the vapor phase and 0.6 pg/m^3 in the particulate phase.

Exposures from drinking water

As discussed in the <u>Biomonitoring</u> section (above), serum levels higher than those prevalent in the general population have been observed in communities with highly contaminated drinking water resulting from environmental discharges, as well as in communities with relatively low levels of PFOS in drinking water identified through UCMR3. As discussed in <u>Toxicokinetics</u> (below), continued exposure to even relatively lower drinking water concentrations can

substantially increase total human exposure, as indicated by serum PFOS levels.

PFOS exists in drinking water in its non-volatile anionic form, and the formation of inhalable water droplets during showering or bathing is minimal. Therefore, inhalation exposure is not expected to be significant from non-ingestion uses of drinking water such as showering, bathing, laundry, and dishwashing (USEPA, 2016f). In contrast, these are important exposure routes for volatile drinking water contaminants. Although dermal absorption of PFOS has not been evaluated, dermal absorption of the related compound PFOA during showering, bathing, or swimming is not expected to be significant compared to exposure through ingestion, based on analysis by NJDOH (2014) using skin permeability data from Franko et al. (2012).

Summary of sources of human exposure to PFOS

In the absence of the influence of specific sources of PFOS release to the environment, it appears that food and possibly house dust (reflecting consumer products use and breakdown) are the primary sources of human exposure to PFOS. For high end consumers of fish and specifically consumers of freshwater fish from contaminated waters, fish may be a particular source of PFOS in the diet. In communities with drinking water contaminated by PFOS, drinking water can be an important exposure source even if PFOS concentrations are relatively low. In locations near release of PFOS to the environment (e.g. from manufacturing facilities), house dust may be a source of significant PFOS exposure.

TOXICOKINETICS

Absorption

Data on PFOS oral absorption are limited. Chang et al. (2012) reports that in rats, a single oral dose of 4.2 mg/kg of radiolabeled PFOS was 99% absorbed based on whole body recovery. This dose is at least five orders of magnitude greater than the Reference doses derived for the candidate critical effects in this assessment. Thus, at these much smaller doses, oral absorption of at least 99% can reasonably be assumed. Consistent with this estimate, ATSDR (2015) cites an estimate of >95% absorption of radiolabeled PFOS in rats at the same gavage dose as in Chang et al. (2012) from unpublished data submitted to the USEPA. Despite the absence of additional data, it is reasonable to assume that PFOS is systemically absorbed in rodents and humans with close to 100% efficiency.

No pharmacokinetic data for inhalation of PFOS were located. However, USEPA (2016b) reports that an acute inhalation study conducted by Rusch et al. (1979) identified an LC₅₀ (concentration lethal to 50% of animals), indicating that PFOS is absorbed through inhalation. Additionally, ATSDR (2015) reports that "higher serum levels in [fluoropolymer production] workers compared to the general population probably reflects a predominant contribution from inhaled perfluoroalkyls."

ATSDR (2015) summarizes a dermal absorption study in which Johnson (1995a, 1995b) applied single doses up to 0.3 mg/kg of potassium PFOS and up to 20 µg/kg of the diethanolamine salt of PFOS to clipped, intact skin of rabbits. Total organic fluoride in the liver was not increased in treated animals compared to controls 28 days after dosing, indicating that dermal absorption was

not substantial.

Distribution

Transport and binding

PFOS binds strongly, but non-covalently to plasma (serum) proteins, including albumin, gamma-globulin and alpha globulin. USEPA (2016b) has summarized the information on the initial binding sites of PFOS to these plasma proteins. Chen and Gao (2009) report a binding constant of PFOS to human albumin of 2.2 x $10^4 \,\mathrm{M}^{-1}$ and a PFOS/human albumin molar ratio of 14. USEPA (2016b) cites an unpublished study by Kerstner-Wood, et al. (2003) indicating that, similar to the case with human serum, PFOS also binds strongly to serum proteins in rats and monkeys.

Organ distribution

Unlike many other biopersistent and bioaccumulative compounds, PFOS does not accumulate in adipose tissue. In humans and rodents, the highest concentrations of PFOS were found in liver. Pérez et al. (2013) analyzed PFOS concentrations in tissue samples from human autopsies of organ donors (n =20 subjects) in Catalonia, Spain. PFOS concentrations by tissue (in mean ng/g wet weight) were liver (102 ng/g) > kidney (75.6 ng/g) > lung (29.1 ng/g) > brain (4.9 ng/g).

In rats (Cui et al., 2008), following a 28-day exposure to 5 mg/kg/day, PFOS concentration was highest in liver > kidney > blood > lung > testis, spleen > brain. In male mice (Bogdanska et al. (2011)), following 5 days of exposure to 23 mg/kg/day PFOS through feed, the highest concentration was observed in the liver > lung > blood > whole bone.

Although the fraction of the absorbed dose that deposits in the brain is relatively low, the presence of PFOS in the brains of humans and rodents provides clear evidence that PFOS crosses the blood-brain barrier.

Sex differences

In human liver and serum samples from organ donors, there do not appear to be significant differences in tissue distribution between men and women, or by age (5-74 years old) (Olsen et al., 2003a). Based on 2013-2014 NHANES data (see Table 3), the geometric mean serum PFOS concentration in men (n = 1031) is 6.36 ng/ml compared to 3.96 ng/ml in women (n = 1134). It is not clear whether this reflects a sex dependent difference in toxicokinetics and/or a difference in exposure.

In cynomolgus monkeys (Seacat et al., 2002), following 183 days of exposure, serum PFOS concentrations were equivalent in males and females for exposure to 0.03 mg/kg/day. With higher levels of exposure (0.15 and 0.75 mg/kg/day), serum PFOS concentrations in males became somewhat higher than in females as the exposure time increased. However, even for the high dose, the difference at 26 weeks of exposure was only on the order of 10%.

In contrast to the monkey data discussed above, serum levels were much higher in female rats than male rats at the end of a study in which males and females were given the same doses of PFOS for 105 weeks. In this study, the serum and liver concentrations had decreased by 2-fold

or more at 105 weeks from the levels at the latest previous time point sampled (14 weeks or 53 weeks, depending on the dose). In contrast, this striking increase in serum levels at 105 weeks was not observed in females. This decrease in males, but not females, is consistent with the age dependent chronic progressive loss of kidney function known to occur in male rats (Goldstein et al., 1988; Hard et al., 2013) and is not necessarily associated with the PFOS exposure of the rats in this study.

Metabolism

Because of its carbon-fluorine bonds, PFOS is chemically stable and does not undergo chemical reactions even under severe conditions. Therefore, PFOS is not metabolized, as reviewed by USEPA (2016b).

Elimination

Routes of elimination

Humans

Data on the mechanism of PFOS elimination are sparse and PFOS-specific mechanisms have not yet been established (USEPA, 2016b). It appears reasonable that the organic anion transporter (OAT) family of proteins that function in the renal tubular reabsorption processes for PFOA also function in the reabsorption of PFOS. ATSDR (2015) has summarized the human data on the routes of clearance and elimination of PFOS. With the exceptions of lactation and menstrual blood loss, PFOS is cleared primarily through urine. However, in humans, the PFOS bound to serum proteins is not filtered by the kidneys, and only about 1% of the serum PFOS is unbound and available for glomerular filtration. Of this, less than 0.1% of the glomerular filtered PFOS is excreted in the urine per day. This indicates substantial renal tubular reabsorption. A significant fraction of the PFOS in the body is contained in the bile. However, the bile clearance rate greatly exceeds the total body clearance rate. This occurs because bile PFOS is reabsorbed in the gastrointestinal tract with an estimated efficiency of 97%. This suggests that biliary excretion in the feces may also play a minor role in PFOS elimination.

Loss of serum through menstruation can be a significant route of elimination of PFOS in younger (as opposed to post-menopausal) women. This is suggested both by the simple calculation of fractional serum loss, and pharmacokinetic modeling, (USEPA, 2016b). Although NHANES data indicate that the PFOS serum concentration is higher in men compared to women in the U.S. (see Table 3), it is unclear to what extent this reflects differences in exposure versus sex differences in half-life of elimination.

As reviewed by ATSDR (2015), transfer from serum to breast milk is a substantial route of elimination for perfluorinated compounds in general. Specifically, lactation reduces the maternal serum concentration of PFOS by 2-3% per month of breastfeeding.

Rats

Chang et al. (2012) compared the fraction of the total radiolabeled single IV dose (4.2 mg/kg) of PFOS administered to male Sprague-Dawley rats that was recovered in urine and feces during 89 days post-dose. Although urine was the predominant route of elimination (30.2% of the dose),

feces (12.6% of the dose) was a significant route of elimination. In contrast, 48 hours after a single oral PFOS dose of 4.2 mg/kg, a larger fraction of the total dose (3.24%) was recovered in the feces compared to urine (2.52%). Given the very high rate of absorption of PFOS from the rat GI tract (see above), PFOS recovered in the feces presumably reflects absorbed PFOS eliminated via the bile.

Mice

Chang et al. (2012) similarly compared the fraction recovered in urine and feces after a single oral dose (1 or 20 mg/kg) of radiolabeled PFOS was given to male and female CD-1 mice. Although the authors did not report the cumulative recovery, the graphs of percent recovery over time indicate a similar distribution to that observed in the rats in this study.

Thus, in rodents, in contrast to humans, feces, via bile, appears to be a significant route of elimination and may contribute to the shorter half-life of PFOS in rodents compared to humans.

Half-life of elimination

USEPA (2016b) has summarized the available data for the half-life of elimination of PFOS by species. This is presented in Table 4.

Source	Human	Monkey	Rat	Mouse	Strain
Spliethoff et al. 2008	4.1 years	ND	ND	ND	Infants
3M Company 2000	4-8.67 years	ND	ND	ND	Occupational
Olsen et al. 2007	5.4 years	ND	ND	ND	Occupational
Butenhoff and Chang 2007	ND	ND	48.2 days (M) 46.9 days (F)	ND	SD; 28 days oral
Chang et al. 2012	ND	ND	39.8 days (M) 66.7 days (F)	ND	SD; single oral dose
	ND	ND	ND	39.6 days (M) 34.2 days (F)	CD-1; single oral dose
	ND	132 days (M) 110 days (F)	ND	ND	Cynomolgus; single IV dose
Seacat et al. 2002	ND	200 days (M/F)	ND	ND	Cynomolgus; oral, 182 days

Regarding the human data in Table 4, it should be noted that the Spliethoff et al (2008) data are based on changes in population levels in infant PFOS blood concentration over time and do not directly reflect longitudinal measurements in individuals. Additionally, the estimates of human half-life in adults shown in the table are derived from occupational cohorts that are mostly composed of retired workers and contain few women.

A more recent study by Li et al. (2018) provides estimates of the half-life of PFOS elimination in a community from Ronneby, Sweden, with drinking water contaminated by AFFF. The PFOS half-life was estimated based on decline of serum PFOS levels after exposure to the contaminated drinking water ended. It

should be noted that the authors state that future reanalysis of all samples from the same individual in the same analytical batch will provide more definitive results. The study included 106 subjects, ranging from 4 to 83 years old at baseline, of which 20 were men and 30 were women 15-50 years old. The median serum PFOS concentration at the initial collection was 345 ng/ml (55% of the median in the retired worker study by Olsen et al., 2007). The estimates of half-life for all subjects, as well as for men and women 15-50 years old, are presented separately. The mean half-life estimates were 3.4 years for the entire study population, 3.1 years for women age 15-50 (95% CI = 2.7-3.7 years), and 4.6 years for men age 15-50 (95% CI = 3.7-6.1 years). Some subjects had very long half-lives of 8 ->10 years. Although the men in Olsen et al. (2007) were all older than 50 years of age, the mean half-life of 4.6 years for men age 15-50 years from Li et al. (2018) is in reasonable agreement with the mean half-life of 5.4 years from Olsen et al. (2007). Additionally, the 95% CI of 3.9-6.9 years from Olsen et al. (2007) overlaps with the 95% CI of 3.7-6.1 years for men age 15-50 from Li et al. (2018).

Because of its long half-life of several years, PFOS remains in the human body for many years after exposures cease. Because of the large variation in half-lives, the internal dose resulting from a given administered dose varies widely among species. For this reason, interspecies (e.g. animal-to-human) comparisons are made on the basis of internal dose, as indicated by serum level, rather than administered dose.

Because PFOA is very rapidly eliminated in female rats with a half-life of 2-4 hours, the rat is not an ideal model for evaluation of developmental effects of PFOA (DWQI, 2017). In contrast, PFOS is slowly excreted in female rats, and both rats and mice are suitable models for evaluation of developmental effects of PFOS.

Toxicokinetics relevant to developmental exposure

Summary

It is important to consider toxicokinetics relevant to developmental exposures of PFOS since PFOS causes developmental toxicity in experimental animals (see <u>Health Effects</u> section below).

Offspring of rodent dams dosed with PFOS during gestation are exposed *in utero* and postnatally through breast milk. In humans, PFOS has been measured in amniotic fluid, maternal serum, umbilical cord blood, and breast milk. PFOS concentrations are lower in umbilical cord blood serum, reflective of serum levels in the newborn, than in maternal serum. PFOS exposure in breast-fed infants is greatest during the first few months of life because both PFOS concentrations in breast milk and the rate of fluid consumption are highest during this time period. As a result, serum PFOS concentrations in breast-fed infants increase several-fold from levels at birth within the first few months of life. Exposures to infants who consume formula prepared with contaminated water are also highest during this time period. These greatly elevated exposures during the first months of life are of special concern because the neonatal period may be a sensitive time period for the toxicological effects of PFOS.

Trans-placental transfer

Trans-placental transfer of PFOS occurs in humans, as demonstrated by the presence of PFOS in cord blood and by studies comparing maternal and cord blood PFOS concentrations. The PFOS concentration in the cord blood, on average, is lower than in maternal blood, although the ratio

between levels in cord blood and maternal blood varies among individuals. A recent review of the current literature (Kato et al., 2015) concluded that, overall the serum PFOS levels in cord blood were about 50% of the concentration in maternal blood in these studies. Zhang et al. (2013) found that in paired maternal blood and cord blood samples, the cord blood concentration of PFOS was, on average, 21% of the maternal blood concentration at delivery, and the correlation coefficient was 0.9. Fei et al. (2007) found a correlation coefficient of 0.72 comparing cord blood and second trimester maternal blood PFOS concentrations. On average, the cord blood PFOS concentration was 29% of the first trimester maternal blood concentration and 34% of the second trimester maternal concentration.

Trans-placental transfer of PFOS also occurs in rodents. In contrast to humans, it appears that fetal serum concentrations of PFOS in rats and mice are equal to or greater than maternal serum concentrations. Luebker et al. (2005a) found a variable ratio on GD 20 between rat maternal and fetal serum PFOS concentrations for maternal gestational doses between 0.1 and 3.2 mg/kg/day. For three of the four doses, the fetal/maternal ratio was 2.0-1.1. However, for an intermediate maternal dose of 1.6 mg/kg/day, the ratio was 0.74. Chang et al. (2009) found fetal maternal ratios on GD 20 of 2.3, 1.7 and 1.2 for maternal gestational PFOS doses of 0.1, 0.3 and 1.0 mg/kg/day, respectively. In mice, Borg et al. (2010) comparing maternal and fetal blood PFOS concentrations following a single maternal dose of 12.5 mg/kg on GD 16, found a mean fetal/maternal ratio of 2.3 on GD 18 and 1.1 on GD 20. For both rats and mice, it is not clear how, or to what extent the maternal/fetal serum (blood) ratio varies by maternal dose and/or length of gestation. Maternal-to-fetal transfer of PFOS results in a reduced maternal body burden during gestation under conditions of constant exposure.

Exposure to infants through breast milk and infant formula

As mentioned in the <u>Biomonitoring</u> section above, PFOS is detected in human breast milk worldwide. Factors which may potentially affect the concentration of PFOS in breast milk include whether the mother has previously nursed other infants and how soon after birth the sample is taken (Tao et al., 2008a; Haug et al., 2011; Thomsen et al., 2010). Thomsen et al. (2010) found that average PFOS breast milk concentrations were highest initially and decreased by about 3.1% per month, or about 37% during the first year of breast feeding, presumably due to decreased maternal body burden resulting from excretion into breast milk.

PFOS is also transferred to offspring through breast milk in rodents, as shown by Luebker et al. (2005a). This study used a cross-fostering design in which litters from treated and untreated dams were fostered after birth, resulting in four treatment groups: untreated dam with unexposed pup, treated dam with unexposed pup, untreated dam with pup exposed during gestation, and treated dam with pups exposed during gestation. For treated dams with a serum PFOS concentration at the end of lactation of 83 μ g/ml, and pups born to unexposed dams (litter average), the pup:maternal PFOS serum ratio was 0.27.

Minnesota Department of Health (MDH, 2017) reviewed the current literature on the relationship between PFOS concentrations in maternal serum and breast milk. They found that the mean breast milk:serum ratios reported in these studies ranged from 0.018 to 0.026, with an average among studies of 0.013 (i.e. 1.3:100 or 2.6:200). Based on a breast milk:maternal serum ratio

and a serum:drinking water ratio of 200:1 or greater (discussed below), the initial PFOS concentration in breast milk is expected to be greater the concentration in the maternal drinking water source (See similar analysis for PFOA in Post et al., 2012 and DWQI, 2017).

Exposures to infants to PFOS from breast milk or formula are higher than in older individuals exposed to the same concentration of PFOS in drinking water. Mean breast milk consumption is 150 ml/kg/day during the first post-partum month when PFOS levels in breast milk are highest (Thomsen et al., 2010), and it is 83 ml/kg/day from 6-12 months of age (USEPA, 2008). Similarly, the mean drinking water intakes in infants who consume drinking water (e.g. in formula prepared with water) are 137 ml/kg/day from birth to 1 month of age, and 53 ml/kg/day at 6-12 months of age (USEPA, 2011b). These fluid intakes are much higher than the mean drinking water consumption rates in lactating women, 26 ml/kg/day (USEPA, 2011b), and the general population (11 years of age or older), 13 ml/kg/day (USEPA, 2008). Although breast milk or formula consumption on a body weight basis decreases as the infant gets older, it remains much higher than adult water consumption throughout infancy.

As noted above, serum PFOS levels are generally lower in newborns than in their mothers. Several studies, summarized below, have consistently demonstrated that serum PFOS concentrations in breast-fed infants increase by several fold during the first few months of life, presumably because both breast milk PFOS concentrations and intake of breast milk on a body weight basis are highest during this time period. Infants fed with formula prepared with contaminated drinking water also receive the greatest exposures during the first few months of life because the rate of fluid intake is highest then.

Serum PFOS levels were measured in umbilical cord blood at delivery and at 6 month and 19 months of age in infants from the German general population (Fromme et al., 2010). Average body burdens, as indicated by serum levels, increased by several-fold from birth to 6 months in most infants, as a result of exposure through breast milk. Levels generally declined between 6 months and 19 months, a time point at which breast feeding had stopped or was decreased, but generally remained higher at 19 months than at birth (Figure 4).

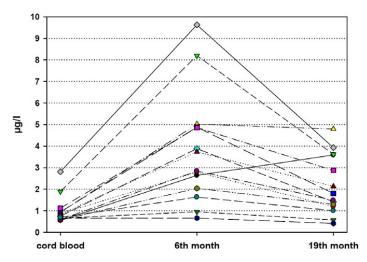


Figure 4. PFOS concentration in cord blood and blood collected in infants around six and nineteen months after birth (Fromme et al., 2010)

Similarly, a study of Faroese infants (n= 80) with serum PFOS data at birth and 11, 18, and 60 months estimated an increase in serum PFOS concentrations of about 29% per month during the period of exclusive breast feeding (median of 4.5 months in the study group) and about 4% per month during the period of partial breast feeding (median of 4 additional months) (Mogensen et al., 2015). Serum PFOS concentration increased little or not at all during periods when the infants being studied were not breast fed (e.g. were formula-fed); presumably, the drinking water in this location was not contaminated with PFOS. Data for 12 infants from the study are shown in Figure 5.

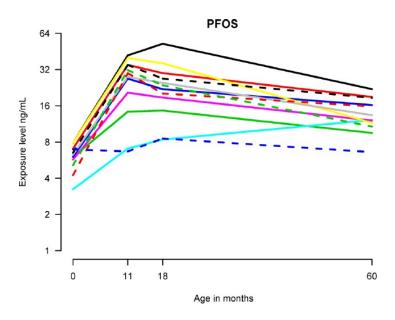


Figure 5. Serum PFOS concentrations over time in 12 infants from Mogensen et al. (2015). Data shown by dotted blue line are from an infant who was not breastfed.

Finally, Verner et al. (2016a,b) developed a pharmacokinetic model that predicts PFOS doses and plasma levels in breastfed infants and children, and their mothers. Monte Carlo simulations were used to predict the distribution of child:mother ratios for doses and plasma levels starting at birth (Figure 7). Predicted doses (ng/kg/day) to infants were highest right after birth and remained higher than in their mothers during the first year of life (Figure 6, right side). The infant:mother plasma level ratio, as discussed above, was less than 1 at birth, but this ratio increased to greater than 1 during the first year of life, with predicted ratios of about1.5-fold (median), 3-fold (95th percentile), and 7-fold (maximum) higher plasma PFOS concentrations in infants than in their mothers during the period of greatest infant exposure (Figure 7, left side).

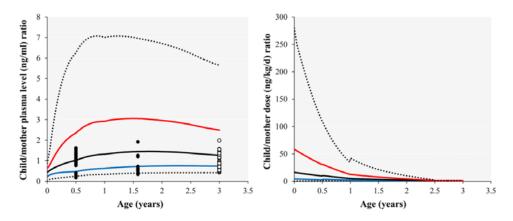


Figure 6. Monte Carlo simulations (n = 10 000) of child/mother ratios of plasma PFOS levels (ng/ml; right side of figure) and doses (ng/kg/day; left side of figure) for a breastfeeding period of 30 months. The black line represents the 50th percentile, the blue line represents the 5th percentile, the red line represents the 95th percentile, and the dotted lines represent minimum and maximum values (Verner et al., 2016b).

While peak serum PFOS concentrations occur during the first year of life, levels remain elevated for at least several additional years. In the study of Faroese children (Mogensen et al., 2015), serum PFOS levels declined after their peak in infancy but remained elevated above initial levels at birth until at least age 5 years, the last time point assessed. Similarly, the model developed by Verner et al. (2016a) predicts that plasma PFOS concentrations will remain several fold higher than at birth until at least age 3 years, the last time point modeled.

In summary, both breast-fed and formula-fed infants receive greater exposures to PFOS from contaminated drinking water (directly or indirectly) than older individuals. Serum PFOS levels peak during the first year of life and remain elevated for several years. These elevated exposures during early life are of concern because effects from neonatal exposure may be sensitive endpoints for the toxicity of PFOS.

Relationship between dose and serum concentration

A chemical-specific clearance factor (CL) of 8.1 x 10⁻⁵ L/kg/day (8.1 x 10⁻² ml/kg/day) that relates PFOS serum levels to dose in humans at steady-state was developed by USEPA (2016b).

Dose $(ng/kg/day) = Serum Level (ng/ml) \times CL (ml/kg/day)$

The clearance factor was based on the human half-life $(t_{1/2})$ from a study of retired workers (Olsen et al., 2007) and the volume of distribution (V_d) from Thompson et al. (2010a, b) using the equation below

$$CL = V_d x (ln 2 / t_{1/2})$$

Where:

$$V_d = 0.23 \text{ L/kg}$$

 $\ln 2 = 0.693$
 $t_{1/2} = 5.4 \text{ years} = 1,971 \text{ days}$

Thompson et al. (2010a,b) based the PFOS V_d value on a previously developed V_d for PFOA of 0.17 L/kg that had been calibrated with human data. The PFOA V_d was adusted by 35%, based on the observation of Andersen et al. (2006) that the V_d for PFOS can be 20 to 50% greater than for PFOA in monkeys. Thompson et al. (2010a) used the PFOS V_d of 0.23 L/kg in a steady-state toxicokinetic model to predict PFOS intake in a study of Australian drinking water consumers with mean serum PFOS concentration of 21.3 ng/ml (Thompson et al., 2010b), which is comparable to 95th percentile adult serum PFOS concentration reported from NHANES for 2013-2014 of 19 ng/ml (CDC, 2017).

The V_d of 0.23 L/kg for PFOS is supported by the observations of Egeghy and Lorber (2011). Using high (3 L/kg) and low (0.2 L/kg) bounding estimates of the V_d , Egeghy and Lorber (2011) compared predicted modeled PFOS intake with estimates of intakes based on the analyses of exposure pathways. The lower estimate (0.2 L/kg) provided modeled intake predictions similar to modeled intake based on exposure assessment. The derivation of this relationship involves several parameters whose values were estimated based on data for related chemicals or related species. See also Appendix 3 for an alternate derivation of the CL that does not require the estimation of V_d . This alternate derivation produces an estimate of CL that is in close agreement with the value derived by the USEPA (2016b).

Estimated increases in serum levels associated with PFOS in drinking water

The serum:drinking water ratio from ongoing exposure to a given concentration of PFOS in drinking water can be estimated as follows:

Human Dose ($\mu g/kg/day$) = Drinking Water Concentration ($\mu g/L$) x 0.016 L/kg/day

Where: 0.016 L/kg/day is the mean U.S. daily water ingestion rate (USEPA, 2011b).

Therefore:

Drinking Water Conc. (μ g/L) x 0.016 L/kg/day = Serum Conc. (μ g/L) x Clearance (8.1 x 10⁻⁵ L/kg/day)

And:

The daily water ingestion rate based on the upper percentile factors (2 L/day water consumption; 70 kg body weight) used to derive Health-based MCLs is 0.029 L/kg/day. Using the same equation shown above, the serum:drinking water ratio from **upper percentile** consumption is estimated as **358:1**.

For each 10 ng/L in drinking water, on average, ongoing exposure at the mean ingestion and upper percentile ingestion rates are predicted to increase serum PFOS by 2.0 ng/ml and 3.6 ng/ml, respectively. Increases in serum levels from various concentrations of PFOS in drinking water, and the percent increases from the most recent median serum level, 5.2 ng/ml, from NHANES (2013-14; CDC, 2015) are shown in Table 5 and Figure 7.

Table 5. In	crease in se	rum PFOS	concentrations pred	licted from va	arious conce	entrations of						
PFOS in dr	PFOS in drinking water											
Drinking	Mean V	Vater Inge	stion Rate	Upper Perc	entile Wate	r Ingestion Rate						
Water	(0	.016 L/kg/	day)		(0.029 L/kg	/day)						
Conc.	Increase	Total	% increase from	Increase in	Total	% increase from						
(ng/L)	in serum	serum*	drinking water*	serum	serum*	drinking water*						
	(ng/ml)	(ng/ml)		(ng/ml)	(ng/ml)							
1	0.2	5.4	4%	0.4	5.6	8%						
10	2.0	7.2	38%	3.6	8.8	69%						
20	3.9	6.1	75%	7.2	12.4	138%						
40	7.9	13.1	152%	14.3	19.5	275%						
70	13.8	19.0	265%	25.1	30.3	483%						
200	39.4	44.6	758%	71.6	76.8	1377%						

^{*}Total serum concentrations and % increases from drinking water are based on assumption of 5.2 ng/ml in serum (U.S. median value from NHANES, 2013-14; CDC, 2017) from non-drinking water exposures.

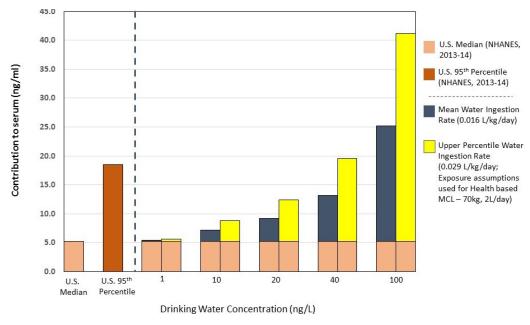


Figure 7. Increases in serum PFOS concentrations predicted from mean and upper percentile consumption of drinking water with various concentrations of PFOS, as compared to U.S median and 95th percentile serum PFOS levels (NHANES, 2013-14).

It is evident from Table 5 and Figure 7 that relatively low concentrations of PFOS in drinking water are associated with substantial increases in serum PFOS concentrations; this has recently been observed in a study of serum PFOS levels in individuals served by PWS with PFOS detections in UCMR3 (mean UCMR3 detection – 58 ng/L; Hurley et al., 2016). For example, ongoing exposure to 40 ng/L (the UMCR3 Reporting Level) at the upper percentile ingestion rate is predicted to result in a serum concentration of 19.5 ng/ml, which is above the 95th percentile in the U.S population of 18.5 ng/ml (NHANES, 2013-14; CDC, 2017). With an average (mean)

water ingestion rate, exposure to 70 ng/L (the USEPA Health Advisory) is expected to result in an elevation in serum level to 19.0 ng/ml, also above the 95th percentile from NHANES. Additionally, it should be kept in mind that (as discussed above), the increases in serum levels in infants who consume formula prepared with contaminated water are expected to be substantially higher than those shown in Table 5 and Figure 7.

HAZARD IDENTIFICATION

Review of animal toxicology studies

As described in <u>Literature Search and Screening</u>, approximately 700 studies were identified as potentially useful for assessment of health effects of PFOS, including studies of effects in humans and animals, toxicokinetics, human exposure, and mode of action. Of these studies, 76 animal studies were considered further for use in hazard identification based on their use of typical laboratory species (e.g., rodents, non-human primates, and rabbits). Due to the relatively robust database for animal studies, studies were categorized for different levels of review for use in identifying possible health hazards and potentially dose-response analyses.

Of the 76 studies, 34 studies were reviewed and summarized in evidence tables. An evidence table was developed for studies that met all of the following criteria:

- Assessed an apical endpoint (i.e. an observable outcome in a whole organism, such as a clinical sign of pathologic state that is indicative of a disease state that can result from exposure to a toxicant (Krewski et al., 2010). These can include, but are not limited to: effects on body or organ weight, hematological, blood chemistry, or urinary markers, histopathology, pre-neoplastic or neoplastics lesions, reproductive indices, immunologic competence, results of neurobehavioral tests, or teratogenic outcomes);
- Was peer-reviewed (technical reports were considered if a corresponding peer-review
- publication was available);
- Contained primary data (i.e., not a review article or re-publication of data);
- Employed oral route of exposure (e.g., by drinking water, food, gavage, pill);
- Utilized a relevant duration of exposure (i.e., subchronic or greater [>30 days] exposure
- regimen or reproductive/developmental study);
- Contained >1 dose groups (i.e., a control group and at least 2 additional dose groups);
- Used a relevant animal model (i.e., mice, rats, non-human primates, rabbits).

Evidence tables for animal studies are found in Appendix 4. These tables briefly summarize important methodological information and salient results for each appropriate study. In addition, comments that might influence the interpretation and usefulness of data for health endpoints are noted for each study.

Studies that were reviewed and summarized in evidence tables were the primary sources for identifying potential hazards resulting from PFOS exposure. Additionally, the studies that were considered for dose-response analyses and potentially, criterion development, were chosen from this set of studies. For some studies, multiple evidence tables were prepared because that study reported the results from multiple species (e.g., both rats and mice were exposed) and/or multiple

study designs (e.g., a study reporting the results following a multi-generation exposure in one cohort of animals and the results from a cross-fostering exposure in a different cohort of animals)

Of the 76 animal studies that were identified, 41 studies did not fulfill all of the above criteria and underwent a less detailed review. While these studies were not used for quantitative aspects of this assessment, they were used to further inform the weight of evidence for identified health hazards. These studies are summarized in tabular review tables; one study (Zeng et al., 2011) was not included in either type of table because, based on in-depth review, it only reported mechanistic information.

While tabular review tables provided less methodological detail and study commentary than evidence tables, they include NOAEL/LOAELs for relevant endpoints reported in the study. Tabular review tables for animal studies can be found in Appendix 5.

A synthesis of the information from the evidence tables and the tabular review tables was then prepared in order to identify health effects following PFOS exposure. In considering the health hazards of PFOS, endpoints were categorized into general groupings.

For animal, the following effect groups were utilized:

- Body weight effects
- Endocrine/metabolic effects
- Hepatic effects
- Immune effects
- Neurological effects
- Renal effects
- Other systemic effects (e.g., clinical chemistry, hematology)

For reproductive/developmental studies in which offspring were assessed following gestational exposure, the same categories of effects listed above were utilized, as well as reproductive competency, offspring survival, and markers of development (e.g., eye opening). Also considered within the reproductive/developmental section are studies in which adult animals were exposed with subsequent assessment of reproductive organs.

Following the text describing the results from animal studies of PFOS, study summary tables provide salient information extracted from the evidence tables in Appendix 4, including endpoint, NOAEL/LOAELs, and serum PFOS concentrations at the LOAEL. While information from tabular review tables is not included in the summary, information from these tables is discussed as appropriate in the narrative synthesis for each category of endpoint. Multiple endpoints investigated in a single study are included in a single evidence table, but they may be summarized in multiple summary tables and discussed in narrative syntheses for multiple endpoints as appropriate.

Reporting of exposure levels in animal studies

For animal studies reported in the Hazard Identification section, the goal is to identify adverse endpoints of potential human relevance. For that purpose, exposure metrics are reported as given

by the study authors (e.g., mg/L-water, mg/kg/day, mg/kg-feed). In contrast, in the Dose-Response section, studies are compared on the basis of the common metric of serum PFOS concentration.

Review of human epidemiology studies

Following literature screening, 124 studies were identified which assessed associations between human health effects and PFOS and were included in epidemiology evidence tables (Appendix 6). An individual evidence table for each study summarizes the design, location, study population characteristics, outcome and exposure assessment, study population exposure, statistical methods, results, and comments that might influence the interpretation and usefulness of data for health endpoints. Summaries of the studies evaluating each endpoint are provided below in tables following the relevant section.

The studies were conducted on populations in the U.S., Canada, and several European and Asian countries. The epidemiological studies come from populations with exposure levels prevalent in the general population and from workers with higher occupational exposures. In contrast to PFOA (DWQI, 2017), epidemiological data are not available from communities with elevated exposures to PFOS from drinking water or other environmental media. However, studies of people living within communities whose drinking water is contaminated with PFOA, but with general population level exposures to PFOS, have contributed to the epidemiological database for PFOS.

Epidemiologic studies of PFOS have investigated associations with developmental, endocrine/metabolic, hepatic, immune, lipid metabolism, renal, and reproductive effects. Among the epidemiologic studies, the studies of immune effects, and most particularly those investigating effects on vaccine response, were generally consistent in showing adverse responses to PFOS. There was also a consistency in findings between PFOS exposure and increased serum uric acid/hyperuricemia as well as increased total cholesterol.

The epidemiologic data for PFOS are notable because of the consistency between results among human epidemiologic studies in different populations, the concordance with toxicological findings from experimental animals for immune effects, the use of serum concentrations as a measure of internal exposure, the potential clinical importance of the endpoints for which associations are observed, and the observation of associations within the exposure range of the general population. These features of the epidemiologic data distinguish PFOS from most other organic drinking water contaminants and justify concerns about exposures to PFOS through drinking water. Notwithstanding, the human data have limitations and therefore are not used as the quantitative basis for the Health-based MCL. Therefore, the Health-based MCL is based on a sensitive and well-established animal toxicology endpoint that is considered relevant to humans based on epidemiological and mode of action data.

In human environmental health effect studies in general, confounding by co-exposure to contaminants other than the one being evaluated may be particularly important since it may bias results. In some instances, PFOS has been shown to be strongly correlated with other co-occurring PFCs which may not have been controlled for, and the same may be true for co-occurrence with other environmental contaminants.

As is the case for epidemiologic studies of environmental contaminants in general, the nature of these observational epidemiology studies, in contrast to experimental studies, limits our ability to definitively conclude that PFOS causes health effects. However, the findings from observational epidemiology studies are useful in assessing consistency, strength of association, exposure response, temporality, specificity, and biologic plausibility - criteria which are useful in assessing causation.

Studies of exposure levels found in the general population

The majority of studies evaluated the general population and/or study populations with general population-level exposures to PFOS. The serum PFOS concentrations (based on a measure of central tendency, which was presented as median, mean, or geometric mean) in these studies range from 1.6-51.9 ng/L.

A number of studies involved the C8 Health Project which is a community health study of approximately 70,000 Ohio and West Virginia residents of all ages (infants to very elderly) with at least one year of exposure to drinking water contaminated with PFOA at >50 ng/L to over 3000 ng/L (Frisbee et al, 2009; C8 Science Panel, 2014). The C8 Health Project was conducted by the C8 Science Panel, which consisted of three epidemiologists chosen jointly by the parties involved in the legal settlement. This study, primarily interested in evaluating effects of PFOA exposure, is notable because of its large size, the wide range of exposure levels, and the large number of parameters evaluated. Data collected included serum levels of PFOA and other PFCs (including PFOS), clinical laboratory values, and health histories. The median serum PFOA concentration in this population was 28 ng/ml (ppb), yet serum concentrations of PFOS were reflective of general population level exposure (median 5.2 ppb).

A strength of the general population studies is their use of serum PFOS levels as the basis for exposure assessment. Because of the long human half-life of PFOS, serum levels do not rapidly fluctuate with short term variations in exposure, and serum levels taken at a single time therefore reflect long-term exposures. Serum levels thus provide an accurate measure of internal exposure for each study participant, an advantage over studies based on external exposure metrics such as drinking water concentrations.

Among these studies, the large majority are cross-sectional. A general limitation of cross-sectional studies is that they evaluate information on both exposure and outcome at the same point in time, limiting their ability to establish temporality.

Occupational studies

Occupational studies are often considered useful for evaluating effects of environmental contaminants because exposure levels are generally higher than in general population or in communities exposed through site-specific environmental contamination. Mean or median serum PFOS levels in occupational studies reviewed in this report were generally over 1,000 ng/ml (ppb), several orders of magnitude higher than the median concentrations in the general population.

Occupational studies may also have a selection bias from a "healthy worker effect" whereby workers usually have lower overall mortality and morbidity than individuals of the same age as a whole, since severely ill and disabled persons are typically not included in the workforce,

especially in industrial settings (Shah, 2009). Longer duration of employment may also increase the effects of this bias, since sick people will be more likely to leave or change to safer work. Therefore, data based on duration of employment may not accurately reflect higher prevalence or larger magnitude of effects that are associated with longer exposures to the contaminant being evaluated.

Another issue with occupational studies of PFOS is the small number of exposed female employees which limits the ability of the occupational epidemiology to adequately address specific effects among women. An additional issue is the possibility of effect modification due to exposure to other chemicals. Exposure to other PFCs, including PFOS at the 3M Decatur plant, may have played a role in the observed associations. Differences in exposures to other chemicals among manufacturing facilities may result in differences in degree of association with various effects.

Some occupational studies are also noted to have used alternative estimates of PFOS exposure (e.g., air concentrations, exposure to relative concentrations based on job title), instead of serum concentrations which provide a more accurate exposure assessment.

Hazard Identification for Specific Endpoints

Body weight

Animal studies

A summary of body weight effects in animals can be found in the study summary tables at the end of the following review (Table 6). Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

In general, terminal body weight and body weight changes were assessed in rats and mice following dietary and oral gavage exposures. For some studies, data on food consumption were available, which may inform whether changes in animal body weight were due to poor palatability of PFOS (e.g., in dietary studies) or a potentially toxic effect of PFOS. Not discussed in this section are body weight data of female animals exposed to PFOS during pregnancy.

Rats

Following exposures of >30 days to PFOS, decreases in body weight were observed in rats exposed via diet (Kawamoto et al. 2011; LOAEL = 2.1 mg/kg/day) and gavage (Luebker et al. 2005a; LOAEL = 0.4 mg/kg/day in F₀ prior to mating). In both studies, decreases in food consumption were reported at the corresponding LOAEL for decreased body weight. No decrease in body weight was reported following dietary exposures $\leq 1.6 \text{ mg/kg/day}$, even when decreases in food consumption were reported (Seacat et al. 2003; Butenhoff et al. 2012). Additionally, no change in body weight was observed in rats exposed to PFOS via drinking water for 91 days (Yu et al. 2009a; NOAEL = 15.0 mg/L). Food consumption data were not reported for this study.

With shorter durations of dietary exposure (\leq 28 days), decreases in body weight were reported with > 3 mg/kg/day (Curran et al., 2008; Lefebvre et al., 2008), and Elcombe et al. (2012a)

reported decreased body weight with exposure to 5.6 mg/kg/day. Concurrent decreases in food consumption were also observed in these studies (Curran et al., 2008; Elcombe et al., 2012a; Lefebvre et al., 2008). Elcombe et al. (2012b) reported decreased body weight following 7 days of dietary exposure to 1.9 mg/kg/day but no change in food consumption (NOAEL = 9.7 mg/kg/day).

Following gavage exposure, decreases in body weight and food consumption were reported following 28 days of exposure ≤ 20 mg/kg/day (Cui et al., 2009; Kim et al., 2011). Following a single exposure to 250 mg/kg, decreased body weight was observed 14 days after exposure; however, information on food consumption was not reported (Sato et al., 2009). No decrease in body weight was observed in male rats exposed to PFOS for 28 (Kim et al., 2011; NOAEL = 10 mg/kg/day) or 5 days (Martin et al., 2007; NOAEL = 10 mg/kg/day). A decrease in body weight and food consumption was observed in rats exposed to 10 mg/kg/day via intraperitoneal injection for 14 days (Austin et al., 2003).

In total, some studies, but not all, report a decrease in adult rat body weight following PFOS exposure via diet, gavage, or intraperitoneal injection. In addition, there is evidence that a decrease in body weight following dietary PFOS is accompanied with decreased food consumption. This evidence suggests that rats may have avoided their food (i.e., ate less) due to the presence of PFOS in their chow, which could have caused the decreased body weight. However, concurrent decreases in rat body weight and food consumption following non-dietary PFOS exposures (i.e., gavage and intraperitoneal) suggest that PFOS may have affected appetite, which may have led to the decreased body weight.

Mice

With dietary exposure, decreased body weight in mice was observed following either 10 days (Qazi et al., 2009a, 2009b; 2012; LOAEL = ~40 mg/kg/day) or 28 days (Qazi et al., 2010a; LOAEL = 0.25 mg/kg/day) of exposure to PFOS, with a decrease in food consumption only occurring with the 10-day exposures. In contrast, no effect on body weight and food consumption was observed in mice exposed to PFOS in the diet for up to 6 weeks (Bijland et al., 2011; NOAEL = 3 mg/kg/day) or in mice exposed to 6 mg/kg/day for 10 days (Qazi et al., 2013).

Following gavage exposure to PFOS, decreased body weight in mice was observed following 60 days of exposure to ≥ 0.42 mg/kg/day PFOS (Dong et al., 2009, 2011, 2012a, 2012b). In these studies, a decrease in food consumption was also observed. With shorter durations (≤ 28 days) of gavage exposure to PFOS, decreased body weight was observed with doses ≥ 10 mg/kg/day (Zheng et al., 2009; Mollenhauer et al., 2011; Wang et al., 2011a; Zheng et al., 2011; Wan et al., 2012; Wang et al., 2014a). When data were available, a decrease in food consumption was also observed (Zheng et al., 2009; Wang et al., 2011a; Zheng et al., 2011; Wang et al., 2014a). Following a single exposure to 250 mg/kg, decreased body weight was observed 14 days after exposure; however, information on food consumption was not reported (Sato et al., 2009).

In contrast, no significant change in body weight was observed in mice exposed up to 0.17 mg/kg/day PFOS for between 21 to 28 days (Peden-Adams et al., 2008; Guruge et al., 2009; Fair et al., 2011). Additionally, no change in body weight was observed in 4-week old mice exposed once to 11.3 mg/kg at age 10 days (Johansson et al., 2008). No information on food consumption was provided in these studies.

In total, some studies, but not all, report a decrease in adult mouse body weight following PFOS exposure via diet or gavage. As with rats, a concurrent decrease in mouse body weight and food consumption following non-dietary (i.e., gavage) PFOS exposures suggests that PFOS may affect appetite and/or metabolism and ultimately body weight.

Monkeys

In monkeys, a decrease in body weight gain (LOAEL = 0.75 mg/kg/day) was observed in males and females exposed to PFOS for 182 days via intragastric intubation of a capsule (Seacat et al., 2002). Data on food consumption were not reported.

Overall Summary of body weight effects in animals

In summary, data are mixed regarding the ability of PFOS to affect the body weights of rats and mice. In monkeys, a decrease in body weight gain was observed. Studies that report decreased animal body weight and decreased food consumption following non-dietary exposures suggest that PFOS may have an effect on appetite and/or metabolism that may then lead to a decrease in body weight.

Table 6. Stud	ly summary t	able for body weight eff	ects in anim	als				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	≤104 weeks	Body weight (final) for males and females (overall mean daily food intake reported to increase linearly with PFOS dose)	Males: 1.0 Females: 1.3		Serum and liver PFOS concentrations determined	
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a NOAEL and/or LOAEL) Oral gavage	60 days	↓ final body weight and body weight change (↓ food intake reported for ≥833.33 ug/kg/day) (determined at day 61)	0.083	0.417	Serum PFOS concentrations determined Only males used	21,640 (serum collected on day 61)

Table 6. Study summary table for body weight effects in animals Serum PFOS concentration (in NOAEL* LOAEL* ng/mL) Species/ Administered Doses (mg/kg/d (mg/kg/d Reference Duration Endpoint(s) Comment(s) corresponding to unless Strain and Route unless the LOAEL noted) noted) (day assessed) Dong et al. 0, 0.0083, 0.0167, 60 days Serum PFOS Mice, ∫ final body weight 0.0833, 0.4167, 0.8333 (2011)C57BL/6 concentrations change mg/kg/day determined 51.710 (reported for day Oral gavage Only males used 60 to day 61 [day of 0.4167 0.8333 (serum collected sacrifice for 0.8333 Small sample size on day 61) ug/kg/day) (n=6)(determined at day 61) 0, 0.0167, 0.0833, Serum PFOS Dong et al. Mice, 60 days (2012b) C57BL/6 0.833 mg/kg/day concentrations weight (over 60 determined days of exposure) Oral gavage 59,740 Only males used (food intake on 0.0833 0.833 (serum collected day 60 with 0.833 on day 61) mg/kg/day) (determined at day 0, 0.0083, 0.0167, 60 days Serum PFOS Dong et al. Mice, ↓ change in body (2012a) C57BL/6 0.0833, 0.4167, 0.8333, concentrations weight (over 60 2.0833 mg/kg/day determined days of exposure) 24,530 Oral gavage Only males used (↓ food intake on 0.4167 0.0833 (serum collected day 60 with≥0.4167 Small sample size on day 61) mg/kg/day) (n=6)(determined at day 60)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Kawamoto et al. (2011)	Rats, Wistar	0, 2, 8, 32, 128 ppm Dietary Daily PFOS dose (estimated as the mean of the daily PFOS doses reported weekly by study authors) 0, 0.1, 0.5, 2.1, 8.5 mg/kg/day	13 weeks	body weight (↓ food consumption with ≥32 ppm) (determined after 13 weeks)	0.5	2.1	Serum, brain, liver, and kidney PFOS concentrations determined Only males used Internal PFOS concentrations not reported for controls	(serum samples collected after 13 weeks)

Table 6. Study summary table for body weight effects in animals Serum PFOS concentration (in NOAEL* LOAEL* ng/mL) Species/ Administered Doses (mg/kg/d (mg/kg/d Reference Duration Endpoint(s) Comment(s) corresponding to Strain and Route unless unless the LOAEL noted) noted) (day assessed) 0, 0.1, 0.4, 1.6, 3.2 Serum and liver Luebker et F0 males: Rats, ↓ overall body al. (2005a) Crl:CD® mg/kg/day PFOS concentrations preweight gain (day 0 (SD)IGS mating determined to termination) BR VAF® Oral gavage (42 days) and Control values for (statistically mating internal PFOS significant (≤14 measurements not reductions in body days) reported weight gain at various time points Offspring effects and terminal body summarized 45.400 weight observed at elsewhere in higher doses) appropriate summary 0.1 0.4 (determined after table 42 to 56 days of (statistically exposure) significant reductions in absolute and relative feed consumption observed during exposure) (termination was 42 to 56 days of exposure) Seacat et al. 0, 0.03, 0.15, 0.75 26 weeks Serum and liver Monkeys, body weight Males: 173,000 (2002)cynomolgu mg/kg/day PFOS concentrations change (from day 0 determined to sacrifice, males Females: 171,000 capsule and females) 0.75 0.15 Sample sizes (determined after generally 2 to 6 per (sacrifice was 183 days of group with multiple following 26 weeks exposure) measurements during of exposure) course of exposure Body weight (at 0.75 sacrifice)

Table 6. Study summary table for body weight effects in animals

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS BR	0, 0.5, 2.0, 5.0, 20 ppm Dietary Estimated daily dose of PFOS (as reported by study authors) Males: 0, 0.03, 0.13, 0.34, 1.33 mg/kg/day Females: 0, 0.04, 0.15, 0.40, 1.56 mg/kg/day	14 weeks	Body weight (↓ food consumption with 20 ppm, no effect on food efficiency)	Males: 1.3 Females: 1.6		Serum and liver PFOS concentrations determined Sample size ≤5 rats per endpoint	
Yu et al. (2009a)	Rats, Sprague- Dawley	0, 1.7, 5.0, 15.0 mg/L Drinking water	91 days	Body weight	15.0 mg/L		Serum PFOS concentrations determined Only males used	

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

^{↑ =} increased; ↓ = decreased ----- = not applicable

Human epidemiology studies

A summary of body weight effects in humans can be found in Table 7 (below). Detailed methodological information and additional study results can be found in the corresponding individual study tables in Appendix 6. Studies of PFOS exposure and associations with body weight and body mass index (BMI) are discussed here, while studies that reported on endpoints relevant to endocrine/metabolic effects (e.g., glucose homeostatis, metabolic syndrome) are discussed in the Endocrine/Metabolic section below.

Few epidemiology studies investigated body weight/BMI and other body weight related endpoints associations with PFOS. One study (Nelson et al., 2010) suggests an association with *increased* body weight in older adults only. Another study found no association of BMI, skinfold thickness, waist circumference or leptin with PFOS exposure in children (Timmermann et al., 2014).

Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
Body weight	BMI ↑ (M 60-80 yrs old only, not younger M or F)	Med. 21.0	Nelson et al. (2010)
	BMI = (children)	Med. 41.5	Timmermann et al. (2014)
	Skinfold thickness = (children)	Med. 41.5	Timmermann et al. (2014)
	Waist circumference = (children)	Med. 41.5	Timmermann et al. (2014)
	Leptin = (children)	Med. 41.5	Timmermann et al. (2014)

[†] statistically significant positive association

Overall conclusions regarding the hazard identification for body weight effects

Both animal and human data provide little support for an effect of PFOS exposure on body weight. The overall weight of evidence does not appear to justify the identification of body weight effects as critical endpoints for consideration of dose-response.

Endocrine/metabolic effects

Animal studies

A summary of endocrine/metabolic effects in animals can be found in Table 8 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

statistically significant negative association

⁼ no statistically significant association/equivocal association

⁽Statistical significance reflects reporting by authors – generally p < 0.05)

Changes in the thyroid (e.g., histopathology, weight) and thyroid hormones were assessed in animals. Effects on other endocrine and metabolic organs and tissues (e.g., adipose tissue, adrenal glands, hypothalamus, and pituitary glands) and hormones (e.g., corticosterone, estradiol, and testosterone) were also investigated following PFOS exposure. These findings are briefly reviewed below. In addition, data regarding changes in glucose and urea levels are discussed as clinical chemistry parameters relevant to endocrine and metabolic effects.

Thyroid

Thyroid gland weight and histopathology

Effects of PFOS on weight and histopathology of the thyroid gland were assessed in rats. Following 52 weeks of exposure to 1.0 mg/kg/day PFOS, a decrease in relative (to brain) weight of the left thyroid gland was observed in male, but not female, rats (Butenhoff et al., 2012). In this study, no effect was observed in the right thyroid gland of either sex. Increased relative thyroid weight was observed in rats exposed to 100 mg/kg feed (> 6.3 mg/kg/day) of PFOS for 28 days (Curran et al., 2008). Yu et al. (2009a) observed no effect on relative thyroid weight in rats exposed for 91 days \leq 15.0 mg/L PFOS in drinking water. Yu et al. (2009a) do not provide an estimate of the intake dose of rats in this study. No histopathological effects were observed in rat thyroid glands following chronic (NOAEL = 1.0 mg/kg/day; Butenhoff et al., 2012) or 7-day (NOAEL = 9.7 mg/kg/day; Elcombe et al., 2012b) exposures to PFOS. However, as reviewed in the cancer hazard identification section, an increase in the incidence of thyroid follicular cell tumors was observed in male rats exposed to 1.0 mg/kg/day (20 ppm) for 52 weeks followed by 52 weeks of recovery (Butenhoff et al., 2012).

Thyroid hormones

Levels of thyroid hormones were assessed in rats, mice, and monkeys following PFOS exposure.

Several studies in rats assessed the effect of PFOS on the levels of thyroid hormones. Following 91 days of drinking water exposure to PFOS, total thyroxine levels were decreased with doses \geq 1.7 mg/L (Yu et al., 2009a). In contrast to this decrease, Yu et al. (2009a) observed no consistent effect on free T4, total triiodothyronine (T3), and thyroid stimulating hormone (TSH) across dose groups (NOAEL = 15.0 mg/L). With a shorter duration of exposure (28 days), decreases in total T4 were observed in male and female rats exposed \geq 1.3 mg/kg/day PFOS (Curran et al., 2008). Decreases in total T3 were also observed in males and females but at doses \geq 50 mg/kg feed; TSH was not assessed in these rats. Decreased total and free T4 and total T3 were observed in rats exposed to 10 mg/kg/day PFOS for 5 days (Martin et al., 2007). Following a single oral dose of 15 mg/kg, decreases in total T4 and total and reverse T3 were observed with no effect on free T4 (Chang et al., 2008).

In mice, PFOS was reported to have no effect on total T3 and T4 levels following 28 days of exposure to 0.17 mg/kg/day (Fair et al., 2011).

In monkeys, thyroid hormone levels were assessed after 182 days of exposure to PFOS (Seacat et al., 2002). While there were no effects on free and total T4 (NOAEL = 0.75 mg/kg/day), both free T3 and total T3 levels decreased at 0.75 and 0.15 mg/kg/day, respectively, in males and females. Additionally, TSH levels increased following exposure to 0.75 mg/kg/day. These

thyroid hormone effects were observed in the absence of any change in thyroid gland histopathology.

Effects on other endocrine and metabolic organs and tissues

The effect of PFOS on adipose tissue, the adrenal glands, hypothalamus, and the pituitary glands were investigated in animals.

Studies in mice have assessed the effect of PFOS exposure on adipose tissue. Decreases in epididymal fat weight have been observed in mice exposed for 10 days to 0.02% PFOS in feed (~40 mg/kg/day; Qazi et al., 2009a, 2009b, 2012). This decrease was not observed in PPAR α null mice (Qazi et al. (2009b) or in mice exposed to lower doses of PFOS for either 10 (6 mg/kg/day) or 28 days (0.14 mg/kg/day; Qazi et al., 2013). When fed a regular (i.e., non-high fat) diet, mice exposed to 20 mg/kg/day PFOS for 14 days had decreased relative fat weight compared to controls (Wang et al., 2011a, 2014a).

The effects of PFOS on the adrenal glands were assessed in rats and mice. Following 52 weeks of exposure, relative (to brain weight) adrenal gland weights were reduced in female rats exposed to 1.3 mg/kg/day PFOS, whereas such a decrease was not observed in male rats exposed to 1.0 mg/kg/day (Butenhoff et al., 2012). Decreased relative adrenal gland weight was observed in male rats exposed to 0.5 to 6.0 mg/kg/day PFOS for 28 days (Pereiro et al., 2014). However, decreased relative adrenal gland weight was not observed in male and female rats exposed \leq 6.34 mg/kg/d for males or 7.58 mg/kg/d for females for 28 days, although there was a shallow, but statistically significant trend toward increased adrenal weight across doses from 0.14-7.58 mg/kg/day (Curran et al., 2008). In mice, exposure to PFOS of \leq 0.17 mg/kg/day had no effect on adrenal gland histopathology (Fair et al., 2011).

Effects on the hypothalamus were assessed in rats and mice following PFOS exposure. No effect on relative hypothalamus weight was observed in rats exposed ≤ 6.0 mg/kg/day PFOS for 28 days (Lopez-Doval et al., 2014; Pereiro et al., 2014). To assess the effect of PFOS exposure on the hypothalamus, rats and mice were exposed to PFOS via intracerebroventricular injection (Asakawa et al., 2007). Exposed animals experienced a decrease in food intake (LOAEL = 0.1 mg/kg) as well as changes in gastro-duodenal motility and rate of gastric emptying (LOAEL = 0.3 mg/kg).

The effect of PFOS on the pituitary glands was investigated in rats. After 28 days of exposure, histopathological changes were observed in the pituitary glands of male rats exposed to 0.5 mg/kg/day (Lopez-Doval et al., 2014). However, no change in relative pituitary weight was observed after 28 days exposure to \leq 6.0 mg/kg/day PFOS (Lopez-Doval et al., 2014; Pereiro et al., 2014).

Effects on other endocrine and metabolic hormones

In addition to thyroid hormone, the effect of PFOS on various other hormones were investigated in animals. Data are mixed for an effect of PFOS on corticosterone levels in mice, as both an increase (LOAEL = 0.83 mg/kg/day; Dong et al., 2009) and no change (NOAEL = 0.83 mg/kg/day; Dong et al., 2011) in this hormone was observed following 60 days of exposure.

A decrease in estradiol was observed in male monkeys but not females following 182 days of

PFOS exposure at 0.75 mg/kg/day (Seacat et al., 2002). Decreased leptin was observed in rats following 2 weeks of exposure to 10 mg/kg/day (Austin et al., 2003).

Lopez-Doval et al. (2014) observed decreased luteinizing hormone and increased follicle stimulating hormone in rats following 28 days of exposure to 0.5 mg/kg/day.

A decrease in testosterone was observed in rats following 28 days of exposure to 0.5 mg/kg/day (Lopez-Doval et al., 2014), whereas no change in testosterone was reported for rats exposed ≤ 5 days to 10 mg/kg/day (Martin et al., 2007). No effect on testosterone levels was found in monkeys exposed to 0.75 mg/kg/day PFOS for 182 days (Seacat et al., 2002).

Glucose

In monkeys, no effect on serum glucose levels was observed following 182 days of exposure (Seacat et al., 2002; NOAEL = 0.75 mg/kg/day).

In rats, decreased serum glucose levels were observed in males (LOAEL = 1.0 mg/kg/day) and females (LOAEL = 0.1 mg/kg/day) following 53 weeks of exposure (Butenhoff et al., 2012). Curran et al. (2008) reported that 28 days of PFOS exposure caused a decrease in serum glucose in female (LOAEL = 7.6 mg/kg/day) but not male (NOAEL = 6.3 mg/kg/day) rats. Elcombe et al. (2012a) reported decreased glucose in male rats exposed to 5.6 mg/kg/day for 28 days.

In mice, no effect on serum glucose was observed in females exposed to PFOS for 28 days (Fair et al., 2011; NOAEL = 0.17 mg/kg/day). However, decreased serum glucose was observed in males exposed for 14 days (Wang et al., 2014a; LOAEL = 20 mg/kg/day).

In total, animal studies have reported either no effect or a decrease in serum glucose levels following PFOS exposure.

Urea/ Blood Urea Nitrogen

Effects on urea levels in blood/serum (often reported as blood urea nitrogen; BUN) can result from changes in liver metabolism or kidney function. For simplicity of presentation, changes in blood/serum urea in animals in response to PFOS exposure are addressed here. Following 182 days of PFOS exposure in monkeys, no effect on blood urea nitrogen (BUN) was observed (Seacat et al., 2002; NOAEL = 0.75 mg/kg/day). Increased BUN was observed in male (LOAEL = 0.1 mg/kg/day) and female (LOAEL = 0.3 mg/kg/day) rats following 53 weeks of exposure (Butenhoff et al., 2012). At an interim observation (14 weeks of exposure) in the Butenhoff et al (2012) study, increased BUN was observed at \geq 1.3 mg/kg/day in males and females (Seacat et al., 2003). Following 28 days of exposure, Curran et al. (2008) reported a statistically significant decrease in serum urea in female rats exposed to 3.7 mg/kg/day. At 7.6 mg/kg/day, a decrease was also observed in females, but was not statistically significant. In male rats, no effect on serum urea was observed (NOAEL = 6.3 mg/kg/day).

In total, data are mixed for the effect of PFOS on urea in animals. Available data suggest no effect in monkeys and mice; however, increased and decreased urea levels in serum have been observed in rats.

Summary of endocrine/metabolic effects in animals

In summary, studies in multiple species with differing durations of exposure have demonstrated that PFOS can cause endocrine and metabolic effects in animals. Data are mixed regarding an effect of PFOS on the thyroid gland with some studies, but not all, finding changes in thyroid weight. Although a lack of histopathological changes have been observed in the thyroid gland following PFOS exposure, an increased incidence of thyroid follicular cell tumors was noted following chronic exposure (Butenhoff et al., 2012). While not always consistent, PFOS has been reported to affect the level of thyroid hormones. In some studies, decreases in T3 and T4 were not accompanied by a compensatory increase in TSH, which is a classical indicator of hypothyroidism. Additionally, some thyroid hormone measurements need to be interpreted with caution, as analytical methods may influence free T4 measurements (Chang et al., 2007).

Aside from the thyroid gland, PFOS can have an effect on adipose tissue and may affect some functions associated with the hypothalamus. There are few data regarding an effect on the adrenal and pituitary glands although there is a suggestion of histopathological effects. For corticosterone and testosterone, the data are contradictory and it is unclear whether PFOS has a substantive effect on these hormones. There is only one study each for the effect of PFOS on levels of estradiol, leptin, luteinizing hormone, and follicle stimulating hormone. Thus, there is insufficient information to draw clear conclusions. Glucose levels in animals following PFOS exposure have either been decreased or unchanged. The effect of PFOS on serum levels of urea is unclear as no effect, increases, and decreases have all been observed in animals.

Table 8. Stu	dy summary	table for endocrine/me	tabolic effe	ects in animals				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Butenhoff et	Rats,	0, 0.5, 2, 5, 20 ppm	52 weeks	↓ adrenal gland			Serum and liver	(day assessed) Males:
al. (2012)	Sprague- Dawley	Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day		absolute weight (left) and relative to brain weight (left and right), females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure	Males: 1.0 Females: -	Males: Females: 1.3	PFOS concentrations determined Only one dose reported for this endpoint	Females: 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)
				thyroid (left, with parathyroid) absolute weight and relative to brain weight, males only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure)	Males: Females: 1.3	Males: 1.0 Females: -		Males: 146,000 Females: (determined at week 53)

Table 8. Stu	iay summary	table for endocrine/me	etabolic effe	ects in animals	ı	Т	1	
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	<53 weeks	† follicular cell adenoma (thyroid), males only following <53 weeks of exposure then exposure to control diet until terminal sacrifice between weeks 103 and 106	(doses <20 ppm not part of recovery study)	Males: 1.0 Females: -	Serum and liver PFOS concentrations determined Due to conflation of interim and term data in outcome reporting for thyroid adenomas, neither significance, nor dose-response for term outcomes are interpretable	Males: 2,420 Females: (determined at week 106)
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a NOAEL and/or LOAEL) Oral gavage	60 days	† serum corticosterone (after 60 days of exposure)	0.417	0.833	Serum PFOS concentrations determined Only males used	65,430 (serum collected on day 61)
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day Oral gavage	60 days	Serum corticosterone	0.8333		Serum PFOS concentrations determined Only males used Small sample size (n=6)	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Seacat et al. (2002) 1-year recovery data not summarized herein	Monkeys, cynomolgus	0, 0.03, 0.15, 0.75 mg/kg/day Capsule	26 weeks	↑ adrenal gland weight (left, relative to body weight, males only) (limited sample size prevented determination of NOAEL and LOAEL)			Serum and liver PFOS concentrations determined Sample sizes generally 2 to 6 per group with increased frequency of endpoint measurements	(day assessed)
				↑ TSH (males and females) (determined on days 182 and 184)	0.15	0.75		Males: 173,000 Females: 171,000 (determined after 183 days of exposure)
				Total T4 (no consistent changes with dose or duration)	0.75			
				↓ Total T3 (males and females) (on days 182 and 184)	0.03	0.15		Males: 82,600 Females: 66,800 (determined after 183 days of exposure)
				Free T4 (only measured on day 184)	0.75			

Table 8. Stu	idy summary	table for endocrine/me	etabolic effe	ects in animals				Serum PFOS
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				↓ free T3 (males and females)	0.15	0.75		Males: 173,000 Females: 171,000
				(only measured on day 184)				(determined after 183 days of exposure)
				↓ estradiol (males only)	Males: 0.15	Males: 0.75		Males: 173,000 Females:
				(on day 182)	Females: 0.75	Females: -		(determined after 183 days of exposure)
				Testosterone (for entire duration of exposure)	0.75			
Yu et al. (2009a)	Rats, Sprague- Dawley	0, 1.7, 5.0, 15.0 mg/L Drinking water	91 days	Thyroid weight (absolute and relative)	15.0 mg/L		Serum PFOS concentrations determined	
				Total T3 (statistically significant increase with 1.7 mg/L but no statistically significant effects at higher doses)	15.0 mg/L		Only males used Unclear whether thyroid hormone measurements were subject to negative bias due to analytical method used	
				↓ Total T4 (determined after 91 days of exposure)		1.7 mg/L		5,000 (determined after 91 days of exposure)

Table 8. Stu	dy summary	table for endocrine/me	tabolic effe	ects in animals				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Free T4 (statistically significant decrease at 5.0 mg/L but no statistically significant effects at other doses)	15.0 mg/L			
				TSH	15.0 mg/L			

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

T3 = triiodothyronine; T4 = thyroxine; TSH = thyroid stimulating hormone

↑ = increased; ↓ = decreased ----- = not applicable

Human epidemiology studies

A summary of endocrine/metabolic effects in humans can be found in Tables 9 to 11 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Thyroid hormones/thyroid disease

Nine studies were identified that investigated a possible association between free T4 and PFOS exposure in adults. The central tendency serum PFOS concentration in these studies was mostly in the range of 8-20 ng/ml, consistent with general population exposure. However, one study of an occupational cohort (Olsen et al., 2003b) had mean serum PFOS concentrations of 800-1,320 ng/ml. With one exception, these studies did not find a statistically significant association between serum PFOS and serum free T4. Dallaire et al. (2009), found a significant positive association between serum PFOS and free T4 in an Inuit population in Nunavik, Quebec, Canada.

Six studies investigated the possible association between serum PFOS and total T4. An additional study, Kim et al. (2000) included PFOS and total T4 in cord blood serum as well as maternal serum. In general, the central tendency PFOS exposure in the populations in these studies were consistent with general population exposures. However, the C8 Study population in Knox et al. (2011) (median concentration 21-26 ng/ml) and the population in several northern New York State counties (Shrestha et al., 2015) (geom. mean 31.6 ng/ml) had serum PFOS levels that were somewhat higher. One of these studies (Lopez-Espinosa et al., 2012a) reported a statistically significant positive association of total T4 with serum PFOS. None of the other studies reported a statistically significant association. A study of children, de Cock et al. (2014b), also did not find a significant association.

Two studies (Dallaire et al., 2009); Kim et al., 2011) reported a significant negative association between total T3 and adult serum PFOS. The significant association of PFOS and T3 in the Kim et al. (2011) study was specific to T3 in maternal serum. Linked results for T3 in fetal cord serum did not yield a significant association with PFOS. A third study that examined T3 uptake (Knox et al., 2011) found a significant negative association with serum PFOS. Two additional studies, Jain et al (2013b), and the previously mentioned Shrestha et al. (2015) study with elevated PFOS serum concentrations did not find a significant association between serum PFOS and total T3.

Eleven studies evaluated the association between adult serum PFOS and thyroid stimulating hormone (TSH). In addition, the aforementioned Kim et al. (2011) study also investigated the association of TSH in fetal cord serum with fetal cord serum PFOS. Dallaire et al. (2009) found a significant negative association, while the study of Lopez-Espinosa et al. (2012a) found a significant positive association. The remaining studies found no significant associations between serum PFOS and TSH.

Two studies addressed the association between adult serum PFOS and thyroxine binding globulin (TBG). Dallaire et al. (2009) found a significant negative association, while Jain et al. (2013b) found no significant association.

Lopez-Espinosa et al. (2012a) investigated the association between serum PFOS and clinical

hypothyroidism, sub-clinical hypothyroidism and sub-clinical hyperthyroidism. None of these conditions was significantly (positively or negatively) associated with serum PFOS. Melzer et al. (2010) found no significant associations between serum PFOS and self-reported ever or current thyroid disease.

Summary of thyroid hormones/thyroid disease studies

With the possible exception of T3, none of the thyroid hormones or measures of thyroid function showed consistent evidence of an association with PFOS exposure. There is a suggestion that PFOS exposure is associated with decreased total T3 and/or T3 uptake. However, the significance of this observation is not clear.

Metabolic function

Glucose homeostasis

Several studies examined the association between PFOS exposure and insulin levels. Lin et al. (2009) found a significant positive association in adults, and Timmermann et al. (2014) found a significant positive association for overweight children, but not for normal weight children. In the Timmermann et al. study, the central tendency level of PFOS in serum (median 41.5 ng/ml) is higher than in other studies that reflect general population exposure. In contrast, Fisher et al. (2013) found no significant association of PFOS with insulin in adults.

No significant associations were observed between serum glucose (adults or children) in three studies (Fisher et al. (2013); Lin et al. (2009); Timmermann et al. (2014)), or in a single study of glucose homeostasis (Lin et al., 2011).

Several studies addressed PFOS and HOMA-IR (Homeostatic model assessment-Insulin resistance). This is essentially a measure of the efficiency of insulin utilization and β cell production of insulin, with higher insulin resistance values indicating less efficient insulin efficiency/glucose utilization. Lin et al. (2009) found a significant positive association of HOMA-IR and serum PFOS in adults. Timmermann et al. (2014) found a significant positive association for overweight (but not for normal weight) children. Two other studies in adults (Fisher et al., 2013; Nelson et al., 2010) found no significant associations. Lin et al. (2009) found that β cell function was significantly positively associated with adult serum PFOS. Since decreased β cell function is a component of an increased value for HOMA-IR, this appears to contradict the findings from the same study regarding HOMA-IR. Adolescent β cell function in this study, however, was negatively associated with serum PFOS with borderline statistical significance. Lind et al. (2014) did not observe a significant association between the proinsulin/insulin ratio (a measure of insulin secretion) in a population of 70 year-olds.

<u>Metabolic syndrome/body weight/obesity</u>

Metabolic syndrome is a cluster of conditions — increased blood pressure, high blood sugar, excess body fat around the waist, and abnormal cholesterol or triglyceride levels — that are predictive of the risk of heart disease, stroke and diabetes. Two studies, Fisher et al. (2013) and Lin et al. (2009) examined the association of metabolic syndrome with serum PFOS in adults, defining metabolic syndrome as having at least three of the five contributing definitions. Neither study found a significant association with serum PFOS.

Nelson et al. (2010) found that serum PFOS was significantly positively associated with body weight for the portion of their NHANES sample 60-80 years-old, but not for other adult ages. Timmermann et al (2014) did not find a significant association between children's serum PFOS and either BMI, skinfold thickness, or waist circumference.

Adiponectin and leptin are both hormones that function (at least in part) in the regulation of fat stores. Adiponectin is also involved in glucose regulation. No significant association was found between serum PFOS and adiponectin (Lin et al. (2011), 12-30-year-olds); Timmermann et al. (2014), children) or leptin (Timmermann et al. (2014), children). Obesity is associated with low-grade chronic inflammation, which inhibits adiponectin. In the Lin et al. (2011) study, no association was found between inflammatory markers and serum PFOS.

Uric acid

Uric acid is the final product of purine metabolism and may be associated with decreased kidney function or other underlying toxicity. For simplicity of presentation, epidemiology studies investigating associations between uric acid and/or hyperuricemia and PFOS exposure are addressed here. Geiger et al. (2013) (children) and Gleason et al. (2015) (adolescents and adults) found that uric acid concentration in blood was positively associated with serum PFOS. Steenland et al. (2010), also found a significant positive association of both serum uric acid and hyperuricemia with serum PFOS in a very large population of adults. Geiger et al. (2013) found that having hyperuricemia is positively associated with serum PFOS.

Summary of metabolic function studies

There is a suggestion that PFOS is associated with inhibition of insulin function and utilization. However, the evidence for this comes from only two studies (Lin et al., 2009, Timmermann et al., 2014). Other studies did not find these associations. There is also a suggestion that PFOS is associated with increased uric acid levels and an increased risk of hyperuricemia. The evidence for the association of elevated serum uric acid with PFOS exposure is supported by three studies (Geiger et al., 2013; Gleason et al., 2015; Steenland et al., 2010). The evidence for an association of PFOS exposure with hyperuricemia is supported by Geiger et al. (2013) and Steenland et al. (2010). There is a relatively strong consistency in findings among these studies, all of which are relatively large studies (particularly the Steenland et al. (2010) study, n = 53,454). Overall there is moderately strong evidence that PFOS exposure in humans is associated with elevated serum uric acid including the potential for progression to hyperuricemia.

Sex Hormones

A number of epidemiology studies have investigated the potential association between serum PFOS and sex hormones. These include, testosterone (5 studies), estradiol (5 studies), sex hormone binding globulin (SHBG) (5 studies), follicle stimulating hormone (FSH) (4 studies), luteinizing hormone (LH) (4 studies), inhibin-B (3 studies), free androgen index (4 studies), dehydroepiandrosterone, anti-Müllerian hormone, and gonadotrophin hormones (1 study each). One study which found statistically significant negative association with total and free testosterone and free androgen index (Joensen et al. 2013), while the other studies did not find a significant association between these sex hormones and serum PFOS (Table 11).

Table 9. Summary or	f Epidemiology Studies	of Thyroid Function	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
T4	transthyretin-bound T4	Geo. mean 10.92	Audet-Delage (2013)
	Free T4 =	Geo. mean 19.57	Bloom et al. (2010)
	Free T4 =	Geo. mean cases 7.08 controls 7.50	Chan et al. (2011)
	Free T4↑	Geo. mean 18.28	Dallaire et al. (2009)
	Free T4 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	Free T4 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	Free T4 =	Geo. mean 31.60	Shrestha et al. (2015)
	Free T4	Geo. mean 7.78	Lin et al. (2013a)
	Free T4 =	Mean 800-1,320	Olsen et al. (2003b)
	Total T4 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
	Total T4 =	Med. 7.16- 9.58	Ji et al. (2012)
	Total T4 = (maternal and fetal serum)	Mean 2.93 (maternal)	Kim et al. (2011)
	Total T4 =	Med. 20.97-26.15	Knox et al. (2011)

Table 9. Summa	ary of Epidemiology Studies	of Thyroid Function		
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference	
	Total T4 ↑	Med. 20	Lopez-Espinosa et al. (2012a)	
	Total T4 =	Mean 800-1,320	Olsen et al. (2003b)	
	Total T4 =	Geom. mean 31.60	Shrestha et al. (2015)	
	T4 (apparently total) = (children)	Med. 1.6 (maternal)	de Cock et al. (2014b)	
T3	T3 ↓	Geo. mean 18.28	Dallaire et al. (2009)	
	Free T3 =	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)	
	T3 ↓ (maternal serum, not sig for fetal serum)	Mean 2.93	Kim et al. (2011)	
	T3 uptake =	Med. 20.97-26.15	Knox et al. (2011)	
	T3 ↑ (M only)	Mean 800-1,320	Olsen et al. (2003b)	
	T3 =	Geo. mean 31.60	Shrestha et al. (2015)	
TSH	=	Geo. mean 9.57	Bloom et al. (2010)	
	=	Geo. mean cases 7.08 controls 7.50	Chan et al. (2011)	
	↓	Geo. mean 18.28	Dallaire et al. (2009)	
	=	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)	
	=	Med. 7.16- 9.58	Ji et al. (2012)	
	=	Mean 2.93	Kim et al. (2011)	
	=	Med. 20.97-26.15	Knox et al. (2011)	
	=	Geo. mean 7.78	Lin et al. (2013a)	
	1	Med. 20	Lopez-Espinosa et al. (2012a)	
	=	Mean 800-1,320	Olsen et al. (2003b)	
	=	Geo. mean 31.60	Shrestha et al. (2015)	

Table 9. Summary o	f Epidemiology Studies	of Thyroid Function	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
Thyroxine-binding globulin (TBG)	↓	Geo. mean 18.28	Dallaire et al. (2009)
	=	Not reported (NHANES 2007-8 pop)	Jain et al (2013b)
Thyroid disease	Clinical hypothyroidism =	Med. 20	Lopez-Espinosa et al. (2012a)
	Sub-clinical hypothyroidism =	Med. 20	Lopez-Espinosa et al. (2012a)
	Sub-clinical hyperthyroidism =	Med. 20	Lopez-Espinosa et al. (2012a)
	Thyroid disease ever/curren (self-reported) =	Geo. mean = 25.08 - 19.14	Melzer et al. (2010)

[↑] statistically significant positive association
↓ statistically significant negative association
= no significant association/equivocal association

Table 10. Summary of Epidemiology Studies of Metabolic Function									
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference						
Glucose homeostastis	Insulin =	Geo. mean 8.40	Fisher et al. (2013)						
	Insulin ↑ (for >20 yrs old)	Mean 22.42 - 24.29 (diff age ranges)	Lin et al. (2009)						
	Insulin ↑ (for overweight)	Med. 41.5	Timmermann et al. (2014)						
	Glucose =	Geo. mean 8.40	Fisher et al. (2013)						
	Glucose (homeostasis) =	Med. 8.93	Lin et al. (2011)						
	Glucose =	Mean 22.42 - 24.29	Lin et al. (2009)						
	C1	(diff age ranges)	T: 1 (2014)						
	Glucose =	Med. 41.5	Timmermann et al. (2014)						
	HOMA-IR =	Geo. mean 8.40	Fisher et al. (2013)						
	HOMA-IR =	Med. 21.0	Nelson et al. (2010)						
	HOMA-IR ↑ (for >20 yrs old)	Mean 22.42 - 24.29 (diff age ranges)	Lin et al. (2009)						
	HOMA-IR ↑ (for overweight)	Med. 41.5	Timmermann et al. (2014)						
	Metabolic syndrome =	Geo. mean 8.40	Fisher et al. (2013)						
	Metabolic syndrome =	Mean 22.42 - 24.29 (diff age ranges)	Lin et al. (2009)						
	Adiponectin =	Med. 8.93	Lin et al. (2011)						
	Adiponectin =	Med. 41.5	Timmermann et al. (2014)						
	β cell function ↑ (for >20 yrs old)	Mean 22.42 - 24.29 (diff age ranges)	Lin et al. (2009)						
	Diabetes =	Mean 13.2	Lind et al. (2014)						
	Pro-insulin/insulin ratio =	Mean 13.2	Lind et al. (2014)						
Uric acid	Serum uric acid ↑	Mean 18.4	Geiger et al. (2013)						
	Serum uric acid ↑	Med. 11.3	Gleason et al. (2015)						
	Hyperuricemia ↑	Mean 18.4	Geiger et al. (2013)						
	Uric acid, hyperuricemia ↑	Med. 20.2	Steenland et al. (2010)						
Inflammmation	Inflammatory markers =	Med. 8.93	Lin et al. (2011)						
	nt positive association nt negative association ation/equivocal associatio	n							

Endpoint	Effect and Direction	Serum PFOS concentration	Study reference	
		(ng/ml)		
		(mean, median, etc.)		
Sex hormones	Testosterone =	Med. 24.5	Joensen et al. (2009)	
	Testosterone =	Med. 3.6	Kristensen et al. (2013)	
	Testosterone =	Mean 8.1-51.9 (multiple pops.)	Specht et al. (2012)	
	Testosterone =	Med. 21.2 (maternal)	Vested et al. (2013)	
	Testosterone (total and	Mean 8.46	Joensen et al. (2013)	
	free) ↓			
	Estradiol =	Med. 24.5	Joensen et al. (2009)	
	Estradiol =	Med. 3.6	Kristensen et al. (2013)	
	Estradiol =	Mean 8.1-51.9 (multiple pops.)	Specht et al. (2012)	
	Estradiol =	Med. 21.2 (maternal)	Vested et al. (2013)	
	Estradiol = Mean 8.46		Joensen et al. (2013)	
	SHBG = Med. 24.5		Joensen et al. (2009)	
	SHBG =	Med. 3.6	Kristensen et al. (2013)	
	SHBG =	Mean 8.1-51.9	Specht et al. (2012)	
		(multiple pops.)		
	SHBG =	Med. 21.2 (maternal)	Vested et al. (2013)	
	SHBG =	Mean 8.46	Joensen et al. (2013)	
	FSH =	Med. 24.5	Joensen et al. (2009)	
	FSH =	Med. 3.6	Kristensen et al. (2013)	
	FSH =	Med. 21.2	Vested et al. (2013)	
		(maternal)		
	FSH =	Mean 8.46	Joensen et al. (2013)	
	LH =	Med. 24.5	Joensen et al. (2009)	
	LH =	Med. 3.6	Kristensen et al. (2013	
	LH =	Med. 21.2	Vested et al. (2013)	
		(maternal)		
	LH =	Mean 8.46	Joensen et al. (2013)	
	Inhibin B =	Med. 24.5	Joensen et al. (2009)	
	Inhibin B =	Med. 21.2	Vested et al. (2013)	
		(maternal)		
	Inhibin B =	Mean 8.46	Joensen et al. (2013)	
	Free androgen index =	Med. 24.5	Joensen et al. (2009)	
	Free androgen index =	Med. 3.6	Kristensen et al. (2013	
	Free androgen index =	Med. 21.2	Vested et al. (2013)	
		(maternal)		
	Free androgen index ↓	Mean 8.46	Joensen et al. (2013)	
	Dehydroepiandrosterone=	Med. 3.6	Kristensen et al. (2013	
	Anti-mullerian hormone=	Med. 3.6 n	Kristensen et al. (2013	
	Gonadotrophin hormones	Mean 8.1-51.9 (multiple pops.)	Specht et al. (2012)	

[↑] statistically significant positive association

↓ statistically significant negative association

= no significant association/equivocal association

Overall conclusions regarding the hazard identification of endocrine and metabolic effects

There is some evidence from animal studies for decreased levels of T4 and T3 due to PFOS exposure. The epidemiological literature provides some support for a role of PFOS in reducing total T3 and possibly T3 uptake. PFOS may affect thyroid weight, but the direction of the effect (decrease/increase) is not consistent. With the exception of thyroid follicular cell tumors, histopathological changes of the thyroid have not been noted in thyroid in response to PFOS exposure. The observation of thyroid follicular cell tumors in rats with chronic exposure contributes to the overall assessment of carcinogenic potential, but there is no suggestion of a mode of action for these tumors.

There is limited evidence for PFOS effects on the hypothalamus. There is limited evidence from the epidemiological literature for an association of PFOS with inhibition of insulin function and utilization.

There is moderately strong evidence for an association of PFOS with increased uric acid levels and the occurrence of hyperuricemia. It is unclear whether (or to what extent) the association of PFOS with uric acid reflects an underlying toxicity. Despite the suggestion of an association of PFOS and uric acid in humans, the lack of data on uric acid levels in animals exposed to PFOS makes the identification of an appropriate animal model uncertain.

Of the endocrine and metabolic endpoints for which there is some evidence for the potential for PFOS to cause adverse effects, the strongest evidence from animal studies relates to the thyroid. The strongest evidence from epidemiologic studies relates to uric acid. For both thyroid effects and uric acid effects, observations in animals are not strongly supported by observations in animals and vice-versa. The animal evidence for thyroid effects is sufficient to include this as an endpoint for consideration of dose-response. While the human evidence for uric acid effects, would suggest that such effects would be an appropriate endpoint for consideration of dose-response, the epidemiologic evidence does not support dose response modeling, and the animal evidence is insufficiently consistent to support dose-response modeling.

Hepatic effects

Animal studies

A summary of hepatic effects in animals can be found in Table 12 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

In general, the following endpoints were identified in animals: increases in liver weight (absolute and relative to body weight), changes in liver histopathology (hepatocellular hypertrophy and other microscopically observed changes), changes in liver carbohydrate and fat content, and increased of incidence tumors (e.g., adenomas and carcinomas). Of these endpoints, histopathological effects and liver weight, and tumor findings (although related to carcinogenicity) are briefly reviewed below. Cchanges in serum enzymes typically associated with liver damage as well as data on bilirubin are also discussed. Note that effects of PFOS on blood/serum levels of urea are discussed in the section on Endocrine and Metabolic Effects.

Liver weight

Increased liver weight (both absolute and relative to body weight) has been consistently observed in mice, monkeys, and rats following subchronic or greater exposure durations to PFOS (see Table 12). Similarly, numerous shorter duration (i.e, <30 days) studies have also reported that PFOS exposure can cause an increase in relative liver weight in mice (e.g., Qazi et al., 2009b; Zheng et al., 2009; Rosen et al., 2010) and rats (e.g., Martin et al., 2007; Elcombe et al., 2012a, 2012b). In these shorter duration studies, increased relative liver weight was reported to occur with 5 or 7 days of exposure in rats (Martin et al., 2007) and mice (Zheng et al., 2009; Rosen et al., 2010), respectively.

Following exposures ≥30 days, representative LOAELs for increased relative liver weight were reported to be 0.083, 0.75, and 1.0 mg/kg/day in mice, monkeys, and rats, respectively (Seacat et al., 2002; Dong et al., 2009; Butenhoff et al., 2012). At shorter durations of exposure (<30 days), representative LOAELs for increased relative liver weight were reported to be 5 mg/kg/day in mice (Zheng et al., 2011) and 1.3 mg/kg/day in rats (Elcombe et al., 2012a). However, some low-dose studies in mice did not observe an increase in relative liver weight with PFOS exposures of up to 28 days (e.g., Peden-Adams et al., 2008, NOAEL = 0.17 mg/kg/day; Guruge et al., 2009, NOAEL = 0.025 mg/kg/day).

In addition to studies using standard rat and mouse strains, WT (wild-type) and PPAR α null mice have been compared with respect to their hepatic effects of PFOS. Rosen et al. (2010) reported increased relative liver weights in both WT and PPAR α null mice following 7 days of exposure. Similarly, Qazi et al. (2009b) reported an increase in absolute liver weight in WT and PPAR α null mice following 10 days of exposure; relative liver weight was not reported in this study.

Liver enzymes

While a number of enzyme parameters can be measured as part of clinical chemistry panels, data are reviewed below for alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST), which are indicative of liver effects, following PFOS exposure. Data on the effects of PFOS exposure on liver enzymes and bilirubin are discussed below and summarized in the table for Clinical Chemistry.

ALT

In male and female monkeys, no effect on ALT levels were reported following 182 days of PFOS exposure (Seacat et al., 2002; NOAEL = 0.75 mg/kg/day).

In rats, increased ALT levels were reported in males exposed to 1.0 mg/kg/day for 53 weeks (Butenhoff et al., 2012). This increase was also observed at an interim observation (14 weeks) in these male rats (Seacat et al., 2003). In contrast, there was no effect of PFOS exposure on ALT levels in female rats (Seacat et al., 2003; Butenhoff et al., 2012; NOAEL = 1.3 mg/kg/day). Elcombe et al. (2012a) reported no effect on ALT levels in male rats exposed for \leq 28 days (NOAEL = 7.9 mg/kg/day). However, a decrease in ALT was observed in male rats exposed to 1.9 mg/kg/day for 7 days (Elcombe et al., 2012b).

In mice, no effect on ALT was observed following exposures up to 28 days or at doses \leq 6 mg/kg/day (Qazi et al., 2010b, 2013).

ALP

Data are somewhat limited regarding the effect of PFOS exposure on levels of ALP in animals. Seacat et al. (2002) reported no effect of PFOS exposure on ALP in male and female monkeys exposed for 182 days (NOAEL = 0.75 mg/kg/day). Curran et al. (2008) observed no effect of PFOS exposure on ALP in male (NOAEL = 6.3 mg/kg/day) and female (NOAEL = 7.6 mg/kg/day) rats exposed for 28 days. Qazi et al. (2010b) found an increase in ALP in male mice (LOAEL = 0.005% in feed) exposed for 10 days.

AST

No effect on AST levels were observed in male and female monkeys exposed to PFOS for 182 days (Seacat et al., 2002; NOAEL = 0.7 mg/kg/day).

In rats, no effect on AST levels were observed in male (NOAEL = 1.0 mg/kg/day) and female (NOAEL = 1.3 mg/kg/day) rats exposed for 53 weeks (Butenhoff et al., 2012). However following shorter durations of PFOS exposure, data for AST are mixed in rats. Following 28 days of exposure, Curran et al. (2008) found decreased AST in female (LOAEL = 7.6 mg/kg/day) but not male (NOAEL = 6.3 mg/kg/day) rats, whereas Kim et al. (2011) observed increased AST in male (LOAEL = 10 mg/kg/day) but not female (NOAEL = 10 mg/kg/day) rats. Additionally, no effect on AST was reported after 28 days (Elcombe et al., 2012a, NOAEL = 1.3 mg/kg/day) or 7 days (Elcombe et al., 2012b, NOAEL = 9.7 mg/kg/day) of PFOS exposure.

In mice, no effect on AST was observed following 28 days (Qazi et al., 2013; NOAEL = 0.14 mg/kg/day) or 10 days (Qazi et al., 2010b; 2013; NOAEL = 6 mg/kg/day) of exposure.

For the serum enzymes discussed above, effects following PFOS exposure vary. While there is some evidence that PFOS can affect ALT levels in animals, data generally suggest no effect on this serum enzyme following PFOS exposure. For ALP, the data, while limited, were negative in monkeys and rats but indicate an effect in mice. AST levels were generally not affected by PFOS exposure; however, some rat studies have reported increased or decreased levels of this enzyme.

Bilirubin

Various observations on bilirubin have been reported following PFOS exposure. Seacat et al. (2002) reported a decrease in total bilirubin in male monkeys following 182 days of exposure to 0.75 mg/kg/day, whereas no effect was observed in females (NOAEL = 0.75 mg/kg/day). No effect on total bilirubin was reported in male (NOAEL = 1.3 mg/kg/day) and female (NOAEL = 1.6 mg/kg/day) rats following 14 weeks of exposure (Seacat et al., 2003). However, Curran et al. (2008) observed an increase in conjugated bilirubin in male (LOAEL = 6.3 mg/kg/day) and female (LOAEL = 3.7 mg/kg/day) rats following 28 days of exposure.

In total, data are mixed (i.e., increases, decreases, or no effect have been observed) regarding whether PFOS exposure affects bilirubin levels in animals.

Histopathological lesions

Following PFOS exposure, a number of different histopathological lesions have been reported in the liver including cystic hepatocellular degeneration (Butenhoff et al., 2012), hepatocellular hypertrophy/hepatomegaly (Seacat et al., 2002, 2003; Martin et al., 2007; Curran et al., 2008;

Qazi et al., 2010b; Kim et al., 2011; Butenhoff et al., 2012; Elcombe et al., 2012a, 2012b), hepatocyte vacuolation (Seacat et al., 2002, 2003; Wang et al., 2014a), and hepatocyte necrosis (Butenhoff et al., 2012).

Of these lesions, hepatocellular hypertrophy and vacuolation have been assessed in multiple species. Hepatocellular hypertrophy following PFOS exposure has been observed in mice (Qazi et al., 2010b), monkeys (Seacat et al., 2002), and in multiple rat studies (e.g., Martin et al., 2007; Butenhoff et al., 2012; Elcombe et al., 2012a, 2012b). Similarly, hepatocellular vacuolation following PFOS exposure has been observed in mice (Wang et al., 2014a), monkeys (Seatcat et al., 2002) and rats (Seacat et al., 2003). Vacuole formation was observed in both wild-type (WT) and PPARα null mice (Rosen et al., 2010) following PFOS exposure.

While observed following subchronic (i.e., >30 days) and longer exposure durations (see Table 12), lesions such as hepatocellular hypertrophy have also been reported with PFOS exposures of 7 days or less in rats (Martin et al., 2007; Elcombe et al., 2012a, 2012b). In mice, vacuole formation was observed following 7 days of PFOS exposure (Rosen et al., 2010), whereas hypertrophy (Qazi et al., 2010b) and vacuolation (Wang et al., 2014a) were observed following 14 days of exposure.

With subchronic and greater exposure durations, hepatic lesions, specifically cystic hepatocellular degeneration, in rats have been observed at administered doses as low as 0.02 mg/kg/day (Butenhoff et al., 2012). At higher doses, hypertrophy (0.1 mg/kg/day) and necrosis (1.0 mg/kg/day) have been observed (Butenhoff et al., 2012). In monkeys, centrilobular vacuolation and hypertrophy were observed with 0.75 mg/kg/day exposure (Seacat et al., 2002). No chronic mouse studies assessed histopathological lesions. At shorter durations of PFOS exposure (i.e., <30 days), hepatic lesions occurred at higher doses. For example, 1.3 mg/kg/day of PFOS exposure caused hypertrophy in rats (Elcombe et al., 2012a), and vacuolation was observed in mice exposed to 5 mg PFOS/kg/day (Wang et al., 2014a).

While the presence of histopathological lesions in the liver has been a common observation following PFOS exposure, some studies assessing hepatic endpoints have reported no histopathological changes. For example, Fair et al. (2011) found no histopathological changes in the livers of mice exposed up to 0.17 mg/kg/day for 28 days. Additionally, some studies have reported histopathological lesions in males but not in female animals following PFOS exposure. Butenhoff et al. (2012) reported an increase in cystic hepatocellular degeneration in male rats but no increase in females at any dose. Other studies also report that male rats appear to be more sensitive than females to the formation of histopathological lesions in the liver following PFOS exposure (Seacat et al., 2003; Curran et al., 2008; Kim et al., 2011).

Hepatic tumors

Although they are related to carcinogenicity, tumors are discussed here because they may result from a progression that begins with earlier non-neoplastic hepatic damage.

The Butenhoff et al. (2012) study in male and female rats was the only identified study that assessed the formation of liver tumors. In both males and females exposed to PFOS for 104 weeks, a statistically significant increase in the incidence of hepatocellular adenomas was

reported for the highest dose groups. No statistically significant increases in hepatocellular carcinomas were observed in males or females. However, when adenomas and carcinomas were combined, a statistically significant increase in hepatocellular adenomas/carcinomas was observed in females only.

In summary, studies with multiple species and durations have consistently demonstrated hepatic effects in laboratory animals following PFOS exposure. The apparent succession of some of these lesions occurs in a dose-related manner. For example, as reported in Butenhoff et al. (2012), cystic hepatocellular degeneration in male rats was observed in the lowest dose group (0.02 mg/kg/day). With increasing dose up to 1.0 mg/kg/day, additional effects were observed including hypertrophy, vacuolation, necrosis, and adenomas. This increase in the number of and severity of effects with dose suggests that these effects occur along a continuum starting with cystic degeneration towards more severe effects (e.g., necrosis and tumors).

Table 12. St	udy summa	ry table for hepatic ef	fects in an	imals				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	↑ liver absolute weight (males), relative to body weight (males and females), and relative to brain weight (males) (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure)	Males: Females: -	Males: 1.0 Females: 1.3	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	(day assessed) Males: 146,000 Females: 223,000 (week 14) 233,000 (week 105) (male serum PFOS concentrations determined after 53 weeks of exposure, female serum PFOS concentrations reported for after exposure for 4, 14, and 105

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	≤104 weeks	↑ cystic degeneration (males only) (determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices)	Males: Females: 1.3	Males: 0.02 Females: -	Serum and liver PFOS concentrations determined Other pathological effects reported by study authors but not summarized herein Due to conflation of interim and term data in outcome reporting both significance and dose-response for term outcomes are not interpretable	Males: 910 (week 4) 4,040 (week 14) 1,310 (week 105) Females: (male serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Table 12. St	tudy summa	ry table for hepatic ef	fects in an	imals				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				↑ hepatocellular hypertrophy (centrilobular), males and females (determined in rats from scheduled [week 14 and 53],	Males: 0.02 Females: 0.1	Males: 0.1 Females: 0.3		(day assessed) Males: 4,330 (week 4) 17,100 (week 14) 7,600 (week 105) Females: 12,600 (week 4) 64,400 (week 14) 75,000 (week 105) (male serum PFOS
				unscheduled, and terminal sacrifices)				concentrations reported for after exposure for 4, 14, and 105 weeks, female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				↑ individual hepatocyte necrosis, males and females (determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices)	Males: 0.2 Females: 0.3	Males: 1.0 Females: 1.3		Males: 41,800 (week 4) 148,000 (week 14) 146,000 (week 53) 69,300 (week 105) Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 105) (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks, female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				† hepatocellular adenoma, males and females (presumably determined in rats from scheduled [week 14 and 53], unscheduled, and terminal sacrifices)	Males: 0.2 Females: 0.3	Males: 1.0 Females: 1.3		Males: 41,800 (week 4) 148,000 (week 14) 146,000 (week 53) 69,300 (week 105) Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 14) 233,000 (week 105) (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks, female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Table 12. Study summary table for hepatic effects in animals Serum PFOS concentration (in NOAEL* LOAEL* ng/mL) Species/ **Administered Doses** (mg/kg/d (mg/kg/d Reference Duration Endpoint(s) Comment(s) corresponding to Strain and Route unless unless the LOAEL noted) noted) (day assessed) Males: ----Females: 54,000 ↑ hepatocellular (week 4) adenoma plus carcinoma. 223,000 (week combined only for 14) females 233,000 (week 0.3 (presumably 1.3 105) determined in rats from scheduled (female serum [week 14 and 53], **PFOS** unscheduled, and concentrations terminal sacrifices) reported for after exposure for 4, 14, and 105 weeks) Dong et al. Serum PFOS Mice, 0, 8.33, 83.33, 416.67, 60 days C57BL/6 (2009)833.33, 2083.33 concentrations ↑ liver weight relative to body ug/kg/day determined 7130 weight (reported as mg/kg/day 0.008 0.083 Only males used (serum collected when representing a (determined after on day 61) NOAEL and/or LOAEL) 60 days of exposure) Oral gavage Dong et al. Mice, 0, 0.0083, 0.0167, 60 days Serum PFOS ↑ liver weight (2011)C57BL/6 0.0833, 0.4167, 0.8333 concentrations relative to body mg/kg/day determined 21.640 weight 0.0833 0.4167 Oral gavage Only males used (serum collected (determined after on day 61) 60 days of Small sample size exposure) (n=6)

Table 12. Study summary table for hepatic effects in animals Serum PFOS concentration (in NOAEL* LOAEL* ng/mL) Species/ Administered Doses (mg/kg/d (mg/kg/d Reference Duration Endpoint(s) Comment(s) corresponding to Strain and Route unless unless the LOAEL noted) noted) (day assessed) Dong et al. 0, 0.0167, 0.0833, 60 days Serum PFOS Mice, ↑ liver weight (2012b) C57BL/6 0.833 mg/kg/day concentrations relative to body 8.210 determined weight Oral gavage 0.0167 0.0833 (serum collected Only males used (determined after on day 61) 60 days of exposure) Serum PFOS Dong et al. 0, 0.0083, 0.0167, 60 days Mice, ↑ liver weight (2012a) C57BL/6 0.0833, 0.4167, concentrations relative to body 0.8333, 2.0833 determined 8,210 weight mg/kg/day 0.0167 0.0833 Only males used (serum collected (determined after Oral gavage on day 61) 60 days of Small sample size exposure) (n=6)Serum, brain, liver, Kawamoto Rats, 0, 2, 8, 32, 128 ppm 13 ↑ relative liver and kidney PFOS Wistar et al. (2011) weeks weiaht Dietary concentrations determined (↑ absolute liver Daily PFOS dose (serum samples weight at highest (estimated as the Only males used 0.5 2.1 collected after 13 dose) mean of the daily weeks) PFOS doses reported Internal PFOS (determined after weekly by study concentrations not 13 weeks) authors) reported for controls 0, 0.1, 0.5, 2.1, 8.5 mg/kg/day

Table 12. Study summary table for hepatic effects in animals Serum PFOS concentration (in NOAEL* LOAEL* ng/mL) Species/ Administered Doses (mg/kg/d (mg/kg/d Reference Duration Endpoint(s) Comment(s) corresponding to Strain and Route unless unless the LOAEL noted) noted) (day assessed) 0, 0.03, 0.15, 0.75 26 Serum and liver Seacat et al. Monkeys, ↑ relative liver mg/kg/day (2002)cynomolgus weeks PFOS concentrations weight (i.e., relative Males: Males: determined to body weight) 0.15 0.75 Capsule 1-year Males: 173,000 recovery Sample sizes († absolute and Females: Females: data not generally 2 to 6 per Females: 171,000 relative [to brain] 0.15 0.75 summarized group with increased liver weight in herein frequency of endpoint (determined after females only with (based on (based on measurements 183 days of 0.75 mg/kg/day) relative to relative to exposure) body body (determined after weight) weight) 183 days of exposure) Cetrilobular vacuolation, hypertrophy, mild bile stasis 172.000 (sex, incidence, 0.15 0.75 (determined after and severity not 183 days of reported) exposure) (determined after 183 days of exposure)

Table 12. Study summary table for hepatic effects in animals

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS BR	0, 0.5, 2.0, 5.0, 20 ppm Dietary Estimated daily dose of PFOS (as reported by study authors) Males: 0, 0.03, 0.13, 0.34, 1.33 mg/kg/day Females: 0, 0.04, 0.15, 0.40, 1.56 mg/kg/day	14 weeks	relative liver weight (to body weight, males and females) († absolute liver weight males only with 20 ppm) (determined after 14 weeks of exposure) Centrilobular hepatocyte hypertrophy, midzonal to centrilobular vacuolation (determined after 14 weeks of exposure)	Males: 0.3 Females: 0.4 (based on relative liver weight) Males: 0.1 Females: 0.4	Males:1.3 Females: 1.6 (based on relative liver weight) Males: 0.3 Females: 1.6	Serum and liver PFOS concentration determined Sample size ≤5 rats per endpoint	Males: 148,000 Females: 223,000 (determined after 14 weeks of exposure) Males: 43,900 Females: 223,000 (determined after 14 weeks of exposure)
Yu et al. (2009a)	Rats, Sprague- Dawley	0, 1.7, 5.0, 15.0 mg/L Drinking water	91 days	↑ liver weight (absolute and relative) (determined after 91 days of exposure)	1.7 mg/L	5.0 mg/L	Serum PFOS concentrations determined Only males used	33,600 (determined after 91 days of exposure)

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

 $[\]uparrow$ = increased; \downarrow = decreased

^{---- =} not applicable

Human epidemiology studies

A summary of hepatic effects in humans can be found in Table 13 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Liver enzymes

The increase of liver enzymes in serum is generally considered to be an indicator of liver toxicity. Several studies investigated the association between serum liver enzymes and PFOS exposure. No overall consistent pattern is apparent. While some studies, including Gallo et al. (2012) and Olsen et al. (2003b), found significant positive associations of serum ALT with serum PFOS at median and mean PFOS concentrations in the study population, other studies by Gleason et al. (2015), Olsen et al. (2012), and Jiang et al. (2014) failed to find a significant association. There is some suggestion that those studies that did find a significant positive association involved cohorts with higher PFOS exposure. Only one study (Olsen et al., 2003b) found a positive association of PFOS with gamma glutamyl transferase (GGT; in females only), while two other studies did not. The occupational cohort of Olsen et al. (2003b) had a much greater exposure than the non-occupational cohorts in the other studies. No significant positive associations were found between serum PFOS and AST. Of the three studies that measured ALP, only the Olsen et al. (2003b) occupational cohort found a significant positive association.

Bilirubin

Elevated serum bilirubin can be an indirect measure of liver toxicity and/or an indication of bile duct blockage (cholestastis). A component of total bilirubin is direct bilirubin, a product of hemoglobin metabolism for which increased serum concentrations reflect increases in liver and bile duct disease. Therefore, total bilirubin serves only as an inferential measure of liver function. The available studies of serum bilirubin in various cohorts showed both significant positive and negative associations with no clear pattern.

Endpoint	Effect and Direction	Serum PFOS	Study reference
-		concentration (ng/ml)	
		(mean, median, etc.)	
Liver enzymes			
	ALT ↑	Med. 20.3	Gallo et al. (2012)
	ALT =	Med. 11.3	Gleason et al. (2015)
	ALT =	Δ+4.2	Olsen et al. (2012)
	ALT ↑	Mean. 800-1,320	Olsen et al. (2003b)
	(M only)		
	ALT =	Mean 4.75	Jiang et al. (2014)
	GGT =	Med. 20.3	Gallo et al. (2012)
	GGT =	Med. 11.3	Gleason et al. (2015)
	GGT ↑	Mean. 800-1,320	Olsen et al. (2003b)
	(F only)		
	AST =	Med. 11.3	Gleason et al. (2015)
	AST =	Δ+4.2	Olsen et al. (2012)
	AST =	Mean. 800-1,320	Olsen et al. (2003b)
	AST =	Mean 4.75	Jiang et al. (2014)
	ALP =	Med. 11.3	Gleason et al. (2015)
	ALP =	Δ+4.2	Olsen et al. (2012)
	ALP↑	Mean. 800-1,320	Olsen et al. (2003b)
Bilirubin	Direct ↑	Med. 20.3	Gallo et al. (2012)
	Total ↑	Med. 11.3	Gleason et al. (2015)
	Total ↓	Δ+4.2	Olsen et al. (2012)
	Total ↓, direct ↓	Med. 1,000-3,000	Olsen et al. (1999)
	Total↓	Mean. 800-1,320	Olsen et al. (2003b)
	Total ↑	Mean 4.75	Jiang et al. (2014)
	(for 2-branched PFOS		
	only)		

[↑] statistically significant positive association

Overall conclusions regarding the hazard identification of hepatic effects

There is evidence from animal studies that the liver is a target organ for PFOS exposure. In animals, PFOS has produced a variety of hepatic effects including histopathological changes, increased liver weight, and tumors. In humans, studies of hepatic effects have focused on changes in serum enzymes that are typically associated with liver damage. Such studies have reported mixed results following PFOS exposure.

Based on the strength of the observations from animal studies, hepatic effects are identified as endpoints for consideration of dose-response.

[↓] statistically significant negative association

⁼no significant association/equivocal association

 $[\]Delta$ + positive change

Immune effects

Animal studies

A summary of immune effects in animals can be found in Table 14 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

In general, the following endpoints were identified in laboratory animals and are briefly reviewed below: immunosuppression (e.g., host resistance, natural killer cell activity, plaque forming cell response), as well as effects on immune organs (e.g., cellularity, histopathology, weight), cell populations, and immune mediators (e.g., cytokines, immunoglobulins).

<u>Immunosuppression</u>

Although no chronic studies assessed immunosuppression, subchronic (i.e., ≥30-90 days of exposure) and shorter duration studies of PFOS were found to cause such effects. Dong et al. (2009) observed decreased plaque forming cell response (i.e., a measurement of the ability of an organism to form reactive antibodies to an extrinsic antigen) in adult male mice (following sheep red blood cell [SRBC] challenge) after 60 days of PFOS exposure (LOAEL = 0.083 mg/kg/day). At shorter durations of exposure, decreased plaque forming cell response was observed in male mice following 7 (Zheng et al., 2009; LOAEL = 5 mg/kg/day) or 28 days of PFOS exposure (Peden-Adams et al., 2008; LOAEL = 0.002 and 0.02 mg/kg/day for males and females, respectively). In contrast, Qazi et al. (2010a) found no effect on plaque forming response in male mice following 28 days of exposure (NOAEL = 0.25 mg/kg/day). With *in utero* exposure (GD1 to GD17) to PFOS, decreased plaque forming cell response was observed in male (LOAEL = 5 mg/kg/day), but not female (NOAEL = 5 mg/kg/day), mouse offspring at 8 weeks of age (Keil et al., 2008). At these LOAELs, decreases in plaque forming cell response compared to controls were: 30% (Dong et al., 2009), 52 to 78% (for males, Peden-Adams et al., 2008), 63% (Zheng et al., 2009), and 53% (Keil et al., 2008).

In addition to effects on plaque forming cell response, other indicators of immunosuppression have been reported in mice. For example, following 60 days of PFOS exposure, decreased natural killer cell activity was observed at doses of > 0.83 mg/kg/d (although there was an increase in natural killer cell activity at a lower dose of 0.08 mg/kg/day) (Dong et al., 2009). At the same exposure duration, no effect on delayed-type hypersensitivity was observed in mice (Dong et al., 2011) at any dose (i.e., ≤ 0.83 mg/kg/day). Following 21 days of exposure, increased mortality in response to influenza A virus was reported in Guruge et al. (2009; LOAEL = 0.025 mg/kg/day).

Effects on immune organs

Following PFOS exposure, effects assessed in immune organs (spleen and thymus) included changes in cellularity, histopathology, and organ weight.

Decreases in splenic and thymic cellularity have consistently been observed in mice following PFOS exposure. While these decreases have been observed following subchronic exposure (Dong et al., 2009, 2012a, 2012b) and in shorter 7 or 10 days studies (Zheng et al., 2009; Qazi et al., 2012).

Decreases in splenic and thymic cellularity have been observed in mice with relatively high doses (20 mg/kg/day) following 7 days of PFOS exposure (Zheng et al., 2009). However, longer durations of PFOS exposure (e.g., 60 days) caused decreases in splenic and thymic cellularity at 0.4 mg/kg/day (Dong et al., 2009, 2012a). No decrease in splenic and thymic cellularity was observed following 28 days of exposure to 0.17 mg/kg/day (Peden-Adams et al., 2008).

There is limited information regarding the histopathological effects of PFOS exposure on the spleen and thymus. Following 14 days of exposure, histopathological effects in mouse spleen (dilation of splenic sinus) and thymus (vasodilation, congestion) were observed with 5 mg/kg/day (Wang et al., 2011a). At lower doses in mice, no effects on spleen and thymus histopathology were observed with 0.17 mg/kg/day for 28 days (Fair et al., 2011). In rats, spleen histopathology (congestion, mild dilation of the splenic antrum) was observed with 28 days of exposure at 5 mg/kg/day (Cui et al., 2009).

In general, decreased relative spleen and thymus weights were observed in mice following PFOS exposure. Following subchronic exposure, these decreases occurred with PFOS doses >0.4 mg/kg/day (Dong et al., 2009, 2011, 2012a, 2012b). With shorter durations of exposure (i.e., <14 days), decreased relative spleen and thymus weights were observed following higher PFOS doses, >20 mg/kg/day (Qazi et al., 2009b, 2012; Zheng et al., 2009, 2011; Wang et al., 2011a). In contrast, no changes in spleen and thymus weights were observed when PFOS doses were <0.25 mg/kg/day (Peden-Adams et al., 2008; Guruge et al., 2009; Qazi et al., 2010a). In addition to observations in standard strains of mice, 40 mg/kg/day of PFOS for 10 days decreased absolute spleen weights in wild-type (WT) and PPARα null mice (Qazi et al., 2009b). Absolute thymus weights were reduced, but with statistical significance only in WT mice.

In rats following 52 weeks of exposure, relative (to body weight) spleen weight decreased in males (LOAEL = 1.0 mg/kg/day) but increased in females (LOAEL = 1.3 mg/kg/day; Butenhoff et al., 2012). Following 28 days of exposure, relative spleen weight increased in female (LOAEL = 7.6 mg/kg/day), but not male rats (NOAEL = 6.3 mg/kg/day; Lefebvre et al., 2008). No effect on relative thymus weight was observed in these rats.

Effects on specific cell populations

Exposure to PFOS has been reported to affect immune cell populations in mice. For example, 60 days of PFOS exposure decreased splenic and thymic T cell CD4/CD8 subpopulations (LOAEL 35 = 0.4 mg/kg/day) and splenic lymphocyte proliferation (LOAEL = 0.8 mg/kg/day; Dong et al., 2009). At lower doses, PFOS exposure caused an increase in the percentage of peritoneal cavity macrophages (LOAEL = 0.02 mg/kg/day; Dong et al., 2012a). At a shorter duration of exposure (i.e., 7 days), 5 mg/kg/day of PFOS caused a decrease in lymphocyte proliferation (Zheng et al., 2009).

Effects on immune mediators

PFOS has been reported to affect immune mediators (i.e., cytokines, immunoglobulins) in mice. Following 60 days of exposure, PFOS was reported to either increase (IL-1beta, IL-4, IL-6, IL-10, TNFα) or decrease (IL-2) the *ex vivo* production of cytokines by isolated splenocytes or peritoneal cells (Dong et al., 2011, 2012a). Following inoculation with sheep red blood cells, decreases in serum IgM levels have been observed with 60 days of exposure to 0.83 mg/kg/day PFOS (Dong et al., 2011). At a shorter duration of exposure (i.e., 7 days), 5 mg/kg/day PFOS

increased IgG and decreased IgM levels in serum (Zheng et al., 2011).

Summary of immune effects in animals

In summary, animal studies, primarily in mice, have demonstrated various immune effects following PFOS exposure. Immunosuppression has consistently been reported (in all but one study) in the form of decreased immune system function (e.g., plaque forming cell response to a foreign antigen) and decreased host resistance. Although the total number of studies examining immunosuppression in animals is relatively small (n = 5), the consistency of the effect provides strong support for identifying immunosuppression as an effect of PFOS exposure. At the organ level, decreases in spleen and thymus cellularity and relative weights have been observed. Additionally, there is evidence that PFOS can affect immune cells populations, serum immunoglobulin levels, and immune mediators. These effects at different levels of the immune system provide evidence that supports a conclusion that PFOS is immunotoxic in laboratory animals.

Table 14. S	Study sumn Species/ Strain	nary table for immun Administered Doses and Route	e system ef Duration	fects in animals Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	↓ spleen absolute weight, relative to body weight, and relative to brain weight, males only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure)		Males: 1.0	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	146,000 (determined after 53 weeks of exposure)
				↑ spleen weight relative to body weight, females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure)		Females: 1.3		Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)					
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a	60 days	↓ spleen weight relative to body weight (determined at day 61)	0.083	0.417	Serum PFOS concentrations determined Only males used	21,640 (serum collected on day 61)					
		NOAEL and/or LOAEL) Oral gavage All animals appear to have been immunized with sheep red blood cells (SRBC) four days prior to sacrifice.	Oral gavage All animals appear to have been immunized with sheep red blood cells (SRBC) four days		thymus weight relative to body weight (determined at day 61)	0.083	0.417		21,640 (serum collected on day 61)				
						0.083	0.417		21,640 (serum collected on day 61)				
										thymic cellularity (determined at day 61)	0.083	0.417	
					0.083	0.417		21,640 (serum collected on day 61)					

Table 14. S	tudy sumn	ary table for immun	e system ef	fects in animals				
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				↓ splenic NK cell				(day assessed)
				activity	0.417	0.833		65,430
				(† activity reported at 83.33 ug/kg/day)	Based on decreased	Based on decreased		(serum collected
				(determined at day 61)	activity	activity		on day 61)
				↓ splenic lymphocyte proliferation	0.417	0.833		65,430 (serum collected
				(determined at day 61)				on day 61)
				↓ plaque forming cell response	0.008	0.083		7,130
				(determined at day 61)	0.008	0.063		(serum collected on day 61)
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day	60 days	↓ spleen weight relative to body weight	0.4167	0.8333	Serum PFOS concentrations determined	51,710
		Oral gavage		(determined at day 61)	0.4107	0.6333	Only males used	(serum collected on day 61)
		All animals appear to have been immunized, at least once (7 days		thymus weight relative to body weight			Small sample size (n=6)	51,710
		prior to sacrifice) with SRBC. Animals used for the delayed-type		(determined at day 61)	0.4167	0.8333		(serum collected on day 61)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
		hypersensitivity response assay also received a booster SRBC immunization one day prior to sacrifice.		↑ cytokine secretion (IL-4), splenocytes (↓ INF-gamma reported for 0.8333 ug/kg/day) (determined at day	0.0167 (based on IL-4 data)	0.0833 (based on IL-4 data)		10,750 (serum collected on day 61)
				Number of T-cells (from splenocytes) secreting cytokines: ↓ for IL-2+ cells ↑ for IL-10+ cells (determined at day 61)	0.4167	0.8333		51,710 (serum collect on day 61)
				↓ serum IgM levels (↑ IgG, IgG1, and IgE with 0.8333 ug/kg/day) (determined at day 61)	0.0167 (based on IgM data)	0.0833 (based on IgM data)		10,750 (serum collected on day 61)
				Delayed-type hypersensitivity (footpad thickness)	0.8333			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
Dong et al. (2012b)	Mice, C57BL/6	0, 0.0167, 0.0833, 0.833 mg/kg/day Oral gavage	60 days		0.0833	0.833	Serum PFOS concentrations determined Only males used	(day assessed) 59,740 (serum collected on day 61)
				thymus weight relative to body weight (determined at day 61)	0.0833	0.833		59,740 (serum collected on day 61)
Dong et al. (2012a)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333, 2.0833 mg/kg/day Oral gavage	60 days		0.0833	0.4167	Serum PFOS concentrations determined Only males used	24,530 (serum collected on day 61)
		A separate cohort of seven groups of animals were immunized with lipopolysaccharide on day 61 (i.e, one day	of n ride on	thymus weight relative to body weight (determined at day 61)	0.0833	0.4167	Small sample size (n=6)	24,530 (serum collected on day 61)
		after the final exposures) to assess innate immune response (e.g., cytokine levels).			0.0833 (based on cellularity data)	0.4167 (based on cellularity data)		24,530 (serum collected on day 61)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				↑ norcentage of				(day assessed)
				percentage of peritoneal cavity macrophages				4,530
				(↓ peritoneal cavity cellularity with 2.0833 mg/kg/day)	0.0083	0.0167		(serum collected on day 61)
				(determined at day 61)				
				†cytokine production (TNF- alpha) by peritoneal cells	0.0833	0.4167		24,530
				(↑ production of IL- 1beta and IL-6 at higher doses)	(based on TNF-alpha data)	(based on TNF-alpha data)		(serum collected on day 61)
				(determined at day 61)				
				†cytokine production (TNF- alpha and IL-1beta) by splenic cells	0.4167	0.8333		59,740
				(↑ production of IL- 6 at higher dose)	(based on TNF-alpha data)	(based on TNF-alpha data)		(serum collected on day 61)
				(determined at day 61)				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				↑ serum cytokines (IL-1beta and IL-6), without LPS stimulation (↑ serum cytokine with LPS stimulation but at higher PFOS doses) (determined at day	0.4167	0.8333		59,740 (serum collected on day 61)

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

↑ = increased; ↓ = decreased ----- = not applicable

Ig = immunoglobulin; IL = interleukin; INF = interferon; LPS = lipopolysaccharide; NK = natural killer; TNF = tumor necrosis factor

Note: For some endpoints animals were administered sheep red blood cells or other antigen to assess immune response. Such immunizations are noted in the "Administered Doses and Route" column.

Human epidemiology studies

A summary of immune effects in humans is found in Table 15 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Vaccine response/antibody titers

Five studies evaluated associations of serum PFOS concentrations and antibody concentrations following vaccination for measles, mumps, rubella, diphtheria, tetanus and/or influenza (Grandjean et al., 2012, Granum et al., 2013, Stein et al., 2016, Kielsen et al., 2016, and Looker et al., 2014). These epidemiology studies are discussed in detail because they provide support for the toxicological effect that was ultimately selected as the basis for the Health-based MCL that is developed later in this document.

In a prospective study of a birth cohort from the Faroe Islands (n = 380-509) that was followed post vaccination and then pre-and post-booster vaccination (geometric mean maternal pregnancy serum PFOS = 27.0 ng/ml; 5-year old serum PFOS = 16.7 ng/ml), Grandjean et al. (2012) found a statistically significant negative association between serum PFOS concentration at age 5 (but not maternal PFOS concentration during pregnancy) and post-booster tetanus antibody concentration. For post-booster antibody concentration, there was a 29% decrease for each doubling of serum PFOS. There was a negative, but not statistically significant association with postbooster tetanus antibody concentration at 7 years. For pre-booster tetanus antibody levels at 5 years, there was a negative, but not significant association with the 5-year old PFOS serum concentration. It should be noted that in general, the various measurements of tetanus antibody concentrations were negatively (even if not significantly) associated with measures of PFOS concentration. The odds ratio (OR) for antibody levels being below the clinically protective level (0.1 IU/ml) was elevated (but not significantly) for both maternal and 5-year old serum PFOS levels. For diphtheria antibodies, maternal pregnancy PFOS concentrations were significantly negatively associated with 5-year old pre-booster antibody levels with a 39% decrease in diphtheria antibodies for each doubling of maternal serum PFOS. Pre- and postbooster antibody concentrations at 5 years old were negatively (but not significantly) associated with the 5-year old PFOS serum concentration. However, diphtheria antibody concentrations at 7 years old were significantly negatively associated with PFOS concentrations at 5 years old. All measures of diphtheria antibody concentrations were negatively associated with the measures of PFOS concentration even when not significantly associated. The ORs for diphtheria antibody levels being below the clinically protective level were significantly elevated for maternal and 5-year old PFOS serum concentrations. In this cohort, PFOS and PFOA exposures were highly

correlated, and similar results were obtained when these analyses were conducted for PFOA.

In a cohort study nested in a birth cohort from Norway (mean maternal post-partum serum PFOS concentration = 5.6 ng/ml, n = 49-51), vaccine antibody levels were measured in the serum of 3 year olds (approximately 2-3 years post vaccination) (Granum et al. (2013). Maternal, post-partum serum PFOS concentration was significantly negatively associated with rubella antibody levels. There was also a negative (but not statistically significant) association with measles, *Haemophilus* influenza, and tetanus antibody levels. Similar associations were observed with other perfluorinated chemicals.

In a cross-sectional study of children 12-19 years old, nested in the U.S. NHANES study cohort (n = 1,188), (geometric mean serum PFOS concentration = 20.8 ng/ml) (Stein et al., 2016), mumps and rubella antibody levels were significantly negatively associated with concurrent serum PFOS concentrations (including when the analysis was limited to sero-positive individuals as an indication of a prior vaccination). The decrease in antibody levels for mumps and rubella for a doubling of PFOS was 5.9 and 13.3%, respectively. PFOS concentration was also negatively (but not significantly) associated with measles antibodies. Although negative associations were also seen between other PFCs and these antibodies, the association with PFOS was the strongest.

In a prospective study of adult volunteers from among the staff of a hospital in Copenhagen, Denmark (n = 12), with a median age of 37.9 years and a median PFOS concentration of 9.52 ng/ml (Kielsen et al., 2016), the increase in diphtheria antibodies (but not tetanus antibodies) following a booster vaccination was significantly decreased as a function of serum PFOS (p = 0.044). The decrease in diphtheria antibody production for each doubling of serum PFOS was 11.9%. Tetanus antibody production was also negatively associated with serum PFOS (3.6% decrease for each doubling of PFOS), but was not statistically significant. The sample size in this study was small (n = 12), but the subjects were followed closely post-vaccination (6 samples over 30 days) for antibody determination to monitor the time course of response. Eight perfluorinated chemicals were measured. The strongest negative effect on diphtheria antibody production was found for PFHxS, although the effect was borderline significant (p = 0.055). PFOS accounted for the second strongest effect.

The only study to report an overall lack of association between antibody levels and serum PFOS (Looker et al., (2014)), was conducted with adults > 18-years old (n = 403) nested in the C8 study panel cohort in Ohio/West Virginia (median PFOS serum concentration = 9.12 ng/ml). Serum levels of influenza vaccine were measured approximately 21 days post-vaccination. Neither the influenza-specific titer, nor the OR for sero-conversion were negatively associated with PFOS. It may be notable that influenza vaccine response was the only antibody response evaluated in this study.

Infection

In a longitudinal study in Denmark following a birth cohort through average 8.2-years old (Fei et al., 2010b), there was a significant association of hospitalization for infectious disease and maternal pregnancy serum PFOS (mean = 35.3 ng/ml) for girls only at the two highest quartiles of exposure and overall for trend. Dalsager et al. (2016), in a longitudinal prospective study nested in the Odense (Denmark) Child Cohort, obtained serum PFOS concentration from mothers during their first trimester of pregnancy. The median serum PFOS concentration was 8.1 ng/ml. When the children (n = 346) were between one and three years old, the mothers were prompted by text to report every two weeks, during the course of one year, on the number of days during each two-week period that the children had specific categories of health symptoms. Although cough, nasal discharge, diarrhea, and vomiting were not associated with PFOS, both the number and proportion of days with fever among the highest tertile exposed group were statistically significantly associated. Although the proportion of days with fever did not remain significant following Bonferroni adjustment, the rate ratio for fever remained positively

statistically significantly associated. A prospective birth cohort of 1,558 mother-child pairs (mean maternal PFOS serum concentration at 28-32 weeks gestation = 5.5 ng/mL) found a significantly increasing trend (P for trend=0.0008) for total infectious disease collected from self-administered questionnaires up to 4 years of age (Goudarzi et al., 2017). Impinen et al., 2018 (mean PFOS cord blood=5.6 ng/ml) followed a nested cohort in Oslo, Norway of 641 children through age 10 years of age found a statistically significant association with the number of parentally reported lower respiratory tract infection infections by 10 years of age, but not with number of episodes of the common cold by age 2.

Two other studies (Okada et al., 2012, mean PFOS = 5.2 ng/ml; Granum et al., 2013, mean PFOS = 5.5 ng/ml) did not find a significant association between infectious disease in young children (under 3 years old, maternal serum PFOS). It should be noted that in these studies, the number of subjects were considerably smaller (Okada et al. (2010), n = 343; Granum et al. (2013), n = 65-93) than in Fei et al. (2010b; n = 1,400) and Goudarzi et al. (2017; n=1,558).

The Looker et al. (2014) study in adults also did not find a significant association between concurrent serum PFOS and episodes/diagnosis of infectious disease.

Asthma

The only study showing a clear association of serum PFOS with asthma was a case-control study of 10-15-year olds in Taiwan [mean serum PFOS = 33.4 (controls) and 45.5 ng/ml (cases)] (Dong et al., 2013). The OR and trend for ever having received a diagnosis of asthma was significant for PFOS (as well as for most other perfluorinated chemicals). The OR for the association of serum PFOS and serum IgE was significant for the highest quartile of PFOS as was the overall trend. This was also the case for other perfluorinated chemicals. No relationship was observed for absolute eosinophil count or eosinophil cationic protein.

Three other studies [Humblet et al. (2014), mean serum PFOS = 16.7-17.2 ng/ml; Stein et al. (2016), mean serum PFOS = 15.0 ng/ml; and Impinen et al. (2018), mean cord blood PFOS = 5.6 ng/ml)] did not find an association between serum PFOS and ever or current asthma or wheeze (Humblet et al., 2014, Impinen et al., 2018), reduced lung function (Impinen et al., 2018), rhinitis (Stein et al., 2016), or rhinoconjunctivis (Impinen et al., 2018).

A nested cohort study of 641 children through age 10 years of age found a statistically significant association with severity of obstructive airways among the moderately exposed group compared to the reference group, but this association was not observed in the highest exposed group (Impinen et al., 2018).

Allergy

Several studies examined the association of PFOS with blood/serum IgE. Wang et al. (2011b) found that cord blood PFOS (median = 5.5 ng/ml) was significantly positively associated with cord blood IgE, but not with 2-year old blood IgE. Okada et al. (2012) found no significant association between maternal blood PFOS (median 5.2 ng/ml) and cord blood IgE. Stein et al. (2016) found that serum IgE from 12-19-year olds was significantly positively associated with concurrent serum PFOS (geom. mean = 20.8 ng/ml) for mold-specific IgE only, but not for total IgE, or for six other common allergens. Impinen et al. (2018) found no association of rhinitis and IgE, or rhinoconjunctivitis, with cord blood PFOS (mean = 5.6 ng/ml) among 10 year olds.

No significant associations were found between cord blood PFOS (median = 5.5 ng/ml, Wang et al., 2011b; mean 5.6 ng/ml, Impinen et al., 2018) and atopic dermatitis at age 2 years (Wang et al., 2011b) or age 10 years (Impinen et al., 2018). Additionally, no significant associations were found between maternal PFOS (median 5.02 ng/ml) and overall allergic conditions at age12-24 months (Okada et al., 2014) or allergic sensitization in 10 year olds (Impinen et al., 2018).

Autoimmunity

Osuna et al. (2014) found no significant association between autoimmune antibodies in cord blood or at 7-years old and cord blood or 7-year old blood PFOS (3.1 and 27.0 ng/ml, respectively).

Summary of epidemiological studies of associations between immune effects and PFOS

The total number of epidemiology studies examining antibody response to vaccines is relatively small (n = 5), and not all vaccine types were evaluated in each study. Nonetheless, the study findings are consistent and support a potential for PFOS to reduce vaccine response, particularly for some vaccine types in children. The effects of PFOS on suppression of vaccine response appears to occur at or close to levels of PFOS exposure prevalent in the general population. However, there is not sufficient information to evaluate associations of PFOS and vaccine response in adults. The sole study that did not show a significant association between PFOS exposure and any antibody response (Looker et al., 2014) was conducted in adults and assessed influenza vaccine response only. Consistent with this finding, the only other study that evaluated influenza vaccine response (Granum et al., 2013) also did not find a statistically significant association between influenza vaccine response and PFOS exposure in children, although it did find a significant association of rubella vaccine response and PFOS exposure. It may be the case that PFOS affects antibody response differentially for different vaccine challenges.

Studies of associations of PFOS and infectious disease provide mixed results. The longitudinal study of Fei et al. (2010b) found a significant positive association between maternal PFOS and infectious disease in girls, but not for boys. Dalsager et al. (2016) found a positive association with symptoms of fever, Goudarzi et al. (2017) found a positive association with total infectious diseases up to 4 years of age and maternal serum PFOS, and Impinen et al. (2018) found a positive association with number of lower respiratory tract infections about 10 years olds but not with the common colds among two year olds. Three additional studies did not find significant associations.

There is a suggestion from a single study (Dong et al., 2013) of an association of PFOS and childhood asthma.

Table 15. Summary of Epidemiology Studies of Immune Effects								
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference					
Asthma	Previous diagnosis ↑	Median 28.9 controls; 33.9 cases	Dong et al. (2013)					
	Ever = Wheeze = Current =	Mean 16.7-17.2	Humblet et al. (2014)					

Table 15 (c	Table 15 (continued). Summary of Epidemiology Studies of Immune Effects							
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference					
	- IgE titre in cases ↑ - Eosinophil count ↑ - Eosinophil cationic protein ↑	Median 28.9 controls;	Dong et al. (2013)					
		33.9 cases						
	Ever = Wheeze = Rhinitis =	Geo mean 15.0	Stein et al. (2016)					
	- Current = - Ever = - Wheeze = - Severity of obstructive airways ↑ - Reduced lung function =	Mean 5.6 (cord blood)	Impinen et al. (2018)					
Infection	hospitalization, (children) – girls only	Mean 35.3	Fei et al. (2010b)					
	Infectious diseases –18 mos =	Med. 5.2	Okada et al. (2012)					
	Episodes/diagnosis infectious disease (1-3 yrs old) =	Med. 5.5	Granum et al. (2013)					
	Cold, influenza (> 18 yrs old) =	Med. 9.12	Looker et al. (2014)					
	Total infectious diseases (up to 4 years of age)	Mean 5.5 (maternal)	Goudarzi et al. (2017)					
	Symptoms of infections: (fever) † (cough, nasal discharge, diarrhea, vomiting) =	Med. 8.1 (maternal)	Dalsager et al. (2016)					
	Number of episodes of common cold = Number of episodes of lower respiratory tracts infections ↑	Mean 5.6 (cord blood)	Impinen et al. (2018)					

Antibody	Tetanus antibody response	Maternal (geo. mean)– 27.0	Grandjean et al.
response		(8.11.)	(2012)
following	maternal $PFOS = 5 \text{ yr old}$	5 yrs old (geo. mean) – 16.7	
vaccination			
	PFOS		
	- 5 yr old (post- booster)		
	response ↓		
	- 7 yr old response =		
	Dialethania antihadu nasnana		
	<u>Diphtheria antibody response</u>		
	Maternal PFOS		
	- 5 yr old response ↓ 5 yr old		
	- 5 yr old response \(\frac{1}{2} \) yr old		
	PFOS		
	- ·		
	- 7 yr old response ↓		

Table 15 (continued). Summary of Epidemiology Studies of Immune Effects								
Effect and	Serum PFOS	Study reference						
Direction	concentration (ng/ml) (mean, median, etc.)							
	Rubella antibody	Med. 5.5	Granum et al. (2013)					
	levels ↓							
	Measles =							
	Tetanus =							
	Haemophilus influenza							
	(3 yr-olds)							
	Rubella antibody	Geo mean 20.8	Stein et al. (2016)					
	levels \							
	Mumps ↓							
	Measles =							
	(12-19 yr-olds)							
	Diphtheria antibody	Med. 9.52	Kielsen et al. (2016)					
	levels ↓							
	Tetanus =							
	(Adults (med 37.9 yrs old)							
	Influenza antibody levels = Sero-conversion = Sero-protection =	Med. 9.12	Looker et al. (2014)					
	(Adults > 18 yrs old)							
Allergy	IgE (18 mos) = Allergies (18 mos) =	Med. 5.2	Okada et al. (2012)					
	Cord blood IgE ↑	Med. 5.5 (cord blood)	Wang et al. (2011b)					
	IgE 2 yr old =	Med. 5.5 (cord blood)	Wang et al. (2011b)					
	Allergic diseases (12- 24 mos) = Eczema =	Med. 5.02	Okada et al. (2014)					
	Atopic dermatitis (2 yr old)	Med. 5.5 (cord blood)	Wang et al. (2011b)					
	Atopic dermatitis = Rhinitis & IgE = Allergic sensitization = Rhinoconjunctivitis =	Mean 5.6 (cord blood)	Impinen et al. (2018)					

Table 15 (continued).	Table 15 (continued). Summary of Epidemiology Studies of Immune Effects								
Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference							
	Total IgE = Mold IgE ↑ Plant = Cockroach = Dust mites = Pets = Rodents = Food =	Geo. mean 15.0	Stein et al. (2016)						
Auto antibodies	Pre-natal and 7 yr old =	Geo. mean cord blood = 3.1 7 yrs = 27	Osuna et al. (2014)						
† statistically significant	nt positive association	-							

[↓] statistically significant negative association

Overall conclusions regarding the hazard identification of immune effects

There is strong evidence from animal studies for various immune effects: immunosuppression; changes in spleen and thymus weight and cellularity; and effects on the levels of circulating populations of immunologically active cells, serum immunoglobulins and immune mediators. Epidemiologic evidence for immune effects of PFOS is strongest for suppression of vaccine response. Although the total number of animal studies and epidemiology studies for immunosuppression is relatively small, the consistency of the observations of this effect in both animal and human studies mutually reinforces the identification of immunosuppression as an effect of PFOS that is appropriate for consideration of dose-response.

Neurological effects

Animal studies

A summary of neurological effects in animals can be found in Table 16 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

In general, structural and behavioral effects were assessed in rats and mice following PFOS exposure. Structural effects included changes in organ (i.e., brain) weight and histopathology, Behavioral effects included, for example, changes in learning, locomotion, or reaction to stimulus. These findings are briefly reviewed below.

Structural effects

Following 52 weeks of exposure, statistically significant increased relative brain weights were observed in female rats exposed to 1.3 mg/kg/day (Butenhoff et al., 2012). In this study, there was no effect on the brain weights of male rats (NOAEL = 1.0 mg/kg/day). However, statistically significant increased relative brain weight was observed in male rats following 91 days of exposure to $\geq 2.1 \text{ mg/kg/day}$ (Kawamoto et al., 2011). No histopathological changes

⁼ no significant association/equivocal association

(i.e., to the neuronal or glial cells of the cerebrum and cerebellum) were observed in these rats (NOAEL = 8.5 mg/kg/day).

With shorter duration (28 days) exposures to PFOS, statistically significant increased relative brain weight in males and females was reported (Curran et al., 2008; LOAEL = 3 mg/kg/day). In addition, changes in brain histopathology were observed, such as alterations to hypothalamic neuron structure (Lopez-Doval et al., 2014; LOAEL = 3 mg/kg/day) and gliocyte hyperplasia and focal hemorrhage (Cui et al., 2009; LOAEL = 20 mg/kg/day).

Overall, there is evidence in rats that exposure to PFOS can have effects on brain weight and brain histopathology.

Behavioral effects

During the course of a 91-day exposure in rats, Kawamoto et al. (2011) reported an increase in convulsions in rats following ultrasonic stimulus (at week 6, LOAEL = 8.5 mg/kg/day). However, these authors observed no other behavioral abnormalities in these rats (NOAEL = 8.5 mg/kg/day). Behavioral abnormalities (e.g., reduced activity; LOAEL = 5 mg/kg/day) were reported in rats following 28 days of exposure (Cui et al., 2009). After a single exposure to PFOS, Sato et al. (2009) observed increased locomotion in rats following ultrasonic stimulus (LOAEL = 250 mg/kg) but for the authors' summary category of "other signs of neurobehavioral effects" no other other signs of adverse neurobehavioral effects were seen (NOAEL for this category = 500 mg/kg).

In mice, impaired spatial learning and memory (LOAEL = 2.2 mg/kg/day) as assessed by water maze were observed following 3 months of exposure (Long et al., 2013). Following 28 days of exposure, effects on the open field test (e.g., decreased time in the center area, LOAEL = 3 mg/kg/day) but not on the functional observation battery (NOAEL = 6 mg/kg/day) were reported (Fuentes et al., 2007a).

After a single exposure to PFOS, Sato et al. (2009) observed increased locomotion in mice following ultrasonic stimulus (LOAEL = 125 mg/kg). For the authors summary category of "other signs of neurobehavioral effects" no other signs of adverse neurobehavioral effects were seen (NOAEL for this category = 500 mg/kg).

Following a single exposure in 10-day old mice, Johansson et al. (2008) reported changes in spontaneous behavior (locomotion, rearing, total activity), habituation, and activity in response to a nicotine challenge when assessed at either 2 or 4 months of age (LOAEL = 11.3 mg/kg). However, no effect was observed on performance in the elevated plus-maze.

In summary, exposure to PFOS is reported to cause reduced activity in rats and effects on learning, behavior, and habituation in mice. Data in rats and mice also suggest that exposure to PFOS can cause behavioral changes (e.g., increased locomotion) following ultrasonic stimulus in the absence of other neurobehavioral effects. A study in mice indicates that a single exposure during the neonatal period can cause behavioral changes in adulthood.

Summary of neurological effects in animals

In summary, a limited number of rodent studies have assessed the neurotoxicity of PFOS. These studies have demonstrated some effects on the brain (e.g., increased relative weight and

histopathological changes). In all studies in both rats and mice, behavioral effects were observed in response to PFOS exposure. The studies did not all examine the same effects and some studies observed some behavioral effects, but not others. Behavioral effects that were observed in response to PFOS exposure included changes in learning, memory, activity, and habituation.

Table 16. S	Table 16. Study summary table for neurological effects in animals									
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)		
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	↑ brain weight relative to body weight, females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure)	Males: 1.0 Females: -	Males: Females: 1.3	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	Males: Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)		
Kawamoto et al. (2011)	Rats, Wistar	0, 2, 8, 32, 128 ppm Dietary Daily PFOS dose (estimated as the mean	13 weeks	† relative brain weight (determined after 13 weeks of exposure)	0.5	2.1	Serum, brain, liver, and kidney PFOS concentrations determined Only males used	(serum samples collected after 13 weeks)		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
		of the daily PFOS doses reported weekly by study authors) 0, 0.1, 0.5, 2.1, 8.5 mg/kg/day		convulsions following ultrasonic stimulus (observed only during week 6 and then ceased afterward due to death of 1 rat out of 6 in group) (determined at week 6)	2.1	8.5	Internal PFOS concentrations not reported for controls	(serum samples collected after 13 weeks) Note: difference in time points for endpoint analysis and serum PFOS analysis
				Behavioral abnormalities: startle response, touch response, pain response, righting reflex, visual placing, abdominal tone, limb tone	8.5			
				Brain histology (neuronal or glial cells of cerebrum and cerebellum) and ultrastructure (neurons in cortex, hippocampus, and cerebellum)	8.5			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
Long et al. (2013)	Mice, C57BL6	0, 0.43, 2.15, 10.75 mg/kg Oral (presumed gavage)	3 months	Impaired spatial learning (↑ escape latency) (data for 0.43 mg/kg/day group not reported)		2.15	Internal PFOS concentrations not determined PFOS purity not reported Missing information	
				Impaired spatial memory (time spent in target quadrant)	0.43	2.15	(e.g., lowest dose data for escape latency on day 3, number of poor swimmers)	

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

^{↑ =} increased; ↓ = decreased ----- = not applicable

Human epidemiology studies

A summary of neurological effects in humans can be found in Table 17 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Memory/function in older adults

No association of self-reported memory loss with PFOS was observed for a large sample of the C8 Study cohort \geq 50 years old (Gallo et al., 2013). No association of self-reported difficulty in remembering/confusion or self-reported difficulties with daily life/senility were found for a subsample of the NHANES cohort 60-85 years old (Power et al., 2013).

Learning

In a test of differential reinforcement of low-rates of responding that reflected both learning and impulsivity in children 9-11 years old (Gump et al., 2011), there was some indication that PFOS was associated with decreased learning response (increased impulsivity). However, the effect was not consistently significant across learning periods.

There was a suggestion of a negative association between self-reported learning problems and PFOS exposure in a large sub-set of children 5-18 years old from the C8 Study cohort (Stein and Savitz, 2011).

In a Danish birth cohort with a 22-year follow-up (Storm et al., 2014), there was no association between maternal serum PFOS at 30 weeks of gestation and children's academic performance on a standardized 9th grade performance test.

Attention/Attention deficit hyperactivity disorder (ADHD)

Of five studies that investigated an association between PFOS exposure and ADHD, only one found a positive association between PFOS exposure and reported ADHD. In a subset of the NHANES population 12-15 years old (Hoffman et al., 2010), based on parental reporting of children's ADHD diagnosis, there was a small, but statistically significant increase in the OR for ADHD (OR = 1.03-1.05 depending on the stringency of the reporting definition) for each ng/ml increase in children's serum PFOS. There was a larger and significant OR (1.60) for an interquartile range increase in PFOS. This study had comparable (and generally consistent with general population) maternal PFOS serum levels as the studies that found no significant association of PFOS and ADHD.

Autism

No significant association was observed between maternal gestational PFOS exposure and autism in a single case-control study (Liew et al., 2015).

<u>Depression</u>

No significant association was observed in a prospective pregnancy cohort between maternal gestational exposure and 22 years of follow-up of the offspring through a Danish national health registry (Storm et al., 2014).

Summary of epidemiological findings

There is little evidence from epidemiological studies for an association between PFOS exposure and neurological effects in either older adults or children. The PFOS exposures in the available studies were all in the range of the general population.

Table 17. Summary of Epidemiology Studies of Neurologic Effects								
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference					
Memory	Memory loss =	Med. ~ 24	Gallo et al. (2013)					
	Difficulty remembering/confusion =	Geom. mean 22.63	Power et al. (2013)					
Senility	Difficulty with daily life/senility =	Geo. mean 22.63	Power et al. (2013)					
Learning	Task learning (children) =	Med. 9.90	Gump et al. (2011)					
	Learning problems =	Mean 22.9	Stein and Savitz (2011)					
	Academic achievement =	Med. 21.4	Strom et al. (2014)					
Attention	ADHD ↑	Med. 22.6	Hoffman et al. (2010)					
	ADHD ↑	Med. 25-27	Liew et al. (2015)					
	ADHD –	Med.	Ode et al. (2014)					
		Cases 6.92 Controls 6.77						
	ADHD =	Mean 22.9	Stein and Savitz (2011)					
	ADHD =	Med. 21.4	Strom et al. (2014)					
Autism	=	Med. 25-27	Liew et al. (2015)					
Depression	=	Med. 21.4	Strom et al. (2014)					

[↑] statistically significant positive association

Overall conclusions regarding the hazard identification of neurotoxicity

The available animal studies do not provide strong support for the neurotoxicity of PFOS, although the neonatal period may be a sensitive lifestage for neurobehavioral effects based on animal studies. Similarly, the available human data do not show strong associations between PFOS exposure and neurological effects. Therefore, the available evidence does not appear to justify neurological effects as endpoints for dose-response.

[↓] statistically significant negative association

⁼ no significant association/equivocal association

Renal effects

Animal studies

A summary of renal effects (kidney weight and histopathology) in animals can be found in Table 18 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

Kidney weight

Following 52 weeks of exposure, Butenhoff et al. (2012) reported increased relative kidney weights (for right and left kidneys) for female rats exposed to 1.3 mg/kg/day but not for male rats (NOAEL = 1.0 mg/kg/day). No effect on relative kidney weight was reported in male rats exposed to PFOS for 91 days (Kawamoto et al., 2011; NOAEL = 8.5 mg/kg/day). Following 28 days of exposure, increased relative kidney weight was reported in male (LOAEL = 6.3 mg/kg/day) and female (LOAEL = 3.7 mg/kg/day) rats (Curran et al., 2008). Cui et al. (2009) reported increased relative kidney weights in male rats (LOAEL = 5 mg/kg/day).

Following 60 days of PFOS exposure in mice, data suggest an effect on relative kidney weight. Statistically significant decreases in relative kidney weight were reported by Dong et al. (2009, 2012a) with a LOAEL of 0.83 mg/kg/day. In two additional studies, these authors also reported decreased (although not statistically significant) relative kidney weight following exposure to ≤ 0.83 mg/kg/day (Dong et al., 2011, 2012b). Following shorter durations (21 or 28 days) of PFOS exposure, no effect on relative kidney weight was observed in mice exposed up to 0.17 mg/kg/day PFOS (Peden-Adams et al., 2008; Guruge et al., 2009).

No effect on kidney weight was observed in cynomolgus monkeys from 26 weeks of oral exposure to PFOS doses of up to 0.75 mg/kg/day (Seacat et al. 2002; not shown in Table 15).

In total, data are mixed regarding increased kidney weight in rats following PFOS exposure. Data are also mixed in mice with some evidence suggesting decreased relative kidney weights following PFOS exposure. No effects were reported in monkeys.

Histopathology

Three studies evaluated kidney histopathology following PFOS exposure. Results from these studies are mixed. Cui et al. (2009) reported a change in kidney histopathology (e.g., turbidness/tumefaction in epithelium of proximal convoluted tubules) in rats exposed to PFOS for 28 days (LOAEL = 20 mg/kg/day). However, Fair et al. (2011) reported no effect on kidney histopathology in mice exposed to PFOS for 28 days (NOAEL = 0.17 mg/kg/day). No effect on kidney histopathology was observed in cynomolgus monkeys from 26 weeks of oral exposure to PFOS doses of up to 0.75 mg/kg/day (Seacat et al. 2002; not shown in Table 15).

Summary of renal effects in animals

A limited number of studies assessed renal effects in rodents. Data are mixed regarding the ability of PFOS to increase or decrease relative kidney weights in rats and mice, respectively. Further, histopathological effects were observed in rats but not mice. No effects on kidney weight or histopathology were found in monkeys.

Table 18. S	Table 18. Study summary table for renal effects in animals								
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL	
D		0.05.05.00	50 1					(day assessed)	
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	52 weeks	tidney weight relative to body weight (left and right), females only (only data from controls and 20 ppm group presented by authors) (determined after 52 weeks of exposure)	Males: 1.0 Females:	Males: Females: 1.3	Serum and liver PFOS concentrations determined Only one dose reported for this endpoint	Females: 54,000 (week 4) 223,000 (week 14) 233,000 (week 105) (female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks)	
Dong et al. (2009)	Mice, C57BL/6	0, 8.33, 83.33, 416.67, 833.33, 2083.33 ug/kg/day (reported as mg/kg/day when representing a NOAEL and/or LOAEL) Oral gavage	60 days	↓ kidney weight relative to body weight (determined at day 61)	0.417	0.833	Serum PFOS concentrations determined Only males used	65,430 (serum collected on day 61)	
Dong et al. (2011)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day Oral gavage	60 days	Kidney weight relative to body weight	0.8333		Serum PFOS concentrations determined Only males used Small sample size (n=6)		

Table 18. Study summary table for renal effects in animals

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Dong et al. (2012b)	Mice, C57BL/6	0, 0.0167, 0.0833, 0.833 mg/kg/day Oral gavage	60 days	Kidney weight relative to body weight	0.833		Serum PFOS concentrations determined Only males used	
Dong et al. (2012a)	Mice, C57BL/6	0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333, 2.0833 mg/kg/day Oral gavage	60 days	↓ kidney weight relative to body weight (determined at day 61)	0.4167	0.8333	Serum PFOS concentrations determined Only males used Small sample size (n=6)	59,740 (serum collected on day 61)
Kawamoto et al. (2011)	Rats, Wistar	0, 2, 8, 32, 128 ppm Dietary Daily PFOS dose (estimated as the mean of the daily PFOS doses reported weekly by study authors) 0, 0.1, 0.5, 2.1, 8.5 mg/kg/day	13 weeks	Kidney weight	8.5		Serum, brain, liver, and kidney PFOS concentrations determined Only males used Internal PFOS concentrations not reported for controls	

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

↑ = increased; ↓ = decreased ----- = not applicable

Human epidemiological studies

A summary of renal effects in humans can be found in Table 19 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Renal function

Two studies evaluated renal function. Shankar et al. (2011a) examined the association between serum PFOS concentration and the estimated glomerular filtration rate (eGFR) in adults (\geq 20 years old) in a cross-sectional study of the NHANES cohort (n = 4,587). The eGFR was significantly negatively associated with PFOS for the overall study population. The association was strongest for those \leq 60 years old (borderline significant for those \geq 60 years old). This was not significantly influenced by sex or BMI. These findings are further supported by a large (n=9,660) cross-sectional study among children and adolescents (1 to <18 years of age) from the C8 study population (Watkins et al., 2013) which found a statistically significant negative association and a significant negative trend across quartiles of PFOS.

These two cross-sectional studies may have suffered from reserve causation such that decreased eGFR (e.g., poor kidney function) could plausibly lead to increased serum PFOS. Shankar et al. (2011a) stratified the study population by the presence of chronic kidney disease (defined on the basis of eGFR) and the association was strengthened for those without chronic kidney disease, possibly suggesting that the association between eGFR and PFOS exposure in the full cohort was not influenced by reverse causality. Conversely, Watkins et al. (2013) utilized predicted serum PFOA levels from modeled drinking water exposure in addition to measured serum PFOA to minimize susceptibility to reverse causation. Although associations were significant with measured serum PFOA levels and eGFR, in contrast, predicted serum PFOA was not associated. Although, predicted PFOS serum concentrations were not evaluated, atleast with PFOA, reverse causality is likely to explain association with eGFR.

Chronic kidney disease

The Shankar et al. (2011a) study discussed above, also investigated the relationship between serum PFOS concentration and the prevalence of chronic kidney disease (eGFR < 60 mL/min/1.73 m², n = 230). The OR for chronic kidney disease was significantly > 1.0 across the 2^{nd} - 4^{th} quartiles of PFOS exposure (compared to the first quartile), and the association with PFOS exposure was significant for trend. The maximum OR (4^{th} quartile) was 1.82. These findings are suggestive of a dose-response relationship.

Summary of epidemiologic studies

The evidence for the association of PFOS exposure with renal effects in humans is based on two cross-sectional studies (Shankar et al., 2011a and Watkins et al., 2013) with large sample sizes and consistent evidence of a dose-response trend, However, reverse causation requires further investigation. The Shankar et al. (2011a) study provides limited evidence that general population levels of PFOS exposure are associated with chronic kidney disease.

Table 19. Summa	Table 19. Summary of Epidemiology Studies of Renal Effects								
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference						
Function	eGFR (est. glomerular filtration rate) ↓	Med. 18.7	Shankar et al. (2011a)						
	eGFR ↓	Med. 20.0	Watkins et al. (2013)						
Kidney disease	Chronic kidney disease ↑	Med. 18.7	Shankar et al. (2011a)						
↑ statistically signi	ficant positive associat	ion							

Overall summary of renal effects

Only a small number of animal and epidemiological studies have assessed renal effects following PFOS exposure. Therefore, the limited available evidence does not appear to justify renal effects as critical endpoints for dose-response.

Clinical chemistry

Animal studies

A summary of clinical chemistry parameters in animals can be found in Table 20 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

In general, clinical chemistry analyses following PFOS exposure have been conducted in monkeys, rats, and mice. The clinical chemistry parameters measured in blood or serum have included bilirubin, enzymes (e.g., alanine aminotransferase, alkaline phosphatase, and aspartate aminotransferase), glucose, lipids (e.g., cholesterol, lipoproteins, triglycerides), and urea. Because some of these parameters are traditionally considered indicative of effects on specific organs (e.g., liver or kidneys), the textual review of these endpoints are discussed in the relevant sections elsewhere in the hazard identification. For example, data regarding liver enzymes and bilirubin are reviewed in the hepatic section. Data regarding glucose and urea are reviewed in the endocrine/metabolic section. Effects on serum lipids are discussed in this section.

Lipids

A number of lipid parameters (e.g., cholesterol, lipoproteins, triglycerides) have been measured in animals following PFOS exposure. These data are reviewed below by species.

In monkeys, serum lipids were assessed following 182 days of exposure to PFOS (Seacat et al., 2002). Decreases were observed for high-density lipoprotein (HDL; LOAEL = 0.03 mg/kg/day in males) and total cholesterol (LOAEL = 0.75 mg/kg/day in males and females). However,

[↓] statistically significant negative association

⁼ no significant association/equivocal association

PFOS exposure had no effect on very low-density lipoprotein (VLDL) and triglyceride levels (NOAEL = 0.75 mg/kg/day).

Rats

In a 104-week bioassay with rats, statistically significant decreases in total cholesterol were observed in males at week 53 (LOAEL = 1.0 mg/kg/day) and females at week 27 (LOAEL = 0.1 mg/kg/day) but not at sacrifice (Butenhoff et al., 2012). Seacat et al. (2003) reported interim observations of Butenhoff et al. (2012) and observed decreased total cholesterol in males at week 14 (LOAEL = 1.3 mg/kg/day) but no effect in females (NOAEL = 1.6 mg/kg/day).

Following 28 days of exposure to PFOS, decreased total cholesterol was observed in male and female rats exposed to ~3 mg/kg/day (Curran et al., 2008) and in male rats exposed to 1.3 mg/kg/day (Elcombe et al., 2012a). Decreased total cholesterol was also observed in male rats exposed for 7 days (Elcombe et al., 2012b; LOAEL = 1.9 mg/kg/day) and for < 5 days (Martin et al., 2007; LOAEL = 10 mg/kg/day).

In addition to decreased total cholesterol following PFOS exposure, decreases in serum triglycerides were also observed in rats. Kim et al. (2011) reported decreased serum triglycerides in male, but not female, rats exposed to 10 mg/kg/day for 28 days. Similarly, decreases in serum triglycerides were also observed in male rats following exposure for 28 (Elcombe et al., 2012a; LOAEL = 5.6 mg/kg/day) or 7 days (Elcombe et al., 2012b; LOAEL = 9.7 mg/kg/day).

Mice

Following up to 6 weeks of exposure, decreased total cholesterol was observed in male mice exposed to 3 mg/kg/day (Bijland et al., 2011). At shorter durations of exposure (\leq 14 days), decreased total cholesterol was also observed by Wang et al. (2014a; LOAEL = $20 \, \text{mg/kg/day}$) and Qazi et al. (2010b; LOAEL = 0.005% in feed). In contrast, following 28 days of PFOS exposure, $\leq 0.17 \, \text{mg/kg/day}$ did not cause a statistically significant decrease in cholesterol in female mice (Fair et al., 2011).

Exposure to PFOS also caused a reduction in HDL in mice exposed \leq 6 weeks (Bijland et al., 2011; LOAEL = 3 mg/kg/day) or 14 days (Wang et al., 2014a; LOAEL = 5 mg/kg/day). Similarly, PFOS exposure caused a reduction in low-density lipoprotein (LDL) following \leq 6 weeks (Bijland et al., 2011; LOAEL = 3 mg/kg/day) or 14 days (Wang et al., 2014a; LOAEL = 20 mg/kg/day).

Decreases in serum triglycerides were also reported following PFOS exposure. Bijland et al. (2011) reported decreased triglycerides following ≤ 6 weeks of exposure to 3 mg/kg/day. Wang et al. (2014a) also reported a decrease in triglycerides following 14 days of exposure to 20 mg/kg/day, whereas Qazi et al. (2010b) observed no change in triglycerides following 10 days of exposure (NOAEL = 0.005% in feed).

In total, the data suggest that PFOS exposure affects serum lipid levels in animals. Decreases in total cholesterol have typically been observed in monkeys, rats, and mice. Data also suggest that PFOS decreases other serum lipid parameters such as HDL, LDL, and triglycerides.

Summary of clinical chemistry findings in animals

In summary, several clinical chemistry parameters have been assessed in animals following PFOS exposure. Levels of total cholesterol, HDL, LDL, and triglycerides have consistently been reported to decrease with PFOS exposure. As reviewed in the hepatic section, data for bilirubin are mixed with respect to an effect of PFOS exposure. Data for serum enzymes (i.e., ALT, ALP, ASP), also reviewed in the hepatic section, typically show no effect. However, some studies have reported changes in these enzymes. As discussed in the endocrine/metabolic section, glucose levels in animals following PFOS exposure have either been decreased or unchanged. The effect of PFOS on serum levels of urea is unclear.

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	<53 weeks	↑ ALT (at weeks 14 and 53), males only (determined at weeks 4, 14, 27, and 53 but only statistically significant at weeks 14 and 53)	Males: 0.2 Females: 1.3	Males: 1.0 Females:	Serum and liver PFOS concentrations determined	Males: 41,800 (week 4) 148,000 (week 14) 146,000 (week 53) Females: (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks)
				→ AST (at week 4), females only (determined at weeks 4, 14, 27, and 53 but only statistically significant at week 4)	Males: 1.0 Females: 0.3	Males: Females:1.3		Males: Females: 54,000 (week 4) (female serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				↓ total CHOL (at weeks 14, 27, and 53 but not at term), males ↓ total CHOL (at week 27 only), females (determined at weeks 4, 14, 27, 53 and at termination, statistically significant results for each sex reported above)	Males: 0.2 Females: 0.03	Males: 1.0 Females: 0.1		Males: 148,000 ppm (week 14) 146,000 ppm (week 53) Females: Not reported (week 27) (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks; female serum PFOS concentrations reported for after exposure for 4, 14, and 102 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
		_						(day assessed)
				↓ glucose (at weeks 4 and 53), males ↓ glucose (at weeks 14 and 53), females (determined at weeks 4, 14, 27, and 53, statistically significant results for each sex reported above)	Males: 0.2 Females: 0.03 (based on week 53)	Males: 1.0 Females: 0.1 (based on week 53)		Males: 146,000 ppm (week 53) Females: Not reported (week 53) (male serum PFOS concentrations reported for after exposure for 4, 14, 53, and 105 weeks; female serum PFOS concentrations reported for after exposure for 4, 14, and 102

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				↑ BUN (at weeks 14, 27, and 53), males and females (determined at weeks 4, 14, 27, and 53, statistically significant results for each sex reported above)	Males: 0.02 Females: 0.1 (both based on week 53)	Males: 0.1 Females: 0.3 (both based on week 53)		Males: Not reported (week 53) Females: Not reported (week 53) (male serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks; female serum PFOS concentrations reported for after exposure for 4, 14, and 105 weeks; had 105 weeks)
				↑ CREAT (at week 14 only), females only (determined at weeks 4, 14, 27, and 53, statistically significant results for each sex reported above)	Males: 1.0 Females: 0.03	Males: Females: 0.1 (higher doses produced no effect)		Males: Females: 27,300 ppm (week 14) (females serum PFOS concentrations reported for after exposure for 4, 14, and 102 weeks)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Seacat et al. (2002) 1-year recovery data not summarized	Monkeys, cynomolgus	0, 0.03, 0.15, 0.75 mg/kg/day Capsule	26 weeks	↓ total CHOL (on days 91 to 182)	Males: 0.15 Females: 0.15	Males: 0.75 Females: 0.75	Serum and liver PFOS concentrations determined Sample sizes generally 2 to 6 per group with increased	Males: 173,000 Females: 171,000 (determined after 183 days of exposure)
herein				↓ HDL (on days 153 and 182) (for males, statistically significant reductions observed at 0.03 and 0.75 mg/kg/day, nonstatistically significant reductions observed at 0.15 mg/kg/day)	Males: Females: 0.03	Males: 0.03 Females: 0.15	frequency of endpoint measurements	Males: 15,800 Females: 66,800 (determined after 183 days of exposure)
				↓ total BILI (for males only, on days 91, 153, and 182)	Males: 0.15 Females: 0.75	Males: 0.75 Females:		Males: 173,000 Females: (determined after 183 days of exposure)

Table 20. S	tudy summ	ary table for clinical	chemistry	parameters in ani	mals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				† OD 4				Males: 173,000
				↑ SBA (for males only, on	Males: 0.15	Males: 0.75		Females:
			day 182)		Females: -		(determined after 183 days of exposure)	
				ALB, ALK, ALT, AST, BUN, CA, CL, CREAT, GLOB, GLUC, K, NA, PHOS, PROT, SDH, TRIG, VLDL (for males and females, any effects reported to be non-treatment related)	0.75			
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS	0, 0.5, 2.0, 5.0, 20 ppm Dietary	14 weeks	↓ CHOL (males only)	Males: 0.3	Males: 1.3	Serum and liver PFOS concentrations determined	Males: 148,000 Females:
	BR Es	Estimated daily dose of PFOS (as reported by study authors)		(determined after 14 weeks of exposure)	Females: 1.6	Females:	Sample size ≤5 rats per endpoint	(determined after 14 weeks of exposure)
		Males: 0, 0.03, 0.13,		↑ ALT (males only)				Males: 148,000
		0.34, 1.33 mg/kg/day Females: 0, 0.04, 0.15,		(determined after	Males: 0.3	Males: 1.3		Females:
		0.40, 1.56 mg/kg/day		14 weeks of exposure)	Females: 1.6	Females: -		(determined after 14 weeks of exposure)

- 1	TE 11 A0 C4 1		4 1 1 6	1 1	1 • 4	parameters in animals
- 1	Lahla III Stud	v cummarı	7 tohla tar	• คโเทเคลโ	chamistry	naramatare in animale
- 1	I able 40. Stuu	v Summar v	i abic iui	Cililicai	CHCHH5u v	Dai anicici s in annhais

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				† BUN (males and females) (determined after 14 weeks of exposure)	Males: 0.3 Females: 0.4	Males: 1.3 Females: 1.6		Males: 148,000 Females: 223,000 (determined after 14 weeks of exposure)
				ALB, AST, BILI (total), CA, CL, CREAT, GGT, GLOB, GLU, K, NA, PHOS, PROT	Males: 1.3 Females: 1.6			

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

↑ = increased; ↓ = decreased ----- = not applicable

ALB = albumin; ALK = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate aminotransferase; BASO = basophils; BILI = bilirubin; BUN = blood urea nitrogen; CA = calcium; CHOL = cholesterol; CL = chloride; CREAT = creatinine; GGT = gamma glutamyltransferase; GLOB = globulin; GLUC = glucose; EOSIN = eosinophil; HCT = hematocrit; HDL = high density lipoprotein cholesterol; HGB = hemoglobin; K = potassium; LYMPH = lymphocyte; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin; MCHC = mean corpuscular volume; MONO = monocyte; N-SEG = segmented neutrophil; NA = sodium; PHOS = inorganic phosphate; PLT = platelet; PROT = total protein; RBC = red blood cell; RETIC = reticulocyte; SBA = serum bile acid; SDH = sorbitol dehydrogenase; TRIG = triglycerides; VLDL = very low-density lipoprotein; WBC = white blood cell

Human epidemiology studies

A summary of clinical chemistry parameters in humans can be found in Table 21 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Triglycerides

The results of twelve studies which evaluated PFOS and serum triglyceride data are conflicting. Only three studies showed a significant positive association of PFOS exposure with increased serum triglyceride levels (Timmermann et al. (2014) overweight children only; Olsen et al. (2003b); Steenland et al. (2009)). Olsen et al. (2003b) is an occupational cohort with a very high PFOS exposure (mean of 800-1,320 ng/ml). However, an earlier (but smaller) study by Olsen et al. (1999) at the same plant with an even higher level of exposure showed no significant association. Steeland et al. (2009) is a high-quality study with a very large study population (n = 46,294), with a relatively low level of PFOS exposure (22.4 ng/ml) typical of the general population. In contrast, two studies showed a significant negative association of PFOS exposure and triglyceride levels: Frisbee et al. (2013; girls only); and Château-Degat et al. (2010; females only). Both of these studies had relatively large study populations with general population levels of PFOS exposure. Seven other studies showed no significant association of PFOS with triglycerides.

Overall, there may be a suggestion of a relatively weak association of PFOS with increased serum triglycerides that is observable with either very high levels of PFOS exposure or with very statistically powerful studies.

Total cholesterol

There is consistent evidence from nine studies for a positive association of PFOS exposure with serum total cholesterol: (Eriksen et al., 2013; females only); Frisbee et al. (2010; children); Geiger et al. (2014b); Jain (2013a); Nelson et al. (2010); Olsen et al. (1999, 2003b); Starling et al. (2014b); and Steenland et al. (2009). With the exception of the Olsen et al. occupational studies, all of these studies detected a significant positive association in populations within the exposure range prevalent in the general population. The Fu et al. (2014) study also showed an apparent, but not statistically significant trend of increasing total cholesterol with PFOS exposure. In addition, Steenland et al. (2009) showed a significant positive association between clinically defined hypercholesterolemia and PFOS exposure.

There is, therefore, strong evidence for a positive association of PFOS exposure and increased serum total cholesterol even at relatively low levels of PFOS exposure.

High density cholesterol (HDL)

The evidence for an association of PFOS exposure with HDL is weak. Three studies (Château-Degat et al. (2010), Frisbee et al. (2010) (boys only), Starling et al. (2014b) showed a significant positive association of PFOS exposure and HDL. However, eight studies showed no significant association. These included the two Olsen et al. (1999, 2003b) occupational studies with very high serum PFOS levels. With the exception of the Olsen et al. studies, all of the studies investigated populations with essentially general population levels of exposure.

Low density cholesterol (LDL)

There is a suggestion of an association between PFOS exposure and LDL. Four studies showed a clear significant positive association between PFOS exposure and serum LDL levels: Fitz-Simon et al. (2013); Frisbee et al. (2010; children); Geiger et al. (2014b); Olsen et al. (1999; for one of two consecutive years only); and Steenland et al. (2009). In addition, Olsen et al. (1999) showed a positive association in only one of two non-consecutive years during which LDL levels were collected. In addition, two studies of non-HDL cholesterol (the majority of which is LDL) also showed a significant positive association with PFOS exposure (Nelson et al., 2010; Steenland et al., 2009). However, four studies showed no significant association between PFOS and LDL. Of these, however, Fu et al. (2014) showed an apparent, but non-significant trend. With the exception of the Olsen et al. (1999) occupational study, all of these studies were in populations with PFOS exposures prevalent in the general population. In addition, the Geiger et al. (2014b) study also showed a significant positive association between PFOS exposure and clinically defined LDL dyslipidemia.

Summary of epidemiologic studies

There is consistent evidence for an association between PFOS exposure and increased serum cholesterol levels, including at low levels of exposure prevalent in the general population (i.e. in populations with no known exposure to specific sources of PFOS contamination). However, the evidence is somewhat less clear for an association between PFOS exposure and increased levels of LDL, and weak, at best for an association between PFOS exposure and either HDL or triglyceride levels.

In contrast to studies of general population exposure levels, associations between PFOS and increased serum cholesterol were not observed in studies of occupationally exposed workers. As discussed in DWQI (2017), associations of PFOA with some clinical parameters, including cholesterol, liver enzymes, and uric acid, exhibit a steep dose-response curve in the lower exposure range found in the general population, with a much flatter slope (approaching a plateau) at higher exposures such as those found occupationally. For dose-response curves of this type, the associations found in populations with lower exposures may not be observed in workers because even the least exposed workers used as the comparison/reference group in occupational studies may have exposure levels that are high enough to fall on the much flatter upper portion of the dose-response curve. These conclusions may also be relevant to the discrepancy in results between occupational and general population studies of associations of PFOS and increased cholesterol described above.

Table 21. Summa	ry of Epidemiology Stud	dies of Serum Lipids		
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference	
Triglycerides	↑ (for overweight only)	Med. 41.5	Timmermann et al. (2014)	
	↓ (F only)	Mean 18.5	Château-Degat et al. (2010)	
	=	Geo. mean 8.40	Fisher et al. (2013)	
	= $(\Delta \text{ triglycerides as} $ function of $\Delta \text{ PFOS})$	Geo. mean baseline = 18.5 Follow-up = 8.2	Fitz-Simon et al. (2013)	
	↓ (children -F only)	Mean 22.7	Frisbee et al. (2010)	
	=	Mean 1.68	Fu et al. (2014)	
	=	Mean 17.7	Geiger et al. (2014b)	
	=	Med. Preg - 10.07 Non-preg – 12.11	Jain (2013a)	
	=	Med. 1,000-3,000	Olsen et al. (1999)	
	1	Mean 800-1,320	Olsen et al. (2003b)	
	=	Med. 13.03	Starling et al. (2014b)	
	1	Mean 22.4	Steenland et al. (2009)	
HDL	<u> </u>	Mean 18.5	Château-Degat et al. (2010)	
	=	Geom. mean 8.40	Fisher et al. (2013)	
	= $(\Delta \text{ triglycerides as} $ function of $\Delta \text{ PFOS})$	Geom. mean baseline = 18.5 Follow-up = 8.2	Fitz-Simon et al. (2013)	
	↑ (children – M only)	Mean 22.7	Frisbee et al. (2010)	
	=	Mean 1.68	Fu et al. (2014)	
	=	Mean 17.7	Geiger et al. (2014b)	
	=	Med. 21.0	Nelson et al. (2010)	
	=	Med. 1,000-3,000	Olsen et al. (1999)	
	$=$ (as Δ)	Mean Δ +4.2	Olsen et al. (2012)	
	=	Mean 800-1,320	Olsen et al. (2003b)	
	1	Med. 13.03	Starling et al. (2014b)	
	=	Mean 22.4	Steenland et al. (2009)	
TC/HDL	\downarrow	Mean 18.5	Château-Degat et al. (2010)	
	=	Geo. mean 8.40	Fisher et al. (2013)	
	$=$ (as Δ)	Mean Δ +4.2	Olsen et al. (2012)	
	=	Mean 22.4	Steenland et al. (2009)	
HDL dyslipidemia	=	Mean 17.7	Geiger et al. (2014b)	

Table 21. Summary	of Epidemiology Stud	lies of Serum Lipids	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
Total cholesterol	↑ (F only)	Mean 36.1	Eriksen et al. (2013)
	1	Geo. mean baseline = 18.5 Follow-up = 8.2	Fitz-Simon et al. (2013)
	=	Geom. mean 8.40	Fisher et al. (2013)
	↑ (children)	Mean 22.7	Frisbee et al. (2010)
	=	Mean 1.68	Fu et al. (2014)
	↑	Mean 17.7	Geiger et al. (2014b)
	↑ (F)	Med. 10.07– 12.11	Jain (2013a)
	1	Med. 21.0	Nelson et al. (2010)
	= (as Δ)	Mean Δ +4.2	Olsen et al. (2012)
	for 1 of 2 non-consecutive yrs)	Med. 1,000-3,000	Olsen et al. (1999)
	↑	Mean 800-1,320	Olsen et al. (2003b)
	\uparrow	Med. 13.03	Starling et al. (2014b)
	↑	Mean 22.4	Steenland et al. (2009)
Hypercholesterol- emia	\uparrow	Mean 22.4	Steenland et al. (2009)
Non-HDL cholesterol	↑	Mean 22.4	Steenland et al. (2009)
	↑	Median 21.0	Nelson et al. (2010)
LDL	=	Geo. mean 8.40	Fisher et al. (2013)
	↑ (↓ in LDL w ↓ in PFOS)	Geo. mean baseline = 18.5 Follow-up = 8.2	Fitz-Simon et al. (2013)
	(children)	Mean 22.7	Frisbee et al. (2010)
	=	Mean 1.68	Fu et al. (2014)
	↑	Mean 17.7	Geiger et al. (2014b)
	=	Med. 21.0	Nelson et al. (2010)
	for 1 of 2 non-consecutive yrs)	Med. 1,000-3,000	Olsen et al. (1999)
	=	Med. 13.03	Starling et al. (2014b)
	<u> </u>	Mean 22.4	Steenland et al. (2009)
LDL dyslipidemia	<u> </u>	Mean 17.7	Geiger et al. (2014b)
↑ statistically significant statistically significant			0:

Overall summary of lipid effects

The observations from animal studies and epidemiology studies are in apparent conflict. While, in general, the animal studies show a consistent decrease in total cholesterol, HDL, LDL, and triglycerides as a result of PFOS exposure (including monkeys), epidemiology studies provide consistent evidence for an association between PFOS exposure and increased total cholesterol. There is also suggestion for an association between PFOS exposure and increased LDL in humans. Although the evidence from epidemiology studies is less consistent for an association between PFOS exposure and increases in triglycerides or HDL, there is no evidence from epidemiology studies to suggest that these parameters decrease with increasing PFOS exposure in humans.

Of possible relevance to this discrepancy, PFOA also caused decreased serum lipids in rodents, while increased serum lipids were associated with PFOA exposure in humans. Recent studies reviewed in DWQI (2017) suggest that these differences may be related to the low fat diet generally used in laboratory rodent studies versus the higher fat content of a typical Westernized human diet, rather than solely to interspecies differences. However, such studies have not been conducted for PFOS.

The lack of an animal model for the observed relationships between PFOS exposure and serum lipids precludes consideration of lipid parameters as endpoints for dose-response consideration.

Hematological effects

Animal studies

A summary of hematological effects of PFOS in animals can be found in Table 22 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

Following PFOS exposure, some animal studies assessed hematological parameters associated with erythrocytes (e.g., red blood cell number, hemoglobin, and hematocrit), leukocytes, (e.g., white blood cell numbers), and thrombocytes (i.e., platelets). These findings are briefly reviewed below by species.

Monkeys

Following 182 days of PFOS exposure, decreased hemoglobin levels were observed in male monkeys exposed to 0.75 mg/kg/day (Seacat et al., 2002). No effect on hemoglobin was observed in female monkeys (NOAEL = 0.75 mg/kg/day). Additionally, no effect was observed in males and females for a number of other hematological parameters including erythrocytes, leukocytes, and thrombocytes (NOAEL = 0.75 mg/kg/day).

Rats

Following 104 weeks of exposure, Butenhoff et al. (2012) reported an increase in segmented neutrophils in males exposed to 1.0 mg/kg/day, but with no similar effect in females (NOAEL = 1.3 mg/kg/day). This increase in the male rats was first observed at an interim observation at 14 weeks of exposure (Seacat et al., 2002). No other effects on erythrocytes, leukocytes, and thrombocytes were observed in these rats either at 14 or 104 weeks of exposure (Seacat et al.,

2002; Butenhoff et al., 2012).

Following a shorter duration of exposure (28 days), Curran et al. (2008) reported a decreased in red blood cells, hemoglobin, and hematocrit in females (LOAEL = 7.6 mg/kg/day) but not males (NOAEL = 6.3 mg/kg/day). In these rats, no effect on white blood cell numbers was observed. Also following 28 days of exposure, Kim et al. (2011) observed no effects on various parameters assessing erythrocytes, leukocytes, and thrombocytes in male and female rats (NOAEL = 10 mg/kg/day).

Mice

In male mice, 10 days of exposure to PFOS (0.02% in feed) was reported to decrease total white blood cell numbers (Qazi et al., 2009a) and bone marrow cell content (Qazi et al., 2012). In contrast, 10 days of exposure to 0.005% PFOS in feed had no effect on hematocrit or hemoglobin levels in male mice (Qazi et al., 2010b).

Summary of hematological effects in animals

Although assessed in multiple species, data are somewhat limited regarding the hematological effects of PFOS in animals. Although some studies do report changes in certain parameters, the impact of PFOS on hematological parameters is unclear.

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Butenhoff et al. (2012)	Rats, Sprague- Dawley	0, 0.5, 2, 5, 20 ppm Dietary Mean daily intake of PFOS (as reported by study authors) Males: 0, 0.024, 0.098, 0.242, 0.984 mg/kg/day Females: 0, 0.029, 0.120, 0.299, 1.251 mg/kg/day	<53 weeks	↑ N-SEG (at week 14 only), males only (determined at 14 weeks of exposure)	Males: 0.2 Females: 1.3	Males: 1.0 Females: -	Serum and liver PFOS concentrations determined	Males: 148,000 Females: (determined at 14 weeks of exposure)
Seacat et al. (2002)	cat et al. Monkeys, 0, 0.03, 0.15, 0.75	0, 0.03, 0.15, 0.75 mg/kg/day	26 weeks		Males: 0.15 Females: 0.75	Males: 0.75 Females: -	Serum and liver PFOS concentrations determined Sample sizes generally 2 to 6 per group with increased	Males: 173,000 Females: (determined after 183 days of exposure)
				Counts for: BASO, EOSIN, HCT, HGB (females only), LYMPH, MCH, MCHC, MCV, MONO, PLT, RBC, RETIC, N-SEG and WBC and blood cell morphology (any statistically significant changes were not consistently observed over the	0.75		frequency of endpoint measurements	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				duration of exposure)				
Seacat et al. (2003)	Rats, Crl:CD® (SD) IGS	0, 0.5, 2.0, 5.0, 20 ppm Dietary	14 weeks	↑ N-SEG (males only)	Males: 0.3	Males: 1.3	Serum and liver PFOS concentrations determined	Males: 148,000 Females:
	BR	Estimated daily dose of PFOS (as reported by study authors)		(determined after 14 weeks of exposure)	Females: 1.6	Females: - 	Sample size ≤5 rats per endpoint	(determined after 14 weeks of exposure)
		Males: 0, 0.03, 0.13, 0.34, 1.33 mg/kg/day		HCT, HGB, MCH, MCHC, MCV, PLT,	Males: 1.3			
	Females: 0, 0.04, 0.15, 0.40, 1.56 mg/kg/day		RBC, WBC	Females: 1.6				

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

↑ = increased; ↓ = decreased ----- = not applicable

ALB = albumin; ALK = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate aminotransferase; BASO = basophils; BILI = bilirubin; BUN = blood urea nitrogen; CA = calcium; CHOL = cholesterol; CL = chloride; CREAT = creatinine; GGT = gamma glutamyltransferase; GLOB = globulin; GLUC = glucose; EOSIN = eosinophil; HCT = hematocrit; HDL = high density lipoprotein cholesterol; HGB = hemoglobin; K = potassium; LYMPH = lymphocyte; MCH = mean corpuscular hemoglobin; MCHC = mean corpuscular hemoglobin concentration; MCV = mean corpuscular volume; MONO = monocyte; N-SEG = segmented neutrophil; NA = sodium; PHOS = inorganic phosphate; PLT = platelet; PROT = total protein; RBC = red blood cell; RETIC = reticulocyte; SBA = serum bile acid; SDH = sorbitol dehydrogenase; TRIG = triglycerides; VLDL = very low-density lipoprotein; WBC = white blood cell

Human epidemiologic studies

A summary of hematological effects in humans can be found in Table 23 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Only one study (Jiang et al., 2014) reported on hematologic parameters. This was a study of pregnant women in Tianjin, China. There are a number of significant limitations to this study, including a relatively small sample size (n = 141), incomplete information on recruitment and demographics, and statistical investigation of associations by means of correlation analyses rather than regression analysis with controlling for confounders and/or co-variates. This study stratified the analyses on the basis of linear and branched forms of PFOS.

No significant correlation was observed between serum PFOS and RBC, WBC, hemoglobin, total blood protein, or albumin. Platelet count was significantly positively correlated with branched chain PFOS only.

Summary of hematological studies

The quality of the Jiang et al. (2014) study is not adequate to support conclusions about the effect of PFOS exposure on hematological parameters.

Table 23. Summary	of Epidemiology Stud	lies of Blood Chemistry	y (non-lipid)
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study reference
WBC	=	Mean 4.75	Jiang et al. (2014)
RBC	=	Mean 4.75	Jiang et al. (2014)
Hb	=	Mean 4.75	Jiang et al. (2014)
Platelet count	† (branched PFOS forms only)	Mean 4.75	Jiang et al. (2014)
Total protein	=	Mean 4.75	Jiang et al. (2014)
Albumin	=	Mean 4.75	Jiang et al. (2014)

[↑] statistically significant positive association

[↓] statistically significant negative association

⁼ no significant association/equivocal association

Overall summary of hematological effects

The animal data do not present a clear picture of possible effects of PFOS on hematological parameters. The single epidemiological study is not of adequate quality to draw conclusions about human hematological effects. Based on these observations, the available evidence does not justify hematological effects as critical endpoints for dose-response.

Reproductive/developmental effects

Animal studies

A summary of reproductive/developmental effects in animals can be found in Table 24 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendices 3 or 4.

The first section of the review of the animal data focuses on PFOS exposure in adult animals and any resulting effects on reproductive organs.

The second part of the review of the animal data focuses on gestational (i.e., maternal) exposures and resulting effects in fetal, neonatal, and adult offspring. This review of endpoints resulting from maternal exposure during gestation, including neonatal exposure through lactation, proceeds according to the following general order:

- 1. Reproductive and developmental endpoints, including pregnancy outcomes, offspring survival, and structural defects in offspring.
- 2. All other endpoints, including body weight effects, endocrine/metabolic effects, hepatic effects, immune effects, neurological effects (i.e., developmental neurotoxicity), renal effects, and other effects (e.g., cardiovascular effects).

Studies in adult animals focusing on reproductive organ weight and histopathology
The effects of PFOS exposure on the reproductive organs following adult exposures have been assessed in monkeys, rats, and mice. Typically, these assessments have focused on male (e.g., epididymis, testes) and female (e.g., ovaries, uterus) reproductive organ weights and histopathology, including mammary glands.

Monkeys

Following 182 days of exposure to \leq 0.75 mg/kg/day PFOS in monkeys, Seacat et al. (2002) reported no effect on reproductive organ weights in males (epididymis, testes) and females (ovaries). Additionally, no histopathological changes were observed in these males (i.e., prostate, seminal vesicle) and females (i.e., mammary glands, uterus, vagina).

Rats

In rats following 52 weeks of PFOS exposure, Butenhoff et al. (2012) reported no effect on reproductive organ weights in males (testes; NOAEL = 1.0 mg/kg/day) and females (ovaries, uterus; NOAEL = 1.3 mg/kg/day). No histopathological changes were observed in these males (epididymides, prostate, seminal vesicles, testes) and females (cervix, ovaries, uterus, vagina). While no histopathological changes were observed in the aforementioned female reproductive organs, Butenhoff et al. (2012) also examined the mammary glands of these PFOS-exposed females. No non-neoplastic effects were observed in mammary glands. However, as discussed in

the <u>Carcinogenicity</u> section (below), a statistically significant increased incidence of mammary gland fibroadenomas and combined fibroadenomas/adenomas was observed only in the low dose group, while there was a significantly lower incidence in the high dose group and a significantly decreased trend for these tumors overall.

For shorter durations of PFOS exposure (28 days) in rats, data are mixed for an effect of PFOS on male reproductive organ weights. Cui et al. (2009) reported an increase in relative gonadal weight in males exposed to 5 mg/kg/day. However, no effects on testes weights were reported following exposures of ~ 6 mg/kg/day (Curran et al., 2008; Lopez-Doval et al., 2014). Data for histopathological changes in male reproductive organs are also mixed. Lopez-Doval et al. (2014) reported changes in testes histopathology (interstitial edema, degeneration of sperm heads; LOAEL = 1.0 mg/kg/day) following PFOS exposure; however, Curran et al. (2008) observed no histopathological changes in the epididymis and testes (NOAEL = 6.3 mg/kg/day). In females, no histopathological changes were observed in mammary glands, ovaries, uterus, and vagina (Curran et al., 2008; NOAEL = 7.6 mg/kg/day).

Mice

In mice, data are relatively limited for the effects of PFOS on reproductive organs. Following 28 days of exposure to 0.17 mg/kg/day, Fair et al. (2011) reported decreased relative uterine weight but no change in uterine histopathology. Following 28 days of exposure in adult male mice, Qiu et al. (2013) observed a decrease in sperm count and changes in testicular histopathology (LOAEL = 2.5 mg/kg/day).

Summary of effects on reproductive organ weight and histopathology

In total, data are relatively limited for the effect of PFOS on male and female reproductive organs following adult exposures in monkeys, rats, and mice. Some data suggest that PFOS can affect reproductive organ weight or histopathology.

Studies assessing reproductive/developmental endpoints following gestational exposure
Reproductive and developmental effects following gestational exposure to PFOS have been
assessed in rats, mice, and rabbits. In some studies, pre-mating and/or lactational exposures were
combined with gestational exposures to determine the effects of PFOS on offspring.

Effects of gestational exposure were evaluated for reproductive indices such as implantation sites, length of gestation, fetal survival, as well as litter effects and neonatal survival. In addition, reports also included assessment of gestational exposure to PFOS on structural and morphological effects in perinatal offspring as well as other developmental effects such as developmental milestones.

Rats

Pregnancy and neonatal outcomes

Data suggest that gestational PFOS exposure may have a limited impact on pregnancy outcomes in rats. For example, following gestational exposures, Butenhoff et al. (2009) and Thibodeaux et al. (2003) found no effect on the number of implantation sites in dams exposed to ≤ 10 mg/kg/day from GD2-20. Maternal exposure to PFOS did not affect the length of gestation (Butenhoff et al., 2009; NOAEL = 1.0 mg/kg/day) during the entire length of gestation or the number of live fetuses at term (Thibodeaux et al., 2003; NOAEL = 10 mg/kg/day) with exposure

during GD2-20.

Some studies in rats assessed the reproductive and developmental effects of PFOS following exposure from pre-mating through gestation (Luebker et al. 2005a, 2005b). For example, Luebker et al. (2005b) reported no effects on corpora lutea, implantations, viable fetuses, and dead fetuses at GD21 (NOAEL = 2.0 mg/kg/day). When assessed at GD21, the authors also observed decreases in the percentage of dead or resorbed concepti per litter and early resorptions per litter at a maternal dose of 2.0 mg/kg/day. Similarly, Luebker et al. (2005a) also observed at GD10 no effect on corpora lutea, implantations, and viable embryos (NOAEL = 3.2 mg/kg/day). However, at the end of pregnancy, these authors observed decreases in the duration of gestation and the number of implantation sites per delivered litter, as well as an increase in the number of dams with stillborn pups (LOAEL = 3.2 mg/kg/day). A decrease in the number of liveborn pups and an increase in stillborn pups per litter were also observed (LOAEL = 3.2 mg/kg/day). Using the F_1 generation for subsequent mating, Luebker et al. (2005a) observed no effect on the duration of gestation, number of implantations, and number of live pups (NOAEL = 0.4 mg/kg/day).

Following birth, there is evidence for an effect of PFOS on litter size and offspring survival. Lau et al (2003) observed a significant reduction in postnatal rat pup survival (LOAEL = 2 mg/kg/day) following maternal exposure from GD2 to GD21. While all offspring appeared normal at parturition, all neonates in the 10 mg/kg/day maternal dose group became pale and inactive and died around an hour after birth. Over 95% of offspring in the 5 mg/kg/day maternal dose group did not survive past PND1. Grasty et al. (2003, 2005) reported decreased litter sizes following exposure on GD19 to GD20 (LOAEL = 25 mg/kg/day). In contrast, Butenhoff et al. (2009) reported no effect on number of litters and live litter size following PFOS exposure from GD0 to term (NOAEL = 1.0 mg/kg/day).

Pup mortality was reported to increase following gestational PFOS exposure. When assessed at PND3, Wan et al. (2010) observed a decrease in the number of delivered pups and an increase in pup mortality following maternal exposure on GD2 to GD21 (LOAEL = 2.0 mg/kg/day).

Similarly, Chen et al. (2012a) observed increased postnatal mortality at PND3 following maternal exposure from GD1 to GD21 (LOAEL = $2.0 \, \text{mg/kg/day}$). In contrast, Butenhoff et al. (2009) reported that following maternal exposure on GD0 to PND20, there was no effect on offspring survival when assessed on PND0 to PND4 and on PND4 to PND21 (NOAEL = $1.0 \, \text{mg/kg/day}$).

Additional studies assessed neonatal survival following maternal exposures prior to and during gestation. When assessed at PND5, Luebker et al. (2005b) reported increased offspring mortality (LOAEL = 1.6 mg/kg/day). In a two-generation study, Luebker et al. (2005a) reported an increase in the number of dams with all F_1 pups dying between PND1 and PND4 (LOAEL = 3.2 mg/kg/day). In the 3.2 mg/kg/day maternal dose group, 100% of the F_1 pups died by PND2. Additionally, the F_1 offspring in the 1.6 mg/kg/day maternal dose group were in such poor condition at PND21 as not to be further assessed in the study. Following mating of the F_1 generation, no effect on F_2 mortality was observed through PND21 (NOAEL = 0.4 mg/kg/day).

Structural and morphological effects in perinatal offspring

Following gestational exposure, data suggest that PFOS can cause skeletal and visceral defects in rat offspring. Thibodeaux et al. (2003) reported that various defects were observed in at-term offspring of dams exposed to 10 mg/kg/day from GD2 to GD20. These abnormalities included cleft palate, sternal defects, anasarca, enlarged right atrium, and ventricular septal defects. Maternal toxicity was observed in terms of decreases in T3 and T4 (LOAEL = 1 mg/kg/day), weight gain (LOAEL = 2 mg/kg/day), and hepatic effects in the high dose group.

Studies in rats also found effects of PFOS on the lungs of offspring. Following maternal exposure on GD19 and GD20, Grasty et al. (2003, 2005) observed histological and morphometric changes in offspring lungs at GD21 and PND0 suggestive of a delay in lung maturation (LOAEL = 25 mg/kg/day). In the 25 mg/kg/day maternal dose group, dams experienced decreased weight gain. Similarly, Chen et al. (2012a) observed changes (e.g., alveolar hemorrhage, thickened inter-alveolar septa) in lung morphology of 21-day old offspring following maternal exposure to 2.0 mg/kg/day on GD1 to GD21. Chen et al. (2012a) did not report on maternal toxicity. In contrast, no effect on fetal lung histology at GD18.5 was observed with maternal exposure from GD12 to GD18 (Ye et al., 2012; NOAEL = 20 mg/kg/day). No maternal deaths were observed during PFOS exposure; however, no other maternal endpoints of toxicity were examined.

Other developmental effects

Data are mixed for whether PFOS can affect developmental milestones in offspring. In terms of sexual maturation, Butenhoff et al. (2009) reported no effect of gestational and lactational PFOS exposure (GD0 to PND20; NOAEL = 1.0 mg/kg/day) on the ages at which female and male offspring reached vaginal patency or balanopreputial separation, respectively. Similarly, Luebker et al. (2005a) observed no effect of pre-mating, gestational, and lactational PFOS exposure on sexual maturation in F_1 males and females (NOAEL = 0.4 mg/kg/day). This study did, however, observe a delay in pinna unfolding in the F_1 offspring (LOAEL = 1.6 mg/kg/day). Lau et al. (2003) observed a delay in eye opening of rat offspring born to mothers exposed on GD2 to GD21 (LOAEL = 2 mg/kg/day).

Mice

Pregnancy and neonatal outcomes

Thibodeaux et al. (2003) reported a decrease in the percentage of live fetuses at term following maternal exposure from GD1 to GD17 (LOAEL = 20 mg/kg/day); no effect on the number of implantation sites was observed (NOAEL = 20 mg/kg/day). Similarly, Yahia et al. (2008) observed a decrease percentage of live fetuses along with increased percentages of resorbed fetuses and dead fetuses following maternal exposure from GD0 to GD17 (LOAEL = 20 mg/kg/day). At lower maternal doses on GD11 to GD16, Lee et al. (2015) reported decreases in placental capacity (i.e., the ratio of fetal weight to placental weight; LOAEL = 0.5 mg/kg/day) and the number of live fetuses (LOAEL = 0.5 mg/kg/day) as well as an increase in the number of resorptions and dead fetuses (LOAEL = 0.5 mg/kg/day). However, Lee et al. (2015) observed no effect on the number of implantations.

Fuentes et al. (2006) observed no effect on pregnancy outcome following maternal exposure on GD6 to GD18 (NOAEL = 6 mg/kg/day). These authors assessed the numbers of (per litter) implants, live fetuses, dead fetuses, early resorptions, and late resorptions. Additionally, no

effect was observed on the numbers of litters with dead fetuses and post-implantation loss as well as the fetal sex ratio. Similarly, no effect on length of gestation and the number of litters and pups per litter were observed following gestational exposure on GD12 to GD18 (Fuentes et al., 2007b; NOAEL = 6 mg/kg/day). Additional studies reported no effects on the number of live pups, litter size, and sex ratio following maternal exposures ≤ 10 mg/kg/day (Fuentes et al., 2007b; Rosen et al., 2009; Onishchenko et al., 2011).

In addition to studies using standard mouse strains, wild-type (WT) and PPAR α null mice have been compared with respect to the reproductive/developmental effect of PFOS. Following maternal exposure on GD15 to GD18, Rosen et al. (2010) reported no effect on the number of implantation sites, total number of pups at birth (alive and dead), and percentage litter loss from implantation to birth in either WT or null mice (NOAEL = 10.5 mg/kg/day).

Following birth, gestational PFOS exposure was reported to affect offspring survival. Lau et al. (2003) observed a significant reduction in postnatal mouse pup survival (LOAEL = $10 \, \text{mg/kg/day}$) following maternal exposure from GD1 to GD18. Most offspring in the $\geq 15 \, \text{mg/kg/day}$ maternal dose group did not survive within 24 hours of birth. Yahia et al. (2008) reported a decrease in offspring survival at PND4 following maternal exposure (GD0 to GD18) to $10 \, \text{mg/kg/day}$. Decreased postnatal survival at PND15 was also observed in WT (LOAEL = $4.5 \, \text{mg/kg/day}$) and PPAR α null (LOAEL = $8.5 \, \text{mg/kg/day}$) mice (Abbott et al., 2009a).

Structural and morphological effects in perinatal offspring

Following gestational exposure, data suggest that PFOS can lead to skeletal, visceral, and external defects in mouse offspring. Thibodeaux et al. (2003) reported that various defects were observed in term offspring of dams exposed to 15 mg/kg/day from GD1 to GD17. These abnormalities included cleft palate, sternal defects, enlarged right atrium, and ventricular septal defects. Maternal toxicity was limited to increased relative liver weight and decreased serum triglycerides (LOAEL for both endpoints = 5 mg/kg/day) and decreased body weight gain (LOAEL = 20 mg/kg/day). Similarly, an increase in fetal cleft palate at GD17 was observed following gestational exposure from GD1 to GD17 (Era et al., 2009; LOAEL = 13 mg/kg/day); maternal effects were not determined. Following gestational exposure on GD0 to GD17, an increase in the percentage of fetuses with sternal defects (LOAEL = 1 mg/kg/day) was observed by Yahia et al. (2008). These authors also observed bilateral swelling in the back of the necks of fetal and neonatal offspring in the 20 mg/kg/day maternal dose group. Increased liver weight and decreased weight gain were observed in dams in the 10 and 20 mg/kg/day groups, respectively.

In contrast, Fuentes et al. (2006) observed no effect of gestational PFOS exposure (GD6 to GD18) on a number of developmental parameters including assymetrical sternebrae, diminished ossification of caudal vertebrae, supernumerary ribs, and total number of litters with skeletal defects (NOAEL = 6 mg/kg/day). Maternal effects were limited to increased absolute liver weight (LOAEL = 3 mg/kg/day) and increased relative liver weight (LOAEL = 6 mg/kg/day). Additionally, no effect on offspring lung histology was observed following maternal exposure from GD1 to GD17 (Rosen et al., 2009; NOAEL = 10 mg/kg/day). Although limited to the assessment of body weight and general appearance, no maternal toxicity was observed.

Other developmental effects

Data are mixed regarding the ability of PFOS to affect developmental milestones in mouse offspring. Lau et al. (2003) observed a delay in eye opening of mouse offspring born to mothers exposed on GD1 to GD17 (LOAEL = 1 mg/kg/day). Similarly, a delay in eye opening was observed in WT (LOAEL = 8.5 mg/kg/day) and PPAR α null (LOAEL =10.5 mg/kg/day) mice following gestational exposure from GD15 to GD18 (Abbott et al., 2009a). Fuentes et al. (2007b) observed an increase in the time to testes descent in males (LOAEL = 6 mg/kg/day), while no effect was observed for other male maturation milestones or for any milestone in females (NOAEL = 6 mg/kg/day).

Rabbits

Pregnancy outcomes

Data indicate that PFOS does not affect pregnancy outcomes in rabbits. Following maternal exposure on GD7 to GD29, Case et al. (2001) observed no effects on corpora lutea, implantations, resorptions, and the number of live and dead fetuses (NOAEL = 3.8 mg/kg/day).

Structural and morphological effects in perinatal offspring

Gestational PFOS from GD7 to GD29 did not results in any external, soft tissue, or skeletal abnormalities in offspring (Case et al., 2001; NOAEL = 3.8 mg/kg/day).

Summary of effects on reproductive and developmental parameters in offspring

In total, there is evidence that gestational exposure to PFOS can have effects on some reproductive and developmental parameters. In rats, pregnancy outcomes (e.g., number of implantation sites, length of gestation) did not appear to be affected by gestational PFOS exposure. However following birth, gestational PFOS exposure resulted in decreased pup survival. In mice, data are mixed regarding the impact of gestational PFOS exposure on pregnancy outcomes. However, gestational PFOS exposure caused increased mortality in mouse offspring. Data in rabbits suggest no effects from PFOS exposure on pregnancy outcomes. In rats and mice, skeletal and visceral defects were observed in offspring following gestational PFOS exposure. Additionally, lung defects were observed in rat, but not mouse, offspring. No structural or morphological effects were observed in rabbit offspring. The available data for rats and mice appear to be mixed regarding the ability of gestational PFOS exposure to impact developmental milestones (e.g., sexual maturation).

Body weight effects from developmental exposure

Body weight effects have been assessed in rats, mice, and rabbits following gestational exposure to PFOS. Decreases in body weight have been reported in fetal, neonatal, and adult offspring of pregnant animals exposed to PFOS. These findings are briefly reviewed below.

Rats

Gestational PFOS exposure of pregnant rat dams has led to body weight changes in fetal, neonatal, and weaned offspring. Following maternal PFOS exposure on GD2 to GD20, Thibodeaux et al. (2003) reported decreased fetal body weight on GD21 in the $10 \, \text{mg/kg/day}$ group, whereas the corresponding dams experienced decreased weight gain at doses $\geq 2 \, \text{mg/kg/day}$. In studies with observations immediately following parturition (e.g., PND0 and PND1), there is a consistent finding of decreased offspring body weight following gestational

exposure to PFOS at maternal doses \geq 0.4 mg/kg/day (Grasty et al., 2003, 2005; Lau et al., 2003; Luebker et al., 2005a, 2005b; Wan et al., 2010; Wang et al., 2011c; Chen et al., 2012a; Lv et al., 2013; Rogers et al., 2014). For many of the studies that reported decreased pup body weight, maternal toxicity (e.g., decreased maternal weight gain), when available, was also reported at LOAELs similar to the offspring effect. In such cases, it is unclear whether maternal toxicity contributed to the decreased pup body weights or whether the pup body weights were independently sensitive to gestational PFOS exposure. Decreases in rat pup body weight have been reported to persist beyond the neonatal period to weaning (e.g., typically PND21; Lau et al., 2003; Luebker et al., 2005a; Wan et al., 2010; Chen et al., 2012a; Lv et al., 2013).

In a two generation study, Luebker et al. (2005a) reported that maternal PFOS exposure prior to and during mating and then during gestation and lactation caused a decrease in pup (i.e., the F_1 generation) body weight in the 1.6 mg/kg/day group from PND1 through PND21. Using the F_1 generation males and females for breeding and following a similar exposure regimen, a decrease in pup (i.e., the F_2 generation) body weight was observed in the 0.4 mg/kg/day maternal dose group from PND1 through PND21, although this effect only reached statistical significance at PNDs 7 and 14.

In contrast, Butenhoff et al. (2009) observed no decreased pup body weight at PND1 through PND72 for all maternal exposure groups (NOAEL = 1.0 mg/kg/day, exposure from GD0 to PND20). Additionally, Butenhoff et al. (2009) reported *increased* offspring body weight at sexual maturation, an effect that was only statistically significant in the 0.1 mg/kg/day maternal dose group. Yu et al. (2009b) also observed no effect on pup body weight (on PNDs 0, 14, 21, and 35) following maternal exposure to 3.2 mg/kg feed throughout gestation.

<u>Mice</u>

Gestational PFOS exposure of pregnant mouse dams has led to body weight changes in fetal, neonatal, and adult offspring. Following maternal PFOS exposure on GD1 to GD17, Thibodeaux et al. (2003) reported decreased fetal body weight on GD18 in the 10 mg/kg/day group, whereas the corresponding dams experienced increase relative liver weights at 5 mg/kg/day. Similarly, Lee et al. (2015) reported decreased fetal body weight on GD17 in the 2.0 mg/kg/day maternal dose group following exposure on GD11 to GD16. In this study decreased placental weight and increased placental necrosis were observed in the 0.5 mg/kg/day group. It is possible that the placental effects in this study influenced the observed decrease in fetal body weight. In neonates, decreased pup body weight was observed following maternal doses ≥ 10 mg/kg/day (Yahia et al., 2008). At these dose levels, dams were reported to have increased liver weight. In contrast to decreased offspring body weight, Ryu et al. (2014) reported that PFOS exposure (4 mg/kg feed) during gestation, lactation, and into adulthood caused an increase in body weight gain in offspring at 12 weeks of age.

In several studies where mouse dams were exposed to PFOS during pregnancy, no effect on offspring body weight was observed. At birth (i.e., PND0), no decrease in neonatal body weight was observed even at a maternal dose as high as 10 mg/kg/day (Lau et al., 2003; Ribes et al., 2010; Onishchenko et al., 2011). When assessed later in life, gestational PFOS exposure did not cause a decrease in offspring body weight. For example, no effect on body weight was observed in offspring at ages 3 weeks (Wan et al., 2014; NOAEL = 3.0 mg/kg/day), 8 weeks (Keil et al., 2008; NOAEL = 5 mg/kg/day), and 20 weeks (Ngo et al., 2014; NOAEL = 3.0 mg/kg/day). In

addition to studies using standard mouse strains, WT (wild-type) and PPARα null mice have been compared with respect to the developmental/reproductive effects of PFOS. Abbott et al. (2009a) reported no effect on offspring body weight at PND1 and PND15 in either WT or PPARα null mice following maternal exposure to 10.5 mg/kg/day during GD15 to GD18.

Rabbits

PFOS exposure of pregnant does during GD7 to GD20 led to a decrease in fetal body weight at GD29 with maternal PFOS doses ≥ 2.5 mg/kg/day (Case et al., 2001). In this study, a decrease in maternal weight gain was reported to occur (LOAEL = 1.0 mg/kg/day).

Summary and conclusions for offspring body weight effects in animals

In total, animal studies have consistently shown a decrease in fetal or neonatal weight with gestational PFOS exposure. Decreased fetal/neonatal body weight has been reported to occur in multiple species (i.e., rats, mice, and rabbits). Post-natal effects on body weight are less consistent with some studies showing post-natal decreases in body weight and other studies showing no post-natal effects. Some studies have reported that decreased offspring body weight can persist to weaning and beyond. Although maternal toxicity has been observed at doses similar to those causing the decreased offspring body weight, this effect in the offspring may represent developmental toxicity from gestational PFOS exposure.

In summary, there is strong evidence from several animal species that exposure to PFOS during gestation causes decreased birthweight.

Endocrine/metabolic effects from developmental exposure

Endocrine and metabolic effects following gestational exposure to PFOS have been assessed in rats and mice. Findings for effects on the thyroid gland and hormones as well as on additional endocrine and metabolic endpoints (e.g., glucose metabolism, insulin resistance) are briefly reviewed below.

Rats

Thyroid gland

Following gestational and lactational exposure to PFOS, no effect on thyroid histology (e.g., number of follicles and distribution of follicle sizes) was observed in male and female offspring when assessed at GD20, PND4, and PND21 (Chang et al., 2009; NOAEL = 1.0 mg/kg/day). While morphometric analyses on PNDs 4 and 21 of offspring thyroid follicular colloid area revealed no effect from PFOS exposure, increased follicular epithelial cell height in males were observed on PND21. Similarly, no effect on offspring thyroid histopathology at PND5 was observed in the highest maternal dose group (2.0 mg/kg/day) following pre-mating and gestational PFOS exposure (Luebker et al., 2005b).

Thyroid hormones

Following gestational exposure, thyroxine (T4), triiodothyronine (T3), and thyroid stimulating hormone (TSH) have been assessed in rat offspring.

Decreases in T4 levels have generally been observed in neonatal and post-weaning rats. Following gestational exposure (GD2 to GD21), Lau et al. (2003) reported decreased serum levels of total and free T4 (LOAEL = 2 mg/kg/day) in offspring when assessed between PNDs 1 and 35. Luebker et al. (2005b) reported a decrease in total T4 (LOAEL = 0.4 mg/kg/day) but not

free T4 at PND5 in offspring following pre-mating, gestational, and lactational exposures. With gestational and lactational exposure until PND14, decreased total T4 was also observed in offspring at PNDs 7 and 14 (Wang et al., 2011c; LOAEL = 3.2 mg/kg feed). Similarly, decreased total T4 was observed at PNDs 21 and 35 in rat offspring following gestational exposure as well as in offspring further exposed to PFOS via lactation (Yu et al., 2009b; LOAEL = 3.2 mg/kg feed).

Data generally show no effect on offspring T3 levels. No change in serum T3 levels between PNDs 1 and 35 were observed in offspring following gestational exposure (Lau et al., 2003; NOAEL = 3 mg/kg/day). Yu et al. (2009b) reported no change through PND35 in total and reverse T3 in rat offspring following gestational exposure as well as in offspring further exposed to PFOS via lactation (NOAEL = 3.2 mg/k feed). Following maternal PFOS exposure prior to and during gestation, no effect on total and free T3 levels were observed in offspring at PND5 (Luebker et al., 2005b). In contrast, with a higher dose range (0, 3.2, and 32 mg/kg feed), Wang et al. (2011c) reported decreased total T3 in offspring at 2 weeks of age following gestational and lactational exposure until PND14 (LOAEL = 32 mg/kg feed).

Following gestational exposure, PFOS did not affect serum TSH levels in offspring assessed between PND1 and PND35 (Lau et al., 2003; NOAEL = 3 mg/kg/day). Similarly, no effect on offspring TSH was observed in rats exposed to PFOS via gestation and lactation (Chang et al., 2009; NOAEL = 1.0 mg/kg/day). However, an increase in offspring TSH at PND5 was observed in the 1.6 mg/kg/day maternal dose group following pre-mating and gestational exposure (Luebker et al., 2005b).

Other endocrine and metabolic effects

In addition to thyroid gland and hormone effects, additional endocrine and metabolic effects, such as those on other hormones and glucose metabolism, have been assessed in rats following gestational PFOS exposure. Lv et al. (2013) reported decreased serum adiponectin (LOAEL = 0.5 mg/kg/day) and increased serum leptin (NOAEL = 1.5 mg/kg/day) in adult offspring (age 21 weeks) following gestational and lactational exposure to PFOS.

Lv et al. (2013) also assessed the effects of gestational and lactational PFOS exposure on parameters associated with glucose metabolism. Following maternal exposure from GD0 to PND21, adult offspring had increased levels of fasting serum insulin at 21 weeks of age (LOAEL = 1.5 mg/kg/day). In addition, increased insulin resistance index (LOAEL = 1.5 mg/kg/day) and increased glucose intolerance (at 18 weeks of age; LOAEL = 0.5 mg/kg/day) were observed in these adult offspring. However, Lv et al. (2013) observed no effect on fasting serum glucose and fasting glycosylated serum protein levels in adult offspring at ages 13 and 18 weeks (NOAEL = 1.5 mg/kg/day).

Mice

Thyroid hormone

Studies investigating thyroid effects of gestational PFOS exposure in mouse offspring are relatively limited. Following maternal exposure from GD1 to GD17, Lau et al. (2003) observed no effect on serum T4 levels in offspring when assessed between PNDs 3 and 35 (NOAEL = 20 mg/kg/day).

Other endocrine and metabolic effects

In addition to thyroid hormone effects, additional endocrine and metabolic effects, such as those on glucose metabolism, have been assessed in mice following gestational PFOS exposure.

Ngo et al. (2014) observed no effect on blood glucose levels in offspring (age 20 weeks) following maternal exposure from GD1 to GD17 (NOAEL = 3.0 mg/kg/day). Following gestational and lactational exposure, Wan et al. (2014) observed increased fasting serum insulin in adult offspring (age 9 weeks; LOAEL = 3 mg/kg/day). Additionally, in these offspring, increased fasting serum glucose (LOAEL = 0.3 mg/kg/day) and increased homeostatic model assessment for insulin resistance (HOMA-IR; LOAEL = 3 mg/kg/day) were reported. However, no effect was observed for the oral glucose tolerance test (NOAEL = 3 mg/kg/day).

Summary of thyroid, endocrine and metabolic effects

In total, there is evidence that gestational exposure to PFOS can affect several endocrine or metabolic endpoints. In rats, data suggest that maternal PFOS exposure can decrease levels of T4 in offspring. However, data suggest no effect on other thyroid endpoints (e.g., histology, T3 and TSH) in rat offspring. The relatively limited reported data show no effect on T4 levels in mouse offspring. Gestational and lactational PFOS exposure may lead to other endocrine and metabolic effects into adulthood, as changes in some glucose metabolism parameters (e.g., fasting insulin, insulin resistance index) have been observed in adult offspring of rats and mice.

Hepatic effects from developmental exposure

Hepatic effects have been assessed in rat and mouse offspring following gestational exposure to PFOS. Findings for histopathology, liver weight, and liver fat content are briefly reviewed below.

Rats

Histopathology

While data are limited, the liver histopathology observed with exposure of adult rats (e.g., hepatocyte hypertrophy, cytoplasmic vacuolation) was not observed in rats at weaning (age 21 days) following gestational (GD2 to GD21) PFOS exposure (Wan et al., 2010; NOAEL = 2.0 mg/kg/day).

Liver weight

In several studies where rat dams were exposed to PFOS during pregnancy, data are mixed regarding increases in offspring liver weight. Following PFOS exposures of ≤ 10 mg/kg/day from GD2 to GD20, no effects on relative liver weight were observed in offspring just prior to term (Thibodeaux et al., 2003; Bjork et al., 2008). Although transient increases in offspring relative liver weight were observed prior to and at PND5 in the 3 mg/kg/day maternal dose group, these increases in the offspring did not persist when assessed at PND35 (Lau et al., 2003). Increased relative liver weight was observed in weaned rats following maternal exposure (GD2 to GD21) to 2.0 mg/kg/day (Wan et al., 2010). Similarly, increased relative liver weight was observed in offspring at PND 21 and 35 with maternal exposure to 3.2 mg/kg feed during gestation and lactation (Yu et al., 2009b). However, no increase in relative liver weight was observed in this study when rats were only exposed during gestation.

Liver fat content

Following gestational and lactational PFOS exposure, adult offspring were reported to have an accumulation of liver fat and liver triglycerides when assessed at ~22 weeks of age (Lv et al., 2013, LOAEL = 1.5 mg/kg/day). Luebker et al. (2005b) reported that maternal exposure during pre-mating through gestation resulted in no effect on fetal liver cholesterol or triglycerides at GD21 (NOAEL = 2.0 mg/kg/day). For 5-day old neonates in this study, liver triglycerides were decreased (LOAEL = 1.0 mg/kg/day) and no effect on liver cholesterol (NOAEL = 2.0 mg/kg/day) was observed.

Mice

Liver histopathology

Following gestational PFOS exposure from GD1 to GD17 to either 5 or 10 mg/kg/day, analyses of fetal livers revealed eosinophilic granules in the absence of an affect on maternal body weight and appearance (Rosen et al., 2009).

Liver weight

Following gestational exposure in mice and assessment of effects near term at or close to parturition, Thibodeaux et al. (2003) observed increased relative liver weight in offspring at GD18 (LOAEL = 20 mg/kg/day), whereas Onishchenko et al. (2011) observed no increase in offspring liver weight at birth (NOAEL = 0.3 mg/kg/day).

In maturing or adult offspring, data for liver weight are also mixed following gestational exposures to PFOS. Lau et al. (2003) observed increased relative liver weight in offspring from PND1 to PND21 following maternal exposure (on GD1 to GD17) to 5 mg/kg/day. While not statistically significant, this increase persisted until the final reported observation at PND35. Following the same exposure scenario as Lau et al. (2003), Keil et al. (2008) observed an increase in relative liver weight in male but not female offspring at 4 weeks of age. At 8 weeks of age, there were no statistically significant increases in relative liver weight in either sex compared to controls. No increase in relative liver weight was observed in adult offspring (20 weeks of age) following gestational exposure (Ngo et al., 2014; NOAEL = 3.0 mg/kg/day).

Following gestational and post-gestational exposures, data suggest that PFOS can increase the liver weight in exposed offspring. Wan et al. (2014) reported increased relative liver weight in male but not female offspring at PND63 following maternal exposure to 3 mg/kg/day from GD3 to weaning at PND21. Increased relative liver weight was also observed in offspring at 12 weeks of age following gestational and lactational PFOS exposure with additional dietary exposure until 12 weeks of age (Ryu et al., 2014; LOAEL = 4 mg/kg feed).

In addition to studies using standard mouse strains, wild-type (WT) and PPAR α null mice have been compared with respect to the reproductive/developmental effects of PFOS. Abbott et al. (2009a) reported increased relative weights at PND15 in both WT and null mice following maternal exposures on GD15 to GD18 (LOAEL = 10.5 mg/kg/day).

Summary of hepatic effects

Data in rats suggest a hepatic effect in offspring following gestational PFOS exposure. While the effects from PFOS were not observed in the only study that evaluated histopathology, liver weight data provide some evidence that PFOS can have an impact on offspring livers. Other

indicators of hepatic effects, such as increases in hepatic lipid content, suggest an effect from gestational exposure. In mice, the effect of gestational PFOS exposure on offspring livers is unclear. While there is evidence for a histopathological effect (i.e., eosinophilic granules), data are mixed as to whether gestational PFOS exposure affects offspring liver weight. In both species, continued PFOS exposure after gestation results in increased offspring liver weight.

Immune effects from developmental exposure

Immune effects have been assessed in mouse offspring following gestational exposure to PFOS. Findings for immune function, immune organs, specific cell populations, and hypersensitivity are briefly reviewed below.

Immunosuppression

Decreased immune function has been observed in offspring following gestational PFOS exposure. Keil et al. (2008) reported a decrease in natural killer cell activity in male (LOAEL = 1.0 mg/kg/day) and female (LOAEL = 5.0 mg/kg/day) mouse offspring at 8 weeks of age, but not at 4 weeks of age, following maternal exposure during GD1 to GD17. Plaque forming cell response, while not assessed at 4 weeks in Keil et al. (2008), was decreased in 8-week old males (LOAEL = 5.0 mg/kg/day) but not females (NOAEL = 5.0 mg/kg/day).

Effects on immune organs

No effect on immune organs weight or histopathology has been consistently observed in offspring following gestational exposures to PFOS. Following maternal exposure on GD1 to GD17, no effect was observed for spleen and thymus endpoints (i.e., relative organ weight and cellularity) for male and female offspring assessed at 4 and 8 weeks of age (Keil et al., 2008; NOAEL = 5.0 mg/kg/day). Similarly, Ngo et al. (2014) observed no effect on relative spleen weight in 20-week old offspring (NOAEL = 3.0 mg/kg/day).

Effects on specific cell populations

Data suggest that gestational PFOS exposure may have some effect on specific immune cell populations in offspring. Following maternal exposure from GD1 to GD17, Keil et al. (2008) observed a decrease in splenic lymphocytes (B220) in 4-week old female offspring (LOAEL = 5.0 mg/kg/day). This effect was not observed in 4-week old male offspring or either sex at 8 weeks of age (NOAEL = 5.0 mg/kg/day). Keil et al. (2008) observed no effect on thymic lymphocytes of offspring at 4 weeks of age (NOAEL = 5.0 mg/kg/day); however, decreased thymic lymphocytes (CD3+ and CD4+) were observed in 8-week old males but not females in the 5.0 mg/kg/day maternal dose group.

Hypersensitivity

Data are not consistent for an effect of PFOS exposure on airway hypersensitivity. Ryu et al. (2014) observed in 12-week old offspring, an effect on airway sensitivity following a methacholine challenge but no effects on airway hyperresponsiveness and allergen (ovalbumin)-induced airway hyperresponsiveness. In this study, the offspring had been exposed to PFOS during gestation and lactation (4 mg/kg feed maternal dose) followed by dietary PFOS exposure (4 mg/kg feed) until 12 weeks of age.

Summary of immunologic effects

PFOS may affect certain immune endpoints in mouse offspring following gestational PFOS exposure. Data suggest that PFOS can decrease immune function (e.g., natural killer cell activity, plaque forming cell response) and certain immune cell populations in offspring. However, data also suggest that PFOS has no effect on histopathology and weight of immune organs (e.g., spleen and thymus) as well as airway hypersensitivity in offspring.

Neurological effects

In general, structural and behavioral effects were assessed in rats and mice following gestational PFOS exposure. Structural effects assessed include brain weight. Behavioral effects assessed include changes in learning, locomotion, or reaction to stimulus. These findings are briefly reviewed below.

Rats

Structural effects

No effects on brain measurements (weight, length, width) were observed in rat offspring when assessed at PNDs 21 and 72 following maternal PFOS exposure from GD0 to PND21 (Butenhoff et al., 2009; NOAEL = 1.0 mg/kg/day).

Behavioral effects

A reduction in learning ability was observed in offspring following gestational exposure (GD1 to parturition; LOAEL = 5 mg/L - no intake dose reported), as assessed by escape latency and escape distance in the Morris water maze. Using similar tests, a reduction in learning ability was also observed in offspring following gestational and lactational exposures (GD1 to weaning, LOAEL = 15 mg/L - no intake dose reported) (Wang et al., 2015). In contrast, no effect on learning behavior (T-maze) was observed following gestational exposure (GD2 to GD21) in weaned offspring (Lau et al., 2003; NOAEL = 3 mg/kg/day). Butenhoff et al. (2009) also reported no effect on learning and memory (Biel maze) in weaned offspring following gestational and lactational exposures (GD0 to PND20; NOAEL = 1.0 mg/kg/day). Luebker et al. (2005a) reported no indications of neurotoxicity, as assessed by passive avoidance and water maze performance, in weaned F_1 offspring born to dams exposed prior to (i.e., for ≤ 56 days before GD0) and during gestation and lactation (GD0 to PND20; NOAEL = 0.4 mg/kg/day). Increased locomotor activity was observed in male (at PND17; LOAEL = 0.3 mg/kg/day) and female (at PND21; LOAEL = 1.0 mg/kg/day) offspring exposed to PFOS during gestation and lactation (i.e., GD0 to PND20) (Butenhoff et al., 2009). Following maternal exposures (i.e., premating through PND22), delays in surface righting and air righting in lactating offspring were observed (Luebker et al., 2005a; LOAEL = 1.6 mg/kg/day). In contrast, no effect on motor function and vision were observed in offspring exposed during gestation (GD1 to parturition) as well as in offspring exposed during gestation and lactation (GD1 to weaning) (Wang et al., 2015; NOAEL = 15 mg/L).

No effect on acoustic startle response was observed in offspring at PNDs 20 and 60 following gestational and lactational exposure (Butenhoff et al., 2009; NOAEL = 1.0 mg/kg/day).

A decrease in hind limb grip strength was observed in offspring at weaning following gestational and lactational PFOS exposure (Butenhoff et al., 2009; LOAEL = 1.0 mg/kg/day).

Mice

Structural effects

No effect on brain weight at birth was observed in offspring following gestational PFOS exposure (Onishchenko et al., 2011; NOAEL = 0.3 mg/kg/day).

Behavioral effects

Delayed learning, as assessed by a water maze test, was observed in female (LOAEL = 6 mg/kg/day), but not male (NOAEL = 6 mg/kg/day), offspring (age 3 months) following maternal exposures on GD12 to GD18 (Fuentes et al., 2007c).

No effects on offspring locomotor activity have been typically observed following gestational PFOS exposure. Following maternal exposure (6 mg/kg/day) on GD12 to GD18, no effects were observed in open field test activity or coordination/balance in 3-month old offspring (Fuentes et al., 2007b, 2007c; Ribes et al., 2010). Onishchenko et al. (2011) also reported no effect on locomotor activity in 5- to 8-month old female offspring following gestational exposure (NOAEL = 0.3 mg/kg/day). However, a decrease in motor activity was observed in male offspring (LOAEL = 0.3 mg/kg/day). No effect on habituation as assessed in the open field test was observed in offspring following maternal PFOS exposure (Fuentes et al., 2007b; NOAEL = 6 mg/kg/day).

Additional neurological measures suggest an effect in offspring following gestational exposure to PFOS. For example, Fuentes et al. (2007b) observed alterations in tail pull resistance, vertical climb, and forelimb grip of offspring (LOAEL = 6 mg/kg/day).

Some behavioral effects of gestational PFOS exposure may differ based on sex. Following maternal PFOS exposure (0.3 mg/kg/day) from GD1 to birth, weaned male but not female offspring were reported to have alterations in muscle strength, circadian activity, and emotion-related behavior (Onishchenko et al., 2011). However, both sexes of offspring showed altered motor coordination.

Summary of developmental neurological effects

Data do not provide conclusive evidence for developmental neurological effects following gestational PFOS exposure. No structural effects were observed in rat and mouse offspring. Data are mixed from studies in rats and mice regarding the ability of PFOS exposure to alter offspring learning ability and motor function.

Renal effects

Data are limited for the renal effects in offspring following gestational PFOS exposure. Rogers et al. (2014) reported a decrease in nephron endowment in 22-day old males rats born to dams exposed to 18.75 mg/kg/day from GD2 to GD6. This decrease was not accompanied by any statistically significant changes in offspring body weight or kidney weight. In mice, a decrease in offspring relative kidney weight was observed in females at 4 weeks of age following maternal exposure from GD1 to GD17 (Keil et al., 2008; LOAEL = 5 mg/kg/day). No such effect was observed in females at 8 weeks or in males at either time point (NOAEL = 5 mg/kg/day).

Other effects

Data are limited for the cardiovascular effects in offspring following gestational PFOS exposure. Rogers et al. (2014) reported an increase in systolic blood pressure of male (52 weeks of age) and female (65 weeks of age) offspring born to dams exposed to 18.75 mg/kg/day from GD2 to GD6. No effect on offspring heart histopathology at PND5 was observed in the 2.0 mg/kg/day maternal group following pre-mating and gestational exposure (Luebker et al., 2005b).

Overall Summary of reproductive and developmental effects in animals

In total, data are relatively limited for the effects of PFOS on male and female reproductive organs following adult exposures, but these data do not suggest an impact on reproductive organ weight or histopathology. This is discussed in more detail in the Carcinogenicity section.

Following gestational exposure, PFOS caused increased neonatal offspring mortality, structural deformities, and decreased offspring body weights at birth and beyond. Although not entirely consistent, data suggest that gestational PFOS exposure may have limited effects on pregnancy outcomes or developmental milestones in animals.

Endocrine and metabolic effects in offspring appear to include decreases in T4 levels as well as effects on glucose metabolism. Evidence of hepatic effects in offspring includes increased liver weight and increases in hepatic lipid content. Certain immune endpoints, such as natural killer cell activity and plaque forming cell response, in offspring appear to be affected by gestational PFOS exposure.

Data in offspring do not provide conclusive support for developmental neurobehavioral effects following gestational PFOS exposure; however, effects on offspring learning ability and motor function have been reported. For other effects in offspring, such as renal and cardiovascular effects, data are too limited to reach a definitive conclusion.

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Abbott et al. (2009a)	Mice, 129S1/ SvImJ wild type (WT) Mice, 129S1/ SvImJ knockout (KO)	WT: 0, 4.5, 6.5, 8.5, 10.5 mg/kg/day KO: 0, 8.5, 10.5 mg/kg/day Oral gavage	GD15- GD18	Maternal (WT and KO) body weight at GD18 and body weight gain (GD15–GD18) Maternal (WT and KO) body weight, liver weight (absolute and relative) at PND15	10.5		Serum PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				For both WT and KO: number of implantation sites, total number of pups at birth (alive and dead), percent litter loss from implantation to birth	10.5		Serum PFOS concentrations determined for pups Duration of exposure may not identify effects that might arise from exposures	
				For both WT and KO pups: birth weight, body weight on PND15, and weight gain from PND1– PND15	10.5		occurring earlier in gestation	
				Absolute liver weight on PND15 in WT and KO pups (compared to controls)	10.5			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				↑ absolute liver weight on PND15 in WT pups (trend across doses); no trend across doses in KO pups (determined at PND15)	WT: 8.5 KO: 10.5	WT: 10.5 KO:		WT: 41,200 KO: (determined at PND15)
				For WT and KO pups: ↑ relative liver weight on PND15 (compared to controls and trend across doses) (determined at PND15)	8.5	10.5		WT: 41,200 KO: 52,400 (determined at PND15)
				↓ postnatal survival on PND15 (determined at PND15)	WT: KO:	WT: 4.5 (no statistically effect at next dose level but at higher dose levels) KO: 8.5		WT: 24,100 KO: 42,800 (determined at PND15)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				Delayed eye opening in WT (on PND13) and KO (on PND14)	WT: 6.5	WT: 8.5		WT: 40,700
				pups	W 1. U.S	VV 1. O.5		KO: 52,400
				(determined around PND15)	KO: 8.5	KO: 10.5		(determined at PND15)
Butenhoff et al. (2009)	Rats, Crl:CD (SD)	0, 0.1, 0.3, 1.0 mg/kg/day Oral gavage	GD0- PND20	Maternal body weight (on GD0, GD20, and PND1) and change in body weight (from GD0–GD20 and PND1–PND21)	1.0		Internal PFOS concentrations not determined Maternal effects included to inform	
				↓ maternal body weight from PND4– PND21	0.3	1.0	fetal/neonatal effects Maternal exposure	
				Maternal food consumption (relative consumption GD0– GD20 and PND1– PND21; absolute PND1–PND21)	1.0		>30 days	
				Maternal absolute food consumption GD0–GD20	0.3	1.0		
				Internal macroscopic examination of dams that failed to deliver or necropsied on PND21	1.0			
				Number of litters, length of gestation, implantation sites, unaccounted sites (potential resorption)	1.0		Internal PFOS concentrations not determined Lack of histology	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				offspring body weight at vaginal patency and at balanopreputial separation		0.1		
				Delivered litters, pups born/litter, live litter size PND0, % males/litter at birth,% survival PND0–4, % survival PND4–21, pup weight (male and female separately at PND 1, 21, 72), age at vaginal patency or balanopreputial separation	1.0			
				↓ offspring hind limb grip strength on PND21 (males only, mean value reported to be in historical control range) Note: multiple time points also assessed but no effects observed	0.3	1.0		
				↑ offspring locomotor activity in males (PND17) and females (PND21)	Males: 0.1 Females: 0.3	Males: 0.3 Females: 1.0		

Table 24. S	Study sumn	nary table for reprod	luctive/dev	elopmental effects in	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Acoustic startle response in offspring	1.0			
				Biel maze swimming in offspring	1.0			
				Offspring brain measures (weight, length, width) at PND21 and 72	1.0			
Case et al. (2001)	Rabbits, New Zealand white	0, 0.1, 1.0, 2.5, 3.75 mg/kg/day Oral gavage	GD7- GD29	→ maternal body weight gain (during exposure period; no effect on body weight when exposure ended) Reduction in maternal body weight gains generally correlated with a reduction in feed consumption	0.1	1.0	Internal PFOS concentration not determined Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				↓ fetal weight	1.0	2.5	Internal PFOS concentration not	
				Corpora lutea, implantations, resorptions (early and late), and number of fetuses (alive and dead)	3.75		determined	
				External, soft tissue, or skeletal abnormalities	3.75			

Table 24. S	Study sumn	nary table for reprod	luctive/dev	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Chang et al. (2009)	Rats, Sprague- Dawley	0, 0.1, 0.3, 1.0 mg/kg/day Oral gavage	GD0- PND20	Maternal TSH (at GD20, PND4, and PND21)	1.0		Serum, brain, and liver PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects See also Butenhoff et al. (2009) for additional maternal effects (e.g., body weight)	
				Offspring TSH (at GD20, PND4, and PND21)	1.0		Serum, brain, and liver PFOS concentrations	
				Offspring thyroid histology (at GD20, PND4, and PND21) Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed	1.0		determined for offspring Sample size varied for thyroid endpoints, sample size unclear	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring thyroid morphometry: † thyroid follicular epithelial cell height (at PND21 only), males only Study authors report low values in concurrent male controls Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed	Males: Females: 1.0	Males: 1.0 Females: -	for TSH measurement	Males: 18,610 Females: (determined at PND21)
				Offspring thyroid follicular colloid area (at PND4 and PND21), males and females Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed	1.0			

Table 24. S	Study sumn	nary table for reprod	luctive/dev	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring thyroid cell proliferation:				(11)
				↑ for females only Study author report wide range of control values Thyroids from 0.1 and 0.3 mg/kg/day groups not analyzed	Males: 1.0 Females: -	Males: Females: 1.0		31,460 (determined at GD20 and pooled by litter)
				(determined at GD20)				
Chen et al. (2012a)	Rats, Sprague- Dawley	0, 0.1, 2.0 mg/kg/day Oral gavage	GD1– GD21	↓ decrease in offspring body weight (from PND0–PND21)	0.1	2.0	Serum and lung PFOS concentrations determined for pups	47,520 (determined at PND0)
				(determined at PND21)			Sample size not explicit	4,460 (determined at PND21)
				post-natal mortality (determined at PND3)	0.1	2.0	Only qualitative histology data	47,520 (determined at PND0)
				Offspring lung morphology including alveolar hemorrhage and thickened inter-	0.1	2.0		47,520 (determined at PND0)
				alveolar septa (determined at PND0 and PND21)	0.1	2.0		4,460 (determined at PND21)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
Era et al. (2009) (results from single dose regimens not summarized herein)	Mice, ICR	0, 9, 13, 20, 30 mg/kg/day Oral gavage	GD1- GD17	↑ cleft palate (see comments, LOAEL based on 7.3% incidence at 13 mg/kg/day versus ~0% in controls) (determined at GD17)	9	13	Serum and amniotic fluid PFOS concentrations determined Maternal effects not reported for this dosing regimen Statistical significance not reported	110,000 (as estimated from graphical representation of data) (determined at GD17)
Fuentes et al. (2006)	Mice, Charles River CD1	0, 1.5, 3, 6 mg/kg/day Oral gavage	GD6- GD18	Maternal effects: Body weight (GD18) and body weight gain; food consumption, gravid uterine weight, kidney weight (absolute and relative), maternal thyroid hormones or corticosterone	6		Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Maternal effects: † absolute liver weight († relative liver weight at higher dose)	1.5 (based on absolute liver weight)	3 (based on absolute liver weight)		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				Fetal effects (reproductive performance): implants/litter, live fetuses/litter, dead fetuses/litter, early resorptions/litter, late resorptions/litter, litters with dead fetuses post-implantation loss mean fetal weight fetal sex ratio	6		Internal PFOS concentrations not determined for offspring PFOS purity not reported	
				Fetal effects (developmental): number of litters examined skeletally, assymetrical sternebrae, diminished ossification of caudal vertebrae, supernumerary ribs, total of litters with skeletal defects (\underbracktarrow number of fetuses with diminished ossification [calcaneous] with 3 mg/kg/day but not at other doses)	6			

Table 24. S	Study sumn	nary table for reprod	luctive/dev	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Grasty et al. (2003) (results from single dose regimen not summarized herein)	Rats, Sprague- Dawley	0, 25, 50 mg/kg/day Oral gavage	y GD19– GD20	Maternal effects ↓ weight gain		25	Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				↓ live litter size		25	Internal PFOS concentrations not determined for offspring	
				↓ percent survival	25	50		
				↓ offspring weight		25		
				Difference in lung histology (i.e., thinning of epithelial walls) between exposed and control offspring		25	PFOS purity not reported Qualitative reporting of lung histology	
Grasty et al. (2005) (results from rescue studies not summarized herein)	Rats, Sprague- Dawley	0, 25, 50 mg/kg/day Oral gavage	GD19- GD20	Maternal effects weight gain (Study authors did not assessment maternal toxicity in this study; however, the authors refer to Grasty et al. [2003], which used the same exposure regimen, for potential maternal effect)		25	Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects: ↓ live litter size		25	Internal PFOS concentrations not	(day assessed)
				Offspring effects: ↓ pup birth weight		25	determined for offspring	
				Offspring effects: ↑ neonatal mortality		25	Qualitative data reported for some	
				Offspring effects: Lung histology at GD21 (alveolar wall thickness)	50		endpoints	
				Offspring effects, morphometric analysis of lung tissue: \$\\$\ \text{small airway} \) proportion \$\\$\\$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		25		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ii ng/mL) corresponding to the LOAEL (day assessed)
Keil et al. Mice, (2008) B6C3F1			(quantita reported authors)	Maternal effects Body weight loss (quantitative data not reported by study authors)	5.0		Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Offspring effects: Body weight (at 4 and 8 weeks of age)	5.0		Internal PFOS concentrations not determined for	
				Offspring effects (at 4 weeks of age): ↑ relative liver weight in males ↓ relative liver weight in female with 0.1 mg/kg/day only	Males: 1.0 Females: 5.0 (based on no effect at higher doses)	Males: 5.0 Females: -	offspring Adversity of immunotoxicity effects not clear	
			Offspring effects (at 4 weeks of age):	Males: 5.0 Females: 1.0	Males: Females: 5.0			
			Offspring effects (at 4 weeks of age Relative spleen	Offspring effects (at 4 weeks of age):	Males: 5.0 Females: 5.0	Males: Females: -		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects				(day assessed)
				(at 4 weeks of age):	Males: 5.0	Males:		
				Relative thymus weight	Females: 5.0	Females: -		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative liver weight	Females: 5.0	Females: -		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative kidney weight	Females: 5.0	Females: -		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative spleen weight	Females: 5.0	Females: -		
				Offspring effects (at 8 weeks of age):	Males: 5.0	Males:		
				Relative thymus weight	Females: 5.0	Females: -		
				Offspring effects (4 and 8 weeks of age):	Males: 5.0	Males:		
				Spleen cellularity, for both males and females	Females: 5.0	Females: -		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL
								(day assessed)
				Offspring effects (4 and 8 weeks of age):	Males: 5.0	Males:		
				Thymus cellularity, for both males and females	Females: 5.0	Females: -		
				Offspring effects (at 4 weeks of age):	5.0			
				NK cell function (genders analyzed together)	5.0			
				Offspring effects				
				(at 8 weeks of age):	Males: 0.1	Males: 1.0		
				↓ NK cell function (genders analyzed separately)	Females: 1.0	Females: 5.0		
				Offspring effects (at 8 weeks only):	Males: 1.0	Males: 5.0		
				↓ IgM response (to SRBC immunization), males only	Females: 5.0	Females: -		
				Offspring effects (at 4 weeks of age):	Males: 5.0	Males:		
					Females: 1.0	Females: 5.0		

Table 24. S	tudy sumn	nary table for reprod	uctive/dev	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
								(day assessed)
				Offspring effects (at 4 weeks of age):	Males: 5.0 Females:	Males: Females: -		
				Thymic lymphocytes	5.0			
				Offspring effects	Males: 5.0	Males:		
				(at 8 weeks of age):	Females:	Females: -		
				Splenic lymphocytes	5.0			
				Offspring effects				
				(at 8 weeks of age):	Males: 1.0	Males: 5.0		
				thymic lymphocytes (CD3+ and CD4+ cells only), males only	Females: 5.0	Females: -		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Lau et al. (2003)	Rats, Sprague- Dawley	0, 1, 2, 3, 5 mg/kg/day Oral gavage	GD2- GD21 Endpoints measured through PND35	Offspring effects: body weight (generally observed within PND10 but then no statistically significant difference from controls afterwards, except for 5 mg/kg/day where effect was reported even at PND22) (body weight determinations made various days between PND0 and PND35, LOAEL based on PND5 determination)	3	5	Serum and liver PFOS concentrations determined for offspring Limited number of time points assessed for internal PFOS concentrations Serum PFOS concentrations determined for dams but reported in Thibodeaux et al. (2003) Maternal effects reported in Thibodeaux et al. (2003)	110,000 (determined at PND0, as estimated from graphical representation of data) (offspring serum PFOS reported fo PND0, 2, 5, except for 5 mg/kg group where reported only for PND0)
				Offspring effects: Absolute liver weight (only time point for 5 mg/kg/day was PND0)	3		Maternal exposure <30 days Thyroid hormone measurements may	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: ↑ relative liver weight (effect not consistent across doses and time points, only time point for 5 mg/kg/day was PND0)	3		be subject to negative bias	
				Offspring effects: ↓ serum total and free T4 (only the decrease in serum free T4 persisted until PND35) (serum thyroid determinations made various days between PND0 and PND35, LOAEL based on PND2 for total T4)	1	2		70,000 (determined at PND2, as estimated from graphical representation of data) (offspring serum PFOS reported fo PND0, 2, 5, expect for 5 mg/kg group where reported only for PND0)
				total T4) Offspring effects: Serum T3 and TSH	3			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL
								(day assessed)
				Offspring effects: Learning behavior (T-maze) (only 3 mg/kg/day group tested)	3			
		0, 1, 2, 3, 5, 10 mg/kg/day Oral gavage	GD2- GD21 Cross- fostering experiment (3 days) also	Offspring effects:	1	2	Internal PFOS concentrations not determined for offspring assessed for developmental milestones and those in the cross-fostering experiment	
			conducted with pups from 5	Offspring effects: Delayed eye opening	1	2	Serum PFOS concentrations	
			mg/kg/day group	Offspring effects: Vaginal opening, onset and profiles of estrous cycle, preputial separation (10 mg/kg/day group not assessed due to 100% mortality)	5		determined for dams but reported in Thibodeaux et al. (2003) Maternal effects reported in Thibodeaux et al. (2003)	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects, cross-fostering experiment: \$\\$\ \text{survival (prenatally exposed pups with control dams)} \) (all control pups cross-fostered with exposed dams survived)		5		
	Mice, CD- 1	0, 1, 5, 10, 15, 20 mg/kg/day Oral gavage	GD1- GD17	Offspring effects:	5	10	Internal PFOS concentrations not determined for offspring Serum PFOS concentrations determined for dams	
				Offspring effects: Body weight (only time point for 15 and 20 mg/kg/day was PND0)	10		but reported in Thibodeaux et al. (2003) Maternal effects reported in	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: Absolute liver weight (effect not consistent across doses and time points, only time point for 15 and 20 mg/kg/day was PND0)	10		Thibodeaux et al. (2003) Thyroid hormone measurements may be subject to negative bias	
				Offspring effects: † relative liver weight (effect generally statistically significant through PND21, only time point for 15 and 20 mg/kg/day was PND0)	1	5		
				Offspring effects: Serum T4 (only T4 measured in mice)	20			
				Offspring effects: Delayed eye opening (data not available for 15 and 20 mg/kg/day groups)		1		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
Lee et al. (2015)		GD16 change weight (statistic signification)	Maternal effects: ↓ change in body weight (statistically significant from GD14 through GD17)	2.0	8.0	Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects		
				Maternal effects: ↓ placental weight		0.5	Maternal exposure <30 days	
				Maternal effects: ↑ placental necrosis (area of injury)		0.5		
				Offspring effects: ↓ fetal weight	0.5	2.0	Internal PFOS concentrations not determined for	
				Offspring effects:		0.5	offspring PFOS purity not reported	
			Offspring effects: † number of resorptions and dead fetuses		0.5			
			Offspring effects:	0.5	2.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
	5.			N				(day assessed)
Luebker et al. (2005a) (results from	Rats, Crl:CD® (SD)IGS BR VAF®	0, 0.1, 0.4, 1.6, 3.2 mg/kg/day Oral gayage	F0 males: pre-mating (42 days) and mating	Maternal effects: Mortality	3.2		Serum and liver PFOS concentrations determined for dams	
single-dose cross-foster experiment not summarized herein)		BR VAF® Oral gavage and m (≤14 d) F0 female pre-ma (42 da mating and th either GD9 (caesa group) LD20 (natura delivel	F0 females: pre-mating (42 days), mating, and then either until GD9 (caesarean group) or	Maternal effects: body weight gain (during periods with gestation and lactation) (statistically significant reductions in absolute and/or relative feed consumption observed during different periods of exposure) (determined at study day 42)	0.4	1.6	Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days Paternal effects summarized elsewhere in appropriate summary table(s)	82,000 (determined at LD21)
				Maternal effects, general reproductive endpoints: Estrous cycle, number of pregnancies/matings, number of days to inseminate, number of matings during first week of cohabitation	3.2			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Maternal effects, general reproductive endpoints at GD10 (caesarean-section group): Corpora lutea, implantations, viable embryos	3.2			(day assessed)
				Maternal effects, general reproductive endpoints following natural birth: ↓ duration of gestation ↓ implantation sites per delivered sites ↑ dams with stillborn pups ↑dams with all pups dying between PND1-PND4 (determined at or near PND0)	1.6	3.2		(determined at LD21, serum PFOS not reported for 3.2 mg/kg group)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
		0, 0.1, 0.4, 1.6, 3.2 mg/kg/day Oral gavage post weaning (i.e., starting on LD22)	See description above for details regarding F0 exposure duration (i.e., pre- conception, gestation, and	Offspring effects (F1): ↓ number of liveborn pups ↑ stillborn pups/litter (100% mortality of pup in 3.2 mg/kg/day group after LD2)	1.6	3.2	Liver PFOS concentrations determined for F1 Internal PFOS concentrations determined after some effect were initially observed Control values for internal PFOS	
			lactation exposures of F1) F1 started gavage exposure on LD22 at same dose level as parents,	Offspring effects (F1), prior to weaning: ↓ pup weight per litter (from LD1 to LD21) ↓pup weight gain per litter (from LD4 to LD21)	0.4	1.6	measurements not reported	
			exposure continued through PND90 (i.e., the start of mating) and	Offspring effects (F1), prior to weaning: Delays in pinna unfolding, eye opening, surface righting, and air righting	0.4	1.6		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL
			continued ≤14 days	Offspring effects (F1), prior to weaning:	0.1	0.4		(day assessed)
				Delays in eye opening				
				Offspring effects (F1), post weaning: Mortality				
				(F1 pups in 1.6 mg/kg/day group observed to be in poor clinical condition and not evaluated past LD21)	0.4			
				Offspring effects (F1), post weaning: Body weight and body weight gains	0.4			
				(absolute and relative feed consumption similar between exposed and control groups)	0.4			
				Offspring effects (F1), post weaning: Sexual maturation (male and females)	0.4			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects (F1), post weaning: Neurotoxicity (passive avoidance, water maze performance)	0.4			
				Offspring effects (F1), post weaning: Reproductive effects (duration of gestation, number of implantations, number of live pups)	0.4			
		0, 0.1, 0.4 mg/kg/day	See description above for details regarding F1	Offspring effects (F2): Mortality (throughout lactation period)	0.4		Internal PFOS concentration not determined for F2	
			exposure duration (i.e., pre- conception, gestation, and lactation exposures of F2), F2 lactation exposure ended on LD21	Offspring effects (F2): Body weight and body weight gain (any reductions were not statistically significant, or were statistically significant but transient)	0.4			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Luebker et al. (2005b)	Rats, Crl:CD® (SD)IGS	0, 0.4, 0.8, 1.0, 1.2, 1.6, 2.0 mg/kg/day (natural delivery group)	F0 males: no exposure	Maternal (F0) effects: Mortality	2.0		Serum and liver PFOS concentrations determined for dams	
Authors conducted dose- response and pharmaco- kinetic studies. Only results from dose- response study are summarized herein	VAF/Plus®	Oral gavage	F0 females: pre-mating (42 days), mating (≤14 days), and then until LD4	Maternal (F0) effects: ↓ body weight gain (effect primarily observed during lactation with some reductions during pre-mating, no apparent differences between exposed and controls during gestation) (↓ relative feed consumption during lactation with ≥0.8 mg/kg/day, decreases during pre-mating and gestation with 2.0 mg/kg/day) (determined on LD5)	0.4	0.8	Quantitative data for internal PFOS measurements not reported for controls Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days	42,600 (determined on LD5)
				Maternal (F0) effects:	0.4	0.8		42,600
				↑ relative liver weight (determined on LD5)	U. 4	0.0		(determined on LD5)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Maternal (F0) effects, reproductive endpoints: Fertility index, number of implantation sites, gestation index, number of still liveborn pups	2.0			
				Maternal (F0) effects, reproductive endpoints:	0.4	0.8		42,600 (determined on LD5)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Maternal (F0) effects,				(uay assesseu)
				serum biochemical parameters:				27,200
				↓ total CHOL		0.4		(determined on LD5)
				(determined on LD5)				
				Maternal (F0) effects, serum biochemical parameters:	1.2	1.6		169,000 (determined on
								LD5)
				Maternal (F0) effects, serum biochemical parameters:	1.6	2.0		134,000
				↑ GLUC	1.0	2.0		(determined on LD5)
				(determined on LD5)				
				Maternal (F0) effects, serum biochemical parameters:	2.0			
				HDL, LDL, MAL				
				Maternal (F0) effects, milk biochemical parameters:	2.0			
				CHOL				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Maternal (F0) effects, liver biochemical parameters: ↑ TRIG (determined on LD5)	1.2	1.6		169,000 (determined on LD5)
				Maternal (F0) effects, liver biochemical parameters: CHOL Malic enzyme activity	2.0			
				Maternal (F0) effects, thyroid hormones: ↓ total T4 (measured by analog RIA method) (↓ total T3 with ≥1.2 mg/kg/day and no effect on TSH when measured by analog RIA method)		0.4		27,200 (determined on LD5)
				(determined on LD5) Maternal (F0) effects, thyroid hormones: Free T4 (measured by equilibrium dialysis RIA method)	2.0			

								Serum PFOS
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring (F1) effects: ↓ pup body weight (at birth and LD5) ↓ pup body weight gain (from birth to LD5) (determined on LD5)		0.4	Serum and liver PFOS concentrations determined for offspring Quantitative data for internal PFOS measurements for control animals not reported Limited sample size	36,200 (determined on LD5)
				Offspring (F1) effects: ↑ pup mortality (through LD5) (determined on LD5)	1.2	1.6	for some endpoints (e.g., thyroid hormone measurements)	(determined on LD5, offspring serum PFOS concentration no reported for 1.6 mg/kg group)
				Offspring (F1) effects, serum biochemical parameters: CHOL, GLUC, HDL, LDL, TRIG	2.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring (F1) effects, liver biochemical parameters: TRIG (statistically significant effect in females limited to 1.0, 1.2, and 1.6 mg/kg/day but not 2.0 mg/kg/day) (determined on LD5)	Males: 0.8 Females: 0.8	Males: 1.0 Females: 1.0		84,400 (determined on LD5, offspring serum PFOS concentration reported for litter not individual sexes)
				Offspring (F1) effects, liver biochemical parameters: CHOL, glycogen content, malic enzyme activity	2.0			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring (F1) effects, thyroid hormones: Total T3 (measured by analog RIA method) (reductions observed but were not statistically significant; reductions also observed when using an analog CL method but limited sample availability)	2.0			
				Offspring (F1) effects, thyroid hormones: ↓ total T4 (measured by analog RIA method) (non-statistically significant reductions observed when using an analog CL method) (determined on LD5)		0.4		36,200 (determined on LD5)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (i ng/mL) corresponding to the LOAEL
				Offspring (F1) effects, thyroid hormones:				(day assessed,
				Free T3 and free T4 (measured by equilibrium dialysis RIA method)				
				(limited sample size prevented determination of NOAEL and LOAEL)				
				Offspring (F1) effects, thyroid hormones:				
				TSH (measured by analog RIA method)				
				(limited sample size prevented determination of NOAEL and LOAEL)				
				Offspring (F1) effects, histopathology:				
				Microscopic changes to heart and thyroid				
				(limited sample size prevented determination of NOAEL and LOAEL)				

		nary table for reprod					Ī	Serum PFOS
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	concentration (in ng/mL) corresponding to the LOAEL
		0.16.00 mg/kg/dov	F0 males:	Maternal (F0) effects:			Internal PFOS	(day assessed)
		0, 1.6, 2.0 mg/kg/day (caesarean group) Oral gavage	no exposure	dams with any resorptions	1.6	2.0	concentration not determined for dams	
			F0 females: pre-mating (42 days), mating (≤14 days),	Maternal (F0) effects, serum biochemical parameters: CHOL, GLUC, HDL, LDL, MAL, TRIG	2.0		Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days	
			and then until GD20	Maternal (F0) effects, liver biochemical parameters:		1.6		
				Maternal (F0) effects, liver biochemical parameters:	2.0			
				Offspring (F1) effects: Litter averages for corpora lutea, implantations, viable fetuses, and dead fetuses; percent live male fetuses, pooled fetal body weight	2.0		Internal PFOS concentration not determined for offspring Only two doses used in the caesarean group	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring (F1) effects: \$\phi\$ percent dead or resorbed concepti/litter \$\phi\$ early resorptions/litter	1.6	2.0		
				Offspring (F1) effects, serum biochemical parameters: ↑ CHOL, LDL		1.6		
				Offspring (F1) effects, serum biochemical parameters: GLUC, HDL, MAL, TRIG	2.0			
				Offspring (F1) effects, liver biochemical parameters: CHOL, TRIG	2.0			
Lv et al. (2013)	Rats, SPF Wistar	0, 0.5, 1.5 mg/kg/day Oral gavage	GD0- PND21	Neonatal deaths, Survival rates through PND21	1.5		Serum and liver concentrations	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
			(i.e., weaning)	↓ body weight (at PND21) (effect also observed at PND0 with 1.5 mg/kg/day) (determined on PND21) ↑ glucose intolerance (at 15 weeks after weaning, only statistically significant for 0.5 mg/kg/day group) (effect also observed at 10 weeks after weaning but only statistically significant for 1.5 mg/kg/day group)	(based on PND21 data)	0.5	determined for offspring Maternal effects not reported Only two dose levels used Maternal exposure >30 days	11,000 (determined on PND21, also determined on PND0 but not reported herein) 11,000 (determined on PND21, prior to endpoint assessment)
				(determined 10 to 15 weeks after weaning on PND21) Fasting serum glucose, fasting glycosylated serum protein levels (at 10 and 15 weeks after weaning)	1.5			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				↑ fasting serum insulin ↑insulin resistance index ↑ serum leptin (all 18 weeks after weaning on PND21)	0.5	1.5		71,350 (determined on PND21, prior to endpoint assessment)
				↓ serum adiponectin (determined 18 weeks after weaning on PND21)		0.5		11,000 (determined on PND21, prior to endpoint assessment)
				↑ liver fat accumulation ↑ liver TRIG (determined 19 weeks after weaning on PND21)	0.5	1.5		71,350 (determined on PND21, prior to endpoint assessment)
				Serum CHOL and TRIG	1.5			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Ngo et al. (2014) Only maternal and WT data are summarized herein	Mice, C57BL/6J	0, 0.01, 0.1, 3.0 mg/kg/day (combined from two separate experimental blocks) Oral gavage	GD1- GD17	Maternal effects: Overt toxicity, Incidence of pregnancy, Body weight development	3.0		Serum PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days PFOS degradation observed Potential PFOA contamination in some exposure groups	
				Offspring effects: Body weight development (for between weeks 3 to 11 and weeks 12 to 20) Terminal BMI (no statistically significant differences in feed intake between groups at week 20)	3.0		Serum concentrations determined for offspring Data reporting sometimes combine WT and Min/+ data, which did not allow for determining how genotype affected the endpoint observation PFOS degradation observed	

Table 24. S	tudy sumn	nary table for reprod	luctive/dev	elopmental effects in	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: Blood glucose levels	3.0		Potential PFOA contamination in some exposure	
				Offspring effects, organ weights: Liver (absolute and relative) Spleen (absolute and relative)	3.0		groups	
Rosen et al. (2009)	Mice, CD1	0, 5, 10 mg/kg/day	GD1- GD17	Maternal effects: Body weight General appearance	10		Internal PFOS concentration not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Offspring effects: Litter size	10		Internal PFOS concentrations not	

Table 24. S	tudy sumn	nary table for reprod	luctive/dev	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects, histology:			determined for offspring	(asy assesse)
				Liver (presence of eosoinphilic granules with ≥5 mg/kg/day)			Small sample size for some observations Only qualitative data	
				Lung (no apparent effects)			reported	
				(limited sample size prevented determination of NOAEL and LOAEL)				
Thibodeaux et al. (2003)	Mice, CD- 1	0, 1, 5, 10, 15, 20 mg/kg/day	GD1– GD17	Maternal effects:			Serum PFOS concentrations determined for dams	
		Oral gavage		weight gain (no effect on food consumption)	15	20	Maternal effects included to inform	
				Maternal effects, hepatic endpoints:	4	_	fetal/neonatal effects Maternal exposure	
				↑ liver weight (absolute and relative)	1	5	<30 days Thyroid hormone measurements may	
				Maternal effects, clinical chemistry:	1	5	be subject to negative bias based on analytical method used	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
				Maternal effects, clinical chemistry: Total BILI, CHOL, GLUC, SBA, SDH	20			
				Maternal effects, endocrine endpoints: Total T4 (transient reduction by GD6 but return to normal levels by end of pregnancy)	20			
				Fetal effects: Implantation sites	20		Serum PFOS concentrations not determined for fetal	
				Fetal effects: ↓ percentage of live fetuses	15	20	tissue	
				Fetal effects, teratology: ↑ cleft palate, sternal defects, enlarged right atrium, ventricular septal defects	10	15		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Fetal effects, body weight: \$\\$\\$\\$ body weight\$ (statistically significant reductions with 10 and 15 mg/kg but not 20 mg/kg)	5	10		
				Fetal effects, hepatic endpoints: ↑ liver weight (absolute and relative)	15	20		
	Rats, Sprague- Dawley	0, 1, 2, 3, 5, 10 mg/kg/day Oral gavage	GD2- GD20	Maternal effects, body weight: ↓ weight gain (reduction in food and water consumption with ≥5 mg/kg/day)	1	2	Serum and liver PFOS concentrations determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure	
				Maternal effects, hepatic endpoints: ↑ relative liver weight (no effect on absolute liver weight)	5	10	<30 days Thyroid hormone measurements may be subject to negative bias based on	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Maternal effects, clinical chemistry:	5	10	analytical method used	
				↓ CHOL, TRIG				
				Maternal effects, clinical chemistry: Total BILI, GLUC,	10			
				SBA, SDH				
				Maternal effects, endocrine endpoints: Corticosterone, prolactin	10			
				Maternal effects, endocrine endpoints:				
				↓ T3, T4		1		
				(no effect on TSH) Fetal effects:			Serum PFOS	
				Number of implantation sites, percentage of live fetuses	10		concentrations not determined for fetal tissue	
				Fetal effects, body weight:	5	10	concentrations determined for fetal tissue	

Table 24. S	tudy sumn	nary table for reprod	luctive/dev	elopmental effects in	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Fetal effects, teratology: ↑ cleft palate, sternal defects, anasarca, enlarged right atrium, ventricular septal defects	5	10		
				Fetal effects, hepatic endpoints: Liver weight (absolute and relative)	10			
Wan et al. (2010)	Rats, Sprague- Dawley	0, 0.1, 0.6, 2.0 mg/kg/day Oral gavage	GD2- GD21	Offspring effects: \(\psi \) number of delivered pups per litter (at PND3) (determined on PND3)	0.6	2.0	Serum and liver PFOS concentrations determined for offspring Internal PFOS concentrations not determined for dams	4,260 (determined on PND21, after endpoint assessment)
				Offspring effects: ↑ mortality (at PND3) (determined on PND3)	0.6	2.0	Maternal effects not reported Internal PFOS concentrations only	4,260 (determined on PND21, after endpoint assessment)

Table 24. S	Table 24. Study summary table for reproductive/developmental effects in animals										
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)			
				Offspring effects, body weight: \$\\$\\$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.6	2.0	reported for PND21 and not PND3	4,260 (determined on PND21)			
				Offspring effects, hepatic effects: ↑ relative liver weight (at PND21) (no effect on absolute liver weight) (determined on PND21)	0.6	2.0		4,260 (determined on PND21)			
				Offspring effects, hepatic effects: Histopathology (e.g., hepatocyte hypertrophy, cytoplasmic vacuolation, at PND21)	2.0						
Wan et al. (2014)	Mice, CD- 1	0, 0.3, 3 mg/kg Oral gavage	GD3- PND21 (weaning)	Maternal effects, body weight: Body weight	3		Serum and liver PFOS concentrations determined for dams				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ir ng/mL) corresponding to the LOAEL (day assessed)
Only results for standard diet summarized herein for PND63				Maternal effects, hepatic endpoints: ↑ relative liver weight (no effect on absolute liver weight) (determined on PND21)	0.3	3	Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days	131,720 (determined on PND21)
				Maternal effects (endocrine): ↑ HOMA-IR (non-statistically significant increases in fasting glucose and fasting insulin with ≥0.3 mg/kg) (determined on PND21)		0.3		15,330 (determined at PND21)
				Offspring effects, body weight: Body weight (at PND21 and between PND21 to PND63)	3		Serum and liver PFOS concentrations determined for offspring	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects, hepatic endpoints:			Only two dose levels used	(day assessed)
				↑ relative liver weight (males and females at PND21, males only at PND63) (↑ absolute liver weight statistically significant in males only at PND63 with 3 mg/kg) (determined at PND63)	Males: Females: 3 (based on PND63 data for relative liver weight)	Males: 0.3 Females: (based on PND63 data for relative liver weight)		Males: 300 Females: (determined at PND63)
				Offspring effects: † fasting serum glucose (males and females at PND63) (no effects at PND21) (determined at PND63)	(based on PND63 data)	0.3 (based on PND63 data)		Males: 300 Females: 510 (determined at PND63)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: ↑ fasting serum insulin (males and females at PND63) (↑ males only at PND21 with ≥0.3 mg/kg) (determined at PND63)	0.3 (based on PND63 data)	3 (based on PND63 data)		Males: 3,360 Females: 3,400 (determined at PND63)
				Offspring effects: † HOMA-IR (males and females at PND63) (no effects at PND21) (determined at PND63) Offspring effects:	0.3 (based on PND63 data)	3 (based on PND63 data)		Males: 3,360 Females: 3,400 (determined at PND63)
				OGTT (males and females at PND63) (data not reported for PND21)	3 (based on PND63 data)	(based on PND63 data)		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Wang et al. (2011c)	Rats, Wistar	0, 3.2, 32 mg/kg Dietary	GD1- PND14 (sacrifices	Maternal effects: General toxicity, food intake	32		Serum and brain PFOS concentrations determined for dams	
			on PNDs1, 7, and 14)	Maternal effects, endocrine endpoints: ↓ total T3 (at PND1) (data not complete for PNDs7 and 14) (determined at PND1)	3.2	32	Maternal effects included to inform fetal/neonatal effects Maternal exposure >30 days	16,900 (determined at PND1)
			Maternal effects, endocrine endpoints: ↓ total T4 (at PND1) (↓ at PND7 but high dose data not reported, data not complete at PND14) (determined at PND1)	 (based on PND1 data)	3.2 (based on PND1 data)		2,290 (determined at PND1)	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: ↓ pup body weight (at PNDs1, 7, and 14) (determined at PNDs1, 7, and 14)	3.2	32	Serum and brain PFOS concentrations determined for offspring Sample size not reported for every endpoint Only two doses used	32,900 (determined at PND1) 21,300 (determined at PND7) 25,200 (determined at PND14)
				Offspring effects, endocrine endpoints: ↓ total T3 (at PND14) (no effect at PNDs1 and 7) (determined at PND14)	3.2	32		25,200 (determined at PND14)
				Offspring effects, endocrine endpoints: ↓ total T4 (at PND 7 and 14) (↓ at PND1 with 32 mg/kg) (determined at PNDs7 and 14)	 (based on PNDs7 and 14 data)	3.2 (based on PNDs7 and 14 data)		3,650 (determined at PND7) 4,890 (determined at PND14)

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
Wang et al. (2015)	Rats, Wistar	0, 5, 15 mg/L Drinking water	Dams: GD1- weaning Offspring: weaning- PND35 Cross- fostering initiated on PND1a	Offspring effects, reproductive/ developmental endpoints:	5 mg/L 15 mg/L	15 mg/L	Hippocampus PFOS concentrations determined for offspring Internal PFOS concentrations in offspring only determined for PND35 Internal PFOS concentrations not determined for dams Maternal toxicity not reported Only two doses used	
				Offspring effects, neurotoxicity: † escape latency (learning ability) (statistically significant effects observed for both doses in TC and CT groups and only in TT15 group)	(based on TC and CT groups)	5 mg/L (based on TC and CT groups)		

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
				Offspring effects, neurotoxicity: † escape distance (learning ability, at training day 7 for TC group) (statistically significant effects observed at various training days for other groups)	(based on TC group)	5 mg/L (based on TC group)		
				Offspring effects, neurotoxicity: time spent in target quadrant and number of platform crossings (spatial memory, only observed for TT15)	5 mg/L	15 mg/L		
Yahia et al. (2008)	Mice, ICR	0, 1, 10, 20 mg/kg/day Oral gavage	Prenatal study: GD0-	Maternal effects: Deaths	20		Internal PFOS concentrations not determined for dams	

Table 24. S	tudy sumn	nary table for reprod	luctive/deve	elopmental effects i	n animals			
Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL (day assessed)
			GD17, sacrifice on GD18 Postnatal study: GD0– GD18, sacrifice following natural birth	Maternal effects, body weight: ↓ weight gain (GD11 until end of gestation) (↓ daily feed consumption GD14 onward and ↑ daily water consumption GD11 onward with 20 mg/kg)	10	20	Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	
				Maternal effects, hepatic endpoints: † liver weight (hypertrophy with 20 mg/kg)	1	10		
				Maternal effects, organ weights: Kidneys, lungs, brains	20			

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (i ng/mL) corresponding to the LOAEL
								(day assessed)
				Offspring effects (prenatal study):			Internal PFOS concentrations not determined for	
				↓ percentage of live fetuses			offspring	
				(non-statistically significant increases in percentage of resorbed fetuses and percentage of dead fetuses)	10	20	Strain of mouse not very common and appropriateness for endpoints unclear	
				Offspring effects (prenatal study):	1	10		
				↓ fetal body weight				
				Offspring effects (prenatal study):	,_			
				Bilateral swelling in back of neck (100% incidence)	10	20		
				Offspring effects (prenatal study):				
				† sternal defects (percentage of fetuses)		1		
				(statistically significant increases in other structural defects observed with ≥10 mg/kg)				

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (in ng/mL) corresponding to the LOAEL
				Offspring effects (postnatal study):				(day assessed)
				↓ survival (percentage of pups at PND4)	1	10		
				Offspring effects (postnatal study):	1	10		
				↓ body weight Offspring effects (postnatal study): Bilateral swelling in back of neck (100% incidence)	10	20		
Ye et al. (2012)	Rats, Sprague- Dawley	0, 5, 20 mg/kg	GD12- GD18	Maternal effects: Deaths	20		Internal PFOS concentrations not determined for dams Maternal effects included to inform fetal/neonatal effects Maternal exposure <30 days	

Reference	Species/ Strain	Administered Doses and Route	Duration	Endpoint(s)	NOAEL* (mg/kg/d unless noted)	LOAEL* (mg/kg/d unless noted)	Comment(s)	Serum PFOS concentration (ing/mL) corresponding to the LOAEL (day assessed)
				Offspring effects: Lung histology	20		Internal PFOS concentrations not determined for offspring Qualitative data reported Dam and fetal weights recorded by not reported PFOS purity not reported Only two doses used	

^{*} NOAELs are defined herein as the highest dose that did not produce a statistically significant (e.g., p<0.05) effect and LOAELs are defined herein as the lowest dose with statistically significant (e.g., p<0.05) effects. For some endpoints, there were dose-related trends that included non-statistically significant changes at lower doses than the LOAEL.

↑ = increased; ↓ = decreased ----- = not applicable

a = cross-fostering groups from Wang et al. (2015) defined as: CC = no prenatal and no postnatal exposure; TT5 or TT15 = prenatal and postnatal exposure to 5 or 15 mg/L, respectively; TC5 or TC15 = only prenatal exposure to 5 or 15 mg/L, respectively

BILI = bilirubin; BMI = body mass index; CHOL = cholesterol; CL = chemiluminometric; GLUC = glucose; HDL = high density lipoprotein; HOMA-IR = homeostatic model assessment for insulin resistance; Ig = immunoglobulin; LD = lactation day; LDL = low density lipoprotein; MAL = mevalonic acid lactone; NK = natural killer; OGTT = oral glucose tolerance test; RIA = radioimmunoassay; SBA = serum bile acid; SDH = sorbitol dehydrogenase; SRBC = sheep red blood cell; T3 = triiodothyronine; T4 = thyroxine; TRIG = triglycerides; TSH = thyroid stimulating hormone

Human epidemiological studies

A summary of reproductive/developmental effects in humans can be found in Tables 25 and 26 at the end of the following review. Detailed methodological information and additional study results can be found in the corresponding tables in Appendix 6.

Reproductive effects

Fertility

Studies evaluated the association between serum PFOS and several closely related measures of reproductive ability in populations with PFOS serum concentration levels prevalent in the general population: infertility (Caserta et al., (2013); Fei et al, (2009); Jørgensen et al. (2014)); La Rocca et al. (2014)); time to pregnancy (Fei et al., (2009, 2012); Jørgensen et al. (2014)); fecundity (the probability of conceiving within a fixed time period, generally one month or one menstrual cycle) (Fei et al (2009, 2012); Jørgensen et al. (2014); Vestergaard et al. (2012)); and sub-fecundity (time to pregnancy > 6 cycles) (Vestergaard et al. (2012)). Only the linked studies of Fei et al (2009, 2012) found significant associations between PFOS and measures of relative difficulty in conceiving (increased infertility, increased time to pregnancy, decreased fecundity).

Fei et al. (2012) was also the only one of these studies that stratified on the basis of parous/nulliparous (i.e., previous pregnancy/no previous pregnancy). In that study, the clearest indication of a significant association between PFOS exposure and time to pregnancy or fecundity was for nulliparous women. This may be relevant since pregnancy and lactation are known to reduce maternal PFOS body burden, and it has, therefore, been argued that the apparent association of PFOS and time to pregnancy could be the result of reverse causation (i.e., those with previous successful pregnancies have lower levels of serum PFOS as a result of the pregnancies). The positive association for nulliparous women, however, is not compatible with an explanation based on reverse causation.

Despite the consistent findings of the Fei et al. (2009, 2012) studies across related indicators of fertility and the evidence from Fei et al. (2012) that reverse causation was not responsible for those findings, there is no consistent evidence for an association of PFOS and reduced fertility.

Birth weight and related reproductive endpoints

Individual epidemiology studies addressing to birth weight and related reproductive endpoints are presented in Table 25. Endpoints from developmental studies are summarized in Table 26. Epidemiology studies have not shown a consistent decrease in birthweight with reference to maternal serum concentration of PFOS. In a birth sub-sample of a larger cohort from the UK with a median maternal serum PFOS concentration of 19.6 ng/ml (Maisonet et al., 2012), there was a significant negative association between maternal, gestational period, serum PFOS concentration and birthweight. The analyses adjusted for various maternal factors, including previous pregnancies. This is an important consideration since maternal PFOS body burden decreases during pregnancy. In this study, maternal serum PFOS concentration was also significantly negatively associated with birth length, but not with Ponderal Index [a measure of body leanness calculated as: body mass (kg)/height³ (m³)], or gestational age. In a study nested

within the C8 Health Study cohort (Darrow et al., 2013) with a geometric mean maternal serum PFOS concentration of 13.1 ng/ml, maternal serum PFOS concentration was significantly negatively associated with continuous birthweight (for first pregnancies with prospective maternal serum PFOS measurements only). However, maternal PFOS was not associated with the category of low birthweight. In contrast, other studies (Fei et al. (2007, 2008); Hamm et al., (2010); Robledo et al. (2015)) with comparable exposures did not show a significant negative association between maternal PFOS exposure and birthweight, or categorical low birth weight (Darrow et al. (2013), or Ponderal Index [Apelberg et al. (2007) for cord blood; Maisonet et al. (2012); Robledo et al. (2015)].

Summary of epidemiologic studies on birthweight effects

Although there is a suggestion of a relationship between maternal PFOS exposure and decreased birthweight from epidemiological studies, the evidence is not consistent. This lack of consistency among studies does not appear to be a direct function of differences in the range of exposures among the populations studied. However, these studies have addressed populations with a relatively narrow range of exposures (central tendency estimates of maternal serum PFOS concentrations in the range of 5-35 ng/ml) that are generally consistent with general population level exposures to PFOS. These observations therefore do not rule out an association at higher levels of PFOS exposure or more subtle effects in pregnancies at increased risk for low birthweight.

Puberty

Three studies were identified that investigated an association between PFOS and the onset of female puberty. Female puberty was determined based on the self-reported age at onset of menarche. In the case of the Lopez-Espinosa et al. (2011) study determination of puberty was based either on self-reported menarche or serum estradiol levels. In two of these studies [Christensen et al. (2011), Kristensen et al. (2013)], the PFOS concentration was based on a maternal pregnancy sample. In the Lopez-Espinosa (2011) study (C8 cohort, n = 2,931), the PFOS concentration was based on the girls' serum PFOS at the time of recruitment (8-18 years old). For the studies based on maternal PFOS, there was no association with onset of female puberty. In the Lopez-Espinosa et al. (2011) study there was a significant association between delayed onset of puberty and girls' serum PFOS concentration based on estradiol levels and age at menarche. There is a possibility of confounding of this result through reverse causality since earlier onset of menarche would result in a decreased body burden and serum concentration of PFOS, whereas delayed onset of menarche (independent of PFOS causation) would allow for retention of a larger body burden of PFOS.

Male puberty was only addressed in the same Lopez-Espinosa et al. (2011) C8 cohort study (n = 3,076). Male puberty was determined on the basis of testosterone levels. PFOS was significantly associated with delayed onset of male puberty. Unlike the case for females, there is no obvious confounding of this association due to reverse causality.

While the Lopez-Espinosa et al. (2011) study found a significant association between childhood PFOS exposure and delayed onset of puberty for both females and males in a large-scale study, it is the only study to examine such an association. Similarly, there were only two available

studies that showed a lack of association between maternal PFOS exposure and the onset of female puberty. Thus, there are insufficient data upon which to draw conclusions about associations between PFOS exposure (either maternal or childhood) and the onset of puberty.

Preterm birth

Five studies were identified that investigated a possible association between maternal serum PFOS and outcomes related to preterm birth or related outcomes (premature birth, length of gestation, gestational age). Of these, only one study (Stein et al., 2009) showed a significant association with maternal PFOS (for premature birth at < 37 wks). This was a study nested in the C8 cohort (n = 4,512; median PFOS concentration = 13.6 ng/ml). The OR for premature birth for each inter-quartile increase in PFOS concentration was 1.3, and the OR for the fourth quartile compared with the first quartile of PFOS exposure was 1.8. Fei et al. (2007) (n = 50), Darrow et al. (2013) (n = 1,630) and Hamm et al. (2010) (n = 252) found no significant association. Olsen et al. (2004) (n = 122) also found no association between high versus low occupational PFOS exposure and pre-term labor compiled as episodes of care under the workers' health coverage. Exposure assessment in this study was based on air concentration rather than in serum, and even the low exposure group had an elevated level of exposure.

The positive finding in the large-sized Stein et al. (2009) study provides some support for an association between maternal PFOS exposure and preterm birth. However, the finding from this one study is not sufficient to draw overall conclusions.

Miscarriage

The possibility of an association between maternal PFOS exposure and miscarriage was only addressed by two studies, both of which investigated the C8 cohort. Stein et al. (2009) was a retrospective study based on self-reported outcomes up to five years prior to enrollment in the cohort. Darrow et al. (2013) was a prospective study that tracked women post-enrollment. Although neither found a significant association for the study cohorts as a whole, Darrow et al. (2013) found a significant OR (1.34) for miscarriage during first pregnancy.

Preeclampsia

Both of the C8 cohort studies referenced above in the discussion of miscarriage (Stein et al (2009) (n \approx 5,000, mean = 15.0 ng/ml) and Darrow et al. (2013) (n = 1,630, geo. mean = 13.1 ng/ml) found significant positive associations between maternal PFOS exposure and preeclampsia (pregnancy-induced hypertension combined with increased urinary protein). The much smaller, Starling et al. (2014a) study of the Norwegian Mother and Child Study cohort (cases = 466, controls = 510; median = 12.87 ng/ml) did not find such an association. The finding of a positive association in the large C8 cohort in both retrospective and prospective studies suggests the possibility of true association.

Placental weight

Fei et al. (2008) found no association of placental weight with maternal PFOS exposure in the large Danish National Birth Cohort (n = 91,827).

Duration of breast feeding

Only one study was identified that addressed a possible association between maternal PFOS exposure and the duration of breast feeding. Fei et al. (2010a), investigating the large Danish National Birth Cohort (n = 91,827), found a positive association between PFOS exposure and cessation of breast feeding at < 6 months, but not at < 3 months. The relationship for cessation at < 6 months was significant for both primaparous and multiparous women. For overall duration of breast feeding as a continuous variable, the association with PFOS was significant for multiparous women only.

Sperm/semen characteristics

In two studies examining sperm morphology (Joensen et al., 2009; Toft et al., 2012), no effect on sperm morphology was significantly associated with PFOS exposure. The only significant association of sperm morphology with men's serum PFOS was a negative association with the occurrence of coiled tail (Louis et al., 2015). As coiled tail is considered to be an adverse indicator of sperm viability, the significance of this observation is unclear. No association between men's serum PFOS concentration and semen volume was observed in four general population studies with moderate to high levels of exposure [Joensen et al. (2009), Raymer et al. (2012), Toft et al. (2012), Vested et al. (2013)]. Sperm count was not significantly associated with PFOS serum concentration in three studies [Joensen et al. (2009), Toft et al. (2012), Vested et al. (2013)]. Sperm concentration was also not significantly associated with serum PFOS in four studies [Joensen et al. (2009), Raymer et al. (2012), Toft et al. (2012), Vested et al. (2013)]. Neither semen, pH, viscosity, nor liquification were found to be significantly associated with serum PFOS in a single study (Raymer et al., 2012). In four studies of various measures of sperm motility [Joensen et al. (2009), Raymer et al. (2012), Toft et al. (2012), and Vested et al. (2013)]. PFOS was not significantly associated with motility. The only significant association was for increased distance migrated as a function of PFOS exposure (Louis et al., 2015). As increased distance migrated is considered an indication of sperm viability, the interpretation of this outcome is unclear.

In a single study (Kvist et al., 2012) of multiple populations (Greenland, Poland, Ukraine) the Y:X chromosome ratio in sperm was significantly positively associated with serum PFOS for the pooled study population, but no significant relationship was observed when examining each population separately. However, in a MANOVA analysis, the Greenland population, with the highest serum PFOS concentration (mean = 51.65 ng/ml) was significantly negatively correlated with the Y:X ratio. This relationship was driven by the difference between the third and fourth quartiles of serum PFOS. It is difficult to draw conclusions from these data.

Overall, there is little to no evidence from epidemiologic studies linking adverse effects in either sperm or semen with PFOS exposure.

Testicular volume

In a single study (Vested et al., 2013), testicular volume was not associated with serum PFOS concentration.

Female reproductive organs/menstruation

No association was observed between serum PFOS and the incidence of endometriosis (either all cases, or stages 3-4) (Louis et al., 2012).

No association was observed between the length of the menstrual cycle and serum PFOS in either a study in which serum PFOS and cycle length were determined in the same adult women (Lyngsø et al., 2014), or in a study in which maternal serum PFOS was measured during the second trimester of pregnancy and data on cycle length was determined in the daughters (Kristensen et al., 2013).

In a case-control study of individuals recruited from specialty clinics and advertisements, serum PFOS concentration was significantly higher in polycystic ovary syndrome cases (n = 52) compared to controls (n = 50) (OR = 5.76) (Vagi et al. 2014). However, there are some significant weaknesses in this study including small sample size and the potential for reverse causation. In a nested-cohort of the Danish National Birth Cohort (Kristensen et al., 2013), there was no significant association between maternal, second trimester PFOS exposure and the number of follicles per ovary in daughters either with (n = 171), or without (n = 75) hormonal contraception.

In a nested case-control (107 cases and 108 controls) study of cryptorchidism, there was no significant difference in cord blood PFOS concentration (Versterholm-Jensen et al., 2014).

Sex hormones

In analyses of possible associations of sex hormones (testosterone, estradiol, SHBG, FSH, LH, inhibin B, free androgen index, dehydroepiandrosterone, anti-mullerian hormone, and gonadotropin hormones) and PFOS exposure (adult and gestational) among four different studies (Joensen et al. (2009), Kristensen et al. (2013), Specht et al. (2012), Vested et al. (2013)) in males and females (not all parameters measured in each study), no significant associations were observed.

Menopause

No association was observed between the age-adjusted probability of having achieved menopause and serum PFOS (Taylor et al. (2014).

Summary of reproductive effects

Overall, there are no clear consistent observations of associations between reproductive effects and PFOS exposure. However, it is interesting to note that those studies that did observe significant associations of reproductive effects with PFOS exposure [decreased birthweight (Darrow et al., 2013); delayed onset of male and female puberty (Lopez-Espinosa et al., 2011); premature birth (Stein et al., 2009); miscarriage in first pregnancy (Darrow et al., 2014); and preeclampsia (Darrow et al., 2013; Stein et al., 2009)] tended to be studies of the C8 cohort. These studies had large sample sizes and, therefore, greater power to observe relatively low-probability outcomes.

Developmental effects

Neurobehavior

Neurobehavioral performance in neonates (Donauer et al., 2015) was not associated with maternal pregnancy serum PFOS concentration. Behavioral difficulties at seven years of age in the Danish National Birth Cohort (Fei and Olsen, 2011) were also not significantly associated with maternal pre-pregnancy serum PFOS exposure.

Neuromotor

Cord blood PFOS was significantly associated with decreased gross motor skills in 2-year olds in a Taiwanese cohort (Chen et al., 2013). PFOS exposure in this cohort was relatively low (mean = 7.0 ng/ml). Relatively elevated maternal pre-pregnancy PFOS exposure (median = 34.4 ng/ml) was significantly associated with negative (adverse) assessment of coordination disorders in the Danish National Birth Cohort (Fei and Olsen, 2011).

Cerebral palsy

In a case-control study nested within the Danish National Birth Cohort (Liew et al., 2014), the maternal pregnancy (1^{st} or 2^{nd} trimester) PFOS serum level was significantly higher in cerebral palsy cases (n = 156, 28.9 ng/ml) than in controls (n = 550, 27.6 ng/ml) for boys only (risk ratio = 1.7-2.1).

Morphogenic parameters

Only one study (Halldorsson et al., 2012) evaluated morphogenic parameters (BMI, waist circumference, overweight) at 20 years old as a function of maternal pregnancy PFOS exposure. None of these parameters were significantly associated with maternal PFOS exposure.

Summary of developmental effects

There is some suggestion of an association between gestational PFOS exposure and neuromotor effects including gross motor, coordination and cerebral palsy. However, since cerebral palsy can be related to delivery difficulties, it is not clear to what extent an association of gestational PFOS exposure with cerebral palsy is consistent with other measures of neuromotor performance.

Table 25. Summa	ry of Epidemiology Stud	dies of Reproductive Ef	ffects	
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study references	
Fetal or postnatal growth	Birthweight =	Mean 35 (maternal)	Fei (2007)	
	Birthweight =	Mean 35.3	Fei et al. (2008)	
	Birthweight =	Mean 9.0 (maternal)	Hamm et al. (2010)	
	Birthweight ↓	Med. 19.6 (maternal)	Maisonet et al. (2012)	
	Birthweight =	Med. 12.44 (maternal)	Robledo et al. (2015)	
	Birthweight ↓	Geo. mean 13.1 (maternal)	Darrow et al. (2013)	
	Low birthweight =	Geo. mean 13.1 (maternal)	Darrow et al. (2013)	
	Child weight (1-11 mos) =	Mean 1.6 (cord)	de Cock et al. (2014a)	
	Head circum. ↓	Med. 5 (cord)	Apelberg et al.(2007)	
	Head circum. = (1-11 mos.)	Mean 1.6 (cord)	de Cock et al. (2014a)	
	Head circum. =	Mean 35.3	Fei et al. (2008)	
	Ponderal index = (equivocal)	Med. 5 (cord)	Apelberg et al.(2007)	
	Ponderal index =	Med. 19.6 (maternal)	Maisonet et al. (2012)	
	Ponderal index =	Med. 12.44 (maternal)	Robledo et al. (2015)	

Endpoint	ary of Epidemiology Stud Effect and Direction	Serum PFOS	Study references	
Znapomi	Zireet und Bireetion	concentration (ng/ml)	Study Telefences	
		(mean, median, etc.)		
Fertility	Infertility =	18-32% > LOD	Caserta et al. (2013)	
	Infertility ↑	Med. 33.7	Fei et al (2009, 2012)	
	Infertility =	Med. 10.6	Jørgensen et al. (2014)	
	Infertility =	Med. < 0.4	La Rocca et al. (2014)	
	Time to pregnancy ↑	Med. 33.7	Fei et al (2009, 2012)	
	Time to pregnancy =	Med. 10.6	Jørgensen et al. (2014)	
	Fecundity \	Med. 33.7	Fei et al (2009, 2012)	
	Fecundity =	Med. 10.6	Jørgensen et al. (2014)	
	Sub-fecundity/fecundity	Med. Non-preg 35.75,	Vestergaard et al. (2012)	
	ratio	preg -Preg 36.29		
Puberty	Menarche	Med. 19.8 (maternal)	Christensen et al. (2011)	
	Decreased age =	,	,	
	Menarche =	Med. 3.6	Kristensen et al. (2013)	
		(maternal)	, ,	
	Menarche/puberty ↓	Med. 18	Lopez-Espinosa et al. (2011)	
	Male (testosterone	Med. 20	Lopez-Espinosa et al. (2011)	
	cutoff) ↓			
Gestation	Preterm birth =	Mean 13.1	Darrow et al. (2013)	
	Preterm birth =	Mean 9.0	Hamm et al. (2010)	
	Premature birth ↑	Med. 13.6	Stein et al. (2009)	
	Length of gestation =	Mean 35	Fei (2007)	
	Length of gestation =	Mean 9.0	Hamm et al. (2010)	
	Gestational age =	Med. 19.6	Maisonet et al. (2012)	
	Miscarriage =	Geo. mean 14.3	Darrow et al. (2014)	
	Miscarriage (1 st preg) ↑	Geo. mean 14.3	Darrow et al. (2014)	
	Miscarriage =	Med. 13.6	Stein et al. (2009)	
	Pre-term labor =	Air conc.	Olsen et al. (2004)	
		H = 0.6-2.0 ppm		
		L = 0.4 ppm		
		Minimal = 0.1-0.2 ppm		
	Preeclampsia	Mean 13.1	Darrow et al. (2013)	
	(preg induced			
	hypertension) ↑			
	Preeclampsia =	Med. 12.87	Starling et al. (2014a)	
	Preeclampsia ↑	Med. 13.6 ng/ml	Stein et al. (2009)	
	Placental weight =	Mean 35.3	Fei et al. (2008)	
Breast feeding	Weaning < 3 mos	Med. 32.3 -37.0	Fei et al. (2010a)	
	(first child) =			
	Weaning < 6 mos (first child) ↑	Med. 32.3 -37.0	Fei et al. (2010a)	
	Duration First child = (sig only for multiparous)	Med. 32.3 -37.0	Fei et al. (2010a)	

Table 25. Summary of Epidemiology Studies of Reproductive Effects						
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study references			
Sperm/semen	Morphology =	Med. 24.5	Joensen et al. (2009)			
	Morphology (coiled tail) ↓	Med. 19.5-21.6	Louis et al. (2015)			
	Morphology (% normal)	Med. 18.4	Toft et al. (2012)			
	Volume =	Med. 24.5	Joensen et al. (2009)			
	Volume =	Med. 32.3	Raymer et al. (2012)			
	Volume =	Med. 18.4	Toft et al. (2012)			
	Volume =	Med. 21.2 (maternal – long. Study)	Vested et al. (2013)			
	Count =	Med. 24.5	Joensen et al. (2009)			
	Count =	Med. 18.4	Toft et al. (2012)			
	Count =	Med. 21.2 (maternal – long. Study)	Vested et al. (2013)			
	Concentration =	Med. 24.5	Joensen et al. (2009)			
	Concentration =	Med. 32.3	Raymer et al. (2012)			
	Concentration =	Med. 18.4	Toft et al. (2012)			
	Concentration =	Med. 21.2 (maternal – long. Study)	Vested et al. (2013)			
	Motility =	Med. 24.5	Joensen et al. (2009)			
	Motility (dist migrated) ↑	Med. 19.5-21.6 ng/ml	Louis et al. (2015)			
	Motility =	Med. 32.3	Raymer et al. (2012)			
	Motility =	Med. 18.4	Toft et al. (2012)			
	Motility (% progressive) =	Med. 21.2 ng/ml (maternal – long. Study)	Vested et al. (2013)			
	pH =	Med. 32.3	Raymer et al. (2012)			
	Liquification =	Med. 32.3	Raymer et al. (2012)			
	Viscosity =	Med. 32.3	Raymer et al. (2012)			
	Testicular volume =	Med. 21.2 (maternal – long. Study)	Vested et al. (2013)			
Sex ratio	X:Y chromosome ratio (pooled) ↑ (for pop. w highest conc ↓)	8.2-51.65 (multiple populations)	Kvist et al. (2012)			
Endometriosis	All and stage 3-4 =	Geo. mean 6.11-7.41	Louis et al. (2012)			
Menstrual cycle	Length =	Med. 5.0 -20.2 (multiple pops.)	Lyngsø et al. (2014)			
	Length =	Med. 3.6	Kristensen et al. (2013)			

Table 25. Summary of Epidemiology Studies of Reproductive Effects						
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study references			
Polycystic ovary syndrome	OR ↑	Geo. mean cases = 8.2 controls = 4.9	Vagi et al. (2014)			
	Follicles/ovary =	Med. 3.6	Kristensen et al. (2013)			
Menopause	Achieved menopause (age adj.) =	Med. 10.3-17.5 (diff. pops. for each endpoint)	Taylor et al. (2014)			

[↑] statistically significant positive association

⁼ no significant association/equivocal association

Table 26. Summary	Table 26. Summary of Epidemiology Studies of Developmental Effects							
Endpoint	Effect and Direction	Serum PFOS concentration (ng/ml) (mean, median, etc.)	Study references					
Neurobehavioral	Neurobehv. Scale =	Geo. mean 13.25 (maternal)	Donauer et al. (2015)					
	SDQ (behav. Difficulties) =	Med. 34.4	Fei and Olsen (2011)					
Neuromotor	Gross motor ↓	Mean 7.0 (cord)	Chen et al. (2013)					
	DCDQ (coordination) ↓	Med. 34.4	Fei and Olsen (2011)					
Cerebral palsy	↑ (boys only)	Med. 26-29	Liew et al. (2014)					
Morphogenic	BMI (offspring at 20 yrs old) =	Med. 21.5 (maternal)	Halldorsson et al. (2012)					
	Waist circum. (offspring at 20 yrs old) =	Med. 21.5 (maternal)	Halldorsson et al. (2012)					
	Overweight (offspring at 20 yrs old) =	Med. 21.5 (maternal)	Halldorsson et al. (2012)					
Genital	Cryptorchidism =	Med. 9.1	Versterholm-Jensen et al. (2014)					

[↑] statistically significant positive association

DCDQ: Developmental Coordination Disorder Questionnaire

SDQ: Strengths and Difficulties Questionnaire

[↓] statistically significant negative association

[↓] statistically significant negative association

⁼ no significant association/equivocal association

Overall summary for reproductive and developmental effects

Animal data demonstrate that gestational PFOS exposure causes adverse effects in offspring including increases in offspring mortality, decreases in offspring body weight, and structural deformities. Additionally, animal data indicate that gestational PFOS exposure may cause endocrine and metabolic effects such as changes in thyroid hormone levels and in parameters associated with glucose metabolism. Human data do not provide clear, consistent evidence for reproductive effects following PFOS exposure. However, there is an indication of decreased birthweight and delays in developmental milestones in humans. Some human data suggest that PFOS may have developmental neurological effects. The overall weight of evidence appears to justify the inclusion of reproductive/developmental endpoints for dose-response evaluation.

Overall summary for non-cancer hazard identification

PFOS causes a number of different types of toxicological effects in animals including endocrine, hepatic, immune system, and developmental toxicity. In humans, epidemiology studies suggest an association of PFOS exposure with decreased vaccine response, elevated serum uric acid/hyperuricemia, and increased total cholesterol.

Carcinogenicity

Animal studies

Butenhoff et al. (2012) conducted the only chronic animal bioassay of PFOS. Their study exposed Sprague-Dawley rats of both sexes to PFOS by diet for up to 104 weeks. The study included a recovery group exposed to the highest concentration for 52 weeks and then kept on regular diet for the remaining study period. The data showing statistically significant incidence of tumors are summarized in Table 27 below.

	sex	0 nnm	0.5	2 ppm	5 ppm	20 ppm	20 ppm (recovery)	p-trend
Liver		ppm	ppm				(recovery)	
Liver								•
Hepatocellular	M	0/60	3/50	3/50	1/50	7/60 *	0/40	*
Adenoma	F	0/50	1/50	1/49	1/50	5/60 *	2/40	*
Hepatocellular	F	0/60	1/50	1/49	1/50	6/60 *	2/40	**
adenoma +								
carcinoma								
Thyroid	I	1			•			•
Follicular cell	M	3/60	5/49	4/50	4/49	4/59	9/39 *	
adenoma								
Mammary			•		•			•
Fibroadenoma +	F	23/60	30/50 *	22/48	26/50	15/60 * a	16/40	* b
adenoma								

^{*} $p \le 0.05$ compared to controls or trend as indicated. ** $p \le 0.01$ compared to controls or trend as indicated

a. Note that the significance is for a decreased incidence compared to controls.

b. Note that the significance is for an overall negative trend

It should be noted that the denominators of the incidence ratios, as reported in Butenhoff et al. (2012), apparently include animals with unscheduled mortality as well as interim and terminal sacrifices. Interim and unscheduled sacrifices, if conducted prior to the appearance of the first tumor, would have the effect of artificially increasing the presumed number of animals at risk of developing a tumor, thus increasing the denominator and thus, decreasing the incidence ratio (this issue is addressed in the Dose-Response section). Nonetheless, it is clear from the data as reported that both male and female rats exposed to 20 ppm dietary PFOS experienced statistically elevated hepatocellular tumor incidence.

Male rats also experienced a statistically elevated incidence of thyroid follicular tumors in the 20 ppm recovery group (Butenhoff et al., 2012). With respect to the statistically significant elevation in the incidence of thyroid follicular cell tumors observed in males in the 20 ppm recovery group, the authors consider this observation to be "paradoxical" given the absence of histopathological changes in the thyroid and the lack of a significantly elevated tumor incidence in the full term 20 ppm exposure group. Chang et al. (2009) exposed maternal Sprague-Dawley rats to PFOS from GD 1-20 or GD 1-PND 21, and several thyroid parameters potentially relevant to carcinogenicity were analyzed. No significant differences between PFOS exposed (maternal dose, 1.0 mg/kg/day) and control fetuses or pups were observed with respect to thyroid histology. Morphometric analysis of follicular epithelial height (a measure of increased thyroid activity) found a significant increase in PFOS treated female pups compared to controls at PND 21. However, the authors question the relevance of this observation due to an abnormally low follicular epithelial height in the relevant controls. In addition, thyroid follicular epithelial proliferation (cell counts) was significantly increased in 1 mg/kg/day PFOS maternally exposed GD 20 female fetuses at a level twice that of controls. Thus, the origin of these tumors and their potential relevance to human cancer risk is unclear.

Statistically significant increases were reported for mammary fibroadenomas and for combined mammary fibroadenomas/adenomas only in the low dose (0.5 ppm) group. The percent incidence of these tumors in each dose group was: Control – 38%; 0.5 ppm – 60%; 2 ppm – 45%; 5 ppm – 52%; 20 ppm recovery – 40%; 20 ppm -25%. When the incidence data were considered across all the dose groups for both categories of tumors, a statistically significant decreased trend was observed for these endpoints. This is due to the statistically significant decreases in the incidence of these tumors in the highest dose group compared to controls. No statistically significant changes in mammary carcinomas or adenomas alone were reported in any dose group. Based on these limited data, conclusions cannot be made about the potential for PFOS to cause mammary tumors.

Human epidemiology studies

There are a limited number of epidemiological studies assessing cancer risk from PFOS exposure. As reviewed below, these studies assessed cancer risk in occupationally exposed populations or in the general population.

Occupational studies

Studies of occupational PFOS exposure are all based on workers from a single facility (Decatur,

AL) with high PFOS exposure (Alexander et al., 2003, 2007; Olsen et al., 2004; Grice et al., 2007). These studies have several drawbacks in identifying potential associations between PFOS exposure and cancer. Exposure assessment was indirect and involved job location/category linked with location-specific measurements of PFOS air concentration, or serum PFOS concentration from a relatively small sample of workers. For those studies utilizing serum PFOS concentrations from this sample, the "no" or "minimal" exposure category were approximately two orders of magnitude higher than that of the US median as reported by CDC (2017). This could potentially obscure an exposure-response relationship. Ascertainment of cancer cases, was generally indirect, or based on mortality rather than incidence. Finally, the cohorts contained relatively few women.

Alexander et al. (2003) found no association between estimated PFOS exposure and all cancer mortality. For liver cancer mortality, the standardized mortality ratio (SMR) was slightly elevated (1.61 observed versus 1.24 expected) but not statistically significant. For bladder cancer, the SMR was elevated (4.81 observed versus 0.62 expected) and borderline statistically significant. The SMR was slightly increased when the analysis was confined to workers employed for ≥ 5 years.

Alexander et al. (2007) followed up on the previous study (Alexander et al., 2003), focusing on bladder cancer. This study collected information on current and deceased bladder cancer cases and from current and former employees. Self reporting (n = 1,400,67% of eligible) was combined with physician follow-up or death certification acquisition (n = 185,98% of eligible). The bladder cancer incidence was elevated (standardized incidence ratio (SIR) = 1.28) but was not statistically significant. There did not appear to be a relevant exposure-response relationship. The SIR was also elevated, but not statistically significant when the analysis was confined to the high exposure category or to workers employed for 5-10, or > 10 years.

Olsen et al. (2004) reviewed employee health claims for treatment through the company's health insurance and compared exposed workers to "unexposed" workers. Malignancies of the colon (risk ratio; RR = 5.4), lower respiratory tract (RR = 2.7), skin (RR = 12) and prostate (RR = 79) were elevated but not statistically significant. Since "unexposed" workers were classified by job location/duties, and not serum concentrations, it is likely that these workers have at least general population level exposures to PFOS.

Grice et al. (2007) employed self-reported cancer diagnosis (n = 1,400,74% of eligible). Estimated PFOS exposure was not associated with any cancer type.

Overall, studies of this worker population did not show consistent evidence of cancer in general or of cancer of any specific type.

General population studies

Eriksen et al. (2009) conducted a case (n = 67-713 depending on cancer type) control (n = 680) study nested in a prospective cohort (age: 50-65 years old, n = 57,051) using the Danish National Cancer Registry. The incident rate ratio (IRR) was not significant for cancer of any type for any

quartile of serum PFOS concentration. Prostate cancer was elevated for quartiles 2-4 of serum PFOS (relative to the first quartile) and this elevation was borderline statistically significant at each quartile. However, there was no clear evidence of a trend across quartiles.

Bonefeld-Jorgensen et al. (2011) conducted a case (n = 31)-control (n = 115) study of breast cancer and PFOS exposure among Greenland Inuit. This population had a relatively high PFOS exposure (median concentration among cases = 45.6 ng/ml). The OR relative to a unit increase (ng/ml) of serum PFOS was small (1.03), but statistically significant. As a follow up, Ghisari et al. (2014) examined the relationship of single nucleotide polymorphisms (SNPs) in a number of cytochrome P450 (CYP) isoforms as a function of serum PFOS in the same cases and controls studied in Bonefeld-Jorgensen et al. (2011). For all CYP genes tested, the OR was significantly > 1.0 for the (dichotomous) high PFOS category for at least one SNP. While this is largely a population-based mechanistic study, it adds some weight to the association of PFOS exposure and breast cancer from the Bonefeld-Jorgensen et al. (2011) study in providing evidence that cases differed from controls in a biochemical characteristic that is potentially causal with respect to breast cancer.

Hardell et al. (2014) examined the association of PFOS with prostate cancer in a case (n = 201)-control (n = 186) study in Sweden. No significant association was detected between serum PFOS concentration and the OR for prostate cancer, the stage of prostate cancer (Gleason score), and the PSA (prostate-specific antigen) level. There was a significant OR for PFOS serum concentration and having a first order relative with prostate cancer. This significance of this observation is not entirely clear, however.

Summary of epidemiological evidence for cancer

Although individual studies have shown borderline or weak (albeit statistically significant) associations between PFOS exposure and specific cancer types, there is no consistent indication of an association between PFOS exposure and cancer in general, or any specific form of cancer. Nonetheless, the database cannot be considered strong. In contrast to PFOA (DWQI, 2017), there are no studies of communities with elevated exposures from contaminated drinking water or other environmental media. Exposure characterization and case ascertainment was problematic in the occupational studies with high levels of exposure, and the non-occupational studies generally had small sample sizes.

Overall conclusions regarding the potential for human cancer risk from PFOS

Based on the liver and thyroid tumors reported by Butenhoff et al. (2012), the designation of "Suggestive Evidence of Carcinogenic Potential" in the 2005 USEPA Guidelines for Carcinogen Risk Assessment (USEPA, 2005a) is appropriate. In particular, this determination is consistent with the descriptor: "A small, and possibly not statistically significant, increase in tumor incidence observed in a single animal or human study that does not reach the weight of evidence for the descriptor "Likely to Be Carcinogenic to Humans." The study generally would not be contradicted by other studies of equal quality in the same population group or experimental system." USEPA Office of Water (2016b) also concluded that the descriptor "Suggestive Evidence of Carcinogenic Potential" as appropriate for PFOS. A discussion of the potential

human relevance of the tumors observed in Butenhoff et al. (2012) is found in the <u>Mode of action for carcinogenicity</u> section (below).

MODE OF ACTION

General

As discussed in the Hazard Identification section, PFOS produces effects in multiple organ systems and tissues. At a minimum, strong evidence exists from animal and/or epidemiological studies for effects on the liver, the immune system, birth weight, and neonatal survival. In addition, PFOS causes liver tumors, and possibly thyroid tumors in rats. The breadth of these effects suggests that PFOS may cause toxicity through multiple modes of action (MOAs). However, as discussed below for hepatic, immune, and developmental effects, there is insufficient evidence to fully support a definitive MOA for any of the tissue/organ-specific effects of PFOS.

Role of PPARa and other receptors in hepatic effects of PFOS

While mode-of action data are most abundant for PFOS effects on the liver, most of the evidence relates to evaluation of the role of peroxisome proliferator-activated receptor-alpha (PPAR α) in its hepatic effects.

Some hepatic effects (e.g., increased liver weight) of PFOS in rodents are similar to those caused by known and potent PPAR α activators (e.g., Corton et al., 2014). On this basis, carcinogenic and non-carcinogenic hepatic effects of PFOS have sometimes been assumed to occur through activation of PPAR α . However, several lines of evidence do not support a conclusion that liver effects due to PFOS exposure are PPAR α -dependent.

PPAR α is a member of the soluble nuclear receptor hormone superfamily (Peraza et al., 2006). There is evidence that endogenous fatty acid derivatives are the natural ligands for PPAR α and that under normal circumstances, PPAR α is involved with lipid homeostasis. It also appears that PPAR α is involved (at least in some tissues) with cell proliferation, apoptosis, inflammation and oxidative stress (Peters et al., 2005).

The functioning of PPAR α in response to exogenous chemicals has been most thoroughly documented in the liver. Compared to adult rodent liver, the abundance of PPAR α mRNA in adult human liver is only about 10% (Abbott et al., 2009b). Also, for at least some exogenous agonists, the magnitude of response of rodent PPAR α is greater than human PPAR α (Peters and Gonzalez, 2011). The role played by PPAR α in adverse hepatic effects has historically been largely derived from observation of the effects of model PPAR α agonists such as WY-14,643, bezafibrate and ciprofibrate, which are assumed to be "pure" PPAR α agonists (i.e., substances whose significant effects occur only as a result of PPAR α binding). Bezafibrate and ciprofibrate are hypolipidemic pharmaceuticals with known peroxisome proliferation activity. WY-14,643 is a strong PPAR agonist and peroxisome proliferator used experimentally as a model PPAR α agonist. Hays et al. (2005) found that exposure of wild-type (WT) Sv/129 mice to bezafibrate for one year resulted in the liver weight increase characteristic of PPAR α agonists. In addition, they found altered liver foci in 100% of exposed mice, as well as occurrence of single adenomas

and multiple adenomas and one carcinoma, with no neoplasms in the control WT mice. In contrast, PPAR α -null mice exposed to bezafibrate for 1 year exhibited no clear treatment-related tumors. Peters et al. (1998) compared the responses of hepatic tissue from wild-type (WT) and PPAR α -null mice treated for 11 months with WY-14,643. Exposure of the WT mice to WY resulted in increased production of proteins (and their corresponding mRNAs) involved in cell cycle regulation and cell proliferation. These included, cyclin-dependent kinases, c-myc, and PCNA (proliferating cell nuclear antigen). These responses, consistent with a cancer mode of action, were not seen in the PPAR α -null mice.

In *in vitro* binding assays (Vanden Heuvel et al., 2006), PFOS bound to mouse, rat and human PPAR α much less than ciprofibrate, the model PPAR α agonist used a positive control in this study. Relative to the concentration producing the maximum reporter assay response for PPAR α binding, PFOS produced only about 25% response for mouse PPAR α , no significant response for rat PPAR α , and an 8% response for human PPAR α . In a PPAR α binding assay in cultured cells transfected with mouse PPAR α , the lowest observed effective concentration for PFOS was 113 times greater than that for PFOA and 21 times that for PFNA (Wolf et al., 2008). Such data show a lack of a robust PPAR α response by PFOS and suggest that effects following PFOS exposure are independent of PPAR α .

In contrast to the characteristic linkage between PPAR α activation and liver weight increase seen with PPAR α agonists such as bezafibrate and the WY compound, PFOS causes liver weight increases in PPAR α -null mice (Qazi et al., 2009b; Rosen et al., 2010). In addition, Rosen et al. (2010) dosed WT and PPAR α -null mice with WY or PFOS for 7 days. Both WT and PPAR α -null mice exposed to PFOS showed hepatomegaly and increased incidence of hepatic vacuole formation. Profiling of gene expression was conducted with microarray analysis. Gross qualitative and quantitative differences in gene expression for fatty acid metabolism, inflammatory response, xenobiotic metabolism and ribosome biogenesis, as well as markers of PPAR α activation, were found between WY and PFOS treated WT mice. These observations provide evidence that prototypical PPAR α agonists (e.g., the WY compound) are not appropriate surrogates to predict the molecular and apical hepatic effects following PFOS exposure.

Additionally, hepatic effects, including tumors, have been observed in rodents exposed to PFOS without evidence of peroxisome proliferating activity. For example, Butenhoff et al. (2012) reported that chronic dietary exposure to 20 ppm PFOS resulted in liver tumors as well as hepatocellular hypertrophy and necrosis in male and female rats. However, an increase in hepatic peroxisomal bodies was not observed based on transmission electron microscopy.

Further, increased palmitoyl CoA oxidase activity, a generally accepted marker of peroxisome proliferation induction and overall PPAR α activation (Klaunig et al., 2003), has not been observed when hepatic effects were reported in PFOS-exposed rats. As part of the 2-year bioassay reported in Butenhoff et al. (2012), Seacat et al. (2003) reported on interim sacrifices following 4 and 14 weeks of dietary exposure. When assessing the 20 ppm group, the dose that caused liver tumors in Butenhoff et al. (2012), liver effects were limited to an increase in relative liver weight in male rats after 4 weeks of exposure. However, no significant increase in hepatic palmitoyl CoA oxidase activity was observed. Following 14 weeks of exposure, liver effects in the 20 ppm group included hepatocellular hypertrophy and vacuolation in males and females as

well as increased relative liver weight in males with no observed significant increase in hepatic palmitoyl CoA oxidase activity.

Studies with shorter durations of exposure in rats by Elcombe et al. (2012a, 2012b) provide similar hepatic observations as those following chronic and subchronic PFOS exposures in rats as reported in Seacat et al. (2003) and Butenhoff et al. (2012). Following cessation (i.e., on recovery day 1) of 7 days of dietary PFOS exposure at 20 ppm, increases in relative liver weight and hepatocellular hypertrophy along with changes in alanine aminotransferase, aspartate aminotransferase, and cholesterol were observed (Elcombe et al., 2012b). However, no increase was observed for hepatic palmitoyl CoA oxidase activity. Following 28 days of exposure to 20 ppm PFOS, Elcombe et al (2012a) observed increased relative liver weight and hepatocellular hypertrophy along with a decrease in cholesterol. These hepatic observations were accompanied with only a marginal (i.e., 1.4-fold) increase in hepatic palmitoyl CoA oxidase activity.

To the extent that there is a relatively small amount of interaction with PFOS, PPAR α may make a minor contribution to PFOS liver effects. This is in contrast to PPAR α activators/peroxisome proliferators such as WY and the fibrates, for which liver effects, including carcinogenicity are clearly linked to PPAR α activation.

In summary, PFOS effects on the rodent liver do not appear to primarily operate through a PPAR-dependent mode of action, including at doses resulting in liver tumors as in Butenhoff et al. (2012). Thus, the lower abundance of PPAR α and lower response to model PPAR α activators in human liver as compared to rodent liver is not clearly relevant to the potential for PFOS to cause human hepatic effects including cancer.

Other receptors whose activities overlap to some extent with those of PPAR α may also be activated by PFOS, suggesting alternative, non-PPARa modes of action. These other receptors include: CAR, PPARβ/δ, PPARγ, PXR, HNF-4α and possibly, ERα [Corton et al. (2014); Peters and Gonzalez (2011); Kobayashi et al. (2015)]. CAR appears to be involved in liver tumorigenesis in PPARα-null mice for di(2-ethylhexyl)phthalate (DEHP), an activator of PPARα (Corton et al., 2014). The set of genes expressed following CAR activation in PPARαnull mice overlap with those genes expressed following PPARα activation in WT mice. CARspecific gene expression in WT mice is minor compared to its expression in PPARα-null mice. It is hypothesized that in WT mice, chemicals such as PFOA and DEHP that are relatively strong PPARα activators, suppress CAR (Corton et al., 2014). However, since PFOS appears to be a relatively weak PPARa agonist compared to PFOA, PFOS may preferentially activate CAR or other nuclear receptors rather than PPAR α . Hepatocyte nuclear factor 4- α (HNF-4 α) is considered "the master regulator of hepatic differentiation." (Beggs et al., 2016). It regulates liver development, transcriptional regulation of liver-specific genes, regulation of lipid metabolism, and maintenance of hepatocellular quiescence and differentiation. Human hepatocytes in primary culture exposed (in vitro) to PFOS at "occupationally relevant" concentrations resulted in downregulation of HNF-4α protein levels (but not HNF-4α mRNA). There were, however, changes in mRNA expression in genes regulated by HNF-4α, including those related to hepatic steatosis, proliferation, and tumorogenesis. HNF- 4α was the upstream regulator of 90 of 681 genes with altered expression due to PFOS exposure. Beggs et al. (2016) hypothesize that PFOS causes downregulation of HNF-4α in human hepatocytes leading to hepatomegaly and steatosis.

MOA for immune effects

Following PFOS exposure in animals, immunosuppression as well as effects on immune organs, cell populations, and mediators have been observed. In humans, an association with suppression of vaccine response has been reported. Despite research efforts, reviewed in part below, the mode(s) of action by which PFOS exposure results in immune effects is unclear (DeWitt et al, 2009, 2012; Corsini et al., 2014; Chang et al., 2016).

As discussed below, based on rodent studies, it appears that PPAR α may play a role in some immune effects caused by PFOS. Unlike the case for the liver, there are no data to suggest that PPAR α is less active in the human immune system than in rodents. Therefore, both PPAR α dependent and independent effects on the immune system are considered relevant to humans for the purposes of risk assessment.

The role of PPARα in PFOS-mediated immunotoxicity has been reviewed by DeWitt et al. (2009; 2012) and Corsini et al. (2014). Some data suggest that PFOS-mediated immunosuppression is not dependent on PPARa. As reviewed in DeWitt et al. (2012), research by Peden-Adams et al. (2010) reported that 28 days of PFOS exposure resulted in a similar degree of plaque forming cell response suppression in WT and PPARα-null mice. Some evidence, however, suggests a partial role for PPARα in PFOS immunotoxicity. Qazi et al. (2009b) observed that PFOS exposure (10 days) resulted in a similar change in spleen weights in WT (22% decrease) and PPARα-null (24% decrease) mice. However, for thymus weight, the extent of decrease was different between WT (34%) and PPARα-null (17%) mice. Additionally, decreases in splenocytes and thymocytes were observed in WT mice following PFOS exposure. The number of splenocytes and thymocytes were also reduced in PPARα-null mice, with differential effects for different sub-populations, although, this reduction was not to the same level of as observed in WT mice. However, in Dong et al. (2009), decreased spleen and thymus cellularity occurred at a three-fold higher serum concentration than the inhibition of plaque forming cell response. Therefore, it is not clear that the decreased spleen and thymus cellularity that appears to be partially mediated by PPARa is necessarily linked to the PFOS mediated decrease in plaque forming cell response.

Immunotoxicity data following PFOA exposure may also inform the role of PPAR α in immunotoxicity following PFOS exposure. As reviewed in Corsini et al. (2014), PPAR α may mediate immune suppression following PFOA in some strains of mice, based on studies in PPAR α null mice. However, Corsini et al. (2014) note the much smaller affinity of PFOS for PPAR α compared to PFOA and therefore hypothesize a significant role for non-PPAR α mechanisms in PFOS-mediated immunotoxicity. This hypothesis for non-PPAR α mechanisms is consistent with the observation of Peden-Adams et al. (2010) of suppression of IgM T-cell dependent immune response by PFOS as reflected in inhibition of the plaque-forming response in PPAR α -null mice. As reviewed by DeWitt et al. (2009), this hypothesis is also consistent with the observation of Yang et al. (2002) that in PPAR α -null mice exposed to PFOA, lymphoid organ weight is decreased relative to WT mice. DeWitt et al. (2009) suggest that this points to a non-PPAR α mechanism for immune effects originating in the spleen/thyroid.

In addition to the extent of PPAR α involvement, other mechanistic considerations may inform the mode of action for PFOS-mediated immunotoxicity. Incubation with PFOS inhibited the

release of pro-inflammatory cytokines from human peripheral blood leukocytes that had been stimulated with the mitogen, phytohemagglutinin, or the endotoxin, lipopolysaccharide (Corsini et al., 2011; Corsini et al, 2012). For some of the cytokines evaluated, the LOAEL for this effect was 100 ng/L, the lowest PFOS concentration tested. Notably, this PFOS concentration is within the range of found in in the blood of highly exposed individuals.

Additionally, Corsini et al. (2014) suggest the possible involvement of an alteration of cell signaling response in PFOS mediated immune suppression since this suppression occurs without a change in the number of relevant leukocyte populations in response to PFOS exposure. Specifically, Corsini et al. (2014) cite research by Peden-Adams et al. (2010) where there was an observed suppression of IL-6 in B-cells, and translocation of NF-kB in splenic nuclear extracts following 28 days of PFOS exposure, consistent with alterations in cell signaling. This hypothesis of altered cell signaling is also consistent with the observation by Peden-Adams et al. (2007) of a decreased response in mice to sheep red blood cells in response to the pesticide sulfuramid (rapidly metabolized to PFOS), which occurred in the absence of a related decrease in the number of T helper cells or B cells. Aside from alterations in cell signaling, DeWitt et al. (2012) note that PFOS appears to suppress both T-cell dependent, and T-cell independent antigen response. They suggest that B cells and/or macrophages might be involved in the mode of action of PFOS immunosuppression.

In general, stress may influence immune effects following chemical exposure. However, Dong et al. (2009) observed that increases in serum corticosterone, a marker for stress, in response to PFOS exposure in mice occurred only at high PFOS doses (≥ 0.8 mg/kg/day), whereas a decrease in plaque forming cell response occurred at all but the lowest dose tested (> 0.008 mg/kg/day). Corsini et al. (2014) also suggest the possibility that changes in lipid balance resulting from PFOS activity in the liver could affect the immune response. However, there does not appear to be specific evidence to support this hypothesis. Finally, although speculative, we note that in discussing the apparent effect of PFOS on serum T4 levels, Chang et al. (2007) present evidence that serum PFOS may interfere with standard immunoassays for T4 by competitively binding with antibodies in the assays. If PFOS is capable of interfering with specific immune reactions to T4 in these *in vitro* assays, it may also be capable of similarly interfering with immune responses *in vivo* such as anti-vaccine immune responses in humans.

MOA for developmental/fetal effects

Gestational exposure to PFOS is associated with several different endpoints, including decreased birth weight, malformations, and most notably, neonatal mortality. The modes of action for these effects are not known. However, it appears that the various types of developmental effects do not necessarily share similar modes of action.

Research in WT and PPAR α -null mice suggests that developmental effects following gestational PFOS exposure are PPAR α independent. Abbott et al. (2009b) compared the developmental effects of maternal PFOS exposure in WT and PPAR α -null mouse pups exposed during GD 15-18. The effects of PFOS included increased pup relative liver weight, decreased pup survival (mostly on PND 1-2), and increased time for opening of both eyes. For each of these effects, the extent and the dose-response were comparable for the WT and PPAR α -null mice. This strongly

argues that these offspring effects following gestational PFOS exposure are PPAR α independent. In contrast, following gestational PFOA exposure, neonatal mortality appears to be PPAR α dependent (Abbott et al., 2007).

Neonatal mortality following gestational PFOS exposure has been noted in several rodent studies (Abbott et al., 2009a; Luebker et al., 2005a, 2005b; Lau et al., 2003; Rosen et al., 2009) and is a striking and salient effect. The underlying toxicity resulting in this effect occurs with maternal exposure during late gestation (after GD 19) (Grasty et al., 2003, 2005). Due to the observation of labored breathing associated with this mortality and the late developmental nature of the toxicity, immature lung development, possibly related to PFOS interference with lung surfactant was suggested as a possible mode of action (Grasty et al., 2005). Lung development in rats is characterized by thinning of septal walls of the distal airway epithelium following GD 21 consistent with the maturation of this tissue into alveolar epithelial cells.

Grasty et al. (2005) dosed pregnant Sprague-Dawley rats by oral gavage on GD 19-20 at 25 or 50 mg/kg/day. On PND 0, approximately 50% of newborn rat pups exposed gestationally to 50 mg/kg/day and a smaller proportion exposed to 25 mg/kg/day PFOS had distal lung tissue morphology with the appearance of (relatively undifferentiated) GD 21 control fetuses. Although the severity of undifferentiated morphology in distal airway epithelium was the same in affected pups at both PFOS doses, mortality was greater at the higher dose. Additionally, the use of rescue agents (i.e., dexamethasone and retinyl palmitate) that accelerate lung maturation and lung surfactant production did not increase neonatal survival following gestational PFOS exposure. Grasty et al. (2005) therefore suggest that the delay in morphological development was not the primary cause of the mortality. Further, PFOS did not affect the phospholipid concentration, and had only a minor effect on the phospholipid profile, in whole lungs of newborns or in amniotic fluid at GD 21. No overall pattern was observed in lung RNA microarray analysis from newborn lungs. In particular, there was no indication of changes in cell signaling pathway gene expression or expression of lung maturation markers. As a result, Grasty et al. (2005) ultimately hypothesized that PFOS could have interfered with the release of surfactant onto alveolar surfaces.

Rosen et al. (2009) hypothesize that PFOS may exert a physical interaction (i.e, PPAR α independent) with lung surfactant, which may be an underlying cause of the neonatal mortality. Such a physical interaction is plausible, as PFOS has been detected in the lungs of perinatal offspring following gestational exposure (Borg et al., 2010). Oxidative stress and apoptosis have also been implicated in offspring lung injury that may be responsible for neonatal mortality (Chen et al., 2012a). Additionally, defects in cardiopulmonary function, such as the intracranial blood vessel dilation or enlarged right atria observed following gestational PFOS exposure, have been postulated as possible contributors to neonatal mortality (Lau et al., 2003; Yahia et al., 2008). Even with these hypotheses and observations, there is no clear mode of action responsible for PFOS-mediated newborn mortality.

MOA for carcinogenicity

Genotoxicity and mutagencity

As reviewed by USEPA (2016b), PFOS does not appear to be genotoxic or mutagenic. This

conclusion is based on the results from numerous *in vitro* and *in vivo* genotoxicity assays. PFOS did not cause gene mutations in *Salmonella* strains, *Saccharomyces cerevisiae*, or *Escherichia coli*, either in the presence or absence of metabolic activation. In eukaryotic cellular systems, PFOS did not cause chromosomal aberrations in human lymphocytes and was negative for unscheduled DNA synthesis in rat hepatocytes. PFOS did not induce micronuclei in the bone marrow of exposed mice.

MOA for rodent hepatic tumors and relevance to human risk

Elcombe et al. (2012b) exposed Sprague Dawley rats to dietary PFOS for 7 days at concentrations of 20 or 100 ppm in feed, followed by up to 84 days of recovery (i.e., exposure to regular feed). They observed significant hepatic cell proliferation at both concentrations on day 1 of recovery, but not after 28 days of recovery. They also observed a significantly decreased percentage of hepatocellular apoptosis at both concentrations that persisted through the recovery period. These observations suggest a mode of action for hepatic tumors with chronic exposure to PFOS in rats that combines sustained cell proliferation with inhibition of apoptosis. However, the available data do not permit a firm conclusion as to the relevant cancer mode(s) of action.

Mode of action data relevant to the role of PPAR α in the hepatic toxicity and tumorogenicity of PFOS is discussed in detail above. As discussed above, PFOS liver carcinogenicity has sometimes been considered in the context of a mode of action dependent on activation of PPAR α based on some hepatic effects in rodents that are similar to those caused by known and potent PPAR α activators such as benzofibrate and WY-14,643. The studies of these two compounds reviewed above indicate that they cause liver tumors in mice through a PPAR α MOA. In contrast, data on PFOS reviewed above indicate that hepatic toxicity and tumorigenesis of PFOS does not occur through the same MOA as benzofibrate and WY-14,643 and is not dependent on PPAR α .

Additionally, in rats, many (but not all) PPAR α activators produce Leydig cell and pancreatic acinar cell tumors in addition to hepatic tumors, commonly referred to as the tumor triad (Corton et al., 2014; Klaunig et al., 2003). Although data on tumors caused by PFOS is limited to the study of Butenhoff et al. (2012), that study did not report significantly increased incidence of either Leydig cell or pancreatic acinar cell tumors. This is additionally consistent with a non-PPAR α -mediated hepatic cancer MOA.

Finally, as discussed above, there is good evidence that PFOS activates other nuclear receptors, including, PPAR β/δ , γ , and, CAR and PXR (Ren et al., 2009) and that there is evidence for the involvement of PXR (Qiao et al., 2013) and CAR (Kobayashi et al., 2015) in liver cancer.

It is generally accepted that humans are less susceptible than rodents to liver tumors that occur via activation of the PPAR α receptor, due to lower intrinsic activity and/or lower number of PPAR α receptors in human liver as compared to rodents. This observation has been the basis for the suggestion that rodent liver tumors and other adverse liver effects caused by environmental contaminants through PPAR α activation may not be relevant to humans exposed to PFOS at environmental levels of exposure. However, as discussed above, available data do not support the conclusion that PFOS causes liver effects through a PPAR α -dependent mode of action at the

doses that resulted in tumors in Butenhoff et al. (2012).

There does not appear to be any data to suggest that the PFOS hepatic carcinogenicity observed in rodents is not relevant for consideration of human cancer risk. It should be noted that under the USEPA (2005a) Guidelines for Carcinogen Risk Assessment, identification of a mode of action is not required to characterize a chemical as posing a relevant risk of cancer to humans.

Mode of action (MOA) for rodent thyroid tumors and relevance to human risk. Butenhoff et al. (2012) observed evidence of thyroid follicular cell tumors in male rats at the high dose following recovery from dosing. As discussed in the Cancer Hazard Identification section, the relevance of these tumors to PFOS exposure is not clear due to lack of accompanying histopathological changes and the absence of tumors in the high dose, non-recovery group. Thus, there is limited evidence supporting the scientific reasonableness of thyroid follicular epithelial cell proliferation consistent with thyroid follicular epithelial cell tumors. A possible MOA for the PFOS-mediated thyroid follicular cell tumors observed by Butenhoff et al. (2012) is not known and there is no evidence to support a reasonable assumption of a MOA. The absence of an identifiable MOA for these tumors does not, in itself, decrease their potential human relevance. However, as discussed in the Cancer Hazard Identification section, other factors make the assumption of human relevance of these tumors from Butenhoff et al. (2012) problematic.

POINTS OF DEPARTURE FOR NON-CANCER AND CANCER ENDPOINTS

Identification of most sensitive endpoints

Dose-response analysis focused on health endpoints from animal studies with exposure durations greater than 30 days, as well as on shorter-term reproductive and developmental endpoints from animal studies involving exposures during gestation and/or the immediate post-natal period (i.e., reproductive/developmental studies). Endpoints were selected for dose-response analysis based on their reporting of serum PFOS concentrations associated with exposure. Serum concentrations are preferable to external administered doses (e.g., mg /kg body weight/day) for use in dose-response evaluation for PFOS because they represent the internal dose and account for pharmacokinetic differences between species and strains. Since a given administered dose of PFOS will result in a much higher internal dose (as indicated by serum level) in humans than in experimental animals, interspecies comparison on the basis of serum PFOS concentration reduces uncertainty when extrapolating from health effects in animals to health effects and equivalent daily intake doses in humans.

Numerous adverse endpoints that were reported from animal studies have corresponding serum PFOS concentrations. Endpoints with Lowest Observed Adverse Effect Levels (LOAELs) at the higher end of the range of reported serum PFOS concentrations in the identified animal database are useful for hazard identification, but are not necessarily useful for deriving an RfD intended to provide protection for the most sensitive relevant effects. Therefore, only the most sensitive endpoints in the animal studies (i.e., those associated with LOAELs in the lower end of the range of serum PFOS concentrations) reported in the identified literature were considered for dose-response modeling, and potentially for RfD derivation. These most sensitive endpoints were identified by stratifying the endpoints from animal studies into quartiles based on serum PFOS

concentrations corresponding to the LOAEL. Figure 8 below outlines the approach taken for identifying the most sensitive endpoints.

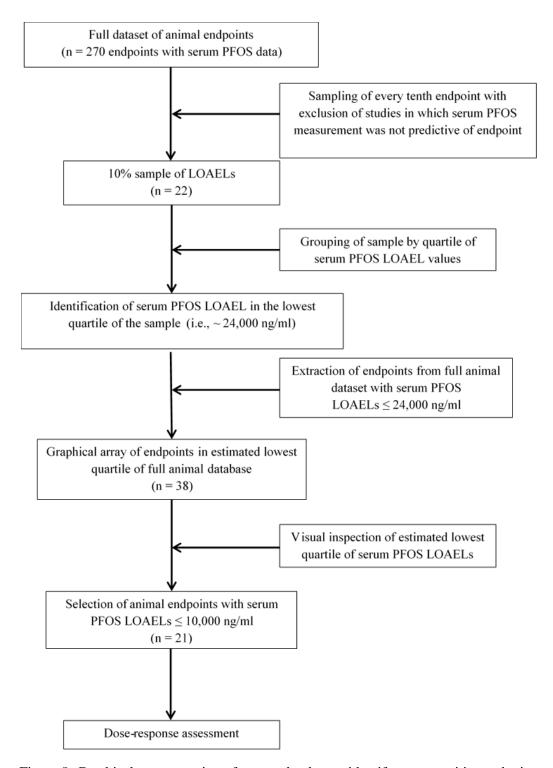


Figure 8. Graphical representation of approach taken to identify most sensitive endpoints

As the first step in generating these quartiles, the hazard identification data for all animal endpoints included in evidence tables were compiled using the Study Summary Tables (see Hazard Identification section). Studies in which serum PFOS would have substantially

decreased prior to serum PFOS measurement at the time of the endpoint ascertainment (e.g. substantial time interval between end of dosing and measurement of serum PFOS and endpoint ascertaintment) were excluded. This yielded approximately 270 endpoints with LOAELS and corresponding serum PFOS measurements from the 34 animal studies meeting the criteria for inclusion in evidence tables (see *Reviewing animal toxicology studies* in the Hazard Identification section). To estimate the numerical ranges for the quartiles in the full animal dataset, a 10% sample of the full dataset was generated by extracting every tenth LOAEL from the endpoints listed in the full dataset. If an endpoint yielded two LOAELs (i.e., male and female), each LOAEL was counted separately. This list, based on selection of every 10th LOAEL, included 22 endpoints from animal studies. The LOAELs based on serum PFOS concentration in this sample ranged from 4,460 to 223,000 ng/mL with a median concentration of approximately 45,000 ng/mL. In the lowest quartile, the maximum LOAEL serum PFOS concentration was approximately 24,000 ng/mL.

Based on this estimate generated from the sample, the lowest quartile of LOAELs in the full animal dataset of all endpoints with LOAELs \leq 24,000 ng/ml were extracted and graphically arrayed by endpoint (Figures 9 to 13). Visual inspection across arrays revealed a general clustering of animal endpoints occurring with a LOAEL where the serum PFOS concentration was \leq 10,000 ng/mL. Endpoints occurring at or below this serum PFOS concentration were thus considered to be within the group of most sensitive animal endpoints. Not all of these endpoints were considered for dose-response modeling due to study-specific concerns and/or lack of biological significance.

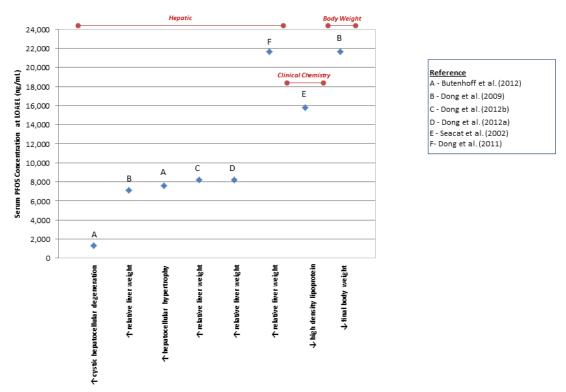


Figure 9. Graphical array of body weight, clinical chemistry, and hepatic effects in adult animals within the first quartile of serum PFOS concentrations.

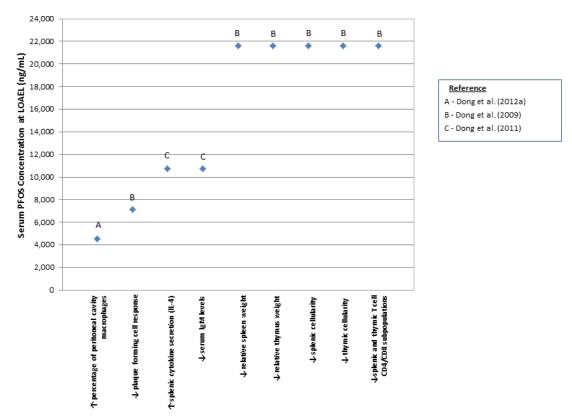


Figure 10. Graphical array of immune effects in adult animals within the first quartile of serum PFOS concentrations.

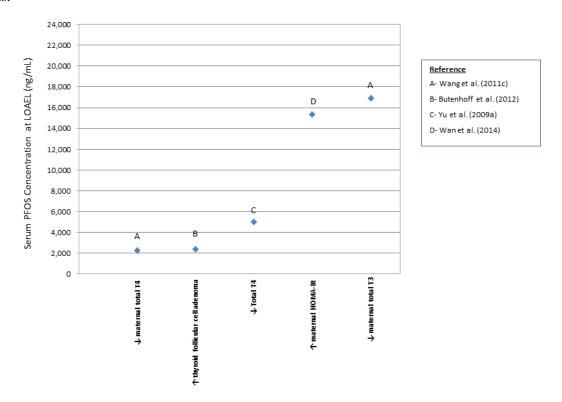


Figure 11. Graphical array of endocrine/metabolic effects in adult animals within the first quartile of serum PFOS concentrations.

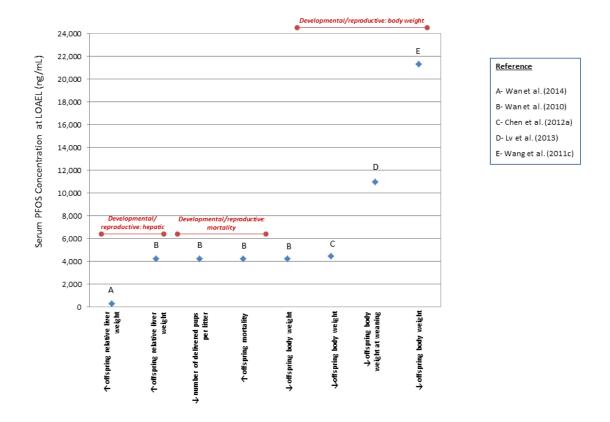


Figure 12. Graphical array of body weight, hepatic, and mortality effects in offspring animals within the first quartile of serum PFOS concentrations.

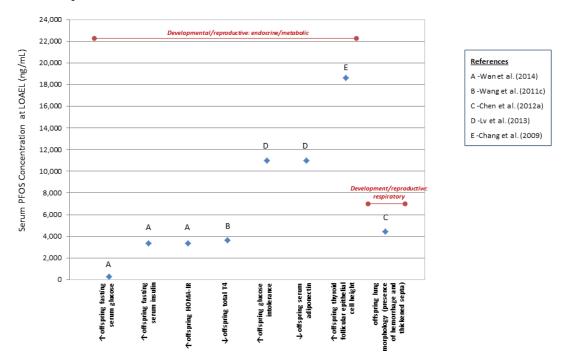


Figure 13. Graphical array of endocrine/metabolic and respiratory effects in offspring animals within the first quartile of serum PFOS concentrations.

Table 28 lists those endpoints for which the serum PFOS concentration at the LOAEL was 10,000 ng/mL or lower, sorted from lowest to highest serum PFOS concentration. Although a total of 21 endpoints with a LOAEL $\leq 10,000 \text{ ng/mL}$ were identified, as depicted in Figures 7 to 11 above, only 20 endpoints are listed in Table 28 as the increased relative liver weight data presented in Dong et al. (2012a) and Dong et al. (2012b) were similar. Because Dong et al. (2012a) included data on additional dose groups, data from this study were considered for dose-response analysis.

Table 28. List of endpoints with serum PFOS concentration of \leq 10,000 ng/mL at the LOAEL.

Endpoint	Serum PFOS concentration at the LOAEL (ng/mL)	Reference
↑ offspring fasting serum glucose, mouse offspring	300	Wan et al. 2014
↑ cystic hepatocellular degeneration, adult rats	1,310	Butenhoff et al. 2012
↓ maternal total thyroxine, adult rats	2,290	Wang et al. 2011c
↑ thyroid follicular cell adenoma, adult rats	2,420	Butenhoff et al. 2012
↑ offspring fasting serum insulin, mouse offspring	3,360	Wan et al. 2014
↑ offspring HOMA-IR, mouse offspring	3,360	Wan et al. 2014
↑ offspring relative liver weight, mouse offspring	3,360	Wan et al. 2014
↓ offspring total thyroxine, rat offspring	3,650	Wang et al. 2011c
↓ number of delivered pups per litter, rat offspring	4,260	Wan et al. 2010
↑ offspring mortality, rat offspring	4,260	Wan et al. 2010
↓ offspring body weight, rat offspring	4,260	Wan et al. 2010
↑ offspring relative liver weight, rat offspring	4,260	Wan et al. 2010
↓offspring body weight, rat offspring	4,460	Chen et al. 2012a
altered offspring lung morphology, rat offspring	4,460	Chen et al. 2012a
† percentage of peritoneal cavity macrophages, adult mice	4,350	Dong et al. 2012a
↓ total thyroxine, adult rats	5,000	Yu et al. 2009a
† relative liver weight, adult mice	7,130	Dong et al. 2009
↓ plaque forming cell response, adult mice	7,130	Dong et al. 2009
↑ hepatocellular hypertrophy, adult rats	7,600	Butenhoff et al. 2012
† relative liver weight, adult mice	8,210	Dong et al. 2012a, Dong et al. 2012b

In adult animals, the most sensitive endpoints (i.e., those with the lowest LOAELs based on serum PFOS concentrations; 9 in total) included: endocrine/metabolic effects (e.g., decreases in thyroid hormone and increased incidence of thyroid follicular cell adenomas), changes in immune parameters (e.g., increased relative number of macrophages and decreased plaque forming cell response), and increased liver weight and liver histopathology.

In perinatal or adult offspring, the most sensitive endpoints (i.e., those with the lowest LOAELs based on serum PFOS concentrations; 11 in total) included: decreased body weight, changes in endocrine/metabolic parameters (i.e., fasting levels of serum glucose and insulin, markers of insulin resistance, and thyroid hormone levels), increased liver weight, changes in lung morphology, and increased mortality. These endpoints resulted from gestational and/or postnatal exposures (e.g., via lactation).

These 20 endpoints were given further examination in terms of timing of endpoint ascertainment, biological significance, and suitability for dose-response analysis (e.g., incomplete quantitative reporting of dose-response data such as descriptions of morphological presentation at each dose). For offspring endpoints observed following gestational exposure, the effective exposures were taken to be represented by the maternal serum PFOS concentration at or near birth.

Selection of endpoints for dose-response analysis

Non-cancer endpoints

The following discussion provides the rationale for exclusion of the non-cancer endpoints and studies for which the LOAEL PFOS serum concentration was $\leq 10,000$ ng/mL (Table 28) that were not considered for dose-response analysis.

Following gestational PFOS dosing (GD3 to birth) and then lactational exposure (via continued materinal dosing to PND21) in mice, Wan et al. (2014) observed at PND 63 increases in the following offspring endpoints: fasting serum glucose, fasting serum insulin, HOMA-IR, and relative liver weight. Of these, the increase in offspring fasting serum glucose was identified as the most sensitive endpoint with a serum PFOS concentration of 300 ng/mL at the LOAEL. For the three other offspring endpoints, the serum PFOS concentration was 3,360 ng/mL at the LOAEL. Both the offspring endpoints and offspring serum PFOS concentrations were determined at PND 63. However, these serum PFOS concentrations at PND63 do not reflect the higher serum PFOS concentrations that were achieved during gestational exposure and are presumed to be responsible for the observed offspring effects at PND 63. Serum PFOS concentrations were also determined at PND21 for the offspring mice and their dams. However as with the PND 63 serum concentration measurement, these determinations at PND 21 may not accurately reflect the serum PFOS concentration leading to the offspring effects occurring at PND 63. Therefore, due to a lack of an appropriate measurement of serum PFOS concentration (e.g., at PND 0), the four endpoints listed for Wan et al. (2014) were excluded from doseresponse analyses.

In Wang et al. (2011c), pregnant rats were exposed to PFOS from GD 3 to PND 14. At PND 1, the authors observed a decrease in maternal total thyroxine levels with a corresponding serum PFOS concentration of 2,290 ng/mL, making this endpoint the most sensitive maternal effect

observed in this study. Decreased total triiodothyronine levels were also observed in the dams but only at higher administered doses. The biological significance of these decreases in maternal thyroxine and triiodothyronine is unclear since no other thyroid endpoints, such as thyroid stimulating hormone or thyroid histopathology and relative weight, were assessed to corroborate these observations. Therefore, the maternal effect on total thyroxine as reported in Wang et al. (2011c) was excluded from dose-response analysis.

Wang et al. (2011c) found a significant decrease in offspring serum total thyroxine on PND7 following gestational and lactational exposure as a function of maternal serum PFOS concentration measured on PND1. Wang et al. (2011c), like the Yu et al. (2009a) study, measured total T4 using an immunoassay. This type of assay is subject to the same uncertainties about method artifact in the measurement of T4 using this immunoassay method discussed in the description of the Yu et al. (2009a) study above. Further, lack of an observed association between PFOS exposure and decreased T4 (total or free) among 16 epidemiologic studies raises concerns as to the human relevance of this endpoint. Additionally, even if this were to be considered a valid endpoint, as discussed in the Toxicokinetics section, differences exist between rats and humans in maternal-fetal transfer of PFOS making identification of the corresponding human serum concentration problematic. For these reasons, the Wang et al. (2011c) study was not considered further for dose-response analysis.

In Wan et al. (2010), pregnant rats were exposed to PFOS from GD 2 to GD 21. Following parturition, a decrease in the number of delivered pups per litter and an increase in pup mortality were observed at PND 3. At PND 21, a decrease in pup body weight and an increase in pup relative liver weight were also observed. Serum PFOS concentrations in this study were only determined for the offspring at PND 21 and were reported to be 4,260 ng/mL at the LOAEL. However, this serum PFOS concentration at PND 21 is unlikely to reflect the higher serum PFOS concentration that was achieved during gestational exposure and responsible for the effects on the number of pups delivered and on pup mortality observed at PND3. Similarly, the offspring body weight and liver weight effects likely resulted from higher serum PFOS concentrations achieved during or immediately following gestational exposure, not at the serum concentration at PND 21. Therefore, due to a lack of an appropriate measurement of serum PFOS concentration (e.g., at PND 0), the four endpoints listed for Wan et al. (2010) were excluded from dose-response analyses.

In Chen et al. (2012a), pregnant rats were exposed to PFOS from GD 1 to GD 21. A decrease in offspring body weight was observed in the high dose group starting on PND 0 through PND 21. Offspring LOAEL serum PFOS concentrations at PND 0 and PND 21 were > 47,000 ng/mL and 4,460 ng/mL, respectively. While a decrease in offspring body weight at PND 0 is a biologically significant effect, the corresponding serum PFOS concentration (> 47,000 ng/mL) at PND 0 was in excess of the 10,000 ng/mL cut off concentration that is applied here for identifying endpoints for dose-response analysis. As stated above, it is assumed that effects observed in offspring exposed during gestation were all or mostly attributable to gestational exposure, even if lactational exposure from the previously exposed dams occurred. Therefore, the PND 21 serum PFOS concentrations measured in Chen et al. (2012a) are not considered to be appropriate

predictors of the dose-response for endpoints observed in this study. Thus, given that the LOAEL serum PFOS concentration based on the PND0 measurements exceeded the 10,000 ng/ml cutoff, the decreased offspring body weight and changes in offspring lung morphology endpoints reported in Chen et al. (2012a), was not further considered for dose-response modeling.

In Dong et al. (2012a) adult male rats were exposed to PFOS for 60 days. After this exposure, the authors observed a statistically significant increase in the percentage of macrophages in the peritoneal cavity (i.e., the relative proportion of macrophages among all other cells isolated). The corresponding serum PFOS concentration at the LOAEL was 4,350 ng/mL. The biological significance of this observation is unclear because there was no change in the absolute number of macrophages. Rather, the increase in the percentage of macrophages was driven by a non-statistically significant decrease in the total number of cells collected from the peritoneal cavity. Therefore, the increase in the percentage of macrophages in the peritoneal cavity was excluded from dose-response analysis.

Butenhoff et al. (2012) identified cystic hepatocellular degeneration as a sensitive endpoint for PFOS in adult rats. However, several factors argue against carrying this endpoint forward to dose-response analysis. Although the dose response was quite steep for the two lowest doses, it plateaued for the two highest doses. Since this endpoint ostensibly results from disruption of hepatocellular architecture, the lack of progression with increasing dose would not seem to be explainable by receptor saturation, and the mode of action is, thus, unclear. Cystic hepatocellular degeneration, also referred to as spongiosis hepatis, in rats is known to be most prevalent in males, spontaneous and age-related (Karbe and Kerlin, 2002; Thoolin et al., 2010), and the lack of continuous dose-response in the chronic Butenhoff et al. (2012) study may indicate that PFOS makes a small contribution to the spontaneous occurrence of this effect. There is a disagreement in the literature as to whether cystic hepatocellular degeneration is pre-neoplastic (Karbe and Kerlin, 2002; Bannasch, 2003; Kerlin and Karbe, 2004), but there is some speculation that it may, instead, be reparative, or simply due to the overproduction of proteoglycans (Karbe and Kerlin, 2002). Finally, Karbe and Kerlin (2002) and Thoolen et al. (2010) state that cystic hepatocellular degeneration is either not seen, or is very rarely seen in humans. While this observation does not preclude that this effect could be induced by a xenobiotic, or that PFOS could produce other liver toxicity through the same mode of action responsible for this effect in rats, the overall weight of evidence indicates that the toxicological significance of cystic hepatocellular degeneration to humans is unclear. Therefore, the cystic hepatocellular degeneration endpoint from Butenhoff et al. (2012) was not further considered for dose-response analysis.

Yu et al. (2009a) identified reduced total T4 in adult rats dosed with PFOS. However, thyroid stimulating hormone (TSH) was not increased in this study. Reduced total T4 might be interpreted as hypothyroidism. However, T4 and TSH are closely linked by a negative feedback loop such that a functional decrease of T4 triggers a compensatory upregulation of TSH in an attempt to increase T4 production (DeVito et al, 1999; Chang et al., 2007). Therefore, the lack of observed TSH increase in response to PFOS exposure raises questions about the significance of the observed decrease in T4. Chang et al. (2007) suggest that the observed decrease in T4 in

response to PFOS exposure is an artifact of immunoassays for T4. They suggest that free PFOS in serum binds to the proteins added to the serum in the immunoassay, reducing their availability to react with T4, and thus giving the appearance of reduced T4 in the serum. They compared total T4 in rat serum measured with two immunoassays and an alternate, non-immunoassay (LC-MS/MS) assay. They found significantly lower total T4 and free T4 (FT4) in rats exposed to 5 mg/kg/day PFOS compared to controls when using the immunoassays, but no significant difference when using the LC-MS/MS assay. Lopez-Espinosa et al. (2012b), however, did not find a difference in total T4 in human serum in a population with general population level PFOS exposures when comparing immuno- and non-immunoassays for T4. They suggested that the difference between their observation and that of Chang et al. (2007) may be due to the lower serum PFOS concentrations in the human population. Thus, the exclusive use of an immunoassay for T4 by Yu et al. (2009a) raises the possibility that observed decrease in total T4 as a function of PFOS exposure could have been an artifact of the assay. Additionally, the absence of an observed association between PFOS exposure and decreased T4 (total or free) across the 16 available epidemiology studies raises questions about the human relevance of the effect observed by Yu et al. (2009a). Given the uncertainties about its toxicological significance, the endpoint of decreased total T4 in adult rats from the Yu et al. study was not considered further for dose-response analysis.

Based on the preceding exclusions, the following endpoints were selected for further consideration in non-cancer dose-response analyses:

- increased relative liver weight, adult mice (Dong et al., 2009)
- decreased plaque forming cell response, adult mice (Dong et al., 2009)
- increased hepatocellular hypertrophy, adult rats (Butenhoff et al., 2012)
- increased relative liver weight, adult mice (Dong et al., 2012a)

Tumor endpoint

As discussed above, increases in hepatic and thyroid follicular tumors were observed in rats in the only chronic study of PFOS (Butenhoff et al., 2012). As discussed above, the origin of the thyroid tumors is unclear, and they do not occur in a clear dose-related manner. In contrast, mode of action information indicates that the hepatic tumors should be considered relevant to humans for the purposes of risk assessment, and their incidence increased with dose. Therefore, dose-response analysis was conducted on the hepatocellular tumors in male and female rats. This is presented in the section on Estimation of Cancer Risk from PFOS in Drinking Water, below.

Dose-response Analysis

As discussed above, four non-cancer endpoints from three studies and one cancer endpoint were identified for consideration for dose-response assessment. The four non-cancer endpoints were selected from the larger group of non-cancer endpoints from animal studies that were observed at PFOS serum levels \leq 10,000 ng/ml. These endpoints and their respective studies are listed in Table 29 below.

Table 29. List of cancer and non-cancer end assessment	points carried forward into dose-response
Butenhoff et al. (2012)	hepatocellular hypertrophy
Male rats	hepatocellular tumors
Dong et al. (2009)	relative liver weight
Male mice	plaque-forming cell response
Dong et al. (2012a)	Let Provide the
Male mice	relative liver weight

Identification of Points of Departure (PODs) for non-cancer endpoints

The first step in dose-response analysis is identification of a Point of Departure (POD), which is the dose within or close to the dose range used in the study from which extrapolation begins. As described below, if a Benchmark Dose can be developed, it is preferred for use as the POD. If BMD modeling does not give an acceptable fit to the data, the NOAEL (or LOAEL, if a NOAEL is not identified) is used as the POD.

The dose-response for each of these five endpoints was investigated using the USEPA benchmark dose software, BMD software (ver. 2.6.0.1) accessed at: https://www.epa.gov/bmds/download-benchmark-dose-software-bmds. The results of the BMD modeling for the non-cancer endpoints are presented in this section. The BMD modeling of the hepatocellular tumor data is presented in the section on Estimation of Cancer Risk from PFOS in Drinking Water later in this document.

Benchmark dose (BMD) modeling is a quantitative approach commonly used to estimate the lower 95% confidence limit (the BMDL) on the dose corresponding to a pre-determined minimal response (the benchmark response, BMR) that is consistent with the observed data. The BMDL is considered to be an estimate of the NOAEL. However, because it is based on the entire dose-response curve for the endpoint of interest rather than just the fixed doses administered in the study, it provides a generalizable estimate of the no-observed adverse effect dose that is not linked to specific administered doses in the original study. Benchmark dose modeling is identified by the USEPA (2012) as the preferred approach for dose-response modeling when the available data are sufficient to support it.

When the necessary data are available and appropriate, BMD modeling can be performed using the serum concentrations of a chemical instead of administered doses. Serum concentrations are preferable to administered doses as the basis for BMD modeling because they better represent the shape of the internal dose-response curve and reflect interspecies pharmacokinetic differences. BMD modeling was performed on serum PFOS data in order to determine whether BMDLs for serum PFOS concentrations could be used as the points of departure (PODs) to develop RfDs. If BMD modeling did not give an acceptable fit to the data, the NOAEL (or LOAEL, if a NOAEL was not identified) based on serum PFOS concentration was used as the POD.

Criteria for BMDL selection

The appropriate BMDL (if any) for each endpoint was determined based on all of the following criteria:

- A scaled residual at each input serum PFOS concentration < | 2 | .
- An acceptable fit based on chi-squared goodness of fit statistics (p > 0.1).
- A relatively small Akaike information criterion (AIC) statistic generally within 1% of
- the lowest AIC value among the available models.
- A biologically appropriate model fit. This criterion applies most specifically to the
- portion of the dose-response near the BMR. Models with non-monotonic fits at the
- highest dose, but biologically reasonable fits at all other doses would not necessarily be
- excluded from consideration. In addition, if models gave an unacceptable fit to the data
- using the full dataset, but an acceptable fit after excluding the highest dose, benchmark
- dose modeling could be attempted after excluding the response at the highest dose from
- the modeling.
- The smallest BMDL meeting all of these criteria, or:
- If several models for a given endpoint all met the preceding criteria, with AIC values
- differing by < 1%, and their BMDL values differing by < 10%, their BMDLs can be
- averaged to give a summary BMDL.

Use of serum PFOS data in dose-response analysis

Male mouse studies

As discussed above, dose-response analysis was based on serum PFOS levels (internal dose) rather than administered dose. For the two male mouse studies (Dong et al., 2009; Dong et al., 2012a) for which dose-response analysis was conducted, animals were dosed for 60 days and serum PFOS levels were measured at sacrifice, one day after dosing ended.

Since the half-life for PFOS in male mice is approximately 40 days (~6 wks) (USEPA, 2016b), it is likely that the PFOS serum concentrations were increasing at the end of the 60 days of dosing. Therefore, the serum concentration at terminal sacrifice may overestimate the dose at the onset of the adverse effect. Thus, the use of the terminal sacrifice serum PFOS concentration in the derivation of the PODs would tend to bias the PODs toward higher values. This is a non-conservative bias in that it, ultimately, has the effect of resulting in higher criteria levels.

Area under the curve (AUC) for serum PFOS data from chronic rat study (Butenhoff et al., 2012) Dose-response analysis was also conducted for two endpoints from the chronic rat study (Butenhoff et al., 2012), hepatocellular hypertrophy and hepatocellular tumors (presented in a later section of this document). Since the serum PFOS concentrations changed greatly over time in Butenhoff et al. (2012, it is appropriate to consider the available serum PFOS data over the course of the entire 105 week study. Therefore, for the endpoints from Butenhoff et al. (2012), the serum PFOS concentrations used in dose-response analysis are based on the area under the curve (AUC) for serum PFOS, as described below.

The maximum serum concentration in males was reached by approximately 14 wks of dosing and declined after that time point in all dose groups. The authors suggest that this decrease was due to chronic progressive nephritis, resulting in increased urinary elimination of PFOS. As shown in Figure 14, use of the serum PFOS concentration at terminal sacrifice (105 wks) would substantially underestimate the serum concentration during a significant portion of the study. To address this, the area under the curve (AUC) was calculated for each dose group. The relative lack of data precluded fitting smooth functions to these data and the AUC was, therefore, calculated using linear interpolation.

For females, the serum concentration remained relatively constant or increased slightly after 14 weeks of dosing, except for the 20 ppm recovery group for which, as anticipated, the serum PFOS concentration decreased following the cessation of dosing at 52 weeks. The AUC was calculated for the females in each dose group including the 20 ppm recovery group.

Table 30 presents the results of the AUC calculations. To obtain the time-weighted average serum concentration for each dose, the AUC was divided by the timepoint at which the final serum PFOS concentration was determined (e.g., 102, 105, or 106 wks).

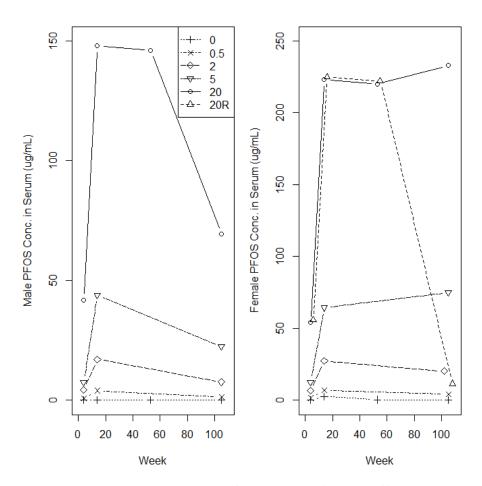


Figure 14. PFOS - Area Under Curve (AUC) (data from Table 7 of Butenhoff et al., 2012) and 3M Environmental Laboratory (2001; week 53 female serum PFOS concentration in the 20 ppm group).

Table 30. Summary of AUC and time-weighted average serum concentration for male and female rats from Butenhoff et al. (2012) and 3M Environmental Laboratory (2001).											
Dietary K ⁺ PFOS Conc. (µg K ⁺ PFOS/g diet)	Male AUC (ng*wk/mL)	Time-weighted average serum conc. (ng/ml)	Female AUC (ng*wk/mL)	Time weighted average serum conc. (ng/ml)							
0	2.6×10^3	24.8	8.57×10^4	816							
0.5	2.682×10^5	2,554.3	5.575 x 10 ⁵	5,309							
2	1.231×10^6	11,723.8	2.2596×10^6	22,153							
5	3.2786×10^6	31,224.8	6.7277×10^6	64,073							
20	1.22798×10^7	116,950.5	2.1802 x 10 ⁷	210,790							
20 recovery (dosing ended at 52 weeks)	16,105.5	1.6106 X 10 ⁷	106	151,939							

Benchmark dose modeling for non-cancer endpoints

For comparison among endpoints, a summary of serum PFOS and endpoint data used for benchmark dose modeling of non-cancer endpoints are listed below in Table 31. Benchmark dose-modeling for the cancer endpoint (hepatocellular tumors from Butenhoff et al., 2012) is presented in the section on Estimation of Cancer Risk from PFOS in Drinking Water below.

benchmark dos	•	, o cauc 101 u.o 10 u. 10		
Study	Endpoint	Administered dose (mg/kg/day, unless noted otherwise)	Serum PFOS concentration (ng/ml)	Endpoint data ^a
Butenhoff et	Increased	0	24.8 ^b	0/65
al. (2012)	hepatocellular	0.024	2,554.3	2/55
	hypertrophy (male	0.098	11,723.8	4/55
	rats)	0.242	31,224.8	22/55
		0.984	116,950.5	42/65
Dong et al.	Increased relative	0	48	5.17 ± 0.12 (10)
(2009)	liver weight	0.0083	674	5.21 ± 0.17 (10)
	(male mice)	0.083	7132	5.78 ± 0.13 (10)
		0.417	21638	$6.67 \pm 0.11 (10)$
		0.833	65426	8.17 ± 0.21 (10)
		2.1	120670	11.47 ± 0.12 (10)
Dong et al.	Decreased plaque-	0	48	$597 \pm 64 (10)^{c}$
(2009)	forming cell	0.0083	674	$538 \pm 52 (10)$
	response (male	0.083	7132	416 ± 43 (10)
	mice)	0.417	21638	$309 \pm 27 (10)$

Table 31. Summary of dose-response data for the four non-cancer endpoints that underwent

Table 31. Summary of dose-response data f	or the four non-cancer endpoints that underwent
benchmark dose modeling.	

Study	Endpoint	Administered dose (mg/kg/day, unless noted otherwise)	Serum PFOS concentration (ng/ml)	Endpoint data ^a
		0.833	65426	$253 \pm 21 \ (10)$
		2.08	120670	$137 \pm 16 (10)$
Dong et al.	Increased relative	0	40	4.87 ± 0.13 (6)
(2012a)	liver weight	0.0083	580	5.13 ± 0.15 (6)
	(male mice)	0.0167	4350	5.09 ± 0.12 (6)
		0.0833	8210	5.39 ± 0.15 (6)
		0.417	24530	6.48 ± 0.14 (6)
		0.833	59740	9.03 ± 0.27 (6)
		2.08	114190	12.11 ± 0.25 (6)

a = data reported as either incidence (number of animal affected/number of animals observed) or mean \pm standard deviation or standard error. For data reported as mean value, number in parenthesis is sample size.

The summary benchmark dose statistics for each of the four non-cancer endpoints are presented below. Detailed model outputs are presented in Appendix 7.

Butenhoff et al. (2012) - Hepatocellular hypertrophy (male rats)

Hepatocellular hypertrophy was treated as a quantal endpoint (i.e., for each animal, the outcome was either positive or negative for the condition). The dose-response was, therefore, modeled as a quantal response. The recommended BMR for quantal dose-response modeling in the BMDS software is a 10% change from the control response. The summary results of the benchmark dose modeling for this study are presented in Table 32 below.

b = serum PFOS concentrations for Butenhoff et al. (2012) based on AUC analysis described in Dose-Response section.

c = plaque forming cell response data presented graphically in Dong et al. (2009). Numerical data for plaque forming cell response obtained via personal communication with G-H Dong, May 2016.

	ary of BMD modelin	_	-	• 1	1 .	male rats
Model	, 2012); BMR = 10% <i>Beta/Power/Slope</i>	Poly-	Chi-	aroi respo	nse BMD	BMDL
(BMR = 0.1)	Deia/Fower/Stope	nomial		AIC	(ng/mL)	(ng/mL)
(DMK = 0.1)		degree	square p- value		(ng/mL)	(ng/mL)
Gamma	Restrict Power ≥	-	0.173	212.51	10203.40	8368.92
	1					
Gamma	No Power	-	0.147	213.86	8291.14	4550.43
	Restriction					
Logistic	-	-	0.000	238.66	31419.00	26497.40
Log Logistic	Restrict Slope ≥	-	0.274	212.48	8699.10	5699.63
Log Logistic	No Slope Restriction	-	0.274	212.48	8699.12	5225.39
Log Probit	No Slope	-	0.246	212.76	8370.95	5213.28
8	Restriction					
Log Probit	Restrict Slope ≥ 1	-	0.014	219.42	16623.90	13644.30
Multistage	Restrict Betas ≥	1st	0.173	212.51	10203.40	8368.92
Multistage	Restrict Betas ≥ 0	2nd	0.173	212.51	10203.40	8368.92
Multistage	Restrict Betas ≥ 0	3rd	0.173	212.51	10203.40	8368.92
Multistage	No Beta Restriction	1st	0.173	212.51	10203.40	8368.92
Multistage	No Beta Restriction	2nd	0.287	212.56	7737.04	5485.69
Multistage	No Beta Restriction	3rd	0.353	212.32	10641.20	6596.30
Multistage - Cancer	-	1st	0.173	212.51	10203.40	8368.92
Multistage - Cancer	-	2nd	0.173	212.51	10203.40	8368.92
Multistage - Cancer	-	3rd	0.173	212.51	10203.40	8368.92
Probit	-	-	0.000	236.38	28960.60	24709.50
Weibull	Restrict Power ≥	-	0.173	212.51	10203.40	8368.92
Weibull	No Power Restriction	-	0.163	213.68	8105.33	4571.23
Quantal- Linear	-	-	0.173	212.51	10203.40	8368.92

Of the 20 different dose-response models or variants of models (i.e., with and without slope, power, or beta restrictions), 17 gave acceptable fits to the data. The lowest BMDLs all clustered closely. These are presented with their AIC values in Table 33 below.

Table 33. Summary of BMDLs and AIC values for hepatocellular hypertrophy in male rats									
(Butenhoff et al., 2012)									
Model	BMDL (ng/ml)	AIC							
Gamma	4550.43	213.86							
No power restriction									
Weibull	4571.23	213.68							
No power restrictions									
Log probit	5213.28	212.76							
No slope restrictions									
Log logistic	5225.39	212.48							
No slope restrictions									

The next highest BMDL value among the other models was 5485.69 ng/ml. The highest and lowest of the BMDL values among these four models differ by 13.8%. The two lowest of these BMDL values differ by less than 0.5%, and their AIC values differ by only 0.08%. It is, therefore most appropriate to average the two lowest of these four BMDLs. **This gave a value of 4,561 ng/ml, and this is identified as the point-of departure (POD) for hepatocellular hypertrophy**.

Dong et al. (2009) – Relative liver weight (male mice)

Relative liver weight change in mice was treated as a continuous endpoint (i.e., the observed mean value for relative liver weight at each dose and the control value was used in the benchmark dose modeling). Althought the default BMR in the BMDS software for continuous data is 1 S.D. from the mean control value, from a biological standpoint, a BMR of 10% is considered to be more appropriate for relative liver weight increase and has been used in previous BMD modeling of this endpoint for other PFCs (Butenhoff et al., 2004; EFSA, 2008; DWQI, 2015a; DWQI, 2017). Therefore, a BMR of 10% is chosen for this endpoint. Furthermore, the LOAEL for increased relative liver weight in this study corresponds to a 12% increase over the relative liver weight in the controls. Thus, a BMR of 10% is statistically appropriate relative to the distribution of the responses for this endpoint. The summary results of the benchmark dose modeling for this study are presented in Table 34 below.

Table 34. Summary of BMD modeling results for relative liver weight in male mice (Dong et al., 2009); BMR = 10% change from the control response									
Model	Variance	Beta/Power/Slope	Distribution	Poly	Chi- square p- value	AIC	BMD (ng/mL)	BMDL (ng/mL)	
Exponential (Model 4)	Constant (Rho=0)	Restrict Power ≥ 1	Normal	ı	< 0.0001	-90.65	10,534.5	10,159.5	
Exponential (Models 2&3)	Not Constant	Restrict Power ≥ 1	Normal	-	< 0.0001	-95.17	15,553.5	15,217.0	
Exponential (Model 4)	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	< 0.0001	-323.09	10,557.7	9,399.3	
Exponential (Model 4)	Not Constant	Restrict Power ≥ 1	Lognormal	1	< 0.0001	-323.09	10,557.7	9,399.3	
Hill	-	-	-	-	-	-	-	-	
inear	Constant (Rho=0)	-	-	1st	< 0.0001	-92.66	10,535.0	10,160.0	
Linear	Not	-	-	1st	< 0.0001	-94.18	10,585.3	10,175.0	
Polynomial	Constant (Rho=0)	-	-	2nd	< 0.0001	-96.06	12,122.8	10,904.9	
Polynomial	Constant (Rho=0)	-	-	3rd	0.84	-165.53	6,086.2	5,584.3	
Polynomial	Not Constant	-	-	2nd	< 0.0001	-95.53	13,461.1	11,093.4	
Polynomial	Not Constant	-	-	3rd	0.84	-163.56	6,085.3	5,586.7	
Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	-90.89	11,158.7	10,176.7	
Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	-94.18	10,585.3	10,175.0	
Power	Constant (Rho=0)	No Power Restriction	-	-	< 0.0001	-90.89	11,158.7	9,085.9	
Power	Not Constant	No Power Restriction	-	-	< 0.0001	-106.45	6,209.8	5,121.9	

Only two closely related models provided an acceptable fit to these data, the polynomial (3rd degree), constant variance and rho = 0 model, and the polynomial (3rd degree) non-constant variance model. Although the 3rd degree polynomial function allowed a response in the high dose range that was somewhat biologically unrealistic (see Appendix 7), the BMD for this function falls in between the control and first dose group. In this range and up to the third dose, the dose-response is entirely plausible. These two models gave nearly identical fits (AIC percent difference = 1.2%) and nearly identical BMDLs (percent difference = 0.04%). **It was, therefore, judged appropriate to average these BMDLs to give a composite BMDL of 5,586 ng/ml. This is identified as the POD for increased relative liver weight from the Dong et al. (2009) study.**

Dong et al. (2012a) – Relative liver weight

Change in relative liver weight resulting from PFOS exposure was treated as a continuous response (i.e., the observed mean values for relative liver weight at each dose and the control value was used in the benchmark dose modeling). As discussed for the closely related Dong et al. (2009) study, a BMR of 10% was used for relative liver weight in this study. The summary results of the benchmark dose modeling for this dataset are presented in Table 35 below.

Table 35. Summary of BMD modeling results for relative liver weight in male mice (Dong et al								ong et al.,
2012a); BN	; BMR = 10% change from the control response							
Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi- square p- value	AIC	BMD (ng/mL)	BMDL (ng/mL)
Exponential (Model 5)	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	0.070	-91.8	9,973.7	8,182.2
Exponential (Model 5)	Not Constant	Restrict Power ≥ 1	Normal	-	0.010	-92.4	10,011.4	8,357.7
Exponential (Model 5)	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	0.005	-249.8	9,958.04	8,365.6
Exponential (Model 5)	Not Constant	Restrict Power ≥ 1	Lognormal	-	0.005	-249.8	9,958.0	8,365.6
Hill	Constant (Rho=0)	Restrict n > 1	-	-	0.070	-91.8	10,116.5	8,252.3
Hill	Constant (Rho=0)	No Restriction	-	-	0.070	-91.8	10,116.5	8,252.3
Linear	Constant (Rho=0)	-	-	1st	0.0003	-79.7	7,727.3	7,476.6
Linear	Not Constant	-	-	1st	0.0002	-83.8	7,622.3	7,343.8
Polynomial	Constant (Rho=0)	-	-	2nd	0.003	-85.1	6,801.1	6,305.2
Polynomial	Constant (Rho=0)	-	-	3rd	0.05	-91.2	8,909.6	7,501.2
Polynomial	Not Constant	-	-	2nd	0.0003	-84.9	6,962.7	6,413.1
Polynomial	Not Constant	-	-	3rd	0.007	-91.7	9,012.4	7,673.2
Power	Constant (Rho=0)	Restrict Power ≥ 1	-	ı	0.0003	-79.7	7,727.3	7,476.6
Power	Not Constant	Restrict Power ≥ 1	-	-	0.0002	-83.8	7,622.3	7,343.8
Power	Constant (Rho=0)	No Power Restriction	-	1	0.0005	-80.8	6,520.7	5,487.8
Power	Not Constant	No Power Restriction	-	-	< 0.0001	-82.1	7,182.1	5,968.9

None of the models gave an acceptable fit to these data, as all of the chi-squared p-values were < 0.1. Alternatively, the LOAEL from this study is 8,210 ng/ml, and the NOAEL is 4,350 ng/ml. Therefore, the POD for relative liver weight increase from the Dong et al. (2012a) study is

identified as the NOAEL of 4,350 ng/ml.

Dong et al. (2009) – Plaque-forming cell response (male mice)

Change in plaque forming cell response to antigen challenge in mice was treated as a continuous endpoint (i.e., the observed mean response at each dose and the control value was used in the benchmark dose modeling). The default BMR in the BMDS software for continuous data is 1

S.D. from the mean control value. The summary results of the benchmark dose modeling for this study are presented in Table 36 below. Note that the plaque-forming cell response data were reported graphically in Dong et al. (2009, Figure 7 therein). The study authors provided the actual numerical data (mean \pm standard error of the mean), which for the control group to the highest dose group were: 597 ± 64 , 538 ± 52 , 416 ± 43 , 309 ± 27 , 253 ± 21 , and 137 ± 16 (personal communication with G. Dong, 2016).

(Dong et al	2009):	BMR = 1 S.D. cl	nange from tl	ne cor	itrol respo	nse		
$Model \\ (BMR = 1 \\ S.D.)$	Variance	Beta/Power/Slope/n	Ln- transformation of dose	Poly	Chi- square p- value	AIC	BMD (ng/mL)	BMDL (ng/mL)
Exponential	Constant (Rho=0)	Restrict Power ≥ 1	N	-	-	-	-	-
Exponential	Not Constant	Restrict Power ≥ 1	N	-	-	-	-	-
Exponential	Constant (Rho=0)	Restrict Power ≥ 1	Y	-	-	-	-	-
Exponential	Not Constant	Restrict Power ≥ 1	Y	-	-	-	-	-
Hill	Constant (Rho=0)	Restrict n > 1	-	-	< 0.0001	531.04	1722.11	1251.23
Hill	Constant (Rho=0)	No Restriction	-	-	0.0066	519.29	27.27	3.17
Linear	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.9
Linear	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.50
Polynomial	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.90
Polynomial	Constant (Rho=0)	-	-	2nd	< 0.0001	572.70	9628.70	7761.42
Polynomial	Constant (Rho=0)	-	1	3rd	0.0006	524.01	2440.00	2028.48
Polynomial	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.5
Polynomial	Not Constant	-	-	2nd	< 0.0001	547.78	19843.10	15292.7
Polynomial	Not Constant	-	-	3rd	0.0037	498.09	3650.90	2884.27
Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	594.31	25147.60	21038.9
Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	566.19	39674.70	32215.5
Power	Constant (Rho=0)	No Power Restriction	-	-	0.0196	517.12	4.20	0.11
Power	Not Constant	No Power Restriction	-	-	< 0.0001	507.30	59.08	3.08

None of the available models gave an acceptable fit to these data. Specifically, the chi-squared p-value was < 0.1 for all of the models and each model had at least one dose for which the scaled residual was > |2|. As can be seen in Appendix 7, this appears to be due to a disproportionately large decrease in plaque-forming response at the highest dose. Therefore, additional benchmark dose analysis was carried out excluding the high dose. This gave a reduced dataset with four doses plus the control. The summary results of the benchmark dose modeling for this reduced dataset are presented in Table 37 below.

excluding the highest dose (Dong et al., 2009); BMR = 1 S.D. change from the control response							
Variance	Beta/Power/Slope/n	Distribution	Poly	Chi- square p- value	AIC.		BMDL (ng/mL)
Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	-	-	-	-
Not Constant	Restrict Power ≥ 1	Normal	-	-	-	-	-
Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
Constant (Rho=0)	Restrict n > 1	-	-	0.2008	435.07	1040.97	717.23
Not Constant	Restrict n > 1	-	-	0.3049	421.5	1574.6	NA b
	Variance Constant (Rho=0) Not Constant Constant (Rho=0) Not Constant Constant (Rho=0)	VarianceBeta/Power/Slope/nConstant (Rho=0)Restrict Power ≥ 1 Not ConstantRestrict Power ≥ 1 Constant (Rho=0)Restrict Power ≥ 1 Not ConstantRestrict Power ≥ 1 Constant (Rho=0)Restrict n > 1	Variance Beta/Power/Slope/n Distribution Constant (Rho=0) Restrict Power ≥ 1 Normal Not Constant Restrict Power ≥ 1 Normal Constant (Rho=0) Restrict Power ≥ 1 Lognormal Not Constant Restrict Power ≥ 1 Lognormal Constant (Rho=0) Restrict n > 1 -	Variance Beta/Power/Slope/n Distribution Poly Constant (Rho=0) Restrict Power ≥ 1 Normal - Not Constant Restrict Power ≥ 1 Normal - Constant (Rho=0) Restrict Power ≥ 1 Lognormal - Not Constant Restrict Power ≥ 1 Lognormal - Constant (Rho=0) Restrict n > 1 - -	Variance Beta/Power/Slope/n Distribution Poly square p-value Constant (Rho=0) Restrict Power ≥ 1 Normal - Not Constant Restrict Power ≥ 1 Normal - Constant (Rho=0) Restrict Power ≥ 1 Lognormal - Not Constant Restrict Power ≥ 1 Lognormal - Constant (Rho=0) Restrict n > 1 - 0.2008	Variance Beta/Power/Slope/n Distribution Poly square p-value AIC Constant (Rho=0) Restrict Power ≥ 1 Normal - - - Not Constant Restrict Power ≥ 1 Normal - - - Constant (Rho=0) Restrict Power ≥ 1 Lognormal - - - Not Constant Restrict Power ≥ 1 Lognormal - - - Constant (Rho=0) Restrict n > 1 - 0.2008 435.07	Variance Beta/Power/Slope/n Distribution Poly square p-value AIC (ng/mL) Constant (Rho=0) Restrict Power ≥ 1 Normal - - - Not Constant Restrict Power ≥ 1 Normal - - - Constant (Rho=0) Restrict Power ≥ 1 Lognormal - - - Not Constant Restrict Power ≥ 1 Lognormal - - - Constant (Rho=0) Restrict n > 1 - 0.2008 435.07 1040.97

435.51

423.5

496.28

484.49

447.46

438.38

432.06

423.89

496.28

484.49

437.47

428.52

375.08

1346.94

18119.90

31885.20

3110.14

1534.12

4821.99

2239.22

18119.90

31885.20

0.28

0.24

11.85

NA b

14610.50

23977.00

2550.69

1189.84

3667.36

1630.89

14610.50

23977.00

0.28

0.24

0.1995

0.1273

< 0.0001

< 0.0001

0.0004

0.0336

0.0016

0.0979

< 0.0001

< 0.0001

0.0606

0.0093

1st

1st

2nd

3rd

2nd

3rd

Table 37. Summary of BMD modeling results for plaque forming cell response in male mice,

No Restriction

No Restriction

Restrict Power ≥ 1

Restrict Power ≥ 1

No Power Restriction

No Power Restriction

Hill

Hill

Linear

Linear

Polynomial

Polynomial

Polynomial

Polynomial

Power

Power

Power

Power

Constant (Rho=0)

Not Constant

Constant (Rho=0)

Not Constant

Constant (Rho=0)

Constant (Rho=0)

Not Constant

Not Constant

Constant (Rho=0)

Not Constant

Constant (Rho=0)

Not Constant

							1
Scaled residuals for	one or more doses/	serum concentration	s for each of	the fo	ur exponent	ial mode	ls were>
2 . The fit was inade	equate for benchma	ark does modeling, a	nd the model	failed	to calculate	BMD ar	nd BMDL.
BMDL computation	failed.						

Only four closely related models (the Hill model with and without the power function restricted to > 1, and with and without constant variance) gave acceptable fits to the data based on the criteria of scaled residuals, and chi-square, and AIC statistics. All four of these versions of the Hill model gave similar AIC values (maximum difference = 3%). However, the BMDS software identified that the data did not meet the requirements for the assumption of constant variance across doses using the Hill model even though the models run under that assumption yielded BMDL values. Further, the BMDS software was unable to calculate BMDL values for the models run under the assumption of non-constant variance. It seems likely that the failure to calculate BMDL values resulted from the steepness of the dose-response data in the neighborhood of the BMD. Thus, the dose-response of the Dong et al. (2009) data for plaque forming cell response are not amenable to benchmark dose modeling. However, in the absence of a BMDL a valid NOAEL is an appropriate POD. The NOAEL of 674 ng/ml is identified as the POD for decreased plaque forming cell response from the Dong et al. (2009) study.

DEVELOPMENT OF POTENTIAL HEALTH-BASED MCLs FOR NON-CANCER ENDPOINTS

The overall process used to develop potential Health-based MCLs from PODs for non-cancer endpoints is shown in Figure 15 and is discussed in detail below. In summary, the PODs for PFOS are based on serum PFOS levels rather than administered doses. Uncertainty factors are applied to the serum level PODs to develop Target Human Serum levels that are analogous to Reference Doses (RfDs) but in terms of serum level rather than administered dose. The Target Human Serum Levels are converted to Reference Dose with a clearance factor that relates administered doses to human serum levels. Health-based MCLs are developed from the RfDs by application of exposure factors for body weight and daily drinking water consumption, and a Relative Source Contribution factor to account for non-drinking water exposure sources.

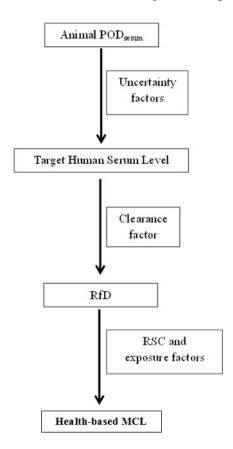


Figure 15. Graphical representation of the approach used to derive the Health-based MCL

Target Human Serum Level and RfD development

Selection of PODs for Target Human Serum Level and RfD development

The PODs (NOAELs or BMDLs) for the four non-cancer endpoints for which dose-response analysis was performed above are shown in Table 38.

Table 38. PODs, NOAELs and LOAELs (based on serum PFOS concentration) for endpoints identified for dose-response assessment									
Study	Endpoint	POD (ng/ml)	NOAEL (ng/ml)	LOAEL (ng/ml)					
Butenhoff et al. (2012)	Hepatocellular hypertrophy (male rats)	4,560.8 (BMDL)	2,554 a	11,724 a					
Dong et al. (2009)	Relative liver weight increase (male mice)	5,585.5 (BMDL)	674	7,132					
Dong et al. (2012a)	Relative liver weight increase (male mice)	4,350 (NOAEL)	4,350	8,210					
Dong et al. (2009)	Decreased plaque- forming immune response (male mice)	674 (NOAEL)	674	7,132					

^a Based on AUC

Of the PODs in Table 39, the POD for increased relative liver weight based on the NOAEL of 4,350 ng/ml from Dong et al. (2012a) study was lower than the the POD of 5,585.5 ng/ml based on the BMDL for the same endpoint from Dong et al. (2009). Therefore, the the POD for increased relative liver weight from Dong et al. (2009) was not further considered for RfD development, and Target Human Serum Levels and RfDs were developed for the three the non-cancer endpoints shown in Table 39.

Table 39. PODs for endpoints selected for criterion development										
Study	Animal POD serum (ng PFOS/ml serum)									
Butenhoff et al. (2012)	Rat (male)	Hepatocellular hypertrophy	4,561 BMDL							
Dong et al. (2012a)	Mice (male)	Increased relative liver weight	4,350 NOAEL							
Dong et al. (2009)	Mice (male)	Decreased plaque forming cell response	674 NOAEL							

Development of Target Human Serum Levels from PODs

Target Human Serum Levels are analogous to RfDs but based on serum concentration rather than administered dose. They are developed by application of uncertainty factors (UFs) to the PODs based on the serum concentration from the animal study (animal POD_{serum}). The UFs address

specific factors for which there is uncertainty about the relationship of the POD to the protection of sensitive human sub-populations over a lifetime of exposure. UFs are generally applied as factors of 1 (no adjustment), 3 or 10, with 3 and 10 representing 0.5 and 1.0 log-unit. Because individual UFs represent log-units, the product of two UFs of 3 is taken to be 10. The following UFs are considered in all cases:

UF_{sub-chronic} – Applied to a sub-chronic animal POD_{serum} to estimate the corresponding NOAEL for a chronic duration study. Herein, a sub-chronic study duration is defined as an exposure of > 30 day to ≤ 90 days.

UF_{LOAEL} – Applied to an animal POD_{serum} based on a LOAEL to estimate the corresponding NOAEL, when no NOAEL is identified in the study under consideration. The UF_{LOAEL} has the value of 1 in the case of an animal POD_{serum} based on a BMDL since the BMDL is considered to be an estimate of the NOAEL.

UF_{animal} – Applied to an animal POD_{serum} to address differences between humans and animals in both toxicokinetics and toxicodynamics. A factor of 3 (i.e. one half on a log scale of the full default UF of 10) is normally applied to each. In the case of PFOS, however, the animal POD_{serum} is based serum PFOS concentration, and the use of this metric is assumed to account for the toxicokinetic differences between rodents and humans. Therefore, the UF_{animal} is assigned a value of 3 (rather than a full value of 10) to account for potential toxicodynamic differences between rodents and humans.

UF_{human} – Applied to the animal POD_{serum} to estimate the potential increased sensitivity of sensitive human sub-populations compared to the average human population. A full value of 10 is typically applied unless the endpoint is based on human data that includes sensitive sub-populations.

UF_{database} Applied to address insufficiencies in the toxicological database such as the absence of useful data on possible reproductive, developmental or neurological endpoints. For PFOS, the database is considered to be relatively complete and a value of 1 is applied.

The UFs were applied to each of the endpoints in Table 39 as follows:

Hepatocellular hypertrophy (male rats; Butenhoff et al., 2012)

```
\mathbf{UF_{sub-chronic}} = 1 – This study was a chronic duration study.
```

 $UF_{LOAEL} = 1$ – The animal POD_{serum} is based on a BMDL.

UF_{animal}= 3 – To account for interspecies toxicodynamic differences as discussed above.

 $UF_{human} = 10$

 $UF_{database} = 1$

 $UF_{TOTAL} = 30$

Increased relative liver weight (male mice; Dong et al., 2012a)

$UF_{sub-chronic} = 3$

This study was a sub-chronic duration study (60 days). There is only one chronic duration study of PFOS, the 104-week rat study of Butenhoff et al. (2012). That study showed progression of adverse effects. Following 98 days of exposure to PFOS, the interim sacrifice of the rats in Butenhoff et al. study (as reported in Seacat et al., 2003), exhibited increased relative liver weights, liver histopathology (i.e., centrilobular hypertrophy and mid-zonal to centrilobular vacuolation), increased alanine aminotransferase, and decrease serum cholesterol. At final sacrifice as reported in Butenhoff et al. (2012), these effects generally continued to be observed, and there was emergence of hepatocyte necrosis and hepatocellular tumors, with prolonged exposure to PFOS (\leq 104 weeks) in this same cohort of rats as examined in the interim sacrifice. There are no chronic duration exposure studies in mice. However, adverse endpoints that were observed in mice with subchronic exposures (e.g., decreases in relative spleen and thymus weight and cellularity; Dong et al., 2009), and increased liver weight (Dong et al., 2012a) have the potential to quantitatively and qualitatively progress to more severe effects with longer duration of exposure, thus, given that the lone chronic study showed progression of liver effects in rats. It is possible that liver and other adverse effects would be observed in mice at lower serum concentrations with chronic exposure. Furthermore, it is possible, but unknown whether adverse effects in mice that may occur with chronic exposure would have PODs that would be lower than the critical effect (see below).

 $\mathbf{UF_{LOAEL}} = 1$ – The animal POD_{serum} is based on a NOAEL.

UF_{animal} = 3 – To account for interspecies toxicodynamic differences as discussed above.

 $UF_{human} = 10$

 $UF_{database} = 1$

 $UF_{TOTAL} = 100$

Decreased plague forming cell response (male mice; Dong et al., 2009)

$UF_{sub-chronic} = 1$

A sub-chronic to chronic uncertainty factor (UF_{sub-chronic}) of 3 or 10 may be applied to a sub-chronic POD to account for effects that may occur at lower doses with longer exposure durations. The mice in Dong et al. (2009) were exposed for 60 days, which is considered a subchronic duration (i.e., > 30 day to \le 90 days). However, a UF of 1 was used because, as discussed in detail below, dose-response for decreased plaque forming cell response based on serum concentration (internal dose) in studies of durations from 7 to 60 days did not show a greater effect with longer exposure duration (see Figure 16, below). In summary, this independence from exposure duration suggests that longer

durations of exposure to lower concentrations of PFOS would not produce more severe decreases in plaque forming cell response.

The selection of a factor of 1 for the UF_{sub-chronic} is supported by a lack of progression of the plaque forming cell response over a wide range of doses and various lengths of duration. As depicted in Figure 16, PFOS caused decreased plaque forming cell response in three studies of adult mice, while no effect was observed in only one study that included only one PFOS dose level (Qazi et al., 201a). The maximum decrease in plaque forming cell response was between approximately 70% and 85% compared to controls, regardless of the length of PFOS exposure, which ranged from 7 days to 60 days. Specifically, the maximum decrease in plaque forming cell response from Peden-Adams et al. (2008) was ~70% following 28 days of exposure with a serum PFOS concentration of 131 ng/ml. For Zheng et al. (2009), the maximum decrease in plaque forming cell response was ~85% following 7 days of exposure with a serum PFOS concentration of 3.4 x 10⁵ ng/ml. The maximum decrease in plaque forming cell response for Dong et al. (2009) was ~80% following 60 days of exposure with a serum PFOS concentration of 1.2 x 10⁵ ng/ml.

Additionally, and importantly, in both Dong et al. (2009) and Zheng et al. (2009), a decrease of approximately 60% occurred at a serum PFOS concentration of approximately 1 x 10^5 ng/ml despite the difference in exposure duration (Dong et al. (2009) = 60 days; Zheng et al. (2009) = 7 days). This further suggests that the decrease in plaque-forming cell response does not progress with longer exposure duration.

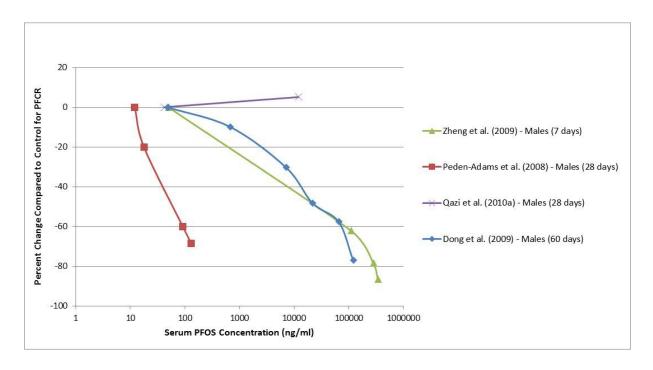


Figure 16. Comparison of plaque forming cell response studies. Percent change from controls was calculated for the studies represented in Table 40 (below), with the exception of the Keil et al (2008) study that did not report serum PFOS concentrations and the female mice from Peden-Adam et al. (2008) as the male response occurred at lower serum PFOS concentrations. Plaque forming cell response values were visually estimated from the original studies as necessary and percent change from controls was calculated as: [(treated value – control value)/control value] x 100.

 $\mathbf{UF_{LOAEL}} = 1$ – The animal POD_{serum} is based on a NOAEL.

UF_{animal}= 3 – To account for interspecies toxicodynamic differences as discussed above.

 $UF_{human} = 10$

 $UF_{database} = 1$

 $UF_{TOTAL} = 30$

Table 40 presents the total UFs applied to each of the selected PODs and the resulting Target Human Serum Level.

Table 40. Calculation of Target Human Serum Levels											
Study	Animal POD _{serum} (ng/ml serum)	UF_{TOTAL}	Target Human Serum Level (ng/ml serum)								
Butenhoff et al. (2012) (Hepatocellular hypertrophy)	4,561	30	152								
Dong et al. (2012a) (Increased relative liver weight)	4,350	100	43.5								
Dong et al. (2009) (Decreased plaque forming cell response)	674	30	22.5								

Calculation of RfDs from Target Human Serum Levels

The RfD (as an intake dose; mg/kg/day) is calculated from the Target Human Serum Level (internal dose; ng/L) using the chemical-specific clearance factor (CL) developed by the USEPA (2016b). As discussed in the Toxicokinetics section (above), the CL relates the Target Human Serum Level to the RfD as follows:

RfD (ng/kg/day) = Target Human Serum Level (in ng/ml) x CL (ml/kg/day)

Table 41 presents the RfD calculated for the Target Human Serum Level for each study carried forward to criterion development.

Table 41. RfDs derived from Target Human Serum Levels									
Study	Target Human Serum Level (ng PFOS/ml serum)	RfD (ng/kg/day)	RfD (mg/kg/day)						
Butenhoff et al. (2012) (Hepatocellular hypertrophy)	152	12.3	1.23 x 10 ⁻⁵						
Dong et al. (2012a) (Increased relative liver weight)	43.5	3.5	3.5 x 10 ⁻⁶						
Dong et al. (2009) (Decreased plaque forming cell response)	22.5	1.8	1.8 x 10 ⁻⁶						

Exposure factors for Health-based MCLs based on non-cancer endpoints

The Health-based MCL is a PFOS drinking water concentration intended to be protective for drinking water consumption over a lifetime. The Health-based MCL was calculated from the RfD for decreased plaque forming cell response using DWQI default values for body weight (70 kg), daily drinking water ingestion (2 L/day), and Relative Source Contribution (RSC) factor (20%; discussed below).

Relative Source Contribution (RSC) Factor

A Relative Source Contribution (RSC) factor that accounts for non-drinking water sources including food, soil, air, water, and consumer products is used by the DWQI, NJDEP, USEPA, and other states in the development of health-based drinking water concentrations based on non-carcinogenic effects. The RSC is intended to prevent total exposure from all sources from exceeding the RfD (USEPA, 2000b). When sufficient chemical-specific information on non-drinking water exposures is not available, a default RSC of 0.2 (20%) is used (i.e. it is assumed that 20% of exposure comes from drinking water and 80% from other sources). When sufficient chemical-specific exposure data are available, a less stringent chemical-specific RSC may be derived, with floor and ceiling RSC values of 20% and 80% (USEPA, 2000).

The Health Effects Subcommittee concluded that there are insufficient data to develop a chemical-specific RSC for PFOS. Elevated levels of PFOS were detected in several PWS located throughout NJ in USEPA UCMR3 and other monitoring studies; PFOS was detected more frequently at 40 ng/L in NJ PWS (3.4%) than nationwide (1.9%) in UCMR3 (discussed in the Drinking Water Occurrence section). Potential sources of this contamination have been identified in some instances, while sources are unknown in other locations. There are no New Jersey-specific biomonitoring data for PFOS, and its more frequent occurrence in NJ PWS as compared to the U.S. as a whole suggests that New Jersey residents may also have higher exposure from non-drinking sources than the U.S. general population (e.g. NHANES). Environmental contamination with PFOS that results in its presence in drinking water can arise from a number of different types of sources (reviewed in Fate and Transport Relevant to Drinking Water Contamination), particularly releases of AFFF at civilian and military fire fighting and training sites. In communities with drinking water contaminated by environmental discharge of PFOS, exposure to PFOS may also result from contamination of other media such as soil and house dust. It is especially noteworthy that PFOS (unlike PFOA) bioaccumulates in fish, and consumption of recreationally caught fish from contaminated waters may be a major source of PFOS exposure.

Additionally, the exposure factors used to develop the Health-based MCL (below) are based on an adult drinking water consumption rate and body weight. The default RSC of 20%, while not explicitly intended for this purpose, also partially accounts for the higher PFOS exposures in young infants who would not be exposed to PFOS through other sources such as food. Although serum levels in infants are lower than their mothers at birth, several studies demonstrate that infant serum levels increase rapidly by several-fold shortly after birth to levels higher than maternal levels (dicussed in detail in Toxicokinetics section). PFOS exposures to infants, both breastfed and consuming formula prepared with contaminated drinking water, are higher than in

than older individuals. Infants consume much more fluid (breast milk or formula) than older individuals on a body weight basis and, PFOS concentrations in breast milk are expected to be similar or higher than in the mother's drinking water source.

These higher infant exposures must be considered because, as discussed above, the most sensitive toxicological effect occurred from short term exposures relevant to elevated short-term exposures in infancy. The dose-response for the most sensitive toxicological effect, decreased plaque forming cells in mice (an indicator of decreased immune response relevant to decreased vaccine response in humans) was similar in studies of short (7 day) and longer (60 day) durations, indicating that the Reference Dose for this effect is relevant to short-term exposures as well as chronic exposures.

For the reasons discussed above, the default RSC of 20% (0.2) is used to develop the Health-based MCL.

Derivation of potential Health-based MCLs for non-cancer endpoints

The equation used to derive the Health-based MCL is:

$$Health-based\ MCL\ (ng/L)=\left(rac{RfD\ (ng/kg/day)\ imes 70\ kg}{2\ L}
ight) imes 0.2$$

Where:

2 L/day = assumed daily drinking water intake

70 kg = assumed adult body weight

0.2 = Relative Source Contribution (20%)

The potential Health-based MCLs based on the RfDs developed above are shown in Table 42. The Health-based MCL of 13 ng/L for decreased plaque forming cell response from Dong et al. (2009) is the most stringent of the three potential Health-based MCLs. Information that further supports use of this study and endpoint as the basis for the Health-based MCL is presented below.

Table 42. Calculation of potential Health-based MCLs									
Study Endpoint									
Butenhoff et al. (2012)	Hepatocellular hypertrophy	12.0	84						
Dong et al. (2012a)	Increased relative liver weight	3.5	25						
Dong et al. (2009)	Decreased plaque forming cell response	1.8	13						

Supporting information for decreased plaque forming cell response from Dong et al. (2013) as basis for Health-based MCL

As discussed above, the most stringent potential Health-based MCL is based on decreased plaque forming cell response in mice (Dong et al., 2009). The Health Effects Subcommittee notes that USEPA IRIS has used decreased plaque-forming cell response as the basis for the RfDs for at least two chemicals, trans-1,2-dichloroethylene and trichloroethylene (USEPA 2010, 2011c). This endpoint has also recently been identified as a sensitive toxicological endpoint that should be considered in risk assessment of PFOS in evaluations by several other scientific groups.

The National Toxicology Program (NTP) recently completed a systematic review of immunotoxicity of PFOS, based on consideration of human and animal studies, along with mechanistic data (NTP, 2016). NTP (2016) concludes that exposure to PFOS is <u>presumed to be an immune hazard to humans</u> based on: 1) a high level of evidence that PFOS suppressed the antibody response from animal studies, and 2) a moderate level of evidence from studies in humans. NTP also considered additional, although weaker, evidence from laboratory animal studies suggesting PFOS may suppress infectious disease resistance and natural killer cell activity in humans. NTP stated that "the bodies of evidence indicating that PFOS suppresses multiple aspects of the immune system add to the overall confidence that PFOS alters immune function in humans."

Additionally, Minnesota Department of Health (MDH, 2017) incorporated an additional uncertainty factor for potentially more sensitive immune system toxicity when developing its updated Reference Dose for PFOS.

Finally, two recent peer reviewed publications have identified immunotoxicity as a sensitive toxicological endpoint for PFOS. Both Lilienthal et al. (2017) and Dong et al. (2017) noted that immune system toxicity is a more sensitive endpoint than the developmental effects used as the basis for the USEPA (2016a) PFOS Reference dose, and Lilienthal et al. (2017) states that decreased immune system response from PFOS and (low-dose developmental effects of PFOA) "likely constitute a sound basis for ongoing and future regulations."

Consideration of human epidemiology data

Both the human epidemiology data and the animal toxicology data were considered as part of the overall weight of evidence for the potential human health effects of PFOS. The decrease of plaque forming cell response in mice is an indicator that PFOS is able to cause immune suppression in laboratory animals. In humans, an analogous indicator of immune suppression is antibody response to vaccination. As summarized below, epidemiologic studies have demonstrated associations between PFOS exposure and decreased levels of antibodies to several vaccines at PFOS exposure levels prevalent in the general population. The epidemiologic data for this effect is notable because of the consistency between results among human epidemiologic studies in different populations, the concordance with toxicological findings in experimental animals, the use of serum concentrations as a measure of internal exposure, the potential clinical importance of this endpoint, and the observation of associations within the exposure range of the general population.

However, the human epidemiology data have limitations and are therefore not used as the

quantitative basis for the Health-based MCL. Instead, the Health-based MCL is based on a sensitive and well-established animal toxicology endpoint, plaque forming cell response, that is considered analogous to decreased vaccine response observed in humans. Importantly, continued exposure to even relatively low levels of PFOS in drinking water is known substantially increase concentrations of PFOS in blood serum. The evidence for increased risk of decreased immune response, from low-level PFOS exposures prevalent in the general population suggests a need for caution about additional exposure to PFOA from drinking water.

Relevant to this point, it is noted that the German Human Biomonitoring Commission recently developed a Human Biomonitoring Level I ((HBM I) the serum level below which adverse health effects are not expected) for PFOS of 5 ng/ml which is close to the current median PFOS serum level in the U.S. general population. This HBM I is based on the serum PFOS levels associated with health effects in human and animal studies (Apel et al., 2016). The human epidemiological data thus support the use of a public health-protective approach in developing a Health-based MCL recommendation based on animal toxicology data.

Summary of epidemiology studies of PFOS and vaccine response

As discussed in the section on human epidemiology studies of vaccine response/antibody titers in the Hazard Identification section above, five studies evaluated associations of serum PFOS concentrations and antibody concentrations following vaccination for measles, mumps, rubella, diphtheria, tetanus and/or influenza (Grandjean et al., 2012, Granum et al., 2013, Stein et al., 2016, Kielsen et al., 2016, and Looker et al., 2014). These studies are summarized in Table 43 below. The total number of epidemiology studies examining antibody response to vaccines is relatively small and each type of vaccine was included only in a few (and often in only one or two) studies. Nonetheless, the study findings are consistent and support a potential for PFOS to reduce vaccine response, particularly for some vaccine types in children. The effects of PFOS on suppression of vaccine response appears to occur at or close to levels of PFOS exposure prevalent in the general population. However, there is not sufficient information to evaluate associations of PFOS and vaccine response in adults. The sole study that did not show a significant association between PFOS exposure and any antibody response (Looker et al., 2014) was conducted in adults and assessed influenza vaccine response only. Consistent with this finding, the only other study that evaluated influenza vaccine response (Granum et al., 2013) also did not find a statistically significant association between influenza vaccine response and PFOS exposure in children, although it did find a significant association of rubella vaccine response and PFOS exposure. It may be the case that PFOS affects antibody response differentially for different vaccine challenges.

It is noted that these studies did not statistically separate the relative contribution of PFOS to reduced antibody response compared to other perfluorinated compounds detected in serum. Therefore, it is possible that the observed association was due to one or more other perfluorinated compounds or due to a common effect of perfluorinated chemicals at the serum concentrations detected in these studies. Alternatively, it is also possible that this effect is primarily due to PFOS.

Table 43. Su	mmarized res	sults of epidemi	ology of	serum PFC	OS conce	ntration a	nd vaccine	
response.								
Study	Age of	PFOS		(Outcome by	Vaccine ty	ype	
	population	concentration	Tetanus	Diphtheria	Rubella	Measles	Influenza ²	Mumps
		(central						
		tendency) ¹						
Grandjean et	5 yrs old	27.0 ng/ml	\downarrow	↓	ND 3	ND	ND	ND
al. (2012)	Pre- and	(maternal)						
	post-booster							
		16.7 ng/ml						
		(5 yrs old)						
	7 years old		-	↓	ND	ND	ND	ND
	Post-booster							
Granum et al.,	3 yrs old	5.6 ng/ml	-	ND	↓	-	-	ND
(2013)		(maternal)						
Stein et al.	12-19 yrs old	20.9 ng/ml	ND	ND	↓	-	ND	\downarrow
(2016)								
Kielsen et al.,	Adults	9.52 ng/ml	- 4	↓	ND	ND	ND	ND
(2016)	(mean 37.9							
	yrs old)							
Looker et al.	Adults	9.12 ng/ml	ND	ND	ND	ND	-	ND
(2014)	(> 18 yrs old)							

- 1. Reported as median, mean, or geometric mean
- 2. For Granum et al. (2013), influenza B (Hib); for Looker et al. (2014), A/H3N2, A/H1N1 and influenza B
- 3. ND Not determined
- 4. No significant response observed

The observation of decreased resistance to childhood diseases in association with low, general population levels of PFOS exposure, and the consistency of this effect with a directly analogous outcome from animal studies, decreased plaque forming response, emphasizes the practical public health significance of PFOS-mediated immunosuppression. These findings lend additional support to the identification of decreased plaque forming cell response as the critical endpoint for derivation of a Health-based MCL.

Selection of decreased plaque-forming cell response in mice as critical endpoint

Immunosuppression in the form of a decrease in antibody (e.g., IgM) production in response to an immune challenge (e.g., sheep red blood cells) is a well-accepted indicator of immune function and potential disease risk. Accordingly, many immunotoxicity guidelines and testing requirements include measures of the development of specific antibodies in response to an immune challenge (NTP, 2016). As noted above, the USEPA IRIS program has used decreased plaque forming cell response as the basis for the RfDs for at least two chemicals, trans-1,2-dichloroethylene and trichloroethylene (USEPA 2010, 2011c), and it has also recently been identified as a sensitive toxicological endpoint that should be considered in risk assessment of PFOS in evaluations by several other scientific groups (NTP, 2016; Dong et al., 2017; Lilienthal et al., 2017; MDH, 2017).

The reduction in IgM response, as measured by the plaque forming cell response assay, resulting from PFOS exposure was investigated in five separate studies in mice (Dong et al., 2009; Peden-Adams et al., 2008; Zheng et al., 2009; Keil et al, 2008; and Qazi et al., 2010a; Table 44). A statistically significant decrease was observed in four of these studies. As discussed below, the

failure to observe a significant PFOS-mediated reduction in the Qazi et al. (2010a) study may be explainable on the basis of methodological differences between that study and the other four studies. In each of the four studies showing a PFOS-mediated reduction in plaque forming cell response, a monotonic serum PFOS concentration-response relationship was observed.

As summarized above, the reduction in plaque forming cell response is supported by several epidemiological studies of the association of decreased vaccine response with PFOS exposures in the general population. The association of PFOS exposure with reduced response to vaccination is directly analogous to the reduction in plaque forming cell response in mice following inoculation with a foreign protein (i.e., sheep red blood cell). Thus, the animal data and epidemiology data are mutually supportive of an effect of PFOS on immune suppression. This endpoint has a direct relationship to public health as it is predictive of reduced resistance to infection and reduced ability to respond to vaccination.

Selection of Dong et al. (2009) as critical study

The Dong et al. (2009) study was among the group of studies with the lowest serum PFOS LOAELs of the available studies with exposure duration of > 30 days. The study was a 60-day exposure study that employed standard methodology and produced a clear dose response with a NOAEL and a LOAEL. The animals in the LOAEL dose group were otherwise healthy, with no significant decrease in weight gain, and no significant change in spleen, thymus, or kidney weight. The animals in the LOAEL dose group did, however, have a significant 12% increase in liver weight, which is typical of PFOS exposure. In addition, the animals in the LOAEL dose group did not have a significant elevation in serum corticosterone, a marker of stress that can decrease immune function. A significant increase in serum corticosterone was not seen until the dose of PFOS was ten times the LOAEL dose.

This study determined serum PFOS concentrations and employed an adequate number of exposure levels to demonstrate the relationship between dose and response. Although data for plaque forming cell response were reported graphically (Figure 7), the relevant numerical data were provided by Dong et al. (2009) via personal communication.

Figure 16 shows the dose-response data for the four studies of plaque forming cell response in adult mice, and Table 44 provides the details of all five plaque forming cell response studies including the developmental study. As discussed in detail below, the lower plaque forming cell response in the control group in Dong et al. (2009) compared to the control groups in the other studies suggests that the mice in the Dong et al. (2009) study and/or the plaque forming cell response assay in that study may have had a decreased sensitivity for this effect. Additionally, the data presented in Figure 17 (below) suggest that all of the doses in Dong et al. (2009) may have fallen beyond the most sensitive portion of the dose-response curve for plaque forming cell response. All of these issues could have influenced the resulting Health-based MCL toward a higher value.

Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respect to uncertainties in the interpretation of Dong et al. (2009)

Study	Species/ strain/ sex/ age	PFOS cation used	Duration and route of exposure	Animals per dose group	Method for plaque forming cell response	Serum PFOS in control animals (ng/ml)	Administered PFOS Dose (mg/kg/d)	Serum [PFOS] (ng/ml)	PFCR in control animals (per 10 ⁶ splenocytes)	LOAEL Serum [PFOS] (ng/ml)
Dong et al. (2009)	Mice C57BL/6	K ⁺	60 d	10	Jerne and Nordin (1963)	48	0.008	48 674	597 ^b	7,132
	M Adult (8-10		Gavage		as modified by Cunningham		0.08	7,132		
	wks)				and Szenberg		0.42	21,638 65, 426		
	,				(1968) a		2.1	120,670		
Peden- Adams et al. (2008)	Mice B6C3F1 M and F	K ⁺	28 d Gavage	5/sex	Jerne and Nordin (1963) as modified by	12.1 (M) 16.8 (F)	0.00017	M - 12.1 ° F - 16.8 M - 17.8	M ~ 3,500 ^d F ~ 3,000 ^d	91.5 (M) 666 (F)
ai. (2000)	Adults (7-8 wks)		Gavage		Cunningham and Szenberg		0.0017	F - ND M - 91.5		
	WK5)				(1968)		0.0017	F - 88.1		
							0.0033	M - 131 F - 123		
							0.02	M - ND F - 666		
							0.03	M - ND F - ND		
							0.17	M - NR F - NR		

Table 44. Comparison among studies of plaque-forming cell response with PFOS exposure with respect to uncertainties in the interpretation of Dong et al. (2009)

Study	Species/ strain/ sex/ age	PFOS cation used	Duration and route of exposure	Animals per dose group	Method for plaque forming cell response	Serum PFOS in control animals (ng/ml)	Administered PFOS Dose (mg/kg/d)	Serum [PFOS] (ng/ml)	PFCR in control animals (per 10 ⁶ splenocytes)	LOAEL Serum [PFOS] (ng/ml)
Keil et al.	Mice	K ⁺	GD 1-17	6/sex	Jerne and	ND	0.0	ND	~2,300 ^d	ND
(2008)	B6C3F1		(Gestational	(1 /litter)	Nordin (1963)		0.1	ND	(for M and F)	
	M and F		exposure)				1	ND		
	Challenged						5	ND		
	as adults (8 wks)		Gavage				(LOAEL M; NOAEL F)			
Zheng et	Mice	K^+	7 d	12	Jerne and	≤ 50 e	0	≤ 50 ^e	~3,700 d	110,000
al. (2009)	C57BL/6				Nordin (1963)		5	110,000		
	M Adults (8-10		Gavage		as modified by Cunningham		20	280,000		
	wks)				and Szenberg (1968)		40	340,000		
Qazi et al. (2010a)	Mice B6C3F1 M	TEA	28 d Dietary	5	Jerne and Nordin (1963) as modified by	41	0	41	~7,500 ^d	No LOAEL
	Adults (7-8 wks)		,		Cunningham and Szenberg (1968) ^e		0.25	12,000		

ND – Not determined; NR – Not reported (exceeded calibration); PFCR – plaque forming cell response; TEA – tetraethylammonium a. Although Dong et al. (2009) cite the use of both the original Jerne and Nordin (1963) and Cunningham and Szenberg (1968) modification of the original method, personal communications with G-H Dong (Feb., 2017) has clarified that only the latter method was used.; b. G-H Dong, personal communication May, 2016; c. Authors reported measured serum PFOS concentrations in ng/g and stated that this concentration is approximately equivalent to ng/ml; d. Visually estimated from graphic presentation in respective studies; e. Reported as below detection. Detection limit reported as 0.05 mg/L (50 ng/ml); e. Stated by authors as "Cunningham and Szenberg (1968)", which refers to mofication of Jorne and Nordin (1963).

Compared to Dong et al. (2009) study, Peden-Adams et al. (2008) administered lower doses of PFOS and consequently achieved lower serum PFOS concentrations at all doses than any of the dose groups except the control animals in the Dong et al. (2009). Notwithstanding the lower serum PFOS concentrations, Peden-Adams et al. (2008) reported a significant PFOS serum-response (i.e., decrease) in the plaque-forming cell response assay. Thus, if Peden-Adams et al. (2008) had been chosen as the critical study for the derivation of the Health-based MCL, a more stringent criterion would have resulted.

In four of these studies (Peden-Adams et al., 2008; Dong et al., 2009; Zheng et al., 2009; Qazi et al., 2010a), PFOS was administered to adult animals and serum PFOS levels are reported. Keil et al. (2008) is not directly comparable to the other studies because it reflects effects of developmental exposure to PFOS and because serum PFOS levels are not reported. Zheng et al. (2009) administered substantially higher doses of PFOS than the other studies in adult animals, resulting in a substantially greater serum PFOS LOAEL. Qazi et al. (2010a) reported no effect on plaque forming cell response at a serum PFOS concentrations higher than the LOAELs in Dong et al. (2009) and Peden-Adams et al. (2008). The serum PFOS LOAEL in Dong et al. (2009) was almost two orders of magnitude higher than the serum PFOS LOAEL in Peden-Adams et al. (2008). However, it should also be noted that the statistically significant effect on plaque forming cell response was not found at the lowest dose in Dong et al. (2009), at a PFOS serum concentration almost an order of magnitude higher than the LOAEL serum PFOS concentration in Peden-Adams et al. (2008). In summary, decreased plaque forming cell response was reported by Peden-Adams et al. (2008) at serum PFOS levels far below the LOAELs in the other comparable studies.

In addition, stress, as measured by corticosterone levels in serum, is known to decrease immune function. Dong et al. (2009) measured corticosterone levels. Corticosterone levels were not significantly elevated at the LOAEL dose for plaque forming cell response, and were only found to be significantly elevated at a dose 10 times the LOAEL dose. In contrast, Peden-Adams et al. (2008) did not measure corticosterone. Therefore, it is not known whether the greater sensitivity in plaque forming cell response reduction in the Peden-Adams et al. (2008) study could have been influenced by increased stress of the male mice.

In summary, for the reasons discussed above, although Peden-Adams et al. (2008) reported a more sensitive response for decreased plaque forming cell response, Dong et al. (2009) was judged to be the most appropriate study for use as the basis for risk assessment.

Species and strain

Each of the five studies listed in Table 44 above, was conducted on mice. Two strains of mice were used. Dong et al. (2009) that is the critical study for the Health-based MCL used C57BL/6 mice, as did Zheng et al. (2009). Peden-Adams et al. (2008), Keil et al. (2008), and Qazi et al. (2010a) used the B6C3F1 strain, which is a cross between female C57BL/6 mice and male C3H mice. We are not aware of a known difference in immune competency or sensitivity to immunotoxicants between these strains. We note, however, that both the study showing the lowest serum PFOS concentration LOAEL for plaque forming cell response (Peden-Adams et al., 2008) and the study showing no response (Qazi et al., 2010a) used the B6C3F1 strain. Based

on the information above, the use of the C57BL/6 strain by Dong et al. (2009) appears to be appropriate for the derivation of a Health-based MCL.

Sex

Dong et al. (2009) used only male mice, as did Zheng et al. (2009) and Qazi et al. (2010a). Peden-Adams et al. (2008) used both male and female mice, and Keil et al. (2008) assessed immunocompetency in male and female offspring of exposed dams. In both of these studies, male mice were more sensitive to the immunotoxic effects of PFOS. These limited results suggest that male mice are more sensitive than females for this effect of PFOS.

<u>Issues related to dietary exposure study (Qazi et al., 2010a)</u>

With the exception of Qazi et al. (2010a) in which mice were exposed to PFOS through the diet, the other studies all exposed mice through gavage. Qazi et al. (2010a) was specifically designed to contrast the effects on immunotoxicity of dietary versus gavage exposure to PFOS. Gavage exposure differs from dietary exposure by providing a concentrated dose over a short period of time. With dietary exposure, mice consume their feed in multiple feedings over an extended period of time and the rate of absorption of the toxicant tends to be reduced by the physical and chemical aspects of the feed. In general, this difference can influence the toxicokinetics of exposure such that the target tissues may experience a higher concentration of the toxicant during the period immediately following gavage dosing, even when the AUC of serum concentration versus time for a gavage and a dietary study is identical. Howeveer, the route of exposure is not expected to influence the average serum concentration over time (i.e. the AUC).

There are other differences between the Qazi et al. (2010a) study and the other four plaque forming cell response studies that could potentially explain the difference in response. Qazi et al. (2010a) used the tetraethylammonium salt of PFOS while the other studies used the potassium salt. Also, Qazi et al. (2010a) administered PFOS at a single concentration in feed, resulting in a single average intake dose. The resulting serum PFOS concentration (1.2 x 10⁴ ng/ml) was 1.7 times the LOAEL serum PFOS concentration in Dong et al. (2009) (7.1 x 10³ ng/ml) and almost identical to the serum LOAEL in Zheng et al. (1.1 x 10⁴). Thus, in the absence of other doses to establish a dose-response relationship in the Qazi et al. (2010a) study, it is uncertain to what extent the Qazi et al. (2010a) study might have shown a different dose-response compared to the other adult dosing studies if additional doses had been included.

Serum PFOS in control animals

Dong et al. (2009), Peden-Adams et al. (2008), and Qazi et al. (2010a) found potentially significant levels of PFOS in the control (no intentional PFOS exposure) mice. Similarly, measurable levels of PFOA were detected in the serum of animals in untreated control groups in some studies of PFOA. As discussed in DWQI (2017), these exposures are likely due to a combination of two factors. First, there is likely some level of unavoidable background exposure to PFOS in laboratory animals, just as in the general human population, due to the ubiquitous presence of PFOS at low levels in the environment. Second, in some studies, the controls may have experienced some level of inadvertent exposure to the PFOS used to dose the treated animals.

Zheng et al (2009) reported the PFOS concentration in the control mice as below the detection limit (i.e., ≤ 50 ng/ml). However, as the PFOS detection limit in Zheng et al. (2009) is in the range of the serum PFOS concentrations detected in control animals in the other studies that did report PFOS concentrations in control serum, it is not clear to what extent the PFOS exposure in control animals in Zheng et al. (2009) may have differed from these other studies. As shown in Table 44, the reported concentrations of PFOS in control animals in the Peden-Adams et al. (2008) study (12.1 ng/ml) was about 25% that in Dong et al. (2009) (48 ng/ml) or Qazi et al. (2010a) (40.9 ng/ml). This is potentially significant because the Peden-Adams et al. (2008) study had a serum PFOS LOAEL for plaque forming cell response that was only about 1% of the Dong et al. (2009) serum PFOS LOAEL. Figure 17 shows the serum PFOS-plaque forming cell response data from Peden-Adams et al. (2008) (Note that the serum PFOS concentrations in this figure were visually estimated from the graphic data presented by the authors). Also shown in this figure is the PFOS serum concentration in the control (male) mice from Dong et al. (2009) (48 ng/ml).

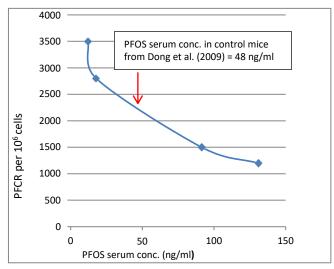


Figure 17. Serum PFOS- plaque forming cell response response (PFCR) (male mice; diamonds) from Peden-Adams et al. (2008) and serum PFOS concentration in control animals (arrow) from Dong et al. (2009). Plaque forming cell response data were visually estimated from the graphic presentation in Peden-Adams et al. (2008). (Note: Serum PFOS concentration at the NOAEL and LOAEL in male mice from Peden-Adams et al. (2008) was 91.5 and 17.8 ng/ml, respectively.)

As suggested in Figure 17, if the mice in Dong et al. (2009) followed the same serum concentration- plaque forming cell response relationship as the male mice in Peden-Adams et al. (2008), then the plaque forming cell response inhibition already occurring in these control mice (in the absence of added PFOS exposure) would fall well within the linear descending portion of the Peden-Adams et al. (2008) PFOS serum concentration- plaque forming cell response curve, but not in the steepest portion of the curve (i.e., serum PFOS concentration in the range of 12.1-17.8 ng/ml). This suggests that the control mice in Dong et al. (2009) may have already experienced decreased plaque forming cell response due to their background PFOS exposure. If this were the case, then the serum LOAEL from Dong et al. (2009) from *intentional* PFOS exposure might have occurred in a portion of the concentration-response curve in which the

response was attenuated (i.e., less steep) compared to the portion of the concentration-response curve described by the Peden-Adams et al. (2008) data. This could have resulted in Dong et al. (2009) overestimating the serum PFOS concentration at which significant decreases in plaque forming cell response first occur. It is, therefore, possible that a lower serum PFOS concentration in the mice in Dong et al. (2009) prior to PFOS exposure would have resulted in a lower Health-based MCL value.

Plaque forming cell response to SRBC inoculation in control animals not dosed with PFOS. In the plaque forming cell response assay, the response of the control animals (i.e., those animals inoculated with SRBC antigen, but not intentionally exposed to PFOS) is the baseline for determining possible suppression of immunological response. The plaque forming cell response in the control animals in Dong et al. (2009) (597/10⁶ splenocytes) is lower than the response in any of the four remaining studies (range 2,300-7,500/10⁶ splenocytes). The reason for this is not clear, but may include factors such as inter-individual differences in SRBC antigenicity among sheep that were the source of the SRBC, different suppliers of mice, different animal husbandry, different diets, and intra-strain genetic drift. Although Peden-Adams et al. (2008), Keil et al. (2008), and Qazi et al (2010a) all used B6C3F1 mice while Dong et al. (2009) used C57BL/6 mice, this is not likely to be the explanation for the decreased plaque forming cell response response in control mice in Dong et al. (2009) since Zheng et al. (2009) also used C57BL/6 mice and achieved a plaque forming cell response in control mice of ~3,700/10⁶ splenocytes.

Although the reason for the lower plaque forming cell response among control animals in Dong et al. (2009) is not clear, it suggests the possibility that the performance in the plaque forming cell response assay in the mice used by Dong et al. (2009) may have been generally attenuated, resulting in overestimating the true serum PFOS LOAEL from that study, and ultimately resulting in a higher RfD and Health-based MCL.

Summary of basis for use of Dong et al. (2009) for derivation of the Health-based MCL A number of factors related to the selection of Dong et al. (2009) as the critical study for Health-based MCL development are discussed above. Those factors with the greatest potential to affect the Health-based MCL are: choice of Dong et al. (2009) as the most appropriate study from the standpoint of sensitivity of response, impact of the background serum PFOS concentration in control animals, and the possible attenuation of the plaque forming cell response assay in Dong et al. (2009) as suggested by the relatively low plaque forming cell response in the control animals. However, each of these factors has the potential to influence the Health-based MCL to a higher (less protective) value than might have been derived otherwise.

Relationship of the Target Human Serum Level and Health-based MCL to exposures associated with decreased vaccine response

The Target Human Serum Level of 23 ng/ml in serum and the Health-based MCL of 13 ng/L in drinking water were derived from the most sensitive and relevant toxicological endpoint identified in the scientific literature. This endpoint is immunotoxicity, specifically decreased plaque-forming cell response. The Target Human Serum Level (23 ng/ml) is analogous to a Reference Dose, but in terms of serum level rather than administered dose. It was develop using a risk assessment approach intended to be protective for chronic (lifetime) exposure, including to

susceptible subpopulations. The potential risk of immunotoxicity with PFOS exposure at the Target Human Serum Level can be evaluated by comparison to serum PFOS concentrations associated with immunotoxicity in the epidemiology literature.

Decreases in vaccine response in humans have been observed in study populations with measures of PFOS serum concentration central tendency ranging from 6 to 27 ng/mL (Grandjean et al., 2012; Granum et al., 2013; Kielsen et al., 2016; Stein et al., 2016). For comparison to general population serum PFOS concentrations, the median and the 95th percentile serum PFOS concentrations as reported in the NHANES database for 2013-2014 are 5.2 and 19 ng/mL, respectively (CDC, 2017). Therefore, serum PFOS levels in the general U.S. population are currently near or within the range of central tendency serum PFOS levels in the studies which found associations with decreased immune response.

The Health-based MCL was developed using a risk assessment approach intended to be protective for lifetime exposure. It is derived as a PFOS drinking water concentration that will result in an increase in PFOS serum level that is equal to 20% of the Target Human Serum Level (23 ng/ml), or 4.7 ng/L.

As discussed above (Sources of Human Exposure), drinking water is not a substantial contributor to the PFOS exposures prevalent in the general population. Food, consumer products and possibly house dust are major sources of human exposure because most sources of drinking water are not contaminated by PFOS. Therefore, ingestion of drinking water contaminated with PFOS adds to the body burden from other exposure sources.

Assuming the conservative (i.e. health protective) DWQI default drinking water consumption rate of 0.029 L/kg/day (an upper percentile estimate based on 2 L/day/70 kg body-weight), the increase in serum PFOS concentration would be 4.7 ng/ml (i.e., 20% of the Target Human Serum Level). This additional contribution would, therefore, on average, increase the median serum PFOS concentration from 5.2 to 9.9 ng/ml and the 95th percentile serum PFOS concentration from 19 to 23.7 ng/ml. This contribution from drinking water exposure at the Health-based MCL represents a 1.9-fold increase above the median level of PFOS exposure in the U.S. and a 1.2-fold increase above the 95th percentile of PFOS exposure in the U.S. population. As summarized above, health effects have been observed in epidemiologic studies with PFOS serum concentrations comparable to the general population. With expected increases from drinking water exposure to serum PFOS level substantially higher than those found in the general population, it cannot be definitively concluded that lifetime exposure at the proposed Target Human Serum level is protective for the most sensitive effects, including in sensitive subpopulations. Therefore, there is uncertainty regarding the extent of protectiveness provided by the Health-based MCL.

ESTIMATION OF CANCER RISK FOR PFOS IN DRINKING WATER

The Health Effects Subcommittee concluded that a Health-based MCL for PFOS based on carcinogenicity would be much more uncertain than one based on the non-cancer endpoint, decreased immune response as assessed by plaque forming cell response in mice. As discussed above, decreased plaque forming cell response is a sensitive and well-established animal toxicology endpoint which is an indicator of decreased immune response. This effect was

reported in multiple toxicological studies, and it is considered relevant to humans based on epidemiological and mode of action data. In contrast, carcinogenicity of PFOS has been studied only in a single chronic duration rat study (Butenhoff et al., 2012). For this and other reasons discussed below, the cancer risk assessment for PFOS is highly uncertain as compared to the non-cancer risk assessment. Accordingly, the quantitative estimate of cancer risk for PFOS in drinking water is presented below to provide context and for informational purposes, and is not used as the basis for a potential Health-based MCL.

The dietary rat study conducted by Butenhoff et al. (2012) is the only chronic study of PFOS. As discussed above, the Health Effects Subcommittee concluded that PFOS is most appropriately described as having "Suggestive Evidence of Carcinogenic Potential" based on the USEPA Guidelines for Carcinogen Risk Assessment (USEPA, 2005a). This descriptor is consistent with USEPA (2005a) which states that "Suggestive Evidence" should be used when there is "a small, and possibly not statistically significant, increase in tumor incidence observed in a single animal or human study that does not reach the weight of evidence for the descriptor 'Likely to Be Carcinogenic to Humans'. USEPA Office of Water (2016b) also concluded that the descriptor "Suggestive Evidence of Carcinogenic Potential" is appropriate for PFOS.

An increased incidence of hepatocellular and thyroid tumors was reported by Butenhoff et al. (2012). The hepatocellular tumor data are appropriate for dose-response analysis, while the thyroid tumor data do not follow a dose-response pattern that can be used for estimation of cancer risk. Therefore, hepatocellular tumor data from the chronic rat study (Butenhoff et al., 2012) were selected for dose-response modelling and estimation of the cancer risk from PFOS in drinking water.

The mode of action for the rat hepatoceullular tumors caused by PFOS has not been established, and they are considered relevant to humans for the purposes of risk assessment (See discussion in Mode of Action section.) USEPA Guidelines for Carcinogen Risk Assessment (USEPA, 2005a) state that linear low-dose extrapolation should be used for dose-response modeling if the mode of action has not been established. Therefore, the linear low-dose extrapolation was used for dose-response modeling of these tumors. The linear low dose extrapolation approach is based on the assumption that exposure to any dose of a carcinogen results in some risk of cancer and is presented below:

Benchmark dose modeling for hepatocellular tumors

Butenhoff et al. (2012) presents the summary data for the occurrence of hepatocellular tumors, and Thomford et al. (2002), a contract laboratory report not from the peer-reviewed literature, presents the detailed, individual animal data that are summarized in Butenhoff et al. (2012). The data for both males and females from Thomford et al. (2002) were reviewed to determine the animals at risk for PFOS-mediated tumors (i.e., those animals alive after 52 weeks of exposure) and to confirm the occurrence and nature of the tumor data presented in Butenhoff et al., 2012).

In addition to hepatocellular tumors, Thomford et al. (2002) also reported a liver sarcoma in a male in the high exposure-recovery group, a cholangioma in a female in the 5 ppm PFOS dose group, and a number of neoplasms in the liver identified as having origins in other tissue that

were not considered to be related to PFOS exposure. Based on guidance suggested by McConnell et al. (1986) and generally followed by the USEPA IRIS, these tumors were not included in the dose-response modeling presented below. However, we note that the occurrence of the liver sarcoma and the cholangioma are not necessarily inconsistent with the mode of action that resulted in the hepatocellular tumors.

It should be noted that the hepatocellular tumor incidence-by-exposure group employed here differs somewhat from the incidence presented by Butenhoff et al. (2012). Butenhoff et al., calculated the number of rats at-risk in each exposure group using the "Poly-3" approach. This approach estimates the number of animals at-risk as a modeled function of the animals surviving at any given time point up to the end of the study based on the assumption that tumors appear as a third-degree polynomial with respect to time. In contrast, as noted above, the approach employed here follows the approach used by USEPA IRIS. <u>Males</u>

The occurrence of hepatocellular tumors in the male rats is summarized in Table 45.

Table 45. Summary of hepatocellular tumor data in male rats from Butenhoff et al. (2012)									
Concentration in Feed (ppm)	0 (controls)	0.5	2	5	20	20 Recovery group			
Serum concentration (calculated on the basis of the area under the curve (AUC) (ng/ml) ¹	25	2,554	11,724	31,225	116,950	-			
Number of rats with observed tumors ²	0	3	3	1	7	0			
Number of animals in original exposure group	70	60	60	60	70	40			
Number of animals with mortality ≤ 52 weeks ³	11	12	10	10	12	0			
Animals assumed to be at-risk of developing a tumor ⁴	59	48	50	50	58	40			
Hepatocellular tumor incidence	0	0.063	0.060	0.020	0.121	0			

- 1. AUC was calculated as described in the text at the beginning of the dose-response section.
- 2. For males, all hepatocellular tumors were adenomas.
- 3. Includes scheduled sacrifices and spontaneous deaths (data from Thomford (2002).
- 4. Number of animals in original exposure group minus animals with mortality \leq 52 weeks.

Dose-Response Considerations

For hepatocellular tumors in males (all adenomas), there is one exposure group with a significant elevation in tumor incidence (20 ppm PFOS in feed). Figure 18 is an example of the fitting of a parametric dose-response function to these data using the USEPA BMDS software.

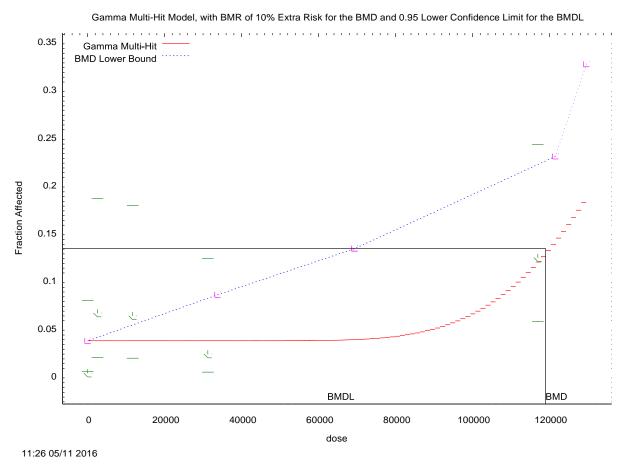


Figure 18. Fit of gamma multi-hit model to data on increased hepatocellular tumors in male rats (Butenhoff et al., 2012); data on x-axis represent serum PFOS concentration in ng/ml as summarized in Table 45 above.

As demonstrated in this figure, there are effectively only two points that determine the fit of these dose response models, the control, and the response of the 20 ppm group (corresponding to 120,000 ng/ml serum PFOS concentration). Therefore, all models have an equal likelihood of modeling the response between these two points and benchmark dose modeling is not informative for deriving a point of departure. The more appropriate approach to estimation of the hepatocellular cancer potency in males is to calculate the linear slope of the line between the response of the 20 ppm exposure group and the origin using the incidence data as given in Table 45 above.

It should be noted that there were no hepatocellular tumors in the male recovery group (in contrast to females, which did have tumors in the recovery group). The recovery group was not included in the BMD modeling of these tumors in males, while it was included in the modeling

of data from females (below). However, inclusion of the recovery group in the dose-response evaluation for males would not have changed the result since the cancer slope factor is based on the slope of the line between the origin and the high dose group.

Cancer Potency Calculation

The cancer potency for hepatocellular tumors in male rats was calculated in terms of serum PFOS concentration rather than the PFOS concentration in the feed (i.e., the administered dose). Therefore, based on the area-under-the-curve (AUC) calculations, the average serum concentration over the 105 weeks of exposure (116,950 ng/ml) is used to define the (internal) exposure of this group. As given in Table 45 above, the hepatocellular tumor incidence for the 20 ppm exposure group is 0.121. Therefore, the cancer potency is the slope of the line from this exposure group to the origin (0 ng/ml serum concentration; 0 tumor incidence). This is calculated as: $0.121/116,950 \text{ ng/ml} = 1 \times 10^{-6} (\text{ng/ml})^{-1}$.

Females

The occurrence of hepatocellular tumors in the female rats is summarized in Table 46.

Table 46. Summ	Table 46. Summary of hepatocellular tumor data in female rats from Butenhoff et al. (2012)										
Concentration in Feed (ppm)	(controls)	0.5	2	5	20 recovery group ²	20					
Serum concentration (calculated on the basis of the area under the curve (AUC)) (ng/ml) 1	816	5,309	22,153	64,073	151,939	207,633					
Number of rats with observed tumors ³	0	1	1	1	2	6 (includes 1 carcinoma)					
Number of animals in original exposure group	70	60	60	60	40	70					
Number of animals with mortality ≤ 52 weeks ⁴	10	13	12	11	1	11					
Animals assumed to be at-risk of developing a tumor ⁵	60	47	48	49	39	59					
Hepatocellular tumor incidence	0	0.021	0.021	0.020	0.051	0.102					

- 1. AUC was calculated as described in the text at the beginning of the dose-response section.
- 2. The 20 ppm recovery group was exposed to 20 ppm dietary PFOS for 53 weeks and then removed from exposure (i.e., was fed a control diet).
- 3. Except as indicated, all hepatocellular tumors were adenomas.
- 4. Includes scheduled sacrifices and spontaneous deaths (data from Thomford (2002).
- 5. Number of animals in original exposure group minus animals with mortality \leq 52 weeks.

Benchmark dose modeling of hepatocellular tumors

Benchmark dose modeling was conducted on the incidence of hepatocellular adenomas plus carcinomas in female rats. For each dose group, the PFOS serum concentrations over the entire exposure period were estimated as the area-under-the-curve (AUC) of serum concentration versus time. It was assumed that internal exposure to PFOS in the recovery group (i.e., termination of 20 ppm dietary exposure at 52 weeks) continued (but decreased) after the termination of dietary exposure. Benchmark dose modeling was carried out using all available dichotomous models and a BMR of 10% in the USEPA BMDS software (version 2.6.0.1). The use of a BMR of 10% is supported by the observation that the tumor incidence in the high dose group was 10%. Therefore, a BMR of 10% is appropriate for modeling these data. Table 47 gives the results of the benchmark dose modeling. Detailed model outputs are presented in Appendix 7.

Table 47. Benchmark Dose modeling of hepatocellular adenomas plus carcinomas in female rats (data										
from Butenhoff et al. (2012) and Thomford et al. (2002)										
Model	Parameter Restrictions	Poly	Chi-square p-value	AIC	BMD (ng/ml)	$BMDL \ (ng/ml)$				
Gamma	No Power Restriction	-	0.7254	91.72	223,921	136,931				
Gamma	Restrict Power ≥ 1	1	0.7254	91.72	223,921	146,863				
Log Logistic ¹	No Slope Restriction	1	0.7252	89.78	293,786	135,695				
Log Logistic	Restrict Slope ≥ 1	ı	0.7278	91.71	222,762	145,871				
Log Probit ¹	No Slope Restriction	-	0.7065	89.89	341,864	134,024				
Log Probit	Restrict Slope ≥ 1	1	0.7297	91.77	224,375	163,078				
Logistic ¹	-	1	0.8680	89.54	217,195	172,669				
Multistage ²	No Beta Restriction	3rd	0.5175	93.16	207,177	144,054				
Multistage ³	Restrict Betas ≥ 0	3rd	0.7266	91.52	219,137	149,798				
Multistage	Restrict Betas ≥ 0	2nd	0.6971	91.64	228,610	148,097				
Multistage ²	No Beta Restriction	2nd	0.6971	91.64	228,610	135,207				
Probit ¹	-	-	0.8582	89.57	220,249	168,550				
Quantal-Linear	-	-	0.7698	89.81	257,440	145,713				
Weibull ⁵	No Power Restriction	-	0.7272	91.70	222,462	137,093				
Weibull ⁵	Restrict Power ≥ 1	-	0.7272	91.70	222,462	147,127				

¹ Background parameter estimate hit a boundary.

² BMDU did not converge, so BMDU calculation failed.

 $^{^{3}}$ The beta2 parameter estimate hit a boundary.

⁴ Power parameter estimate hit a boundary.

⁵ Background, slope, and power parameter estimates hit boundaries

Model Selection

Upon initial inspection, all models appeared to give acceptable fits as judged by the chi-square pvalue and the scaled residuals. USEPA Benchmark Dose technical guidance (USEPA, 2012) calls for selection of an overall BMDL based on consideration of several factors including, the relative magnitude of the available BMDLs and the quality of the available models as assessed by the Akaike information criterion (AIC). As noted in Table 47, for several of the models, estimation of various model parameters hit a boundary and that parameter could not be integrated into the fit of the model to the data. Although the BMDS software still fit these models to the data, the resulting fit did not reflect the full structure of the model. In addition, because the AIC parameter is partially determined by the number of parameters in each model, those models in which parameters were dropped because of boundary problems had artificially reduced AIC values. Thus, those models cannot be compared to the other models on the basis of their AIC values. Excluding all models for which parameter estimates hit a boundary, five models remained. The BMDLs for these models ranged from 136,931 to 163,078 ng/ml, and the AIC values ranged from 91.64 to 91.77. Both BMDLs and AIC values for these models, therefore, fell into a relatively narrow range. The two models with the smallest BMDL values (Gamma- no power restriction, BMDL = 136,931 ng/ml; and Log-logistic – slope restricted to ≥ 1, BMDL = 145,871 ng/ml) had nearly identical AIC values (91.72 and 9.71, respectively), and both had nearly identical scaled residuals at the serum concentration closest to the BMD. Although these BMDLs are close (6% difference), the smallest BMDL is sufficiently distinct to be used independently for calculating the cancer slope factor (CSF). Therefore, the POD for calculation of the CSF is 136,931 ng/ml.

Cancer potency factor (cancer slope factor)

The cancer potency slope (cancer slope factor) based on serum concentration from the hepatocellular tumor incidence in the female rats in the Butenhoff et al. (2012) study is derived as the linear slope of the line between the POD (148,160 ng/ml; 10% response) and the origin (0 ng/ml; 0% response) as 0.1/148,088 ng/ml = 7.3×10^{-7} (ng/ml)⁻¹. Based on the clearance factor that relates human serum PFOS serum levels (ng/ml) to intake dose (ng/kg/day) of 8.1×10^{-5} L/kg/day (8.1×10^{-2} ml/kg/day), the human cancer potency factor based on intake dose is 9.0×10^{-6} (ng/kg/day)⁻¹.

As discussed above, the cancer potency estimated from the hepatocellular tumor incidence in the male rats in the Butenhoff et al. (2012) is $1 \times 10^{-6} (\text{ng/ml})^{-1}$.

The two cancer potency estimates are close, and the potency estimate based on male rat data is slightly higher than the estimate from the female rat data. However, the estimate from the female rats is based on a more robust and more informative data set, since liver tumors occurred only in the high dose group in males but occurred in all dosed groups in females. Therefore, data from female rats is more appropriate for estimating the cancer risk of PFOS in drinking water.

Estimated cancer risk at Health-based MCL

As above, the cancer potency factor (slope factor) for liver tumors in female rats, 9.0 x 10⁻⁶ (ng/kg/day)⁻¹, was used to estimate cancer risk. Uncertainties associated with this cancer slope factor include uncertainties regarding inclusion of the recovery group data in dose-response analysis and uncertainties about the dose metric based on AUC serum levels. The BMD modeling of liver tumors in females included tumor incidence data from the 20 ppm recovery group (dosed with PFOA for one year followed by one year without dosing until sacrifice at 2 years) While inclusion of the recovery group females helps to inform the shape of the dose-response curve, there is uncertainty about including these data in dose-response modeling with other dose groups exposed for the full 2 year study duration, due to differences in the time course of exposure in the recovery group. Additionally, the dose-response modeling was based on AUC of serum PFOS data. Since the AUCs were developed using linear interpolation from data for a relatively small number of time points, and data for some time points were not available for all dose groups, there is considerable uncertainty in the AUC estimates.

Cancer risk (unitless) is calculated from the cancer potency factor and dose as follows:

Risk = Potency Factor
$$(ng/kg/day)^{-1}$$
 x Dose $(ng/kg/day)$

From above, the cancer potency factor for hepatocellular tumors in female rats is $9.0 \times 10^{-6} (ng/kg/day)^{-1}$.

The dose at the recommended Health-based MCL of 13 ng/L can be calculated using default assumptions for body weight (70 kg) and drinking water consumption (2 L/day).

Dose (ng/kg/day) from 13 ng/L =
$$\underline{13 \text{ ng/L} \times 2 \text{ L/day}} = 0.37 \text{ ng/kg/day}$$

70 kg

The lifetime cancer risk is therefore calculated as:

$$9.0 \times 10^{-6} (ng/kg/day)^{-1} \times 0.37 \text{ ng/kg/day} = 3 \times 10^{-6} (3 \text{ in one million})$$

The estimated cancer risk of 3 in one million is slightly above the cancer risk goal for New Jersey MCLs of one in one million. It is the general policy of the DWQI, NJDEP, and USEPA Office of Water to apply an additional uncertainty factor of 10 to an RfD for a non-cancer endpoint to account for potential cancer risk of Suggestive Carcinogens when a cancer potency factor (slope factor) is not available or is considered uninformative. However, since the estimated cancer risk at the Health-based MCL based on a sensitive non-carcinogenic effect is close to the New Jersey cancer risk goal of one in one million, application of this uncertainty factor is not necessary.

RECOMMENDED HEALTH-BASED MCL

The Health-based MCL of 13 ng/L based on decreased plaque forming cell response from Dong et al. (2009) is the lowest of the three potential Health-based MCLs based on non-cancer endpoints. In addition to yielding the lowest Health-based MCL value, this endpoint is an appropriate basis for the Health-based MCL because of the clear toxicological relevance of decreased response to foreign antigens and evidence for the association of decreased vaccine response in humans with general population level exposure to PFOS. The estimated cancer risk at the Health-based MCL of 13 ng/L is close to the New Jersey cancer risk goal of one in one million. Thus, a Health-based MCL of 13 ng/L based on immune system toxicity is considered to be both scientifically appropriate and health protective.

Therefore, the recommended Health-based MCL is 13 ng/L.

DISCUSSION OF UNCERTAINTIES

• PFOS is associated with several human health effects in epidemiology studies of the general population, most notably decreased vaccine response. Although causality cannot be definitively proven for these associations due to the design of the epidemiology studies and limitations in the results, these findings indicate the need for caution about drinking water exposures that will increase serum PFOS to levels substantially higher than in the general population. This is particularly true because elevated serum PFOS levels persist for many years after exposure ends, due to its long human half-life (several years).

Ongoing exposure to the recommended Health-based MCL of 13 ng/L is expected to increase serum PFOS levels, on average, by about 2.6 ng/ml (ppb) with average daily water consumption and 4.7 ng/ml (ppb) with upper percentile daily water consumption in adults. Increases in serum PFOS levels are predicted to be substantially higher in infants than in adults, including both breastfed infants whose mothers ingest PFOS in drinking water or from formula prepared with water contaminated with PFOS.

- Human epidemiology studies of PFOS have been conducted in the general population and in workers with higher occupational exposures, but there are no studies of associations of PFOS with health effects in communities exposed to contaminated drinking water. Associations of the related compound PFOA with multiple health effects, including two types of cancer, have been identified in studies of communities with contaminated drinking water (DWQI, 2017). It is unknown whether such studies of PFOS would reveal associations with additional health effects that have not yet been identified.
- Chronic toxicity and carcinogenicity of PFOS have been studied only in a single rat study.
 There is uncertainty about chronic effects including carcinogenicity in other species.
 Furthermore, the chronic studies did not assess effects including carcinogenicity which might result from exposures during the critical developmental stages which are known to be sensitive periods for PFOS toxicity.

Uncertainties about the human relevance of effects seen in animals are inherent to all risk assessments based on animal data. As reviewed in detail in this document, the available

information indicates that the effects of PFOS observed in experimental animals are relevant to humans for the purposes of risk assessment.

- A number of reproductive and development effects were reported from gestational and/or lactational PFOS exposure in animals including increased mortality, decreased body weight, structural abnormalities, and endocrine/metabolism effects such as changes in thyroid hormone levels and glucose metabolism. From epidemiologic studies, there is some suggestion that PFOS may have developmental neurological effects. Therefore, early lifestages may represent a window of susceptibility following PFOS exposure. As reviewed above, decreased offspring total thyroxine levels (Wang et al., 2011c) was the only reproductive/developmental endpoint identified as one of the most sensitive for PFOS. This endpoint was excluded from Health-based MCL derivation due to uncertainties in measuring total thyroxine and uncertain human relevance given the lack of epidemiologic support for an association of PFOS with this effect. However, for comparison, BMD modeling was conducted (Appendix 7) on these data but did not provide a stable fit to any of the available BMD models. As a point of reference, however, if a criterion were to be derived for this effect, the POD as a maternal serum PFOS LOAEL (PND 1) of 2,290 ng/ml would be modified by the application of: a UF_{human} of 10; a UF_{animal} of 3; a UF_{LOAEL} of 3 (due to a lack of a NOAEL); a UF_{sub-chronic} of 1 (because exposure was of short duration during gestation); and a UF_{database} of 1, yielding a total UF of 100. This would correspond to a Healthbased MCL of 13 ng/L, which is identical to the Health-based MCL of 13 ng/L for decreased plaque forming cell response (Dong et al., 2009). Based on the above, the Health-based MCL of 13 ng/L is protective of the reproductive and developmental effects identified in this assessment.
- Available information indicates that the toxicological effects are generally similar for PFOS and some other PFCs, including PFOA (DWQI, 2017). Additionally, the health effects associated with PFOS in epidemiology studies are also associated with PFOA. Therefore, the toxicity of PFOS and other PFCs may be additive. Although PFOS and other PFCs, including PFOA, are known to co-occur in some NJ public water supplies, the potential for additive toxicity of PFOS and other PFCs was not considered in development of the Health-based MCL.

In conclusion, the recommended Health-based MCL for PFOS is 13 ng/L

Citations

3M Environmental Laboratory. 2001. Determination of the Presence and Concentration of Perfluorooctanesulfonate (PFOS) in Liver and Serum Specimens of Crl:CD®(SD) IGS BR RatsExposed to Perfluorooctane Sulfonic Acid Potassium Salt (PFOS T-6295). Analytical Report: FACT TOX-002. LRN-U2121. 3M Environmental Laboratory, St. Paul, MN.

Abbott BD, Wolf CJ, Schmid JE, Das KP, Zehr RD, Helfant L, Nakayama S, Lindstrom AB, Strynar MJ, Lau C. 2007. Perfluorooctanoic acid induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha. Toxicol Sci. 98:571-581.

Abbott BD, Wolf CJ, Das KP, Zehr RD, Schmid JE, Lindstrom AB, et al. 2009a. Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol. 27:258-265.

Abbott BD. 2009b. Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol. 27:246-257.

ADPH. Undated. Alabama Department of Public Health. Perfluoralkyl sulfonate (PFOS) & Fish Consumption Advisory Fact Sheet http://adph.org/epi/assets/PFOS_Flyer.pdf

Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS. 2003. Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med. 60:722-729.

Alexander BH, Olsen GW. 2007. Bladder cancer in perfluorooctanesulfonyl fluoride manufacturing workers. Ann Epidemiol. 17:471-478.

Andersen ME, Clewell HJ, Tan Y, Butenhoff JL, Olsen GW. 2006. Pharmacokinetic modeling of saturable, renal resorption of Perfluoroalkyl acids in monkeys—Probing the determinants of long plasma half-lives. Toxicology. 227:156-164.

Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J. 2010. Prenatal exposures to perfluorinated chemicals and anthropometric measures in infancy. Am J Epidemiol. 172:1230-1237.

Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J. 2013. Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age. Am J Epidemiol. 178:921-927.

Antignac JP, Veyrand B, Kadar H, Marchand P, Oleko A, Le Bizec B, et al. 2013. Occurrence of perfluorinated alkylated substances in breast milk of french women and relation with socio-demographical and clinical parameters: Results of the ELFE pilot study. Chemosphere. 91:802-808.

Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, et al. 2007. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect. 115:1670-1676.

Appleman, T.D., Higgins, C. P., Quinones, O., Vanderford, B.J, Kolstad, C., Zeigler-Holady, J.C., Dickenson, E.R. 2014. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 51: 246-255.

Asakawa A, Toyoshima M, Fujimiya M, Harada K, Ataka K, Inoue K, et al. 2007. Perfluorooctane sulfonate influences feeding behavior and gut motility via the hypothalamus. Int J Mol Med. 19:733-739.

ATSDR. 2013. Agency for Toxics Substances and Disease Registry. Health Consultation. Exposure Investigation Report. Perfluorochemical serum sampling in the vicinity of Decatur, Alabama. Morgan, Lawrence, and Limestone Counties. April 1, 2013. http://www.atsdr.cdc.gov/HAC/pha/Decatur/Perfluorochemical Serum%20Sampling.pdf

ATSDR. 2015. Agency for Toxics Substances and Disease Registry. Toxicological Profile for Perfluoroalkyls. Draft for Public Comment. August 2015.

Audet-Delage Y, Ouellet N, Dallaire R, Dewailly E, Ayotte P. 2013. Persistent organic pollutants and transthyretin-bound thyroxin in plasma of Inuit women of childbearing age. Environ Sci Technol. 47:13086-13092.

Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SM. 2003. Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect. 111:1485-1489.

Bannasch P. 2003. Comments on R. Karbe and R. L. Kerlin (2002). Cystic degeneration/spongiosis hepatis (Toxicol Pathol. 30: 216-227). Toxicol Pathol. 31:566-70.

Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C, Apte U. 2016. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol. 304:18-29.

Benninghoff AD, Bisson WH, Koch DC, Ehresman DJ, Kolluri SK, Williams DE. 2011. Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicol Sci. 120:42-58.

Bijland S, Rensen PC, Pieterman EJ, Maas AC, van der Hoorn JW, van Erk MJ, et al. 2011. Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-Leiden CETP mice. Toxicol Sci. 123:290-303.

Bjork JA, Lau C, Chang SC, Butenhoff JL, Wallace KB. 2008. Perfluorooctane sulfonate-induced changes in fetal rat liver gene expression. Toxicology. 251:8-20.

Bloom MS, Kannan K, Spliethoff HM, Tao L, Aldous KM, Vena JE. 2010. Exploratory assessment of perfluorinated compounds and human thyroid function. Physiol Behav. 99:240-245.

Bogdanska J, Borg D, Sunström M, Bergström U, Halldin K, Abedi-Valugerdi M, Bergman A, Nelson B, DePierre J, Nobel S. 2011. Tissue distribution of 35S-labelled perfluorooctane sulfonate in adult mice after oral exposure to a low environmentally relevant dose or a high experimental dose. Toxicology. 284:54-62.

Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Kruger T, et al. 2011. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: A case control study. Environ Health. 10:88.

Borg D, Bogdanska J, Sundström M, Nobel S, Håkansson H, Bergman A, DePierre JW, Halldin K, Bergström U. 2010. Tissue distribution of 35S-labelled perfluorooctane sulfonate (PFOS) in C57Bl/6 mice following late gestational exposure. Reproductive Toxicology. 30:550-557.

Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjodin A, et al. 2014. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: The Home Study. Environ Health Perspect. 122:513-520.

Buck, R.C., Franklin. J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A., van Leeuwen, S.P. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 7: 513-541.

Butenhoff, J. L., Gaylor, D. W., Moore, J. A., Olsen, G. W., Rodricks, J., Mandel, J. H., Zobel, L. R. 2004. Characterization of risk for general population exposure to perfluorooctanoate. Regul Tox Pharmacol. 39: 363-380.

Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG. 2009. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: Developmental neurotoxicity. Reprod Toxicol. 27:319-330.

Butenhoff JL, Chang SC, Olsen GW, Thomford PJ. 2012. Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats. Toxicology. 293:1-15.

Butt CM, Berger U, Bossi R, Tomy GT. 2010. Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ. 408: 2936-2965.

Case MT, York RG, Christian MS. 2001. Rat and rabbit oral developmental toxicology studies with two perfluorinated compounds. Int J Toxicol. 20:101-109.

Caserta D, Bordi G, Ciardo F, Marci R, La Rocca C, Tait S, et al. 2013. The influence of endocrine disruptors in a selected population of infertile women. Gynecol Endocrinol. 29:444-447.

Caserta D, Ciardo F, Bordi G, Guerranti C, Fanello E, Perra G, et al. 2013. Correlation of endocrine disrupting chemicals serum levels and white blood cells gene expression of nuclear receptors in a population of infertile women. Int J Endocrinol. 2013:510703.

CDC. 2016. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/participant.htm

CDC. 2017. Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, Volume 1. https://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf

Chan E, Burstyn I, Cherry N, Bamforth F, Martin JW. 2011. Perfluorinated acids and hypothyroxinemia in pregnant women. Environ Res. 111:559-564.

Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau C, Singh RJ, Wallace KB, Butenhoff JL. 2007. Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology. 234:21-33.

Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, et al. 2008. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology. 243:330-339.

Chang SC, Ehresman DJ, Bjork JA, Wallace KB, Parker GA, Stump DG, et al. 2009. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol. 27:387-399.

Chang SC, Noker PE, Gorman GS, Gibson SJ, Hart JA, Ehresman DJ, Butenhoff JL. 2012. Comparative pharmacokinetics of perfluorooctanesulfonate (PFOS) in rats, mice, and monkeys. Reprod Toxicol. 33:428-40.

Chang ET, Adami HO, Boffetta P, Wedner HJ, Mandel JS. 2016. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and immunological health conditions in humans. Critical Reviews in Toxicology. 46:1-53.

Chateau-Degat ML, Pereg D, Dallaire R, Ayotte P, Dery S, Dewailly E. 2010. Effects of perfluorooctanesulfonate exposure on plasma lipid levels in the Inuit population of Nunavik (Northern Quebec). Environ Res. 110:710-717.

Chen Y-M, Guo L-H. 2009. Fluorescence study on site-specific binding of perfluoroalkyl acids to human serum albumin. Archives of Toxicology. 83:255-261.

Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, et al. 2012a. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol. 33:538-545.

Chen MH, Ha EH, Wen TW, Su YN, Lien GW, Chen CY, et al. 2012b. Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLoS One. 7:e42474.

Chen MH, Ha EH, Liao HF, Jeng SF, Su YN, Wen TW, et al. 2013. Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiology. 24:800-808.

Christensen KY, Maisonet M, Rubin C, Holmes A, Calafat AM, Kato K, et al. 2011. Exposure to polyfluoroalkyl chemicals during pregnancy is not associated with offspring age at menarche in a contemporary British cohort. Environ Int. 37:129-135.

Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC. 2008. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol. 42: 995-1003.

Corsini E, Avogadro A, Galbiati V, dell'Agli M, Marinovich M, Galli CL, Germolec DR. 2011. In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs). Toxicol Appl Pharmacol. 250:108-16.

Corsini E, Sangiovanni E, Avogadro A, Galbiati V, Viviani B, Marinovich M, Galli CL, Dell'Agli M, Germolec DR. 2012. In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicol Appl Pharmacol. 258:248-55.

Corsini E, Luebke RW, Germolec DR, DeWitt JC. 2014. Perfluorinated compounds: Emerging POPs with potential immunotoxicity. Toxicology Letters. 230:263-270.

Corton JC, Cunningham ML, Hummer BT, Lau C, Meek B, Peters JM, Popp JA, Rhomberg L, Seed J, Klaunig JE. 2014. Mode of action framework analysis for receptor-mediated toxicity: The peroxisome proliferator-activated receptor alpha (PPAR α) as a case study. Crit Rev Toxicol. 44:1-49.

Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB. 2009. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol. 56:338-349.

Cunningham AJ, Szenberg A. 1968. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 14:599-600.

Curran I, Hierlihy SL, Liston V, Pantazopoulos P, Nunnikhoven A, Tittlemier S, et al. 2008. Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ Health A. 71:1526-1541.

Dallaire R, Dewailly E, Pereg D, Dery S, Ayotte P. 2009. Thyroid function and plasma concentrations of polyhalogenated compounds in Inuit adults. Environ Health Perspect. 117:1380-1386.

Dalsager L, Christensen N, Husby S, Kyhl H, Nielsen F, Høst A, Grandjean P, Jensen TK. 2016. Association between prenatal exposure to perfluorinated compounds and symptoms of infections at age 1-4years among 359 children in the Odense Child Cohort. Environ Int.96:58-64.

Darrow LA, Stein CR, Steenland K. 2013. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the mid-Ohio Valley, 2005-2010. Environ Health Perspect. 121:1207-1213.

Darrow LA, Howards PP, Winquist A, Steenland K. 2014. PFOA and PFOS serum levels and miscarriage risk. Epidemiology. 25:505-512.

de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M. 2014a. First year growth in relation to prenatal exposure to endocrine disruptors - a Dutch prospective cohort study. Int J Environ Res Public Health. 11:7001-7021.

de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M. 2014b. Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants - a Dutch prospective cohort study. Environ Health. 13:106.

Dewitt JC, Shnyra A, Badr MZ, Loveless SE, Hoban D, Frame SR, Cunard R, Anderson SE, Meade BJ, Peden-Adams MM, Luebke RW, Luster MI .2009. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit Rev Toxicol. 39: 76-94.

Dewitt JC, Peden-Adams MM, Keller JM, Germolec DR. 2012. Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol. 40: 300-11.

D'Hollander W, de Voogt P, De Coen W, Bervoets L. 2010. Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol. 208:179-215.

Donauer S, Chen A, Xu Y, Calafat AM, Sjodin A, Yolton K. 2015. Prenatal exposure to polybrominated diphenyl ethers and polyfluoroalkyl chemicals and infant neurobehavior. J Pediatr. 166:736-742.

Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC. 2009. Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch Toxicol. 83:805-815.

Dong GH, Liu MM, Wang D, Zheng L, Liang ZF, Jin YH. 2011. Sub-chronic effect of perfluorooctanesulfonate (PFOS) on the balance of type 1 and type 2 cytokine in adult C57BL6 mice. Arch Toxicol. 85:1235-1244.

Dong GH, Zhang YH, Zheng L, Liang ZF, Jin YH, He QC. 2012a. Subchronic effects of perfluorooctanesulfonate exposure on inflammation in adult male C57BL/6 mice. Environ Toxicol. 27:285-296.

Dong GH, Wang J, Zhang YH, Liu MM, Wang D, Zheng L, et al. 2012b. Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS). Toxicol Appl Pharmacol 264:292-299.

Dong GH, Tung KY, Tsai CH, Liu MM, Wang D, Liu W, et al. 2013. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of Taiwanese children. Environ Health Perspect. 121:507-513.

Dong Z, Bahar MM, Jit J, Kennedy B, Priestly B, Ng J, Lamb D, Liu Y, Duan L, Naidu R. 2017. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid. Environ Int. 105:86-94.

DWQI. 1987. New Jersey Drinking Water Quality Institute. Maximum Contaminant Level Recommendations for Hazardous Contaminants in Drinking Water. March 26, 1987.

DWQI. 1994. New Jersey Drinking Water Quality Institute. Maximum Contaminant Level Recommendations for Hazardous Contaminants in Drinking Water. March 26, 1987.

DWQI. 2009. New Jersey Drinking Water Quality Institute. Maximum Contaminant Level Recommendations for Hazardous Contaminants in Drinking Water. March, 2009a.

DWQI. 2015a. New Jersey Drinking Water Quality Institute. Health-Based Maximum Contaminant Level Support Document: Perfluorononanoic Acid (PFNA). New Jersey Drinking Water Quality Institute Health Effects Subcommittee. June 22, 2015.

DWQI. 2015b. New Jersey Drinking Water Quality Institute. Recommendation on Perfluorinated Compound Treatment Options for Drinking Water. New Jersey Drinking Water Quality Institute Treatment Subcommittee. June 2015.

DWQI. 2017. New Jersey Drinking Water Quality Institute. Health-Based Maximum Contaminant Level Support Document: Perfluorooctanoic Acid (PFOA). New Jersey Drinking Water Quality Institute Health Effects Subcommittee. February 15, 2017.

EFSA. 2008. European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the Food Chain on Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA) and their Salts. EFSA Journal, 2008, Journal number 653: 1-131; available at http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2008.653/epdf

Egeghy PP, Lorber M. 2011. An assessment of the exposure of Americans to perfluorooctane sulfonate: a comparison of estimated intake with values inferred from NHANES data. J Expo Sci Environ Epidemiol. 21:150-68.

Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Butenhoff JL. 2012a. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPAR alpha and CAR/PXR. Toxicology 293:16-29.

- Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Noker PE, et al. 2012b. Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four days following seven days of dietary exposure to potassium perfluorooctanesulfonate. Toxicology. 293:30-40.
- Era S, Harada KH, Toyoshima M, Inoue K, Minata M, Saito N, et al. 2009. Cleft palate caused by perfluorooctane sulfonate is caused mainly by extrinsic factors. Toxicology. 256:42-47.
- Eriksen KT, Sorensen M, McLaughlin JK, Lipworth L, Tjonneland A, Overvad K, et al. 2009. Perfluorooctanoate and perfluorooctanesulfonate plasma levels and risk of cancer in the general Danish population. J Natl Cancer Inst. 101:605-609.
- Eriksen KT, Raaschou-Nielsen O, McLaughlin JK, Lipworth L, Tjonneland A, Overvad K, et al. 2013. Association between plasma pfoa and pfos levels and total cholesterol in a middle-aged Danish population. PLoS One. 8:e56969.
- Eschauzier, C., Beerendonk, E., Scholte-Veenendaal, P., De Voogt, P. 2012. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. Environ. Sci. Technol. 46: 1708-1715.
- Fair PA, Driscoll E, Mollenhauer MA, Bradshaw SG, Yun SH, Kannan K, et al. 2011. Effects of environmentally-relevant levels of perfluorooctane sulfonate on clinical parameters and immunological functions in B6C3F1 mice. J Immunotoxicol. 8:17-29.
- Fan H, Ducatman A, Zhang J. 2014. Perfluorocarbons and gilbert syndrome (phenotype) in the C8 health study population. Environ Res. 135:70-75.
- Fei C, McLaughlin JK, Tarone RE, Olsen J. 2007. Perfluorinated chemicals and fetal growth: A study within the Danish national birth cohort. Environ Health Perspect. 115:1677-1682.
- Fei C, McLaughlin JK, Tarone RE, Olsen J. 2008. Fetal growth indicators and perfluorinated chemicals: A study in the Danish national birth cohort. Am J Epidemiol. 168:66-72.
- Fei C, McLaughlin JK, Lipworth L, Olsen J. 2008. Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ Health Perspect. 116:1391-1395.
- Fei C, McLaughlin JK, Lipworth L, Olsen J. 2009. Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod. 24:1200-1205.
- Fei C, McLaughlin JK, Lipworth L, Olsen J. 2010a. Maternal concentrations of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) and duration of breastfeeding. Scand J Work Environ Health. 36:413-421.
- Fei C, McLaughlin JK, Lipworth L, Olsen J. 2010b. Prenatal exposure to PFOA and PFOS and risk of hospitalization for infectious diseases in early childhood. Environ Res. 110:773-777.

- Fei C, Olsen J. 2011. Prenatal exposure to perfluorinated chemicals and behavioral or coordination problems at age 7 years. Environ Health Perspect. 119:573-578.
- Fisher M, Arbuckle TE, Wade M, Haines DA. 2013. Do perfluoroalkyl substances affect metabolic function and plasma lipids?--analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1. Environ Res. 121:95-103.
- Fitz-Simon N, Fletcher T, Luster MI, Steenland K, Calafat AM, Kato K, et al. 2013. Reductions in serum lipids with a 4-year decline in serum perfluorooctanoic acid and perfluorooctanesulfonic acid. Epidemiology. 24:569-576.
- Franko J., Meade, B.J., Frasch, H.F., Barbero, A.M., Anderson, S.E. 2012. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin. J. Toxicol. Environ. Health A 75: 50-62.
- Frisbee SJ, Shankar A, Knox SS, Steenland K, Savitz DA, Fletcher T, et al. 2010. Perfluorooctanoic acid, perfluorooctanesulfonate, and serum lipids in children and adolescents: Results from the C8 health project. Arch Pediatr Adolesc Med. 164:860-869.
- Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F, Hannibal I, Genzel-Boroviczény O, Koletzko B, Völkel W. 2010. Pre- and postnatal exposure to perfluorinated compounds (PFCs). Environ Sci Technol. 44:7123-9.
- Fu Y, Wang T, Fu Q, Wang P, Lu Y. 2014. Associations between serum concentrations of perfluoroalkyl acids and serum lipid levels in a Chinese population. Ecotoxicol Environ Saf. 106:246-252.
- Fuentes S, Colomina MT, Rodriguez J, Vicens P, Domingo JL. 2006. Interactions in developmental toxicology: Concurrent exposure to perfluorooctane sulfonate (PFOS) and stress in pregnant mice. Toxicol Lett. 164:81-89.
- Fuentes S, Vicens P, Colomina MT, Domingo JL. 2007a. Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology. 242:123-129.
- Fuentes S, Colomina MT, Vicens P, Franco-Pons N, Domingo JL. 2007b. Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci. 98:589-598.
- Fuentes S, Colomina MT, Vicens P, Domingo JL. 2007c. Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in mice. Toxicol Lett. 171:162-170.
- Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, et al. 2012. Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environ Health Perspect. 120:655-660.

Gallo V, Leonardi G, Brayne C, Armstrong B, Fletcher T. 2013. Serum perfluoroalkyl acids concentrations and memory impairment in a large cross-sectional study. BMJ Open. 3. e002414.

Gebbink WA, Berger U, Cousins IT. 2015. Estimating human exposure to PFOS isomers and PFCA homologues: the relative importance of direct and indirect (precursor) exposure. Environ Int. 74:160-9.

Geiger SD, Xiao J, Shankar A. 2013. Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am J Epidemiol. 177:1255-1262.

Geiger SD, Xiao J, Shankar A. 2014a. No association between perfluoroalkyl chemicals and hypertension in children. Integr Blood Press Control. 7:1-7.

Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A. 2014b. The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere. 98:78-83.

Ghisari M, Eiberg H, Long M, Bonefeld-Jorgensen EC. 2014. Polymorphisms in phase I and phase II genes and breast cancer risk and relations to persistent organic pollutant exposure: A case-control study in Inuit women. Environ Health. 13:19.

Gleason JA, Post GB, Fagliano JA. 2015. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007-2010. Environ Res. 136:8-14.

Goldstein RS, Tarloff JB, Hook JB. 1988. Age-related nephropathy in laboratory rats. FASEB J. 2:2241-51.

Goudarzi H, Miyashita C, Okada E, Kashino I, Chen CJ, Ito S, Araki A, Kobayashi S, Matsuura H, Kishi R. 2017. Prenatal exposure to perfluoroalkyl acids and prevalence of infectious diseases up to 4years of age. Environ Int.104:132-138.

Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, et al. 2012. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 307:391-397.

Granum B, Haug LS, Namork E, Stolevik SB, Thomsen C, Aaberge IS, et al. 2013. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol. 10:373-379.

Grasty RC, Wolf DC, Grey BE, Lau CS, Rogers JM. 2003. Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat. Birth Defects Res B Dev Reprod Toxicol. 68:465-471.

Grasty RC, Bjork JA, Wallace KB, Wolf DC, Lau CS, Rogers JM. 2005. Effects of prenatal perfluorooctane sulfonate (PFOS) exposure on lung maturation in the perinatal rat. Birth Defects Res B Dev Reprod Toxicol. 74:405-416.

Grice MM, Alexander BH, Hoffbeck R, Kampa DM. 2007. Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med. 49:722-729.

Gump BB, Wu Q, Dumas AK, Kannan K. 2011. Perfluorochemical (PFC) exposure in children: Associations with impaired response inhibition. Environ Sci Technol. 45:8151-8159.

Guruge, K.S., Taniyasu, S., Yamashita, N., Wijeratna, S., Mohotti, K.M., Seneviratne, H.R., Kannan, K., Yamanaka, N., Miyazaki, S. 2005. Perfluorinated organic compounds in human blood serum and seminal plasma: a study of urban and rural tea worker populations in Sri Lanka. J Environ Monit. 7: 371-7.

Guruge KS, Hikono H, Shimada N, Murakami K, Hasegawa J, Yeung LW, et al. 2009. Effect of perfluorooctane sulfonate (PFOS) on influenza a virus-induced mortality in female B6C3F1 mice. J Toxicol Sci. 34:687-691.

Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, et al. 2012. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: A prospective cohort study. Environ Health Perspect. 120:668-673.

Halsne R, Tandberg JI, Lobert VH, Østby GC, Thoen E, Ropstad E, Verhaegen S. 2016. Effects of perfluorinated alkyl acids on cellular responses of MCF-10A mammary epithelial cells in monolayers and on acini formation in vitro. Toxicol Lett. 259:95-107.

Hamm MP, Cherry NM, Chan E, Martin JW, Burstyn I. 2010. Maternal exposure to perfluorinated acids and fetal growth. J Expo Sci Environ Epidemiol. 20:589-597.

Hard GC, Banton MI, Bretzlaff RS, Dekant W, Fowles JR, Mallett AK, McGregor DB, Roberts KM, Sielken RL Jr, Valdez-Flores C, Cohen SM. 2013. Consideration of rat chronic progressive nephropathy in regulatory evaluations for carcinogenicity. Toxicol Sci. 132:268-75.

Hardell E, Karrman A, van Bavel B, Bao J, Carlberg M, Hardell L. 2014. Case-control study on perfluorinated alkyl acids (PFAAS) and the risk of prostate cancer. Environ Int. 63:35-39.

Haug, L.S., Huber, S., Becher, G., Thomsen, C. 2011. Characterisation of human exposure pathways to perfluorinated compounds - comparing exposure estimates with biomarkers of exposure. Environ. Int. 37: 687-693.

Hays T, Rusyn I, Burns AM, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM. 2005. Role of peroxisome proliferator-activated receptor-alpha (PPARalpha) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis. 26:219-27.

Health Canada. 2016. Perfluorooctane Sulfonate (PFOS) in Drinking Water. Document for Public Consultation. http://healthycanadians.gc.ca/health-system-systeme-sante/consultations/perfluorooctane-sulfonate/document-eng.php.

Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM. 2010. Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12-15 years of age. Environ Health Perspect. 118:1762-1767.

Humblet O, Diaz-Ramirez LG, Balmes JR, Pinney SM, Hiatt RA. 2014. Perfluoroalkyl chemicals and asthma among children 12-19 years of age: NHANES (1999-2008). Environ Health Perspect. 122:1129-1133.

Hurley, S., Houtz, E., Goldberg, D., Wang, M., Park, J-S., Nelson, D.O., Reynolds, P., Bernstein, L., Anton-Culver, H., Horn-Ross, P., Petreas, M. 2016. Preliminary associations between the detection of perfluoroalkyl acids (PFAAs) in drinking water and serum concentrations in a sample of California women. Environ Sci Technol Lett. 3: 264–269.

Impinen A, Nygaard UC, Lødrup Carlsen KC, Mowinckel P, Carlsen KH, Haug LS, Granum B. 2018. Prenatal exposure to perfluoralkyl substances (PFASs) associated with respiratory tract infections but not allergy- and asthma-related health outcomes in childhood. Environ Res. 160:518-523.

Innes KE, Ducatman AM, Luster MI, Shankar A. 2011. Association of osteoarthritis with serum levels of the environmental contaminants perfluorooctanoate and perfluorooctane sulfonate in a large Appalachian population. Am J Epidemiol. 174:440-450.

Innes KE, Wimsatt JH, Frisbee S, Ducatman AM. 2014. Inverse association of colorectal cancer prevalence to serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in a large Appalachian population. BMC Cancer. 14:45.

Jain RB. 2013a. Effect of pregnancy on the levels of selected perfluoroalkyl compounds for females aged 17-39 years: data from National Health and Nutrition Examination Survey 2003-2008. J Toxicol Environ Health A. 76:409-21.

Jain RB. 2013b. Association between thyroid profile and perfluoroalkyl acids: Data from NHNAES 2007-2008. Environ Res. 126:51-59.

Jerne NK, Nordin AA. 1963. Plaque formation in agar by single antibody-producing cells. Science. 140:405.

Jerne NK, Henry C, Nordin AA, Fuji H, Koros AM, Lefkovits I. 1974. Plaque forming cells: methodology and theory. Transplant Rev. 18:130-91.

Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, et al. 2012. Serum concentrations of major perfluorinated compounds among the general population in Korea: Dietary sources and potential impact on thyroid hormones. Environ Int. 45:78-85.

Jiang W, Zhang Y, Zhu L, Deng J. 2014. Serum levels of perfluoroalkyl acids (PFAAS) with isomer analysis and their associations with medical parameters in Chinese pregnant women. Environ Int. 64:40-47.

Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebaek NE, Jorgensen N. 2009. Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 117:923-927.

Joensen UN, Veyrand B, Antignac JP, Blomberg Jensen M, Petersen JH, Marchand P, et al. 2013. PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum Reprod. 28:599-608.

Johansson N, Fredriksson A, Eriksson P. 2008. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology. 29:160-169.

Johnson JD. 1995a. Final report. Analytical study, single-dose dermal absorption/toxicity study of T6049 in rabbits. In vivo reference number: HWI#6329-130. 3M. SCD Division (cited in ATSDR, 2015).

Johnson JD. 1995b. Final report. Analytical study, single-dose dermal absorption/toxicity study of T6053 in rabbits (lithium perfluorooctane sulfonate). In vivo study reference number: HWI#6329-137. 3M. SCD Division (cited in ATSDR, 2015).

Jorgensen KT, Specht IO, Lenters V, Bach CC, Rylander L, Jonsson BA, et al. 2014. Perfluoroalkyl substances and time to pregnancy in couples from Greenland, Poland and Ukraine. Environ Health. 13:116.

Kang JS, Choi JS, Park JW. 2016. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. Chemosphere. 155:436-43.

Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldoust KM. 2004. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol. 38:4489-95.

Karbe E, Kerlin RL. 2002. Cystic degeneration/Spongiosis hepatis in rats. Toxicol Pathol. 30:216-27.

Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM. 2011. Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008. Environ Sci Technol. 45:8037-45.

Kawamoto K, Sato I, Tsuda S, Yoshida M, Yaegashi K, Saito N, et al. 2011. Ultrasonic-induced tonic convulsion in rats after subchronic exposure to perfluorooctane sulfonate (PFOS). J Toxicol Sci. 36:55-62.

Kato, K., Ye, X., Calafat, A.M. 2015. PFASs in the general population. In: Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. J.D. DeWitt, Editor. Humana Press. pp. 51-76.

Keil DE, Mehlmann T, Butterworth L, Peden-Adams MM. 2008. Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci. 103:77-85.

Kerlin RL, Karbe E. 2004. Response to comments on E. Karbe and R. L. Kerlin (2002). Cystic degeneration/spongiosis hepatis (Toxicol Pathol 30 (2), 216-227). Toxicol Pathol. 32:271.

Kerstner-Wood C, Coward L, Gorman G. 2003. Protein Binding of Perfluorohexane Sulfonate, Perfluorooctane Sulfonate and Perfluorooctanoate to Plasma (Human, Rat and Monkey) and Various Human-Derived Plasma Protein Fractions. Study ID 9921.7. Southern Research Institute.

Kielsen K, Shamim Z, Ryder LP, Nielsen F, Grandjean P, Budtz-Jørgensen E, Heilmann C. 2016. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates. J Immunotoxicol. 13:270-3.

Kim HS, Jun Kwack S, Sik Han E, Seok Kang T, Hee Kim S, Young Han S. 2011. Induction of apoptosis and CYP4a1 expression in Sprague-Dawley rats exposed to low doses of perfluorooctane sulfonate. J Toxicol Sci. 36:201-210.

Kim S, Choi K, Ji K, Seo J, Kho Y, Park J, et al. 2011. Trans-placental transfer of thirteen perfluorinated compounds and relations with fetal thyroid hormones. Environ Sci Technol. 45:7465-7472.

Kjeldsen LS, Bonefeld-Jørgensen EC. 2013. Perfluorinated compounds affect the function of sex hormone receptors. Environ Sci Pollut Res Int.20:8031-44.

Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA. 2003. PPAR alpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol. 33:655-780.

Knox SS, Jackson T, Frisbee SJ, Javins B, Ducatman AM. 2011. Perfluorocarbon exposure, gender and thyroid function in the C8 health project. J Toxicol Sci. 36:403-410.

Kobayashi K, Hashimoto M, Honkakoski P, Negishi M. 2015. Regulation of gene expression by CAR: an update. Arch Toxicol. 89:1045-55.

Krewski D, Acosta Jr. D, Andersen M, Anderson H, Bailar III J, Boekelheide K, Brent R, Charnley G, Cheung V, Green Jr. S, Kelsey K, Kerkvliet N, Li A, McCray L, Meyer O, Patterson R, Pennie W, Scala R, Solomon G, Stephens M, Yager J, Zeise L, and Staff of Committee on Toxicity Testing and Assessment of Environmental Agents. 2010. Toxicity Testing in the 21st Century: A Vision and a Strategy. Journal of Toxicology and Environmental Health, Part B. 13:51-138.

Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, et al. 2013. Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum Reprod. 28:3337-3348.

Kvist L, Giwercman YL, Jonsson BA, Lindh CH, Bonde JP, Toft G, et al. 2012. Serum levels of perfluorinated compounds and sperm Y:X chromosome ratio in two European populations and in Inuit from Greenland. Reprod Toxicol. 34:644-650.

Lanza HA, Cochran RS, Mudge JF, Olson AD, Blackwell BR, Maul JD, Salice CJ, Anderson TA. 2017. Temporal monitoring of perfluorooctane sulfonate accumulation in aquatic biota downstream of historical aqueous film forming foam use areas. Environ Toxicol Chem. 9999:1-8.

La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, et al. 2014. Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from different Italian areas. Int J Environ Res Public Health. 11:10146-10164.

Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. 2003. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol Sci. 74:382-392.

Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. 2007. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 99:366-394.

Lau C. 2012. Perfluorinated compounds. EXS. 101:47-86.

Lee YJ, Kim MK, Bae J, Yang JH. 2013. Concentrations of perfluoroalkyl compounds in maternal and umbilical cord sera and birth outcomes in Korea. Chemosphere. 90:1603-1609.

Lee CK, Kang SG, Lee JT, Lee SW, Kim JH, Kim DH, et al. 2015. Effects of perfluorooctane sulfuric acid on placental PRL-family hormone production and fetal growth retardation in mice. Mol Cell Endocrinol. 401:165-172.

Lefebvre DE, Curran I, Armstrong C, Coady L, Parenteau M, Liston V, et al. 2008. Immunomodulatory effects of dietary potassium perfluorooctane sulfonate (PFOS) exposure in adult Sprague-Dawley rats. J Toxicol Environ Health A. 71:1516-1525.

Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, Jakobsson K. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med. 2018 Jan;75(1):46-51.

Liew Z, Ritz B, Bonefeld-Jorgensen EC, Henriksen TB, Nohr EA, Bech BH, et al. 2014. Prenatal exposure to perfluoroalkyl substances and the risk of congenital cerebral palsy in children. Am J Epidemiol. 180:574-581.

Liew Z, Ritz B, von Ehrenstein OS, Bech BH, Nohr EA, Fei C, et al. 2015. Attention deficit/hyperactivity disorder and childhood autism in association with prenatal exposure to perfluoroalkyl substances: A nested case-control study in the Danish national birth cohort. Environ Health Perspect. 124:368-373.

Lilienthal H, Dieter HH, Hölzer J, Wilhelm M. Recent experimental results of effects of perfluoroalkyl substances in laboratory animals - Relation to current regulations and guidance values. 2017. Int J Hyg Environ Health. 220:766-775.

Lin CY, Chen PC, Lin YC, Lin LY. 2009. Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care. 32:702-707.

Lin CY, Wen LL, Lin LY, Wen TW, Lien GW, Chen CY, et al. 2011. Associations between levels of serum perfluorinated chemicals and adiponectin in a young hypertension cohort in Taiwan. Environ Sci Technol. 45:10691-10698.

Lin CY, Wen LL, Lin LY, Wen TW, Lien GW, Hsu SH, et al. 2013a. The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults. J Hazard Mater. 244-245:637-644.

Lin CY, Lin LY, Wen TW, Lien GW, Chien KL, Hsu SH, et al. 2013b. Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int J Cardiol. 168:3309-3316.

Lin LY, Wen LL, Su TC, Chen PC, Lin CY. 2014. Negative association between serum perfluorooctane sulfate concentration and bone mineral density in US premenopausal women: NHANES, 2005-2008. J Clin Endocrinol Metab. 99:2173-2180.

Lind L, Zethelius B, Salihovic S, van Bavel B, Lind PM. 2014. Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly. Diabetologia. 57:473-479.

Lindstrom, A.B., Strynar, M.J., Libelo, E.L. 2011. Polyfluorinated compounds: Past, present, and future. Environ. Sci. Technol. 45: 7954-7961.

Long Y, Wang Y, Ji G, Yan L, Hu F, Gu A. 2013. Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice. PLoS One. 8:e54176.

Looker C, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, et al. 2014. Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicol Sci. 138:76-88.

Lopez-Doval S, Salgado R, Pereiro N, Moyano R, Lafuente A. 2014. Perfluorooctane sulfonate effects on the reproductive axis in adult male rats. Environ Res. 134:158-168.

Lopez-Espinosa MJ, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, et al. 2011. Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol. 45:8160-8166.

Lopez-Espinosa MJ, Mondal D, Armstrong B, Bloom MS, Fletcher T. 2012a. Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect.120:1036-1041.

Lopez-Espinosa MJ, Fitz-Simon N, Bloom MS, Calafat AM, Fletcher T. 2012b. Comparison between free serum thyroxine levels, measured by analog and dialysis methods, in the presence of perfluorooctane sulfonate and perfluorooctanoate. Reprod Toxicol. 33:552-5.

Louis GM, Peterson CM, Chen Z, Hediger ML, Croughan MS, Sundaram R, et al. 2012. Perfluorochemicals and endometriosis: The ENDO study. Epidemiology. 23:799-805.

Louis GM, Chen Z, Schisterman EF, Kim S, Sweeney AM, Sundaram R, et al. 2015. Perfluorochemicals and human semen quality: The LIFE study. Environ Health Perspect.123:57-63.

Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL. 2005a. Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology.215:126-148. Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. 2005b. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharmacokinetic parameters. Toxicology. 215:149-169.

Lv Z, Li G, Li Y, Ying C, Chen J, Chen T, et al. 2013. Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol. 28:532-542.

Lyngso J, Ramlau-Hansen CH, Hoyer BB, Stovring H, Bonde JP, Jonsson BA, et al. 2014. Menstrual cycle characteristics in fertile women from Greenland, Poland and Ukraine exposed to perfluorinated chemicals: A cross-sectional study. Hum Reprod. 29:359-367.

Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, et al. 2012. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect. 120:1432-1437.

Martin JW, Mabury SA, Solomon KR, Muir DC. 2003. Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 22:196-204.

Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, et al. 2007. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci. 97:595-613.

McConnell EE, Solleveld HA, Swenberg JA, Boorman GA. 1986. Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J Natl Cancer Inst. 76:283-9.

MDHHS. 2015. Michigan Department of Health and Human Services. MDHHS Activities at the Former Wurtsmith Air Force Base. Updated April 2015. PFOS - Fish Sampling Results. https://www.michigan.gov/documents/mdch/fish_data_handout_449030_7.pdf

MDH. 2008. Minnesota Department of Health. Fish Consumption Advisory Program. April 2008 http://www.health.state.mn.us/divs/eh/fish/eating/mealadvicetables.pdf

MDH. 2013. Minnesota Department of Health. East Metro PFC Biomonitoring Follow-up Project May 2013 Report to the Community Survey Analysis: How are participants exposed to PFCs? May 2013.

http://www.health.state.mn.us/tracking/biomonitoring/projects/CommunityReport-May2013.pdf

MDH. 2017. Minnesota Department of Health. Health Based Guidance for Water Health Risk Assessment Unit, Environmental Health Division. Toxicological Summary for: Perfluorooctane Sulfonate. Web Publication Date: May 2017.

http://www.health.state.mn.us/divs/eh/risk/guidance/gw/pfos.pdf

Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. 2010. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect. 118:686-692.

Mogensen UB, Grandjean P, Nielsen F, Weihe P, Budtz-Jørgensen E. 2015. Breastfeeding as an Exposure Pathway for Perfluorinated Alkylates. Environ Sci Technol. 49:10466-73.

Mollenhauer MA, Bradshaw SG, Fair PA, McGuinn WD, Peden-Adams MM. 2011. Effects of perfluorooctane sulfonate (PFOS) exposure on markers of inflammation in female B6C3F1 mice. J Environ Sci Health A Tox Hazard Subst Environ Eng. 46:97-108.

Monroy R, Morrison K, Teo K, Atkinson S, Kubwabo C, Stewart B, et al. 2008. Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples. Environ Res.108:56-62. Nelson JW, Hatch EE, Webster TF. 2010. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. Population. Environ HealthPerspect. 118:197-202.

Ngo HT, Hetland RB, Sabaredzovic A, Haug LS, Steffensen IL. 2014. In utero exposure to perfluorooctanoate (PFOA) or perfluorooctane sulfonate (PFOS) did not increase body weight or intestinal tumorigenesis in multiple intestinal neoplasia (Min/+) mice. Environ Res. 132:251-263.

NH DHHS. 2016. New Hampshire Department of Health and Human Services. Pease PFC Blood Testing Program: April 2015 – October 2015. June 16, 2016. https://www.dhhs.nh.gov/dphs/documents/pease-pfc-blood-testing.pdf

NJDEP. 2007. New Jersey Department of Environmental Protection. Determination of Perfluorooctanoic Acid (PFOA) in Aqueous Samples, Final Report, January 2007. http://www.nj.gov/dep/watersupply/final_pfoa_report.pdf

NJDEP. 2014. New Jersey Department of Environmental Protection. Occurrence of Perfluorinated Chemicals in Untreated New Jersey Drinking Water Sources Final Report. April 2014. http://www.nj.gov/dep/watersupply/pdf/pfc-study.pdf

NJDEP. 2015. New Jersey Department of Environmental Protection. Technical Support Document: Interim Specific Ground Water Criterion for Perfluorononanoic Acid (PFNA, C9). Office of Science. June 24, 2015.

 $\underline{\text{http://www.state.nj.us/dep/dsr/supportdocs/pfna/PFNA\%20FINAL\%20\%20interim\%20GW\%20}\\ \text{criterion\%206_26_15.pdf}$

NJDOH. 2014. New Jersey Department of Health. ATSDR Technical Assistance Form. NJDOH response to NJDEP request for evaluation of showering/bathing exposure to PFNA.

NTP. 2016. National Toxicology Program. Systematic review of immunotoxicity associated with exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS). September 2016. https://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf

Ode A, Kallen K, Gustafsson P, Rylander L, Jonsson BA, Olofsson P, et al. 2014. Fetal exposure to perfluorinated compounds and attention deficit hyperactivity disorder in childhood. PLoS One. 9:e95891.

Okada E, Sasaki S, Saijo Y, Washino N, Miyashita C, Kobayashi S, et al. 2012. Prenatal exposure to perfluorinated chemicals and relationship with allergies and infectious diseases in infants. Environ Res. 112:118-125.

Okada E, Sasaki S, Kashino I, Matsuura H, Miyashita C, Kobayashi S, et al. 2014. Prenatal exposure to perfluoroalkyl acids and allergic diseases in early childhood. Environ Int. 65:127-134.

Olsen GW, Burris JM, Mandel JH, Zobel LR. 1999. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. J Occup Environ Med. 41:799-806.

Olsen G, Hansen K, Stevenson L, Burris J, Mandel J. 2003a. Human donor liver and serum concentrations of perfluoroctanesulfonate and other perfluorochemicals. Environmental Science & Technology. 37:888-891.

Olsen GW, Burris JM, Burlew MM, Mandel JH. 2003b. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med. 45:260-270.

Olsen GW, Burlew MM, Marshall JC, Burris JM, Mandel JH. 2004. Analysis of episodes of care in a perfluorooctanesulfonyl fluoride production facility. J Occup Environ Med. 46:837-846.

Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR. 2007. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluoroctanoate in retired fluorochemical production workers. Environ Health Perspect. 115:1298-305.

Olsen GW, Ehresman DJ, Buehrer BD, Gibson BA, Butenhoff JL, Zobel LR. 2012. Longitudinal assessment of lipid and hepatic clinical parameters in workers involved with the demolition of perfluoroalkyl manufacturing facilities. J Occup Environ Med. 54:974-983.

Olsen, G.W. (2015). PFAS biomonitoring in higher exposed populations. In: Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. J.D. DeWitt, Editor. Humana Press. pp. 77-126.

Olsen GW, Mair DC, Lange CC, Harrington LM, Church TR, Goldberg CL, Herron RM, Hanna H, Nobiletti JB, Rios JA, Reagen WK, Ley CA. 2017. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000-2015. Environ Res. 157:87-95.

Onishchenko N, Fischer C, Wan Ibrahim WN, Negri S, Spulber S, Cottica D, et al. 2011. Prenatal exposure to PFOS or PFOA alters motor function in mice in a sex-related manner. Neurotox Res. 19:452-461.

Osuna CE, Grandjean P, Weihe P, El-Fawal HA. 2014. Autoantibodies associated with prenatal and childhood exposure to environmental chemicals in Faroese children. Toxicol Sci. 142:158-166.

Paul AG, Jones KC, Sweetman AJ. 2009. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol. 43:386-92;

Peden-Adams MM, Keller JM, Eudaly JG, Berger J, Gilkeson GS, Keil DE. 2008. Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci.104:144-154.

Peraza MA, Burdick AD, Marin HE, Gonzalez FJ, Peters JM. 2006. The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol Sci. 90:269-95.

Pereiro N, Moyano R, Blanco A, Lafuente A. 2014. Regulation of corticosterone secretion is modified by PFOS exposure at different levels of the hypothalamic-pituitary-adrenal axis in adult male rats. Toxicol Lett. 230:252-262.

Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, Farré M. 2013. Accumulation of perfluoroalkyl substances in human tissues. Environ Int. 59:354-62.

Peters JM, Cattley RC, Gonzalez FJ. 1997. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis. 18:2029-33.

Peters JM, Aoyama T, Cattley RC, Nobumitsu U, Hashimoto T, Gonzalez FJ. 1998. Role of peroxisome proliferator-activated receptor alpha in altered cell cycle regulation in mouse liver. Carcinogenesis. 19:1989-94.

Peters JM, Cheung C, Gonzalez FJ. 2005. Peroxisome proliferator-activated receptor-alpha and liver cancer: where do we stand? J Mol Med (Berl). 83:774-85.

Peters JM, Gonzalez FJ. 2011. Why toxic equivalency factors are not suitable for perfluoroalkyl chemicals. Chem Res Toxicol. 24:1601-1609.

Post, G.B., Cohn, P.D., Cooper, K.R. 2012. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Env Res. 116: 93-117.

Power MC, Webster TF, Baccarelli AA, Weisskopf MG. 2013. Cross-sectional association between polyfluoroalkyl chemicals and cognitive limitation in the National Health and Nutrition Examination Survey. Neuroepidemiology. 40:125-132.

PubChem. Perfluorooctanesulfonic acid. Physical and chemical properties. https://pubchem.ncbi.nlm.nih.gov/compound/74483#section=Chemical-and-Physical-Properties Accesed 10/4/17.

Qazi MR, Bogdanska J, Butenhoff JL, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2009a. High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology. 262:207-214.

Qazi MR, Xia Z, Bogdanska J, Chang SC, Ehresman DJ, Butenhoff JL, et al. 2009b. The atrophy and changes in the cellular compositions of the thymus and spleen observed in mice subjected to short-term exposure to perfluorooctanesulfonate are high-dose phenomena mediated in part by peroxisome proliferator-activated receptor-alpha (PPAR alpha). Toxicology. 260:68-76.

Qazi MR, Nelson BD, Depierre JW, Abedi-Valugerdi M. 2010a. 28-day dietary exposure of mice to a low total dose (7 mg/kg) of perfluorooctanesulfonate (PFOS) alters neither the cellular compositions of the thymus and spleen nor humoral immune responses: Does the route of administration play a pivotal role in pfos-induced immunotoxicity? Toxicology. 267:132-139.

Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2010b. Dietary exposure to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes and alters the hepatic immune status in mice. Int Immunopharmacol. 10:1420-1427.

Qazi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2012. High-dose dietary exposure of mice to perfluorooctanoate or perfluorooctane sulfonate exerts toxic effects on myeloid and Blymphoid cells in the bone marrow and these effects are partially dependent on reduced food consumption. Food Chem Toxicol. 50:2955-2963.

Qazi MR, Hassan M, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2013. Both sub-acute, moderate-dose and short-term, low-dose dietary exposure of mice to perfluorooctane sulfonate exacerbates concanavalin A-induced hepatitis. Toxicol Lett. 217:67-74.

Qiao E, Ji M, Wu J, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu LW, Tang J. 2013. Expression of the PXR gene in various types of cancer and drug resistance. Oncol Lett. 5:1093-1100.

Qiu L, Zhang X, Zhang Y, Gu J, Chen M, et al. 2013. Sertoli cell is a potential target for perfluorooctane sulfonate-induced reproductive dysfunction in male mice. Toxicol Sci.135:229-240.

Raymer JH, Michael LC, Studabaker WB, Olsen GW, Sloan CS, Wilcosky T, et al. 2012. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) and their associations with human semen quality measurements. Reprod Toxicol. 33:419-427.

Ren H, Vallanat B, Nelson DM, Yeung LW, Guruge KS, Lam PK, Lehman-McKeeman LD, Corton JC. 2009. Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species. Reprod Toxicol. 27:266-77.

Ribes D, Fuentes S, Torrente M, Colomina MT, Domingo JL. 2010. Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice. Toxicol Appl Pharmacol. 243:13-18.

Robledo CA, Yeung E, Mendola P, Sundaram R, Maisog J, Sweeney AM, et al. 2015. Preconception maternal and paternal exposure to persistent organic pollutants and birth size: The life study. Environ Health Perspect. 123:88-94.

Rogers JM, Ellis-Hutchings RG, Grey BE, Zucker RM, Norwood J, Jr., Grace CE, et al. 2014. Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy. Toxicol Sci. 137:436-446.

Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair ET, Lau C. 2008. Gene profiling in the livers of wild-type and PPARalpha-null mice exposed to perfluorooctanoic acid. Toxicol Pathol. 36:592-607.

Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C. 2009. Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: Comparison to changes induced by exposure to perfluorooctanoic acid. Reprod Toxicol. 27:278-288.

Rosen MB, Schmid JR, Corton JC, Zehr RD, Das KP, Abbott BD, et al. 2010. Gene expression profiling in wild-type and PPARalpha-null mice exposed to perfluorooctane sulfonate reveals pparalpha-independent effects. PPAR Res 2010.

Rumsby, P.C., McLaughlin, C.L., Hall, T. 2009. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters. Philos. Transact. A Math Phys Eng Sci. 367: 4119-4136.

Rusch, G.M., W.E. Rinehart, and C.A. Bozak. 1979. An Acute Inhalation Toxicity Study of T-2306 CoC in the Rat. Project No. 78-7185. Bio/dynamics, Inc. (cited in USEPA, 2016b).

Ryu MH, Jha A, Ojo OO, Mahood TH, Basu S, Detillieux KA, et al. 2014. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation. Am J Physiol Lung Cell Mol Physiol. 307:L765-774.

Sato I, Kawamoto K, Nishikawa Y, Tsuda S, Yoshida M, Yaegashi K, et al. 2009. Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J Toxicol Sci. 34:569-574.

Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL. 2002. Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci. 68:249-264.

Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, et al. 2003. Subchronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology. 183:117-131.

Shah, D. 2009. Healthy worker effect phenomenon. Indian J. Occup. Environ Med. 13: 77-79.

Shankar A, Xiao J, Ducatman A. 2011a. Perfluoroalkyl chemicals and chronic kidney disease in US adults. Am J Epidemiol. 174:893-900.

Shankar A, Xiao J, Ducatman A. 2011b. Perfluoroalkyl chemicals and elevated serum uric acid in US adults. Clin Epidemiol. 3:251-258.

Shrestha S, Bloom MS, Yucel R, Seegal RF, Wu Q, Kannan K, et al. 2015. Perfluoroalkyl substances and thyroid function in older adults. Environ Int. 75:206-214.

Seow J. 2013. Fire-Fighting Foams with Perfluorochemicals – Environmental Review. Department of Environment and Conservation Western Australia. http://www.hemmingfire.com/news/fullstory.php/aid/1748/The_final_definitive_version_of_91Fire_Fighting_Foams_with_Perfluorochemicals_96_Environmental_Review_92, _by_Dr_Jimmy_Seow,_Manager,_Pollution_Response_Unit,_Department_of_Environment_and_Conservation_Western_Australia.html.

Specht IO, Hougaard KS, Spano M, Bizzaro D, Manicardi GC, Lindh CH, et al. 2012. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 33:577-583.

Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K, Eadon GA. 2008. Use of newborn screening program blood spots for exposure assessment: declining levels of perfluorinated compounds in New York State infants. Environ Sci Technol. 42:5361-7.

Stahl LL, Snyder BD, Olsen AR, Kincaid TM, Wathen JB, McCarty HB. 2014. Perfluorinated compounds in fish from U.S. urban rivers and the Great Lakes. Sci Total Environ. 499:185-95.

Starling AP, Engel SM, Richardson DB, Baird DD, Haug LS, Stuebe AM, et al. 2014a. Perfluoroalkyl substances during pregnancy and validated preeclampsia among nulliparous women in the Norwegian mother and child cohort study. Am J Epidemiol. 179:824-833.

Starling AP, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, et al. 2014b. Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian mother and child cohort study. Environ Int. 62:104-112.

Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. 2009. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 170:1268-1278.

Steenland K, Tinker S, Shankar A, Ducatman A. 2010. Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with uric acid among adults with elevated community exposure to PFOA. Environ Health Perspect. 118:229-233.

Stein CR, Savitz DA, Dougan M. 2009. Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol. 170:837-846.

Stein CR, Savitz DA. 2011. Serum perfluorinated compound concentration and attention deficit/hyperactivity disorder in children 5-18 years of age. Environ Health Perspect. 119:1466-1471.

Stein, C. R., Wolff, M. S., Calafat, A. M., Kato, K., Engel, S. M. 2012. Comparison of polyfluoroalkyl compound concentrations in maternal serum and amniotic fluid: a pilot study. Reprod Toxicol. 34:312-316.

Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. 2016. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey. Pediatr Res. 79:348-57.

Strom M, Hansen S, Olsen SF, Haug LS, Rantakokko P, Kiviranta H, et al. 2014. Persistent organic pollutants measured in maternal serum and offspring neurodevelopmental outcomes--a prospective study with long-term follow-up. Environ Int. 68:41-48.

Su H, Lu Y, Wang P, Shi Y, Li Q, Zhou Y, Johnson AC. 2016. Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for human exposure. Environ Int. 94:667-73.

Takagi, S., Adachi, F., Miyano, K., Koizumi, Y., Tanaka, H., Watanabe, I., Tanabe, S., Kannan, K. 2011. Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes. Water Res. 45:3925-3932.

Tao, L., Kannan, K., Wong, C.M., Arcaro, K.F., Butenhoff, J.L. 2008. Perfluorinated compounds in human milk from Massachusetts, U.S.A. Environ Sci Technol. 42:3096-3101.

Taylor KW, Hoffman K, Thayer KA, Daniels JL. 2014. Polyfluoroalkyl chemicals and menopause among women 20-65 years of age (NHANES). Environ Health Perspect 122:145-150.

Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, et al. 2003. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: Maternal and prenatal evaluations. Toxicol Sci. 74:369-381.

Thomford PJ. 2002. 104-Week Dietary Chronic Toxicity and Carcinogenicity Study with Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; T-6295) in Rats. Final Report. Volumes I-IX. Covance Study No. 6329-183. 3M Company, St. Paul, MN.

Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010a. Use of pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonate. Environment International. 36:392-397.

Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010b. Corrigendum to: Use of pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonate. Environment International. 36:647-648.

Thomsen, C., Haug, L.S., Stigum, H., Frøshaug, M., Broadwell, S.L., Becher, G. 2010. Changes in concentrations of perfluorinated compounds, polybrominated diphenyl ethers, and polychlorinated biphenyls in Norwegian breast-milk during twelve months of lactation. Environ Sci Technol. 44:9550-9556.

Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, Malarkey DE, Kaufmann W, Küttler K, Deschl U, Nakae D, Gregson R, Vinlove MP, Brix AE, Singh B, Belpoggi F, Ward JM. 2010. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol. 38:5S-81S.

Timmermann CA, Rossing LI, Grontved A, Ried-Larsen M, Dalgard C, Andersen LB, et al. 2014. Adiposity and glycemic control in children exposed to perfluorinated compounds. J Clin Endocrinol Metab. 99:E608-614.

Toft G, Jonsson BA, Lindh CH, Giwercman A, Spano M, Heederik D, et al. 2012. Exposure to perfluorinated compounds and human semen quality in Arctic and European populations. Hum Reprod. 27:2532-2540.

Uhl SA, James-Todd T, Bell ML. 2013. Association of osteoarthritis with perfluorooctanoate and perfluorooctane sulfonate in NHANES 2003-2008. Environ Health Perspect. 121:447-452.

USEPA 1986. United States Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum. Washington, DC. EPA/630/R-00/004. September 1986.

USEPA 2000a. United States Environmental Protection Agency. News Releases by Date, EPA and 3M Announce Phase Out of PFOS.

http://yosemite.epa.gov/opa/admpress.nsf/0/33aa946e6cb11f35852568e1005246b4.

USEPA 2000b. United States Environmental Protection Agency. Methodology for Deriving Ambient Water Quality Criteria for the Protection of Human Health. Office of Science and Technology, Office of Water. Washington, DC. EPA/822/B-00/004. October 2000.

USEPA 2005a. United States Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum. Washington, DC. EPA/630.P-03/001F. March 2005.

USEPA 2005b. United States Environmental Protection Agency. Drinking Water Criteria Document for Brominated Trihalomethanes. Office of Science and Technology, Office of Water. Washington, DC. EPA/822/R/05/011. November 2005.

USEPA. 2008. United States Environmental Protection Agency. Child-Specific Exposure Factors Handbook. EPA/600/R-06/096F. National Center for Environmental Assessment, Washington, DC. September 2008.

USEPA. 2009b. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). USEPA Office of Water, Jan. 8, 2009.

USEPA 2010. United States Environmental Protection Agency. Toxicological Review of cis-1,2-dichloroethylene and trans-1,2-dichloroethylene. EPA/635/R-09/006F. September 2010.

USEPA. 2011a. United States Environmental Protection Agency. Integrated Risk Information System (IRIS) Glossary. Last updated August 21, 2011.

https://ofmpub.epa.gov/sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlist s/search.do?det ails=&glossaryName=IRIS%20Glossary#formTop Accessed May 10, 2016.

USEPA. 2011b. U.S. Environmental Protection Agency. Exposure Factors Handbook 2011 Edition (Final). Washington, DC, EPA/600/R-09/052F. September 2011.

USEPA. 2011c. United States Environmental Protection Agency. Toxicological Review of Trichloroethylene. Washington, DC, EPA/635/R-09/011F. September 2011.

USEPA. 2012. United States Environmental Protection Agency. Benchmark Dose Technical Guidance. Risk Assessment Forum. EPA/100/R-12/001. June 2012.

USEPA. 2016a. United States Environmental Protection Agency. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-005. May 2016.

USEPA. 2016b. United States Environmental Protection Agency. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-002. May 2016.

USEPA (2016c). United States Environmental Protection Agency. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water. May 2016. USEPA. 2016d. United States Environmental Protection Agency. Fact Sheet: PFOA & PFOS Drinking Water Health Advisories. Office of Water. May 2016.

USEPA. 2016e. United States Environmental Protection Agency. Occurrence Data for the Unregulated Contaminant Monitoring Rule. Data posted through January 2016. https://www.epa.gov/dwucmr/occurrencedata-unregulated-contaminant-monitoring-rule Accessed March 3, 2016.

USEPA. 2016f. United States Environmental Protection Agency. Hoosick Falls, New York. Drinking Water and Groundwater Contamination. Frequently Asked Questions. https://www.epa.gov/sites/production/files/2016-01/documents/hoosickfalls_faqs.pdf

USEPA. 2017. United States Environmental Protection Agency. Risk Management for Per- and Polyfluoroalkyl Substances (PFASs) under TSCA. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-and-polyfluoroalkyl-substances-pfass Accessed 10/4/17.

Vagi SJ, Azziz-Baumgartner E, Sjodin A, Calafat AM, Dumesic D, Gonzalez L, et al. 2014. Exploring the potential association between brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol A in polycystic ovary syndrome: A case-control study. BMC Endocr Disord. 14:86.

Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. 2006. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci. 92:476-89.

Vermont DEC. 2017. State of Vermont. Agency of Natural Resources. Department of Environmental Conservation. Chapter 12 of the Environmental Protection Rules: Vermont Groundwater Protection Rule and Strategy. Adopted December 16, 2016. http://dec.vermont.gov/sites/dec/files/documents/gwprsAdoptedDec12_2016.pdf

Verner MA, Ngueta G, Jensen ET, Fromme H, Völkel W, Nygaard UC, Granum B, Longnecker MP. 2016a. A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to Perfluoroalkyl Substances (PFASs). Environ Sci Technol. 50:978-86.

Verner MA, Ngueta G, Jensen ET, Fromme H, Völkel W, Nygaard UC, Granum B, Longnecker MP. 2016b. Correction to A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to Perfluoroalkyl Substances (PFASs). Environ Sci Technol. 50:5420-1.

Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, et al. 2013. Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ Health Perspect. 121:453-458.

Vestergaard S, Nielsen F, Andersson AM, Hjollund NH, Grandjean P, Andersen HR, et al. 2012. Association between perfluorinated compounds and time to pregnancy in a prospective cohort of Danish couples attempting to conceive. Hum Reprod 27:873-880.

Vesterholm Jensen D, Christensen J, Virtanen HE, Skakkebaek NE, Main KM, Toppari J, et al. 2014. No association between exposure to perfluorinated compounds and congenital cryptorchidism: A nested case-control study among 215 boys from Denmark and Finland. Reproduction. 147:411-417.

Wan YJ, Li YY, Xia W, Chen J, Lv ZQ, Zeng HC, et al. 2010. Alterations in tumor biomarker GSTP gene methylation patterns induced by prenatal exposure to PFOS. Toxicology. 274:57-64.

Wan HT, Zhao YG, Wei X, Hui KY, Giesy JP, Wong CK. 2012. PFOS-induced hepatic steatosis, the mechanistic actions on beta-oxidation and lipid transport. Biochim Biophys Acta. 1820:1092-1101.

Wan HT, Zhao YG, Leung PY, Wong CK. 2014. Perinatal exposure to perfluorooctane sulfonate affects glucose metabolism in adult offspring. PLoS One. 9:e87137.

Wang Y, Wang L, Liang Y, Qiu W, Zhang J, Zhou Q, et al. 2011a. Modulation of dietary fat on the toxicological effects in thymus and spleen in BALB/c mice exposed to perfluorooctane sulfonate. Toxicol Lett. 204:174-182.

Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL, et al. 2011b. The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res. 111:785-791.

Wang F, Liu W, Jin Y, Dai J, Zhao H, Xie Q, et al. 2011c. Interaction of PFOS and BDE-47 co-exposure on thyroid hormone levels and TH-related gene and protein expression in developing rat brains. Toxicol Sci. 121:279-291.

Wang Y, Starling AP, Haug LS, Eggesbo M, Becher G, Thomsen C, et al. 2013. Association between perfluoroalkyl substances and thyroid stimulating hormone among pregnant women: A cross-sectional study. Environ Health. 12:76.

Wang L, Wang Y, Liang Y, Li J, Liu Y, Zhang J, et al. 2014a. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion. Sci Rep. 4:4582.

Wang Y, Rogan WJ, Chen PC, Lien GW, Chen HY, Tseng YC, et al. 2014b. Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan maternal and infant cohort study. Environ Health Perspect. 122:529-534.

Wang Y, Liu W, Zhang Q, Zhao H, Quan X. 2015. Effects of developmental perfluorooctane sulfonate exposure on spatial learning and memory ability of rats and mechanism associated with synaptic plasticity. Food Chem Toxicol. 76:70-76.

Washino N, Saijo Y, Sasaki S, Kato S, Ban S, Konishi K, et al. 2009. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect. 117:660-667.

Watkins DJ, Josson J, Elston B, Bartell SM, Shin HM, Vieira VM, et al. 2013. Exposure to perfluoroalkyl acids and markers of kidney function among children and adolescents living near a chemical plant. Environ Health Perspect. 121:625-630.

WDNR. 2011. Wisconsin Department of Natural Resources. Wisconsin's Fish Contaminant Monitoring Program and Advisory Program 1970-2010. http://dnr.wi.gov/topic/fishing/documents/FishContaminantsAdvisories19702010.pdf

Webster GM, Venners SA, Mattman A, Martin JW. 2014. Associations between perfluoroalkyl acids (PFASS) and maternal thyroid hormones in early pregnancy: A population-based cohort study. Environ Res 133:338-347.

Wen LL, Lin LY, Su TC, Chen PC, Lin CY. 2013. Association between serum perfluorinated chemicals and thyroid function in U.S. Adults: The National Health and Nutrition Examination Survey 2007-2010. J Clin Endocrinol Metab. 98:E1456-1464.

Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, et al. 2012a. Perfluorinated compounds in relation to birth weight in the Norwegian mother and child cohort study. Am J Epidemiol. 175:1209-1216.

Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, et al. 2012b. Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 23:257-263.

Wolf CJ, Takacs ML, Schmid JE, Lau C, Abbott BD. 2008. Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths. Toxicol Sci. 106:162-71.

Yahia D, Tsukuba C, Yoshida M, Sato I, Tsuda S. 2008. Neonatal death of mice treated with perfluorooctane sulfonate. J Toxicol Sci. 33:219-226.

Yang Q, Xie Y, Alexson SE, Nelson BD, DePierre JW. 2002. Involvement of the peroxisome proliferator-activated receptor alpha in the immunomodulation caused by peroxisome proliferators in mice. Biochem Pharmacol. 63:1893-900.

Ye L, Zhao B, Yuan K, Chu Y, Li C, Zhao C, et al. 2012. Gene expression profiling in fetal rat lung during gestational perfluorooctane sulfonate exposure. Toxicol Lett. 209:270-276.

Yu WG, Liu W, Jin YH. 2009a. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism. Environ Toxicol Chem. 28:990-996.

Yu WG, Liu W, Jin YH, Liu XH, Wang FQ, Liu L, et al. 2009b. Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: A cross-foster study on chemical burden and thyroid hormone system. Environ Sci Technol. 43:8416-8422.

Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, et al. 2011. Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology. 32:130-139.

Zhang T, Sun H, Lin Y, Qin Y, Geng X, Kannan L. 2013. Distribution of poly- and perfluoroalkyl substances in matched samples from pregnant women and carbon chain length related maternal transfer. Environmental Science & Technology. 47:7974-7981.

Zheng L, Dong GH, Jin YH, He QC. 2009. Immunotoxic changes associated with a 7-day oral exposure to perfluorooctanesulfonate (PFOS) in adult male C57BL/6 mice. Arch Toxicol. 83:679-689.

Zheng L, Dong GH, Zhang YH, Liang ZF, Jin YH, He QC. 2011. Type 1 and type 2 cytokines imbalance in adult male C57BL/6 mice following a 7-day oral exposure to perfluorooctanesulfonate (PFOS). J Immunotoxicol. 8:30-38.

Appendix 1: Literature search strategy and results

Table A-1. Summary of PubMed and Toxline database search strategies		
Database or website (date of search)	Search term string	
PubMed (3/24/15)	Perfluoroalkyl OR PFOS OR 1763-23-1[rn] OR 2795-39-3[rn] OR 29081-56-9[rn] OR 29457-72-5[rn] OR 4021-47-0[rn] OR 70225-14-8[rn] OR "1-octanesulfonic acid"[tiab]	
Limitations Publication dates, custom range = 1900/01/01 to 2014/12/31	OR "1-perfluoroctanesulfonic"[tiab] OR "1-perfluorooctanesulfonic"[tiab] OR "heptadecafluoro-1-octane sulfonic"[tiab] OR "heptadecafluoro-1-octanesulfonic"[tiab] OR "heptadecafluoroctane sulfonic"[tiab] OR "heptadecafluorooctane sulfonic"[tiab] OR "heptadecafluorooctane sulfonic"[tiab] OR "heptadecafluorooctane sulfonic"[tiab] OR "octanesulfonic acid"[tiab] OR "octanesulfonic acid"[tiab] OR "perfluoroalkyl sulfonate"[tiab] OR "perfluoroalkyl sulfonate"[tiab] OR "perfluoroctane sulfonic"[tiab] OR "perfluoroctane sulfonic"[tiab] OR "perfluoroctane sulfonic"[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctanesulfonic[tiab] OR perfluoroctanesulfonic[tiab] OR "perfluoroctane sulfonic sulfonic or "perfluoroctane sulfonic sulfonic or "perfluoroctane sulfonic sulfonic or "perfluoroctane sulfonic sulfonic or "perfluoroctane sulfonic sulfonate"[tiab] OR "perfluoroctane sulfonic sulfonate"[tiab] OR "perfluoroctane sulfonic sulfonate"[tiab] OR "perfluoroctanesulfonic or perfluoroctanesulfonic[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctanesulfonate[tiab] OR perfluoroctanesulfonate"[tiab] OR perfluoroctanesulfonate"[tiab] OR "perfluoroctanesulfonate"[tiab] O	
Toxline (3/24/15)	Perfluoroalkyl OR PFOS OR 1763-23-1 OR 2795-39-3 OR 29081-56-9 OR 29457-72-5 OR 4021-47-0 OR 70225-14-8 OR "1-octanesulfonic acid" OR "1-perfluoroctanesulfonic" OR "1-	
Limitations Include PubMed records = no (box unchecked); Advanced search, Year of Publication = 1900 through 2014	perfluorooctanesulfonic" OR "heptadecafluoro-1-octane sulfonic" OR "heptadecafluoro-1-octane sulfonic" OR "heptadecafluorooctane sulfonic" OR "heptadecafluorooctane sulfonic" OR "heptadecafluorooctane sulfonic" OR "heptadecafluorooctane sulfonic" OR "octanesulfonic acid" OR "octanesulfonic acid" OR "perfluoroalkyl sulfonate" OR "perfluoroalkyl sulfonate" OR "perfluoroctane sulfonic" OR "perfluoroctane sulfonate" OR "perfluoroctane sulfonic" OR perfluoroctane sulfonate OR perfluoroctanesulfonic OR perfluoroctanesulfonic OR perfluoroctanesulfonic OR "perfluoroctanesulfonic OR "perfluoroctanesulfonic OR "perfluoroctane sulfonic" OR perfluoroctanesulfonic OR "perfluoroctanesulfonic OR "pe	

Table A-2. Summary of additional databases and website searched			
Database or website	Date searched	Search terms	
Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles http://www.atsdr.cdc.gov/toxprofiles/index.asp	3/24/15	PFOS perfluorooctane sulfonate 1763-23-1	
California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA) http://oehha.ca.gov/index.html		1700 20 1	
Toxicity Criteria Database http://oehha.ca.gov/tcdb/index.asp			
Non-cancer health effects Table (RELs) and Cancer Potency Factor (Appendix A and Appendix B) http://www.oehha.ca.gov/air/hot_spots/index.html			
Chemical Carcinogenesis Research Information System (CCRIS)			
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS			
Developmental and Reproductive Toxicology Database (DART) http://toxnet.nlm.nih.gov/newtoxnet/dart.htm			
Environment Canada https://www.ec.gc.ca/			
European Chemicals Agency http://echa.europa.eu/web/guest			
Genetic Toxicology Data Bank (GENETOX) http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX			
Hazardous Substances Data Bank (HSDB) http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm			
Health Canada First Priority Substances List (PSL1) Assessments			
http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl1- lsp1/index-eng.php			
Health Canada Second Priority Substances List (PSL2) Assessments http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2- lsp2/index-			
eng.php			

International Agency for Research on Cancer (IARC) Monographs

http://monographs.iarc.fr/ENG/Classification/index.php

International Programme on Chemical Safety (IPCS) http://www.who.int/ipcs/en/

International Programme on Chemical Safety (IPCS) INCHEM http://www.inchem.org/

International Toxicity Estimates for Risk (ITER) http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?iter

National Institute for Occupational Safety and Health (NIOSH) publications database (NIOSHTIC2) http://www2a.cdc.gov/nioshtic-2/

Occupational Safety and Health Administration (OSHA) https://www.osha.gov/

US EPA Acute Exposure Guideline Levels http://www.epa.gov/oppt/aegl/

United State Environmental Protection Agency (US EPA) ChemView

http://java.epa.gov/chemview

US EPA IRIS

http://www.epa.gov/iris/

US EPA Office of Pesticides Chemical Search database http://iaspub.epa.gov/apex/pesticides/f?p=chemicalsearch:1

US EPA Office of Water Drinking Water Standards and Health Advisories

http://water.epa.gov/drink/standards/hascience.cfm

US EPA Provisional Peer Reviewed Toxicity Values (PPRTV) assessment library http://hhpprtv.ornl.gov/quickview/pprtv papers.php

United Stated National Toxicology Program (US NTP) Report on Carcinogens

http://ntp.niehs.nih.gov/pubhealth/roc/listings/index.html

World Health Organization (WHO) Concise International Chemical Assessment Documents http://www.who.int/ipcs/publications/cicad/en/

Tittp://www.wno.intripes/publications/cicaa/cit/

WHO Environmental Health Criteria http://www.who.int/ipcs/publications/ehc/en/

Table A-3. Criteria used to identify references for further consideration or for exclusion

A reference was identified for further consideration if it met one of the following criteria:

- Animal toxicology studies (including rodents, non-human primates, and rabbits)
- Epidemiological studies
- Human exposure
- Mechanistic studies (including studies on absorption, distribution, metabolism, excretion, in vitro studies, in silico studies, genotoxicity)
- Secondary sources of health effects information (i.e., not primary data references such as book chapters, commentaries, editorials, health assessments, review articles)

A reference was excluded if it met at least one of the following criteria:

- Describes analytical methodology (e.g., method development)
- Foreign language reference
- Meeting abstract/poster
- Measurement in consumer products (e.g., packaging) or food for human consumption including drinking water
- Measurement in environmental media (e.g., air, dust, sewage treatment effluent or sludge, soil, water)
- Not enough information to determine relevance (e.g., no abstract and/or readily accessible full text version)
- PFOS is not the test agent
- PFOS used as a chemical reagent in a non-toxicological manner (e.g., use of aqueous firefighting foam)
- Proposed research (e.g., funding application)
- Reference was a duplicate (determined electronically or manually)
- Related to biodegradation, environmental fate or processes, or remediation
- Related to effects or measurement in wildlife (includes crops, livestock, plants)
- Related to chemical or physical properties
- Related to policy (e.g., monitoring or screening programs)
- The abbreviation PFOS returned a non-chemical reference

Table A-4. Backward searches	
Reference used for backward search ¹	Results of backward search ²
Bach CC, Bech BH, Brix N, Nohr EA, Bonde JP, Henriksen TB. 2015. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: A systematic review. Critical reviews in toxicology 45:53-67.	0 references
USEPA. 2014. Health effects document for perfluorooctane sulfonate (PFOS).	1 reference
	Haug LS, Thomsen C, Becher G. 2009. Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples. Environmental Science & Technology 43:2131-2136.
Chang ET, Adami HO, Boffetta P, Cole P,	1 reference
Starr TB, Mandel JS. 2014. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and cancer risk in humans. Critical reviews in toxicology 44 Suppl 1:1-81	Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Kruger T, et al. 2011. Perfluorinated compounds are related to breast cancer risk in greenlandic inuit: A case control study. Environmental Health: A Global Access Science Source 10:88.
Corsini E, Luebke RW, Germolec DR, DeWitt JC. 2014. Perfluorinated compounds: Emerging pops with potential immunotoxicity. Toxicology letters 230:263-270.	0 references
Saikat S, Kreis I, Davies B, Bridgman S, Kamanyire R. 2013. The impact of pfos on health in the general population: A review. Environmental science Processes & impacts 15:329-335.	0 references

Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, et al. 2013. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: A national toxicology program workshop review. Environmental health perspectives 121:774-783.	0 references
DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. 2012. Immunotoxicity of perfluorinated compounds: Recent developments. Toxicologic pathology 40:300-311.	0 references
Lau C. 2012. Perfluorinated compounds. Exs 101:47-86.	0 references
Mariussen E. 2012. Neurotoxic effects of perfluoroalkylated compounds: Mechanisms of action and environmental relevance. Archives of toxicology 86:1349-1367.	0 references
1= ordered chronologically from most recent to 2 = reference identified from backward search search	

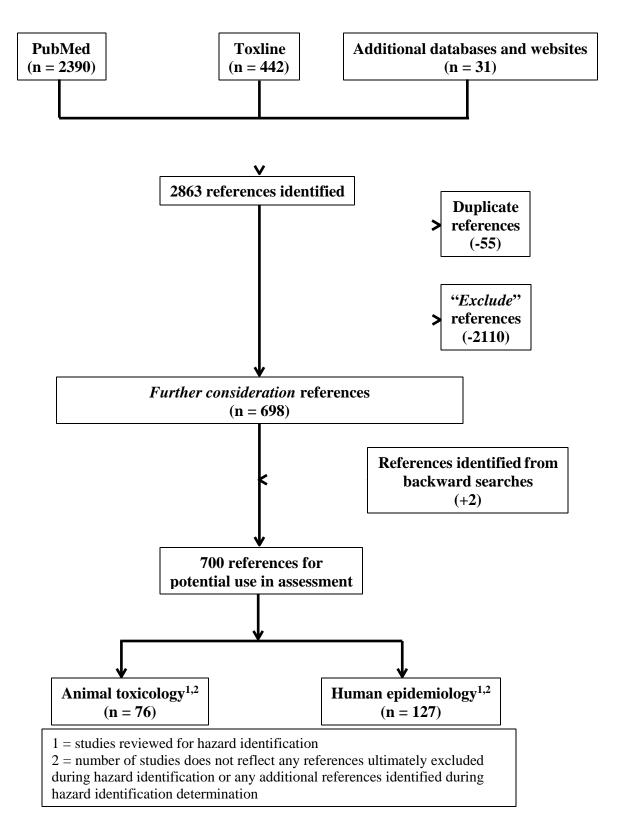


Figure A-1. Graphical representation of literature search

<u>Appendix 2: Comparison of USEPA Office of Water Health Advisory and DWOI Health-based MCL for PFOS</u>

The basis for the USEPA (2016a) Health Advisory and the recommended DWQI Health-based MCL for PFOS, and other relevant information about these two drinking water values, are compared in the table below. Additional information is provided in the text that follows the table.

Parameter	USEPA Office of Water (OW) Lifetime Health Advisory	DWQI Health-based MCL					
Drinking Water Concentration	70 ng/L	13 ng/L					
General Statement	"Protects the most sensitive	"Developed using a risk					
and Summary	populations, with a margin of protection from a lifetime of exposure."	assessment approach intended to be protective for chronic (lifetime) exposure."					
	health effects, including decreased vacce general population exposure range ever drinking water. The Target Human Serve (decreased plaque forming cell response above the exposure range in the general Therefore, the Health Effects Subcomme from drinking water may potentially poreason, it cannot be definitively concluded drinking water concentrations is protect margin of exposure. USEPA (2016a) recognizes that human of several health effects with PFOS. He human studies do not provide quantitatile levels or serum levels associated with the USEPA did not consider the possibility	as discussed in this document, PFOS is associated with several human ealth effects, including decreased vaccine response and others, within the eneral population exposure range even without additional exposure from rinking water. The Target Human Serum Level for decreased immune response decreased plaque forming cell response) in mice (22.5 ng/ml) is only slightly bove the exposure range in the general population (95 th percentile – 19 ng/ml). Therefore, the Health Effects Subcommittee concludes that additional exposure rom drinking water may potentially pose some risk of health effects. For this eason, it cannot be definitively concluded that lifetime exposure to these rinking water concentrations is protective of sensitive subpopulations with a nargin of exposure. USEPA (2016a) recognizes that human studies provide evidence of associations of several health effects with PFOS. However, USEPA concludes that the uman studies do not provide quantitative information on the exposure evels or serum levels associated with these health effects. Therefore, USEPA did not consider the possibility that health effects may result from xposures within the general population range, even in the absence of additional					
	ne most sensitive toxicological effect in ng cell response, from consideration as						
	See further discussion of these points b						
Reference Dose (RfD)	20 ng/kg/day (2 x 10 ⁻⁵ mg/kg/day)	1.8 ng/kg/day (1.8 x 10 ⁻⁶ mg/kg/day)					
	Based on decreased body weight in neonatal rats (F ₂ generation); selected based on lowest administered dose.	Based on decreased plaque forming cell response in adult male mice; selected based on lowest serum PFOS concentration.					

Interspecies conversion	Based on pharmacokinetic modeling used to predict average serum PFOS concentrations.	Based on measured serum PFOS concentrations at end of dosing period.
Estimated lifetime cancer risk at Health Advisory/Health- based MCL	Not assessed by EPA. Estimated as 2 x 10 ⁻⁵ based on DWQI cancer slope factor	Estimated as 3 x 10 ⁻⁶ based on DWQI cancer slope factor.
Relative Source Contribution Factor	20% - to account for non-drinking water exposures.	20% - to account for non-drinking water exposures.
Assumed Drinking Water Consumption	0.054 L/kg/day; 90 th percentile for lactating woman	0.029 L/kg/day; Based on default upper percentile adult assumptions: 2 L/day, 70 kg
Increase in serum PFOS concentration predicted from ongoing exposure to USEPA Health Advisory and NJ Health-based MCL (see bar graph below)	With average water consumption: The USEPA Lifetime Health Advisory is predicted to result in a serum PFOS concentration 3.7 times the U.S. general population median (CDC, 2017) With upper percentile water consumption: The USEPA Lifetime Health Advisory is predicted to result in a serum PFOS concentration 5.8 times the U.S. general population median (CDC, 2017) (Note: These calculations are explained in more detail below)	With average water consumption: The DWQI Health-based MCL is predicted to result in a serum PFOS concentration 1.5 times the U.S. general population median (CDC, 2017) With upper percentile water consumption: The DWQI Health-based MCL is predicted to result in a serum PFOS concentration 1.9 times the U.S. general population median (CDC, 2017) (Note: These calculations are explained in more detail below)
Sensitive Subpopulations	Pregnant and lactating women; bottle-fed infants. USEPA does not include women who plan to become pregnant in its definition of sensitive subpopulations, but says that states may choose to expand the sensitive subgroups to include women of childbearing age (ASDWA, 2016). However, the body burden of PFOS remains elevated for many years after exposure ceases. Therefore, if body burden is elevated prior to pregnancy, it will remain elevated during pregnancy and lactation.	As is the case for all Health-based MCLs developed by the DWQI, the Health-based MCL recommended for PFOS is intended to be protective of all individuals, including sensitive subpopulations. Sensitive subpopulations for health effects of PFOS include women who plan to become pregnant, pregnant women, lactating women, and breast-fed and bottle-fed infants.

USEPA (2016a) also calculated a Lifetime Health Advisory value for alternative exposure scenarios for the general population (adults age 21 and older) of 100 ng/L based on standard adult exposure assumptions. USEPA states that the Lifetime Health Advisory of 70 ng/L is protective for effects other than developmental toxicity, such as "liver damage, other developmental effects, and developmental neurotoxicity".

It is noted that the news media has reported that the USEPA designation of sensitive subgroups has been misinterpreted by some local authorities to mean that those not in these sensitive subpopulations may continue to drink water exceeding the USEPA Health Advisory.

<u>Discussion of differences in risk assessment approaches and conclusions between USEPA-OW and DWOI</u>

Endpoints used as basis for USEPA Office of Water (OW) Health Advisory and DWQI Health-based MCL

The primary basis for the recommended DWQI Health-based MCL is an RfD for decreased plaque forming cell response in mice (Dong et al., 2009). The DWQI Health Effects Subcommittee concluded that this immunosuppressive effect in animals is a sensitive and well-established effect of PFOS that is relevant to humans. Based on epidemiologic studies (summarized below), there is evidence that serum PFOS concentrations within the range found in the general population are associated with immunosuppressive effects (i.e., decreased vaccine response).

Although plaque forming cell response as reported by Dong et al. (2009) was the most sensitive endpoint (i.e. occurring with the lowest LOAEL) identified by USEPA for studies of greater than short-term exposure (p. 4-4 of USEPA, 2016b), USEPA did not use this endpoint as the basis of its Health Advisory. Instead, USEPA chose decreased neonatal body weight from the F_2 generation in a two-generation rat study (Luebker et al., 2005a) as the critical endpoint. While this is a valid endpoint for use in human health risk assessment, the Health Effects Subcommittee concludes that the immunotoxicity endpoint is equally valid and, importantly, more sensitive. A detailed comparison of the LOAELs for the two endpoints is provided below.

In light of the weight of evidence for the immunotoxicity of PFOS at low levels of exposure, the Health Effects Subcommittee concludes that USEPA does not make a strong case for its decision not to choose the animal immune toxicity data for this endpoint as the basis for the PFOS Health Advisory. USEPA provides the following summary statement to justify its decision not to base its Health Advisory on immunotoxicity, and specifically not on the Dong et al. (2009) study identified by the Health Effects Subcommittee:

"Taken together, the lower antibody titers associated with PFOS levels in humans and the consistent suppression of SRBC [sheep red blood cells] response in animals indicates a concern for adverse effects on the immune system. However, lack of human dosing information and lack of low-dose confirmation of effects in animals for the short-duration study precludes the use of these immunotoxicity data in setting the RfD."

The Health Effects Subcommittee agrees with USEPA that evidence for the suppression of immune response (SRBC response) in animals is "consistent." The Subcommittee also agrees with USEPA that the combination of epidemiological (human) and animal data indicates "a concern for adverse effects." Therefore, it is not clear what USEPA means by the "lack of human dosing information," or "the lack of low dose confirmation of effects in animals for short duration study," and why these statements are sufficient to preclude the use of immunotoxicity data in derivation of its Health Advisory.

Several other recent reviews by government and academic scientists have also identified decreased immune response as a sensitive and relevant endpoint for PFOS risk assessment. The National Toxicology Program (NTP, 2016) conducted a systematic review of immunotoxicity of PFOS, based on consideration of human and animal studies, along with mechanistic data. NTP (2016) concludes that exposure to PFOS is presumed to be an immune hazard to humans based on: 1) a high level of evidence that PFOS suppressed the antibody response from animal studies, and 2) a moderate level of evidence from studies in humans. NTP also considered additional, although weaker, evidence from laboratory animal studies suggesting PFOS may suppress infectious disease resistance and NK cell activity in humans. NTP stated that "the bodies of evidence indicating that PFOS suppresses multiple aspects of the immune system add to the overall confidence that PFOS alters immune function in humans."

Additionally, Minnesota Department of Health (MDH, 2017) incorporated an additional uncertainty factor for potentially more sensitive immune system toxicity into the USEPA (2016a) Reference Dose when developing its updated Reference Dose for PFOS.

Finally, two recent peer reviewed publications have identified immunotoxicity as a sensitive toxicological endpoint for PFOS. Both Lilienthal et al. (2017) and Dong et al. (2017) noted that immune system toxicity is a more sensitive endpoint than the developmental effects used as the basis for the USEPA (2016a) RfD for PFOS. Lilienthal et al. (2017) reviewed recent data on health effects of PFOS in relation to current regulations and guidance values and note that human and animal evidence suggest that low doses of PFOS cause immune system suppression. They further state that decreased immune system response from PFOS (and low-dose developmental effects of PFOA) "likely constitute a sound basis for ongoing and future regulations."

Comparison of LOAELs for decreased plaque forming cells (Dong et al., 2009) and decreased neonatal body weight (Luebker et al., 2005a)

Based on administered dose, the LOAEL for decreased plaque forming cell response used as the critical effect by the Health Effects Subcommittee was 0.083 mg/kg/day (Dong et al., 2009), whereas the LOAEL for decreased neonatal body weight (F₂ generation) used as the critical effect by USEPA was 5-fold higher (0.4 mg/kg/day maternal dose group; Luebker et al., 2005a).

Serum PFOS concentrations are more relevant than administered doses for comparison of LOAELs because serum concentrations represent the internal doses that cause toxicological effects. In Dong et al. (2009), terminal sacrifice occurred at the end of the dosing period and therefore reflects the maximum exposure in the dosed mice. The Health Effects Subcommittee used serum PFOS levels at terminal sacrifice from Dong et al. (2009) as the dose metric for Reference Dose development. The serum PFOS concentration at the LOAEL for decreased plaque forming cell response was 7,132 ng/ml.

The serum PFOS measurement reflecting the maximum exposure in the neonatal F_2 generation rats from Luebker et al. (2005a) would be the serum concentration in the F_1 dams at or close to parturition of the F_2 pups. However, Luebker et al. (2005a) did not measure maternal F_1 serum PFOS concentrations. Although more uncertain than measured maternal F_1 serum levels would have been, several other measured and modeled serum PFOS provide estimates of the serum PFOS LOAEL for decreased neonatal F_2 body weight from Luebker et al. (2005a).

- Luebker et al. (2005a) measured serum PFOS concentrations in the F₀ dams on day 21 after delivery of the F₁ offspring (i.e. the end of lactation). The serum PFOS concentration in the F₀ dams at the LOAEL (based on decreased neonatal body weight in the F₂ generation) of 0.4 mg/kg/day was **18,900 ng/ml**. This serum concentration is likely lower than that in the F₁ dams at delivery of the F₂ generation at the same dose for two reasons. First, exposure to the F₀ dams began at around 9 weeks of age, while the F₁ dams were exposed *in utero*, through lactation during neonatal life, and via gavage dosing starting at weaning. Secondly, and more importantly, serum levels were measured in the F₀ dams after 21 days of nursing rather than prior to delivery, and a considerable portion of the PFOS body burden in these dams had presumably been excreted in breast milk.
- Luebker et al. (2005b) conducted a one-generation reproductive/developmental in the same strain of rats used in the two-generation study (Luebker et al., 2005a). One of the doses in the one-generation study was the same as the LOAEL for the USEPA RfD from the two-generation study, 0.4 mg/kg/day. In the pharmacokinetic component of the one-generation study, dams were dosed from 42 days prior to cohabitation with males until the end of gestation, and serum PFOS levels were measured on GD 1, 7, 15, and 21. In

the 0.4 mg/kg/day dose group, serum PFOS levels on GD 1, 7, and 15 were about **41,000 ng/L** and represent maximum exposure to the developing offspring, while they were lower, **26,200 ng/L**, on GD 21.

(It is noted that the serum PFOS data from the two Luebker et al. [2005a, b] studies are incorrectly presented in the USEPA (2016b) PFOS Health Effects Support Document [Table 4-3]. In Table 4-3, serum PFOS data from GD 21 of the one generation study [Luebker 2005b] are incorrectly shown to be from the end of lactation [PND 21] of the two-generation study [Luebker, 2005a]. It is also incorrectly shown that serum PFOS data are not available from the one generation study, although such data were reported by Luebker et al. [2005b]).

• The USEPA Health Advisory did not use measured serum PFOS concentrations at the LOAEL to derive the Reference Dose for decreased F₂ generation neonatal body weight in Luebker et al. (2005a). Instead, the USEPA Reference Dose is based on pharmacokinetic modeling that predicts the final serum PFOS concentration and final predicted area under the curve (AUC) for serum concentration versus time (Table 4-3, USEPA, 2016b). The average PFOS serum concentration was obtained by dividing the AUC by the study duration. For decreased neonatal body weight in Luebker et al. (2005a), the average serum PFOS concentration at the LOAEL was predicted to be 25,000 ng/ml (Table 4-6, USEPA, 2016b).

The Health Effects Subcommittee notes that there are inherent uncertainties in the use of a pharmacokinetic model to predict serum concentrations and the AUC in general. There is also additional uncertainty in the use of this model to predict serum PFOS concentrations for Luebker et al. (2005a) because the model is based on non-pregnant rats, but was used by USEPA to predict serum PFOS concentrations in pregnant rats used in Luebker et al. (2005a).

Notwithstanding the uncertainties discussed above, the measured and modeled serum PFOS concentrations that provide estimates of the LOAEL for decreased neonatal body weight in the F_2 generation (Luebker et al., 2005a) are several-fold higher than the serum concentration at the LOAEL in Dong et al. (2009) of 7,132 ng/L. In summary, decreased plaque forming cell response in Dong et al. (2009) is a more sensitive endpoint than the decreased neonatal body weight in the F_2 generation in Luebker et al. (2005a).

Consideration of data from human epidemiologic studies

Both the DWQI Health Effects Subcommittee and the USEPA Office of Water conducted comprehensive reviews of relevant epidemiology studies investigating possible associations between PFOS exposure and adverse health effects. Both risk assessments used epidemiology data in support of the toxicological endpoints selected as the basis for RfD development. USEPA stated that studies of low birth weight are consistent with the critical endpoint of decreased neonatal weight in rats, and the Health Effects Subcommittee identified studies of

vaccine antibody levels that are consistent with the critical endpoint of suppression of cellular immune response as measured by a decrease in plaque forming cell response in mice.

Neither assessment used human epidemiological data as the quantitative basis for derivation of a Reference Dose. USEPA states that, while human studies are useful for hazard identification, they cannot be used quantitatively because the PFOS exposures at which the associations were observed are unknown or highly uncertain. In contrast, the Health Effects Subcommittee agrees that the human data have limitations that preclude their use as the primary basis for risk assessment, but it does not agree with USEPA that the serum PFOS concentrations and PFOS exposures associated with human health effects are highly uncertain or unknown.

USEPA (2016a) provides the following reasons for its conclusions:

- Serum levels may have decreased prior to when the blood sample was taken. Therefore, the effects may have been due to earlier exposures that were higher than indicated by the measured serum PFOS levels.
 - o It is unlikely that this is a major source of uncertainty in evaluation of exposure since PFOS serum levels decrease slowly (half-life of several years) and do not fluctuate in the short term. Importantly, the most notable effect associated with human exposure to PFOS is decreased vaccine response in children, which may be associated with prenatal exposure (i.e. maternal serum PFOS levels) or serum PFOS levels in the child at various ages. For effects resulting from exposure at these lifestages, the serum PFOS level was measured at or close to the timepoint at which the effect was initiated. Additionally, if effects were actually due to previous exposures that were higher than those at the time of blood sampling, it would mean that the detrimental effects of PFOS are persistent and do not resolve when exposures decrease, which would increase the level of concern about the effects.
- PFOS measured in serum may result from metabolism of precursors to PFOS rather than direct exposure to PFOS itself.
 - This statement is correct but this does not appear to be a valid reason to dismiss consideration of serum PFOS levels as a measure of PFOS exposure. Effects of PFOS would be the same regardless of whether the source of exposure is PFOS itself or metabolism of precursors to PFOS.
- Co-exposure to other PFCs, even if accounted for as a potential confounding factor in the statistical analysis, increase uncertainty about observed associations of health endpoints with PFOS.
 - However, co-exposure to other chemicals is a general issue for all human studies of exposure to environmental contaminants and does not preclude evaluation of the levels of PFOS exposure associated with health endpoints.

In considering immunotoxicity in humans, USEPA cites four epidemiological studies that investigated the association of vaccine response with serum PFOS concentration (USEPA, 2016a, b). All of these studies were also reviewed by the Health Effects Subcommittee and discussed in this document. In one study of a population with general population level exposure to PFOS, with all of the children initially vaccinated at 3 months old (Grandjean et al., 2012), PFOS in children's serum measured at 5 years of age (prebooster) was significantly associated with a decrease in their tetanus antibody levels at age 5, but not at age 7 follow-up, following a booster vaccination (28.5% decrease for each doubling of PFOS concentration). PFOS in mothers' serum was significantly associated with a decrease in children's diphtheria antibody levels at age five following a booster vaccination (38.6% decrease for each doubling of PFOS concentration) and child's PFOS serum concentration was significantly associated with decreased response at age 7. Of particular concern, the risk of having diphtheria antibody levels from the initial vaccination that were below the level of clinical protectiveness was significantly associated with both maternal and 5 year-old children's elevated PFOS levels. In another study (Granum et al., 2013) with general population levels of PFOS exposure, mothers' serum PFOS concentration was significantly associated with a decreased level of rubella vaccine in their children. In a third study of general population level PFOS exposure (Stein et al., 2016; NHANES, U.S. population) children's PFOS serum concentration was significantly associated with decreased antibodies to rubella and mumps (13.3 and 5.9% decreases, respectively). PFOS exposure was not associated with decreased immune response to any type of vaccine in only one study (Looker et al., 2014). This study evaluated response to only the influenza vaccine and included adults rather than children. The lack of association of PFOS with influenza vaccine in this study is consistent with the lack of association found in the only other study that evaluated influenza vaccine in children (Granum et al., 2013).

As mentioned above, USEPA notes correctly that similar relationships were found for other PFCs in some of these studies, and that the decrease in immune protectiveness cannot necessarily be attributed to PFOS alone. Nonetheless, the results of these human studies are consistent with the PFOS-specific animal studies of decreased immune response.

Estimation of cancer risk from PFOS in drinking water

Both USEPA and DWQI characterized PFOS as having "suggestive evidence of carcinogenic potential" under the USEPA's 2005 Guidelines for Carcinogen Risk Assessment. Neither USEPA, nor DWQI used cancer risk as the basis of the drinking water Health Advisory or Health-based MCL.

USEPA did not derive a cancer slope factor for PFOS. It stated that, for chemicals categorized as having suggestive evidence of carcinogenic potential, "a quantitative estimate of risk is generally not performed unless there is a well-conducted study that could serve a useful purpose by providing a sense of the magnitude and uncertainty of potential risks, ranking potential hazards, or setting research priorities. In the case of PFOS, the existing evidence does not support a strong correlation between the tumor incidence and dose to justify a quantitative assessment."

DWQI agrees that the estimated cancer risk for PFOS based on the chronic rat study is too uncertain to use as the basis for a Health-based MCL. However, DWQI developed a cancer slope factor to provide an estimated cancer risk to provide context for the Health-based MCL based on a non-cancer endpoint. The cancer slope factor of 8.4 x 10⁻⁶ (ng/kg/day)⁻¹ developed by DWQI is based on the incidence of hepatocellular tumors in female rats the chronic study of Butenhoff et al. (2012).

The estimated lifetime cancer risk at the DWQI Health-based MCL of 13 ng/L, based on this slope factor, is 3×10^{-6} , which is close to the target risk goal for New Jersey MCLs of 1×10^{-6} . Based on the DWQI cancer slope factor and exposure assumptions, the lifetime cancer risk at USEPA's Health Advisory of 70 ng/L is estimated as 2×10^{-5} lifetime cancer risk.

Assumed water consumption rate

The USEPA based its water consumption rate of 0.054~L/kg/day on the 90^{th} percentile for lactating woman. DWQI's assumed water consumption rate of 0.029~L/kg/day used default adult exposure assumptions of 2~L/day and a 70~kg body weight, which is intended to represent an upper percentile rate for the general population. Thus, the USEPA consumption rate is 1.9 times larger than that used by DWQI. For purposes of comparison, if USEPA had applied the water consumption rate used by DWQI, the resulting USEPA Health Advisory water concentration would be proportionally larger (1.9~x~70~ng/L = 133~ng/L).

Consideration of increases in serum PFOS levels from exposure to PFOS in drinking water

As noted in the table at the beginning of this Appendix, a clearance factor was used by USEPA to relate PFOS exposures to human PFOS serum levels. This factor can be can be used to predict increases in serum PFOS from ongoing drinking water exposures. The bar graph below (Fig. A-2) shows the predicted increases in serum PFOS levels from ongoing exposure to PFOS in drinking water at the USEPA (2016a) Health Advisory (70 ng/L) and the DWQI Health-based MCL (13 ng/L). The predictions shown are based on the recommended mean ingestion rate of 0.016 L/kg/day from the USEPA Exposure Factors Handbook (USEPA, 2011; Table 3-1) and the upper percentile ingestion of 0.029 L/kg/day used by DWQI to develop the Health-based MCL.

As part of its toxicokinetic model for PFOS, USEPA (2016b) used the clearance factor (8.1 x 10^{-5} L/kg/day = 8.1 x 10^{-2} ml/kg/day) to convert NOAEL and LOAEL serum levels from laboratory animals to human equivalent doses. The NOAEL and LOAEL serum PFOS levels in these animal studies ranged from $6.26 - 38 \,\mu$ g/ml ($6,260 - 38,000 \,n$ g/ml) (HEDs; Section 4-14 of USEPA, 2016b). USEPA (2016b, p. 2-23) discussed that this clearance factor relates human PFOS dose to human PFOS serum level, including from drinking water exposure. USEPA (2016c; 2016d) also used the clearance factor for PFOA in the same way as described above for

PFOS - i.e. to convert NOAEL and LOAEL serum PFOA levels from animal studies to HEDs in an analogous toxicokinetics model for PFOA.

With respect to PFOA, USEPA (2016e) stated that, "...the clearance equation cannot justifiably be utilized to predict serum values for humans using a guideline value (70 ppt or 14 ppt) that is well below the range of doses and serum values utilized in the derivation of the [toxicokinetic]model." These USEPA conclusions apply equally to the use of the PFOS clearance factor to estimate human serum PFOS concentrations from intake of PFOS in drinking water.

The Health Effects Subcommittee does not understand the reasoning underlying this statement from USEPA. As discussed in detail in the <u>Toxicokinetics</u> section and Appendix 3 for PFOS (and in DWQI, 2017 for PFOA), the clearance factors for PFOS (and PFOA) were developed from human serum PFOS (or PFOA) data within a range that is more relevant to drinking water exposures than to the much higher range of serum PFOS (or PFOA) levels from animal studies to which it was applied by USEPA (2016e). Furthermore, the PFOS clearance factor is in agreement with estimates from other similarly exposed human populations using both toxicokinetic modeling and direct measurement of exposure media.

Although the Health-based MCL is derived on the basis of animal data, as discussed above, there is substantial evidence from epidemiology studies that decreased vaccine response occurs at levels of serum PFOS prevalent in the general population. As shown in Figure A-2 below, exposure to PFOS in drinking water at the USEPA Health Advisory of 70 ng/L is predicted to increase serum PFOS concentrations to the upper end of this range and higher. Therefore, the magnitude of elevations in serum PFOS levels expected from ongoing exposure to PFOS in drinking water at the USEPA Health Advisory level are not desirable and may not be protective of public health.

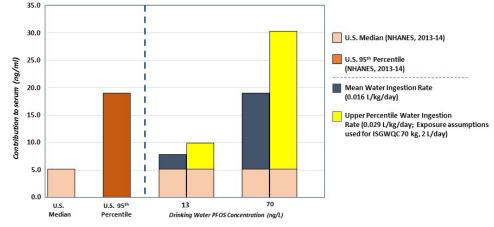
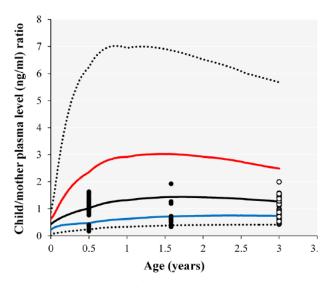



Figure A-2. Median and 95th percentile PFOS serum concentrations in the U.S. population (left of dotted line; from NHANES 2013-2014; CDC, 2017). Increases in the median U.S. serum PFOS concentration (right of dotted line) predicted from mean and upper percentile consumption of drinking water for PFOS concentrations in drinking water at the DWQI Health-based MCL (13 ng/L) and the USEPA Health Advisory (70 ng/L) levels.

Finally, as discussed elsewhere in this document, several studies have shown that serum PFOS concentrations in breastfed infants, while lower than maternal levels at birth, increase several fold during the first few months of life to levels which exceed those in the mother (see figure below). Exposures to infants who consume formula prepared with contaminated water are also highest during this time-period, and serum PFOS levels remain elevated for the first several years of life (see figure below). Therefore, increases in serum PFOS levels in infants and children with direct or indirect (via breast milk) exposure to drinking water contaminated with PFOS are expected to be several-fold higher than those shown in the bar graph above.

USEPA recognizes that lactating women and bottle-fed infants are sensitive subpopulations for exposure to PFOS in drinking water. The Health Effects Subcommittee also concludes that the elevated exposures during infancy and early childhood are of particular concern because sensitive endpoints for health effects, including decreased immune response, may result from shorter term higher exposures early in life. Additionally, the Health Effects Subcommittee concludes that women who may become pregnant should also be included as sensitive subpopulations, because the body burden of PFOS remains elevated for many years after exposure ceases. Therefore, if serum PFOS levels are elevated when a woman becomes pregnant, they will remain elevated during pregnancy and lactation.

From Verner et al. (2016). Modeling simulation of the ratio of PFOS in blood plasma in breast fed infants/children to plasma concentration in mother. Black line - 50th percentile. Blue line - 5th percentile. Red line - 95th percentile. Dotted lines - minimum and maximum values.

Citations

ASDWA. 2016. Association of State Drinking Water Administrators. Information for States about the New Health Advisories for PFOA and PFOS. Presented by USEPA Office of Water. May 23, 2016. https://www.youtube.com/watch?v=QoBBjLeOi_s&feature=youtu.be

Dong GH, Zhang YH, Zheng L, Liu W, Jin YH, He QC. 2009. Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity in adult male C57BL/6 mice. Arch Toxicol. 83:805-815.

Dong Z, Bahar MM, Jit J, Kennedy B, Priestly B, Ng J, Lamb D, Liu Y, Duan L, Naidu R. 2017. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid. Environ Int. 105:86-94

DWQI. 2017. New Jersey Drinking Water Quality Institute. Health-Based Maximum Contaminant Level Support Document: Perfluorooctanoic Acid (PFOA). New Jersey Drinking Water Quality Institute Health Effects Subcommittee. February 15, 2017.

Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, et al. 2012. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA. 307:391-397.

Granum B, Haug LS, Namork E, Stolevik SB, Thomsen C, Aaberge IS, et al. 2013. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol. 10:373-379.

Lilienthal H, Dieter HH, Hölzer J, Wilhelm M. 2017. Recent experimental results of effects of perfluoroalkyl substances in laboratory animals - Relation to current regulations and guidance values. Int J Hyg Environ Health. 220:766-775.

Looker C, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, et al. 2014. Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicol Sci. 138:76-88.

Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL. 2005a. Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology. 215:126-148.

Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. 2005b. Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharmacokinetic parameters. Toxicology. 215:149-169.

NTP. 2016. National Toxicology Program. Systematic review of immunotoxicity associated with exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS). September 2016. https://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf Accessed January 24, 2017.

Stein CR, McGovern KJ, Pajak AM, Maglione PJ, Wolff MS. 2016. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey. Pediatr Res. 79:348-57.

USEPA. 2005. United States Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum, USEPA, Washington, DC. EPA/630.P-03/001F, March2005.

USEPA. 2011. Exposure Factors Handbook 2011 Edition (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F.

USEPA 2016a. United States Environmental Protection Agency. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-005. May2016.

USEPA 2016b. United States Environmental Protection Agency. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-002. May2016.

USEPA. 2016c. United States Environmental Protection Agency. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water. May 2016.

USEPA. 2016d. United States Environmental Protection Agency. Health Effects Support Document for Perfluorooctanoic Acid (PFOA). Office of Water. May 2016.

USEPA. 2016e. United States Environmental Protection Agency. U.S. Environmental Protection Agency Response to New Jersey Drinking Water Quality Institute (DWQI) Health Effects Subcommittee Draft Health-Based Maximum Contaminant Level Support Document: Perfluorooctanoic Acid (PFOA) Appendix 2 – Comparison of USEPA Office of Water Health Advisory and DWQI Recommended Health-Based MCL for PFOA. November 21, 2016. http://www.state.nj.us/dep/watersupply/pdf/comment5.pdf. Accessed 2/6/17

Verner, M.A., Ngueta, G., Jensen, E.T., Fromme, H., Völkel, W., Nygaard, U.C., Granum, B., Longnecker, M.P. 2016. A simple pharmacokinetic model of prenatal and postnatal exposure to perfluoroalkyl substances. (PFASs). Environ Sci Technol. 50: 978-86.

Appendix 3: Alternate Derivation of the PFOS-Specific Clearance Factor Basis for USEPA (2016) clearance factor used in Health-based MCL development

A chemical-specific clearance factor (CL) of 8.1 x 10⁻⁵ L/kg/day (8.1 x 10⁻² ml/kg/day) that relates PFOS serum levels to dose in humans at steady-state was developed by USEPA (2016) and was used in development of the Health-based MCL. CL relates administered PFOS dose to serum PFOS level in humans, as follows:

Dose
$$(ng/kg/day) = Serum Level (ng/ml) \times CL (ml/kg/day)$$

The clearance factor was based on the human half-life $(t_{1/2})$ from a study of retired workers (Olsen et al., 2007) and the volume of distribution (V_d) from Thompson et al. (2010a, b) using the equation below

```
CL = V_d \ x \ (\ln 2 \ / \ t_{1/2}) Where: V_d = 0.23 \ L/kg \ln 2 = 0.693 t_{1/2} = 5.4 \ years = 1,971 \ days
```

The only direct measure of the human serum $t_{1/2}$ of PFOS is from retired workers who were occupationally (i.e. highly) exposed to PFOS and are older than the general population. It is unknown whether the $t_{1/2}$ of PFOS is age and/or concentration dependent. If that were the case, the estimate of $t_{1/2}$ from a highly exposed older population could overestimate the $t_{1/2}$ in the general population which includes younger individuals and have lower exposure.

Thompson et al. (2010a,b) based the PFOS V_d value on a previously developed V_d for PFOA of 0.17 L/kg that had been calibrated with human data. The PFOA V_d was adjusted by 35%, based on the observation of Andersen et al. (2006) that the V_d for PFOS can be 20 to 50% greaterthan for PFOA in monkeys. It is noted that, although this V_d estimate is supported by the results of Thompson et al. (2010a) and Egeghy and Lorber (2011), the use of the PFOA V_d as a surrogate measure of V_d for PFOS and the adjustment of the PFOA V_d on the basis of a cross-species analogy are sources of uncertainty in its derivation.

Clearance factor developed with alternative approach

CL can also be developed with an alternate derivation that does not require the estimation of V_d or the $t_{1/2}$ from retired workers, using the relationship between the intake dose and the associated serum concentration. This alternate derivation produces an estimate of CL that is in close agreement with the value derived by the USEPA (2016). The alternative derivation is:

As above:

Dose $(ng/kg/day) = Serum Level (ng/ml) \times CL (ml/kg/day)$

Therefore:

CL (ng/kg/day) = Dose (ml/kg/day) / Serum level (ng/ml)

Dose (ng/kg/day):

Egeghy and Lorber (2011; cited by USEPA (2016) as support for its estimated V_d), estimated the daily average PFOS exposure from all sources in the U.S. population (ng/day) to account for the measured serum PFOS concentration in the U.S. population as reported in the NHANES database. These estimates were based on estimates of PFOS in different media from different sources combined with estimates of media-specific exposure rates of (e.g. food intake, inhalation rate, and house dust ingestion). The estimated the geometric mean value of total PFOS intake for a typical adult (i.e., not exposed to a specific source of contamination) was 160 ng/day.

Assuming the standard risk assessment default for adult body weight of 70 kg, the intake of 160 ng/kg/day is equivalent to a dose of (160 ng/day)/70 kg = 2.3 ng/kg/day.

Serum concentration (ng/ml):

The estimate of total PFOS exposure in the U.S. adult population developed by Egeghy and Lorber (2011) was based on a large number of studies of PFOS in various media published between 2000 to 2008. Thus, the most appropriate estimate serum PFOS concentration to combine with this estimated daily PFOS intake is the geometric mean serum PFOS concentration in the general adult (i.e, \geq 20 years old) U.S. population reported by NHANES for that period. NHANES provides data for the period from 1999-2010 mostly in one year in intervals (CDC, 2017).

Based on the NHANES data for adults reported between 2000-2008 (1999-2000, 2003-04, 200506, 2007-08), the average of the geometric mean serum PFOS concentrations is **20.6 ng/ml.** (Note that the NHANES data for this range also includes data for samples collected in 1999).

Clearance factor

From this estimates of daily intake (dose) and geometric mean serum PFOS concentrations given above, CL can be estimated as (2.3 ng/kg/day)/(20.6 ng/ml) = **0.11 ml/kg/day**. This estimate is in close agreement (i.e. 36% higher) with the CL of 0.081 ml/kg/day developed by USEPA (2016).

It is noted that the CL of 0.11 ml/kg/day from the above alternate derivation is uncertain for several reasons. The value used for total intake is based on estimates of PFOS occurrence and exposure rates for different media. The serum PFOS concentration in the U.S. population has been decreasing since at least 1999 (when NHANES began publishing estimates of serum PFOS

concentrations in the U.S. population), and there is some uncertainty as to whether NHANES data from 1999-2008 versus 2003-2004 are most appropriate to compare to the total intake estimate of Egeghy and Lorber (2011). Finally, the body weight assumed for this calculation (70 kg) is a default value, and body weight may be correlated with PFOS intake and/or t_{1/2}.

Conclusion

The close agreement of the CL of 0.11 ml/kg/day produced by this alternate approach which is independent of estimates of V_d and $t_{1/2}$ with the USEPA (2016) CL of 0.081 ml/kg/day provides support for use of the USEPA value as a reasonable estimate of the CL for PFOS.

References

CDC. 2017. Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, Volume 1. https://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf

Egeghy PP, Lorber M. 2011. An assessment of the exposure of Americans to perfluorooctane sulfonate: a comparison of estimated intake with values inferred from NHANES data. J Expo Sci Environ Epidemiol. 2011 Mar-Apr;21(2):150-68.

Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010a. Use of pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonate. Environment International. 36:392-397.

Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010b. Corrigendum to: Use of pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonate. Environment International. 36:647-648.

USEPA. 2016. United States Environmental Protection Agency. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). Office of Water. EPA 822-R-16-002. May 2016.

Appendix 4: Animal evidence tables

Reference and Study Design		Results	Comment				
Abbott et al. (2009a)	Internal PFOS conc	entrations: offspring	Major Limitations:				
Species and strain:	Internal PFOS conc	entrations in offspring		 Serum PFOS measurements at PND15 not informative for 			
Mice, 129S1/SvImJ wild type (WT) and PPAR alpha knockout (KO) F0 age not reported	WT	Number of pups examined	Serum PFOS (ng/mL)	endpoints (e.g., maternal weight at GD18) assessed at other time points			
Group size: Varied by endpoint	Control 4.5 mg/kg/day 6.5 mg/kg/day	8 6 4	7.39±2.92 24,100±1820 28,700±2610	Other comments: • Species and strains appropriate for endpoints assessed			
Test article and vehicle: PFOS (potassium salt, >91%	8.5 mg/kg/day 10.5 mg/kg/day KO Control	8 6 8	40,700±2680 41,200±3070 6.88±1.57	Sample sizes ranged from generally ≥10 dams for maternal endpoints to ≤10 for some neonatal			
pure) in 0.5% Tween 20 Route of exposure:	8.5 mg/kg/day 10.5 mg/kg/day	7	42,800±3600 52,400±3620	effects (e.g., body and liver weights)			
Oral gavage	Concentrations repo	orted at means ± SEM determined at PND1	 Oral gavage provided direct exposure to PFOS Dose selection based on previous 				
Exposure levels: WT: 0, 4.5, 6.5, 8.5, 10.5 mg/kg/day KO: 0, 8.5, 10.5 mg/kg/day See Results column for serum PFOS concentrations at PND 15, only pup data reported herein Exposure regimen: GD15 to GD18	gain from GD15 in No statistically sign and relative liver Reproductive outco No statistically significant sites, total number	gnificant effect on wei to GD18 in both WT a gnificant effect on boo weight on PND15 in b mes gnificant effect on nur er of pups at birth (alive) from implantation to	 knowledge of potential strain (129S background) sensitivity to perfluorinated chemicals Duration of exposure based on previous observations of postnatal death from gestational exposure to PFOS; however, this duration may not identify effects that might arise from exposures occurring earlier in gestation Number of doses (i.e., 2) for KO exposures do not allow for determining low-dose effects Quantitative data reporting Endpoint ascertainment used standardized assessment of 				

Neonatal effects

- No statistically significant effect on pup birth weight, pup weight on PND15, and weight gain from PND1 to PND15 in both WT and KO
- No statistically significant effect on pup body weight at PND15 in both WT and KO
- Statistically significant (p<0.01) trend for increase in absolute liver weight in WT at PND15; no effect on absolute liverweight in KO at PND15
- Statistically significant trend for increase in relative liver weight in WT (p<0.001) and KO (p<0.01) at PND15
- Statistically significant increase in relative liver weight with 10.5 mg/kg in WT (p<0.001) and KO (p<0.05) compared to corresponding controls at PND15
- Most postnatal effects occurred by PND2

Percentage postnatal survival on PND15							
	WT	KO					
Control	65%±10	84%±9					
	(n=16) ^a	(n=12)					
4.5 mg/kg/day	45%±14 ^b	NA					
	(n=8)	INA					
6.5 mg/kg/day	55%±6	NA					
	(n=7)	INA					
8.5 mg/kg/day	43%±9 ^b	56%±12 ^b					
	(n=20)	(n=13)					
10.5 mg/kg/day	26%±9 ^b	62%±8 ^b					
	(n=17)	(n=14)					

a = number (n) of pups surviving at PND15

b = p<0.001, compared to corresponding controls

NA = not applicable

Postnatal development

Delay in both eye opening in WT (PND13) and KO (PND14)

mortality, body and organ weights, and developmental milestone

Reference and Study Design Results Comment Butenhoff et al. (2009) Maternal effects: body weight **Major Limitations:** No statistically significant effect on body weight at GD0, GD20, Internal PFOS concentrations not Species and strain: or PND1 as well as in change in body weight (from GD0 to determined Rats, Crl:CD (SD) GD20 and from PND1 to PND21) Lack of histopathology Males and females (virgin) Note: Based on graphically reported data, statistically mated at ~12 weeks of age significant (p<0.05 or p<0.01) reduction in maternal body Other comments: weight with 1.0 mg/kg/day between PND4 and 21 compared to Species and strain appropriate for **Group size:** controls endpoints assessed 4 groups (n = 25 in each) Sample size ~25 per dose provided Maternal body weight at PND21 good statistical power Test article and vehicle: PFOS (mg/kg/day) Oral gavage provided direct PFOS (potassium salt, 86.9% maternal exposure to PFOS 0 0.1 0.3 1.0 pure) in 0.5% Tween 20 25 23 25 24 Sample size Doses selected based on previous 365 Body weight (g) 365 363 351* observations of neonatal toxicity Route of exposure: * p < 0.05but represented a narrow dose Oral gavage range Duration of exposure lasted length Maternal effects: food consumption **Exposure levels:** of aestation No statistically significant difference between exposed and 0, 0.1, 0.3, 1.0 mg/kg/day Number of exposure levels (control controls groups for: plus 3 doses) were standard and o relative food consumption GD0 to 20 **Exposure regimen:** allowed for determining any dose- absolute food consumption PND1 to 21 GD0 to PND20 dependent effects relative food consumption PND1 to 21 Qualitative and quantitative data Maternal absolute food consumption GD0 to 20 clearly reported Endpoint ascertainment used PFOS (mg/kg/day) 0 1.0 standardized and objective 0.1 0.3 assessment of morphological, 25 23 25 24 Sample size observational, and behavioral Food 25 24 24 23* endpoints consumption (g/rat/d) = p < 0.05Maternal effects: reproductive No statistically significant effect on number of litters, length of gestation, implantation sites, and unaccounted sites (potential

resorption)

Maternal effects: internal macroscopic examination

 No treatment-related findings in dams with failure to deliver or dams necropsied on PND21

Neonatal effects

- Statistically significant (p<0.05) increase in body weight at vaginal patency and body weight at balanopreputial separation with 0.1 mg/kg/day compared to controls
- No statistically significant differences for delivered litters; pups born per litter; live litter size PND0; % males per litter at birth; % survival PND0 to 4; % survival PND4 to 21; pup weight (male and female separately) at PND1, 21, and 72; age at vaginal patency; and age at balanopreputial separation

Offspring effects: sensory and behavioral outcomes

- Functional observation battery (observation on PND4, 11, 21, 35, 45, 60)
 - Statistically significant (p<0.05) reduction in hind limb grip strength with 1.0 mg/kg/d (males only) on PND21 only; mean value for this group was stated to be within historic control range
- Locomotor activity (data presented graphically only, cumulative daily counts)
 - Statistically significant (p<0.05) increase with 0.3 and 1.0 mg/kg/day (males only) at PND17 compared to concurrent controls
 - Statistically significant (p<0.05) increase with 1.0 mg/kg/day (females only) at PND21 compared to concurrent controls
- Acoustic startle response
 - o No statistically significant differences between groups
- Biel maze swimming
 - $\circ \quad \text{No statistically significant differences between groups} \\$

Offspring effects: brain morphology (PND21 and 72)

 No statistically significant dose related effects on brain weight, brain length, and brain width

Reference and Study Design	Results								Comment			
Butenhoff et al. (2012)	Internal PFOS concentration Note: PFOS liver concentration data determined by authors but are not shown								Major Limitations: • Data reporting is			
Species and strain: Rats, Sprague-Dawley	herein					-			inadequateIncidence of non-			
(Crl:CD(SD)ICS) Males and females	Serum PF0	OS con	centrations	(ug/mL)	Dietary	PFOS (pp	ım)		neoplastic (and apparentl			
~41 days old at start of treatment	Week of sampling	Sex	0	0.5	2	5	20	20 ppm (recovery)	neoplastic effects) are calculated on the basis of the sum of intermediate			
Group size:	4	M F	< LOQ 0.026	0.91 1.61	4.33 6.62	7.57 12.60	41.80 54.00	-	sacrifices, term sacrifices, and unscheduled mortality.			
For entire exposure duration:	14	M F	< LOQ 2.67	4.04 6.86	17.10 27.30	43.90 64.40	148.0 223.0	-	If adverse effects			
60 to 70/sex/exposure group	53	M	0.025	-	-	-	146.0 (4)	-	(including tumors) are time dependent and occur with			
For recovery group (20 ppm only): 40/sex	102	F M	-	-	-	-	-	-	greater frequency with longer durations of			
Appears that dose groups had		F	-	-	20.20 (9)	-	-	-	exposure, calculation of incidences based on			
(initially) 60 rats per group excluding those for interim	105	М	0.012 (11)	1.31 (10)	7.60 (17)	22.50 (25)	69.3 (22)	-	inclusion of examination of intermediate sacrifices and			
sacrifice		F	0.084 (24)	4.35 (15)	-	75 (15)	233 (25)	-	unscheduled mortality will result in an underestimate			
Test article and vehicle:	106	M	-	-	-	-	-	2.42 (10) 9.51 (17)	of the full-term incidence.			
PFOS (potassium salt, 86.9% pure), acetone vehicle Route of exposure:	Values are LOQ = lim (week 14)	e mear						046 ug/mL	Rats (10/dose group) were interim sacrificed at 52 weeks. Also, 5 rats at 0.5			
Dietary	n=5 unles	s spec		renthesis					and 5 ppm diets were sacrificed at weeks 4 and 14. This appears to			
Exposure levels:	C				L 405\			-	account for variable			
0, 0.5, 2, 5, 20 ppm	CumulativEstima		rtality (thro			er model			numbers (60 or 70) per dose group (i.e., 60 per			
See Results column for serum PFOS concentration		ns cons	sisted of la	irge, mott		nscheduled deaths): pathological d, or diffusively dark livers (in 2/3 males			dose group designated for full term exposure). However, this is not clear. Organ weight changes are only provided as			

Exposure regimen:

103 to 104 weeks (depending on mortality)

For recovery exposure, 20 ppm diet for 52 weeks followed by control diet until termination at week 104

10 rats/group sacrificed at 52 weeks

10 rats/group (0.5 and 5 ppm groups) sacrificed at weeks 4 and 14

Related studies:

Seacat et al. (2003)

Estimated probability of mortality through 105 weeks in males										
		Dietary PFOS (ppm)								
	0	0 0.5 2 5 20 20 (recovery)								
Sample size	70	60	60	60	70	40				
Estimated mortality *	0.778	0.800	0.660	0.500	0.565	0.750				
p-value	-	0.98	0.18	0.01	0.03	0.74				

^{*} Estimate appears to take interim sacrifices into account based on Kaplan-Meier model

Bold text = statistically significant (p<0.05) from controls After 105 weeks of exposure, appears to be statistically significant (p-trend = 0.0005) decrease across dose groups (excluding 20 ppm recovery groups

Estimated probability of mortality through 105 weeks in females									
			Dietary	PFOS (pp	om)				
	0	0.5	2	5	20	20			
		(52 weeks							
						recovery			
Sample size	70	60	60	60	70	40			
Estimated mortality *	0.520	0.700	0.820	0.700	0.498	0.575			
p-value	-	0.17	0.002	0.23	0.86	0.94			

^{*} Estimate appears to take interim sacrifices into account based on Kaplan-Meier model

Bold text = statistically significant (p<0.05) from controls

Food consumption

 Overall mean daily food intake increased linearly with PFOS dose (R²=0.9999 for males and females), statistics not provided

Body weight

 No statistically significant differences in final body weights between exposure groups and controls

Note: statistically significant decrease in interim body weights with 20 ppm Note: statistically significant decrease in body weights between weeks 3 to 61 with 20 ppm for recovery females, body weights recovered on control diet comparisons of controls vs. 20 ppm group.

Other comments:

- Species and strain appropriate for endpoints assessed
- Sample size (n) is overall reasonably large, but sample size varies throughout with some sample sizes (e.g., organ weight), marginal. Also, there is variability in n among dose groups whose origin is not clear.
- Dietary exposure allows for PFOS to interact with tissues from the oral cavity to the stomach
- Dose selection based on previous observations of body weight and liver effects in rats (Seacat et al. 2003)
- Chronic duration of exposure
- Number of exposure levels would allow for determining any dose-dependent effects, recovery groups included
- Internal PFOS concentrations determined
- Endpoint ascertainment used standardized assessment of mortality, body and organ weights,

Organ weight

Note: Data in table are from the Supplementary data tables of Butenhoff et al. (2012), which only present data for significant differences between controls and 20 ppm groups

Organ weight and organ weight ratios (to body and brain weights) following 52 weeks of exposure

			Males (n=9)	Females (n=10)			
Organ	Dose group (ppm)	Organ wt (g)	Organ wt/body wt (%)	Organ wt/brain wt (%)	Organ wt (g)	Organ wt/body wt (%)	Organ wt/brain wt (%)	
Left adrenal	0 20				0.0501 0.0311		0.0235 0.0141	
Right adrenal	0 20						0.0172 0.0144	
Brain	0 20					0.5376 0.6752		
Left kidney	0 20					0.3357 0.4149		
Right kidney	0 20					0.3498 0.4193		
Liver	0 20	20.028 26.632	2.811 4.004	8.613 11.366		2.803 4.205		
Spleen	0 20	0.9792 0.8287	0.1382 0.1252	0.4208 0.3529		0.1368 0.1650		
Left thyroid (w parathyroid)	0 20	0.0246 0.0195		0.0246 0.0083				

Mean weight report (standard deviations not reported herein)
All data presented here are statistically significant differences between controls and 20 ppm at p≤0.05

histopathology, and other endpoints

Note: Due to conflation of interim and term data in outcome reporting both significance and doseresponse for term (i.e., chronic) outcomes are not interpretable.

^{*} Note: No statistically significant differences from controls in right thyroid (with parathyroid) data with 20 ppm for any measure

Clinical chemistry

Note: data presented graphically only

Serum ALT (measured at weeks 4, 14, 27, 53 only)

 Statistically significant (p≤0.05) increase with 20 ppm (males only) at weeks 14 and 53 compared to controls, apparent borderline statistically significant increase at week 27

Serum AST (measured at weeks 4, 14, 27, 53 only)

 Statistically significant (p≤0.05) decrease with 20 ppm (females only) at week 4 compared to controls

Serum total cholesterol (measured for all time points)

- Statistically significant (p≤0.05) decrease in males with 20 ppm at weeks 14, 27, and 53 (but not at terminal sacrifice) compared to controls
- Statistically significant (p≤0.05) decrease in females with ≥2 ppm at week 27, apparent borderline statistical significance at week 53

Serum glucose (measured at weeks 4, 14, 27, 53 only)

- Statistically significant (p≤0.05) decrease in males with 20 ppm at weeks 14 and 53 compared to controls
- Statistically significant (p≤0.05) decrease in females with ≥2 ppm at week
 53

Serum urea nitrogen (measured at weeks 4, 14, 27, 53 only)

- Statistically significant (p≤0.05) increased in males with 20 ppm at weeks 14 and 27 or ≥2 ppm at week 53 compared to controls
- Statistically significant (p≤0.05) increase in females with 20 ppm at weeks 14 and 27 or ≥5 ppm at week 53 compared to controls

Serum creatinine (measured at weeks 4, 14, 27, 53 only)

- No statistically significant effects in males
- Statistically significant (p≤0.05) increase in females with 2 ppm at week 14 compared to controls

Urine chemistry

- Statistically significant increase in pH and decrease in sodium ion concentration in males with 2 ppm at week 53 compared to controls
- Statistically significant decrease in potassium ion excretion in males with 0.5 and 5 ppm at week 53 compared to controls

Hematology

• Statistically significant increase in segmented neutrophils in males with 20 ppm at week 14 compared to controls

Microscopic pathology

Non-neoplastic microscopic lesions in livers of male and females (includes interim and terminal sacrifices and unscheduled mortality)

(includes interim and terminal sacrinces and unscrieduled mortality)									
				Dietary	PFOS (opm)			
	sex	0	0.5	2	5	20	20 (recovery)	p- trend	
Lymphohistio- cytic infiltrate	F	42/65	42/55	38/55	41/55	56/65 **	32/40	**	
Hepatocellular	М	0/65	2/55	4/55 *	22/55 **	42/65 **	3/40	**	
hypertrophy (centrilobular)	F	2/65	1/55	4/55	16/55 **	52/65 **	2/40	**	
Granular, eosinophilic	М	0/65	0/55	0/55	0/55	14/65 **	0/40	**	
cytoplasm (centrilobular)	F	0/65	0/55	0/55	7/55 **	36/65 **	1/40	**	
Hepatocellular	М	0/65	0/55	0/55	0/55	6/65 *	0/40	**	
pigment (centrilobular)	F	0/65	0/55	0/55	1/55	36/65 **	3/40	**	
Individual	М	5/65	4/55	6/55	13/55	19/55 *	3/40	*	
hepatocyte necrosis	F	7/65	6/55	6/55	6/55	15/65 *	3/40	*	
Hepatocellular vacuoles (midzone/ centrilobular)	М	3/65	3/55	6/55	13/55	19/65	3/40	**	

Cystic	М	5/65	15/55 **	19/55 **	17/55 **	22/65 **	15/40 **	**
degeneration	F	0/65	1/55	1/55	2/55	4/65	1/40	*
Degeneration/ Necrosis (centrilobular)	M	1/65	0/55	0.55	1/55	5/65	1/40	*
Periportal hepatocellular hypertrophy	F	12/65	10/55	9/55	4/65	3/65	7/40	**
Pigmented macrophage infiltration	F	2/65	3/55	5/55	6/55	23/65	7/40 *	**

Note: only statistically significant outcomes shown herein * p≤0.05, ** p≤0.01

Neoplastic lesions in males and females

(apparently includes interim and terminal sacrifices and unscheduled mortality)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Dietary PFOS (ppm)					
	sex	0	0.5	2	5	20	20 (recovery)	p- trend
Liver								
Hepatocellular Adenoma	М	0/60	3/50	3/50	1/50	7/60 *	0/40	*
	F	0/50	1/50	1/49	1/50	5/60 *	2/40	*
Hepatocellular adenoma + carcinoma	F	0/60	1/50	1/49	1/50	6/60	2/40	**
Thyroid								
Follicular cell adenoma	М	3/60	5/49	4/50	4/49	4/59	9/39	

Note: only statistically significant positive outcomes shown herein * p ≤0.05, ** p≤0.01

Reference and Study Design Case et al. (2001)

Note: study authors conducted dose-range finder and developmental toxicity studies. Results from the dose-range finder study are reported herein.

Species and strain:

Rabbits, New Zealand white (Hra: (NZW) SPF) 5 to 6 months of age

Group size:

5/mated females/group

Test article and vehicle:

PFOS (salt not reported, 98.4% pure) in 2% Tween 80

Route of exposure:

Oral gavage

Exposure levels:

0, 0.1, 1.0, 2.5, 5.0, 10, 20 mg/kg/day

Exposure regimen:

GD6 to GD20, animals sacrificed at GD29

Note: study reported to have been conducted according to GLP

Maternal toxicity

 Reduced feed consumption, scant feces, and ungroomed hair coats observed with ≥5 mg/kg/day

Results

 Maternal deaths and abortions (see table below) reported to occur between GD17 and GD 26

Endpoints assessed for maternal toxicity						
	PFOS (mg/kg/day)					
	Controls ^a 5 10 20					
Body weight loss ^b	0/5	3/5	4/5	5/5		
Deaths	0/5	0/5	0/5	4/5		
Abortions	0/5	2/5	4/5	1/5		
Animals pregnant at GD29	5/5	2/3	0/1	NA		

a = observations for 0.1, 1.0, and 2.5 mg/kg/day groups were identical to control observations and are not reported herein b = >15% less than controls

5 females/group; NA = no animals available to exam

Fetal toxicity

Endpoints assessed for fetal toxicity (continued in table below)						
	PFOS (mg/kg/day)					
	0 0.1 1.0					
	(n=5) ^a	(n=5)	(n=5)			
Corpora lutea	10.2±1.6	11.8±2.9	10.0±0.8			
Implantations	8.8±1.6	9.5±1.7	8.5±1.3			
Litter size	8.4±1.1	9.2±1.5	8.5±1.3			
Resorptions	0.4±0.5	0.2±0.5	0.0±0.0			
Fetal weight (g)	43.8±5.9	40.8±7.5	44.0±2.7			
Mean+SD	Mean+SD					

a = number of pregnant females in group

Major Limitations:

Internal PFOS concentrations not determined

Comment

Results not statistically analyzed

Other comments:

- Species and strain appropriate for endpoints assessed
- Sample size limited to 5 females
- Oral gavage provided direct exposure to PFOS
- Doses selected to purposely identify doses to that produce toxicity
- Gestational exposure did not last entire pregnancy
- Number of exposure levels allowed for determining any dose-related effects
- Quantitative data reported
- Endpoint ascertainment used standardized assessment of mortality, body weights, and reproductive/developmental effects

Endpoints assesse above)	Endpoints assessed for fetal toxicity (continued from table above)				
,	P	FOS (mg/kg/da	ay)		
	0	2.5	5		
	(n=5) ^a	(n=5)	(n=2)		
Corpora lutea	10.2±1.6	11.0±1.4	10.5±0.7		
Implantations	8.8±1.6	8.8±2.0	9.5±0.7		
Litter size	8.4±1.1	8.4±1.5	5.5±2.1		
Resorptions	0.4±0.5	0.4±0.5	4.0±1.4		
Fetal weight (g)	43.8±5.9	38.2±5.6	26.0±5.4		
Mean±SD	Mean±SD				
a = number of preg	a = number of pregnant females in group				

Reference and Study Design	Results	Comment
Case et al. (2001) Note: study authors conducted dose-range finder and developmental toxicity studies. Results from the developmental toxicity study are reported herein. Species and strain: Rabbits, New Zealand white (Hra: (NZW) SPF) 5 to 6 months of age Group size: 22/mated females/group Test article and vehicle: PFOS (salt not reported, 98.4% pure) in 2% Tween 80 Route of exposure: Oral gavage Exposure levels: 0, 0.1, 1.0, 2.5, 3.75 mg/kg/day Exposure regimen: GD7 to GD20, animals sacrificed at GD29 Note: study reported to have been conducted according to	 Maternal toxicity No maternal deaths Statistically significant (p≤0.05 or p≤0.01) reductions in body weight gains during exposure (GD6 to GD20) to ≥1 mg/kg/day, non-statistically significant reductions after exposure (GD21 to GD29), 3.75 mg/kg/day data not reported Reduced body weight gains generally correlated with a reduction in feed consumption Fetal and developmental toxicity One abortion reported with 2.5 mg/kg/day (on GD25) and 10 abortions with 3.75 mg/kg/day (between GD22 and GD28) Statistically significant (p≤0.05 or p≤0.01) reduction in fetal weight with ≥2.5 mg/kg/day No effect on corpora lutea, implantations, resorptions (early and late), and number of fetuses (alive and dead) Structural abnormalities included some reversible delays in ossification (sternebrae, hyoid, metacarpal, and pubic bones) with ≥2.5 mg/kg/day 	 Major Limitations: Internal PFOS concentrations not determined Other comments: Species and strain appropriate for endpoints assessed Sample size >10 Oral gavage provided direct exposure to PFOS Dose selection based on results from a dose-range finder study Gestational exposure did not last entire pregnancy Number of exposure levels allowed for determining any dose-related effects Quantitative data reported Endpoint ascertainment used standardized assessment of mortality, body weights, and reproductive/developmental effects

Reference and Study Design	Results	Comment
Chang et al. (2009)	Internal PFOS concentration	Major Limitations:
Note: the results reported by the authors represent thyroid parameters determined as part of a developmental neurotoxicity study with gestational and lactational exposures (Butenhoff et al. 2009). The maternal, neonatal, and developmental neurotoxicity results are reported in a separate table. Species and strain: Rats, Sprague-Dawley About 12 weeks old at mating (per Butenhoff et al. 2009) Group size: 25 pregnant females/group	 Maternal internal PFOS concentrations (i.e., in serum, liver, and brain) correlated with administered dose for GD20, PND4, and PND21 (day of maternal sacrifice) Maternal liver to serum ratio greater than brain to serum ratio at GD20 (only time point available for ratio determination) Fetal and pup internal PFOS concentrations (i.e., in serum, liver, and brain) correlated with maternal administered dose for GD20, PND4, PND21, and PND72 Fetal and pup liver to serum ratio greater than brain to serum ratio at GD20, PND4, PND21, and PND72 Maternal serum PFOS concentrations less than that of fetuses on GD20 but greater than pup serum PFOS concentrations on PND4 and PND21 Maternal liver PFOS concentrations greater than that of fetuses on GD20 (no subsequent comparisons possible) Maternal brain PFOS concentrations less than that of fetuses on GD20 (no subsequent comparisons possible) Maternal liver and brain samples not collected for PND4 and 	 Sample size varied by endpoint (e.g., ~10 for thyroid histology, <10 for thyroid proliferation, unclear sample size for TSH measurements) Other comments: Species and strain appropriate for endpoints assessed Oral gavage provided direct exposure to PFOS Dose selection aimed to avoid neonatal toxicity based on previous rat studies (per Butenhoff et al. 2009) Duration of exposure included gestation period through lactation Number of exposure levels allowed
Test article and vehicle: PFOS (potassium salt, 86.9% pure) in 0.5% Tween 20 Route of exposure: Oral gavage	 PND21 analyses Maternal effects: serum thyroid stimulating hormone (TSH) measurements No statistically significant differences between exposure groups at all time points (GD20, PND4, and PND21) Offspring effects: serum TSH measurements No statistically significant differences between exposure groups 	for determining any dose-related effects • Quantitative data reported • Internal PFOS measurements determined • Endpoint ascertainment used standardized assessment for TSH, thyroid morphometry, and thyroid cell proliferation; subjective thyroid
Exposure levels: 0, 0.1, 0.3, 1.0 mg/kg/day	at all time points (GD20, PND4, and PND21)	histology
See Results column for PFOS concentrations in specimens from dams and offspring (fetuses and pups)	Offspring effects: thyroid histology No changes observed between 1.0 mg/kg/day group and controls at all time points (GD20, PND4, and PND21) Thyroids collected for 0.1 and 0.3 mg/kg/day groups but not analyzed microscopically	

_						
EV	nn	CII	rΔ	rac	าเท	າen:
-	\sim	Ju			4111	1011.

GD0 to PND20 Dams sacrificed at PND21 F1 weaned at PND21 and sacrifice at PND72

A second group of pregnant females (10/group) were exposed GD0 to GD19 with sacrifice on GD20

Related studies:

Butenhoff et al. (2009)

Offspring effects: thyroid morphometry

- Statistically significant (p<0.05) increase in thyroid follicular epithelial cell height in males only with 1.0 mg/kg/day at PND21 compared to controls; thyroid follicular epithelial cell height in concurrent male controls noted to be lower compared to female control group at PND21
- No statistically significant differences between exposed and control groups at PND4
- Only control and 1.0 mg/kg/day groups analyzed

Offspring effects: thyroid follicular colloid area

- No statistically significant differences between exposed and control groups at PND4 and PND21
- Only control and 1.0 mg/kg/day groups analyzed

Offspring effects: thyroid proliferation

- Statistically significant (p<0.05) increase in thyroid cell proliferation in females only with 1.0 mg/kg/day at GD20 compared to controls; control values noted to have a wide range (4 to 113 cells with positive staning)
- Only control and 1.0 mg/kg/day groups analyzed

Reference and Study Design

Chen et al. (2012a)

Species and strain:

Rats, Sprague-Dawley Males and females sexually mature, virgin

Group size:

10 dams/exposure group

Test article and vehicle:

PFOS (salt not reported, >98% pure) in 0.05% Tween 80 in deionized water

Route of exposure:

Oral gavage

Exposure levels:

0, 0.1, 2.0 mg/kg/day Adjusted daily for body weight changes

See **Results** column for serum PFOS concentrations

Exposure regimen:

GD1 to GD21

Second set of dams treated as above and survival determined on PND4

At PND0, 2 male and 2 female pups randomly selected from each litter and sacrificed for serum and lung tissue analysis3 males and 3 females per litter maintained to PND21 (weaning) and then sacrificed

Results

Internal PFOS concentration

 Note: Lung PFOS concentrations determined for pups on PND0 and PND21 but not reported herein

Serum PFOS levels in pups on PND0 and PND21						
Age	Dose (mg/kg/day)	Serum concentration (µg/ml)				
PND0	0	ND				
	0.1	1.7*				
	2.0	47.52**				
PND21	0	ND				
	0.1	0.41*				
	2.0	4.46**				

Values are means (standard deviations not reported herein) ND = not detected (limit of detection not reported) * p<0.05, ** p<0.01

Offspring effects: body weight

 Statistically significant (p<0.05) decrease in body weight with 2.0 mg/kg/day for PND0 to 21 compared to controls

Offspring effects: post-natal mortality

 Statistically significant (p<0.01) increase in post-natal mortality with 2.0 mg/kg/day at PND3 compared to controls

Offspring effects: histopathology

- Normal histopathology of pulmonary alveolus in control and 0.1 mg/kg/day (data not shown) groups at PND0 and PND21
- At PND0: marked alveolar hemorrhage, thickened inter-alveolar septa, and focal lung consolidation with 2.0 mg/kg/day
- At PND 21: alveolar hemorrhage, thickened inter-alveolar septa, and inflammatory cell infiltration with 2.0 mg/kg/day

Major Limitations:

- Maternal toxicity not reported
- Sample size not given explicitly, 10 dams/dose group appears to be 10 litters/dose group. Therefore, histopathology sample size appears to be 20/sex/group at PND0 and 60 (30 males, 30 females) at PND21.

Comment

 Only qualitative data presented, data presented in figures or micrographs with no tabular data

Other comments:

- Species and strain appropriate for endpoints assessed
- Oral gavage provided direct exposure to PFOS
- Doses selected allowed for the determination of a LOAEL and NOAEL (e.g., for survival and body weight)
- Duration of exposure lasted during entire gestation period
- Two exposure levels may limit ability to demonstrate any dose-related effects
- Internal PFOS concentrations determined
- Endpoint ascertainment used standardized assessment of mortality, body weight, and lung histopathology

Note: this study also presented data on apoptosis-related endpoints and oxidative stress. These data are not summarized herein.

Splenic and thymic cellularity

- Dose-dependent decrease in cellularity for both the spleen and thymus
- Statistically significant (p≤0.05) decreases in cellularity compared to respective controls for both spleen and thymus with TAD of ≥25 mg/kg

Lymphocyte immunophenotypes (splenic and thymic)

- Statistically significant (p≤0.05) decreases in some splenic T cell CD4/CD8 subpopulations with ≥25 mg/kg TAD compared to controls
- Statistically significant (p≤0.05) decreases in splenic B cells (B220+) with ≥50 mg/kg TAD compared to controls
- Statistically significant (p≤0.05) decreases in some thymic T cell CD4/CD8 subpopulations with ≥25 mg/kg TAD compared to controls

Splenic natural killer (NK) cell activity

- Inverted U-shaped dose-response curve, inflection point = TAD of 5 mg/kg
- Statistically significant (p≤0.05, compared to controls) increase with TAD of 5 mg/kg and decrease with TAD of 50 and 125 mg/kg

Splenic lymphocyte proliferation

- Dose-dependent decrease in proliferation index (PI) for both concanavalin A (conA) and lipopolysaccharide (LPS) treated lymphocytes
- Statistically significant (p≤0.05) decrease in PI compared to respective controls for both conA and LPS treated cells with TAD of 50 and 125 mg/kg

Antibody plaque forming cell (PFC) response to sheep red blood cells

- Dose-dependent decrease in PFC response
- Statistically significant (p≤0.05) decrease in PFC response compared to controls with TAD of 5, 25, 50, and 125 mg/kg

Reference and Study Design	Re	Comment				
Dong et al. (2011)	Internal PFOS concentration	Major Limitations:Only male mice used so response				
Species and strain: Mice, C57BL/6	PFOS (mg/kg TAD)	Serum PFOS concentrations after 60 days of exposure PFOS (mg/kg TAD) Serum PFOS (mg/L)				
8–10 weeks old	Control 0.5	0.05±0.01 1.07±0.11	Sample size of 6/group per endpoint			
Group size: 12/males/group	5 25	2.36±0.47 10.75±0.82* 22.64±2.29*	 Other comments: Species and strain appropriate for endpoints assessed 			
Test article and vehicle: PFOS (potassium salt, >98% pure) in de-ionized water with 2% Tween 80 Route of exposure: Oral gavage Exposure levels: Daily dose: 0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333 mg/kg/day Targeted total administered dose (TAD): 0, 0.5, 1, 5, 25, 50 mg/kg See Results column for serum PFOS concentrations Exposure regimen: Once daily for 60 days Mice sacrificed on day 61 (24 hours after last exposure)	50 For each dose group n = 6 * = p≤0.05, compared to control Body weight and food intake • Statistically significant (p≤0.0 change with 50 mg/kg TAD of the statistically significant (p≤0.0 day 60 to 61 with 50 mg/kg TAD of the statistically significant change with 50 mg/kg TAD of the statistically significant change with 50 mg/kg TAD compared to con • Statistically significant (p≤0.0 mg/kg TAD compared to con 50 mg/kg TAD compared to con	51.71±3.81* 25) reduction in body weight compared to controls 25) reduction in food intake from TAD compared to controls 25. liver. spleen. thymus 25 drope in kidney mass 25 increase in liver mass with ≥25 trols 25) decrease in spleen mass with controls 25) decrease in thymus mass with controls 26) decrease in thymus mass with controls 26)	 endpoints assessed Oral gavage provided direct exposure to PFOS Dose selection based on previous observations of altered immune function in mice Subchronic duration of exposure Number of exposure levels would allow for determining any dosedependent effects Quantitative data reported Internal PFOS concentrations determined Endpoint ascertainment used standardized assessment of endpoints 			

Levels of interferon (IFN)-gamma and interleukin (IL)-4 in splenocytes isolated from exposed mice

- Dose-dependent decrease in IFN-gamma levels
- Statistically significant (p≤0.05) decrease in IFN-gamma compared to control with TAD of 50 mg/kg
- Dose-dependent increase in IL-4 levels
- Statistically significant (p≤0.05) increase in IL-4 compared to control with TAD 5, 25, and 50 mg/kg

Number of T-cells secreting IL-2⁺ and IL-10⁺ from splenocytes isolated from exposed mice

- Dose-dependent decrease in number of IL-2+-secreting cells
- Statistically significant (p≤0.05) decrease in number of IL-2+secreting cells compared to control with TAD 50 mg/kg
- Dose-dependent increase in number of IL-10+-secreting cells
- Statistically significant (p≤0.05) increase in number of IL-10+secreting cells compared to control with TAD 50 mg/kg

Immunoalobulin levels in serum

- Statistically significant (p≤0.05) reduction in IgM levels with≥5 mg/kg TAD compared to controls
- Statistically significant (p≤0.05) increases in IgG, IgG1, and IgE levels with 50 mg/kg TAD compared to controls
- No statistically significant change on IgG2a levels

Delaved-type hypersensitivity text

No statistically significant change on footpad thickness

Reference and Study Design			Results			Comment					
Dong et al. (2012b)	Internal PFOS c	oncentratio	n	Major Limitations:							
	Serum PFOS co	oncentration	s after 60 d	ure	Only males used						
Species and strain:	PFOS	Sama	le size	Serum PFC)S	Subchronic exposure					
Mice, C57BL/6	(mg/kg TAD)	Samp	ole Size	(mg/L)							
Males only	0	1	12	0.04		Other comments:					
8–10 weeks old	1		12	4.35*		Species and strain appropriate for					
	5		12	8.21*		endpoints assessed					
Group size:	50		2	59.74*		 Sample size of 12/group per 					
12/group	Values are mea			reported here	ein)	endpoint					
Test article and vehicle:	* = p≤0.05 comp	pared to con	itrols			 Oral gavage provided direct 					
PFOS (potassium salt, >98%						exposure to PFOS					
purity) in de-ionized water with	Body weight and					Doses selected yielded clear					
2% Tween-80	Change in body	weight and	food intake	after 60 days	s of	NOAEL and LOAEL					
270 1 WCC11 00	exposure					Number of exposure levels would					
Route of exposure:	PFOS	Change		Food intake	e on	allow for determining any dose-					
Oral gavage	(mg/kg TAD) weight o			day 60	, o	dependent effects					
S. S	`	(0		•		Quantitative data reported					
Exposure levels:	0	4.4	-	4.22		Internal PFOS concentrations					
Daily dose: 0, 0.0167, 0.0833,	1	4.1		4.94		determined					
0.833 mg/kg/day	5	3.7		3.90		 Endpoint ascertainment used standardized assessment for body 					
	50	-1.3		2.24*		weight and organ weights					
Total administered dose (TAD):	Values are means (standard errors not reported herein)					weight and organ weights					
0, 1, 5, 50 mg/kg	For each dose of the second s				Note: This study also provides data on						
	- μ≤0.05 com	Jared to con	111015	mechanistic outcomes that are not							
See Results column for serum	Organ weights					reported herein.					
PFOS concentrations	Relative organ v	veight after	60 days of	exposure		Toponou noronn					
Function regiment	PFOS		1	İ							
Exposure regimen:	(mg/kg TAD)	Spleen	Thymus	Kidney	Liver						
Once daily for 60 days Sacrifice on day 61	0	0.53	0.32	1.52	4.87						
Sacrifice off day of	1	0.50	0.31	1.58	5.09						
	5	0.47	0.27	1.54	5.51*						
	50	0.31*	0.22*	1.41	9.03*						
	Values are means (standard errors not reported herein)										
	For each dose group n = 12; * = p≤0.05 compared to controls										
	Note: relative organ weight determined by: [organ weight										
	(g)/body weight			-	-						

Reference and Study Design	Resu	Comment	
Dong et al. (2012a)	Internal PFOS concentration	Major Limitations:	
Species and strain: Mice, C57BL/6	Serum PFOS concentrations after PFOS (mg/kg TAD)	 Only male mice used so response in females not known Sample size of 6/group per 	
8–10 weeks old	Control 0.5	endpoint	
Group size:	1	0.58±0.19* 4.35±0.63*	Other comments:
6/males/group (for each of 2 studies, see Exposure regimen below)	5 25 50 125	8.21±1.15* 24.53±5.56* 59.74±12.16* 114.19±23.72*	Species and strain appropriate for endpoints assessedOral gavage provided direct
Test article and vehicle: PFOS (potassium salt, >98% pure) in de-ionized water with	For each dose group n = 6 * = p≤0.05, compared to control	 exposure to PFOS Dose selection based on previous observations of altered immune 	
2% Tween 80	Body weight and food intake		function in mice
Route of exposure: Oral gavage	 Statistically significant (p≤0.05 with ≥25 mg/kg TAD compared Reduced food intake in the las 	 Subchronic duration of exposure Number of exposure levels would allow for determining any dose- 	
Exposure levels:		ols (note: statistical significance	dependent effects
<u>Daily dose</u> : 0, 0.0083, 0.0167, 0.0833, 0.4167, 0.8333, 2.0833 mg/kg/day <u>Targeted total administered dose (TAD)</u> : 0, 0.5, 1, 5, 25, 50, 125 mg/kg	not reported) Organ weight changes: kidney. I Note: organ weights reported by (g)/body weight (g)] x 100 Statistically significant (p≤0.05) ≥50 mg/kg TAD compared to compared to compared to compare to comp	 Quantitative data reported Internal PFOS concentrations determined Endpoint ascertainment used standardized assessment of endpoints 	
See Results column for serum PFOS concentrations	Statistically significant (p≤0.05 mg/kg TAD compared to control Statistically significant (p<0.05)		
Exposure regimen:	 Statistically significant (p≤0.05 ≥25 mg/kg TAD compared to c 		
Exposed for 60 consecutive days, on day 61 sacrificed directly following exposure or exposed to lipopolysaccharide (LPS) and then sacrificed 2 hours later	Statistically significant (p≤0.05 ≥25 mg/kg TAD compared to c		

Macrophage numbers in the spleen and peritoneal cavity

- Statistically significant (p≤0.05) reduction in splenic cellularity (i.e., total cell population in spleen) with ≥25 mg/kg TAD compare to controls
- Non-statistically significant reductions in the numbers of splenic macrophages
- Statistically significant (p≤0.05) increase in percentage of splenic macrophages with ≥50 mg/kg TAD compare to controls, authors noted that this increase was due to reductions in splenic cellularity
- Statistically significant (p≤0.05) reduction in peritoneal cavity cellularity with 125 mg/kg TAD compared to controls
- Non-statistically significant reductions in number of peritoneal cavity macrophages
- Statistically significant (p≤0.05) increase in percentage of peritoneal cavity macrophages with ≥1 mg/kg TAD compared to controls

Cytokine production following in vivo LPS stimulation

- Note: following LPS stimulation, cells were isolated from peritoneal cavity or spleen for ex vivo measurement of cytokines
- Statistically significant (p≤0.05) increases in TNF-alpha (≥25 mg/kg TAD), IL-1beta (≥50 mg/kg TAD), and IL-6 (125 mg/kg TAD) in cells from the peritoneal cavity compared to controls
- Statistically significant (p≤0.05) increases in TNF-alpha (≥50 mg/kg TAD), IL-1beta (≥50 mg/kg TAD), and IL-6 (125 mg/kg TAD) in cells from the spleen compared to controls

Serum cvtokines

- Note: following LPS stimulation, serum was collected for *ex vivo* measurement of cytokines
- Without LPS stimulation: statistically significant (p≤0.05) increase in IL-1beta and IL-6 (≥50 mg/kg TAD) compared to controls, non-statistically significant increase in TNF-alpha
- With LPS stimulation: statistically significant (p≤0.05) increase in TNF-alpha (125 mg/kg TAD), IL-1beta (≥50 mg/kg TAD), and IL-6 (125 mg/kg TAD)

Reference and Study Design Era et al. (2009) Species and strain: Mice, ICR Mature females mated with a male Group size: Varied by endpoint Test article and vehicle: PFOS (potassium salt, >98% pure) in 0.5% Tween-20 Route of exposure: Oral gavage Exposure levels: Experiment 1: 0, 9, 13, 20, 30

mg/kg/day

Experiment 2: 20 or 50

mg/kg/day

Note: different set of dams apparently used for each experiment

See **Results** column for serum and amniotic fluid PFOS concentrations

Exposure regimen:

Experiment 1: GD1 to GD17

Results Internal PFOS concentrations at GD17 (Experiment 1)

- Note: serum and amniotic PFOS concentration data presented only graphically
- Dam serum PFOS concentration increased with dose up to the administered dose of 30 mg/kg (measured to be162.3±25 µg/ml)
- Fetal serum PFOS concentration similar to dam serum PFOS concentration until the administered dose of 20 mg/kg, the fetal concentration then declined
- Amniotic PFOS concentration about one-sixth of the fetal serum PFOS concentration

Fetal effects: cleft palate at GD17 (Experiment 1)

- Note: statistical significance not reported; data for all doses presented graphically but in text for only ≥13 mg/kg/day
- Incidence of cleft palate for 13, 20, and 30 mg/kg/day groups were 7.3%, 78.3%, and 93.8%, respectively; incidence of cleft palate in control group appeared to be ~0% as estimated by visual inspection of graphical data
- Authors reported ED50 = 17.7 mg/kg/day or a fetal serum PFOS concentration of 121 µg/ml

Maternal effects (Experiment 2)

Maternal effects at term								
	Maternal Dosing Period							
	GD1–17 GD11–15							
	0 mg/kg/d	20 mg/kg/d	0 mg/kg/d	50 mg/kg/d				
Number dams examined	6	9	5	7				
Body weight (g)	71.3	56.7*	68.4	65.6				
Body weight gain (g)	36.6	23.8*	34.8	33.1				
Liver weight (g)	2.9	5.0*	2.6	5.0**				
Relative liver weight (%)	4.1	8.8*	3.8	7.7**				

Major Limitations:

 Data reporting incomplete for cleft palate (control and low dose not reported; statistical significance not reported for full dose range in GD1-17; number of fetuses examined in each dose group for full dose range at GD17 not given; number of litters represented not reported for GD1-17 vs. GD11-15 comparison)

Comment

Other comments:

- Strain of mouse not very common and appropriateness for endpoints assessed is unclear
- Overall sample size is moderate; for full dose range study (GD17) it appears that 3 litters were examined per dose group, but number of fetuses not given; for maternal endpoints, n = 5-9, for fetal endpoints (GD1-17 vs. 11-15) n = 67-103, number of litters = 5-7.
- Oral gavage provided direct exposure to PFOS
- Dose selection based on previous observations of fetal defects in mice; however, dose range is narrow; from graphical incidence data, not clear if NOAEL was achieved
- For maternal endpoints, dosing period of ≤17 days is short; for fetal developmental, exposure encompassed most of gestation

Experiment 2: GD1 to GD17 (20
mg/kg/day) or GD11 to GD15 (50
mg/kg/day)

Body weight minus liver weight at GD18 (g)	68.4	51.7**	65.8	60.6
Implantation sites/litter	16.5	15.9	14.2	15.6
Number of prenatal losses/litter	1.8 (11.1%)	1.9 (11.8%)	0.6 (4.2%)	1.3 (8.3%)

Values are means (standard deviations not reported herein)
Values in parentheses are prenatal loss percentage per litter = mean of
((number of implantation sites – number of fetuses)/ number of
implantation sites) in each dam, corresponding confidence intervals not
reported herein
* p<0.05; **p<0.01

Fetal effects: GD1-17 vs. GD11-15 (Experiment 2)

Fetal effects at term								
	Maternal dosing period							
	GD1	1–17	GD11-15					
	0 mg/kg/d	20 mg/kg/d	0 mg/kg/d	50 mg/kg/d				
Total number of fetuses	88	112	68	100				
Number of live fetuses examined	82	103	67	99				
Fetuses/litter	14.7	14.0	13.6	14.3				
Number of cleft palate	0	92 (89.3%)**	0	6 (6.1%)*				
Body weight (g)	1.69	1.27**	1.66	1.45**				
Liver weight (mg)	126.7	110.5**	125.0	124.5				
Relative liver weight (%)	7.5	8.7**	7.5	8.5**				
Brain weight (mg)	84.4	75.9**	85.6	80.7**				
Implantation sites/litter	16.5	15.9	14.2	15.6				
Relative brain weight (%)	5.0	6.1**	5.2	5.7**				

Values are means (standard deviations not reported herein)
Values in parentheses are percentage of live fetuses with cleft palate
(corresponding confidence intervals not reported herein)
* p<0.05; **p<0.01

- Number of exposure levels would allow for determining any dosedependent effects, but dose response above threshold is very steep and dose range does not provide detail on this portion of range
- Internal PFOS concentrations determined, but only reported graphically
- Endpoint ascertainment used standardized assessment of morphology, body weight, and organ weights

Note: this study included mechanistic data from ex-vivo tissue and histology studies that are not reported herein

Reference and Study Design Results Comment Fuentes et al. (2006) **Maternal effects Major Limitations:** No statistically significant effects on: Internal PFOS concentration not Species and strain: maternal body weight at GD18 and body weight gain determined Mice. Charles River CD1 maternal food consumption PFOS purity not reported Adult females mated with adult gravid uterine weight males kidney weight Other comments: relative kidney weight Species and strains appropriate for **Group size:** maternal thyroid hormones or corticosterone endpoints assessed Maternal = 10/group (except 1.5 Maternal effects at GD18 Sample size 10–11/group mg/kg/d where 11/group) Dose (mg/kg/day) for GD1-18 (maternal effects) and 9-10/group Litters = 9-10/group(fetal effects) 1.5 3 6 (vehicle control) Fetuses = 67-71/groupOral gavage provided direct Liver wt (g) 2.3 2.5 2.8* 3.1* exposure to PFOS Relative Test article and vehicle: 4.3 4.4 5.0 5.8* Doses selected based on previous liver wt (%) PFOS (potassium salt, purity not observations in rats and mice; Values are means (standard error of the mean not reported herein). reported) in 0.5% Tween-20 concentration range produced * p<0.05 compared to control Fetal effects: reproductive performance LOAEL and NOAEL for maternal Route of exposure: liver weight, but no other observed No statistically significant effects on: Oral gavage effects implants per litter Exposure lasted most of gestation live fetuses per litter **Exposure levels:** (for fetal effects); maternal effects, dead fetuses per litter 0, 1.5, 3, 6 mg/kg/day exposure was short-term litters with dead fetuses Number of exposure levels allow early resorptions per litter **Exposure regimen:** for determining any doselate resorptions per litter GD6 to GD18 post-implantation loss dependent effects Quantitative data reported mean fetal weight All animals sacrificed on GD18 fetal sex ratio Endpoint ascertainment used Fetal effects: developmental effects standardized assessment of No statistically significant effects on: maternal and fetal endpoints number of litters examined skeletally Note: This study also examined assymetrical sternebrae diminished ossification of caudal vertebrae outcomes associated with the combination of maternal PFOS dosing supernumerary ribs

Statistically significant (p<0.05) decrease in diminished ossification (calcaneous) with 3 mg/kg/day, but not at other

total of litters with skeletal defects

doses (including 6 mg/kg/day)

and maternal stress due to restraint.

herein.

Restraint-related data are not reported

Reference and Study Design	Results						Comment
Grasty al. (2003)	Four-day red	aimen: mater	nal effects				r Limitations:
Species and strain:		Illy significant all treatment			lo serum PFOS measurement for		
Rats, Sprague-Dawley					d GD6 to GD9		ups FOS purity not reported
F0 age not reported		food and wat				• P	ros punty not reported
To age not reported		nd immediately				Other	r comments:
Group size:		tion exceeded					pecies and strain appropriate for
Varied by endpoint	end of ex		a control level	3 3cvciai day.	s and the		ndpoints assessed
		aimen: pup e	ffects				ample size generally ≥10 litters
Test article and vehicle:		ed pup surviva		nent aroups. c	ontrols near		Oral gavage provided direct
PFOS (potassium salt, purity not	100% su			5 1 7			xposure to PFOS
reported) in 0.5% Tween 20	Survival	decreased as	treatment occ	curred later in	gestation		loses selected meant to induce
		rimarily occur				ne	eonatal mortality
Route of exposure:	Following	g exposure du	ring GD17 to	GD20: pups b	orn pale and		Ouration of exposure limited to
Oral gavage	rigid, mo	rtality near 10	0% within 24	nours	•	s	pecific gestational periods
Fymagyma layelay	 No statis 	tically significa	ant effect on li	ve litter size		• N	lumber of doses selected (i.e., 1
Exposure levels: Four-day regimen: 0, 25 mg/kg		lly significant					r 2) limited the ability to determine
Two-day regimen: 0, 25 mg/kg		3D5, GD6 to G	D9, and GD1	0 to GD14 gr	oups,		ose-related effects
mg/kg		d to controls					ata generally quantitative,
I mg/kg		imen: materr					ualitative information on food and
For four-day regimen, maternal		lly significant		r weight gain	in treated		rater consumption reported
serum PFOS levels determined	dams gro	oups compare	d to controls				ndpoint ascertainment used
24 hours after final exposure and	Effects on n	ups at PND0					tandardized assessment of body reight and mortality; lung
on GD21, data not reported	Lifects on p	Number of	Live litter		Pup		xamination relied on subjective
herein		pups	size	% survival	weight (g)		ssessment of histology
	0 mg/kg	26	13.6±0.5 ^a	100a	6.6±0.1a	u.	osessiment of flistology
Exposure regimen:	25 mg/kg	21	11.9±0.5 ^b	94ª	5.9±0.1b		
Four-day regimen: GD2 to GD5, GD6 to GD9, GD10 to GD13,	50 mg/kg 27 11.1±0.8 ^b 29 ^b 5.4±0.2 ^b						
GD14 to GD17, GD17 to GD20;	Data are mean±SE						
after fourth day of dosing	Groups not sharing a common letter have statistically significant						
pregnancies were carried out to	difference (p<0.05)						
full term							
Two-day regimen: GD19 to							
GD20							

	Pups in 50 mg/kg group were moribund with troubled breathing	
	after birth, only 3% survived by PND5	
•	Pups in 25 mg/kg group varied in physical appearance (e.g.,	
	size and color) at birth, 66% survived by PND5	
•	Pup weight remained lower (p<0.05) in 25 mg/kg group	
	compared to control through PND5; pup weight for 50 mg/kg	
	group not included due to only 1 litter surviving past PND0	
•	Decreased lung expansion in pups from treated dams	
	compared to prenatal controls	
•	Difference in lung histology (i.e., thinning of epithelial walls)	
	between pups from treated dams and control pups	

Reference and Study Design		Res	ults			Comment
Grasty et al. (2005)	Maternal and developmental toxicity					ajor Limitations:
	 Not determined by authors during this exposure 					Serum PFOS concentrations not
Species and strain:				2003]) for effects		reported
Rats, Sprague-Dawley		an identical exp	•	_		L
F0 age not reported		naternal weight				her comments:
Group size:			ses in live litter s	ize and pupbirth	•	Species and strain appropriate for
Varied by endpoint		ared to controls		1 -		endpoints assessed
varied by chapoint	Increased nec	onatal mortality o	compared to cont	rols	•	Small sample size for some endpoints (e.g., ≤10 pups for lung
Test article and vehicle:	Luna histoloay					histopathology)
PFOS (potassium salt, 91%		s in alveolar wal	l thickness hetwo	en treated and	•	Oral gavage provided direct
pure) in 0.5% Tween 20		lls at GD21 with				exposure to PFOS
			•	ontrols and PND0	•	Doses selected on previous
Route of exposure:				g/kg/day groups,		observations of neonatal mortality
Oral gavage		determined to be			•	Duration of exposure limited to
Evenesure levels	Morphometric ar	nalysis of neonat	al lung tissue			specific gestational period
Exposure levels: 0, 25, 50 mg/kg/day	PFOS	Solid tissue	Small airway	Solid tissue:	•	Number of doses selected do not
0, 23, 30 mg/kg/day		proportion	proportion	small airway		allow for determining low dose
Exposure regimen:		, ,	0.61±0.02	ratio 0.57±0.05		effects
GD19 to GD20	25	0.34±0.02 0.43±0.03	0.61±0.02 0.47±0.02 ^a	0.57±0.05 0.93±0.09 ^a	•	Quantitative data generally
	50	0.45±0.03	0.47±0.02° 0.50±0.02°	0.93±0.09 ^a		reported Endpoint ascertainment used
Rescue studies conducted with			0.000	0101-0100	•	standardized assessment of
co-exposure to either	b-exposure to either For all groups, lungs from 12 pups (2 per litter) were examined Data are mean±SEM					
dexamethasone (Dex) or retinyl	a = p<0.05 compared to controls					mortality; lung assessed by quantitative morphometric analyses
palmitate (RP) on GD19 to either	a p (0.00)	<u> </u>		4y		
GD20 or GD21	Rescue studies		•	Study also assessed mechanistic		
Related studies:		y significant incre	ease in neonatal	survival from co-		endpoints (e.g., phospholipid
Grasty et al. (2003)		FOS and Dex o				profile, RNA microarray) that are
= (====)	·					not reported herein

Reference and Study Design		Results		Comment	
Kawamoto et al. (2011)	Internal PFOS conce	entrations	Major Limitations:		
Species and strain: Rats, Wistar	PFOS concentratio	ns (mg/kg) after 13	Serum and tissues PFOS concentrations not reported in control animals		
4 weeks old	Dose group	Serum	Brain	Only males used	
4 Weeks old	0 ppm	NR	NR	•	
Group size:	2 ppm	9.50±0.68	1.91±0.37	Biological significance of ultrasonic- induced convulsions not clear	
5 or 6/males/group	8 ppm	44.1±5.60	6.91±1.38	induced convaisions not clear	
g. c.ap	32 ppm	177±20.0	22.3±114	Other comments:	
Test article and vehicle:	128 ppm	432±75.3	105±19.8	Species and strain appropriate for	
PFOS (potassium salt, purity not	Dose group	Liver	Kidney	endpoints assessed	
reported) in aqueous solution	0 ppm	NR	NR	Sample size was at least 5 rats per	
mixed with powdered diet	2 ppm	59.7±8.96	14.8±4.60	endpoint	
	8 ppm	135±42.7	36.0±11.2	Dietary exposure allows for PFOS	
Route of exposure:	32 ppm	647±113	188±46.8	to interact with tissues from the oral	
Dietary	128 ppm	1180±156	628±169	cavity to the stomach	
Exposure levels: 0, 2, 8, 32, 128 ppm See Results column for serum, brain, kidney, and liver PFOS concentrations Exposure regimen: 7 days a week for 13 weeks Rats sacrificed after 13 weeks of exposure Rats also exposed biweekly to ultrasonic stimulus (47 kHz, 10 sec at 30 cm) Related studies: Sato et al. 2009	 2, 8, 32, 128 ppm Tissue PFOS concentrations relative to serum PFOS: brain, 0.13 to 0.24; liver, 2.7 to 6.3; and kidney, 0.82 to 1.6 General effects: food consumption and body weight Statistically significant (p<0.05) decrease in food consumption with ≥32 ppm compared to control Statistically significant (p<0.05 or p<0.01) decrease in body weight with ≥32 ppm compared to control Statistically significant (p<0.05 or p<0.01) decrease in body weight with ≥32 ppm compared to control Organ weights (at end of study): brain. kidney. liver Statistically significant (p<0.05) increase in relative brain weight with ≥32 ppm No statistically significant effect on kidney weight Statistically significant (p<0.05 or p<0.01) increase in absolute (with 128 ppm) and relative (with ≥32 ppm) liver weights 				

Neurotoxicity: convulsions after biweekly ultrasonic stimulus

- No observations of convulsions in 2, 8, and 32 ppm groups
- In 128 ppm group, convulsions observed in 5/6 animals at week 6; recovery observed in all animals except in 1 that was found dead next morning, ultrasonic stimulus ceased thereafter

Neurotoxicity: behavioral abnormalities

- Textual reporting of data only
- No observed behavioral abnormalities (e.g., startle response, touch response, pain response, righting reflex, visual placing, abdominal tone, and limb tone)

Neurotoxicity: histopathology and ultrastructure

- No histopathological changes observed in neuronal or glial cells of the cerebrum and cerebellum (textual reporting of data only)
- No ultrastructural changes observed in the neurons in the cortex and hippocampus as well as the neurons and granules cells in the cerebellum

Reference and Study Design	Results	Comment
Keil et al. (2008)	Maternal effects: body weight	Major Limitations:
Species and strain: Mice, B6C3F1 obtained from	No significant weight loss in pregnant dams (data not shown by authors)	Internal PFOS levels not determinedInterpretation of immunotoxicity
breeding C57BL/6N females with C3H/HeJ males	 Offspring effects: body weight No statistically significant differences between exposure groups and controls at 4 weeks (6/sex/group) and 	with respect to significance of adversity is not clear • Quantitative data reported for
Group size: Varied by endpoint	8 weeks (5–6/sex/group) of age Offspring effects: organ weight	immunotoxicity but individual litter data not reported for non-immunotoxicity endpoints (e.g.,
Test article and vehicle: PFOS (potassium salt, 91%	Note: weights normalized to body weight [(organ weight/body weight) x 100]	body weight, organ weights)
pure) in distilled water with 0.5% Tween-20	 At 4 weeks of age (6/sex/group): Females: statistically significant (p≤0.05 compared to controls) decrease in liver weight (0.1 mg/kg/day only) 	 Other comments: Species and strain appear to be appropriate for endpoints assessed
Route of exposure: Oral gavage	and in kidney weight (5 mg/kg/day); no effect on spleen and thymus weights o Males: statistically significant (p≤0.05 compared to	Sample size for most endpoints was 5–7 animals/group, may have reduced power to detect changes
Exposure levels: 0, 0.1, 1.0, 5.0 mg/kg/day	controls) increase in liver weight (5 mg/kg/day); no effect on kidney, spleen, and thymus weights • At 8 weeks of age (5–7/sex/group):	 or dose-response Oral gavage provides direct exposure to PFOS
Exposure regimen: GD 1 to GD17	 Females and males: no effect on kidney, liver, spleen, and thymus 	Dose selection based on previous observations in rodents, dose
Pups sacrificed at 4 and 8 weeks of age	Offspring effects: spleen and thymus cellularity No statistically significant differences between exposure and	range was adequate to detect LOAEL and NOAEL for some endpoints
and 8 weeks (control groups for females and males at 4 weeks (6/sex/group) and 8 weeks (5–7/sex/group except 0.1 mg/kg/day where 2–3/sex/group) of age	Duration of exposure covered gestational periodNumber of exposure levels allowed
	 Offspring effects: natural killer cell function At 4 weeks of age (genders combined for analysis, 12/group): No statistically significance differences between 	for determining and dose- dependent effects Endpoint ascertainment used standardized methods for
	 exposure and controls groups At 8 weeks of age (genders analyzed separately, 6/sex/group unless noted otherwise): 	endpoints assessed Note: peritoneal macrophage nitric
		oxide was also assessed, but is not

- o Females (3/group with 0.1 mg/kg/day): statistically significant (p<0.05) decrease (35.1%) with 5.0 mg/kg/day compared to controls
- Males (2/group with 0.1 mg/kg/day): statistically significant (p<0.05) decrease with 1.0 mg/kg/day (42.5%) and 5.0 mg/kg/day (32.1%) compared to controls

Offspring effects: specific IgM response to sheep red blood cell (SRBC) immunization

- Note: analysis only performed at 8 weeks of age at 6/sex/group
- Females: no statistically significant differences between exposure and controls groups
- Males: statistically significant (p<0.05) decrease (53%) with 5.0 mg/kg/day compared to controls

Offspring effects: lymphocyte immunophenotypes (subpopulations)

- Note: CD3+, CD4+, CD8+, DP (CD4+/CD8+), DN (CD4-/CD8-), B220+ assessed
- At 4 weeks of age (6/sex/group):
 - o Female: statistically significant (p≤0.05) decrease (21%) in splenic B220 cells with 5.0 mg/kg/day compared to controls, no statistically significant differences between exposure and control groups for other splenic subpopulations
 - o Male: no statistically significant differences between exposure and controls groups for any splenic subpopulation
 - For both males and females: no statistically significant differences between exposure and controls groups for thymic subpopulations
- At 8 weeks of age (6/sex/group):
 - Female: no statistically significant differences between exposure and controls groups for thymic and splenic subpopulations
 - Male: statistically significant (p≤0.05) reduction in thymic CD3+ (23%) and CD4+ (29%) cells with 5.0 mg/kg/day compared to controls, no statistically significant differences between exposure and controls groups for other thymic or any splenic subpopulations

summarized herein as this is an intermediate rather than apical endpoint

Deference and Otrodo Design	Dogtts	Com
Reference and Study Design	Results	Comment
Lau et al. (2003) Note: authors assessed endpoints within 3 general outcomes, herein broadly defined as: reproductive/developmental effects (e.g., birth outcomes, age at eye opening and puberty), effects dues to cross-fostering, and neurodevelopmental effects (e.g., choline acetyltransferase activity, T-maze). Of these, neurodevelopmental effects are reported in a separate table. Study authors also conducted exposures using mice. These mice data are presented in a separate table. Species and strain: Rats, Sprague-Dawley F0 age not reported Group size: Varied by endpoint Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20 Route of exposure: Oral gavage	Postnatal effects: mortality Statistically significant (p<0.05) reduction in postnatal survival with ≥2 mg/kg 100% of pups in 10 mg/kg group died ~60 minutes following birth 95% of pups in 5 mg/kg group died within 24 hours of birth 50% of pups in 3 mg/kg group survived Postnatal effects: reproductive/developmental milestones Statistically significant (p<0.05) delay in eye opening by ~1 day with ≥2 mg/kg, control group eye opening between PND14 and PND15 No effect on vaginal opening, onset and profiles of the estrous cycle, and preputial separation Postnatal effects from cross-fostering: mortality Cross-fostering pups from 5 mg/kg group with control dams did not improve postnatal survival All control pups cross-fostered with PFOS-exposed dams survived duration of observation (3 days)	Major Limitations: Internal PFOS concentrations not determined Other comments: Species and strain appropriate for endpoints assessed For most endpoints, sample size was ≥10 rats Oral gavage provided direct exposure to PFOS Doses selected allowed for overt toxicity at highest dose Duration of exposure lasted length of gestation Number of exposure levels allowed for determining any dosedependent effects While generally quantitative, data not reported for some endpoints Endpoint ascertainment used standardized assessment of mortality and reproductive/developmental endpoints

Exposure levels:	
0, 1, 2, 3, 5, 10 mg/kg/day	
Note: internal PFOS	
concentrations not determined	
from rats assessed for	
developmental and cross-	
fostering effects	
Exposure regimen:	
GD2 to GD21	
Note: newborns from control and	
5 mg/kg groups participated in a	
3-day cross-fostering	
experiment:	
1) control pups with their dams;	
2) PFOS-exposed pups with their	
dams; 3) PFOS-exposed pups	
with control dams; and 4) control	
pups with PFOS-exposed dams	
Related studies:	
Thibodeaux et al. (2003)	

Reference and Study Design	Results	Comment
Lau et al. (2003)	Internal PFOS concentrations in neonatal rats	Major Limitations:
Note: authors assessed endpoints within 3 general outcomes, herein broadly defined as: reproductive/developmental effects (e.g., birth outcomes, age	 At PND0, serum PFOS concentrations were proportional to administered dose, but not in a linear relationship At PND5, serum PFOS levels in each surviving group were lower than on PND0 At PND0, liver PFOS concentrations were proportional to administered dose and similar to serum PFOS concentrations 	 Measurements for internal PFOS concentrations limited to PND1 to PND5 for serum and PND0 for liver Thyroid hormone measurements may be subject to negative bias based on analytical method used
at eye opening and puberty),	Postnatal effects: body weight and liver weight	Other comments:
effects dues to cross-fostering, and neurodevelopmental effects (e.g., thyroid hormones, T-maze). Neurodevelopmental effects are reported herein. Study authors also conducted exposures using mice. These mice data are presented in a separate table.	 Body weights were lower with ≥ 2 mg/kg compared to controls, statistically significant (p<0.05) results typically within first week of postnatal life Absolute liver weights comparable between controls and exposed groups Relative liver weights increased with ≥1 mg/kg compared to controls, statistically significant (p<0.05) results typically within first 3 weeks of postnatal life 	 Species and strain appropriate for endpoints assessed For most endpoints, sample size was ≥10 rats, for T-maze and thyroid hormones sample size was <10 rats Oral gavage provided direct exposure to PFOS Doses selected allowed for overt
Species and strain: Rats, Sprague-Dawley F0 age not reported	Serum levels of total thyroxine and free thyroxine were decreased compared to controls Decrease in serum free thyoxine persisted through end of experiment (PND35)	toxicity at highest dose as well as survival throughout duration of experiment in lower doses Duration of exposure lasted length of gestation
Group size: 17 to 28 dams/group	No significant effects on serum triiodothyronine or thyroid stimulating hormone compared to controls	Number of exposure levels allowed for determining any dose- dependent effects
Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20	Postnatal effects: learning behavior No significant difference between exposed (3 mg/kg) and control groups for T-maze test	 Quantitative data reported Endpoint ascertainment used standardized assessment of body and organ weights
Route of exposure: Oral gavage		
Exposure levels: 0, 1, 2, 3, 5 mg/kg/day		

See Results column for serum and liver PFOS concentrations for neonatal rats	
Exposure regimen: GD2 to GD21	
Postnatal observations performed through PND35, weaning at PND21	
Related studies: Thibodeaux et al. (2003)	

Reference and Study Design	Res	Comment		
Lau et al. (2003) Note: authors conducted two separate mouse studies, each employing the same exposure conditions but assessing different endpoints. Mice from an initial exposure were assessed for mortality, body	 Postnatal effects: mortality Dose-dependent reduction in post page 15 and 20 mag/s Majority of pups in 15 and 20 mag/s Survival in 1 and 5 mg/kg group LD50 estimated to be 10 mg/s Postnatal effects: body weight as postnatal body weight general 	Major Limitations:	surements ative bias ethod used	
weight, and eye opening. Mice from a separate exposure were assessed for liver weight and serum thyroid hormone. Study authors also conducted exposures using rats. These rat data are presented in a separate table. Species and strain: Mice, CD-1 F0 age not reported	and controls groups, trend (p deficit observed with 10 mg/kg • Absolute and relative liver wei groups compared to controls t (until PND35), statistically sign with ≥5 mg/kg • Only total serum thyroxine leve 	 endpoints assessed Sample sizes ranged fr mice for body and liver for serum thyroid h measurements Oral gavage provided of exposure to PFOS Doses selected allowed toxicity at highest dose survival throughout dur experiment in lower dose Duration of exposure la of gestation 	weights to normone direct d for overt as well as ration of ses	
Group size: Varied by endpoint	Postnatal effects: reproductive/		Number of exposure levels allower for determining any dose-	
varied by chapolite	Postnatal observations after PFC	•	dependent effects	d - 1
Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20	PFOS (mg/kg/day) 0 1 5	Age at eye opening (PND) 14.8±0.1 15.1±0.1 15.5±0.1	Quantitative data repor Endpoint ascertainmen standardized assessment mortality, body and org	nt used ent of
Route of exposure: Oral gavage	10 mean±SE Number of mice examined not re	and reproductive/devel		
Exposure levels: 0, 1, 5, 10, 15, 20 mg/kg	Statistically significant (p<0.0001			

Exposure regimen: GD1 to GD17	
Postnatal observations performed through PND35, weaning at PND21	
Related studies: Thibodeaux et al. (2003)	

Reference and Study Design	Results			Comment		
Lee et al. (2015)	Maternal effects: body weight				Major Limitations:	
Species and strain: Mice, CD-1 Time-mated, entered study at GD10 Group size: 10 pregnant mice/group	 No statistically significant difference in body weight gain between any group during GD10–13 Statistically significant (p<0.05 or p<0.001 according to Kruskal-Wallis group test) differences in body weight gain among four groups during GD14–17 At GD17, mean maternal body weights of control, 0.5, 2.0, and 8.0 mg/kg/day groups were 61.44, 60.03, 57.68, and 48.32g, respectively 				 No data on purity of PFOS Internal PFOS concentrations not determined Other comments: Species and strain appropriate for endpoints assessed Sample sized generally 10/group 	
Test article and vehicle:	Fetal effects: develo	pmental a	and placent	tal parame	ters	Oral gavage provided direct exposure to PFOS
PFOS (potassium salt, purity not		-	-	-		Doses selected based on previous
reported) in 0.5% Tween	Fetal effects at GD1	7				observations of development
Doute of expension				ng/kg/day)		toxicity in mice; as the lowest dose
Route of exposure: Oral gavage		0	0.5	2.0	8.0	is a LOAEL for most endpoints,
	Number of pregnant dams	10	10	10	10	dose range does not permit a NOAEL
Exposure levels: 0, 0.5, 2.0, 8.0 mg/kg/day	Placental weight (mg)	185.63	177.32*	163.22*	151.54*	Duration of exposure lasted most of gestation
Exposure regimen:	Fetal weight (g)	1.72	1.54	1.30*	1.12*	Number of exposure levels allowed
GD11 to GD16	Placental capacity ^a	9.30	8.68*	7.96*	7.39*	for determining any dose-
Pregnant dams sacrificed on	Number of implantations ^b	13.45	13.20	13.68	13.71	dependent effectsQuantitative data reported
GD17 and fetuses and placentas were harvested	Number of resorptions and dead fetuses	0.57	1.62*	4.84*	7.58*	Endpoint ascertainment used standardized assessment of most endpoints, determining placental
	Number of live fetuses	12.88	11.58	8.84*	6.13*	area of injury partially unclear
	Post-implantation loss ^c	4.24%	12.27%	35.38%	55.29%	Note: This research included measurement of non-apical (molecular
	Values are means (standard deviations not reported herein) Note: Fetal analyses utilized litters as units of analysis * p<0.01 compared to controls a = ratio of fetal weight/placental weight b = implantation occurred prior to PFOS dosing c = [(total implantations – live implantations)/total implantations] x 100				and mechanistic) endpoints that are not summarized herein.	

Placental necrosis at GD17	
Dose (mg/kg)	Area of injury ^a
Control	0%
0.5	12.7%
2.0	26.3%
8.0	42.4%
total placental area	ratio of placental area with injury to acental sections from five different

Reference and Study Design Results Long et al. (2013) Neurotoxicity: spatial learning Species and strain: Escape latency on day 3 Mice. C57BL6 Dose (mg/kg/day) 8 weeks old, males and females 0.43 control Escape Group size: 32.5 NR latency 15/group (gender distribution not (seconds) reported) Values are means (standard deviation not reported herein) for four trials * = p<0.05 compared to controls; ** = p<0.01 compared to controls Test article and vehicle: NR = numerical data not reported, but no statistically significant difference compared to control PFOS (salt not reported, purity Note: no statistically significant difference between genders not reported) in normal saline Note: mice with poor swimming velocity (<5 cm/s for >50% of swim time) excluded from analysis (number of mice not provided) Route of exposure: Oral (presumed by gavage) **Neurotoxicity: spatial memory Exposure levels:** Time spent in target quadrant on day 4 0, 0.43, 2.15, 10.75 mg/kg control **Exposure regimen:** Percent time in Once daily for 3 months ~43% target quadrant Note: percent values not provided by study authors, values in above Endpoints assessed after the 3table are estimated from Figure 1b of the Long et al study month exposure * = p<0.05 compared to controls: ** = p<0.01 compared to controls Note: no statistically significant differences between genders

Major Limitations:

10.75

61.5**

10.75

~20%**

2.15

56.75*

Dose (mg/kg/day)

2.15

~25%*

0.43

~35%

Note: mice with poor swimming velocity (<5 cm/s for >50% of swim

time) excluded from analysis (number of mice not provided)

- PFOS purity not reported
- Internal PFOS concentration not determined

Comment

- Missing quantitative data (i.e., lowest dose for escape latency on day 3)
- No specific information given on the number of poor swimmers that were excluded from analyses

Other comments:

- Species and strain appropriate for endpoints assessed
- Oral exposure provided direct exposure to PFOS
- Doses selected represent a reasonable range (factor of 25) and encompass NOAEL, LOAEL, and high dose
- Subchronic duration of exposure
- Number of exposure levels allowed for determining any dosedependent effects
- Endpoint ascertainment used standardized assessment of spatial learning and memory

Note: this study also provided mechanistic data that is not reported herein

Reference and Study Design

Luebker et al. (2005a)

Note: study authors conducted two-generation and cross-foster studies. Of the F0, F1, and F2 results from the two-generation study, only the F0 results are reported herein. F1 and F2 results and the results from the cross-foster study are reported in separate tables.

Species and strain:

Rats, Crl:CD® (SD)IGS BR VAF®

F0 male and females were 62 days old at receipt followed by 14-day acclimation period prior to exposure

Group size:

35/sex/group (for exposure), group size then varied by endpoint

Test article and vehicle:

PFOS (potassium salt, 86.9% pure) in 2% Tween 80

Route of exposure:

Oral gavage

Exposure levels:

0, 0.1, 0.4, 1.6, 3.2 mg/kg/day

Internal PFOS concentrations for F0 rats

Internal PFOS concentrations for F0 males and females					
	F0 females Internal PFOS at LD21		F0 m Internal PF0 to 56 days o	OS after 42	
Dose group	Serum	Liver	Serum	Liver	
(mg/kg/day)	(ug/mL)	(ug/g)	(ug/mL)	(ug/g)	
Control	NR NR		NR	NR	
0.1	5.28±0.358 14.8±1.71		10.5±0.946	84.9±6.28	
0.4	18.9±1.30	58±6.73	45.4±5.49	176±23.4	
1.6	82±17.5 184±88.3		152±7.91	323±36.2	
3.2	NR	NR	273±49.8	1360±40.7	
mean±SD; NR = not reported					

Results

F0 male effects: mortality, clinical signs, body weight, food consumption

- No deaths or treatment-related clinical signs observed
- Non-statistically significant reduction in body weight with 0.4 mg/kg/day at various times between the first and terminal days of the study
- Statistically significant (p≤0.05) reduction in body weight with 1.6 mg/kg/day after the mating/cohabitation period compared to controls
- Statistically significant (p≤0.01) reduction in body weight with 3.2 mg/kg/day prior to (day of study 36) mating/cohabitation through termination compared to controls

Overall body weight gain (day 0 to termination) in F0 males			
Dose group (mg/kg/day) Overall body weight gain (g)			
0	153.6±41.5		
0.1	149.2±34.5		
0.4	132.8±34.0a		
1.6	121.9±30.2a		
3.2	91.0±29.9a		

Major Limitations:

 Internal PFOS measurements determined after some effects were initially observed (e.g., F0 female reproductive effects at birth and F0 female internal PFOS measurements at LD21)

Comment

Control values for internal PFOS measurements not reported

Other comments:

- Species and strain appropriate for endpoints assessed
- Most F0 endpoints had n>20, but GD10 observations had n≤10
- Oral gavage provided direct exposure to PFOS
- Dose selection presumptively based on observations of rat neonatal mortality in previous studies
- Duration of F0 exposures (i.e., ≥42 days) were subchronic (i.e., >30 days)
- Number of exposure levels allowed for determining any dose-related effects
- · Quantitative data reported
- Endpoint ascertainment used standardized assessment of mortality, body weight, food consumption, fertility indices, and reproductive effects

See **Results** column for serum and liver PFOS concentrations for F0 males and females

Exposure regimen:

F0 males: dosed once daily during the 42 day pre-mating period and then once daily during the mating/cohabitation period (with a maximum of 14 days of mating), F0 males then sacrificed 1 week after mating/cohabitation

F0 females: dosed once daily during the 42 day pre-mating period, then once daily during the mating/cohabitation period, then either until GD9 (for caesarean group, sacrifice at GD10) or lactation day (LD)20 (natural delivery group, sacrifice at LD21).

F1 weaning reported to be LD21 or LD22.

Related studies:

Luebker et al. (2005b)

- Prior to mating/cohabitation, statistically significant reductions in absolute (g/day) and relative (g/kg/day) feed consumption with 1.6 mg/kg/day (p≤0.05) and 3.2 mg/kg/day (p≤0.01)
- After mating/cohabitation, statistically significant reduction in absolute feed consumption with 0.4 mg/kg/day (p≤0.05) and
 - >1.6 mg/kg/day (p≤0.01), statistically significant reduction (p≤0.01) in relative feed consumption with 3.2 mg/kg/day

F0 female effects: mortality, clinical signs, body weight, food consumption

- No deaths observed
- Localized areas of partial alopecia with >0.4 mg/kg/day
- Statistically significant (p≤0.05) reduction in body weight with 1.6 mg/kg/day during periods within gestation and lactation compared to control
- Statistically significant (p≤0.01) reduction in body weight with 3.2 mg/kg/day during all pre-mating, mating/cohabitation, and lactation periods

	<u> </u>					
Overall body weight gain in F0 females						
	Overa	Overall body weight gain (g)				
Dose group (mg/kg/day)	Pre-mating Gestation Lactation					
0	37.1±15.8	125.1±15.9	32.8±19.7			
0.1	36.0±10.5	123.8±13.3	27.8±12.3			
0.4	34.5±12.9	121.9±20.2	33.8±17.8			
1.6	25.0±11.9 ^a	123.1±18.3	32.0±14.6			
3.2	5.4±10.2 ^a	108.0±10.6a	NR			

mean \pm SD, NR = not reported a = p \leq 0.01 compared to controls

 Prior to mating/cohabitation, statistically significant (p≤0.01) reduction in absolute and relative feed consumption with 3.2 mg/kg/day compared to controls

- During gestation, statistically significant (p≤0.01) reduction in absolute feed consumption with 3.2 mg/kg/day compared to controls
- During lactation, statistically significant (p≤0.01) reduction in absolute and relative feed consumption with 1.6 mg/kg/day compared to controls, 3.2 mg/kg/day data not reported

F0 male and female effects: fertility indices

Fertility indices ^a in F0 males and females		
Dose group (mg/kg/day)	Male	Female
Control	94.3%	94.3%
0.1	91.4%	91.4%
0.4	81.8%	82.4%
1.6	85.3%	85.3%
3.2	87.5%	85.7%

a = defined as number of pregnancies per number of rats that mated

F0 female effects: general reproductive effects

 Comparable values between control and exposed groups for: estrous cycle, number of pregnancies per number of matings, number of days to inseminate, and number of matings during the first week of cohabitation

<u>F0 female effects at GD10 (caesarean-section group):</u> reproductive effects

 No effect on litter averages for corpora lutea, implantations, and viable embryos

F0 female effects for natural birth group: reproductive effects

 No effect on reproductive endpoints with exposure to 0.1 mg/kg/day or 0.4 mg/kg/day, observations with exposure to 1.6 mg/kg/day and 3.2 mg/kg/day reported in table below

Reproductive effects in F0 females following natural birth			
	PFOS (mg/kg/day)		
	Control	1.6	3.2
Rats assigned to natural delivery	25	24	25
Delivered litters (%)	23 (100.0)	20 (100.0)	21 (100.0)
Duration of gestation ^a (mean±SD)	22.7±0.4	22.4±0.5	22.2±0.4°
Implantation sites per delivered litter (mean±SD)	14.9±1.9	14.8±1.7	12.5±1.4 ^c
Dams with stillborn pups	5	4	15
(%)	(21.7)	(20.0)	(71.4) ^c
Gestation index ^b (%)	23/23 (100.0)	20/20 (100.0)	20/21 (95.2)
Dams with all pups dying postpartum days 1 to 4 (%)	0 ^d (0.0)	2 (10.0)	20 (100.0)°

a = defined as time in days elapsed between confirmed mating (day 0) and the time in days the first pup was delivered
b = number of rats with live offspring/number of pregnant rats
c = p≤0.01 compared to control
d = historical control incidence also 0

Reference and Study Design Luebker et al. (2005a)

Note: study authors conducted two-generation and cross-foster studies. Of the F0, F1, and F2 results from the two-generation study, only the F1 results are reported herein. F0 and F2 results and the results from the cross-foster study are reported in separate tables.

Species and strain:

Rats, Crl:CD® (SD)IGS BR VAF®

F0 male and females were 62 days old at receipt followed by 14-day acclimation period prior to exposure

Group size:

35/sex/group (for F0 exposure), group size then varied by endpoint

Test article and vehicle:

PFOS (potassium salt, 86.9% pure) in 2% Tween 80

Route of exposure:

Oral gavage

Exposure levels:

0, 0.1, 0.4, 1.6, 3.2 mg/kg/day

See **Results** column for liver PFOS concentrations for F1 pup

Internal PFOS concentration for F1 rats

Internal PFOS concentrations for F1 at LD21			
Maternal dose group	Liver		
(mg/kg/day)	(ug/g)		
Control	NR		
0.1	6.19±0.879		
0.4	57.6±6.72		
1.6	70.4±14.5		
maan CD, ND not reported			

Results

mean±SD; NR = not reported

Note: all F1 pups in 3.2 mg/kg/day group dead by LD21

F1 effects prior to weaning: mortality

F1 survival at birth			
	Maternal (F0) dose (mg/kg/day)		
	Control	1.6	3.2
Delivered litters with ≥1 liveborn pup	23	20	20
Total pups delivered	323	260	200
Liveborn (mean±SD)	13.6±2.3ª	12.7±2.6	7.8±4.0 ^b
Stillborn/litter (mean±SD)	0.3±0.7	0.3±0.6	2.2±2.3 ^b

Note: data for 0.1 mg/kg/day and 0.4 mg/kg/day groups not reported herein but were comparable to control values a = historical range of liveborn pups was reported to be 12.2 to 15.5

 $b = p \le 0.01$ compared to controls

- With maternal dose of 3.2 mg/kg/day, 45.5% and 100% F1 pup mortality by end of LD1 and LD4, respectively (p≤0.01 compared to control for both time points)
- With maternal dose of 1.6 mg/kg/day, 10.6% and 26.0% F1 pup mortality by end of LD1 and between LD2 to LD4.

Major Limitations:

 Internal PFOS measurements determined after some effects were initially observed (e.g., F1 pup effects at birth and F1 pup internal PFOS measurements at LD21)

Comment

Control values for internal PFOS measurements not reported

Other comments:

- Species and strain appropriate for endpoints assessed
- Most F0 endpoint had n>20
- Oral gavage provided direct exposure to PFOS
- Dose selection (for F0 parents and in utero for F1) presumptively based on observations of rat neonatal mortality in previous studies, F1 gavage exposures based on surviving dose groups
- F1 exposure duration included gestation and lactation periods as well as for >70 days post-weaning
- Due to mortality and effects at 2 highest doses, observations postweaning limited to 2 dose groups
- Generally quantitative but some qualitative reporting (e.g., F1 reproductive effects)
- Endpoint ascertainment used standardized assessment of mortality, body weight, food consumption, developmental milestones, reproductive toxicity, and neurotoxicity

Exposure regimen:

F1 started gavage exposure on lactation day (LD)22 at same dose level as F0 parent. Around PND90, exposure continued as F1 rats were mated/cohabitated (for a maximum of 14 days).

F1 males were sacrificed after mating/cohabitation, between 100 and 112 days of age.

F1 females were exposed through gestation and LD20 (sacrifice on LD21 along with F2 pup).

Note: F0 dams of F1 had been exposed during pre-conception, gestation, and lactation periods (weaning at LD21/LD22).

Related studies:

Luebker et al. (2005b)

- respectively (p≤0.05 compared to control for LD2 to LD4 observation)
- With maternal doses ≤0.4 mg/kg/day, >98% pup survived to LD4
- Of F1 pups found dead or moribund: no clear cause of death, no signs of respiratory distress, no milk in stomachs of 75% of necropsied pups from 1.6 mg/kg/day and 3.2 mg/kg/day groups

Note: due to 100% mortality of F1 pups in 3.2 mg/kg/day group after LD2, there was no further evaluation of pups in this group

F1 effects prior to weaning: body weight change

- Statistically significant (p≤0.01) reduction in pup weight per litter at LD1 with 1.6 mg/kg/day and 3.2 mg/kg/day compared to controls, the reduction (p≤0.01) in the 1.6 mg/kg/day group continued until LD21
- Statistically significant (p≤0.01) reduction in pup weight gain per litter with 1.6 mg/kg/day compared to controls, this effect was observed at the end of LD4 through the end of LD21

F1 effects prior to weaning: developmental milestone

- For 1.6 mg/kg/day maternal dose group, F1 pups had statistically significant delays compared to controls for mean number of days for: 50% of pups to attain pinna unfolding (1.6 days, p<0.01); eye opening (1.4 days, p<0.01); surface righting (2.2 days, p<0.05); and air righting (2.0 days, p<0.01)
- For 0.4 mg/kg/day maternal dose group, F1 pups had statistically significant delay compared to controls for eye opening (0.6 day, p<0.01)
- At weaning, pupil constriction normal in all F1 pups

Note: F1 pups in the 1.6 mg/kg/day maternal dose group were observed to be in poor clinical condition and not evaluated past weaning (LD21)

F1 effects post weaning (during oral gavage): mortality. clinical signs

• For 0.1 mg/kg/day and 0.4 mg/kg/day groups, no deaths or clinical signs observed

F1 effects post weaning (during oral gavage): body weight. feed consumption

- Body weights and body weight gains in exposed groups similar to controls for both males and females
- Absolute and relative feed consumption values in exposed groups similar to controls for both males and females

F1 effects post weaning: sexual maturation

Sexual maturation in F1 males and females			
	Days postpartum		
Dose group	Preputial separation	Vaginal patency	
(mg/kg/day)	for males	for females	
Control	45.0±2.1	31.1±1.8	
0.1	45.7±2.3	31.1±2.0	
0.4	45.1±1.8	30.5±1.4	
Mean±SD			

F1 effects post weaning: neurotoxicity

 No difference between exposed groups and controls for passive avoidance and water maze performance (learning, short-term retention, long-term memory)

F1 effects post weaning: reproductive

 No effect on reproductive performance or natural delivery parameters: duration of gestation, number of implantations, and number of live pups

Defenses and Otrodo Desima	Deculto	Commont
Reference and Study Design	Results	Comment
Luebker et al. (2005a)	F2 effects: mortality	Major Limitations:
	Pup mortality similar between control and exposed groups	 Internal PFOS concentration not
Note: study authors conducted	throughout the lactation period	determined for F2
two-generation and cross-foster		
studies. Of the F0, F1, and F2	F2 effects: body weight change	Other comments:
results from the two-generation	For 0.4 mg/kg/day maternal dose group, transient reduction	 Species and strain appropriate for
study, only the F2 results are	(p≤0.05) in body weight and body weight gain	endpoints assessed
reported herein. F0 and F1	On LD21, body weight parameters of exposed groups	Sample size not reported
results and the results from the	decreased but not statistically different from controls	Oral gavage provided direct
cross-foster study are reported in	·	exposure to PFOS
separate tables.		 Dose selection based on F1
		neonatal effects
Species and strain:		Duration of exposure included
Rats, Crl:CD® (SD)IGS BR		gestation and lactation periods
VAF®		Two exposure levels may limit
F1 male and females were ~90		ability to demonstrate dose-related
days old at mating/cohabitation		effects
		 Quantitative and qualitative (e.g.,
Group size:		
Not reported		mortality) data reported
'		Endpoint ascertainment used standardized assessment of
Test article and vehicle:		
PFOS (potassium salt, 86.9%		mortality and body weight
pure) in 2% Tween 80		
Route of exposure:		
Oral gavage (of F1)		
,		
Exposure levels:		
0, 0.1, 0.4 mg/kg/day		
Exposure regimen:		
F1 dams of F2 had been		
exposed during F1 gestation and		
lactation periods (F1 weaning at		
LD21/LD22), from post-weaning		
through mating/cohabitation, and		

then through F2 gestation until F2 reached LD21 (sacrifice on LD21 for F2 pups and F1 dams).	
Related studies: Luebker et al. (2005b)	

Reference and Study Design Results Comment **Internal PFOS concentrations Major Limitations:** Luebker et al. (2005a) • Only 1 dose tested For treated dams on LD14: serum PFOS concentrations (n=2 Note: study authors conducted dams) reported to be 97.5 and 218 ug/mL, PFOS two-generation and cross-foster concentrations in whole milk samples (n=2 dams nursing own Other comments: studies. Only the cross-foster pups) reported to be 100 and 13.7 ug/mL Species and strain appropriate for results are reported herein. Two-For pups from treated dam: serum PFOS concentration endpoints assessed generation (i.e., F0, F1, and F2) reported to be 89.3 ug/mL (n=1 pooled litter from dam with 97.5 Sample size generally ≥10 results are reported in separate ug/mL serum PFOS concentration) Oral gavage provided direct tables. exposure to PFOS Serum PFOS concentrations for F0 and F1 participating in Dose selection based on previous Species and strain: cross-foster study at LD21 observations of neonatal mortality Mean PFOS serum concentration (ug/mL) Rats, Crl:CD® (SD)IGS BR Duration of exposure included **VAF®** Pups (pooled by litter) Dams gestation and lactation periods Females were 66 days of age at CL/CD <0.05^b (12) $<0.05^a$ (6) Quantitative data generally receipt followed by an 22.4±17.5°(6) CL/TD 83.0±27.6 (13) reported but p values not reported acclimation period prior to TL/CD 53.9±5.0 (6) 2.02±1.58d (13) for some endpoints (e.g., F0 exposure 89.7±7.1 (6) 89.0±28.0 (12) TL/TD reproductive effects) mean±SD Internal PFOS concentrations Group size: a = values below the limit of quantitation (LOQ) were assigned determined 33 controls females, 27 exposed the LOQ value (i.e., 0.05 ug/mL) Endpoint ascertainment used females b = all values were <LOQ except for one value at 0.0507 ug/mL standardized assessment of c = Two of six values were < LOQ but were assigned LOQ value mortality, body weight, food Test article and vehicle: for calculating mean and SD consumption, reproductive effects, PFOS (potassium salt, 86.9% d = Two of thirteen values were < LOQ but were assigned LOQ and liver ultrastructural effects (i.e., pure) in 2% Tween 80 value for calculating mean and SD peroxisome number); subjective Note: number in parenthesis is number of samples assessment of lung ultrastructural Route of exposure: effects and liver glycogen Oral gavage F0 female effects: body weight Statistically significant (p value not reported) reductions in body **Exposure levels:** weight with 1.6 mg/kg/day compared to control during latter 0, 1.6 mg/kg/day portion of mating/cohabitation (i.e., day 36 onward) Statistically significant (p value not reported) reductions in body **Exposure regimen:** weight with 1.6 mg/kg/day (CL/TD and TL/TD) compared to

controls (CL/CD) during LD4 through LD14

F0 females exposed for 42 days

then mated/cohabitated with an untreated male. F0 females further exposed for a maximum of 6 days during gestation and through lactation day (LD)21

Upon birth, litters were crossfostered with other dams to create the following groups: CL/CD=control litters fostered by control dams (12 litters) CL/TD=control litters fostered by treated dams (13 litters) TL/CD= treated litters fostered by control dams (13 litters) TL/TD=treated litters fostered by treated dams (12 litters)

Cross-fostering dams sacrificed on LD22, cross-fostered pups sacrificed on LD21

F0 dams and F1 pups not participating in cross-fostering sacrificed on LD14 (PFOS measurements)

Related studies:

Luebker et al. (2005b)

F0 female effects: feed consumption

- Statistically significant reduction in absolute (g/day) feed consumption with 1.6 mg/kg/day compared to controls during premating (p≤0.05) and gestation (p≤0.01), no statistically significant effect for relative (g/kg/day) feed consumption
- Statistically significant reduction (p≤0.05 or p≤0.01) in absolute and relative feed consumption with 1.6 mg/kg/day (CL/TD and TL/TD groups) compared to control (CL/CD) during LD1 to LD14
- Statistically significant reduction (p≤0.01) in absolute feed consumption for dams in TL/CD group compared to controls (CL/CD) during LD1 to LD14, no statistically significant effect for relative feed consumption

F0 effects: reproductive effects

No effects on mating or fertility

Reproductive effects in F0 females				
Control 1.6 mg/kg/day				
Length of gestation (days)	22.4	22.0		
Implantation sites per litter	17.7	16.0		
Total litter size	16.4	15.1		
Live litter size	16.2	14.9		

Note: reductions compared to controls listed in this table were reported to be statistically significant but no p value(s) reported

F1 effects: mortality

- No deaths at end of postpartum day 1
- Most neonatal deaths occurred by postpartum day 4

F1 mortality observations				
	CL/CD	CL/TD	TL/CD	TL/TD
Litters assigned to cross-fostering	13	12	12	13
Pup cross- fostered per litter (mean±SD)	15.9±2.1	16.4±1.6	15.1±1.7	14.8±1.9
Pup mortality between postpartum days 2 and 4	3/191 (1.6)	2/181 (1.1)	15/166 (9.0)	34/177 (19.2) ^a
Viability index ^b	188/191 (98.4)	179/181 (98.9)	151/166 (91.0)	143/177 (80.8) ^a

a = p≤0.01

b = defined as number of live pups on postpartum day 4 (preculling)/number of liveborn pups on postpartum day 1 Note: number in parenthesis is percentage

F1 effect: body weight

 Statistically significant (p≤0.05 or p≤0.01) reductions in body weight and body weight change in pups born to or fostered by treated dams (i.e., CL/TD, TL/CD, TL/TD), effect in TL/CD and TL/TD occurred from LD1 through LD21

F1 effect: ultrastructural examination of lung and liver

- Note: tissues from treated pups (i.e., born to treated dams) collected from pups found dead, tissues from control pups collected 1 to 3 hours after birth
- Statistically significant (p<0.0001) increase in mean number of peroxisomes per hepatocyte in liver tissue of treated pups (n=4, 16.1±1.5) compared to control (n=5, 7.0±1.9); glycogen stores appeared larger in treated pups; no apparent difference in cellular membranes or mitochondria between treated and control pups
- Apparent increase in number of type II pneumocytes and lamellar bodies in lungs of treated pups; no difference between treated and control groups regarding the presence of lamellar material (surfactant) within alveolar lumina

Reference and Study Design

Luebker et al. (2005b)

Note: study authors conducted dose-response and pharmacokinetic studies. Only the dose-response results are reported herein. Results from the pharmacokinetic study are reported in a separate table.

Species and strain:

Rats, Crl:CD® (SD)IGS VAF/Plus®

F0 females were 71 to 72 days old at receipt followed by a 7 to 9 day acclimation period prior to exposure; age of F0 breeder males (same strain as females) not reported

Group size:

20 dams/natural delivery group 8 dams/caesarean group

Test article and vehicle:

PFOS (potassium salt, 86.9% pure) in 0.5% Tween 80

Route of exposure:

Oral gavage

Exposure levels:

0, 0.4, 0.8, 1.0, 1.2, 1.6, 2.0 mg/kg/day (natural delivery group)

0, 1.6, 2.0 mg/kg/day (caesarean group)

Results

Internal PFOS concentrations

- Paired maternal and pup serum PFOS concentrations on LD5 increased proportional to maternal dose, concentrations comparable between dams and pups within the same dose group
- Paired maternal and pup liver PFOS concentrations on LD5 increased proportional to maternal dose, concentrations in pup livers were about 50 to 250% higher than in the livers of paired dams

<u>F0 female effects (natural delivery group): mortality. necropsy observations</u>

- No deaths were attributed to test agent or vehicle
- Necropsy observations (thoracic, abdominal, and pelvic viscera) were not considered related to the test agent

F0 female effects (natural delivery group): body weight

- Statistically significant (p values not reported) reduction in body weight with 1.6 mg/kg/day and 2.0 mg/kg/day compared to controls during gestation and lactation (for 2.0 mg/kg/day only)
- Statistically significant (p≤0.05 or p≤0.01, compared to controls) reduction in body weight gain during pre-mating (2.0 mg/kg/day only) and lactation (with doses ≥0.8 mg/kg/day)
- No apparent differences in body weight change during gestation

F0 female effects (natural delivery group): feed consumption

- General trend of decreased absolute and relative (mean feed consumption/kg of body weight) feed consumption with increasing dose during periods of pre-mating, gestation, and lactation
- Statistically significant results observed during some periods

F0 female effects (natural delivery group): liver weight

• Statistically significant (p value not reported, compared to controls) increase in relative liver weight by 10%, 17%, and 12% with 0.8, 1.2, and 2.0 mg/kg/day, respectively

Major Limitations:

 Limited sample size (<10) or no samples available for some thyroid hormone measurements

Comment

 Quantitative data for internal PFOS measurements for control animals not reported

Other comments:

- Species and strain appropriate for endpoints assessed
- Oral gavage provided direct exposure to PFOS
- Dose selection based on previous observations of neonatal effects
- Duration of F0 exposures (i.e., ≥42 days) were subchronic (i.e., >30 days), F1 exposures lasted most of gestation period
- Six doses used to determine doseresponse curve (for dose-response study), only two doses used in caesarean group
- Quantitative data reported
- Internal PFOS measurements determined
- Endpoint ascertainment used standardized assessment of mortality, body weight, food consumption, liver weight, reproductive and fetal effects, biochemical parameters (in serum, liver, milk), and histopathology. Multiple approaches used to measure serum thyroid hormones to avoid potential of a negative bias.

See **Results** column for liver and serum PFOS concentrations for F0 and F1

Exposure regimen:

F0 females: dosed once daily for 42 days prior to mating/cohabitation, then once daily during mating/cohabitation (with a maximum of 14 days of mating), then either until gestation day (GD)20 (for caesarean group, pup and dam sacrifice on GD21) or lactation day (LD)4 (natural delivery group, pup and dam sacrifice on LD5).

F0 males: no exposure

Related studies:

Luebker et al. (2005a)

F0 female effects (natural delivery group): reproductive effects

- Comparable observations between control and exposed groups for fertility index (number of dams pregnant/number of dams mated), average number of implantation sites, gestation index (number of dams with live offspring/number of pregnant dams), and number of liveborn pups
- Statistically significant (p≤0.05 or p≤0.01, compared to controls) differences reported for:
 - o Gestation length, decreased with ≥0.8 mg/kg/day
 - o Dams with stillborn pups, increased with 0.4 mg/kg/day
 - Dams with stillborn pups, decreased with ≥1.0 mg/kg/day
 - Dams with all pups dying between postpartum days 1 and 5, increased with 2.0 mg/kg/day
 - Viability index (number of live pups on postpartum day 5/number of live births), decreased with ≥1.6 mg/kg/day

<u>F0 female effects (caesarean group): reproductive and fetal effects</u>

- No statistically significant effects for litter averages for corpora lutea, implantations, viable fetuses, and dead fetuses; no effect on percent live male fetuses and pooled fetal body weight
- All fetuses were alive and normal placentas observed

F0 female effects at GD21 (caesarean group)						
	Dose	Dose group (mg/kg/day)				
	Control	Control 1.6 2.0				
Dams with any resorptions (%)	8 (100.0)	6 (75.0)	3 (37.5) ^a			
Percent dead or resorbed concepti/litter	9.1±6.4	8.0±5.0	2.4±3.4 ^b			
Early resorptions/litter	1.4±1.1	0.9±1.0	0.4±0.5 ^b			
a = p≤0.01 b = p≤0.05						

F1 effects (natural delivery): body weight

- Statistically significant (p<0.05 or p<0.01) reduction in pup body weight (average per litter) at birth and LD5 with ≥0.4 mg/kg/day compared to controls
- Statistically significant (p<0.05 or p<0.01) reduction in pup weight gain from birth to LD5 with ≥0.4 mg/kg/day compared to controls

F1 effects (natural delivery): mortality

 Dose-dependent increase in pup mortality through LD5, with statistically significant (p<0.01) increase in mortality with≥1.6 mg/kg/day compared to controls

F0 female effects (caesarean group): serum and liver biochemical parameters

- No statistically significant difference compared to controls in serum biochemical parameters: total cholesterol (CHOL), low density lipoprotein (LDL), high density lipoprotein (HDL), triglycerides (TRIG), glucose (GLUC), and mevalonic acid lactone (MAL)
- Statistically significant reduction in liver CHOL with 1.6 mg/kg/day (p≤0.05) and 2.0 mg/kg/day (p≤0.01) compared to controls
- No statistically significant difference in liver TRIG compared to controls

Fetal effects (caesarean group): serum and liver biochemical parameters

- Statistically significant (p≤0.05) increase in serum CHOL with
 ≥1.6 mg/kg/day compared to controls
- Statistically significant (p≤0.01) increase in serum LDL with
 ≥1.6 mg/kg/day compared to controls
- No statistically significant differences compared to controls for the serum biochemical parameters: HDL, TRIG, GLUC, and MAL
- No statistically significant differences compared to controls for liver biochemical parameters: CHOL and TRIG

F0 female effects (natural delivery group): serum. milk. and liver biochemical parameters

- Statistically significant (p≤0.01) reduction in serum CHOL with
 ≥0.4 mg/kg/day compared to controls
- Statistically significant reduction in serum TRIG with 1.6 mg/kg/day (p≤0.05) and 2.0 mg/kg/day (p≤0.01) compared to controls
- Statistically significant (p≤0.01) increase in serum GLUC with 2.0 mg/kg/day compared to controls
- No statistically significant differences compared to controls for the serum biochemical parameters: LDL, HDL, and MAL
- No statistically significant difference compared to controls for milk CHOL
- Statistically significant (p≤0.01) increase in liver TRIG with≥1.6 mg/kg/day compared to controls
- No statistically significant difference compared to controls for liver CHOL and malic enzyme activity

F1 effects (natural delivery group): serum and liver biochemical parameters

- Statistically significant (p≤0.05) reduction in serum MAL; however, n=2 and both samples were below limit of quantitation
- No statistically significant differences compared to controls for the serum biochemical parameters: CHOL, LDL, HDL, TRIG, and GLUC
- Statistically significant (p≤0.05 or p≤0.01) reductions compared to controls in liver TRIG for males (with ≥1.0 mg/kg/day) and females (with ≥1.0 mg/kg/day but not 2.0 mg/kg/day)
- No statistically significant differences compared to controls for liver CHOL in males and females
- No statistically significant difference compared to controls for liver glycogen content and malic enzyme activity

<u>F0 female effects (natural delivery group): thyroid hormone measurements</u>

- Statistically significant (p<0.01) reduction in total thyroxin (TT4) with ≥0.4 mg/kg/day compared to controls when measured by analog radioimmunoassay (RIA) approach
- Statistically significant (p<0.01) reduction in total triiodothyronine (TT3) with ≥1.2 mg/kg/day compared to controls when measured by analog RIA approach
- No statistically significant effect on thyroid stimulating hormone (TSH) when measured by analog RIA approach
- No statistically significant effect on free thyroxin (FT4) when measured by equilibrium dialysis RIA approach

F1 effects (natural delivery group): thyroid hormone measurements

- Measurements using the analog RIA approach
 - Non-statistically significant reductions in TT3 with ≥0.8 mg/kg/day
 - Statistically significant (p≤0.01, compared to control) reduction in TT4 with ≥0.4 mg/kg/day, non-detectable levels with 0.4 mg/kg/day and 0.8 mg/kg/day and no samples available for 2.0 mg/kg/day
 - Statistically significant (p≤0.05, compared to control) increase in TSH with 1.6 mg/kg/day, increased TSH levels at 1.0 mg/kg/day and 2.0 mg/kg/day but n=1 for each group, no sample available for 0.4 mg/kg/day and 0.8 mg/kg/day groups
- Measurement using the analogy chemiluminometric approach
 - Non-statistically significant reductions in TT3 and TT4 with 0.4, 0.8, and 1.0 mg/kg/day, no samples for ≥1.2 mg/kg/day
- Measurements using equilibrium dialysis RIA approach
 - Comparable levels of FT3 between controls and 0.4,
 0.8, and 1.0 mg/kg/day groups, no samples for ≥1.2 mg/kg/day
 - Non-statistically significant reduction in FT4 with 0.4 mg/kg/day, no samples for ≥0.8 mg/kg/day

F1 effects (natural delivery group): histopathology of heart and thyroid
No microscopic changes observed with 2.0 mg/kg/day compared to controls, based on data from 1 male and 1 female

Reference and Study Design	Results	Comment
Reference and Study Design Luebker et al. (2005b) Note: study authors conducted dose-response and pharmacokinetic studies. Only the pharmacokinetic study	Results Internal PFOS concentrations Dam PFOS concentrations Serum: linearly proportional to dose after 42 days of dosing, concentrations and linearity remained similar through GD15, concentrations declined (<50%) on GD21 with decrease in 1.6 mg/kg/day group not as	Comment Major Limitations: No quantitative reporting of control values for internal PFOS concentrations Internal PFOS measurements limited to GD21 for F1
results are reported herein. Results from the dose-response study are reported in a separate table. Species and strain: Rats, Crl:CD® (SD)IGS VAF/Plus® F0 females were ≥60 days old at receipt; age of F0 breeder males (same strain as females) not reported Group size: 16 dams/group Test article and vehicle:	severe Liver: concentrations were linearly proportional to dose at GD21, no liver concentrations determined prior to GD21 Urine: concentrations were linearly proportional to dose and were similar in urine collected prior to cohabitation and after GD7; concentrations remained roughly similar through GD21 with ≤0.4 mg/kg/day but fluctuated with ≥1.6 mg/kg/day Feces: concentrations were linearly proportional to dose and remained consistent at all time points Paired maternal and pup serum PFOS concentrations on GD21 increased proportional to maternal dose, concentrations in pup serum were 40 to 50% greater than in the serum of paired dams, expect in the 3.2 mg/kg/day group where serum concentrations were about equal Paired maternal and pup liver PFOS concentrations on GD21	 Other comments: Species and strain appropriate for endpoints assessed Sample sizes (n=8 to 16) for dam endpoints varied Oral gavage provided direct exposure to PFOS Dose selection based on previous observations of neonatal effects Duration of F0 exposures (i.e., ≥42 days) were subchronic (i.e., >30 days), F1 exposures lasted most of gestation period Number of exposure levels allowed for determining any dose-related effects
PFOS (potassium salt, 86.9% pure) in 0.5% Tween 80 Route of exposure: Oral gavage Exposure levels: 0, 0.1, 0.4, 1.6, 3.2 mg/kg/day See Results column for PFOS concentrations in specimens from F0 and F1	increased proportional to maternal dose, concentrations in pup liver were about one-half that in the liver of the paired dams F0 effects (GD15 and GD21 groups): mortality. clinical and necropsy observations No deaths attributed to test agent Clinical observations were not considered related to the test agent No gross lesions found by necropsy (thoracic, abdominal, and pelvic viscera)	 Quantitative data reported but some qualitative reporting of data (e.g., litter parameters) Endpoint ascertainment used standardized assessment of mortality, clinical and necropsy observations, body weight, food consumption, reproductive effects, and fetal effects

Exposure regimen:

F0 females: dosed once daily for 42 days prior to mating/cohabitation then through gestation day (GD)14 or GD20. Some dams (8/dose group) sacrificed and caesarean sectioned on GD15 (GD15 group). The remaining dams (8/dose group) sacrificed and caesarean sectioned on GD21 (GD21 group).

F0 males: no exposure

Related studies:

Luebker et al. (2005a)

F0 effects (GD15 and GD21 groups): body weight

- At end of pre-mating/pre-cohabitation period, body weights were 98.0, 96.3, 93.6, and 85.3% of controls for the 0.1, 0.4, 1.6, and 3.2 mg/kg/day groups, respectively
- During pre-mating/pre-cohabitation period, body weight gains were 88.8, 80.8, 66.3, and 17.4% of controls for the 0.1, 0.4, 1.6, and 3.2 mg/kg/day groups, respectively
- During GD0 to GD7, reduced body weight gains with ≥0.4 mg/kg/day

F0 effects: feed consumption

- During pre-mating/pre-cohabitation period and first week of gestation, reduced absolute (g/day) and relative (g/kg/day) feed consumption with ≥0.4 mg/kg/day
- After first week of gestation until the end of dosing, reduced absolute feed consumption with ≥0.4 mg/kg/day in the GD15 group or with 3.2 mg/kg/day in the GD21 group

F0 and F1 effects: reproductive and fetal effects

- GD15 group: no effect on caesarean section or litter parameters
- For GD21 group: reductions in litter averages for implantations, litter sizes, and live fetuses (values for these endpoints were below historical ranges observed by laboratory conducting the study); 2 rats in 3.2 mg/kg/day group delivered on GD21 prior to scheduled caesarean section; reduced fetal body weight with 3.2 mg/kg/day, no observed fetal gross external alterations

Reference and Study Design
Lv et al. (2013)
Species and strain: Rats, SPF Wistar F0 age not reported
Group size: 10 pregnant females/group (for exposure), group size then varied by endpoint
Test article and vehicle: PFOS (potassium salt, >98% purity) in 0.5% Tween 20
Route of exposure: Oral (presumably gavage)
Exposure levels: 0, 0.5, 1.5 mg/kg/day
See Results column for serum and liver PFOS concentrations at PND0 and PND21
Exposure regimen: GD0 to PND21 (weaning)

weaning

Pups sacrificed 19 weeks after

Results Note: maternal effects not reported

Internal PFOS concentrations: PND0 and PND21

Internal PFOS concentrations in offspring of exposed rats			
		PFOS	
Age	Treatment	Serum	Liver
	(mg/kg/day)	(ug/mL)	(ug/g)
PND0	Control	NDa	NDa
	0.5	3.98±0.80 ^b	10.49±0.80 ^b
	1.5	36.25±4.26 ^b	114.93±6.14 ^b
PND21	Control	NDa	NDa
	0.5	11.00±1.35 ^b	42.22±2.55 ^b
	1.5	71.35±3.27 ^b	139.68±4.38 ^b

mean±SEM; n=6 rats per group, PND0 samples pooled by litter a = lower limit of detection b= p<0.05

Neonatal effects: survival and body weight

- No neonatal deaths at birth, all neonates appeared active
- Survival rates through lactation period were comparable between groups: control, 98.7%; 0.5 mg/kg, 98.8%; and 1.5 mg/kg, 98.8%
- General decrease in body weight in exposed groups compared to control (see below for PND0 and PND21 data, body weights for other PNDs not reported herein)

Neonatal body weights at birth and weaning (combined males and females)

,		PFOS	
Body weight (g)	Control	0.5 mg/kg	1.5 mg/kg
PND0	6.7±0.4	5.9±0.4	5.7±0.1a
PND21	41.8±0.9	39.2±0.3a	38.5±0.8a
moon (SEM n=6 por group			

mean±SEM, n=6 per group a = p<0.05 compared to control

Major Limitations:

- Maternal effects not reported
- Only 2 dose levels

Other comments:

 Species and strain appropriate for endpoints assessed

Comment

- Sample size generally ≥25 F1 rats per group but <10 for internal PFOS measurements and some lipid metabolism endpoints
- Oral gavage provided direct exposure to PFOS
- Authors noted that PFOS doses used in study were 2 to 3 orders of magnitude higher than concentrations observed in the general population
- Duration of exposure included entire gestational period through weaning
- Generally quantitative data were reported, but some data not reported (e.g., fasting serum cholesterol)
- Exposure characterized by internal PFOS concentrations (e.g., serum and liver)
- Endpoint ascertainment used standardized assessment of body weight, survival, and glucose and lipid metabolism

 Body weights in exposed males and females generally similar to controls from 9 weeks to 18 weeks after weaning

F1 effects: glucose metabolism

- At 10 weeks after weaning, statistically significant (p<0.05) increase in area under the curve (AUC) value for the oral glucose tolerance test (OGTT) with 1.5 mg/kg compared to controls
- At 15 weeks after weaning, statistically significant (p<0.05) increase in AUC value for OGTT with 0.5 mg/kg compared to controls, non-statistically significant decrease observed for 1.5 mg/kg
- No effect on fasting serum glucose and glycosylated serum protein levels

F1 effects at 18 weeks after weaning: hormone levels

- Statistically significant (p<0.01) increase in fasting serum insulin with 1.5 mg/kg compared to controls
- Statistically significant (p<0.05) increase in insulin resistance index with 1.5 mg/kg compared to controls
- Statistically significant (p<0.05) increase in serum leptin with 1.5 mg/kg compared to controls, non-statistically significant increase with 0.5 mg/kg
- Statistically significant decrease in serum adiponectin with 0.5 mg/kg (p<0.05) and 1.5 mg/kg (p<0.01) compared to controls

F1 effects at 19 weeks after weaning: lipid metabolism

- Statistically significant (p<0.01) increase in liver fat accumulation (hepatic steatosis, as measured by oil red O staining) with 1.5 mg/kg compared to controls
- Statistically significant (p<0.05) increase in livertriglyceride content with 1.5 mg/kg compared to controls
- No effect on fasting serum triglyceride and serum cholesterol levels
- Statistically significant (p<0.01) increase in gonadal fat pad weight with ≥0.5 mg/kg compared to controls, no increase in adipocyte size with exposure

Reference and Study Design

Ngo et al. (2014)

Unless stated otherwise, results reported herein are for those endpoints where wild-type (WT) and Min/+ mice were assessed together and for maternal effects Results for WT mice and Min/+ mice are reported in separate tables.

Species and strain:

Mice, C57BL/6J F0 females 6-7 weeks at mating

F1 resulted from mating C57BL/6J-*Apc*+/+ females with C57BL/6J-*Ap* Min/+ males; offspring genotype identified by polymerase chain reaction for *Apc* gene

Group size:

Varied when reported; 10 to 24 dams/group; 3 to 27 pups/group

Test article and vehicle:

PFOS (potassium salt, ≥98% pure) in water

Route of exposure:

Oral gavage

Exposure levels:

Two experimental blocks (e.g., exposures) needed to produce enough offspring for statistical analyses

Results Background levels of PFOS in water and feed

- Both PFOS and PFOA were detected at pg/l levels in tap water and vehicle water and at pg/g levels in breeding and maintenance feed
- Potential for up to 30% decrease in dosing solution concentration as determined by a separate stability experiment

Serum PFOS levels (ng/ml) in exposed dams and pups				
	Dams GD18 ^a	Dams after	Pups after	
Experimental block 1 ^{b,c} weaning weaning				
Water (vehicle)	0/0 ^d	0/0	0/0	
0.1 mg/kg	1334/1237 (23/25) ^e	476/544 (7.7/7.2)	377/298 (3.1)	
3.0 mg/kg	36646/44634	17227/22249	NA	
Experimental b	ock 2 ^{f,g}			
Water (vehicle)	NA	0/0	NA	
0.01 mg/kg	131	66/37 (23)	20/39	
0.1 mg/kg	NA	710/496	NA	

- a = Pregnant dams sacrificed at GD18 (24 hours after last exposure)
- b = Dams sacrificed 2 days after weaning on PND21 (PND23)
- c = pups sacrificed 4 to 6 days after weaning
- d = samples taken from one or two mice (sample 1/sample 2)
- e = values in parentheses are PFOA contamination
- f = Dams sacrificed 1 to 3 days after weaning on PND25 (PND26 to 28)
- g = pups sacrificed 1 day after weaning NA = not analyzed

Duration of exposure and time to conception

Duration of exposure varied from 14 to 17 total days during gestation

Major Limitations:

 Data reporting sometimes combined WT and Min/+ data, which did not allow for determining how genotype affected the endpoint observation

Comment

- Internal PFOS concentrations determined but used small sample size (n=2) and at time points earlier than some of the endpoint observations
- PFOS degradation observed
- Potential PFOA contamination in some exposure groups

Other comments:

- Species and background strain (C57BL/6J) appropriate for endpoints assessed
- Sample size varied by endpoint and not always reported
- Oral gavage provided direct exposure to PFOS
- Dose selection based on previous perinatal observations in mice
- Duration of exposure included gestational period
- Only 2 exposure levels assessed, may not clarify shape of doseresponse curve
- Endpoint ascertainment used standardized assessment of endpoints

Experimental block 1: 0, 0.1, 3.0 mg/kg

Experimental block 2: 0, 0.01, 0.1 mg/kg

See **Results** column for serum PFOS concentrations

Exposure regimen:

GD1 to GD17

GD1 set as day after female and male co-habitation; actual duration of exposure determined based on actual day of birth and counting 21 days backwards

Weaning occurred at PND21 and 25 for experimental block 1 and experimental block 2, respectively

WT and Min/+ offspring were terminated at 20 and 11 weeks, respectively

Study also treated and assessed a separate group of mice exposed to PFOA, data not reported herein No statistical difference between treatment groups for mean number of days to conception

Maternal effects

No overt toxicity observed during GD1 to GD17

Reproductive effects

- No statistically significant differences in incidence of pregnancy between treatment groups and experimental blocks
- No overt toxicity observed for pups surviving past weaning

Experimental block 1: reproductive observations			
	Water	0.1 mg/kg	3.0 mg/kg
# of dams exposed	20	21	21
# of dams pregnant (%)	15 (75)	13 (62)	14 (67)
# of successful births	12	7	5
# of litters that died perinatally	1	4	7
# of litters that died around weaning	0	3	1
# of surviving litters	12	4	4
# of surviving pups	70 ^a	18 ^a	20
Mean # surviving pups/litter	6.0	5.0	5.0

a = does not include 2 pups/group sacrificed after weaning for PFOS analysis

Experimental block 2: reproductive observations			
	Water	0.01 mg/kg	0.1 mg/kg
# of dams exposed	10	23	24
# of dams pregnant (%)	7 (70)	16 (70)	15 (63)
# of successful births	4	9	9
# of litters that died perinatally	3	6	6
# of litters that died around weaning	0	1	0
# of surviving litters	4	8	9

# of surviving pups	15	40 ^a	41
Mean # surviving pups/litter	3.8	5.3	4.6

a = does not include 2 pups/group sacrificed after weaning for PFOS analysis

Experimental block 1 and 2: reproductive observations				
	Water	0.01 mg/kg	0.1 mg/kg	3.0 mg/kg
# of surviving litters	16	8	13	4
# of surviving pups	85ª	40 ^a	59ª	20
Mean # surviving pups/litter	5.4	5.3	4.7	5.0

a = does not include 2 pups/group sacrificed after weaning for PFOS analysis

Feed intake

- Data presented graphically (as g feed/g body weight/day)
- No statistically significant differences in feed intake between any of the exposure groups at either week 6 or week 10
- Statistically significant differences were observed for comparisons between genders and time periods (not reported herein)

Body weight development

- Maternal data presented graphically (as area under the curve [AUC] in arbitrary units) for dams weighed on GD1 to GD18
- No statistically significant difference in maternal AUC between exposure groups
- Pup data for both genotypes presented graphically for pups weighed between PND3 to weaning (PND21 to PND25)
- No statistically significant differences in pup AUC between any exposure group and water group
- Statistically significant (P=0.023) decreased pup AUC for 3.0 mg/kg group compared to the 0.1 mg/kg group

	Blood glucose levels Statistically significant (P=0.016) increase in blood glucose levels when comparing all pups in the 0.01 mg/kg group to all pups in the 0.1 mg/kg group Statistically significant (P=0.033) increase in blood glucose levels when comparing all male pups in the 0.01 mg/kg group to all male pups in the 0.1 mg/kg group	
--	--	--

Reference and Study Design	Results	Comment
Reference and Study Design Ngo et al. (2014) Unless stated otherwise, results reported herein are for those endpoints where only wild-type (WT) mice were assessed. Results for Min/+ mice are reported in a separate table.	No statistically significant differences in feed intake between any of the exposure groups at week 20 Body weight development Pup data presented graphically (as area under the curve [AUC] in arbitrary units) for pups weighed between week 3 and week 11	 Major Limitations: Internal PFOS concentrations determined but used small sample size (n=2) and at time points earlier than some of the endpoint observations PFOS degradation observed Potential PFOA contamination in
Species and strain: Mice, C57BL/6J F0 females 6-7 weeks at mating F1 resulted from mating C57BL/6J-Apc+/+ females with C57BL/6J-Ap Min/+ males; WT genotype identified by polymerase chain reaction for Apc gene Group size: Varied when reported Test article and vehicle: PFOS (potassium salt, ≥98% pure) in water Route of exposure: Oral gavage Exposure levels: Two experimental blocks (e.g., exposures) needed to produce enough offspring for statistical analyses Experimental block 1: 0, 0.1, 3.0 mg/kg	 No statistically significant difference in pup AUC between exposure groups Pup data presented graphically for pups weighed between week 12 and week 20 No statistically significant difference in pup AUC between exposure groups Terminal body mass index (BMI) Data not shown No statistically significant differences in pup BMI between exposure groups Blood glucose levels Data presented graphically Statistically significant (P=0.029) increase in blood glucose levels at 20 weeks when comparing all pups in the 0.01 mg/kg group to all pups in the 0.1 mg/kg group No statistically significant differences between exposure groups and water group All blood glucose levels were within the normal range (>3.3 to <13.3 mmol/l) Terminal absolute and relative liver and spleen weights (at week 20) Data presented numerically No statistically significant difference in absolute or relative liver weights between exposure groups and water group 	Other comments: Species and background strain (C57BL/6J) appropriate for endpoints assessed Sample size varied by endpoint and not always reported Oral gavage provided direct exposure to PFOS Dose selection based on previous perinatal observations in mice Duration of exposure included gestational period Only 2 exposure levels assessed, may not clarify shape of doseresponse curve Quantitative data provided but not all data reported (e.g., terminal BMI) Endpoint ascertainment used standardized assessment of endpoints

Experimental block 2: 0, 0.01, 0.1 mg/kg For serum PFOS concentrations, see Results column of Ngo et al. (2014) table for maternal and wild-type and Min/+ results	 No statistically significant difference in absolute or relative spleen weights between exposure groups and water group Statistically significant (p<0.05) increase in relative spleen weights in water group and 0.1 mg/kg group females compared to corresponding males 	
Exposure regimen: GD1 to GD17 GD1 set as day after female and male co-habitation; actual duration of exposure determined based on actual day of birth and counting 21 days backwards		
Study also treated and assessed a separate group of mice exposed to PFOA, data not reported herein		

Reference and Study Design	Results	Comment
Ngo et al. (2014)	Body weight development	Major Limitations:
Unless stated otherwise, results reported herein are for those endpoints where only Min/+ mice were assessed. Results for wild-type (WT) mice are reported in a	 Pup data presented graphically (as area under the curve [AUC] in arbitrary units) for pups weighed between week 3 and week 11 No statistically significant difference in pup AUC between exposure groups 	 Internal PFOS concentrations determined but used small sample size (n=2) and at time points earlier than some of the endpoint observations PFOS degradation observed
separate table.	Terminal body mass index (BMI)	Potential PFOA contamination in
Species and strain:	Data not shownNo statistically significant differences in pup BMI between	some exposure groups
Mice, C57BL/6J	exposure groups	Other comments:
F0 females 6-7 weeks at mating		 Species and background strain
E4 as sulted from a sting	Blood glucose levels	(C57BL/6J) appropriate for
F1 resulted from mating	Data presented graphically	endpoints assessed; however,
C57BL/6J- <i>Apc</i> +/+ females with C57BL/6J- <i>Ap</i> Min/+ males; WT	No statistically significant differences between exposure groups	direct relevance to general human
genotype identified by	and water group	population of observations in
polymerase chain reaction for	All blood glucose levels were within the normal range (>3.3 to	mutant mice unclear
Apc gene	<13.3 mmol/l), except one male (13.6 mmol/l) at 6 weeks in the 0.01 mg/kg group	 Sample size varied by endpoint and not always reported
	3 3 3 1	 Oral gavage provided direct
Group size:	Terminal absolute and relative liver and spleen weights (at	exposure to PFOS
Varied when reported	week 11)	 Dose selection based on previous
Test article and vehicle:	Data presented numerically	perinatal observations in mice
PFOS (potassium salt, ≥98%	No statistically significant difference in absolute or relative liver weights between symmetric and under groups	Duration of exposure included acetational period
pure) in water	weights between exposure groups and water group	gestational periodOnly 2 exposure levels assessed,
	No statistically significant difference in absolute or relative splean weights between expensive groups and water group.	may not clarify shape of dose-
Route of exposure:	spleen weights between exposure groups and water group	response curve
Oral gavage	Intestinal tumors	Quantitative data provided but not
	Tumor number, diameter, and localization data presented	all data reported (e.g., terminal
Exposure levels:	graphically	BMI)
Two experimental blocks (e.g.,	 Small intestinal tumors observed in all mice, with the majority 	Endpoint ascertainment used
exposures) needed to produce	being located in the middle and distal parts of the small	standardized assessment of
enough offspring for statistical	intestine	endpoints

No statistically significant difference in the number of small intestinal tumors between exposure groups and water group

intestine

analyses Experimental block 1: 0, 0.1, 3.0

mg/kg

endpoints

Experimental block 2: 0, 0.01,	No linear increase in small intestinal tumor number with
0.1 mg/kg	increasing exposure dose
	Statistically significant (p<0.05) increase in small intestinal
For serum PFOS concentrations,	tumor size in 0.01 and 3.0 mg/kg females compared to water
see Results column of Ngo et al.	group
(2014) table for maternal and	Statistically significant (p<0.05) increase in small intestinal
wild-type and Min/+ results	tumor size in 3.0 mg/kg females compared to 0.1 mg/kg
	females
Exposure regimen:	No statistically significant effects on small intestinal tumor size
GD1 to GD17	in males
GD1 set as day after female and	
male co-habitation; actual	Statistically significant increase in number of colonic tumors in water group (P. 0.003) and 0.04 mg/kg group (P. 0.007) mg/sq.
duration of exposure determined	water group (P=0.002) and 0.01 mg/kg group (P=0.007) males
based on actual day of birth and	compared to corresponding females
counting 21 days backwards	No statistically significant differences in number of colonic
Counting 21 days backwards	tumors between exposed groups and water group
Study also treated and assessed	
a separate group of mice	
exposed to PFOA, data not	

reported herein

Reference and Study Design	Results	Comment
Rosen et al. (2009)	Maternal effects	Major Limitations:
Species and strain: Mice, CD1 F0 age not reported	 No observable effect on body weight or general appearance Fetal effects No effects on litter size (data not reported) 	 Limited observations (n=2) for fetal histology No internal PFOS concentrations determined
Group size:	Liver: eosoinphilic granules suggesting peroxisome The street of the street o	Other comments:
Group size: 5 dams/group 2 pups/litter for liver and lung histology Test article and vehicle: PFOS (potassium salt) in 0.5% Tween 20 Route of exposure: Oral gavage Exposure levels: 0, 5, 10 mg/kg/day	 proliferation observed in 5 and 10 mg/kg groups Lung: no apparent effects with exposure, as determined by light microscopy 	 Other comments: Species and strain appropriate for endpoints assessed Oral gavage provided direct exposure to PFOS Doses selected based on previous pre- and post-natal observations in rodents Exposure occurred during gestational period Only 2 exposure levels assessed, may not clarify shape of doseresponse curve Only qualitative data reported Endpoint ascertainment used
Exposure regimen: GD1 to GD17		standardized assessment of
Dams and fetuses sacrificed at term		endpoints, subjective histopathology observations

Reference and Study Design	Results			Comment		
Seacat et al. (2002)	Internal PFOS concentrations			Major Limitations:		
				 Sample sizes generally 2 to 6 		
Species and strain:			tions in males	and females	after 183	monkeys per group but with
Monkeys, cynomolgus	days of exp					increased frequency of endpoint
Young-adult to adult males and			ale		nale	measurements (i.e., during the
females, acclimated 57 days	Daily dose	Serum	Liver	Serum	Liver	course of exposure)
prior to exposure	mg/kg/day	(ppm)	(ppm)	(ppm)	(ppm)	
	0	0.05±0.01	0.12±0.03	0.05±0.02	0.11±0.03	Other comments:
Group size:	0.03	15.8±1.4 ^a	17.3±4.7 ^a	13.2±1.4 ^a	22.8±2.1a	Species and strain appropriate for
6/sex/group, expect for 0.03	0.15	82.6±25.2a	58.8±19.5a	66.8±10.8 ^a	69.5±14.9 ^a	endpoints assessed
mg/kg/day group where 4/sex	0.75	173±37 ^a	395±24a	171±22a	273±14 ^a	Oral intubation provided direct
	Mean±SD					exposure to PFOS
Test article and vehicle:	a = p≤0.05	compared to	controls			Doses selected based on previous
PFOS (potassium salt, 86.9%		-				observations in monkeys
pure) in lactose	Percent	of cumulative	PFOS that wa	as aiven durin	g 183 days of	Duration of exposures were
	treatmen	nt present in th	ne liver ranged	1 from 4 4+1 6	9 100 days of 8% to	subchronic
Route of exposure:			arent correlati			Number of exposure levels allowed
Intragastric intubation of a	0.7 = 1.0 7	o with no app	aroni corrolati	011 10 0000 01	gondoi	for determining any dose-related
capsule	Mortality du	rina exposui	re			effects
			y 155 with 0.7	75 ma/ka/day	likely due to	Quantitative data reported but
Exposure levels:			ce of pulmona			some qualitative reporting of data
Nominal doses: 0, 0.03, 0.15,			reatinine phos			(e.g., pathology)
0.75 mg/kg/day		dy weight	eathine phos	priokiriase ari	u 103t 137001	Internal PFOS measurements
Cumulative doses: 0, 4.6, 22.9,			ue to moribun	d condition or	day 179 with	Endpoint ascertainment used
114.7 mg/kg			due to monban due to hyperk			standardized assessment of
			n serum clinic			mortality, body and organ weights,
See Results column for liver and		nitial body we		al Chemistry a	and gamed	hematological and clinical
serum PFOS concentrations	14 /0 01 11	illiai body we	igrit			parameters, urinalyses, hormones,
	Rody weigh	t after 183 da	ivs of exposi	ıro		cell proliferation, and microscopy.
Exposure regimen:					aht hotwoon	More than one technique used to
26 weeks			ant difference	s in body weig	giirbetween	assess serum thyroid hormone
	CONTROIS	and exposed	groups			assess serum myroid normone

(e.g., free T4)

change (from day 0 to sacrifice) in males and females with 0.75

Statistically significant (p≤0.05) reduction in body weight

mg/kg/day compared to controls

Sacrifice on days 184 and 185

Recovery group (2/sex/group in

for most animals

control, 0.15, and 0.75

mg/kg/day groups) were monitored for 1 year following exposure then sacrificed

Note: most aspects of study reported to have been conducted according to GLP

Liver weight after 183 days of exposure

- Statistically significant (p≤0.05) increase in absolute liver weights in females with 0.75 mg/kg/day compared to controls
- Statistically significant (p≤0.05) increase in relative (to body weight) liver weights in males and females with 0.75 mg/kg/day compared to controls
- Statistically significant (p≤0.05) increase in relative (to brain) liver weights in females with 0.75 mg/kg/day compared to controls

Organ weights (non-liver) after 183 days of exposure

- Statistically significant (p≤0.05) increase in relative (to body weight) left adrenal gland weights in males with 0.75 mg/kg/day compared to controls
- No statistically significant changes in absolute or relative (to body weight or to brain weight) organ weights with 0.3 mg/kg/day or 0.15 mg/kg/day

Note: authors obtained organ weights for 9 different organs

Hematological parameters

- Statistically significant (p<0.05) reduction in hemoglobin in males with 0.75 mg/kg/day compared to controls at end of exposure, values were considered within normal range
- No statistically significant changes (compared to controls) in other male parameters at the end of exposure
- No statistically significant changes were consistently observed in females during or at the end of exposure

Note: authors obtained measurements for 15 parameters

Clinical chemistry parameters

- Statistically significant (p<0.05) reductions in serum total cholesterol in males and females with 0.75 mg/kg/day compared to controls from 91 days of exposure to the end of exposure, male levels significantly (p=0.013) lower than females after 183 days of exposure
- Statistically significant (p<0.05) reductions in high-density lipoprotein (HDL) cholesterol in males (with 0.03 and 0.75 mg/kg/day) and females (with 0.15 and 0.75 mg/kg/day)

- compared to controls at 153 and 182 days of exposure, authors did not measure HDL prior to day 153
- Statistically significant (p<0.05) reduction in serum bilirubin in males with 0.75 mg/kg/day compared to controls at 91, 153, and 182 days of exposure, no statistically significant effect in females
- Statistically significant (p<0.05) increase in serum bile acids in males with 0.75 mg/kg/day compared to controls at 182 days of exposure, no statistically significant effect in females
- Authors noted high background (i.e., prior to exposure) levels of creatine phosphokinase in males and females, measurements during the course of exposure generally significantly lower
- No statistically significant effects noted for sorbitol dehydrogenase, transaminases, or alkaline phosphatase as well as other clinical chemistry parameters

Note: authors obtained measurements for >20 parameters

<u>Urinalvses</u>

 No statistically significant changes expect on day 62 where females (0.75 mg/kg/day) had lower pH than controls
 Note: authors obtained measurements for >10 parameters

Thyroid hormones

- Thyroid stimulating hormone (TSH): increased (by about twice control values) at day 182 and day 184 (by two techniques) in males and females with 0.75 mg/kg/day, statistically significant (p≤0.05 compare to control) with some measurements
- Total thyroxine (T4): no consistent changes in terms of dose response or duration of exposure in males and females, day 184 measurements comparable between two different techniques
- Total triiodothyronine (T3): decreased at day 182 and day 184 (by two techniques) in males and females with ≥0.15 mg/kg/day, statistically significant (p≤0.05 compare to control) with some measurements

- Free T4: no change at day 184 (only day of measurement) in males and females, values obtained by equilibrium dialysis technique slightly higher than standard approach
- Free T3: statistically significant (p≤0.05) decrease at day 184 (only day measured and by only one technique) in males and females with 0.75 mg/kg/day

Hormone analysis

- Statistically significant (p≤0.05) reduction in estradiol at day 182 in males with 0.75 mg/kg/day compared to controls, reduction confirmed with analysis on day 184 (data not reported)
- Non-statistically significant reduction in estradiol at day 182 in females with ≥0.15 mg/kg/day
- No statistically significant changes in testosterone at day 182 in males and females

Cell proliferation

 No statistically significant effects in the liver, pancreas, and testes at day 182

Anatomic pathology, histopathology, and electron microscopy

- Anatomic pathology: no significant changes in tissues (liver, thymus, and spinal cord) and doses (0.03 and 0.15 mg/kg/day) analyzed
- Histopathology: centrilobular vacuoluation, hypertrophy, and mild bile stasis in some livers from 0.75 mg/kg/day group
- Electron microscopy: accumulation of lipid droplets (2 of 2 males, 2 of 4 females) and increased glycogen content (1 of 2 males, 2 of 4 females) in livers from 0.75 mg/kg/day group

Note: authors obtained >30 different tissues for histopathological evaluation

1-year recovery group: internal PFOS concentration

 Rate of elimination from serum varied between groups at beginning of recovery then similar slopes in elimination curves near end of recovery

- Similar rate of serum PFOS decrease between males and females during recovery phase
- Liver PFOS concentrations after 1-year recovery averaged 19±8% of concentrations measured at end of exposure

1-vear recovery group: clinical chemistry parameters

- Serum total cholesterol returned to pre-treatment values in males and females within 36 days after exposure ended
- HDL cholesterol returned to control values in males and females within 61 days after exposure ended

1-vear recovery group: thyroid hormones

 Values for total T3 returned to normal between 33 and 61 days after exposure ended

1-vear recovery group: hormone analysis

• Estradiol levels in males returned to control values after 63 days after exposure ended

1-year recovery group: histopathology and electron microscopy

- Histopathology: complete recovery observed in liver tissues collected 7 months after exposure ended, hepatocellular hypertrophy and vacuolation not observed after 1 year of recovery
- Electron microscopy: complete recovery observed in liver tissues collected 7 months after exposure ended; liver samples collected 1 year after exposure ended were considered ultrastructurally normal

Reference and Study Design Results Comment **Major Limitations:** Seacat et al. (2003) Internal PFOS concentration Sample size ≤5 rats per endpoint Internal PFOS concentration in males and females after 14 Note: the results reported by the weeks of exposure authors represent data from 4-Other comments: Male Female and 14-week interim sacrifices of Species and strain appropriate for a 2-year bioassay (Butenhoff et Dietary endpoints assessed Serum Liver Serum Liver al. 2012). Only 14-week sacrifice dose Dietary exposure more closely (ug/mL) (ug/g) (ug/mL) (ug/g) results are reported herein. Data (ppm) mimics potential human exposure from the 4-week sacrifice are not <LOQ^a 0.46±0.06 2.67±4.58 12.0±22.4 0 Dose selection based on previous summarized in a table but are 0.5 4.04±0.80 23.8±3.5 6.96±0.99b 19.2±3.8 observations of body weight and discussed in text. 74.0±6.2 69.2±3.5 17.1±1.22 27.3±2.3 liver effects in rats 5 43.9±4.9 358±26 64.4±5.5 370±22 Duration of exposures were Species and strain: 20 148±14 223+22 568±107 635±49 subchronic Rats, Crl:CD® (SD) IGS BR Mean±SD, n=5 unless specified Number of exposure levels allowed About 41 days old at start of a = limit of quantitation (LOQ)=0.046 ug/mL for determining any dose-related study b = n = 4effects Quantitative data reported but **Group size:** some qualitative reporting of data **Body weight** 5/sex/dose for 14-week sacrifice (e.g., pathology, urinalysis) No statistically significant decreases in body weight in males Internal PFOS measurements and females Test article and vehicle: determined PFOS (potassium salt, 86.9% **Food consumption** Endpoint ascertainment used pure) in acetone standardized assessment of body Statistically significant (p<0.05) decrease in food consumption and organ weights, food (presumably in males and females) with 20 ppm Route of exposure: consumption, hematological and No effect on food efficiency (g weight gain/g food consumed) Dietary clinical chemistry parameters, urinalyses, microscopy, and cell Liver weight **Exposure levels:** proliferation Statistically significant (p<0.05) increase in absolute liver Nominal doses: 0, 0.5, 2.0, 5.0, weight in males only with 20 ppm 20 ppm Statistically significant (p<0.05) increase in relative (to body weight) liver weight in males and females with 20 ppm See Results column for liver and serum PFOS concentrations Hematology Statistically significant (p<0.05) increase in the absolute count **Exposure regimen:**

of segmented neutrophils in males only with 20 ppm

Note: authors performed 8 different hematological evaluations

14 weeks

Related studies:		
Butenhoff et al. (2012)	 Urinalysis No toxicological important changes were observed (data not reported) Note: authors obtained measurements for >10 parameters 	
	 Clinical chemistry Statistically significant (p<0.05) decrease in serum cholesterol in males only with 20 ppm Statistically significant (p<0.05) increase in alanine aminotransferase in males only with 20 ppm Statistically significant (p<0.05) increase in urea nitrogen in males and females with 20 ppm Note: authors obtained measurements for >15 parameters 	
	 Histopathology Histopathological changes observed in the livers of males (≥5 ppm) and females (20 ppm) included centrilobular hepatocyte hypertrophy and midzonal to centrilobular vacuolation, incidence and severity generally greater in 20 ppm males Note: authors obtain 10 different tissues for microscopic analysis Cell proliferation No increase in hepatocellular proliferation index 	

Reference and Study Design	Results	Comment
Thibodeaux et al. (2003)	Internal PFOS concentrations: maternal and fetal	Major Limitations:
Charles and bare also assessed as	Negligible PFOS levels in maternal and fetal control samples	Thyroid hormone measurements
Study authors also conducted	Maternal serum PFOS initially increased monotonically with	may be subject to negative bias
exposures using mice. These	administered dose during pregnancy but fell after GD14	based on analytical method used
mouse data are presented in a separate table.	Maternal serum PFOS at term (GD21) increased linearly with administered dose	Other comments:
	Maternal liver PFOS at term increased linearly with	Species and strain appropriate for
Species and strain:	administered dose	endpoints assessed
Rats, Sprague-Dawley	Maternal liver PFOS was approximately four times greater than	 Most endpoints had ≥9 rats/groups
F0 age not reported	corresponding serum samples	Oral gavage provided direct
	Fetal liver PFOS increased with administered dose and was	exposure to PFOS
Group size:	approximately half the levels as in maternal counterparts	Doses selected apparently based
Varied by endpoint		on previous perinatal effects in
	Maternal effects: weight gain and food and water consumption	laboratory animals
Test article and vehicle:	Statistically significant (p<0.0001) reduction in weight gain with	Duration of exposure included
PFOS (potassium salt, 91%	≥2 mg/kg, in dose-dependent manner	gestational period
pure) in 0.5% Tween 20	 Initial observations of statistically significant (p<0.001) 	 Number of exposure levels would
5	reductions in weight gain started on GD7, GD5, and GD3 for	allow for determining dose-related
Route of exposure:	the 3 mg/kg, 5 mg/kg, and 10 mg/kg groups, respectively	effects
Oral gavage	 No weight gain in 10 mg/kg group until last week of pregnancy 	Quantitative data reported
Evenesias leveles	 Statistically significant reduction in food (p<0.0001) and water 	 Internal PFOS concentrations
Exposure levels:	(p<0.05) consumption with 5 mg/kg and 10 mg/kg	determined
0, 1, 2, 3, 5, 10 mg/kg/day		
Exposure regimen:	Maternal effects: liver weight	
GD2 to GD20	No effect on absolute liver weight	
Maternal and fetal sacrifices on	• Statistically significant (p<0.05) increase in relative liver weight	
GD21	with 10 mg/kg	
GD21		
A separate group of non-	Maternal effects: serum chemistry	
pregnant adult female rats was	Statistically significant (p<0.05) reductions in cholesterol and	
exposed to 3 or 5 mg/kg for 20	triglycerides with 10 mg/kg	
days	No effect on bile acid, bilirubin, glucose, and sorbitol	
aayo	dehydrogenase	
Related studies:		
Lau et al. (2003)		
()		

Maternal effects: serum hormones

• No effect on corticosterone and prolactin

Maternal effects: thyroid hormones (data presented graphically)

- Statistically significant reductions in total and free thyroxine (p<0.0001) and triiodothyronine (p<0.002)
- No effect on thyroid-stimulating hormone
- Similar effects observed in non-pregnant adult female rats exposed to PFOS

Fetal effects: liver weight

• No effect on absolute and relative liver weight

Fetal effects: reproductive and developmental indices

- No effect on number of implantation sites and percentage of live fetuses
- Statistically significant (p<0.05) reduction in body weight with 10 mg/kg
- Statistically significant (p<0.05) increases in cleft palate, sternal defects, anasarca, enlarged right atrium, and ventricular septal defects, generally with 10 mg/kg

Reference and Study Design	Results	Comment		
Thibodeaux et al. (2003)	Internal PFOS concentrations: maternal	Major Limitations:		
Thibodeaux et al. (2003) Study authors also conducted exposures using rats. These rat data are presented in a separate table. Species and strain: Mice, CD-1 F0 age not reported	 Internal PFOS concentrations: maternal Negligible PFOS levels in maternal control samples Maternal serum PFOS at term (GD21) increased linearly with administered dose Maternal liver PFOS at term increased linearly with administered dose but reached saturation between 15 and 20 mg/kg Maternal liver PFOS was approximately four times greater than corresponding serum samples Internal fetal PFOS concentrations not determined 	 Major Limitations: Thyroid hormone measurements may be subject to negative bias based on analytical method used Internal PFOS concentrations determined for dams but not for fetal tissue Other comments: Species and strain appropriate for 		
Group size: Varied by endpoint Test article and vehicle: PFOS (potassium salt, 91% pure) in 0.5% Tween 20 Route of exposure: Oral gavage Exposure levels:	 Maternal effects: weight gain and food and water consumption Statistically significant (p<0.05) reduction in weight gain with 20 mg/kg during late gestation No effect on food consumption but statistically significant (p<0.05) effect for water consumption Maternal effects: liver weight Statistically significant (p<0.05) increases in absolute and relative liver weights with ≥5 mg/kg Maternal effects: serum chemistry 	 endpoints assessed Most endpoints had ≥10 rats/groups Oral gavage provided direct exposure to PFOS Doses selected apparently based on previous perinatal effects in laboratory animals Duration of exposure included gestational period Number of exposure levels would allow for determining dose-related 		
0, 1, 5, 10, 15, 20 mg/kg/day Exposure regimen: GD1 to GD17 Sacrifices on GD6, GD12, and GD18 Related studies: Lau et al. (2003)	 Statistically significant (p<0.05) decrease in triglycerides, in a dose-dependent manner No effect on cholesterol and sorbitol dehydrogenase Maternal effects: thyroid hormones Only data for total serum thyroxine reported Statistically significant (p<0.05) decrease in thyroxine with 20 mg/kg at GD6, levels returned to control levels by last week of pregnancy Fetal effects: liver weight Statistically significant (p<0.05) increase in absolute and 	effects • Quantitative data reported		

<u>Fe</u>	etal effects: reproductive and developmental indices	
•	No effect on the number of implantation sites Statistically significant (p<0.05) decrease in percentage of live fetuses with 20 mg/kg Statistically significant (p<0.05) reductions in body weight with 10 mg/kg and 15 mg/kg Statistically significant (p<0.05) increases in cleft palate, sternal defects, enlarged right atrium, and ventricular septal defects, generally at ≥15 mg/kg	

Reference and Study Design Wan et al. (2010)

Species and strain:

Rats, Sprague-Dawley Age not reported Mated females

Group size:

10 dams/ group

Test article and vehicle:

PFOS (salt not reported, >98% pure) in 0.05% Tween 80

Route of exposure:

Oral gavage

Exposure levels:

0, 0.1, 0.6, 2.0 mg/kg/day

See **Results** column for serum and liver PFOS concentrations in offspring

Exposure regimen:

GD2 to GD21

6 pups/litter selected on PND4 were maintained to sacrifice on PND21

Internal PFOS concentration

Serum and liver PFOS concentrations in pups at PND21					
Maternal dosing	PFOS in serum	PFOS in liver			
(mg/kg/day)	(ug/mL)	(ug/g)			
0	ND	ND			
0.1	0.37±0.12	1.43±0.59			
0.6	1.86±0.35	7.68±1.62			
2.0	4.26±1.73	20.52±4.59			

Results

ND = value below the limit of detection (limit not reported by study authors)

Note: data are mean of 6 litters/group

Maternal effects: body weight

- Statistically significant reduction in maternal body weight with 2.0 mg/kg/day at GD21 compared to controls
- No statistically significant reductions observed during other gestational time points

Offspring effects: reproductive and developmental

Pups delivered and mortality at PND3					
Maternal dosing (mg/kg/day) Delivered pups Mortality (%)					
0	13.5±1.3	3.6±0.1			
0.1	13.6±2.3	3.2±0.1			
0.6	12.7±2.1	3.5±0.1			
2.0	11.0±2.5* 22.9±0.1*				
* - n < 0.05 compared to control					

* = p<0.05 compared to control Note: data are mean of 10 litters/group

Major Limitations:

 Internal PFOS concentrations only reported for PND21, corresponding internal PFOS concentrations at PND3 (i.e., time point assessed for pup mortality) either not reported or not determined

Comment

Other comments:

- Species and strain appropriate for endpoints assessed
- Sample size 6 or 10 litters/group
- Oral gavage provided direct exposure to PFOS
- Doses selected yielded clear LOAEL and NOAEL, doses also produced rat serum PFOS concentrations similar to human serum PFOS concentrations in occupational exposed workers (as reported by the study authors)
- Duration of exposure lasted through the majority of gestational period, lactational exposure (through PND21) from residual exposure PFOS in dams
- Number of exposure levels would allow for determining any dosedependent effects
- Quantitative data reported
- Endpoint ascertainment used standardized assessment of pup mortality, body weight, and liver weight

Note: this study presented additional mechanistic data (e.g., DNA

Offspring effects: body and liver weights

Pup body and liver weights at PND21					
Maternal dosing (mg/kg/day)	Body weight (g)	Liver weight (g)	Relative liver weight		
0	52.8±3.4	2.13±0.19	0.040±0.002		
0.1	53.5±3.7	2.18±0.18	0.040±0.002		
0.6	50.4±3.4	2.10±0.18	0.041±0.003		
2.0	45.3±3.8*	2.12±0.18	0.046±0.001*		

^{* =} p<0.05 compared to control Note: data are mean of 6 litters/group

Offspring effects: liver histopathology

No significant differences in pathology between exposure and controls groups (e.g., no cytoplasmic vacuolation or hepatocyte hypertrophy)

methylation) that are not presented herein

Reference and Study Design	Results			Comment		
Wan et al. (2014)	Internal PFOS concentrations: PND21 and PND63			Major Limitations:		
				• Only 2 dose levels used		
Species and strain:	Internal PFOS concentrations for dams (F0) at PND21					
Mice, CD-1	PFC	os	Serum PFOS	3	Liver PFOS	Other comments:
F0 females: 6 to 8 weeks old			(ug/mL)		(ug/g)	 Species and strain appropriate for
	Control		0.25±0.11		0.15±0.11	endpoints assessed
Group size:	0.3 mg/kg		15.33±4.62		49.09±9.88	 Sample sized generally ≥6 dams or
Varied by endpoint	3 mg/kg		131.72±30.7	1 3	38.87±100.71	F1 mice
	mean±SD;	n=4 per grou	р			Oral gavage provided direct
Test article and vehicle:						exposure to PFOS
PFOS (salt not reported, 98%			ations for pups			Dose selection approximated
pure) in 0.05% DMSO and corn	PFC)S	Serum PFOS	3	Liver PFOS	human occupational exposure
oil			(ug/mL)		(ug/g)	levels
Doute of expension	Control		M: 0		M: 0	Duration of exposure lasted
Route of exposure:			F: 0		F: 0	gestational period to weaning
Oral gavage	0.3 mg/kg		M: 12.73±1.9		l: 20.14±4.06	Quantitative data reported
Exposure levels:			F: 11.35±1.0		: 17.96±6.38	Exposure characterized by internal
0, 0.3, 3 mg/kg	3 mg/kg		M: 98.74±4.5		242.98±55.62	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0, 0.5, 5 mg/kg			F: 87.23±4.2	8 F:	178.44±79.03	
See Results column for serum		n=4 per grou	р			Endpoint ascertainment used
and liver PFOS concentrations at	a = p < 0.05					standardized assessment of body
PND21 and PND63	F = female	s; M = males				and liver weights and glucose
111521 and 111500						metabolism
Exposure regimen:	Serum PFOS concentrations (ug/mL) in F1 adults at P				<u> </u>	
GD3 to PND21 (weaning)			ales		emale	<u> </u>
(3/	PFOS	STD	HFD	STD	HFD	
Note: All F0 dams and some F1	Control	0	0	0	0	
pups (2 per dam) sacrificed at	0.3 mg/kg	0.30±0.06	1.20±0.29 ^a	0.51±0.1		
PND21; remaining F1 pups	3 mg/kg	3.36±1.07	5.38±0.30 ^a	3.40±1.0	8 5.76±1.24	<u>4^a </u>
allowed access to either a	mean±SD; n=4 per group a = p<0.05 compared between STD and HFD within the same gender HFD = high-fat diet; STD = standard diet					
standard diet (STD) or high-fat						
diet (HFD) until sacrifice at						
PND63	HFD = nigr	ı-ıat diet; STL	= standard di	еі		

Liver PFOS concentrations (ug/g) in F1 adults at PND63					
	Males		Female		
PFOS	STD	HFD	STD	HFD	
Control	0	0	0	0	
0.3 mg/kg	3.97±0.50	5.43±0.98ª	3.34±0.50	4.27±1.75 ^a	
3 mg/kg	12.30±1.59	24.54±1.06 ^a	13.77±4.05	21.34±3.36 ^a	

mean±SD; n=4 per group

a = p<0.05 compared between STD and HFD within the same gender

HFD = high-fat diet; STD = standard diet

Maternal (F0) effects at PND21: body and liver weights

- No effect on body weight
- Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg
- No effect on absolute liver weight

Maternal (F0) effects at PND21: glucose metabolism

- Increased serum fasting glucose and fasting insulin with increasing dose but no statistical significance
- Statistically significant (p<0.02) increase in homeostatic model assessment for insulin resistance (HOMA-IR) index with ≥0.3 mg/kg compared to control

F1 effects at PND21: body and liver weights

- No difference in body weights between exposure groups as measured from PND1 to PND21
- Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg in males and females compared to control
- Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg in males compared to controls, increased absolute liver weights in females but no statistically significance

F1 effects at PND21: glucose metabolism

- No effect on fasting serum glucose in males and females
- Statistically significant (p<0.05) increase in fast serum insulin with ≥0.3 mg/kg in males compared to controls, no effect in females
- No effect on HOMA-IR in males and females

F1 effects at PND63 (STD): body and liver weights

- No effect on body weights (measured between PND21 and PND63) between exposed and control groups in both males and females
- Statistically significant (p<0.05) increase in absolute liver weight with 3 mg/kg compared to controls (in males only)
- Statistically significant (p<0.05) increase in relative liver weight with ≥0.3 mg/kg compared to controls (in males only)

F1 effects at PND63 (STD): glucose metabolism

- Statistically significant (p<0.05) increase in fasting serum glucose with ≥0.3 mg/kg compared to controls in both males and females
- Statistically significant (p<0.05) increase in fasting serum insulin with 3 mg/kg compared to controls in both males and females
- No significant effect on oral glucose tolerance test (OGTT) between control and exposed groups
- Statistically significant (p<0.01) increase in HOMA-IR with 3 mg/kg compared to controls in both males and females

F1 effects at PND63 (HFD): body and liver weights

- No effect on body weights (measured between PND21 and PND63) between exposed and control groups in both males and females
- Statistically significant (p<0.05) increase in absolute and relative liver weights with 3 mg/kg compared to controls in males only

F1 effects at PND63 (HFD): glucose metabolism

- Statistically significant (p<0.05) increase in fasting serum glucose in males (3 mg/kg) and females (≥0.3 mg/kg) compared to controls
- Statistically significant (p<0.05) increase in fasting serum insulin with 3 mg/kg compared to controls in males and females
- Statistically significant (p<0.02) increase in blood glucose area under the curve (OGGT) with 3 mg/kg compared to controls in both males and females
- Statistically significant (p<0.01) increase in HOMA-IR with 3 mg/kg compared to controls in both males and female

<u>F1 effects at PND63 comparing STD and HFD groups: liver weights</u>

 Statistically significant (p<0.05) increase in relative liver weight with 3 mg/kg for HFD group compared to STD group in males only

F1 effects at PND63 comparing STD and HFD groups: glucose metabolism

- Statistically significant (p<0.05) increase in fasting serum glucose with 3 mg/kg for HFD group compared to STD group in males only
- Statistically significant (p<0.05) increase in fasting serum insulin with 3 mg/kg for HFD group compared to STD group in females only
- Statistically significant (p<0.01) increase in HOMA-IR with 0.3 mg/kg for HFD group compared to STD group in males and females

Reference and Study Design		Res	sults		Comment
Wang et al. (2011c)	Internal PFOS	concentrations			Major Limitations:
					Sample size reported to be <10 but
Species and strain:		x PFOS concentrat			not reported for any given endpoint
Rats, Wistar	PFOS	Serum PFOS	Cortex PFOS	Cortex/serum	
F0 age not reported	(mg/kg feed) Dams PND1	(ug/ml)	(ug/g tissue)	ratio	Other comments:
	0	<lloq<sup>a (3)</lloq<sup>	<lloq<sup>b (3)</lloq<sup>	NA	Species and strain appropriate for
Group size:	3.2	2.29±0.15 (4)	<lloq* (3)<="" td=""><td></td><td>endpoints assessed</td></lloq*>		endpoints assessed
Varied	32	16.9±0.43 (3)	0.76±0.05 (3)	0.046±0.002 ^c	Oral gavage provided direct
4 to 9 dams/group	Dams PND7	10.0±0.40 (0)	0.70±0.00 (0)	0.040±0.002	exposure to PFOS
5 to 8/female pups/group	0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td><td>Dose selection based on previous</td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td><td>Dose selection based on previous</td></lloq>	NA	Dose selection based on previous
5 to 8/male pups/group	3.2	4.16±0.04 (3)			observations of thyroid hormone
	32	27.3±0.43 (4)	1.33±0.03 (4)	0.050±0.002°	effects
Test article and vehicle:	Dams PND14		,		Exposure lasted through gestation
PFOS (potassium salt, >98%	0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td><td>Only 2 exposure levels assessed,</td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td><td>Only 2 exposure levels assessed,</td></lloq>	NA	Only 2 exposure levels assessed,
pure) in 2% Tween 20	3.2	3.15±0.21 (6)			may not clarify shape of dose-
	32	28.7±1.44 (6)	1.04±0.02 (6)	0.035±0.003°	response curve
Route of exposure:		eported as Mean±S			Quantitative data reported, clinical
Dietary		theses is sample si			signs assessed not reported
		quantitation (LLOC		is 0.010ug/ml	Internal PFOS concentrations
Exposure levels:		nin PFOS is 0.025 u x/serum ratio for PF		nnarad ta dam	determined
0, 3.2, 32 mg/kg feed		ble as ratio could n			Endpoint ascertainment used
		ere below the LLO		1103	standardized assessment of
See Results column for serum	= no samples		Q		endpoints
and brain PFOS concentrations	'				enapoints
Exposure regimen:					
GD1 to PND14					
Rats sacrificed on PNDs 1, 7,					
and 14					
This study also exposed rats to					
2,2',4,4'-tetrabromodiphenyl					
ether (BDE-47) alone and in					
combination with PFOS. Results					
reported herein are for PFOS					
only exposures.					
only exposures.					

Serum and cortex	Serum and cortex PFOS concentrations in pups							
PFOS	Serum PFOS	Cortex PFOS	Cortex/serum					
(mg/kg feed)	(ug/ml)	(ug/g tissue)	ratio					
Pups PND1								
0	<lloq<sup>a (3)</lloq<sup>	<lloq<sup>c (3)</lloq<sup>	NA					
3.2	5.85±0.33 (7)	2.05±0.13 (7)	0.36±0.07					
32	32.9±0.81 (6)	11.5±0.82 (6)	0.37±0.05					
Pups PND7								
0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td></lloq>	NA					
3.2	3.65±0.23 (6)	1.52±0.10 (6)	0.42±0.01					
32	21.3±1.06 (5)	6.79±0.48 (5)	0.32±0.03					
Pups PND14								
0	<lloq (3)<="" td=""><td><lloq (3)<="" td=""><td>NA</td></lloq></td></lloq>	<lloq (3)<="" td=""><td>NA</td></lloq>	NA					
3.2	4.89±0.29 (5)	1.45±0.06 (5)	0.30±0.01					
32	25.2±1.27 (6)	4.92±0.29 (6)	0.20±0.04					

Concentrations reported as Mean±SE

Number in parentheses is sample size

a = lower limit of quantitation (LLOQ) for serum PFOS is 0.010ug/ml

b = LLOQ for brain PFOS is 0.025 ug/g

NA = not applicable as ratio could not be calculated as PFOS concentrations were below the LLOQ

--- = no samples available

Maternal effects: general observations

- No signs of general toxicity during daily observations
- Dam food intake similar between groups for GD1 to GD21

Reproductive and offspring endpoints

- Statistically significant (p<0.05) decreased pup body weight at PNDs1, 7, and 14 in 32 mg/kg feed group compared to controls
- Pups appeared pale and delicate in 32 mg/kg feed group

Reproductive and offspring effects						
PFOS (mg/kg feed)	Pregnancy length (days)	Litter size	Mortality on PND1 (%)			
0	22	8 to 14	0 to 25			
3.2	22	8 to 14	0 to 20			
32	22	6 to 14	0 to 29			

Maternal effects: serum levels of total triiodothyronine (TT3) and total thyroxine (TT4)

- Statistically significant (p<0.05) decrease in maternal TT3 levels at PND1 with 32 mg/kg compared to controls; data incomplete for PNDs7 and 14
- Statistically significant (p<0.05) decrease in maternal TT4 at PND1 (≥3.2 mg/kg) and PND7 (only 3.2 mg/kg data reported) compared to controls, no control values reported at PND14

Offspring effects: serum levels of TT3 and TT4

- Statistically significant (p<0.05) decrease in TT3 levels at PND14 with 32 mg/kg compared to controls, no effects at PNDs1 and 7
- Statistically significant (p<0.05) decreases in TT4 levels at PND1 with 32 mg/kg and at PNDs7 and 14 with ≥3.2 mg/kg compared to controls

Reference and Study Design	Results							Comment			
Wang et al. (2015)	Internal P	FOS cor	centratio	ns						Ma	ajor Limitations: Internal PFOS concentration
Species and strain:	Maternal	serum P	FOS cond	entrations	(ug/mL)					in offspring determined only
Rats, Wistar				Р	FOS dos	se (mg/L)				for PND35 and not for time
Age not reported			0		5	, , ,		15			points where effects were
Pregnant females	PND7		NI	D	25.7±	0.8**	9	9.3±2.0*	*		observed (e.g., decrease in
	PND35		NI	D	64.3±	9.5**	20	7.7±10.5	**		time spent in target quadrant
Group size:	For each	dose arc	$\sup_{n \to \infty} n = 3$	J.			1				with TT15 on PND42)
Varied by endpoint)5, ** = p<								•	Maternal toxicity not reported
	ND = not	detectab	ole								
Test article and vehicle:										Ot	her comments:
PFOS (salt not reported,	PFOS cor	ncentration	ns (ug/g) in	hippocamp	ous of litte	ers				1 •	Species and strain
≥97% pure) in 2% Tween			(Groups					1	appropriate for endpoints
20 (this stock solution was		CC	TT5	TT15	TC5	TC1	5	CT5	CT15		assessed
diluted 500-fold with sterile	PND1	ND	123.3**	373.4**						•	Sample sizes ≤10
tap water for exposure)	PND7	ND	11.4**	32.30**	4.6**#			1.0	3.5**		Drinking water exposure
	PND35	ND	6.7**	14.66**	0.3#	0.3	##	1.9**	5.7**		allows for PFOS to interact
Route of exposure:			standard er	rors not re	ported he	rein)					with tissues from the oral
Drinking water (ad libitum)		dose grou									cavity to the stomach
			I (CC): * =				0.4				Doses selected based on
Exposure levels:		d to CT of detectable	same PFO	S dose: # =	= p<0.05,	## = p < 0	.01				acute toxicity tests (LD50
0, 5, 15 mg/L			exist at time	a of camplin	20						determinations) in rats, as
	_ gioc	ip did flot (onot at time	or sampin	19					J	stated by the study authors
See Results column for	Reproductive/developmental effects								Duration of exposure lastrd		
maternal serum and	Keprodus	, tive/acv	CIODIIICIII	ai circots							from the beginning of
offspring hippocampus	Litter par	ameters									gestation until PND35
PFOS concentrations	Litter par	ameters			DE	OS dos	o (mo	d \		•	Two exposure levels may limit
				0	''	5	e (mg		15		ability to demonstrate any
Exposure regimen:	Number	of pups b	orn ner								dose-related effects, NOAEL
Dams exposed GD1 to	litter	or pups b	on per	10.50±	0.55	11.59±	0.80	10.2	26±0.8		not identified (for escape
weaning (PND not		of nun eu	rvivina					+			latency)
specified), offspring were	Number of pup surviving to PND1 10.36±0.52 11.24±0.74 8.74±0.81				•	Quantitative data reported					
then exposed from weaning		Pirth to PND1 curvival (9/			•	Endpoint ascertainment used					
to PND35	per litter)		vivai (70	99±1	.0	97±1	.0	87:	<u>+</u> 6.0**		standardized assessment of
On DND1 control and	Mean±S										reproductive/developmental
On PND1, control and		∟)5, ** = p<	<0.01								and neurological endpoints
exposure groups were		-, P									

cross-fostered to produce the following groups:

- CC = no prenatal and no postnatal exposure
- TT5 or TT15 = prenatal and postnatal exposure to 5 or 15 mg/L, respectively
- CT5 or CT15 = only postnatal exposure to 5 or 15 mg/L, respectively
- TC5 or TC15 = only prenatal exposure to 5 or 15 mg/L, respectively

Some pups sacrificed on PND7 and PND35, other pups tested for spatial learning and memory ability starting on PND35

Neurotoxicity (offspring): visual and motor functions

 No statistically significant differences in swimming speeds and time to reach the visible platform between exposure groups and controls

Neurotoxicity (offspring): learning ability

Escape latency (time to hidden platform) in offspring							
Test day	PND35	PND36	PND37	PND38	PND39	PND40	PND41
Sample size	8	6	10	10	10	9	10
CC	77.27	41.48	23.76	17.76	23.64	16.59	17.60
TT5	80.10	49.21	19.72	22.49	21.96	15.14	15.44
TT15	85.88	58.49	44.13**	29.75*	26.19	22.74	23.78
TC5	80.02	51.38	35.4	38.82*	27.24*	20.41	23.65
TC15	91.47	65.66*	49.41**	35.69*	41.50**	29.61**	31.01*
CT5	83.92	48.45	39.99*	28.14*	24.17	25.36	22.67
CT15	80.08	57.80	35.57	28.63*	24.15	20.53	21.29

Values are means reported in seconds (standard errors not reported herein)

* = p<0.05, compared to controls (CC); ** = p<0.01, compared to controls (CC)

Escape distance (distance swum before reaching submerged platform) in offspring Training Observations for escape distance^a day No statistically significant differences between exposed groups and control No statistically significant differences between exposed 2 groups and control • Statistically significant (p<0.05) increase with TT15, 3 TC5, TC15, and CT5 compared to control Statistically significant (p<0.05) increase with TC5 and TC15 compared to control Statistically significant (p<0.01) increase with TC15 5 compared to control 6 Statistically significant (p<0.05) increase with TC15 compared to control Statistically significant (p<0.05) increase with TC5 and TC15 compared to control Note: Training day 1 was PND35 a = data by study authors were only provided in a figure

Note: this study also presented data on mechanistic and neurochemical effects of PFOS. Those data are not reported herein.

Neurotoxicity (offspring): memory ability Note: probe test conducted on PND42 (i.e., 24 hours after the last hidden
 platform test) Statistically significant (p<0.05) decrease in time spent in target quadrant with TT15 compared to controls
Statistically significant (p<0.05) decrease in number of platform crossings with TT15 compared to controls

Reference and Study	Ι						I			
Design	Results							Comment		
Yahia et al. (2008)	Maternal e	ffects					Major Limitations:			
							•	Internal PFOS concentrations		
Species and strain:	Statisti	cally significar	nt (p<0.05 or p	<0.01) decrea	se in weight ga	ainfrom		not determined		
Mice, ICR	GD11 i	until end of ge	station with 20) mg/kg			•	Sex of offspring not reported		
F0: 7 weeks	 Statisti 	cally significar	nt (p<0.05) ded	crease in daily	feed consump	tion from				
		onward with 20	~ ~				Ot	her comments:		
Group size:					g (intermittent s	tatistical	•	Strain of mouse not very		
5 dams/group		ance [p<0.05]		,				common and appropriateness		
Test article and vehicle:					ally significant	[p<0.01]		for endpoints assessed is		
PFOS (potassium salt, 98%				ophy at highes				unclear		
pure) in 0.5% Tween 20	No effe	ct on organ w	eignt for klane	eys, lungs, and	brain		•	Sample size generally ≥10 dams or pups		
	Prenatal e	facts						Oral gavage provided direct		
Route of exposure:			ack of nack in	all fotuses wit	th 20 mg/kg an	d in some		exposure to PFOS		
Oral gavage		(incidence no			iii 20 iiig/kg aii	u III Soille		Dose selection allowed for		
		ervations follow				1		overt toxicity at highest dose		
Exposure levels:		Control	1 mg/kg	10 mg/kg	20 mg/kg		•	Duration of exposure lasted		
0, 1, 10, 20 mg/kg/day	# of			0 0				gestational period		
(only two highest doses for	dams	5	5	5	5		•	Generally 3 doses assessed		
histopathology study)	Total #							per endpoint, expect 1 dose		
Exposure regimen:	of	80	76	79	71			for histopathology		
Prenatal study: GD0 to	fetuses						•	Generally quantitative data		
GD17, sacrifice on GD18	% live	98.75±1.25	98.88±1.12	96.85±1.97	90.06±3.02*			but some qualitative (textual)		
Postnatal study: GD0 to	fetuses	00.7021.20	00.0021112	00.00±1.07	00.0020.02			reporting of data		
GD18, sacrifice following	%	4.05.4.05		0.45.4.07	5 00 0 00		•	Endpoint ascertainment used		
natural birth	resorbed	1.25±1.25	1.11±1.11	3.15±1.97	5.36±2.63			standardized assessment of mortality, body and organ		
	fetuses % dead							weights,		
Histopathology study: GD0	fetuses	0	0	0	4.58±3.25			reproductive/developmental		
to GD17 or GD18, sacrifice	Fetal							endpoints, and histology		
prior to or after birth	body									
	weight	1.49±0.01	1.46±0.01	1.41±0.01**	1.10±0.02**		•	Note: biological significance		
	(g)							of intracranial blood vessel		
	* = p < 0.05	, compared to	control; ** =	p<0.01, compa	ared to			dilation not clear.		
	control									

Fetal observat		PFOS exposure		
	Control	1 mg/kg	10 mg/kg	20 mg/kg
# fetuses	60	44	68	60
examined	00	77	00	00
% cleft	0	1.96±1.96	26.36±8.27**	98.56±1.44**
palate	O	1.90±1.90	20.30±0.21	90.30±1.44
% sternal	0	15.77±0.99**	52.44±2.79**	100**
defects	O	15.77±0.99	32.44±2.79	100
% delayed				
ossification	0	1.96±1.96	4.34±1.80	57.23±9.60**
of phalanges				
% delayed				
eruption of	3.25±1.89	6.90±0.53	22.12±2.68	36.10±4.64**
incisors				
% extra ribs	27.81±13.35	13.01±6.59	36.11±11.85	32.08±8.04
% wavy ribs	0	0	7.31±0.34*	84.09±2.56**
% tail	4.41±4.41	40.00.0.70	22.05.2.25	CE 00 · C 74**
abnormalities	4.41±4.41	18.38±8.73	23.05±3.25	65.00±6.71**
% curved	3.55±2.11	4.94±2.47	33.38±8.47**	68.47±1.30**
fetus	3.33±2.11	4.94±2.47	33.30±0.41	00.47±1.30
% spina	0	1.96±1.96	23.13±3.94**	100**
bifida occulta	U	1.30±1.90	23.13±3.94	100
* = p < 0.05, cor	mpared to conti	rol; ** = $p < 0.01$,	compared to co	ontrol

Postnatal effects

- Neonates (100%) in 20 mg/kg group born pale, weak, and inactive; died immediately after or within hours after birth
- Neonates (45%) in 10 mg/g group born pale and inactive; died within 24 hours after birth
- Bilateral firm swelling in back of neck in all neonates of 20 mg/kg group and in some (incidence not reported) of 10 mg/kg group
- Histological examination of pup lungs showed atelectasis-like histology in all pups (n=5) in 20 mg/kg group and in some (incidence not reported) pups in 10 mg/kg group; 1 mg/kg and control pups had intact lung structure

[N						
Neonatal observations following PFOS exposure						
	Control	1 mg/kg	10 mg/kg	20 mg/kg		
# of dams	5	5	5	5		
# of pups	53	59	49	40		
Neonatal body weight (g)	1.51±0.02	1.55±0.02	1.41±0.01**	1.08±0.01**		
% survival rats at PDN4	98.18±1.82	100	55.20±18.98*	0**		

^{* =} p<0.05, compared to control; ** = p<0.01, compared to control PND = postnatal day

Histopathology of fetal (20 mg/kg) and neonatal (10 mg/kg) heads and lungs

- Normal lung structure in all (n=15) fetal lungs
- All fetal heads (n=15) showed mild to severe intracranial dilatation of blood vessels with no inflammatory or hemorrhagic reactions
- Lung atelectasis (slight) in 27% of pups accompanied with moderate to severe intracranial blood vessel dilatation
- Brain blood vessel dilatation (moderate to severe) in 87% of pups

Reference and Study Design	Results	Comment
Ye et al. (2012)	Maternal effects	Major Limitations:
Species and strain: Rats, Sprague-Dawley F0 age not reported	 No dams died from exposure Fetal effects No histological differences observed in lungs between exposure groups 	 Qualitative data reported; dam and fetal birth weights not reported No internal PFOS concentrations determined, purity of PFOS not reported
Group size:		
10 dams/group	Note: body weights of dams and fetus were recorded but not reported by authors	Other comments:Species and strain appropriate for
Test article and vehicle:		endpoints assessed
PFOS (salt and purity not reported) in 0.5% Tween 20		 Sample size 10 dams/group but number of fetuses used endpoint observation (lung pathology) not
Route of exposure:		reported
Oral gavage		Oral gavage provided direct exposure to PFOS
Exposure levels: 0, 5, 20 mg/kg		High dose used apparently based on previous observations of neonatal mortality in rats
Exposure regimen: GD12 to GD18		 Exposure occurred during a part of gestational period
Pregnant dams sacrificed on GD18.5		 Only 2 exposure levels assessed, may not clarify shape of dose- response curve
		Endpoint ascertainment used standardized assessment of endpoints, subjective histopathology observations

Reference and Study Design

Yu et al. (2009a)

Species and strain:

Rats, Sprague-Dawley Males only Age not reported

Group size:

8-10/group

Test article and vehicle:

PFOS (potassium salt, >98% pure) in drinking water

Route of exposure:

Drinking water (ad libitum)

Exposure levels:

0, 1.7, 5.0, 15.0 mg/L

See **Results** column for serum PFOS concentrations

Exposure regimen:

91 days

Internal PFOS concentration

Serum PFOS concentrations after 91 days of exposure				
Serum PFOS (mg/L)				
<loq< td=""></loq<>				
5.0±0.3				
33.6±2.1				
88.2±4.2				

Results

For each dose group, n = 7-8/groupLimit of quantitation (LOQ) was 0.5 ug/L

Body weight

Body weight after 91 days of exposure					
Exposure dose (mg/L)	Body weight (g)				
0	397±29.3				
1.7	406±40.3				
5.0	434±19.2				
15.0 385±26.7					
For each dose group, n = 8-10/group					

Organ weights: liver and thyroid

Organ weights after 91 days of exposure				
		Liver	Т	hyroid
Exposure dose (mg/L)	Absolute (g)	Relative ^a	Absolute (mg)	Relative ^a (x10 ³)
Ô	13.7±1.1	0.035±0.002	27.4±3.2	0.068±0.004
1.7	15.1±1.5	0.037±0.001	23.6±2.0	0.060±0.005
5.0	17.9±1.0*	0.041±0.001**	26.7±1.9	0.061±0.002
15.0	19.8±1.5**	0.052±0.002**	25.9±2.6	0.067±0.004

For each dose group, n = 8-10/group a = organ weight to body weight ratio

* = p<0.05 compared to control, ** = p<0.01 compared to control

Major Limitations:

Only males used, females may be more sensitive

Comment

 Exact sample size per dose group not provided

Other comments:

- Species and strain appropriate for endpoints assessed
- Sample size ≤10/group
- Drinking water exposure allows for PFOS to interact with tissues from the oral cavity to the stomach
- Doses selected cover ~1 order of magnitude and produce rat serum PFOS concentrations that are greater than human PFOS serum concentrations from occupational and non-occupational exposures, as reported by the study authors
- Subchronic duration of exposure
- Number of exposure levels would allow for determining any dosedependent effects
- Quantitative data reported
- Internal PFOS concentrations determined
- Endpoint ascertainment used standardized assessment of body and organ weights; based on authors' description of methods, unclear whether free T4 measurements were potentially subject to negative bias due to analytical method used

Thyroid hormones

Thyroid hormone levels after 91 days of exposure				
Exposure dose (mg/L)	Total T3 (ug/L)	Total T4 (ug/L)	Free T4 (pmol/L)	TSH (IU/L)
0	0.29±0.04	40.9±1.8	19.0±1.3	0.72±0.30
1.7	0.48±0.08*	23.9±1.3**	16.7±1.4	0.67±0.27
5.0	0.23±0.05	16.4±5.4**	12.6±1.5*	1.12±0.34
15.0	0.23±0.03	8.5±1.6**	17.3±1.1	1.62±0.67

For each dose group, n = 5–6/group

Note: thyroid hormones measured by radioimmunoassay

T3 = triiodothyronine

T4 = thyroxine

TSH = thyrotropin

* = p<0.05 compared to control, ** = p<0.01 compared to control

Note: This paper also includes mechanistic data not reported herein.

Appendix 5: Animal tabular review tables

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Asakawa et al. (2007)	Inhibition of feeding	Study also contains information on gene expression, and hypothalamus cellular
Species, strain, age of animals:	NOAEL	function.
Mice, ddy, M, 8-9 wks old	30 μg/kg	
Rats, Wistar, M, 8-10 wks old		Unusual route-of-exposure
	LOAEL	·
Group size: N = 3-7	100 μg/kg	
	Endpoint 2	
Test article and vehicle: PFOS, in artificial cerebrospinal fluid w 1%	Gastro-duodenal motility	
DMSO	NOAEL	
Route of exposure:		
Intracerebrovemtricular injection	LOAEL	
	300 μg/kg (single dose level)	
Exposure levels:		
Vehicle, 30, 100, 300 μg/kg	Endpoint 3	
_	Rate of gastric emptying	
Exposure regimen:		
Single dose	NOAEL	
	100 μg/kg	
	LOAEL	
	300 μg/kg	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Austin et al. (2003)	Body wt	
On a sing a studio and of animals	NOAEL	
Species, strain, age of animals:	NOAEL	
Rats, S-D, adult, F	1 mg/kg	
	LOAEL	
Group size:	10 mg/kg ↓ (for d 11-14)	
N = 8 for each dose group		
	Endpoint 2	
Test article and vehicle:	Food intake	
K-PFOS in DMSO		
	NOAEL	
Route of exposure:	1 mg/kg	
Intarperitoneal injection	LOAEL	
	10 mg/kg ↓ (for d 5-14)	
Exposure levels:		
Vehicle, 1, 10 mg/kg	Endpoint 3	
	Estrous cycling (percent animals w regular	
Serum conc (mean) = ND, 10,480, 45,446	cycles)	
ng/ml		
	NOAEL	
Exposure regimen:	1 mg/kg	
[day/week, duration]	(also irregular cycle and ↑ persistent diestrus	
	vs. no observed in controls)	
Daily for 14 d	LOAEL	
	10 mg/kg ↓ % normal	
Other information	(also irregular cycle and ↑ persistent diestrus	
PFOS measured in various tissue in addition	vs. no observed in controls)	
to serum	vo. no observed in controls)	
lo corain	Endpoint 4	
Monoamines measured in hypothalmus	Serum leptin	
7.		
	NOAEL	
	1 mg/kg	
	LOĂEL	
	10 mg/kg ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Also addresses non-apical endpoints that may
Bijland et al. (2011)	Body wt	be useful for mechanistic understanding
Species, strain, age of animals:	NOAEL	
E3LCEPT mice, M,	3 mg/kg/d	
Group size:	LOAEL	
N = 5-8 (depending on experiment)		
	Endpoint 2	
Test article and vehicle: K-PFOS in food	Food intake	
	NOAEL	
Route of exposure: Diet (western-type)	3 mg/kg/d	
3,1 = 7	LOAEL	
Exposure levels:		
~3 mg/kg/d (single dose)		
	Endpoint 3	
Serum conc	Triglycerides, plasma (4 wks)	
4 wks – 85.6, 95.3 <u>μg</u> /ml		
6 wks – 124.7 <u>μg</u> /ml	NOAEL 	
Exposure regimen:		
4-6 wks	LOAEL	
T O WING	3 mg/kg/d ↓	
	Endpoint 4	
	Total cholesterol, plasma	
	NOAEL	
		
	LOAEL	
	3 mg/kg/d ↓	

Endpoint 5 VLD-cholesterol, plasma	
NOAEL	
LOAEL 3 mg/kg/d ↓	
Endpoint 6	
HD-cholesterol, plasma	
NOAEL 	
LOAEL	
3 mg/kg/d ↓	
Endpoint 7 Liver wt	
NOAEL	
LOAEL 3 mg/kg/d ↑	
Endpoint 8	
Liver triglyceride content	
NOAEL 	
LOAEL	
3 mg/kg/d ↑	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Bjork et al. (2008)	Maternal body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D	3 mg/kg	
Group size:	LOAEL	
Dams/fetuses		
N =5-6		
(litters constituted single unit)	Endpoint 2 Maternal liver wt	
Test article and vehicle:		
PFOS in 0.5% Tween-20	NOAEL	
	3 mg/kg	
Route of exposure:		
gavage	LOAEL	
Exposure levels:		
3 mg/kg	Endpoint 3	
	Fetal liver wt	
Exposure regimen:		
Dams dosed daily	NOAEL	
GD-2 - 20	3 mg/kg	
Other information	LOAEL	
Dams weighed and sacrificed d-21		
Fetuses extracted		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Chang et al. (2008)	Total serum T4	
Species, strain, age of animals:	NOAEL	
Rats, S-D, M & F, 8-10 wks old		
Group size:	LOAEL	
5-15/group	15 mg/kg ↓	
Test article and vehicle:	Endpoint 2	
K-PFOS in 0.5% Tween-20	Total T3	
Route of exposure:	NOAEL	
gavage		
Exposure levels:	LOAEL	
0, 15 mg/kg	15 mg/kg (at 24 hr) ↓	
Serum conc	Endpoint 3	
61.58 μg/ml (at 24 hr)	rT3	
Exposure regimen:	NOAEL	
Single dose (sacrifice at various time pts ≤ 24 post dosing)		
(Sacrifice at various time pts 3 24 post dosing)	LOAEL	
Other information	15 mg/kg (at 24 hr) ↓	
This study presents data on malic enzyme mRNA transcripts and activity (not summarize	Endpoint 4	
here)	Free T4	
	NOAEL	
	15 mg/kg (at 24 hr)	
	LOAEL	

ore 28 d
sults, unclear
the 5
vations at 20

Endpoint 5 Rel. liver wt	
NOAEL	
 LOAEL	
5 mg/kg/d ↑	
Endpoint 6 Rel kidney wt	
NOAEL	
 LOAEL 5 mg/kg/d ↑	
Endpoint 7 Rel gonadal wt	
NOAEL 	
 LOAEL 5 mg/kg/d ↑	
Endpoint 8 Liver histopathology	
NOAEL	
LOAEL 5 mg/kg/d (Cytoplasmic vacuolization, focal/flakelike necrosis)	
Endpoint 9 Lung histopathology	
NOAEL	
	

LOAEL

5 mg/kg/d

Pulmonary congestion, focal/diffuse thickening of epithelial walls

Endpoint 10

Kidney histopathology

NOAEL

5 mg/kg/d

LOĂEL

20 mg/kg/d

Turbidness/tumefaction in epithelium of proximal convoluted tubules, congestion in renal cortex/medulla, enhanced cytoplasmic acidophelia

Endpoint 11

Spleen histopathology

NOAEL

LOAEL

5 mg/kg/d (?)

Congestion, mild dilation of splenic antrum

Endpoint 12

Brain histopathology

NOAEL

LOAEL

5 mg/kg/d (?)

Focal hyperplasia of gliocytes, dilation/congestion in inferior caval veins of cerebral arachnoid matter, slight focal hemorrhaging

Species, strain, age of animals:	Endpoint 1 Body wt NOAEL 20 mg/kg feed LOAEL	
Species, strain, age of animals:	NOAEL 20 mg/kg feed LOAEL	
	20 mg/kg feed LOAEL	
D-1- 0 D 05 07 111 M E	LOAĔL	
Rats, S-D, 35-37 day old, M, F		
Group size:]	50 mg/kg feed ↓ (males)	
11-15/sex/group	100 mg/kg feed ↓ (females, day 15)	
Test article and vehicle:	Endpoint 2	
K-PFOS in feed	Rel organ wts (rel to bw)	
Route of exposure:	NOAEL	
diet	Brain – 20 mg/kg feed	
	Liver – 2 M, - F	
Exposure levels:	Kidney – 50 M, 20 F	
2, 20, 50, 100 mg/kg feed	Adrenal – 100	
<u>Intake</u>	Heart – 100	
M -	Thyroid – 50 M, F	
0, 0.14, 1.33, 3.21, 6.34 mg/kg/d	LOAEL	
F –	Brain – 50 mg/kg feed M,F ↑	
0, 0.15, 1.43, 3.73, 7.58 mg/kg/d	Liver – 20 M, 2 F ↑	
	Kidney – 100 M, 50 F ↑	
Serum conc (μg/g)	Adrenal -	
M -	Heart -	
0.47, 0.95, 13.45, 20.93, 29.88	Thyroid – 100 M, F ↑	
F – 0.95, 1.50 15.40, 31.93, 43.20	Endpoint 3	
, ,	Liver pathology	
Exposure regimen:	, , , , , , , , , , , , , , , , , , ,	
	NOAEL	
	20 mg/kg feed	
Other information	LOAEL	
Study also contains data on RBC	50 mg/kg feed	
deformability and liver fatty acid profiles	Hepatocyte hypertrophy	
and it or lawy dots promot	(M only)	
	(W. Striy)	

Endpoint 4

Blood cell pathology

NOAEL

100 mg/kg feed - M

50 - F

LOAEL

100 mg/kg feed − F only RBC, hematocrit, Hb conc ↓

Endpoint 5

Clinical Chem

NOAEL

20 mg/kg feed – M, F

LOAĔL

50 mg/kg feed

Amylase – F ↑

Bicarbonate – F ↓

Conjug bilirubin - F ↑

Cholesterol - M. F ↓

Lipase – M ↓

Urea – F ↓ (50 but not 100)

Endpoint 6

Thyroid hormones

NOAEL

T3 – 50 mg/kg feed – M, 20 mg/kg feed – F

T4 – 2 mg/kg feed – M, F

LOAEL

T3 – 50 mg/kg feed – F, 100 mg/kg feed – M

T4 - 20 mg/kg feed - M, F

Reference and Study Design	Results	Comment
Author	Endpoint 1	Stat sig not provided for liver histopathology
Elcombe et al. (2012a)	Body wt	results.
, ,	(control - n = 30)	
Species, strain, age of animals:	20 ppm - n = 30;	
Rats, S-D, M, 6-7 wks old (at start)	100 ppm - n = 9)	
Group size:]	NOAEL	
As indicated by endpoint	20 ppm feed	
	LOAEL	
Test article and vehicle: K-PFOS	100 ppm feed ↓	
	Endpoint 2	
Route of exposure:	Food consumption	
diet	(n = 4-5)	
Exposure levels:	NOAEL	
0, 20, 100 ppm in diet	20 ppm feed	
-, 1.27, 5.62 mg/kg/d	LOAEL	
Serum conc (μg/ml):		
ND, 94, 411	Endpoint 3 Rel liver wt	
Exposure regimen:		
Diet for 28 d *	NOAEL	
Other information	LOAEL	
* This study also exposed rats for 1 and 7	20 ppm feed ↑	
days and sacrificed rats on 2, 8, and 29 d.		
Only 28 d exposures w 29 d sacrifices are	Endpoint 4	
reported here.	Plasma liver enzymes	
•	(ALT, AST)	
	(n = 9-10)	
	,	
	NOAEL	
	20 ppm feed	
	LOAEL	

Endpoint 5	
Plasma cholesterol	
(n = 9-10)	
NOAEL	
LOAEL	
20 ppm feed ↓	
Endpoint 6	
Plasma triglycerides	
(n = 9-10)	
NOAEL	
20 ppm feed	
LOAEL	
100 ppm ↓	
Endpoint 7	
Plasma glucose	
(n = 9-10)	
NOAEL	
20 ppm feed	
LOAEL	
100 ppm ↓	
loo bb t	
Endpoint 8	
Liver histopathology	
(n = 10)	
NOAEL	
NOALL	
LOAFI	
LOAEL	
20 ppm feed	
Hypertrophy ↑	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Note that ↑ liver wt was observed on d 84 of
Elcombe et al. (2012b)	Body wt	recovery (although not ond 28, 56)
Species, strain, age of animals:	NOAEL	PFOS serum conc in control serum not
Rats, S-D, M, 6-7 wks old		provided
	LOAEL	
Group size:	20 ppm in feed ↓	
40/group	(sig on recovery d 21 and 28 only)	
Test article and vehicle:	Endpoint 2	
K-PFOS	Food consumption	
Route of exposure:	NOAEL	
diet	100 ppm in feed	
	LOAEL	
Exposure levels:		
0, 20, 100 ppm in feed		
	Endpoint 3	
Serum conc (recovery	Rel liver wt	
d 1)		
39.49 (20 ppm), 140.40 μg/ml (100 ppm),	NOAEL	
Exposure regimen:	LOAEL	
Diet for 7 d	20 ppm in diet (recovery d 1) ↑	
Followed by 1, 28, 56, 84 d of recovery	(Also on recovery d 84)	
Other information	Endpoint 4	
Study also presents data on liver biochemical	Plasma liver enzymes	
assays related to proliferation and metabolism	·	
(not summarized here)	NOAEL	
	AST – 100 ppm in feed	
Related studies:	ALT – no NOAEL	
Elcombe et al. (2012a)	LOAEL (recovery d 1)	
	AST – no LOAEL	
	ALT – 20 ppm in feed ↓	

Endpoint 5

Plasma cholesterol

NOAEL

LOAEL

20 ppm in feed (recovery d 1) ↓
(also recovery d 28 and recovery d 84 for 100 ppm)

Endpoint 6

Plasma triglycerides

NOAEL

20 ppm in feed

LOAEL

100 ppm in feed (recovery d 1) ↓

Endpoint 7

glucose

NOAEL

20 ppm in feed

LOAEL

100 ppm in feed (recovery d 56 only) ↑

Endpoint 8

Liver histopathology

NOAEL---

LOAEL

20 ppm in feed (hepatocellular hypertrophy – recovery d 1: grade 1; grades 1 & 2 for 100 ppm)

↑ incidence through recovery d 84

Endpoint 9 Thyroid histopathology	
NOAEL 100 ppm in feed	
LOAEL 	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Small N
Fair et al. (2011)	Body wt	
Species, strain, age of animals:	NOAEL	
Mice, B3C6F1, F, 7-8 wks old	166 μg/kg/d LOAEL	
Group size:		
N = 5/group		
3 1	Endpoint 2	
Test article and vehicle:	Uterine rel wt	
K-PFOS in Milli-Q water, 0.5% Tween-20		
	NOAEL	
Route of exposure:	33.1 μg/kg/d	
Gavage	LOAEL	
	166 μg/kg/d ↓	
Exposure levels:	Sig for trend	
(as PFOS ·)	e.g .e. t.ea	
	Endpoint 3	
Administered	histopathology	
0, 3.31, 16.6, 33.1, 166 μg/kg/d	metepatitionegy	
Total av dose	NOAEL	
0, 0.1, 0.5, 1, 5 mg/kg	166 μg/kg/d	
Serum conc	(spleen, lung, thymus, liver, adrenals, uterus,	
ND, ND, 1.16, 2.15, 12.47 μg/ml	kidney)	
, , -, -, 13	LOAEL	
Exposure regimen:		
Daily, 28 d		
- 3 ,	Endpoint 4	
	Glucose, serum	
	NOAEL	
	166 mg/kg/d	
	(1.3 x ↑ but not sig)	
	LOAEL	

 ·	
Endpoint 5	
cholesterol	
NOAEL	
166 mg/kg/d	
(27% ↓ but not sig)	
LOAEL	
Endpoint 6	
Thyroid hormones (T3, T4)	
NOAEL	
166 mg/kg/d	
LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Fuentes et al. (2007b)	Maternal food/water consumption	
Species, strain, age of animals:	NOAEL	
Mice, CD-1, F, adult	6 mg/kg/d	
Group size:	LOAEL	
N = 8-10/dose/treatment group		
Test article and vehicle:	Endpoint 2	
K-PFOS in 0.5% Tween-20	Length of gestation	
Route of exposure:	NOAEL	
Gavage (maternal)	6 mg/kg/d	
Exposure levels:	LOAEL	
0, 6 mg/kg/d		
w and w/out stress by constraint	Endpoint 3	
Exposure regimen:	Live pups	
GD 12-18	NOAEL	
	6 mg/kg/d	
	LOAEL	
	Endpoint 4	
	Time to physical maturation	
	NOAEL	
	LOAEL	
	6 mg/kg/d	
	For M testes descent only ↑	

Endpoint 5 Neuromotor development	
NOAEL	
LOAEL 6 mg/kg/d (tail pull resistance - PND 10, 11 (not 12) ↓ Vertical climb, forelimb grip – PND 11 (not 10, 12) ↓	
Endpoint 6 Habituation (open field)	
NOAEL 6 mg/kg/d	
LOAEL 	
Endpoint 7 Coordination/balance (rotorod)	
NOAEL 6 mg/kg/d	
LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Maternal toxicity not determined
Fuentes et al. (2007c)	Open field activity	·
, ,	(rearing, distance traveled)	
Species, strain, age of animals:		
Mice, CD-1, F, adult	NOAEL	
	6 mg/kg/d	
Group size:		
N = 8-10	LOAEL	
Test article and vehicle:		
K-PFOS in 0.5% Tween-20	Endpoint 2	
	Water maze	
Route of exposure:		
gavage	NOAEL	
Exposure levels:		
0, 6 mg/kg/d (maternal)	LOAEL	
	6 mg/kg/d	
Exposure regimen:	(F only – acquisition phase d 3, 4) ↑ distance	
GD 12-18	traveled	
Other information		
Other information		
Evaluation of offspring 3 mos post-natal		
Additional data reported on corticestarana		
Additional data reported on corticosterone levels		
ICACIO		
Related studies:		
Appears to be continuation of Fuentes et al.		
(2007a)		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Fuentes et al. (2007a)	Functional observation battery	
	(CNS activity, neuromuscular function,	
Species, strain, age of animals:	autonomic function, sensorimotor reactivity)	
Mice, CD-1, 3 mos old, M		
	NOAEL	
Group size:	6 mg/kg/d	
10/group	(sig ↑ ease of removal for 3, but not 6	
	mg/kg/d)	
Test article and vehicle:		
K-PFOS in 0.5% Tween-20	LOAEL	
Route of exposure:		
gavage	Endpoint 2	
	Open field	
Exposure levels:		
0, 3, 6 mg/kg/d	NOAEL	
Exposure regimen:		
Daily for 4 wks	LOAEL	
	3 mg/kg/d	
	(time spent in center middle 5 min of 15 min	
	total – only)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* Authors report no sig diff (i.e., ↓) in survival
Guruge et al. (2009)	Body wt (PFOS-only)	between controls and 5 μg/kg/d group. However, graphic shows clear diff.
Species, strain, age of animals:	NOAEL	
Mice B6C3F1, F, 6-7 wks (at PFOS exposure)	25 μg/kg/d	
Group size:	LOAEL	
PFOS-only exposure (sacrifice at 21 d) N = 3		
	Endpoint 2	
PFOS + virus N = 23-25	Liver wt	
	NOAEL	
Test article and vehicle: K-PFOS in Milli-Q water and 0.5% Tween-20	25 μg/kg/d	
	LOAEL	
Route of exposure: gavage		
	Endpoint 3	
Exposure levels:	Other organ wts (rel to bw)	
0, 5, 25 μg/kg/d	(spleen, thymus, kidney, lung)	
Exposure regimen:	NOAEL	
Daily for 21 d	25 μg/kg/d	
(21 d prior to influenza A infection)		
	LOAEL	
Virus incubated 20 d post-infection		
	Endpoint 4 Body wt following PFOS + virus infection	
	NOAEL	
	LOAEL	
	5 μg/kg/d ↓	

Endpoint 5 Virus resistance (survival w PFOS + infection – control = infection, but no PFOS)	
NOAEL 5 μg/kg/d *	
LOAEL 25 μg/kg/d	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* N = 10/group reported for one behavioral
Johansson et al. (2008)	Body wt	test, but group size does not appear to be
, ,		given for other tests
Species, strain, age of animals:	NOAEL	
Mice, NMRI, M offspring at 10 d	11.3 mg/kg	
	LOAEL	
Group size:		
10/group *		
	Endpoint 2	
Test article and vehicle:	Spontaneous behaviour	
K-PFOS in mixture of egg lecithin and peanut		
oil	NOAEL	
	0.75 mg/kg	
Route of exposure:	LOAEL	
gavage	11.3 mg/kg	
	(locomotion, rearing, total activity – 2 and 4	
Exposure levels:	mos) ↓	
0, 0.75, 11.3 mg/kg		
	Endpoint 3	
Exposure regimen:	habituation	
Single dose		
Testing at 2 and/or 4 mos	NOAEL	
	0.75 mg/kg	
	LOAEL	
	11.3 mg/kg	
	Endpoint 4	
	Activity w nicotine challenge	
	NOAEL	
	0.75 mg/kg	
	LOAEL	
	11.3 mg/kg	
	(locomotion, rearing, total activity) ↓	

Endpoint 5 Performance in elevated plus maze	
NOAEL 11.3 mg/kg/d LOAEL 	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Stat sig not given for histopathology endpoints
Kim et al. (2011)	Body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D, M, F, 5 wk old	5 mg/kg/d – F 10	
Group size:	mg/kg/d – M LOAEL	
12 M, 12 F/group	10 mg/kg/d – F only ↓	
12 M, 12 F/gloup	To mg/kg/a = F only \	
Test article and vehicle:	Endpoint 2	
K-PFOS in DMSO diluted w saline	Serum liver enzymes	
Route of exposure:	NOAEL	
Gavage	5 mg/kg/d	
	LOĂEL	
Exposure levels:	10 mg/kg/d	
0, 1.25, 5, 10 mg/kg/d	(AST M only ↑)	
Exposure regimen:	Endpoint 3	
Daily for 28 d	Serum lipids	
	NOAEL	
	5 mg/kg/d	
	LOAEL	
	10 mg/kg/d	
	(triglycerides, M only ↓)	
	(angly contact, in only \$\psi\$)	
	Endpoint 4	
	Hematology	
	NOAEL	
	10 mg/kg/d	
	LOAEL	

Endpoint 5	
Liver wt (rel to bw)	
NOAEL	
5 mg/kg/d	
LOAEL	
10 mg/kg/d – M and F ↑	
Endpoint 6	
Liver histopathology	
NOAEL	
1.25 mg/kg/d	
LOAEL	
5 mg/kg/d	
("fatty change" M only;	
Hypertrophy and cellular swelling in F only –	
LOAEL = 10 mg/kg/d)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Lefebvre et al. (2008)	Body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D, adult, M and F	20 mg/kg feed - M, F LOAEL	
Group size:	50 mg/kg feed – M,F ↓	
15 M, 15 F/dose group	Endpoint 2 Rel liver wt	
Test article and vehicle:		
K-PFOS in feed	NOAEL F	
Route of exposure: dietary	2 mg/kg feed – M LOAEL	
a.o.a.y	2 mg/kg feed – F ↑ 20	
Exposure levels:	mg/kg feed – M ↑	
diet		
0, 2, 20, 50, 100 mg/kg/feed	Endpoint 3 Rel spleen wt	
Intake		
M - 0, 0.14, 1.33, 3.21, 6.34 mg/kg/d	NOAEL	
F – 0, 0.15, 1.43, 3.73, 7.58 mg/kg/d	50 mg/kg feed – F	
_	100 mg/kg feed – M	
Serum conc.	LOAEL	
0.47 (control), 0.95, 13.45, 20.93, 29.88 μg/g	100 mg/kg feed – F ↑	
Exposure regimen: 28 d	Endpoint 4 Rel thymus wt	
Other information	NOAEL	
This study also presented information (not	100 mg/kg feed – M, F	
summarized here) on sub-clinical	LOAEL	
immunological parameters		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Lopez-Doval et al. (2014)	Organ wts (rel to bw)	
	(hypothalamus, pituitary, testes)	
Species, strain, age of animals:		
Rats, S-D, adult, M,	NOAEL	
	6.0 mg/kg/d	
Group size:		
5/group	LOAEL	
Test article and vehicle:		
K-PFOS in 2.5% Tween-20	Endpoint 2	
	Serum LH	
Route of exposure:		
gavage	NOAEL	
Exposure levels:	1045	
0, 0.5, 1.0, 3.0, 6.0 mg/kg/d	LOAEL	
F	0.5 mg/kg/d ↓	
Exposure regimen:	En la data	
Daily for 28 d	Endpoint 3	
	Serum FSH	
	NOAEL	
	LOAEL	
	0.5 mg/kg/d ↑	
	0.5 mg/kg/d	
	Endpoint 4	
	Serum testosterone	
	Octam testesterone	
	NOAEL	
	LOAEL	
	0.5 mg/kg/d ↓	

Endpoint 5 Histopathology – hypothalamic neurons	
NOAEL 1.0 mg/kg/d	
LOAEL 3.0 mg/kg/d (reduced size, basophilia of nuclei and cytoplasm)	
Endpoint 6 Histopathology – pituitary gonadotrophic cells	
NOAEL 	
LOAEL 0.5 mg/kg/d (ultrastructural changes)	
Endpoint 7 Histopathology - testes	
NOAEL 0.5 mg/kg/d	

LOAEL
1.0 mg/kg/d
(interstitial edema, degeneration of sperm heads)

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Martin et al. (2007)	Body wt	
Species, strain, age of animals:	NOAEL	
Rats, S-D (CrtcCD(SD)IGS BR), M, 10 wks	10 mg/kg/d	
oid .	LOAEL	
Group size:		
5/group		
o, group	Endpoint 2	
Test article and vehicle:	Rel liver wt	
K-PFOS	real fiver we	
111100	NOAEL	
Route of exposure:		
gavage		
garago	LOAEL	
Exposure levels:	10 mg/kg/d ↑	
0, 10 mg/kg/d	To mg/kg/a	
o, ro mg/kg/d	Endpoint 3	
Serum conc	Liver histopathology	
87.7 µg/ml	2. roi motopathology	
(d-3)	NOAEL	
(4 5)		
Exposure regimen:		
5 d	LOAEL	
	10 mg/kg/d	
Other information	(hepatocyte eosinophilia, hepatocyte	
This study also presented data on gene	hypertrophy, non-zonal microvesicular lipid)	
expression (not summarized here)	, por op, ;	
Compression (not summanized note)	Endpoint 4	
	Serum cholesterol	
	NOAEL	
	LOAEL	
	10 mg/kg/d ↓	

 	•
Endpoint 5 Serum testosterone	
NOAEL 10 mg/kg/d	
LOAEL 	
Endpoint 6 Total T4	
NOAEL 	
LOAEL 10 mg/kg/d ↓	
Endpoint 7 Free T4	
NOAEL 	
LOAEL 10 mg/kg/d ↓	
Endpoint 8 Total T3	
NOAEL 	
LOAEL 10 mg/kg/d ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Mollenhauer et al. (2011)	Body wt	
	NOAFI	
Species, strain, age of animals:	NOAEL	
Mice, B6C3F1, adult, F	3 mg/kg/d	
Group size:	LOAEL	
5/group	300 mg/kg/d ↓	
Test article and vehicle:		
K-PFOS in Milli-Q water w 0.5% Tween-20		
Route of exposure:		
gavage		
Exposure levels:		
·		
0, 0.0331, 0.0993, 9.93 mg/kg/d		
Total admin dose		
0, 1, 3, 300 mg/kg		
0, 1, 0, 000 mg/kg		
Exposure regimen:		
Daily for 28 d		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Onishchenko et al. (2011)	Maternal wt gain	
Species, strain, age of animals:	NOAEL	
Mice, C56BL/6/Bkl, adult	0.3 mg/kg/d	
Group size:	LOAEL	
maternal		
control, n = 10		
PFOS, $n = 6$	Endpoint 2	
	Litter size, sex ratio	
Offspring		
Control, exposed – n = 8	NOAEL	
(1-2 per litter)	0.3 mg/kg/d	
Test article and vehicle:	LOAEL	
K-PFOS in 95% ethanol		
Route of exposure:	Endpoint 3	
Food	Offspring body wt	
Exposure levels:	NOAEL	
0.3 mg/kg/d	0.3 mg/kg/d	
Offspring brain – 3.1 μg/g	LOAEL	
Offspring liver – 11.8 μg/g		
	En la ciud A	
Exposure regimen:	Endpoint 4	
Maternal	Offspring brain wt	
GD 1 – delivery	NOAEL	
	0.3 mg/kg/d	
	U.S IIIg/kg/u	
	LOAEL	

Endpoint 5 Offspring liver wt	
NOAEL 0.3 mg/kg/d	
LOAEL 	
Endpoint 6 Locomotor activity	
NOAEL	
LOAEL 0.3 mg/kg/d (M only) ↓	
Endpoint 7 Circadian activity	
NOAEL 	
LOAEL 0.3 mg/kg/d	
Novel environment (M only) ↓	
Endpoint 8 Elevated plus maze	
NOAEL 	
LOAEL 0.3 mg/kg/d (various parameters) M only	

Endpoint 9 Muscle strength (hanging wire test)	
NOAEL 	
LOAEL 0.3 mg/kg/d (M only) ↓ fall latency	
Endpoint 10 Motor coordination (accel. rotorod test)	
NOAEL 	
LOAEL 0.3 mg/kg/d (M and F, but only on some trials)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* PFOS serum concentrations indicated by '-'
Peden-Adams et al. (2008)	Body wt	were not reported by authors
Species, strain, age of animals:	NOAEL	
Mice, B6C3F1, adult, M, F	166 μg/kg/d	
Group size:	LOAEL	
5/group		
(for antigen challenge, 10/group)		
	Endpoint 2	
Test article and vehicle:	Organ wts (rel to bw)	
K-PFOS in Milli-Q water w 0.5% Tween-20		
	NOAEL	
Route of exposure:	166 μg/kg/d	
gavage	(spleen, thymus, liver, kidney)	
Exposure levels:	LOAEL	
Dose (as PFOS ⁻)		
0, 0.166, 1.66, 3.31, 16.6, 33.1, 166 μg/kg/d		
	Endpoint 3	
Total admin dose	Spleen cellularity/cell viability	
0, 0.005, 0.05, 0.1, 0.5, 5 mg/kg		
	NOAEL	
Serum conc (ng/g)	166 μg/kg/d	
M – 12.1 (control), 17.8, 91.5, 131, -, -, - *		
F – 16.8 (control), 88.1, -, 123, 666, -, - *	LOAEL	
Francisco escimon.		
Exposure regimen:	Endpoint 4	
Daily for 28 d (for antigen challenge – daily for 21 d)	Thymus cellularity/cell viability	
(101 antigen challenge – dally 101 21 d)	Triyinus celidianty/celi viability	
Other information	NOAEL	
Study also reports lymphocyte proliferation	166 μg/kg/d	
response, and lymphocyte phenotypes (not		
summarized here)	LOAEL	
•		

Endpoint 5 IgM antigen challenge	
NOAEL M - 0.0166 μg/kg/d F – 3.31 μg/kg/d	
LOAEL M – 1.66 μg/kg/d ↓ F - 16.6 μg/kg/d ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* Authors report that fasculata zona cells of
Pereiro et al. (2014)	Rel wt hypothalamus, pituitary	adrenal cortex did not appear to have
		"important" morphological or ultrastructural
Species, strain, age of animals:	NOAEL	alterations, but then describe the appearance
Rats, S-D, M, adult	6.0 mg/kg/d	of these cells as "activated" with the presence
		of liposomes in the cytoplasm.
Group size:	LOAEL	
10/group		
Test article and vehicle:	Endpoint 2	
K-PFOS in 2.5% Tween-20	Rel wt adrenal gland	
	1045	
Route of exposure:	NOAEL	
gavage		
Exposure levels:	LOAEL	
0, 0.5, 1.0, 3.0, 6.0 mg/kg/d	0.5 mg/kg/d ↓	
o, o.o, 1.o, o.o, o.o mg/kg/a	(although adrenal wt was sig ↓ compared to	
Exposure regimen:	controls at all doses, adrenal wt ↑ w ↑ dose)	
Daily for 28 d		
,	Endpoint 3	
Other information	Histopathology of fasciculata zona cells of	
Study presents data of effects on	adrenal cortex	
corticosterone and ACTH, NOS gene		
expression and SOD activity (not summarized	NOAEL	
here)	6.0 mg/kg/d ?? *	
	LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* For studies w PPARα-null/WT mice, only 0,
Qazi et al. (2009b)	Body wt (C57BL)	0.005% and 0.02% concentrations in food were used (no 0.001% exposure group)
Species, strain, age of animals:	NOAEL	1 3 17
Mice, C57BL/6(H-2 ^b), M, 6-8 wks old	0.005% in feed	
Mice, PPARα-null 129/Sv	LOAEL	
And corresponding wild-type (WT), age?	0.02% in feed ↓	
Group size:	Endpoint 2	
4/group	Food consumption (C57BL)	
Test article and vehicle:	NOAEL	
Tetrabutylammonium-PFOS in acetone and mixed w feed	0.005% in feed	
	LOAEL	
Route of exposure: diet	0.02% in feed ↓	
	Endpoint 3	
Exposure levels:	Rel liver wt (C57BL)	
0, 0.001%, 0.005%, 0.02% in feed		
	NOAEL	
Serum conc (C57BL mice)		
0.0287 (control), 50.8, 96.7, 340 μg/ml		
	LOAEL	
Exposure regimen:	0.001% in feed ↑	
10 d	Endneint 4	
	Endpoint 4 Rel thymus wt (C57BL)	
	NOAFI	
	NOAEL 0.005% in feed	
	LOAEL	
	0.02% in feed ↓	

Endpoint 5 Rel spleen wt (C57BL) NOAEL 0.005% in feed LOAEL 0.02% in feed ↓ **Endpoint 6** Epididymal fat wt NOAEL 0.005% in feed LOAEL 0.02% in feed ↓ Endpoint 7 * Abs liver wt (PPARα-null, WT) NOAEL PPARα-null – no NOAEL WT – no NOAEL LOAEL PPARα-null – 0.005% in feed ↑ WT – 0.005% in feed ↑ **Endpoint 8** Abs thymus wt (PPARα-null, WT) NOAEL PPARα-null – 0.005% in feed

WT – 0.005% in feed

LOAEL PPARα-null – 0.02% in feed ↓ WT – 0.02% in feed ↓

Endpoint 9 Abs spleen wt (PPARα-null, WT)

NOAEL

PPARα-null – 0.005% in feed WT – 0.005% in feed

LOAEL

PPARα-null – 0.02% in feed ↓ WT – 0.02% in feed ↓

Endpoint 10
Abs epididymal fat wt (PPARα-null, WT)

NOAEL

PPAR α -null – 0.02% in feed WT – 0.005% in feed

LOAEL

PPARα-null – no LOAEL WT – 0.02% in feed

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Qazi et al. (2009a)	Liver wt	
Species, strain, age of animals:	NOAEL	
Mice, C56BL/6 (H-2b), M, 6-8 wks old	0.001%	
Group size:	LOAEL	
4/group	0.02% in feed ↑	
Test article and vehicle:	Endpoint 2	
Tetraammonium-PFOS in acetone added to feed	Thymus wt (absolute)	
	NOAEL	
Route of exposure: diet	0.001%	
	LOAEL	
Exposure levels:	0.02% in feed ↓	
0, 0.001%, 0.02% in feed\		
	Endpoint 3	
Total intake for 0.02% ~6 mg	Body wt (0.02% only)	
Serum conc by ref to Qazi et al. 2009b	NOAEL 	
Exposure regimen:		
10 d	LOAEL	
L	0.02% ↓	
Related studies:		
Other also appropriate data an appropriation of	Endpoint 4	
Study also presents data on populations of macrophages in different organs/tissues;	Spleen wt (absolute)	
inflammatory response of macrophages, and	NOAEL	
<i>in vivo</i> cytokine response (not summarized	0.001%	
here)	0.00170	
1.0.0)	LOAEL	
	0.02% ↓	
	•	

Endpoint 5	
Epididymal fat wt	
NOAEL	
0.001%	
LOAEL	
0.02% ↓	
Endpoint 6	
Food consumption (0.02% only)	
NOAEL	
LOAEL	
0.02% ↓	
Endpoint 7	
Total WBC count	
NOAEL	
0.001%	
0.00176	
LOAEL	
0.02%↓	
(sig for lymphocytes, but not for neutrophils)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Qazi et al. (2010b)	Body wt	
Species, strain, age of animals:	NOAEL	
Mice, C57BL6(H-2 ^b), M, 6-8 wks	0.005%	
Group size:	LOAEL	
4/group		
Test article and vehicle:	Endpoint 2	
Tetraammonium-PFOS in water mixed w feed	Food intake	
Route of exposure:	NOAEL	
diet	0.005%	
Exposure levels:	LOAEL	
0, 0.005% in feed	-	
Serum conc	Endpoint 3	
0.052 (control), 125.8 μg/ml	Rel liver wt	
Exposure regimen:	NOAEL	
Diet for 10 d		
Other information	LOAEL	
Study presents effects on functional properties of isolated B and T cells, hepatic	0.005% ↑	
levels of cytokines, and hepatic levels of	Endpoint 4	
erythropoietin (not summarized here)	Rel spleen, rel thymus wt, rel epididymal fat	
	pad wt	
	NOAEL	
	0.005%	
	LOAEL	

Endpoint 5 Serum liver enzymes	
NOAEL 0.005% (ALT, AST)	
LOAEL 0.005% - ALP ↑	
Endpoint 6 Serum cholesterol (total)	
NOAEL 	
LOAEL 0.005% ↓	
Endpoint 7 Serum triglycerides	
NOAEL 0.005%	
LOAEL 	
Endpoint 8 Hematological parameters (hematocrit, Hb)	
NOAEL 0.005%	
LOAEL 	

Endpoint 9 Liver histopathology	
NOAEL 	
LOAEL 0.005% (hypertrophy of parenchymal cells, cytoplasmic acidophilic granules)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	PFOS concentration in diet is reported prior to
Qazi et al. (2010a)	Body wt	drying of feed.
Species, strain, age of animals: Mice, B6C3F1(H-2 ^{b/k}), M, 7-8 wks old	NOAEL 	
Group size:	LOAEL	
5/group	250 μg/kg/d ↓	
Test article and vehicle:	Endpoint 2	
Tetraethylammonium-PFOS	Food consumption	
Route of exposure:	NOAEL	
diet	250 μg/kg/d ↑	
Exposure levels:	LOAEL	
administered		
1.56 μg/kg feed		
Intake	Endpoint 3	
~250 μg/kg/d Total	Liver wt (rel to bw)	
admin dose		
~ 7mg/kg	NOAEL	
Serum conc		
Control – 0.0409 μg/ml		
Exposed – 11.6 μg/ml	LOAEL	
	250 μg/kg/d ↑	
Exposure regimen:		
Diet for 28 d	Endpoint 4	
	Thymus wt, spleen wt (rel to bw)	
Other information		
Study presents data on effects on sub-	NOAEL	
populations of thymic cells (not summarized here)	250 μg/kg/d	
	LOAEL	

Endpoint 5 Specific antigen response	
NOAEL 250 μg/kg/d	
LOAEL 	

Reference and Study Design	Results	Comment
Author	Endpoint 1	35% diet restriction resulted in comparable ↓ in
Qazi et al. (2012)	Body wt	body wt, thymus wt, spleen wt, and wt of epididymal fat, but did not affect bone marrow
Species, strain, age of animals:	NOAEL	cell number. However, note that for 0.02%
Mice, C57BL/6 (H-2b), M, 6-8 wks old	0.002% in feed	PFOS in feed the reduction in food
, , ,		consumption was 24% (not 35%).
Group size:	LOAEL	
4/group	0.02% in feed ↓	
Test article and vehicle:	Endpoint 2	
Tetraammonium-PFOS in water and mixed w feed	Food consumption	
	NOAEL	
Route of exposure: diet	0.002% in feed	
	LOAEL	
Exposure levels:	0.02% in feed ↓	
0, 0.001%, 0.002%, 0.02% in feed	•	
, , ,	Endpoint 3	
Exposure regimen:	Rel liver wt	
10 d		
	NOAEL	
Other information		
This study also presents data on the effect of		
PFOS exposure on the populations of B-	LOAEL	
lymphoid and myeloid cells in bone marrow (not summarized here)	0.001% ↑	
(**************************************	Endpoint 4	
	Rel thymus wt	
	NOAEL	
	0.002%	
	LOAEL	
	0.02% ↓	

·	
Endpoint 5	
Rel spleen wt	
NOAEL	
0.002%	
LOAEL	
0.02% ↓	
0.0270 \$	
Endpoint 6	
Rel epididymal fat	
NOAFI	
NOAEL	
0.002%	
LOAEL	
0.02% ↓	
•	
Endpoint 7	
Cellularity of thymus, cellularity of spleen	
Celidianty of triginus, celidianty of spieeri	
NOAEL	
0.002%	
LOAEL	
0.02% ↓	
Endpoint 8	
Cell content of bone marrow	
NOAEL	
0.002%	
0.002 /0	
LOAFI	
LOAEL	
0.02% ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	PFOS concentration in feed measured prior to
Qazi et al. (2013)	Body wt	drying of feed
Species, strain, age of animals:	NOAEL	
Mice, C57BL/6 (H-2b), M, 6-8 wks	6 mg/kg/d – 10 d 0.144 mg/kg/d – 28 d	
Group size:	LOAEL	
6-8/group		
Test article and vehicle:	Endpoint 2	
Tetraammonium-PFOS in feed	Spleen, thymus, epididymal fat pad (absolute)	
Route of exposure:	NOAEL	
diet	6 mg/kg/d – 10 d	
	0.144 mg/kg/d – 28 d	
Exposure levels:	LOAEL	
0.004% in feed – 10 d exposure		
0.0001% in feed – 28 d expousre		
	Endpoint 3	
10 d exposure - 6 mg/kg/d	Liver wt (rel to bw)	
28 d exposure – 0.144 mg/kg/d		
	NOAEL	
Exposure regimen:	0.144 mg/kg/d – 28 d	
Dietary, 10 and 28 d	LOAEL	
•	6 mg/kg/d – 10 d ↑	
Related studies:		
Study also presents data on liver effects of	Endpoint 4	
PFOS in conjunction w ConA-induced	Serum enzymes – AST, ALT	
hepatitis (not summarized here)	, · · · · · · · · · · · · · · · · · · ·	
	NOAEL	
	6 mg/kg/d – 10 d	
	0.144 mg/kg/d – 28 d	
	LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Qiu et al. (2013)	Sperm count	
Species, strain, age of animals:	NOAEL	
Mice, ICR, 8 wks old	0.25 mg/kg/d	
Group size:	LOAEL	
20/group	2.5 mg/kg/d ↓	
Test article and vehicle:	Endpoint 2	
PFOS (salt not reported) in corn oil	Testicular histopathology (light microscopy of seminiferous tubules)	
Route of exposure:	,	
gavage	NOAEL 0.25 mg/kg/d	
Exposure levels:		
0, 0.25, 2.5, 25, 50 mg/kg/d	LOAEL	
	2.5 mg/kg/d ↑ (Sertoli cell vacuolization,	
Exposure regimen: 28 days	derangement of cell layers)	
	Endpoint 3	
Other information	Testicular histopathology (electron	
Serum and testes levels of PFOS reported	microscopy of seminiferous epithelia)	
	NOAEL	
	0.25 mg/kg/d	
	LOAEL	
	2.5 mg/kg/d ↑ (Sertoli cell vacuolization)	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Ribes et al. (2010)	Body wt (offspring)	
Species, strain, age of animals:	NOAEL	
Mice, CD-1, adult, F	6 mg/kg/d	
Group size:	LOAEL	
maternal		
N = 5/group		
	Endpoint 2	
Offspring	Maternal care	
N = 10 M,F/treatment group		
(1-2/ litter)	NOAEL	
	6 mg/kg/d	
Test article and vehicle:		
0.5% in Tween-20	LOAEL	
Route of exposure:	En la dista	
gavage	Endpoint 3	
Exposure levels:	Open field activity	
0, 6 mg/kg/d	NOAEL	
o, o mg/kg/d	6 mg/kg/d	
Exposure regimen:	o mg/kg/u	
GD 12-18	LOAEL	
05 12 10		
Other information		
Study also includes measurement of		
corticosterone in serum		
ocidosciono in ocidin		
Related studies:		
Design and open-filed portion appear to be		
close to or identical to Fuentes et al. 2007b)		
,		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Rogers et al. (2014)	Maternal wt gain	
Species, strain, age of animals:	NOAEL	
Rats, S-D pregnant		
Group size:	LOAEL	
Maternal, n = 21 (control and treatment)	18.75 mg/kg/d ↓	
Offspring, n = 21 litters/group (for bw)	Endpoint 2	
1-2/litter for BP	Birth wt	
Test article and vehicle:	NOAEL	
In 0.5% Tween-20		
Route of exposure:	LOAEL	
gavage	18.75 mg/kg/d (F only)	
Exposure levels:	Endpoint 3	
18.75 mg/kg/d	Wt gain (offspring)	
Exposure regimen:	NOAEL	
GD 2-6	18.75 mg/kg/d	
Other information	LOAEL	
Fostering on unexposed dams		
	Endpoint 4	
	Systolic blood pressure (offspring)	
	NOAEL	
	LOAEL	
	18.75 mg/kg/d ↑	
	(M at 7, 52 wks; F at 37, 65 wks – not 7 wks)	

Endpoint 5 Nephron endowment (offspring) (at 22 d, M only)	
NOAEL 	
LOAEL 18.75 mg/kg/d ↓	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Rosen et al. (2010)	Rel liver wt	
Species, strain, age of animals: Mice,	NOAEL 3 mg/kg/d (WT and null)	
wild type-129S1/Svdm,		
PPARα-null 129S4/Sv]ae-Ppara ^{tm1Gomz} /, M, 6-	LOAEL	
9 mos old	10 mg/kg/d (WT and null) ↑	
Group size:	Endpoint 2	
5/group	Liver histopathology	
Test article and vehicle:	NOAEL	
K-PFOS in 0.5% Tween-20	3 mg/kg/d	
Route of exposure: gavage	LOAEL 10 mg/kg/d (WT and null)	
Exposure levels:	(vacuole formation)	
0, 3, 10 mg/kg/d		
Exposure regimen: 7 d		
Other information		
This study also presents data on gene		
profiling for WT and null mice (not summarized here)		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Ryu et al. (2014)	Body wt gain (offspring, 12 wks)	
Species, strain, age of animals:	NOAEL	
Mice, Balb/c, pregnant		
Group size:	LOAEL	
4-5 M, 4-5 F per group	4 mg/kg feed ↑	
Test article and vehicle:	Endpoint 2	
In food	Liver enlargement (rel liver weight, offspring)	
Route of exposure:	NOAEL	
dietary		
Exposure levels:	LOAEL	
4 mg/kg in food Maternal	4 mg/kg feed ↑	
~0.016-0.024 mg/d/animal	Endpoint 3	
Offspring	Airway hyperresponsiveness (offspring)	
No serum data (PFOA data only)	g)	
, , , , , , , , , , , , , , , , , , , ,	NOAEL	
Exposure regimen:	4 mg/kg feed	
Maternal - GD 2-lactation	LOAEL	
Offspring – weaning-12 wks (dietary)		
	Endpoint 4	
	Airway sensitivity (methacholine challenge in	
	offspring)	
	NOAEL	
	LOAEL	
	4 mg/kg feed	

Endpoint 5 Airway allergic hyperresponsiveness (offspring)	
NOAEL 4 mg/kg feed	
LOAEL 	
Endpoint 6 Lung inflammation (offspring)	
NOAEL 4 mg/kg feed	
LOAEL 	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Sato et al. (2009)	Body wt (rats and mice)	
Species, strain, age of animals:	NOAEL	
Rats, Wistar, M, 6 to 7 weeks old	125 mg/kg	
Mice, ICR, M, 6 to 7 weeks old	LOAEL 250 mg/kg ↓	
Group size:	230 Hig/kg \$	
	Endpoint 2	
(rats and mice)	Brain histopathology (neuronal or glial cells of	
(rate and mice)	cerebrum and the cerebellum)	
Histopathology = 3/group (rats only)	Note: no exposure to ultrasonic stimulus	
Test article and vehicle:	NOAEL	
PFOS (potassium salt, ≥98% pure) in 2%	500 mg/kg	
carboxymethyl cellulose		
	LOAEL	
Route of exposure: Oral gavage		
	Endpoint 3	
Exposure levels:	Neurobehavioral observation (e.g., excited	
0, 125, 250, 500 mg/kg	locomotion, convulsion)	
Brain, kidney, liver, and serum PFOS	NOAEL	
concentrations determined 24 hrs after exposure	Rats: 125 mg/kg	
for rats only (not reported herein)	Mice: -	
Exposure regimen:	LOAEL	
Single exposure	Rats: 250 mg/kg	
	Mice: 125 mg/kg	
Other information	↑ locomotion	
Neurobehavioral observations made following a		
daily exposure to ultrasonic stimulus		

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Wan et al. (2012)	Body wt	
Species, strain, age of animals:	NOAEL	
Mice, CD-1, M, 6-8 wks old	5 mg/kg/d	
Group size:	LOAEL	
"≥ 4/group"	10 mg/kg/d ↓	
Test article and vehicle:	Endpoint 2	
PFOS (salt?) in < 0.4% DMSO and corn oil	Liver wt	
Route of exposure:	NOAEL	
gavage		
Exposure levels:	LOAEL	
0, 1, 5, 10 mg/kg/d	1 mg/kg/d ↑	
Exposure regimen:	Endpoint 3	
Daily for 21 d (also, 3, 7, 14 d)	Liver size (length)	
,	NOAEL	
Other information Study data reported at d-3, 7, 14 as well as	1 mg/kg/d	
21. Only d-21 data are summarized here.	LOAEL	
	5 mg/kg/d ↑	
	Endpoint 4	
	Liver triglycerides	
	NOAEL	
	1 mg/kg/d	
	LOAEL	
	5 mg/kg/d	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* "fat index" is not defined. Unclear what
Wang et al. (2011a)	Body wt	organ(s) this applies to. For 20 mg/kg/d exposure (normal and fat diet) this is reported
Species, strain, age of animals: Mice,	NOAEL	as 0. The meaning of this is unclear. Summary
BALB/c, M, F, 5-6 wks old (after	Reg diet – 5 mg/kg/d	effects for this endpoint are as per the text of
adaptation period)	Fat diet – 5 mg/kg/d	the paper rather than the tabular results from the table.
Group size:	LOAEL	
8 M, 8F/group	Reg diet – 20 mg/kg/d ↓	** Text notes subtle histopathology changes in
, 5 1	Fat diet – 20 mg/kg/d ↓	thymus at 5 mg/kg/d in regular diet. No data are
Normal diet and high-fat diet groups	9 9 1	reported for 5 mg/kg/d for high fat diet.
	Endpoint 2	
Test article and vehicle:	Food intake	
PFOS (salt?) in 0.5% Tween-20		
	NOAEL	
Route of exposure:	Reg diet – 5 mg/kg/d	
gavage	Fat diet – 5 mg/kg/d	
Exposure levels:	LOAEL	
0, 5, 20 mg/kg/d	Reg diet – 20 mg/kg/d ↓	
	Fat diet – 20 mg/kg/d ↓	
Exposure regimen:		
Daily for 2 wks	Endpoint 3	
	Rel Liver wt	
	NOAEL	
	Reg diet – 5 mg/kg/d	
	Fat diet – 5 mg/kg/d	
	LOAEL	
	_	
	Reg diet – 20 mg/kg/d ↑	
	Fat diet – 20 mg/kg/d ↑	
	1	

Endpoint 4 "fat index" *	
NOAEL Reg diet – 5 mg/kg/d Fat diet - no NOAEL	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	
Endpoint 5 Rel. thymus wt	
NOAEL Reg diet – 5 mg/kg/d Fat diet – no NOAEL (M) (for F, NOAEL is 5 mg/kg/d)	
LOAEL Reg diet – 20 mg/kg/d (F) ↓ Fat diet – 5 mg/kg/d (M) ↓	
Endpoint 6 Rel spleen wt	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	

Endpoint 7	
Thymus histopathology **	
NOAEL	
Reg diet – no NOAEL	
Fat diet - ? **	
LOAEL	
(vasodilation, congestion)	
Reg diet – 5 mg/kg/d	
Fat diet - ? **	
Endpoint 8	
Spleen histopathology	
(dilation of splenic sinus)	
(and not of optorno on ad)	
NOAEL	
Reg diet – no NOAEL	
Fat diet – no NOAEL	
i at diet – no nomee	
LOAEL	
Reg diet – 5 mg/kg/d	
Fat diet – 5 mg/kg/d	

Reference and Study Design	Results	Comment
Author	Endpoint 1	* "Fat content" is not defined in the paper. This
Wang et al. (2014a)	Body wt	appears to be different from "liver fat content," that is addressed separately.
Species, strain, age of animals:	NOAEL	, ,
Mice, BALB/c, M, 4-5 wks old	Reg diet – 5 mg/kg/d	** Liver pathology was more severe at each
	Fat diet – no NOAEL	dose group for the high fat diet
Group size:		
8/group	LOAEL	
	Reg diet – 20 mg/kg/d ↓	
Test article and vehicle:	Fat diet – 5 mg/kg/d ↓	
PFOS in 0.5% Tween-20		
	Endpoint 2	
Route of exposure:	Food consumption	
gavage		
	NOAEL	
Exposure levels:	Reg diet – 5 mg/kg/d	
0, 5, 20 mg/kg/d	Fat diet – 5 mg/kg/d	
Exposure regimen:	LOAEL	
Daily for 14 d	Reg diet – 20 mg/kg/d ↓	
,	Fat diet – 20 mg/kg/d ↓	
Mice received either regular or high fat diets		
	Endpoint 3	
	Rel liver wt	
	NOAEL	
	Reg diet – no NOAEL	
	Fat diet – no NOAEL	
	LOAEL	
	Reg diet – 5 mg/kg/d ↑	
	Fat diet – 5 mg/kg/d ↑	

Endpoint 4 Rel fat content *	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	
Endpoint 5 Liver fat content	
NOAEL Reg diet – no NOAEL Fat diet – 20 mg/kg/d	
LOAEL Reg diet – 5 mg/kg/d ↑ Fat diet – no LOAEL	
Endpoint 6 Liver glycogen content	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
LOAEL Reg diet – 5 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	

Endpoint 7 Liver histopathology	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
LOAEL ** (hydropic degeneration and vacuolation) Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
Endpoint 8 Serum glucose	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	
Endpoint 9 Serum triglycerides	
NOAEL Reg diet – 5 mg/kg/d Fat diet – 5 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 20 mg/kg/d ↓	

Endpoint 10 Serum HDL cholesterol	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
LOAEL Reg diet – 5 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	
Endpoint 11 Serum albumin	
NOAEL Reg diet – no NOAEL Fat diet – no NOAEL	
LOAEL Reg diet – 5 mg/kg/d ↑ Fat diet – 5 mg/kg/d ↑	
Endpoint 12 Serum cholesterol	
NOAEL Reg diet - 5 mg/kg/d Fat diet – no NOAEL	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – 5 mg/kg/d ↓	

Endpoint 13 Serum LDL cholesterol	
NOAEL Reg diet - 5 mg/kg/d Fat diet – 20 mg/kg/d	
LOAEL Reg diet – 20 mg/kg/d ↓ Fat diet – no LOAEL	

Reference and Study Design	Results	Comment
Author	Endpoint 1	Maternal toxicity determined in a separate,
Yu et al. (2009b)	Body wt (pups)	preliminary experiment
Species, strain, age of animals:	NOAEL	
Rats, Wistar, adult, F	3.2 mg/kg feed	
Group size:	LOAEL	
Dams - N = 20 (control, exposed)		
Pups – 5 M, 5 F per treatment group		
	Endpoint 2	
Test article and vehicle:	Rel. liver wt	
K-PFOS in 0.5% Tween-20		
	NOAEL	
Route of exposure:		
dietary		
·	LOAEL	
Exposure levels:	3.2 mg/kg feed ↑	
3.2 mg/kg feed		
	Endpoint 3	
Serum conc. (range over time)	Total T3	
- gest exp only		
$M = 3.78 - 0.41 \mu g/ml$	NOAEL	
F = 3.78-1.02	3.2 mg/kg feed (all exposure groups)	
- lact exp only		
M = 1.22-6.64	LOAEL	
F = 1.22-7.04		
- gest + lact exp		
M = 10.6	Endpoint 4	
F = 11.5	Total T4	
Exposure regimen:	NOAEL	
Exposure from diet from GD 0 – PND 0-35		
Full cross-fostering design	LOAEL	
(pups cross-fostered w exposed dams	3.2 mg/kg feed ↓ (gest,	
received PFOS diet post-weaning)	lact, gest + lact)	
. coc. coc in coc mounting,	, , , , , , , , , , , , , , , , , , , ,	

Endpoint 5 Reverse T3	
NOAEL 3.2 mg/kg feed	
LOAEL 	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Zheng et al. (2009)	Body wt	
	10.45	
Species, strain, age of animals:	NOAEL	
Mice, C57BL/6, M, 8-10 wks old	5 mg/kg/d	
Group size:	LOAEL	
12/group	20 mg/kg/d ↓	
12/9104	Lo mg/kg/d ↓	
Test article and vehicle:	Endpoint 2	
K-PFOS in deionized water and 2% Tween-80	Food intake	
Davida of annual annual	NOASI	
Route of exposure:	NOAEL	
gavage	5 mg/kg/d	
Exposure levels:	LOAEL	
0, 5, 20, 40 mg/kg/d	20 mg/kg/d ↓	
, c, =c, .cgg		
Serum conc	Endpoint 3	
ND (control), 110.46, 280.65, 338.01 μg/ml	Rel spleen wt	
Francisco de simon.	NOAFI	
Exposure regimen: 7 d	NOAEL Emails and	
/ d	5 mg/kg/d	
Other information	LOAEL	
This study also presents data on serum	20 mg/kg/d ↓	
corticosterone, lymphocyte		
immunophenotypes, NK cell function (not	Endpoint 4	
summarized here)	Rel thymus wt	
	NOAFI	
	NOAEL	
	5 mg/kg/d	
	LOAEL	
	20 mg/kg/d ↓	
	J J V	

Endpoint 5	
Rel liver wt	
10.45	
NOAEL	
LOAFI	
LOAEL	
5 mg/kg/d ↑	
Endnaint 6	
Endpoint 6	
Spleen/thymus cellularity	
NOAEL	
5 mg/kg/d (for both organs)	
LOAEL	
20 mg/kg/d (for both organs) ↓	
20 mg/kg/d (for both organs) ;	
Endpoint 7	
Lymphocyte proliferation and plaque formation	
(in response to antigen challenge)	
(in response to antigen challenge)	
NOAEL	
LOAEL	
5 mg/kg/d ↓	
- J. J. ¥	

Reference and Study Design	Results	Comment
Author	Endpoint 1	
Zheng et al. (2011)	Body wt	
Species, strain, age of animals:	NOAEL	
Mice, C57BL/6, M 8-10 wks old	5 mg/kg/d	
Group size:	LOAEL	
12/group	20 mg/kg/d ↓	
12/9104	Lo mg/kg/d \$	
Test article and vehicle:	Endpoint 2	
K-PFOS in deionized water and 2% Tween-80	Food intake	
Route of exposure:	NOAEL	
gavage	5 mg/kg/d	
Exposure levels:	LOAEL	
0, 5, 20 mg/kg/d	20 mg/kg/d ↓	
o, o, =0g,g,		
Serum conc	Endpoint 3	
ND (control), 97.25, 250.34 μg/ml	Rel spleen, rel thymus wt	
Francisco na simana	NOAFI	
Exposure regimen: 7 d	NOAEL 5 mg/kg/d (for both organs)	
/ d	5 mg/kg/d (for both organs)	
Other information	LOAEL	
This study presents data on serum	20 mg/kg/d (for both organs) ↓	
corticosterone levels, interleukin levels,		
cytokines (not summarized here)	Endpoint 4	
	Rel liver wt	
	NOAEL	
	LOAEL	
	5 mg/kg/d ↑	

Endpoint 5	
Serum IgM	
Serum igivi	
NOAEL	
LOAEL	
5 mg/kg/d ↓	
o mg/kg/a ţ	
Endpoint 6	
Serum IgG	
Solain igo	
NOAEL	
LOAEL	
5 mg/kg/d ↑	
(not sig diff from control for 20 mg/kg/d)	
(Hot sig all Holli control for 20 mg/kg/a)	

Appendix 6: Epidemiology evidence tables

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Alexander and Olsen (2007)	Same as in Alexander et al. (2003). Assignment of	SIRs calculated based on exposure categories; and by weighted cumulative	Exposure classification based on correspondence of job category to exposure levels (serum PFOS).
"Bladder cancer in perfluorooctanesulfonyl fluoride	exposure by job title based on limited biomonitoring of	exposures	However, correspondence was based on a sample of 186 = 12% of the number of
manufacturing workers.	serum PFOS in Olsen	Rate ratios calculated based on Non-	respondants. Variability for some job categories
Ann Epidemiol. 2007 Jun;17(6):471-8	(2003b)	exposure category as internal referent and SIRs based on US pop. Incidence	was high including some with high PFOS exposure (95% UCI/geom.mean ≈ 3) (Olsen et al.
Study Design:	Population-Level	data	2003b)).
Information on cases (current and deceased) of bladder cancer among	Exposure: - Non-expousre –	Outcome:	"No-exposure" category is 5.5 times the median serum PFOS reported by NHANES = 0.02 ppm (Fourth National Report on Human Exposure to
current and former employees.	0.11-0.29 µg/ml - Low- 0.39-0.89	Confirmed bladder cancer cases	Environmental Chemicals; http://www.cdc.gov/exposurereport/pdf/fourthrepor
Combinatio of self-reporting (with	μg/ml	Major Findings:	<u>t.pdf</u>)
physician follow-up) and death certificate data.	- High – 1.30-1.97 μg/ml	Cases were more likely to have smoked regularly compared to non-cases (83% vs.	Thus, use of "no-exposure" category as referent will bias against finding significantly elevated risk ratios based on No-exposures as internal
Follow-up 1970-2002	Cumulative exposure estimated on basis of	56%). However, similar to national smoking rates	referenants.
Location:	summation of weighted assigned to job titles on	11 total cases of bladder cancer observed	Other comments:
Decatur, AL	basis of exposure potential:	8.6 expected (SIR = 1.28; CI = 0.64-2.29; not sig)	This study was straightforward in terms of case definition and ascertainment, However, exposure
Population:	- Non = 1 - Low = 3	- 2 (18%) of cases were "Non-	assessment is subject to uncertainty due to small biomonitoring sample size, significant variability of
Same population as Alexander et al. (2003) – workers in 3M Decatur facility.	- High = 10	exposed" - 9 (82%) of cases worked in L or H exposure job. 6 of these for ≥1 yr	serum PFOS within exposure categories and sig background exposure in "No-exposure" referants.
≥365 cumulative days of employment prior to 1998.		- 3 (27%) worked in H exposure job ≥1 yr	Lack of clear evidence of elevated bladder cancer as a function of exposure. However, consistently elevated (but not sig) risk for exposed workers.
1,400/2083 current employees responded, plus death certificate data on 185/188 decedents.		SIRs = 1.12-2.26 for the exposure groups (highest SIR for L exp group)	5 /
		I .	

Reference and Study Design	Exposure Measures	Results	Comment
73.9% response relative to eligible		Highest SIR for cumulative exp = 2.72 for	
(43,739 person-yrs of follow-up)		5-10 yrs exposure in H exp job (CI = 0.55-	
		73.95; not sig)	
Related Studies:			
		Rate ratios for cumulative exp for 5-10	
Alexander et al. (2003)		yrs and >10 yrs exposure = 1.92 and	
		1.52 (<u>not sia</u>)	
		(based on internal referent grouo)	
		Sensitivity analysis for inclusion of non-	
		respondants assuming doubling of	
		expected bladder cancer rate. Overall	
		SIRs not sig.	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Alexander et al. (2003)	Assignment of exposure by job title based on limited	Calculation of SMR adjusted for age, gender and calendar period.	Significant co-exposure to PFOA.
Study Design:	biomonitoring of serum PFOS in Olsen (2003b)	Outcome:	Exposure classification based on correspondence of job category to
Mortality study linking employment			exposure levels (serum PFOS).
records with cause of death-specific vital records search. Comparison to	Population-Level Exposure:	All-cause and specific cause mortality	However, correspondence was based on a sample of 186 = 13% of the number of
sister plant with no specific PFC	Exposure Category	Major Findings:	questionnaire respondents. Variability for
exposure and to AL state and local counties mortality	- Ever-H – n = 982 (47%)	All-cause mortality	some job categories was high including some with high PFOS exposure (95% UCI/geom.mean ≈ 3) (Olsen et al.
Location:	- Ever-L, but Never-H – n = 298 (14%)	- Total - SMR = 0.63 - Ever H – SMR = 0.69	2003b)).
3M plant, Decatur, AL	- Ever No/minimal exposure – n = 812	- Ever L, but never H – SMR = 0.64 - Ever No/minimal – SMR = 0.60	Observation of high SMR for bladder cancer rests on only 3 observations.
Population:	(39%)	- <1.0 for ≥ 1 yr H or Ever L	,
All employees working ≥365 days by end of 1997 with a verified death		All cancer mortality	Mortality as an endpoint does not address the full potential range of adverse outcomes.
certificate		- Total – SMR = 0.72 - Ever H – SMR = 0.84	Other comments:
M = 83% (84% of H exposure)		- Ever L, but never H – SMR = 0.52	
Related Studies:		 Ever No/minimal – SMR = 0.73 SMR <1.0 for ≥ 1 yr H or Ever L 	The cause-of-mortality data collection and ascertainment were well conducted and appear to be reasonably comprehensive.
Olsen et al.(2003a) Olsen et al. (2003b)		<u>Liver cancer</u>	The exposure assignment was based on a relatively small sample and could not
Olsen et al.(2004) Grice et al. (2007)		SMR = 1.61 (2 obs. vs. 1.24 expected) – not stat. sig.	control for confounding by (e.g.) smoking.
Alexander et al. (2007)			
Olsen et al. (2012)		<u>Bladder cancer</u>	
		SMR = 4.81 (border line stat. sig – lower CI = 0.99) 3 obs. vs. 0.62 expected. All M, all worked H exposure job for ≥ 5 yr. SMR for ≥5	
		0.99) 3 obs. vs. 0.62 expected. All M, all	

Study:

Andersen et al. (2010). Prenatal exposures to perfluorinated chemicals and anthropometric measures in infancy.
Am J Epidemiol. 172(11):1230-7.. Erratum in: Am J Epidemiol. 2011 Jun 15;173(12):1475.

Study Design:

Danish National Birth Cohort

Blood sample collected during regular antenatal care visit during 1st trimester.

Telephone interviews - preg. wks 16 and 30 and 6 and 18 mos postnatal

Self-reported data on maternal pregnancy wt. and ht. → BMI

Birthweight and gestational age from Danish Nat'l Birth Reg.

Child wt and length obtained from mothers based on recorded information in child's data book entered by physician and kept by mother

Location:

Denmark

Exposure Assessment:

Maternal Plasma PFOS and PFOA by HPLC-MS

Population-Level Exposure:

<u>PFOS</u> (ng/ml) median = 33.4 IQR = 17.2 Range = 6.4-106.7

<u>PFOA</u> (ng/ml) Med. = 5.21 IQR = 3.06 Range = 0.5-21.9

Stat Method:

Multiple linear regression of wt, length and BMI (as z-scores) against PFOS (and PFOA)

Co-variates – maternal age; parity; pregnancy BMI; smoking during pregnancy; SES; geststional wk at blood samples; duration of breastfeeding; child's exact age at measurements; wt, length, BMI at 5 mos (for models at 12 mos).

Child's sex, in stratified analyses.

Exclusion of one hig-value outlier for PFOA

Outcome:

Children's wt, length and BMI as function of PFOS (PFOA) and co-variates

Major Findings:

All Children

PFOS

Sig. inverse assoc. with wt (adjusted, but not crude model *)

Sig. inverse assoc. BMI at 12 mos.(adjusted and crude models *)

PFOA

Sig. inverse assoc with birth wt. (crude and adjusted models)

* crude model – adjusted for child's exact age at measurement only Adjusted model – as detailed above

Major Limitations:

Significant co-exposure to PFOA.
Although outcomes associated with PFOS and PFOA did not completely overlap (little effect of PFOA at 12 mos), interactions between PFOS and PFOA were not investigated.

Maternal self-reporting of wt and length data. However, data were generated by physicians and provided to mothers using a formal and common format.

Fetal exposure estimated from maternal blood sample from first trimester.

Variability in maternal fetal transfer and changes in maternal exposure after 1st trimester introduce some uncertainty in the exposure assessment. However, resulting exposure misclassification would tend to bias outcomes away from observing relationships between plasma PFOS and infant measures of growth.

Other comments:

This was a well designed and conducted longitudinal cohort study using well supported and standardized databases and a reasonable surrogate of fetal gestational exposure (1st trimester maternal plasma PFOS and PFOA).

Co-exposure to PFOA prevents clear conclusions about the independent influence of PFOS.

1,400 mothers with 1 st trimester blood samples, and 4 telephone interviews	** crude model – adjusted for gestational age (quadratic and linear terms) Adjusted model – as detailed above Boys only
1,147 w weight and height data children at 5 mos.; 1,076 w wt and ht data at 12 mos. 1010 with data at both time points	PFOS Sig. inverse assoc w wt at 12 mos (adjusted model only) Sig inverse assoc w BMI at 12 mos (crude and adjusted models)
Related Studies:	PFOA
Fei et al. (2008)	Sig. inverse assoc w birth wt (crude and adjusted models
Fei et al. (2007)	Sig inverse assoc w wt at 5 mos (adjusted model only)
Andersen et al. (2013)	Sig inverse assoc w BMI at 5 mos (adjusted model only) Sig inverse assoc w BMI at 12 mos (crude model only)
	Girls only
	PFOS Sig. inverse assoc w birth wt (crude and adjusted models)
	PFOA Sig inverse assoc w birth wt (crude model only)
	Breastfeeding
	Duration of breastfeeding as a co-variate did not produce sig changes in βs for wt or BMI. Thus, effects at 12 mos do not appear to be due to continued exposure through breast milk

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Reference and Study Design Study: Andersen et al. (2013) Andersen CS, Fei C, Gamborg M, Nohr EA, Sørensen TI, Olsen J. Prenatal exposures to perfluorinated chemicals and anthropometry at 7 years of age. Am J Epidemiol. 2013 Sep 15;178(6):921-7. Study Design: Danish National Birth Cohort 1996-2002 Blood sample collected during regular antenatal care visit during 1st trimester. Telephone interviews - preg. wks 16	Exposure Measures Exposure Assessment: Maternal plasma PFOS and PFOA by HPLC-MS Apparently utilized 1st trimester blood sample data from Andersen et al. (2010) Population-Level Exposure: PFOS (ng/ml) median = 33.8 IQR = 17.6 Range = 6.4-106.7 PFOA (ng/ml) Med. = 5.25 IQR = 2.99 Range = 0.5-21.9	Results Stat Method: Multiple linear regression of BMI, waist circum and risk of overweight (as z-scores) against PFOS (and PFOA) as continuous or categorical variables Lowest quartile of PFOS (PFOA) used as reference group for categorical variables Analyses stratified by sex Covariates Maternal age Parity Maternal pregnancy BMI Smoking during pregnancy SES Preg wk at blood draw Gestational wt gain Child's brith wt Duration of breastfeeding	Comment Major Limitations: Relatively low (~58%) retention of original cohort from Anderson et al. (2010). Possible self-selection bias. Sig co-exposure to PFOA BMI and waist circumference measurements taken by different sources (some medical personnel, some parents) Population exposure to PFOS appears high relative to US population (although direct comparison is difficult) – Med PFOS = 33.8 – based on 4th annual NHANES for 12-19 yr old, this is equivalent to bet 75th and 90th percentiles. Therefore, comparison of upper quartiles to lowest quartiles may underestimate changes relative to background exposure.
and 30 and 6 and 18 mos postnatal Mailed questionnaire during month child turned 7 years old Self-reported data on height weight, waist cirmcumference - 33% obtained by school physician, public health nurse, or personal physician - 67% obtained by another person (usually parents) Birthweight and gestational age from Danish Nat'l Birth Reg.		Child's wt at 5 and 13 mos Outcome: Children's BMI, waist circum. and risk of overweight at 7 yrs Overweight defined at 7 yrs from Int'l Obesity Taks Force cutpoints Boys = 17.92 kg/m² Girls = 17.75 kg/m²	Does not appear that regression analyses controlled for PFOA in analysis of PFOS Other comments: The major weakness in this study is the co-exposure to PFOA and apparent failure to control analysis of PFOS for PFOA. In addition, measurements by parents were not standardized leading to potential for error (but not necessarily bias) in endpoint determination

Location:	Major Findings:
Denmark	No differences with original cohort for PFOS (PFOA), maternal age, preg BMI, preg wt gain,
Population:	or child's growth measures.
1,400 mothers with 1st blood sample, and 4 telephone interviews from Andersen et al (2010) eligible for this 7 yr follow-up if provided information on - Height and wt (n = 811) Or - Waist circumference (n = 804)	However, sig. differences with original cohort Original cohort mothers "slightly" older, higher preg BMI, and higher birth wt No sig effect of PFOS (PFOA) on BMI or waist circumference for boys or girls
~58% recruitment of original cohort	
Related Studies:	
Fei et al. (2008)	
Fei et al. (2007)	
Andersen et al. (2010)	

Population:	Outcome:	
n = 293	Major Findings:	
Related Studies:	Assoc. of PFOS with anthropometric measures	
	Birthweight – Stat sig decrease in birthwt only with model adjusted for gestational age (but not other co-variates)	
	Head circumference – Stat sig decrease for full adjusted model and for gestational age adjust only Inclusion of (sig) interaction term with mode of delivery (vaginal/Cesarean) limited assoc to vaginal births	
	<u>Ponderal Index</u> – Stat sign decrease for univariate, gestational age adjust only, and fully adjusted models	
	Note: PFOA showed essentially the same relationships with approx. the same coefficients.	
	Total serum cholesterol, total lipids, triglycerides - No sig assoc with PFOS (PFOA)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Ciany.			
Audet-Delage (2013)	PFOS by LC-MS/MS	Multiple linear regression models created	T4-TTR levels in this population were
	(OH-PCBs and chlorophenols	separately for PFOS, OH-PCBs and	lower than expected based on other
Audet-Delage Y1, Ouellet N, Dallaire	by GC-MS)	chlorophenols	populations. Although it does not appear
R, Dewailly E, Ayotte P. Persistent	100 040/	0	that PFOS (or PCB-OH, or chlorophenols)
organic pollutants and transthyretin- bound thyroxin in plasma of Inuit	LOD = 0.10 ng/ml	<u>Co-variates</u>	influenced these levels, there are other contaminants not measured in this study
women of childbearing age.	Plasma conc of contaminants	Total T4, Total thyroid binding globin (TBG),	that could have competed with TTR for T4
Environ Sci Technol. 2013 Nov	<lod 2<="" as="" lod="" reported="" td=""><td>Total TTR, Plasma lipids</td><td>binding. In the absence of these</td></lod>	Total TTR, Plasma lipids	binding. In the absence of these
19;47(22):13086-92. doi:	(Note; LODs not reported)		competitors, PFOS might have significantly
10.1021/es4027634. Epub 2013 Nov		Age, BMI, smoking status, alcohol, total marine	competed with TTR for T4 binding.
11.	T4-TTR measured by	food (g/d), education level	
	polyacrylamide gel	_	Other comments:
Study Design:	electrophoresis	Outcome:	This is a well conducted at education and
Archived plasma samples from 2004	Population-Level Exposure:	T4-TTR	This is a well conducted study with good control for known co-variates and a
study	Population-Level Exposure:	14-11K	reasonable sample size. The exposure of
Study	PFOS detected in 100% of	Major Findings:	this population to other POPs at high in the
Regression of T4-TTR (transthyretin-	samples		Arctic environment could have confounded
bound T4) levels against PFOS (and	Geom mean = 10.92 ng/ml	PFOS not a sig determinant of T4-TTR in	assessment of the ability of PFOS to bind
OH-PCBs and chlorophenols)	95% CI = 9.84-12.13 ng/ml	regression model (likewise PCB-OH, and	T4. However, overall the study did not
4	Range = 2.30-97.00 ng/ml	chlorophenols)	indicate decreased T4 due to PFOS.
(Note: transthyretin is one of the T4	OH DOD		
transport protein in plasma)	OH-PCB conc geom mean = 0.11-0.02 ng/ml (for 10		
Location:	congeners)		
Loodiion.	derigeners)		
Nunavik, Quebec	Pentachlorophenol geom		
	mean = 0.80 ng/ml		
Population:			
	Tetrachlorophenol geom		
Inuit women previously participating	mean = 0.21 ng/ml		
in 2004 cross-sectional study	PFOS plasma conc in this		
18-39 yrs old	population is in the range of		
10 00 910 010	US adult pop based on 4 th		
Restrictions – pregnant, use of thyroid	NHANES Biomonitoring		
medication	Report		

N = 120 - randomly selected from eligible pop.		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Bloom et al. (2010)	Analysis of TSH and FT4	Multiple linear regression for total PFCs and	Authors suggest that pop size would need
Bloom MS1, Kannan K, Spliethoff	from archived serum samples in 2003 by immunoassay	individual PFCs	to be increased 9x and 3x in order to achieve 80% power to detect sig
HM, Tao L, Aldous KM, Vena JE.	III 2003 by IIIIII loassay	Covariates	associations for TSH and FT4
Exploratory assessment of	Analysis of PFC from	<u>oovanatoo</u>	(respectively) at observed effect size.
perfluorinated compounds and human	archived serum samples in	Included if p<0.1 in bivariate analysis	Thus, study appears to be underpowered.
thyroid function.	2006		
Physiol Behav. 2010 Feb 9;99(2):240-	PFOS	Variables examined for potential inclusion in	Due to small n, study did not conduct
5. doi:	PFDA	models:	simultaneous regression modeling of all
10.1016/j.physbeh.2009.02.005.	PFNA	Age, BMI, gender, smoking, self-reported	measured PFCs. Thus, PFOS analysis did
Epub 2009 Feb 10.	PFOA	sportfish consumption	not control for pos or neg effects of other PFCs on PFOS assoc with TSH or FT4.
Study Design:	PFHpA PFUmDA	Outcome:	PFCS on PFOS assoc with 15H of F14.
Study Design.	PFHxS	Outcome.	
Nested cross-sectional study	PFOSA	Assoc of PFOS (and other PFCs) with TSH	Other comments:
Troctod or occupinal orday	1100/1	and FT4	
"Hypothesis screening" investigating	Analysis by Electrospray		Study was well conducted, but was limited
associations between 8 PFCs (incl.	tandem MS (ESj-MS/MS)	Major Findings:	by small sample size
PFOS) and TSH and free T4 (FT4) in			
sub-population from NY State	LOD for PFOS = 2.00 ng/ml	Neither TSH, or FT4 associated with PFOS	
Angler's Cohort Study cohort	(LOD for other PFC were	(or other PFCs) in multiple linear regression	
Blood sample and survey	≤LOD for PFOS by ≥10x)		
questionnaire (sportfish, game,	Population-Level Exposure:		
lifestyle, demographics, medical	opulation-Level Exposure.		
conditions) completed 1995-1997.	PFOS geom mean = 19.57		
	(7.25-76.88) ng/ml		
Location:	83% of total PFCs		
NV State	PFOS serum concentration		
NY State	consistent with NHANES		
Population:	levels from 4 th National		
· opaiaioiii	Report on Human Exposure		
31 of 38 cohort members previously	to Environmental Chemicals		
selected on the basis of high level			
sportfish consumption	PFOS sig correlated with		
	PFDA $(r = 0.7)$; PFNA (0.53) .		

N = 31 (4 F)	Non-sig assoc with PFOA (r =	
Mean age = 39 (31-45) yrs	0.35)	
, , , , ,		
No history of thyroid or goiter problems		
Related Studies:		
Notation States		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Bonefeld-Jorgensen et al. (2011)	PFOS extraction by ion pairing Analysis by LC-MS-MS w	PFOS and other vars In-transformed	Small n for cases (9 for PFOS OR analysis)
Bonefeld-Jorgensen EC1, Long M, Bossi R, Ayotte P, Asmund G, Krüger	electrospray ionization	OR from unconditional logistic regression	PFOS analysis not adj for PFOA or other
T, Ghisari M, Mulvad G, Kern P, Nzulumiki P, Dewailly E.	LOD = 0.1-0.4 ng/ml	<u>Co-variates considered</u> - age	PFCs
Environ Health. 2011 Oct 6;10:88. doi: 10.1186/1476-069X-10-88.	Population-Level Exposure:	- BMI	Other comments:
Perfluorinated compounds are related	PFOS median conc	- no.full term pregnancies - breastfeeding	Case-control study
to breast cancer risk in Greenlandic Inuit: a case control study.	- cases = 45.6 ng/ml - controls = 21.9 ng/ml	- menopausal status - serum cotinine	Small N
Study Design:	(NOTE: PFOS concs ~ 2.5 -5 x	Included in model if $\Delta\beta$ > 15%	Sig, but small effect
Case-control	current US F (NHANES 4 th Rpt)	Outcome:	(However, see Ghisari et al. follow-up study)
Cases – 80% of breast cancer cases in Greenland 2000-2003		OR for breast cancer as function of unit increase in PFOS	Relatively high exposure
Controls – from study of POP exposure and Artic Monitoring and		Major Findings: (adj model)	
Assessment Prgm (AMAP) Age, district-matched to cases		OR for breast cancer per unit PFOS sig >	
Blood samples on diagnosis (cases) or on enrollment (controls) Analysis blind to disease status		1.0 (OR = 1.03, p = 0.05) (OR for unadj analysis not sig >1.0)	
Plasma fatty acids Serum cotinine Serum 17β-estradiol			
Measurement of ER, AR, and AhR transactivaties			

Location:		
Greenland		
Population:		
Greenland Inuit F		
Full N:		
Cases – n = 31		
Controls – $n = 115$		
N for PFOS OR analyses:		
<u>Unadj analysis</u>		
Cases = 31		
Controls = 98 Adi analysis		
Cases= 9		
Controls = 69		
Related Studies:		
Ghisari et al. (2014)		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		Major Limitations: Low level of PFOS detects (LOD mod high) Comparison of PFOS conc by fetility status based on prop <> LOD rather than continuous data Other comments: Small prop PFOS detects

Location:		
Rome, Ferrara, Sora; Italy		
Population:		
Infertile n = 111 F, 18-40 Enrolled in IVF clinics Recruited 6/09-4/10		
Fertile n = 44 F 18-40 Spontaneous preg in prev year Regular menstrual cycle Stopped breastfeeding ≥ 6 mos prev		
Related Studies:		

Reference and Study Design	Exposure Measures		es	Results	Comment	
Study:	Exposure Assessment:				Stat Method:	Major Limitations:
Chan et al. (2011)	Serum TSH and free T4 by chemoluminescent immunoassay				PFC conc <lod as="" enetered="" lod<="" td="" ½=""><td>N for cases and controls is modest.</td></lod>	N for cases and controls is modest.
Chan E, Burstyn I, Cherry N, Bamforth F, Matrin JW.	- "standard laboratory procedure"				OR by conditional logistic regression	Women self-selected for the trisomy/Down's/spina bifida screening and therefore, cohort is not necessarily
Perfluorintated acids and hypothyroxinemia in pregnant women.	CV at grea			%	Co-variates- maternal age, maternal weight, gestational age at blood draw (dichotomized), race (Caucasian/ other)	representative of al pregnancies.
Environ Res. 2011 May; 111(4): 559-64 doi: 10.1016/j.envres.2011.01.011.	PFOS, PF	OA, and	PFHxS	S by	Outcome:	Other comments:
Epub 2011 Feb 9.	HPLC- trip (for ea.) =0	les quad).25 ng/r	ripole I nl	MS LOD	TSH, free T4	This was a well-controlled study with minimal opportunity for uncontrolled
Study Design:	demonstrated in QC analyses		ion /ses	Major Findings:	confounding. However, the small N and non-	
Matched case-control.				For PFOS independently (in model without other PFCs), OR <1.0	randomness of the sample reduce the generalizability	
<u>Cases</u> - Normal TSH, no hyperthyroidism, free T4 in lowest 10 th percentile of samples	Geom. M	· · · · ·		I	For model with all PFCs, OR for PFOS <1.0 (OR for PFHxS adj OR=1.27, but not stat sig)	of the findings.
N=96	cases	PFOS 14.15	3.10 3.32	2.86 2.59	For sum of PFCs, OR <1.0	
Controls- Normal TSH, free T4 in 50 th -90 th percentile of samples N=175	(PFOS cor Cases-7.08			2.59		
Matching- Cases matched to 1-3 controls each based on: Referring physician; maternal age (+/-3 yrs)	Controls-7	.50)				
Location: Edmonton, Alberta, Canada						
Population: Pregnant women providing second trimester blood samples in conjunction						

with trisomy 18//Down's syndrome/spina bifida screening (Dec. 2005- June 2006). Women ≥ 18 yrs old, singleton delivery > 22 wks		
N for total samples= 974		
Related Studies:		

Reference and Study Design:

Study:

Château-Degat et al. (2010)

Château-Degat ML1, Pereg D, Dallaire R, Ayotte P, Dery S, Dewailly E. Effects of perfluorooctanesulfonate exposure on plasma lipid levels in the Inuit population of Nunavik (Northern Quebec).

Environ Res. 2010 Oct;110(7):710-7. doi: 10.1016/j.envres.2010.07.003. Epub 2010 Aug 8.

Study Design:

Cross-sectional study based on large-scale community stratified health study (2004)

Investigation of association between PFOS and plasma lipid levels

Blood samples collected in conjunction with large-scale community health study

Questionnaires (self-administered and interview) on sociodemographic, environmental, dietary, lifestyle factors

Location:

Nunavik Inuit.

Exposure Measures:

Exposure Assessment:

Fasting HDL-C, LDL-C, triglycerides (TG) and glucose determined in plasma samples by autoanalyzer

PFOS extracted by alkaline ionpairing extraction. Quantification by HPLC-quadrapole-MS

¹³C4-PFOS internal std. Recovery = 87%

LOD = 0.1 ng/mlLOQ = 0.3 ng/ml

Intra, and inter assay CVs = 4%, 6%

Population-Level Exposure:

PFOS (geom mean) = 18.5 ng/ml (95% CI = 17.8-19/5)

Results:

Stat Method:

Assoc. of lipids and PFOS investigated with multiple linear regression

Confounders considered: age; gender; self-identified smoking; fasting glycaemia; fasting insulinaemia; circulating DHA + EPA; lipid lowering drugs; BMI

Interaction between PFOS and gender investigated

Co-factors included in model if inclusion resulted in >10% change in dependent variable

Outcome:

Assoc. of lipid parameters with plasma PFOS

Major Findings:

Interaction term sig for PFOS-gender for PFOS-HDL and PFOS-triglycerides. These outcomes were stratified by gender

Adjusted models

HDL (good cholesterol) sig. positively assoc w. PFOS (M and F)

TC/HDL sig negatively assoc w PFOS

Comments:

Major Limitations:

PFOS w/in range of age comparable US pop according to CDC-NHANES

Other PFCs not reported. Cannot determine confounding by exposure to other PFCs

Results are opposite from most reported associations in US pop (i.e., PFOS $\rightarrow \downarrow$ HDL, \uparrow TG

PUFA (DHA + EPA) exposure very high in this pop. Authors hypothesize that high PUFA intake could confound effects of PFOS (despite inclusion of PUFA in models as statistically appropriate)

Other comments:

Except for the failure to investigate potential confounding by other PFCs, this study was well controlled with a reasonably sixed N.

Although cross-sectional, long PFOS serum half-life and likely consistency of diet suggests that observations are generalizable in this pop.

Population:	0 negatively assoc w (M neg., but not sig)
Participants in community-based stratified randomized household sampling.	 (minegr, survivors)
Exclusion criteria: Pregnancy, non-Inuit, not fasted for 8-hrs	
N = 723	
Mean age = 36.9 yrs F = 55% Mean BMI = 27.2 kg/m ²	
Related Studies:	
Dallaire et al. (2009)	

Reference and Study Design	Exposure Measures	Results	Comment
	Exposure Measures Exposure Assessment:	Stat Method:	Major Limitations:
Study:	Exposure Assessment:	Stat Wethod:	wajor Limitations:
Chen et al. (2013)	PFOS and PFOA measured in cord	Co-factors/confounders	No indication of inter-tester QA
onen et al. (2010)	plasma by UPL-triple quadrupole MS	<u>oo laatara/oomidanaera</u>	determinations.
Chen MH, Ha EH, Liao HF, Jeng SF,	processes by the manufacture and the	HOME scale (support available for	
Su YN, Wen TW, Lien GW, Chen	LOQ = 0.22 ng/ml PFOS, 1.58 ng/ml	children at home)	Number of testers not specified.
CY, Hsieh WS, Chen PC.	PFOA	Cord blood cotinine	·
Perfluorinated compound levels in		Sex	Testers were "physical therapists." Not
cord blood and neurodevelopment at	Population-Level Exposure:	Gestational age	clear if this is a mis-translation. However,
2 years of age.		Maternal education (≤ > 12 yr)Family	not clear that physical therapists are
Epidemiology. 2013 Nov;24(6):800-	PFOS detection = 100%	income (dichotomized)	appropriate for this testing.
8. doi:	PFOA detection = 82%	Breastfeeding (never/ever)	
10.1097/EDE.0b013e3182a6dd46.		Postnatal ETS	Does not appear that PFOS models were
Otes he Destand	Mean conc (sd)	12	adjusted for PFOA conc.
Study Design:	PFOS = 7.0 (5.8) ng/ml	Linear and logistic regression PFOS, PFOA as continuous and	Other comments.
Longitudinal hirth sabart	PFOA = 2.5 (2.6) ng/ml	categorical variables	Other comments:
Longitudinal birth cohort		categorical variables	Study was well controlled with reasonable
Investigation of assoc between cord		Outcome:	N. However, lack of information about
plasma PFCs and		Outcome.	testers, testers qualifications, number of
neurodevelopment in 2-yr olds		Whole test and sub-test outcomes of	testers, and inter-tester variability results in
Tiourous vois princine in 2 yr side		Comprehensive Developmental	uncertainties. Failure to adjust PFOS
"Comprehensive Developmental		Inventory for Infants and Toddlers	models for other PFCs (although PFOA,
Inventory for Infants and Toddlers"		, , , , , , , , , , , , , , , , , , , ,	alone, not assoc with outcomes)
Domains – cognitive; language;		Major Findings:	,
motor, social; self-help		(adjusted model)	
Tests administered by "specially		<u>PFOS</u>	
trained physical therapists"			
		↑ in PFOS equal to inter-quartile range	
Location:		of cord plasma conc → stat sig ↓ in	
T		whole test score	
Taiwan		A in DEOC agual to inter quart range	
Population:		↑ in PFOS equal to inter-quart range → stat sig ↓ in gross motor test	
Fopulation.		→ stat sig ↓ in gross motor test component	
Children at 2 yrs old from birth		Component	
cohort assembled 2004-2005		All other components assoc w non-sig	
23.1311 43301113134 2007 2000		decrease for inter-quart ↑ in PFOS	
	<u>I</u>	=====================================	<u> </u>

Initial cohort n = 402. After exclusion for incomplete information and loss	For categorical analysis, test score for	
to follow-up, n = 239 mother-child	gross motor for highest quartile PFOS	
pairs	conc stat sig. ↓ compared to lowest quartile PFOS	
Av. Materinal age = 32 yrs		
	OR for lowest 10% of performance for	
First birth for 40% of mothers	gross-motor component w inter-quart ↑	
	in PFOS = 2.4 (95% CI = 1.3-4.2)	
Education >12 yrs over-represented	For boys only, OR = 4.2 (1.7-10.8)	
in study pop. compared to full cohort		
	PFOA	
Related Studies:		
	No sig effects on test outcomes	
Chen et al. (2012b)	The dig enesis on test outsernes	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Christensen et al. (2011)	Analyte LOD (ng/ml)	Confounders investigated Maternal pre-preg BMI	Modest n's
Christensen KY, Maisonet M, Rubin	PFOS 0.2	Maternal age at delivery	Sig PFOA exposure
C, Holmes A, Calafat AM, Kato K,	PFOA 0.1	Maternal age at own menarche	
Flanders WD, Heron J, McGeehin	PFOSA 0.1	Maternal education	PFOS exposure is consistent with US
MA, Marcus M Exposure to	Et-PFOSA- 0.2	Child's ethnicity (white/non-white)	exposure in NHANES 4th Report
polyfluoroalkyl chemicals during	AcOH	Child's birth order	And the land of the state of th
pregnancy is not associated with	Me-PFOSA- 0.2	SES/class	Analysis based on single serum sample
offspring age at menarche in a contemporary British cohort	AcOH		(however, relatively long half life).
Environ Int. 2011 Jan;37(1):129-35.	PFHxS 0.1 PFNA 0.1	Outcome:	Because preg period sampling dates
doi: 10.1016/j.envint.2010.08.007.	PFNA 0.1 PFDeA 0.2	Outcome.	varied, later samples, maternal-fetal
Epub 2010 Sep 16.	PFDEA 0.2	OR for assoc PFOS with ↓ age at	transport could reduce measured maternal
	Analysis by CDC on line solid	monarcho	serum levels leading to underestimating
Study Design:	Analysis by CDC – on-line solid extraction coupled to isotope dil	priase	fetal exposure
	HPLC-tandem MS	Major Findings:	
Prospective case-control nested	TIF LO-taildelli WS		Other comments:
within ALSPAC (Avon Longitudinal	For analytes in >30% of sample	OR for PFOS < 1.0 for continuous and	
Study of Parents and Children)	LOD → LOD/2	binary analysis - non-adj and adjusted	The study was generally well conducted
"O K"	For analystes in < 30% of samples,	< LOD models.	and well controlled. However, concerns
"Self"-reporting (by mothers?) of	entered as missing	No OD sign 4 0 for any DECs	about exposure misclassification based on
menarche status and age at first menarche		No OR sig > 1.0 for any PFCs.	preg sampling time (see above), and small N, make lack of assoc uncertain.
menarche	Population-Level Exposure:	Non-sig ↓ ORs for PFOS	14, make lack of assoc differtalli.
Maternal serum samples collected	Analyte Median	14011-319 \$ 0143 101 1 1 00	
"during pregnancy." If multiple	(ng/ml)		
samples, earliest preg sample was	PFOS 19.8		
chosen.	PFOA 3.7		
	PFOSA 0.2		
Investigation of OR for early	Et-PFOSA- 0.6		
menarche (cases) with maternal	AcOH		
prenatal PFCs	Me-PFOSA- 0.4		
	AcOH		
Location:	PFHxS 1.6		
Avon IIIK	PFNA 0.6		
Avon, UK	PFDeA -		

Population:		
From original cohort of 14,610 → singleton F → ≥ 1 maternal prenatal serum sample → ≥2 puberty stage questionnaires (one, post-menarche) → report of age at menarche → analyzable samples		
Menarche < 11.5 yrs = cases (n = 218)		
Menarche > 11.5 yrs = controls Random sample → n = 230		
N's based on calc to achieve 80% power to detect OR ≥ 117 w control/cases n = 225		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Dallaire et al. (2009)	PFOS in plasma by LC/MS-MS LOD = 0.1 ng/ml (suppl. material.)	Multiple linear regression	Plasma conc other PFC (esp. PFOA) not determined
Dallaire R, Dewailly E, Pereg D, Dery S, Ayotte P. Thyroid function and plasma	TSH, freeT4, total T3, thyroid binding globin (TBG) by radioimmunoassay.	5 participants with extreme TSH excluded	PFOS in range of US pop (NHANES)
concentrations of polyhalogenated compounds in Inuit adults. Environ Health Perspect. 2009	Population-Level Exposure:	Interaction terms for sex not sig. M and F combined in analyses.	Cross-sectional Other comments:
Sep;117(9):1380-6. doi: 10.1289/ehp.0900633. Epub 2009	PFOS detected in 100% of samples	Co-variates with p ≤ 0.1 considered - Sex; menopause; age, BMI; Se;	The study was reasonably conducted.
May 12. Study Design:	PFOS geom mean = 18.28 ng/ml	smoking (no. cigarettes); alcohol freq; fish consumption; marine mammal consumption; education; thyroid altering medication, plasma lipids	However, lack of controlling for other PFCs creates uncertainties as to the specificity of results to PFOS
Investgation of assoc of plasma polyhalogenated cmpds (incl. PFOS) and thyroid function in adult pop. of Nunavik, Quebec		Included in PFOS model if inclusion altered PFOS β by > 10%	
Based on large-scale cross-sectional health community stratified random		Included co-variates age, sex, BMI, plasma lipids, smoking, education	
study (2004) among permanent Inuit residents ≥ 18 yrs old		PCB-153, and BDE-47 examined in model w PFOs	
Location:		Outcome:	
Nunavik, Quebec, Canada		Assoc PFOS w THS, free T4, total T3, TBG	
Population:		Major Findings:	
Adult Inuit ≥ 18 yr Exclusions – pregnant; thyroid medication N = 621		PFOS correlated w PCBs and metabolites (r = 0.47-0.55) Other org chlor r = 0.36-0.51 BDE-153 r = 0.23	
Age - 36.8 ± 13.9, range = 18–73		(adj models)	

Related Studies: Chateau-Degat et al. (2010)	PFOS Sig assoc w ↓ TSH Sig assoc w ↑ free T4 Sig assoc w ↓ total T3 Sig assoc w ↓ TBG	
	For TSH, and free T4, β for adj model for PFOS was largest of all contaminants. And second largest for TBG.	

Reference and Study Design	Exposure Measures	Results	Comment
, ,	Exposure Assessment:	Stat Method:	Major Limitations:
	Maternal serum PFASs concentrations	Associations were estimated using	Did not control for other co-occurring
	before gestational week 16 (in utero)	logistic regression and negative	environmental contaminants as potential
Dalsager, L., N. Christensen, S. Husby,	, ,	binomial regression model. All models	confounders.
H. Kyhl, F. Nielsen, A. Host, P.		were adjusted for maternal age,	Confounders.
	Population-Level Exposure:	education level, parity and child age.	Moderate sample size.
	Median (ng/ml)	Outcomes were analyzed as	ivioderate sample size.
exposure to perfluorinated compounds		dichotomous (above or below the	Other comments:
	PFOA: 1.68	median) and ordinal data.	Strong outcome and
4years among 359 children in the	11 OA. 1.00	inedian) and ordinal data.	exposure assessment.
Odense Child Cohort." Environ Int 96 :	Tertile concentration (ng/mL)	PFAS concentrations were log-	
58-64.	Low (0-6.93)	transformed and divided into tertiles. A	
	Medium (6.94-10.18)	test for linear trend across the exposure	
	High (10.19-25.10)	groups was conducted.	
Prospective birth cohort		groups was conducted.	
r rospective birtir conort		Potential covariates and confounders	
Location:		considered include maternal age,	
Odense, Denmark		educational level, and parity and	
Odense, Denmark		adjusted for childhood age. Also	
Population:		maternal smoking, child sex, day-care	
Odense Child Cohort – an ongoing		attendance, and exclusive	
prospective study on children's health		breastfeeding.	
where PFASs measured in 649		breastreeding.	
pregnancy women recruited from 2010-		Bonferroni adjustment also considered.	
2012. Of these women, n=359 were		Bornerrom adjustment also considered.	
included in this study (200 selected		Outcome:	
randomly and 449 based on availability		Symptoms of infection	
of information).		Cymptomo of imponent	
or information).		Major Findings:	
Outcome Assessment:		Fever:	
Mothers reported on symptoms of		Proportion	
infection in their child (aged 1 to 3.3		T2 v. T1 OR=1.14 (0.81, 2.44)	
years old) every two weeks for a one-		T3 v. T1 OR=2.35 (1.34, 4.11)	
year period.		*Findings were not significant	
Collected data: days without		following Bonferroni adjustment	
symptoms, fever, stuffed or runny		Number	
nose, cough, wheezy or whistling		T2 v. T1 OR=1.23 (0.93, 1.63)	
breathing, eye inflammation, ear pain,		T3 v. T1 OR=1.65 (1.24, 2.18)	
discharge from ear, feeling unwell,		, ,	

For Trend < 0.001 IRR=1.06 (1.03, 1.09) Pfor Trend < 0.001 IRR=1.06 (1.03, 1.09) Cough: Proportion T2 v. T1 OR=1.03 (0.59, 1.79) Number T2 v. T1 OR=1.03 (0.80, 1.34) T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion T2 v. T1 OR=0.89 (0.51, 1.56)
Cough: Proportion T2 v. T1 OR=1.16 (0.67, 2.01) T3 v. T1 OR=1.03 (0.59, 1.79) Number T2 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Cough: Proportion T2 v. T1 OR=1.16 (0.67, 2.01) T3 v. T1 OR=1.03 (0.59, 1.79) Number T2 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.07 (0.62, 1.85) Number T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Proportion T2 v. T1 OR=1.16 (0.67, 2.01) T3 v. T1 OR=1.03 (0.59, 1.79) Number T2 v. T1 OR=1.03 (0.80, 1.34) T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Proportion T2 v. T1 OR=1.16 (0.67, 2.01) T3 v. T1 OR=1.03 (0.59, 1.79) Number T2 v. T1 OR=1.03 (0.80, 1.34) T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T2 v. T1 OR=1.16 (0.67, 2.01) T3 v. T1 OR=1.03 (0.59, 1.79) Number T2 v. T1 OR=1.03 (0.80, 1.34) T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T3 v. T1 OR=1.03 (0.59, 1.79) Number T2 v. T1 OR=1.03 (0.80, 1.34) T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Number T2 v. T1 OR=1.03 (0.80, 1.34) T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T2 v. T1 OR=1.03 (0.80, 1.34) T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T3 v. T1 OR=0.88 (0.67, 1.15) Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Nasal Discharge: Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Proportion T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T2 v. T1 OR=1.11 (0.65, 1.93) T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T3 v. T1 OR=1.07 (0.62, 1.85) Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Number T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T2 v. T1 OR=1.22 (0.93, 1.61) T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
T3 v. T1 OR=1.02 (0.76, 1.35) Diarrhea: Proportion
Diarrhea: Proportion
Proportion
Proportion
T3 v. T1 OR=1.04 (0.59, 1.82)
Number
T2 v. T1 OR=1.41 (0.79, 2.51)
T3 v. T1 OR=1.19 (0.67, 2.12)
Vomiting:
Proportion
T2 v. T1 OR=1.47 (0.86, 2.54)
T3 v. T1 OR=0.78 (0.45, 1.35) Number
T2 v. T1 OR=1.18 (0.80, 1.74)
T3 v. T1 OR=0.87 (0.58, 1.31)
Co-occurrence of fever & coughing and
fever & nasal discharge – IRR appear to
increase with increasing tertile but no
statistically significant associations.
Statistically Significant associations.

Deference and Childy Design	Eypoure Mecoures	Results	Comment
Reference and Study Design	Exposure Measures		=
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Darrow et al. (2013) Darrow LA, Stein CR, Steenland K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010. Environ Health Perspect. 2013 Oct;121(10):1207-13. doi: 10.1289/ehp.1206372. Epub 2013 Jul 8. Study Design: Prospective study Assoc of birth outcomes w PFOS serum conc in blood samples collected from mothers at enrollment in C8 Health Project (2005-6) Birth outcome ascertained by interview Births 2005-2010 Live birth data obtained from birth records - Preterm - Low birth wt - Birth wt (continuous variable) of full-term infants Location: Mid-Ohio Valley	Solid-phase extraction Reverse-phase HPLC-MS Inter- and intra-lab CV for PFOS = 0.1 LOD (PFOS) = 0.5 ng/ml Sample < LOD = 0.25 ng/ml Population-Level Exposure: Geom mean (SD) (ng/ml) PFOS = 13.1 (1.9) PFOA = 16.2 (2.8) 95th percentile (ng/ml) PFOS = 31.8 PFOA = 114.1 Corr PFOS and PFOA - r = 0.3	Analyses conducted w and w/out participants with blood samples collected pre-conception. Binary outcomes by logistic regression Continuous outcomes by linear regression Also, by quintiles (compared to lowest quintile). Lowest quintile PFOS ≈ 10 th percentile US pop (NHANES) Co-variates Parity, smoking status, maternal age, yrs education, BMI, non-pregnancy diabetes, PFOS and PFOA modeled separately and (in sens. Analyses) together Outcome: Assoc. PFOS (and PFOA) with: - Preterm birth - Preg induced hypertension (PIH) (maternal) - Low birth wt - Birth wt in full-term infants (continuous)	~100% of births ≤ 3 yrs from serum collection. Despite rel. long half-life and environmental exposure, this creates uncertainty as to gestational PFOS exposure 26% of births prior to serum sample Geom mean PFOS exposure ~32% lower than US female pop (NHANES) Sig PFOA co-exposure, esp in upper percentiles. However, co-exposure controlled for in sensitivity analyses Authors raise theoretical concern re. reverse causality for PIH (i.e., predisposition to PIH may affect PK of PFC excretion). However, PFOS and PFOA can also be causal for PIH through kidney and liver toxicity. Other comments: This was a well conducted study, w a relatively large N. For analyses excluding post-partum blood samples, this was a prospective study. The analyses were well controlled and sensitivity analyses addressed potential study weaknesses.
Mid-Ohio Valley			

Population:	Major Findings:
Pop living near Dupont Washington Works	Pretern - No sig assoc w PFOS (also not sig with PFOS and PFOA in same model)
Births to participants in C8 Community Follow-Up study after Jan. 1, 2005 - Enrollment in C8 2005-2006, - completion of demographic health questionnaire, - provided blood sample, - participated in ≥ 1 follow-up Interview 2008-2011, - ≥ 1 live birth 2005-2010 - Singleton births - White mothers - Maternal age at birth ≤ 45 yrs	PIH - ↑ PFOS (and PFOA) sig assoc w ↑ incidence PIH (higher β and OR when analysis restricted to post-partum blood samples). Also sig w PFOA in same model Low birth wt - No sig assoc w PFOS Continuous birth wt in full term - ↑ PFOS (but not PFOA) sig assoc w ↓ birth wt (first preg. post-sample only). Also sig for trend (but not monotonic) across quintiles
N = 1,630	
~26% of births were in 2005, but prior to C8 enrollment	
~52% of PFOS samples collected prior to conception	

Related Studies:

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Darrow et al. (2014) Darrow LA1, Howards PP, Winquist A, Steenland K. Epidemiology. 2014 Jul;25(4):505-12. doi: 10.1097/EDE.00000000000000103. PFOA and PFOS serum levels and miscarriage risk. Study Design: Nested cohort (C8 study), prospective pregnancy outcome Not preg at enrollment (exclusion) Blood sample at enrollment, interview reporting ≥ 1 pregnancy conceived after blood sample Ending (successfully or unsuccessfully) prior to follow-up interview Follow-up interview – reproductive history 40% online 60% by telephone Gestational age from OH birth records Miscarriage = ges age ≤ 20 wks Stillbirth = > 20 wks	PFOS LOD = 0.5 ng/ml < LOD (n = 7) = LOD/2 Population-Level Exposure: Mean PFOS = 16.9 ng/ml (sd = 9.7 ng/ml) Geom mean PFOS = 14.3 ng/ml (sd = 1.9 ng/ml)	Logistic regression w generalized estimating equations Log-PFOS as continuous measure and quintiles Covariates (a priori) - maternal race - pre-preg BMI - education - diabetes - maternal age at conception - smoking at conception - time between serum measurement and conception Outcome: OR for miscarriage rel to serum PFOS Full analysis (miscarriages = 304; live births = 1,438) Major Findings: OR not sig > 1.0 for continuous analysis or for any quintile However, continuous analysis borderline sig OR = 1.21 (0.94-1.55) Outcome: OR for miscarriage rel to serum PFOS Restricted to first preg (miscarriages = 213; live births = 1,129)	Other comments: Large overall N (moderate number of cases Prospective study design Good analytical reliability Multiple sensitivity analyses Results are ambiguous and difficult to interprt

Location:	Major Findings:
OH, WV	OR sig > 1.0 For continuous analysis (OR = 1.34
Population:	(1.02-1.76) And for Q2-Q5
C8 study cohort F	(but response not monotonic)
≥ 20 yrs old	Outcome:
- Live births, n = 1,134 (incl 11 stillbirths) - miscarriage, n = 304 Related Studies:	OR for miscarriage rel to serum PFOS Restricted to first preg and excluding recent preg (≤ 40 wks before last interview) (miscarriages = 190; live births = 1,105) (Note: recent preg exclusion corrects bias of miscarriages but not live births reported) Major Findings: OR not sig > 1.0 For continuous analysis Or for any quintile except Q3 Outcome: Condition at enrollment: Gravity = 0; parity = 0; or parity >0
	Major Findings:
	OR not sig >1.0 For continuous analysis Or for any quintile except Q3

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
de Cock et al. (2014a)	Plasma Isotope dilution, on-line trapping	Mixed models	Small n
de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M.	column-LC-triple quadrupole MS	PFOS as quartiles	Low PFOS expsoure
Int J Environ Res Public Health. 2014 Jul 10;11(7):7001-21. doi:	CV = 16-17% (internal? External repeats?)	Exposure quartile, timing of anthropomorphic meas, sex, as fixed	Other comments:
10.3390/ijerph110707001. First year growth in relation to	PFOS (cord plasma) LOQ 0.04-1.4	effects in model, random effect added for subject	Small n
prenatal exposure to endocrine disruptors - a Dutch prospective	ng/ml	Co-variates	Low PFOS exposure
cohort study.	Population-Level Exposure:	- Maternal/paternal BMI	Incomplete statistical reporting (βs not given)
Study Design:	Mean cord plasma PFOS = 1.6 ng/ml	- gest age - parity	
Recruited 1/2011-1/2013	(NOTE: PFOS conc appears low compared to US pop (NHANES 4 th Rpt),	- alcohol - smoking	
Preg F recruited through midwife clinics	but pop data on cord plasma not available)	- education - duration breast feeding	
Recruitment at 1 st ante-natal visit (10-12 wks of preg)		Co-variates added to model if $\Delta\beta$ > 10%	
Exclusions		Outcome:	
twins major congenital abnormalities		ВМІ	
		Major Findings:	
Cord blood, breast milk (at mean 6.3 wks post-natal) collected		PFOS not sig assoc w BMI Sig interaction w time (post-natal) and	
Growth during first yr obtained from regional youth health authority (pop		w sex	
has regularly scheduled visits – aver = 6 visits)		Outcome:	
Parental anthropometry from midwives		Weight	

Questionnaire on parental health,	Major Findings:	
lifestyle, prev preg	PFOS not sig assoc w weight	
Follow-up visits to child health	Sig interaction w time (post-natal) and	
centers at 1, 2, 4, 6, 9, 11 mos. after	w sex	
birth	Outcome:	
Location:		
Zwolle, The Netherlands	Height	
Zweile, me memenanae	Major Findings:	
Population:		
LINC cohort (maternal-child)	PFOS not sig assoc w height Sig interaction w time (post-natal) and	
Live deficit (material dring)	w sex	
89 mother child pairs from general	Outcome	
regional pop M = 56	Outcome:	
F = 33	Head circum	
N for PFOS = 61	Major Findings:	
Related Studies:	PFOS not sig assoc w head circum	
	Sig interaction w time (post-natal) and	
	w sex	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
de Cock et al. (2014b)	Plasma Isotope dilution, on-line trapping	Co-variates investigated	Low PFOS exposure level
de Cock M1, de Boer MR, Lamoree M, Legler J, van de Bor M.	column-LC-triple quadrupole MS	Thyroid related health issues thyroid related meds during preg	Small N
Environ Health. 2014 Dec 10;13:106. doi: 10.1186/1476-069X-13-106.	CV = 16-17% (internal? External repeats?)	- birth wt - maternal/paternal wt at10-12 wks	No controlling of PFOS analyses for PFOA
Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants - a	PFOS (cord plasma) LOQ 0.04-1.4 ng/ml	preg - maternal/paternal length at 10-12 wks preg)	Other comments:
Dutch prospective cohort study.	No PFOS samples < LOQ	- maternal wt at 36 wks preg (gest wt gain)	Well controlled
Study Design:	Population-Level Exposure:	- caesarian delivery (Y/N) - maternal birth date	Low LOQ for PFOS
Prospective birth cohort Recruited 1/2011-1/2013	Mean and median PFOS cord serum conc = 1.6 ng/ml	- parity - 1 st trimmest maternal smoking - 1 st trimester alcohol	Low power given small sample size and low PFOS exposure
Preg F recruited through midwife clinics	(range 0.57-3.2 ng/ml)	Linear regression	
Recruitment at 1 st ante-natal visit (10-12 wks of preg)		Stratified by sex Analysis by quartiles	
Exclusions - twins - major congenital abnormalities		Sensitivity analyses (for maternal factors) by exclusion of - gest wt gain	
Cord blood, breast milk (at mean 6.3 wks post-natal) collected		- birth wt Outcome:	
T4 from heel-prick blood sample collected between postnatal days 4-		T4 (from heel-prick on filter paper)	
7 Parental anthropometry from		Major Findings: (full adj model)	
midwives		T4 not sig assoc w PFOS for either M or F	

Questionnaire on parental health,		(for M, PFOS Q2 and Q3 sig neg assoc	
lifestyle, prev preg		w T4 in crude model and for Q2 in	
Location:	F	partial adj model. No sig assoc in F)	
Zwolle, The Netherlands			
Population:			
LINC cohort (maternal-child)			
infants 62 M 62 F			
PFOS N = 64			
Related Studies:			

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Donauer et al. (2015)	PFOS analytical methodology per CDC	PFOS conc log-transformed	Range of maternal sampling periods for
Donauer S, Chen A, Xu Y, Calafat	analysis	Multiple linear regression of endpoints	PFOS
AM, Sjodin A, Yolton K J Pediatr. 2015 Mar;166(3):736-42.	Population-Level Exposure:	on maternal serum PFOF for all individual NNNS endpoints except:	PFOS analysis not controlled for PFOA
doi: 10.1016/j.jpeds.2014.11.021. Epub 2014 Dec 16.	PFOS geom mean conc = 13.25 ng/ml	hypotonicity (logistic regression assymetric reflexes (Poisson	Other comments:
Prenatal exposure to polybrominated diphenyl ethers and polyfluoroalkyl	(NOTE: PFOS conc ~1.7 times current US F, but consistent with US F for	regression)	Moderate N
chemicals and infant neurobehavior.	2003-6 (NHANES 4 th Rpt))	NNNS composite endpoints (high arousal/difficult or hypotonic vs.	Good analytical methodology
Study Design:		social/easygoing) by logisitic regression	Issues w comparability of PFOS exposure measurements across time
Prospective birth-cohort		Co-variates investigated	
Neonatal Intensive Care Unit Network Neurobehavioral Scale administered during home visits (13		- maternal age - race - income	
dimensions)		- marital status - maternal depression	
Maternal serum collection at 16 wks gestation (85% of mothers), or 26		- BMI at 13-19 wks gest - alcohol during preg	
wks gest (10% mothers), delivery (5%)		- marijuana during preg	
Location:		- infant monthly wt change (birth-5 wks)	
Cincinnati, OH		- maternal BPb during preg (max of 16, 26 wks, delivery)	
Population:		- gestational age < 37 wks	
Mother-child participants in Health Outcomes and Measurements of the		Co-variates retained if Δ in β PFOS w removal > 10%	
Environment (HOME) Study		Multivariate models constructed for NNNS outcomes w bivariate p < 0.15	
Recruited 3/03-1/06			

	Outcome:
N = 349 infants M = 164	NNNS outcomes
F = 185	INNINS outcomes
	Major Findings:
Related Studies:	
	PFOS not sig assoc w NNNS for:
	Attention
	Self-regulation
	Quality of movement
	Arousal
	Excitability
	Special handling required
	Lethargy
	Non-optimal reflexes
	Asymmetric reflexes
	Hypotonicity
	Stress abstinence (borderline sig)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Method.	Major Ellintations.
Dong et al.(2013)	Outcomes	PFC < LOQ = LOQ/√2	PFOS conc is higher (median ≈ 75 th
20119 01 011(2010)	<u> </u>		percentile of US 12-19 yrs old (NHANES)
Dong GH, Tung KY, Tsai CH, Liu	Venous blood	OR for asthma by logistic regression	
MM, Wang D, Liu W, Jin YH, Hsieh			PFTA conc is comparable to PFOS.
WS, Lee YL, Chen PC.	Absolute eosinophil count (AEC) x 10 ⁶	A priori model adj for age and sex	Overall p-value sig for controls > cases.
Serum polyfluoroalkyl	by automatic analyzer		However, mean and median conc differ
concentrations, asthma outcomes,	F	Other confounders considered:	as to cases or controls higher
and immunological markers in a	Eosinophil cationic protein (ECP) μg/L	Parental education	Authors state that become of
case-control study of Taiwanese children.	by ELISA	BMI ETS	Authors state that because of
Environ Health Perspect. 2013	IgE (IU/ml) by Pharmacia UniCap assay	Month of survey	intercorrelations among PFCs contribution of individual PFCs cannot
Apr;121(4):507-13, 513e1-8. doi:	test	World of Survey	be determined (i.e., other PFCs were
10.1289/ehp.1205351. Epub 2013		Factor included if inclusion changed	not controlled for in PFOS model)
Jan 7.	Asthma control test (ACT) questionnaire	PFC effect by ≥ 10%	,
	for asthma symptoms in prev 4 wks and	·	Other comments:
Study Design:	asthma severity questionnaire	Multiple gen linear regression for IgE,	
	administered to cases	AEC, ECP by PFC quartile	The study was reasonably well designed
Case-control study of assoc of			and conducted. The N was modest.
asthma w PFOS exposure	PFC exposure	Outcome:	However, the failure and/or inability to
	PFC from serum by HPLC-QQQ-	Assoc PFOS w asthma and immune	statistically isolate PFOS (or other PFCs) does not permit ascertainment of a
8-hr fasting urine and serum	MS/MS	markers	specific PFOS effect.
samples	INO/INO	markers	Specific 1 1 00 effect.
Campioo	PFOS LOQ = 0.03 ng/ml	Major Findings:	
Location:		, ,	
		<u>Asthma</u>	
Taiwan	Population-Level Exposure:		
B 1.0	DE00 > 070/ 1 / 1	OR for PFOS sig for all quartiles	
Population:	PFOS ≥ 97% detect	(compared to lowest) OR 4 th quartile = 2.63	
10-15 yr old children diagnosed w	PFOS (ng/ml)	Also sig for (pos) trend	
asthma by physician 1 yr prior to	mean = 33.4 controls; 45.5 cases	Also sig for (pos) trend	
entry into study (2009-2010)	median = 28.9 controls; 33.9 cases	ORs also sig for most other PFCs	
		j	
Controls (non-asthmatic) selected	PFOA (ng/ml)		
from 7 public schools w various	Mean = 1.0 controls; 1.5 cases		
SES, and geographic/climate			

locations in Taiwan. Same age		<u>lgE</u>	
group as cases. No family or	PFTA (ng/ml)		
personal asthma history	Mean = 29.9 controls; 54.6 cases	No sig diff among quartiles of any PFC	
percental detailed instery	Median = 5.2 controls; 4.1 cases	for controls	
Cases = 225	Wodian = 0.2 controlo, 1.1 cacco	TOT COTITIONS	
	DED - A (n n/m)	For some DECC 4th amount size 4st	
Controls = 231	PFDoA (ng/ml)	For cases, PFOS 4 th quart sig > 1 st	
	Mean = 4.5 controls; 3.8 cases	(ref) quartile	
		Sig for (pos) trend	
Related Studies:	Note: all other PFCs < PFDoA		
		Also sig for upper quartiles and trend	
		for other PFCs (PFOA, PFDA, PFNA)	
		AEC	
		TES .	
		No sig diff among quartiles of any PFC	
		for controls	
		For PFOS, not sig for any individual	
		quartile, but sig for (pos) trend	
		ECP	
		No sig diff among quartiles of any PFC	
		for controls	
		101 001111010	
		For PFOS, 4 th quart sig > 1 st quart. Sig	
		, , ,	
		for trend	
		Upper quartiles and trend also sig for	
		several other PFCs	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Eriksen et al. (2009)	Plasma samples at recruitment	Confounders investigated:	Plasma sample represent exposure ≤ 12 yrs prior to diagnosis. Potential for
Eriksen KT, Sørensen M, McLaughlin JK, Lipworth L,	PFOS and PFOA analysis by HPLC-MS	Prostate cancer Yrs school	exposure misclassification
Tjønneland A, Overvad K, Raaschou-Nielsen O.	LOQ (apparently for all PFCs) = 1 ng/ml	BMI Fat intake	PFOS exposure higher than US adult pop (~ 75 th percentile) (NHANES)
Perfluorooctanoate and perfluorooctanesulfonate plasma	Non-detects as LOQ/√2	Fruit and veg intake	Other comments:
levels and risk of cancer in the general Danish population.	Mean CV for PFOS (50 samples) = 1.8%	Bladder cancer Smoking (status, duration, intensity)	This is a high quality study with a
J Natl Cancer Inst. 2009 Apr 15;101(8):605-9. doi: 10.1093/jnci/djp041. Epub 2009 Apr	Population-Level Exposure:	Yrs of school Specific occupation exposures	reasonable n and relevant exposure levels. The potential for exposure misclassification due to temporal offset of
7.	PFOS (ng/ml) M F	Pancreatic cancer Smoking (status, duration, intensity)	sampling and diagnosis is the main caveat.
Study Design:	cases 35.1 32.1 controls 35.0 29.3	Fat intake Fruit and veg intake	
Prospective cohort enrolled 12/93- 5/97. Age 50-65 yrs. No prev cancer diagnosis	PFOA conc ≈ 20% of PFOS conc	<u>Liver cancer</u> Smoking (status, duration, intensity)	
Total cohort n = 57,051	PFOS correlated w PFOA, r = 0.7	Yrs of school Alcohol intake	
Nested case-control w/in cohort		Specific occupation exposures	
Questionnaire at enrollment		Quartiles of PFC exposure defined on basis of separate distributions for each	
Location:		cancer	
Denmark		Linear assoc of PFOS conc and each cancer by linear spline to yield	
Population:		incidence rate per 10 ng/ml ↑ in PFOS	
Danish cancer and pathology reg's used to identify spec cancers diagnosed 0-12 (median = 7) years) post-enrollment		Analysis for total pop and stratified by sex	

Prostate (n = 713)	Outcome:
Bladder (n = 332)	
Pancreatic (n = 128)	Incident rate ratio (IRR) for each
liver (n = 67)	cancer by PFOS (and PFOA) plasma
, , ,	conc
Control group 680 M, 92 F (~ ratio	
among cases) randomly selected from same cohort	Major Findings:
	No sig ↑ IRR for PFOS (or PFOA) for
	any cancer at any quartile. No sig
Related Studies:	trend for any cancer (crude or adj
= "	models)
Eriksen et al. (2013) (non-cancer)	
	No sig influence of sex
	<u>For prostate</u>
	quartile IRR 95% CI
	1 1.00 (ref.)
	2 1.35 0.97-1.87
	3 1.31 0.94-1.82
	4 1.38 0.99-1.93
	Given lack of trend authors suggest either a low threshold for (modest) ↑
	risk, or chance
	risk, or chance

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Clauy.		out moundai	
Eriksen et al. (2013)	PFOS	Generalized linear analysis	Study pop highly skewed to M (due to previous use of cohort as controls for
Eriksen KT, Raaschou-Nielsen O, McLaughlin JK, Lipworth L,	Plasma samples at recruitment	Linearity verified graphically by linear splines	cancer incidence study (Eriksen et al. (2009))
Tjønneland A, Overvad K, Sørensen M.	PFOS and PFOA analysis by HPLC-MS	PFOS (PFOA) as continuous variables	PFOS exposure > US adult pop (~75 th
Association between plasma PFOA and PFOS levels and total	LOQ (apparently for all PFCs) = 1 ng/ml	and as octiles (100 in ea).	percentile)
cholesterol in a middle-aged Danish population.	Non-detects as LOQ/√2	<u>Co-variates</u> Age	Unclear if regression for PFOS controlled for PFOA
PLoS One. 2013;8(2):e56969. doi:	Mean CV for PFOS (50 samples) =	Sex	
10.1371/journal.pone.0056969. Epub 2013 Feb 18.	1.8%	Yrs school BMI	Total cholesterol, not LDL measured
'	Cholesterol	Smoking	Although sig, overall effect of PFOS on
Study Design:		Alcohol	cholesterol is small
	Determination by reflectance	Phys activity (hrs/wk)	
Danish Diet, Cancer, and Health	photometer reading of test strips (range	Egg intake	Other comments:
study. Prospective cohort enrolled	100-500 mg/dL)	Animal fat intake	
12/93-5/97. Age 50-65 yrs. No prev			This is a generally well-conducted study
cancer diagnosis	Population-Level Exposure:	Outcome:	with a reasonable N. However, it is
Total cohort n = 57,053	N DECC 004 / 1		hampered somewhat by lack of clarity as
M 07.470	Mean PFOS = 36.1 ng/ml	Cholesterol	to possible contribution of PFOA to PFOS
M = 27,178	Mean PFOA = 7.1 ng/ml		assoc
F = 29,875	$M > F \text{ (mean } \Delta = 6.1 \text{ ng/ml)}$	Major Findings:	
Nested cross-sectional case-control w/in cohort		(fully adj model)	
		For total pop, ↑ PFOS sig → ↑	
Questionnaire at enrollment		cholesterol	
		Stratified by sex, assoc sig only for F	
Blood for PFOS and cholesterol		(and β ~ 3 x for M)	
samples taken at enrollment			
		Cholesterol ↑ ~ 4 mg/dL (1.7% of total	
Analysis of assoc bet PFOS (PFOA)		mean conc) for each interquartile	
and cholesterol levels		range of PFOS	

Location:	diabetes increased $\boldsymbol{\beta}$ for assoc PFOS w cholesterol	
Denmark	BMI had no effect on PFOS-	
Population:	cholesterol assoc	
Danish (middle-aged), native born		
Control pop from Eriksen et al. (2009).		
Excluded under medication for high cholesterol, and no cholesterol blood data		
N = 754 M = 663 F = 90		
Related Studies:		
Eriksen et al. (2009) (cancer)		

Peteronee and Study Decima	Evnocuro Mossuros	Results	Comment
Reference and Study Design	Exposure Measures	Stat Method:	
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei and Olsen (2011)	//Note: The following information is from	Logistic von union dishetements	Door not appear that DEOC applyings
Dranatal avacques to parfluorinated	((Note: The following information is from	Logistic reg using dichotomous	Does not appear that PFOS analyses
Prenatal exposure to perfluorinated	Fei (2007), which used the same	outcomes for "high" DSQ and "low"	were controlled for PFOA (However, high
chemicals and behavioral or	population and blood samples. The	DCDQ scores	corr. between PFOS and PFOA may
coordination problems at age 7	current publication provides less detail)	Also andinal linear regression for DCO	have precluded including both in same
years. Fei C, Olsen J.	Pleame PEOC (PEOA) sens by HPLC	Also ordinal linear regression for DSQ	model)
	Plasma PFOS (PFOA) conc by HPLC-	and DCDQ scores as categorical	Although the everall N was mad high the
Environ Health Perspect. 2011	MS	variables (3-6 categories depending on	Although the overall N was mod high, the
Apr;119(4):573-8. doi:	la stana dilution in autroption prope	spec subscales)	top j10% of (SDQ) and bottom (DCDQ)
10.1289/ehp.1002026. Epub 2010	Isotope dilution in extraction procs	DEOC places again guartiles	scores defining the high category for
Nov 9.	DEOC CV/ for between betch eniled	PFOS plasma conc in quartiles	dichotomous analysis had rel small n's
Study Decima	PFOS CV for between batch spiked controls = 2.5-2.8%	Detential confoundare investigated	for each subscore category (n = 15-36).
Study Design:	CONTIONS = 2.5-2.6%	Potential confounders investigated:	Thus, power may have been low
Assoc between pre-natal PFOS	Repeat sample correlation – r = 0.993	Parity Maternal age	No clear indication of accuracy of
exposure (maternal) and behavioral,	Repeat Sample Correlation – 1 = 0.993	Pre-preg BMI	parental scoring (no gold std applied to
social and motor dev. of children at 7	LOQ = 1.0 ng/ml	Preg smoking	assess reliability of scoring)
yrs	LOQ = 1.0 fig/fill	Preg alcohol	assess reliability of scoring)
yis	Sample < LOQ as LOQ/2	Maternal SES	
Danish National Birth Cohort.	Sample < LOQ as LOQ/2	Sex of child	Other comments:
Danish National Birth Conort.		Parental behavior problems score	Other comments.
Maternal PFOS exposure in plasma	Population-Level Exposure:	Breastfeeding	Study design was reasonable, but (see
Blood draw pre-preg	opulation-Level Exposure.	Birth yr	above) uncertainties in high/low n's and
Blood didw pro prog	Median PFOS = 34.4 ng/ml (IQR = 26.6	Household density	reliability of parental scoring.
Parental interview w questionnaires	-44.5)	Gestational age at blood draw	reliability of parofilal scorning.
when child was 7 yrs based on	(Median PFOA = 5.4 ng/ml	Gootalional ago at blood araw	
assessment in prev 6 mos	(Modian i Ort oring, iii	Co-variates retained in model if	
- Strength & Difficulties	PFOS-PFOA correlated - r _s = 0.70	changed PFOS estimates by ≥ 5%	
Questionnaire (SDQ)	11 00 11 07 0011010100 15 = 0.70		
- (behavioral problems)		Outcome:	
- Dev Coordination Disorder			
Questionnaire (DCDQ)		High DSQ scores (i.e., elevated	
(= 0 = 0.4)		behavioral difficulties scores)	
For SDQ, scores > highest 10%			
defined as high behavior score		Major Findings:	
		No sig or consistent assoc w PFOS	

For DCDQ, scores in < lowest 10%	Outcome:	
defined as potential dev coordination		
disorder	Low DCDQ scores (i.e., low dev	
Landin	coordination ability)	
Location:	Major Findings:	
Denmark	major Findings.	
Defilliark	No sig or consistent assoc w PFOS	
Population:	The dig of conditions access with co	
Danish Nat'l Birth Cohort		
91, 827 preg F from 3/96-11/02		
60% of Danish preg women		
Single live birth → no reported		
congenital malformation → 1st blood		
sample wks 4-14 → all interviews →		
1,400/43,045 randomly selected for		
follow-up study at 7 yrs (children) →		
n = 787 for SDQ and		
n = 537 for DCDQ		
Related Studies:		
Fei et al. (2007, 2008, 2009, 2010a, 2010b)		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei (2007) Perfluorinated chemicals and fetal	Plasma PFOS (PFOA) conc by HPLC-MS	Stat analyses based on 1st maternal blood sample	PFOS exposure > 75 th percentile US F >20 yrs old (NHANES 4 th Biomonit Rpt)
growth: a study within the Danish National Birth Cohort.	Isotope dilution in extraction procs	Multiple linear reg for continuous birth wt	Does not appear that PFOS models were adjusted for PFOA
Fei C, McLaughlin JK, Tarone RE, Olsen J. Environ Health Perspect. 2007	PFOS CV for between batch spiked controls = 2.5-2.8%	OR by logistic regression for low birth wt; small for gest age (SGA); and	Only 1 st trimester maternal blood sample used in stat analyses, but 2 nd trimester
Nov;115(11):1677-82.	Repeat sample correlation $-r = 0.993$	preterm birth	sample differed (\psi mean) analyses could have differed with the later exposure
Study Design:	LOQ = 1.0 ng/ml Sample < LOQ as LOQ/2	PFOS (PFOA) as continuous and categorical variables (< 25 th percentile as ref group)	metric Other comments:
Nested cross-sectional study (birth	Cample < LOQ as LOQ/2	as rei group)	Other comments.
outcomes w single 1st trimester blood sample)	Population-Level Exposure:	Log-transf and non-transf PFOS conc investigated in models	The study had thorough statistical analysis. However, the n was small and
Maternal preg assoc between PFOS (PFOA) and birth wt, length of gestation from Danish Nat'l birth	No overall mean PFOS reported Maternal mean for F = 35.3 ng/ml Maternal mean for M = 35.2 ng/ml	Co-variates investigated in models Maternal age Parity	the later of the two blood samples was not analyzed in the models
cohort	PFOs and PFOA correlated (r = 0.87)	SES Pre-preg BMI	
Interviews at ges. wks 12 and 30, and post natal mos. 6 and 18		Smoking during preg Infant sex Gest wk of blood drawing	
Food freq questionnaire at ges wk 25		Models also stratified by Parity, pre-	
Blood drawn 1st and 2nd trimester		preg BMI and pre-term/term/post-term birth	
Cord blood sample at birth		Outcome:	
Birth wt and gestational age from Danish Nat'l Hospital Discharge Reg.		Birth wt	
Location:			
Denmark			

Population:

Danish Nat'l Birth Cohort

91, 827 preg F from 3/96-11/02

60% of Danish preg women

Single live birth \rightarrow no reported congenital malformation \rightarrow 1st blood sample wks 4-14 \rightarrow all interviews \rightarrow 1,400/43,045 randomly selected \rightarrow 200/1,102 w 2nd blood sample randomly selected \rightarrow 50/146 w cord blood sample randomly selected (i.e., N = 50)

Related Studies:

Fei et al. (2008, 2009, 2010a, b; Fei and Olsen 2011)

Major Findings:

For continuous variable
No sig assoc of PFOS with birth wt

For OR for low birth wt (< 2,500 g)

- ORs for all quartiles elevated but –
- No quartile OR sig
- Trend not sig

For OR SGA (< 10th perc of corresponding gest age

- No elevated ORs for any quartile
- No sig ORs
- Trend not sig

Outcome:

Length of gestation

Major Findings:

For continuous var

No sig assoc of PFOS w length of gestation

For OR for pe-term birth

- ORs for all quartiles elevated but –
- Only OR for 3rd quart sig
- Trend not sig

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei et al. (2008)	((<u>Note</u> : The following information is from Fei (2007), which used the same	PFOS (PFOA) as continuous and categorical (quartile) variables (< 25 th	PFOS exposure > 75 th percentile US F >20 yrs old (NHANES 4 th Biomonit Rpt)
Fei C, McLaughlin JK, Tarone RE, Olsen J. Fetal growth indicators and perfluorinated chemicals: a study in the Danish National Birth Cohort. Am J Epidemiol. 2008 Jul	population and blood samples. The current publication provides less detail) Plasma PFOS (PFOA) conc by HPLC-MS	percentile as ref group) Investigated as log-transformed and unstransformed variables Placental wt, birth length, head	Does not appear that PFOS analysis were controlled for PFOA concentration Other comments:
1;168(1):66-72. doi: 10.1093/aje/kwn095. Epub 2008 May 5.	PFOS CV for between batch spiked controls = 2.5-2.8%	circum., abdominal circum., ponderal index (kg/m3) as continuous variables Coveriates investigated	Other than apparent failure to control for PFOA in PFOS analyses, this study was well designed and appropriately
Study Design: Nested cross-sectional study (birth	Repeat sample correlation – r = 0.993	Ges. age Infant sex Parity	analyzed with a large N
outcomes w single 1 st trimester blood sample)	LOQ = 1.0 ng/ml Sample < LOQ as LOQ/2	SES Pre-preg BMI Smoking in preg	
Maternal preg assoc between PFOS (PFOA) and birth wt, length of gestation from Danish Nat'l birth cohort	Plasma preparation not available for 12 samples. Sampled as whole blood and concentrations x 2 to estimate plasma conc.	Ges wk of blood draw Alcohol Diet (fish, protein, fat, carbohydrates, energy) Maternal preg wt gain	
Interviews at ges. wks 12 and 30, and post natal mos. 6 and 18	Population-Level Exposure:	Maternal hypertension Maternal diabetes Mode of delivery	
Food freq questionnaire at ges wk 25	Mean PFOS = 35.3 ng/ml	Co-variates retained in model if	
Blood drawn ges wk 4-14 (median = 8 wks)	Mean PFOA = 5.6 ng/ml	changed parameter (presumably PFOS, PFOA) by ≥ 5%	
Birth wt and gestational age from Danish Nat'l Hospital Discharge Reg.		Gest age at birth as linear and quadratic term	
Location:		PFOS-PFOA interaction terms with outcome variables investigated and	
Denmark		Taliables investigated and	

Population:

Danish Nat'l Birth Cohort

91, 827 preg F from 3/96-11/02

60% of Danish preg women

Single live birth \rightarrow no reported congenital malformation \rightarrow 1st blood sample wks 4-14 \rightarrow all interviews \rightarrow 1,400/43,045 randomly selected

Related Studies:

Fei et al. (2007, 2009, 2010a, b, 2011)

Outcome:

(Results for adj models unless indicated)

Placental wt

Major Findings:

For categorical analysis Inconsistent β across quartiles no quartile sig

For continuous analysis Neg β No sig assoc w PFOS

Outcome:

Birth wt

Major Findings:

For categorical analysis Inconsistent β across quartiles no quartile sig

For continuous analysis Neg β No sig assoc w PFOS

Outcome:

Head circum

Major Findings:
Major Findings: For categorical analysis Inconsistent β across quartiles no quartile sig For continuous analysis Neg β No sig assoc w PFOS Outcome: Abdominal circum
Major Findings: For categorical analysis Inconsistent β across quartiles no quartile sig For continuous analysis Neg β Sig in for crude β (unadjusted model) In adjust model, no sig assoc w PFOS

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
otudy.	Exposure Assessment.	Old Melliou.	major Emitations.
Fei et al (2009)	((Note: Parts of the following	PFOS (PFOA) as continuous and	Stat analyses for PFOS do not appear to
,	information are from Fei et al. (2007),	categorical (quartile) variables (< 25 th	have controlled for PFOA
Fei C, McLaughlin JK, Lipworth L,	which used the same population and	percentile as ref group)	
Olsen J.	blood samples. The current		Cohort included "partly planned"
Maternal levels of perfluorinated	publication provides less detail)	OR for infertility by logistic regression	pregnancies. This results in uncertainty
chemicals and subfecundity.	DI DEGG (DEGA) 1 1 DI G	for elevated PFOS compared to lowest	in determination of TTP
Hum Reprod. 2009 May;24(5):1200-	Plasma PFOS (PFOA) conc by HPLC-	quartile	DEOC symposium : 75th negrountile LIC E
5. doi: 10.1093/humrep/den490. Epub 2009 Jan 28.	MS	Fecundity OR (FOR) by Cox model	PFOS exposure > 75 th percentile US F >20 yrs old (NHANES 4 th Biomonit Rpt)
2009 Jan 26.	Isotope dilution in extraction procs	modify for discrete time data (FOR =	>20 yrs old (INFIANES 4" BIOTHORIK KPL)
	isotope dilution in extraction procs	odds of successful conception at a	No data available on sperm quality. If
Study Design:	PFOS CV for between batch spiked	given PFOS quartile) in a given month	PFOS reduces sperm quality, the
Nested case-control study (birth	controls = 2.5-2.8%	given non-conception in prev month	paternal effect could confound the
outcomes w single 1st trimester blood			assessment of maternal fertility
sample)	Repeat sample correlation – r = 0.993	Potential confounders investigated:	
		Maternal age at delivery	Because only eventual pregnancies
Maternal preg assoc between PFOS	LOQ = 1.0 ng/ml	Parity	included, unsuccessful at > 12 mos not
(PFOA) and birth wt, length of		Pre-preg BMI	included. If PFOS decreased fertility
gestation from Danish Nat'l birth cohort	Population-Level Exposure:	History of miscarriage Abdominal disease	overall, this would result in underestimating effect of PFOS on
COTOIT	Population-Level Exposure.	Maternal SES	fertility
Interviews at ges. wks 12 and 30, and	All PFOS samples > LOQ	Pre-preg alcohol	Torunty
post natal mos. 6 and 18	/ II. 1 00 00 III.	Paternal age	Potential for reverse causality because
'	Median PFOS = 33.7 ng/ml (IQR =	Paternal occupation	longer TTP would result in longer time
Time-to-pregnancy (TTP)	26.6-43.5 ng/ml)	Ges wk at blood draw	for PFOS accum \rightarrow assoc of \uparrow TTP w \uparrow
determination based self-reporting in	(Median PFOA = 5.3 (IQR = 4.0-7.0		PFOS
1 st interview	ng/ml)	Outcome:	
Food freq questionnaire at ges wk 25		Assoc. of PFOS w TTP	Other comments:
1 ood fred questionflatie at ges wk 25		ASSOC. OFFI OS WITT	Other comments.
Blood drawn ges wk 4-14 (median = 8		Major Findings:	Except for the apparent failure to control
wks)			PFOA concentrations in the PFOS
		Compared to TTP < 6 mos (n = 861),	analyses, the study appears to have
Birth wt and gestational age from		TTP 6-12 mos (n = 191), or ≥ 12 mos	adequately addressed issues of
Danish Nat'l Hospital Discharge Reg.		(n = 188) had sig ↑ PFOS conc (also	confounding The overall N is reasonably
		PFOA)	large although the n's for > 6 mos TTP are relatively small. Uncertainites about
			are relatively small. Uncertainlies about

Location:	Outcome:	"partially" planned pregnancies increase uncertainty about accurate TTP values.
Denmark	Infertility (TTP > 12 mos)	•
Population:	Major Findings:	
Danish Nat'l Birth Cohort	OR for infertility in 2 nd , 3 rd or 4 th quart of PFOS sig > 1.0 (1.7 2.34, 1.77	
91, 827 preg F from 3/96-11/02	respectively) compared to 1st (ref) quart	
60% of Danish preg women	p-trend sig (p = 0.025)	
Single live birth → no reported congenital malformation → 1st blood	Odds of infertility ↑ 70-134% in 2 nd , 3 rd and 4 th quarts	
sample wks 4-14 → all interviews →	·	
1,400/43,045 randomly selected → 160 unplanned pregnancies or	Similar odds for PFOA	
unknown time-to-pregnancy excluded → N = 1240	Outcome:	
	Fecundity	
30% of TTP ≥ 6 mos 15% of TTP ≥ 12 mos	Major Findings:	
Only eventual preg (i.e., at > 12 mos)	FOR for PFOS sig < 1.0 for 2 nd , 3 rd ,	
included. Non-pregnancy at > 12	and 4th quarts (compared to 1st)	
mos, not included	p-trend sig (p = 0.002)	
Av. age = 30.6 yrs		
Location:		
Denmark		
Related Studies:		
Fei et al. (2007, 2008, 2010a, b; Fei and Olsen, 2011)		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei et al. (2010a) Fei C, McLaughlin JK, Lipworth L, Olsen J. Maternal concentrations of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) and duration of breastfeeding. Scand J Work Environ Health. 2010 Sep;36(5):413-21. Epub 2010 Mar 3. Study Design:	((Note: The following information is from Fei (2007), which used the same population and blood samples. The current publication provides less detail) Plasma PFOS (PFOA) conc by HPLC-MS Isotope dilution in extraction procs PFOS CV for between batch spiked controls = 2.5-2.8%	Cox proportional hazard analysis to est hazard ratio (HR) of early weaning and termination of exclusive breastfeeding over time Logistic reg w categorical analysis w cutpoints of 3 and 6 mos Stratification by parity Confounders investigated Maternal age at delivery Parity	PFOS exposure > 75th percentile US F >20 yrs old (NHANES 4th Biomonit Rpt) For primaparoous (1st child) women, PFOS may be causal for reduced duration of breastfeeding, However, for multiparous women, plasma PFOS conc is reduced by previous breastfeeding. Therefore, higher PFOS concs may reflect shorter duration of breastfeeding w previous children and shorter duration of breastfeeding w previous children is likely to be correlated w duration of
Cross-sectional study nested in Danish National Birth Cohort Assoc of uration of <i>exclusive</i> breast feeding (i.e., no other nutrition source) w maternal PFOS plasma conc Single 1st trimester blood sample	Repeat sample correlation – r = 0.993 LOQ = 1.0 ng/ml Sample < LOQ as LOQ/2 Population-Level Exposure: No PFOS samples < LOQ	Pre-preg BMI Maternal SES Alcohol consumption Smoking Gest age at blood draw Outcome: Weaning at < 3 mos	breastfeeding w subsequent children. Thus, causality of PFOS and shorter duration of breastfeeding in multiparous women is suspect. There were no data on non-biological factors that potentially could explain duration of breastfeeding (e.g. social, convenience-based choice).
Info on infant breast feeding collected at 6 and 18 mo. Interviews (If conflict between reported termination of exclusive breastfeeding and date of first formula by > 2 wks (n = 50), date of first formula used) Location: Denmark	PFOS plasma conc 37. 0 - 32.3 ng/ml (conc ↓ with duration of breastfeeding - < 3 - ≥ 6 mos)	Major Findigns For women w first child, OR for each 10 ng/ml PFOS not sig For multiparous women, sig OR for each 10 ng/ml PFOS = 1.25 (PFOA also sig)` Outcome: Weaning at < 6 mos	Other comments: Large N. The study could not adequately control directly for non-biological factors that could potentially influence duration of breastfeeding.

Population:	Major Findings:
Danish Nat'l Birth Cohort 91, 827 preg F from 3/96-11/02 60% of Danish preg women Single live birth → no reported congenital malformation → 1st blood sample wks 4-14 → all interviews → 1,400/43,045 randomly selected Related Studies:	For women w first child, sig OR for ea. 10 ng/ml PFOS = 1.20 For multiparous women, sig OR for ea 10 ng/ml PFOS = 1.20 (PFOA also sig) Outcome: Duration of any breastfeeding
Fei et al. (2007, 2008, 2009, 2010b; Fei and Olsen, 2011)	Major Findings:
	For women w first child, HR not sig
	For multiparous women, sig HR for three highest quart (1st quart as ref) of PFOS (1.42-1.55) and sig for trend

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei et al. (2010b) Fei C, McLaughlin JK, Lipworth L,	((Note: Parts of the following information are from Fei et al. (2007), which used the same population and	Incident rate ratio (IRR) based on Poisson distribution	PFOS exposure > 75th percentile US F >20 yrs old (NHANES 4th Biomonit Rpt)
Olsen J. Prenatal exposure to PFOA and PFOS and risk of hospitalization for	blood samples. The current publication provides less detail)	Covariates considered: Maternal age at delivery Parity	Does not appear that PFOS analyses were controlled for PFOA.
infectious diseases in early childhood. Environ Res. 2010 Nov;110(8):773-7.	Plasma PFOS (PFOA) conc by HPLC-MS	Pre-preg BMI Alcohol consumption during preg	Other comments:
doi: 10.1016/j.envres.2010.08.004. Epub 2010 Aug 30.	Isotope dilution in extraction procs	Smoking during preg Maternal SES Birth season	The study is based on a large N. Outcome data are well defined and records are reliable and not subject to
Study Design: Longitudinal cohort study	PFOS CV for between batch spiked controls = 2.5-2.8%	Birth yr House density Number children in household	recall limiations Although no clear assoc is apparent,
Assoc. of maternal PFOS with early	Repeat sample correlation – r = 0.993	Age diff w youngest sibling Child's gender	some weak assoc's are difficult to interpret.
childhood hospitalization for infectious disease over 11 yrs following birth	LOQ = 1.0 ng/ml Population-Level Exposure:	Duration of breastfeeding Ges age at blood draw	
Av age at end of follow-up = 8.2 yrs (range = 5.8-10.7 yrs)	Mean PFOS = 35.3 ng/ml	Effect modification investigated by: Gender Child's age at infection	
Hospitalizations data from Danish Nat'l Hospital Registry		parity	
Total hospitalizations (incl multiple hospitalizations per child)		Outcome: IRR for hospitalization for infection	
11,350 person/yr of follow-up		Major Findings:	
Location:		No sig assoc for total cohort	
Denmark		For total 0-1 yr, sig ↓ IRR at highest PFOS quart (marginally sig for neg trend)	

Population:	For girls, sig ↑ IRR for 3 rd (1.61) and 4 th (1.59) quart PFOS, sig for trend (IRR =
Danish Nat'l Birth Cohort	1.18)
91, 827 preg F from 3/96-11/02	(Also for PFOA)
60% of Danish preg women Single live birth → no reported	For boys, IRRs for all quart's neg (sig
congenital malformation → 1st blood	only for 3 rd quart (IRR = 0.77)
sample wks 4-14 → all interviews →	
1,400/43,045 randomly selected N = 1,400	For primiparous, IRR ↑ w ↑ PFOS, but not sig at any quart or for trend
14 = 1,400	Hot sig at any quart of for trend
363 (25.9%) hospitalized ≥ one time	
for infectious disease	
577 total hospitalizations for	
infectious disease	
Related Studies:	
Neiated Studies.	
Fei et al. (2007, 2008,. 2009, 2010a;	
Fei and Olsen, 2011)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fei (2012)	See Fei et al (2009)	Findings of delye TTP in Fei et al. (20090 was criticized as possibly	Other comments:
Epidemiology. 2012 Mar;23(2):264-6. doi: 10.1097/EDE.0b013e3182467608.	Population-Level Exposure:	reflecting reverse causation - longer TTP provides longer time for PFOS exposure leading to assoc of ↑ PFOS	See Fei et al. (2009)
Commentary: perfluorinated chemicals and time to pregnancy: a link based on reverse causation? Fei C, Weinberg CR, Olsen J.		and ↑ TTP. Concept is plausible for parous women since pregnancy and nursing reduce PFOS body burden, thus allowing PFOS levels to increase	Reasonable n for nulliparous and parous sub-pop's.
Study Design:		post-natally. However, as nulliparous women are presumed to be at steady-state, early preg blood samples should	
Re-investigation of Danish Nat'l Birth Cohort data on time-to-pregnancy (TTP) examined in Frei et al. (2009). In response to concerns about		reflect a preg-related change in PFOS regardless of TTP.	
reverse causation. Analysis of TTP stratified on the basis of parity (nulliparous vs parous) women.		Outcome: OR for TTP	
See Fei et al (2009)		Major Findings:	
Location:		Nullparous OR (compared to 1st quart) sig for 3rd	
See Fei et al (2009)		quart (2.50) and borderline sig for 4 th quart (2.14 (95% CI = 1.0-4.60)	
Population: Nulliparous preg women (n = 558)		Sig for trend (p = 0.036)	
Parous preg women (n = 683)		Parous OR (compared to 1st quart) sig for 2nd	
See Fei et al (2009)		and 3 rd quart, but not 4 th quart. Not sig for trend	
Related Studies:		Outcome:	
Fei et al. (2009)		OR for Fecundity (see Fei et al. (2009)	

Major Findings:
Nulliparous OR (compared to 1st quart) sig (i.e., < 1.0) for 2nd-4th quart Sig fro trend (p = 0.006)
Parous OR (compared to 1st quart) sig for 2nd- 4th quart Not sig for trend

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fisher et al. (2013)	Fasted requested prior to blood samples	Analyses presented as weighted and unweighted relative to sampling	Does not appear that PFOS analyses were controlled for PFOA or PFHxS
Fisher M, Arbuckle TE, Wade M,	Sampres .	strategy in the original cohort	
Haines DA.	PFOS measured in plasma		Participants on cholesterol controlling
Do perfluoroalkyl substances affect		Multiple linear reg to est assoc	drugs excluded. This may eliminate
metabolic function and plasma lipids?Analysis of the 2007-2009,	PFOS by MS (apparently no HPLC)	between log transf continuous outcomes and PFOS	those w ↑ cholesterol resulting from ↑ PFOS
Canadian Health Measures Survey	LOD = 0.3 ng/ml		
(CHMS) Cycle 1.		Potential co-variates considered:	Interpretation of weighted vs. unweighted
Environ Res. 2013 Feb;121:95-103.	Samples < LOD = ½ LOD	- Age - Gender	analysis is unclear.
doi: 10.1016/j.envres.2012.11.006. Epub 2012 Dec 22. Erratum in:	Population-Level Exposure:	- Gender - Marital status	Other comments:
Environ Res. 2013 Oct;126:221.	Population-Level Exposure.	- Income adequacy	Other comments.
2111110111100. 2010 301,120.221.	PFOS geom mean = 8.40 ng/ml	- Race	Large N. Reasonable statistical analysis
Study Design:		- Education	(controlling) strategy. Rel modest PFOS
	PFOS consistent w US exposure for ≥	- BMI	exposure reducing power
Nested Cross-sectional	20 yrs old (NHANES 4th Rpt)	- Smoking	
A	(DEOA ====================================	- Alcohol	
Assoc of PFOS (PFOA, PFHxS) and metabolic function, plasma lipid levels	(PFOA geom mean = 2.46 ng/ml)	Co-variates included if sig in bivariate	
metabolic function, plasma lipid levels	PFOS-PFOA correlated, r = 0.36	model w either outcome or exposure at	
Measured	11.0011.071.00110.00.00,1	$\alpha = 0.1$ and in > 1 multivariate mode, α	
Trigylcerides		= 0.05	
Glucose			
HDL			
LDL		Multiple logistic regression for	
Total cholesterol Insulin		dichotomous outcomes	
Irisuiiri		Mandatory co-variates	
Insulin samples < LOD (72/1325)		- Age	
discarded		- Sex	
HDL and total cholesterol on all		Co-variates initially added with p <	
samples		0.15 and retained w ∆ OR ≥ 10%	
LDL glucose, insulin and triglycerides			
on fasted samples only			

Homoeostasis Model Assessment – Insulin Resistance (HOMA-IR) calc as function of glucose and insulin levels (formula not provided)

Metabolic syndrome – occurrence of 3/5 of following:

- Elevated abdominal waist circum
- Elevated triglycerides
- Reduced HDL-cholesterol
- Elevated systole BP
- Elevated fasting glucose

Location:

Canada

Population:

Canadian Health Measures Survey

Designed to provide nationally rep sample of health conditions w ≥ 10% prevalence in Canadians 6-79 yrs old

Self-reported questionnaire and mobile exam clinic

69.6% household response

Current study incl non-preg 18-74 yrs old (M & F)

N = 2,700 (for clinical outcomes)

Outcome:

HDL

Major Findings:

Adj model

PFOS not sig assoc w HDL in unweighted or weighted model

Outcome:

Total cholesterol (TC)

Major Findings:

Adj Model

PFOS **sig** assoc (pos) for TC in unweighted model, but **not in weighted model**

Outcome:

TC/HDL

Major Findings:

Adj Model

PFOS **sig** assoc w TC/HDL (pos) in unweighted model, but **not in weighted model**

Outcome:

LDL

Cholesterol lower med use excluded	Major	Findings:	
for cholesterol and metabolic		-	
syndrome determinations	Adj mo	odel	
N = 2366	<u> </u>	<u> </u>	
14 = 2500	DEOC	not air acces wil Di in aither	
Delete I Otto Per	PFUS	not sig assoc w LDL in either	
Related Studies:	weigh	ted or unweighted models	
	Outco	ome:	
	Non-H	lDL .	
	Major	Findings:	
		•	
	Adj Mo	odel	
		<u> </u>	
	PEOS	sig assoc w non-HDL (pos) in	
	unwoi	ghted model, but not in	
	weign	nted model	
	Outon		
	Outco	ome:	
	70.1	(TDIO)	
	ı rigiye	cerides (TRIG)	
	Major	Findings:	
	Adj me	<u>odel</u>	
		not sig assoc w TRIG in either	
	weigh	ted or unweighted models	
		-	
	Outco	ome:	
	Insulir	ı	
	modili.	•	

Major Findings:
Adj model
PFOS not sig assoc w insulin in either weighted or unweighted models
Outcome:
Glucose
Major Findings:
Adj model
PFOS not sig assoc w glucose in either weighted or unweighted models
Outcome:
HOMA-IR
Major Findings:
PFOS not sig assoc w HOMA-IR in either weighted or unweighted models
Outcome:
Metabolic syndrome (Y/N)
Major Findings:
Adj model
PFOS not sig assoc w metabolic syndrome in either weighted or unweighted models

Outcome:
High cholesterol (Y/N)
Major Findings:
Adj model
PFOS not sig assoc w high cholesterol in either weighted or unweighted models
Outcome:
High cholesterol by quartile PFOS exposure
Major Findings:
Adj model
Unweighted analysis - PFOS not sig assoc w high cholesterol for any quart of exposure (although borderline for 4 th quart), but sig for trend
Weighted analysis – PFOS not sig assoc w high cholesterol for any quart and not sig for trend

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Fitz-Simon et al. (2013)	Baseline sample analyzed by protein precip, reverse-phase HPLC-MS	Linear regression models For log ratio (follow-up/baseline) PFOS	Small N
Fitz-Simon N, Fletcher T, Luster MI, Steenland K, Calafat AM, Kato K,	Follow-up sample analyzed by solid-	conc	Inability to see change if initial effect of PFOS is irreversible
Armstrong B.	phase extraction, reverse-phase	Model structure eliminates co-variates	
Reductions in serum lipids with a 4-year decline in serum	HPLC, isotope dilution MS	that are constant between baseline and follow up	Other comments:
perfluorooctanoic acid and perfluorooctanesulfonic acid.	(NOTE: authors claim that both methods are essentially equivalent)	Models adj for	Longitudinal study
Epidemiology. 2013 Jul;24(4):569-76. doi: 10.1097/EDE.0b013e31829443ee.	Population-Level Exposure:	- age at baseline - fasting status - time between measurements	Statistical analysis mechanism eliminates most issues of confounding
Erratum in: Epidemiology. 2013 Nov;24(6):941.	Geom mean PFOS conc – baseline = 18.5 ng/ml	- time between measurements - baseline BMI (in sens analysis)	
Study Design:	Follow-up = 8.2 ng/ml	Analyses included joint PFOS, PFOA	
		Outcome:	
Longitudinal design		Percent ∆ in LDL cholesterol for 50%	
Baseline PFOS, serum lipids at initial survey (2005/6)		decrease in PFOS	
Follow up PFOS, serum lipids (2010)		Major Findings:	
Mean interval between surveys = 4.4 yr		Sig (4.6-5.0%) decrease in LDL cholesterol for 50% ↓ in serum PFOS (Also sig when PFOA incl in model)	
Fasting status on blood draw		Outcome:	
recorded (but not required) Lipids measured enzymatically		Percent ∆ in total cholesterol for 50% decrease in PFOS	
- total cholesterol - HDL cholesterol		Major Findings:	
- triglycerides		Sig (2.8-3.2%) decrease in Total	
LDL cholesterol by Friedwald equation for triglycerides < 400 mg/dL		cholesterol for 50% ↓ in serum PFOS (Also sig when PFOA incl in model)	

Serum creatinine measured. Used to calculate glomerular filtration rate Follow-up exclusions: - Lipid lowering drugs at baseline or follow-up - Exclusion for LDL when triglycerides > 400 mg/dL Location: OH, WV	Outcome: Percent Δ in HDL cholesterol for 50% decrease in PFOS Major Findings: Δ HDL cholesterol not sig assoc w 50% change in PFOS Outcome: Percent Δ in triglycerides for 50% decrease in PFOS	
Population: C8 study cohort N = 560 (for total cholesterol, HDL cholesterol, triglycerides) N = 521 (for LDL cholesterol) F = 54% Related Studies:	Major Findings: Δ triglycerides cholesterol not sig assoc w 50% change in PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Frisbee et al. (2010) Frisbee SJ, Shankar A, Knox SS, Steenland K, Savitz DA, Fletcher T, Ducatman AM. Perfluorooctanoic acid, perfluorooctanesulfonate, and serum lipids in children and adolescents: results from the C8 Health Project. Arch Pediatr Adolesc Med. 2010 Sep;164(9):860-9. doi: 10.1001/archpediatrics.2010.163. Study Design: Cross-sectional community-based Participants in C8 study provided blood sample on enrollment (2005-2006) Time of last meal recorded Total cholesterol LDL cholesterol HDL cholesterol HDL cholesterol Triglycerides Lipid analysis in clinical laboratory (LabCorp) Location: W. Va and OH potentially exposed to PFC from DuPont Washington Works facility from public drinking water supplies	Protein precip extraction, reverse phase HPLC-triple-quadrupole MS LOD not reported Population-Level Exposure: Mean PFOS = 22.7 (+/-12.6) ng/ml (mean PFOA = 69.2 (111.9) ng/ml	Co-variates (all considered in all models) - Age - Gender - BMI (z-score) - Fasting time (min) - Exercise (Y/N) Quantiles (where employed) age and gender-specific Multiple linear regression for lipids as continuous variables Logistic regression for odds of abnormal lipid levels (in children) - Total C -≥ 170 mg/dL - LDL-C ≥ 110 mg/dL - Triglycerides ≥ 150 mg/dL Outcome: Total-C Major Findings: Continuous linear regression (adj model) Sig pos assoc w PFOS (and PFOA) Analysis of est. marginal mean (EMM) across quintiles of PFOS (adj model) ↑ Trend sig for M, F and both for 1-11.9 yrs And 12-17 yrs	Cross-sectional study Mean PFOS conc >95 th percentile of 12-19 yr olds from NHANES 4 th biomonitoring rpt Mean PFOA conc >>95 th percentile of 12-19 yrs old from NHANES 4 th biomonitoring rpt Other comments: The N of this study is large and statistical controls are reasonable. Although the study is cross-sectional exposure was consistent of the course of years.

Population:

Children 1-17.9 yrs old in C8 Health Study

N = 3,857 1-11.9 yrs

M = 1,971

F = 1.886

N = 5,293 12-17.9 yrs

M = 2,773

F = 2,520

~40% overweight/obese (BMI > 85th percentile

Related Studies:

Geiger et al. (2014)

OR for risk of abnormal level

Sig OR > 1.0 for 2nd-5th quintile (1st as ref)

Outcome:

LDL-C

Major Findings:

Continuous linear regression (adj model)

Sig pos assoc w PFOS (and PFOA)

Analysis of est. marginal mean (EMM) across quintiles of PFOS (adj model)

 \uparrow Trend sig for M, F and both for 1-11.9 yrs

And 12-17 yrs

OR for risk of abnormal level

Sig OR > 1.0 for 4th and 5th qunit (1st as ref)

Outcome:

HDL-C

Major Findings:

HDL-C pos assoc w PFOS (sig?)

Analysis of est. marginal mean (EMM) across quintiles of PFOS (adj model)
↑ Trend sig for M, and both for 12-17 yrs Marginally sig for F (p = 0.06)
↑ Trend sig for M and both (but not F) for 1-11.9 yr
OR for risk of abnormal level Sig OR < 1.0 for 4 th and 5 th quint (1 st as ref)
Outcome:
Triglycerides (fasting)
Major Findings:
Continuous linear regression (adj model) Not sig assoc w PFOS
Analysis of est. marginal mean (EMM) across quintiles of PFOS (adj model) ↓ trend sig for F only
OR for risk of abnormal level OR not sig for any quintile
Outcome:
Interaction of PFOS and PFOA
Major findings:
No sig interaction of PFOS and PFOA for any blood lipid outcome

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Method:	Major Elimitations.
Fu et al. (2014)	Solvent extraction (MTBE)	Linear regression analysis of In-	Very low PFOS exposure
	HPLC-triple quadrupole MS	transformed: TC, TG, HDL-C and LDL-C	Total transfer of the state of
Fu Y, Wang T, Fu Q, Wang P, Lu Y.		(as quartiles)	Modest N
Associations between serum	LOQ?		
concentrations of perfluoroalkyl acids		Also logistic regression for OR for	Large age range (unclear whether
and serum lipid levels in a Chinese	Population-Level Exposure:	abnormal lipids (Guidelines on Prevention	introduction of age co-variate into
population.	DECO	and Treatment of Blood Lipid Abnormality	models is sufficient to address the
Ecotoxicol Environ Saf. 2014	PFOS mean conc = 1.68 ng/ml (sd = 1.20 ng/ml)	in Chinese Adults (Zhao, 2008)	age range of 0-88 yrs)
Aug;106:246-52. doi: 10.1016/j.ecoenv.2014.04.039. Epub	1.20 fig/fill) 4 th quart mean = 3.12 ng/ml	Models (linear and logistic) controlled for	Small suite of co-variates employed
2014 May 23.	4 quait mean = 5.12 ng/mi	age, gender, BMI)	(e.g., smoking not considered)
2011 May 20.	(NOTE: exposure is only 18% of	ago, gondon, zwny	(o.g., omoking not concluding)
Study Design:	current overall US geom mean	Outcome:	Other comments:
	(NHANES 4 th Rpt))		
Cross-sectional		TC	Little power to detect results
T		Marian Eta Pana	
Total cholesterol (TC)		Major Findings:	Minimal statistical analysis
Triglycerides (TG) HDL-C, LDL-C		(adj models)	
Measured		Change in TC per quartile PFOS not sig	
Weddaled		onango in ropor quarmo rroo nereig	
Location:		OR for abnormal TC not sig >1.0 for any	
		quartile	
Yuangyang, China			
		Outcome:	
Population:		TO	
Recruited randomly from patients at		TG	
local hospital		Major Findings:	
lood. Hoopital		(adj models)	
Age range – 0-88 yrs		, , , , , , , , , , , , , , , , , , , ,	
Mean = 34 yrs		Change in TG per quartile PFOS not sig	
N (for PFOS) = 133		OR for abnormal TG not sig >1.0 for any	
Related Studies:		quartile	
Neialeu Sluules.			

Outcome:
HDL-C
Major Findings: adj models)
Change in HDL-C per quartile PFOS not
OR for abnormal HDL-C not sig >1.0 for any quartile
Outcome:
.DL-C
Major Findings: adj models)
Change in LDL-C per quartile PFOS not
DR for abnormal LDL-C not sig >1.0 for any quartile

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Gallo et al. (2012) Gallo V, Leonardi G, Genser B,	Automated solid-phase extraction, reverse-phase HPLC-MS.	Ln transformation of all outcome measures of linear regression	PFOS outcomes were not controlled for PFOA conc, which was much higher than US average (NHANES 4th
Lopez-Espinosa MJ, Frisbee SJ, Karlsson L, Ducatman AM, Fletcher	Intra-laboratory CV for PFOS = 0.1	Potential confounders: Age	Rpt)
T. Serum perfluorooctanoate (PFOA)	LOD = 0.5 ng/ml	Physical activity BMI (underweight, normal, overweight,	Cross-sectional, but long-term exposure of pop.
and perfluorooctane sulfonate (PFOS) concentrations and liver	Non-detect (PFOS n = 230) = LOD/2	obese) Household income	Other comments:
function biomarkers in a population	Population-Level Exposure:	Educational level	Canel Comments.
with elevated PFOA exposure. Environ Health Perspect. 2012	PFOS median	Race Alcohol	Study is straightforward in design. Very large N.
May;120(5):655-60. doi: 10.1289/ehp.1104436. Epub 2012	- All - 20.3 ng/ml (IQR = 13.7- 29.4 ng/ml)	Smoking	Although cross-sectional exposure can reasonably be assumed to have
Jan 3	- F - 17.4 (IQR = 1.6-25.5) - M - 23.5 (IQR = 16.8-32.6)	HOMA-IR investigated as co-variate	been constant for decades
Study Design:	Levels consistent w National background (NHANES 4 th Rpt)	Logistic regression models for dichotomous assoc of PFOS w abnormal levels of outcome variables	
C8 Study cohort		Outcome:	
Blood samples (at collection of questionnaire data)		Ln ALT (fully adj model)	
Measured markers of liver function AIT (alanine aminotransferase)		Major Findings:	
GGT (Gamma-glutamyl transpeptidase)		<u>Linear regression</u>	
Direct bilirubin		PFOS stat sig assoc w ↑	
Measured in commercial clinical lab (LabCorp)		<u>Logistic regression</u>	
Homeostasis model assessment of insulin resistanace (HOMA-IR) as measure of insulin resistanace Calculated as:		OR for abnormal ALT stat sig > 1.0 for deciles > 5 th Sig for ↑ trend	

(Basal glucose x insulin level)/2.25 Outcome: Location: Ln GGT (fully adj model) Mid-Ohio valley, WV. **Major Findings:** Population: Linear regression C8 Study cohort PFOS not sig assoc Exposed to PFC contaminated Logistic regression drinking water for ≥ 1yr (prior to 2005-2006) OR for abnormal GGT not sig for any decile 69,030 total cohort → adults ≥ 18 yrs Outcome: old → **46,452** w complete co-variate information Ln direct bilirubin (fully adj model) F - n = 24,171**Major Findings:** M - n = 22,281Linear regression **Related Studies:** PFOS sig assoc w ↑ Frisbee et al. (2010) Logistic regression OR for abnormal direct bilirubin not sig for any decile Sig for ↑ trend

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Gallo et al. (2013) Gallo V, Leonardi G, Brayne C, Armstrong B, Fletcher T.	Solid-phase extraction, reverse-phase HPLC PFOS LOD = 0.5 ng/ml	Logistic regression Co-variates: - age (1 yr bands)	Self-reported categorical assessment of memory loss Other comments:
Serum perfluoroalkyl acids concentrations and memory impairment in a large cross-sectional	< LOD = LOD/2 (n = 101, 0.5%) Population-Level Exposure:	- race - gender - education	Cross-sectional study
study. BMJ Open. 2013 Jun 20;3(6). pii: e002414. doi: 10.1136/bmjopen- 2012-002414.	Median PFOS conc ≈ 24 ng/ml (mean not given, median est as average of 3 rd quintile range)	incomephysical activityalcoholsmoking	Length of exposure not controlled for in analyses Self-reported outcome status
Study Design:	(NOTE: median is ~ 2.4 x current US > 20 yr old conc (NHANES 4 th Rpt)	- BMI - diabetes	Unclear respondents used a consistent and objective scale of
Cross-sectional		PFOS as continuous variable – assoc based on doubling PFOS conc	memory loss
Exclusions for missing co-variate data Self-identified categorical short-term memory loss: "frequent," "sometimes," "rarely," "never" Analyses based on comparison of frequent/ sometimes vs. rarely/never Location: OH, WV Population: C8 study population		PFOS as quintiles Ordinal regression (outcome as 4 levels of memory loss) Sensitivity analyses: - ≥ 65 yrs old (n = 7,097) - full sample w outcome as any memory loss - geographic clustering of water districts	Large N
≥ 50 yrs old			
N = 21,024			

Related Studies:	Outcome:
Related Otdales.	Assoc memory loss w serum PFOS
	Major Findings:
	OR for memory loss not sig > 1.0 for any quintile PFOS Trend for continuous PFOS conc sig neg assoc w memory loss
	Memory loss not sig pos assoc w PFOS for any sensitivity analysis

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Geiger et al. (2013) Geiger SD, Xiao J, Shankar A. Positive association between perfluoroalkyl chemicals and	PFOS analysis by Nat'l Center Env. Health as part of NHANES analysis Automated solid-phase extraction, isotope dilution HPLC-MS	Ln-PFOS as continuous and categorical variable Co-variates in model Age	Cross-sectional PFOS analyses not controlled for PFOA (and other PFC) exposures
hyperuricemia in children. Am J Epidemiol. 2013 Jun 1;177(11):1255-62. doi: 10.1093/aje/kws392. Epub 2013 Apr 3.	LOD for PFOS 0.4 ng/ml (2003-4) 0.2 ng/ml (2005-8)	Sex Race BMI (categorical) Household income Moderate activity (Y/N)	Other comments: Large N Reasonable statistical control of
Study Design:	Population-Level Exposure: Mean PFOS = 18.4 ng/ml (SE = 0.5	Serum total cholesterol Serum cotinine	confounders and co-variates (except PFOA, etc.)
Cross-sectional Blood sample and personnel	ng/ml) (Mean PFOA = 4.3 ng/ml (SE = 0.1	Logistic regression for OR hyperuricemia by PFOS quartile	Equivocal findings
questionnaire data from NHANES Serum uric acid and serum PFOS from NHANES blood sample	ng/ml)	Outcome: Assoc uric acid relative and PFOS	
Uric acid analysis by clinical lab		Major Findings:	
Assoc of PFOS w serum uric acid/hyperuricemia (elevated uric acid)		Assoc uric acid and PFOS on continuous scale	
(No std definition hyperuricemia for children– defined in study as ≥ 6 mg/dL		uric pos assoc w for 4 th quart of PFOS exposure (1 st quart as ref) But for unadjusted model only	
Location:		Uric acid not assoc w PFOS in adjusted model	
		Trend not sig	

Population:	<u>Ln-transformed PFOS</u>
NHANES 199-200, 2003-2008 data	Uric acid pos assoc w In-transform PFOS
Children 12-18 yrs old completing sampling and interview portions of	Outcome:
NHANES and complete information	Assoc of hyperuricemia and PFOS
for critical variables	Major Findings:
N = 1,772	OR for hyperuricemia sig > 1.0 for 4 th
Mean age = 15.0	quart serum PFOS (adj and unadj models) (OR for Quart 2, 3 > 1.0, but not sig)
M = 51.9%	(Ortion Quart 2, 0 > 1.0, but not sig)
F = 48.1%	↑Trend stat sig
	Also, In-transformed PFOS
Related Studies:	Similar results for alt cutoffs for definition
	hyperuricemia (5.5-7.7 mg/dL)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Geiger et al. (2014a)	CDC-NHANES analytical proc	PFOS as continuous and categorical var linear regression	PFOS analysis not adj for PFOA
Geiger SD, Xiao J, Shankar A.	Population-Level Exposure:		Other comments:
No association between perfluoroalkyl chemicals and hypertension in	Mean PFOS conc = 18.4 ng/ml	Continuous PFC In-transformed	Large N
children.	Mean F1 03 conc = 16.4 fig/fill	Co-variates:	Large IV
Integr Blood Press Control. 2014 Jan		- age	Reliable analytical methodology
13;7:1-7. doi: 10.2147/IBPC.S47660. eCollection 2014.		- sex - race/ethnicity	Cross-sectional study
20110011011 2014.		- BMI	Cross sectional study
Study Design:		- moderate physical activity (Y/N)	
Cross-sectional		incomeserum total cholesterol	
Data from NILIANIES 1000 2000		Cotogorical DEOS in quartiles	
Data from NHANES - 1999-2000; 2003-2004; 2005-2006; 2007-2008		Categorical PFOS in quartiles Logistic regression	
		OR of hypertension for ea quart	
BP taken at examination portion of NHANES process		Sample weights adj per NHANES	
(mean of ≤ 3 separate readings)		Cample Weights day per 1117/11/20	
Hypertension defined as BP ≥95 th		Outcome:	
percentile		Assoc systolic BP/hypertension w PFOS	
Adj: age, height .sex		Mater Eta Pare	
Location:		Major Findings: (adj model)	
US		Systolic BP/hypertension not sig assoc w	
Barra Latina		PFOS for either continuous or categorical	
Population:		(OR) regression	
NHANES cohort			
12-18 yrs old			
Excluding those w missing co-variate			
data			
N = 1, 655			

Related Studies:	Outcome:	
	Assoc diastolic BP/hypertension w PFOS	
	Major Findings: (adj model)	
	Diastolic BP/hypertension not sig assoc w PFOS for either continuous or categorical (OR) regression	

Reference and Study Design	Exposure Measures	Results	Comment
	•	Stat Method:	
Study: Geiger et al. (2014b)	Exposure Assessment: PFC analysis by Nat'l Center Env.	PFOS as continuous and categorical variable w In-transformed PFOS conc	Major Limitations: Cross-sectional study
Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A. The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere. 2014 Mar;98:78-83. doi: 0.1016/j.chemosphere.2013.10.005.	Health (CDC) Solid-phase extraction, isotope dilution HPLC-MS Non-detects as LOD/√2 LOD?	Models included: Age Sex Race-ethnicity Bw categories Household income	PFOS analyses did not control for PFOA Other comments: Relatively large N Reasonable statistical control for
Epub 2013 Nov 13. Study Design:	Population-Level Exposure:	Moderate activity (Y/N) Serum cotinine	co-vartiates – except PFOA
Nested corss-sectional from NHANES 1999-2000, 2000-2008	PFOS detected in > 98% of samples Mean (SE) PFOS serum conc = 17.7	OR for dyslipidemia by Multivariate logistic regression	
Assoc PFOS w serum: Total cholesterol LDL-C HDL-C triglycerides	ng/ml (0.7 ng/ml)	Outcome: Total cholesterol Major Findings: (adj models)	
Location:		Categorical analysis	
U.S. Population:		Change in cholesterol conc (mg/dL) by PFOS tertile to 1st tertile (ref)	
Children 12-18 yrs Mean age = 15.1 yrs Completed laboratory and examination/ portions of NHANES Complete information on key variables N = 815		↑ cholesterol 2 nd and 3 rd tert Sig for 3 rd tert , but not sig for 2 nd tert Trend borderline sig Continuous analysis (In-PFOS) Sig pos assoc (small)	

Related Studies:	Risk of dyslipidemia
Frisbee et al. (2010)	↑ OR across tertiles Stat sig for 3 rd tert Sig for trend Ln-PFOS sig in continuous analysis
	Outcome:
	LDL-C
	Major Findings: (adj models)
	Categorical analysis
	↑ in LDL-C in 2 nd and 3 rd tert (1 st as ref) Sig for 2 nd and 3 rd tert Sig for trend
	Continuous analysis (In-PFOS)
	Sig pos assoc
	Risk of dyslipidemia
	↑ OR across tertiles Stat sig for 3 rd tert Sig for trend Ln-PFOS sig in continuous analysis

Outcome:
HDL-C
Major Findings:
(adj models)
<u>Categorical analysis</u>
Inconsistent
Sig pos assoc for 2 nd , but not 3 rd tert Trend not sig
Risk of dyslipidemia
ORs not sig
Trend not sig Ln-PFOS not sig in continuous analysis
Outcome:
Triglycerides
Major Findings:
(adj models)
Categorical analysis
No sig assoc
Trend not sig
Risk of dyslipidemia
ORs not sig
Trend not sig Ln-PFOS not sig in continuous analysis
En i i Oo not sig in continuous analysis

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Ghisari et al. (2014) Ghisari M, Eiberg H, Long M, Bonefeld-Jørgensen EC. Polymorphisms in phase I and phase II genes and breast cancer risk and relations to persistent organic pollutant exposure: a case-control study in Inuit women. Environ Health. 2014 Mar 16;13(1):19. doi: 10.1186/1476-069X-13-19. Study Design:	(from Bonefeld-Jorgensen et al. Environ Health. 2011; 10: 88. Published online 2011 October 6. doi: 10.1186/1476-069X-10-88) lon-pairing extraction LC-MS-MS) with electrospray ionization LOD = 0.1 to 0.4 ng/ml Population-Level Exposure:	Unconditional logistic regression for interaction of CYP SNPs, PFOS and breast cancer risk PFOS In-transformed Co-variates: - age - cotinine (other variables not included due to small n for cases) PFOS as categorical (high/low relative to	Small n Other comments: Largely a mechanistic assessment of PFOS influence on breast cancer through assoc PFOS w spec SNPs Case-control methodology Clear ascertainment of endpoint
Further investigation of Bonefeld- Jorgensen (2011) examining assoc of spec SNPs w PFOS and breast cancer Case-control study	(from Bonefeld-Jorgensen et al. Environ Health. 2011; 10: 88) Median PFOS conc: Cases = 45.6 ng/ml Controls = 21.9 ng/ml	control median) var and Continuous variable Analysis stratified by genotypes OR calculated for > median (high) vs. < median (low) PFOS (
N = 31 breast cancer cases Cases matched by age and district of residence to controls (n = 115) Blood samples at breast cancer diagnosis Questionnaire data for Demographic, lifestyle PCR for SNPs of multiple CYP polymorphisms		Outcome: OR for assoc PFOS (high/low) w breast cancer Major Findings: For all CYP genes tested, OR sig > 1.0 for high PFOS for at least one SNP (for all other SNPs, OR could not be calculated due to lack of cases or controls)	

Location:
Greenland - Nuuk, Upernavik,
Qeqertensuaq, Narsaq, Tarsilaq, Qaqortoq, Sisimiut, Assiat, Nanortalik
Population:
Inuit women
Related Studies:
Bonefeld-Jorgensen et al. (2011)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Gleason et al. (2015) Gleason JA, Post GB, Fagliano JA. Associations of perfluorinated chemical	Solid-phase extraction, HPLC-MS > LOD as LOD/√2	Outcomes non-normal based on visual assessment In-transformed PFOS In-transformed	Cross-sectional PFOS not controlled for other PFCs
serum concentrations and biomarkers	Population-Level Exposure:	Multiple-linear regression	Other comments:
of liver function and uric acid in the US population (NHANES), 2007-2010. Environ Res. 2015 Jan;136:8-14. doi: 10.1016/j.envres.2014.10.004. Epub 2014 Nov 19.	PFOS geom mean = 11.0 ng/ml (95% CI = 10.2-11.8) median = 11.3 (IQR = 7.0-8.0)	Co-variates: Age Gender Race/ethnicity BMI (dichotomized)	Large N Reasonable statistical analysis (except for other PFCs)
Study Design:	(PFOA	Poverty (dichotomized)	
NHANES 2007-2008, 2009-2010 combined databases PFOS measured in random 1/3 of sample ≥ 12 yrs old Liver enzymes: ALT GGT AST ALP Total bilirubin Uric acid	Geom mean = 3.5 ng/ml) Also PFNA, PFOS and PFHxS measured	Smoking (dichotomized on cotinine) Alcohol (categorical) Ln-serum creatinine Logistic regression-OR PFOS as quartiles Outcomes dichotomized on 75th percentile Outcome: uric acid Major Findings: (fully adj models)	
Location:		Linear regression Sig pos assoc w PFOS (p < 0.01)	
U.S. Population:		Logistic regression OR < 1.0	
Hepatitis B/C carriers excluded			
N = 4,333			

	Outcome	
Related Studies:	Outcome:	
Nelateu Otuules.	Ln-ALT	
Geiger et al. (2013) (Uric acid and		
PFOS in adolescents from NHANES)	Major Findings:	
	(fully adj models)	
	<u>Linear regression</u> Not sig assoc w PFOS	
	Not sig assoc with OS	
	<u>Logistic regression</u>	
	OR < 1.0	
	Outcome:	
	Outcome.	
	Ln-GGT	
	Major Findings:	
	(fully adj models)	
	Linear regression	
	Not sig assoc w PFOS	
	<u>Logistic regression</u>	
	OR < 1.0	
	Outcome:	
	Ln-AST	
	· · ·	
	Major Findings:	
	(fully adj models)	
	Linear regression	
	Not sig assoc w PFOS	
	Logistic regression OR < 1.0	
	UN < 1.0	

Outcome:
Ln-ALP
Major Findings: (fully adj models)
Linear regression Not sig assoc w PFOS
Logistic regression OR < 1.0
Outcome:
Total bilirubin
Major Findings: (fully adj models)
Linear regression Not sig assoc w PFOS
Logistic regression OR quart 2,3, 4 (1 as ref) sig > 1.0 (~ 1.4- 1.7 – visually from graphic) P trend = 0.026

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Goudarzi et al., 2017	PFAAs measured in maternal plasma	PFAAs analyzed by quartiles and asses in	Did not control for other co-occurring
	taken at 28-32 weeks of gestation	crude and adjusted logistic regression	environmental contaminants as potential
Goudarzi, H., C. Miyashita, E. Okada, I.		analyses.	confounders.
Kashino, C. J. Chen, S. Ito, A. Araki, S.		Trend in the p-value was estimated.	
Kobayashi, H. Matsuura and R. Kishi	Population-Level Exposure:		Other comments:
(2017). "Prenatal exposure to	Mean PFOS=5.5 ng/mL	Potential confounders and covariates	Study design is a strength and serum
perfluoroalkyl acids and prevalence of	$25^{th} = 3.67$	considered include maternal age, number of	PFAA collection at potential vulnerable
infectious diseases up to 4 years of age."	$50^{\text{th}} = 4.93$	older siblings, maternal smoking during	developmental window
Environ Int 104: 132-138.	$75^{\text{th}} = 6.65$	pregnancy, maternal education, infant sex,	
		and breast-feeding period. Day care	
Study Design:	PFOA=2.7 ng/mL	attendance and environmental tobacco	
Prospective birth cohort		smoke at 4 years were included for	
		sensitivity analysis.	
Location:			
Japan		Outcome:	
		Total infectious disease= Otitis media,	
Population:		Pneumonia, Respiratory syncytial infection,	
N=1558 mother-child pairs who were		varicella	
enrolled in the Hokkaido Study on			
Environment and Children's Health		Major Findings:	
		Q2 v Q1 OR=1.44 (95% CI 1.06, 1.96)	
Outcome Assessment:		Q3 v. Q1 OR=1.28 (95% CI 0.95, 1.73)	
Participant characteristics were obtained		Q4 v Q1 OR=1.61 (95% CI 1.18, 2.21)	
from medical birth records and self-		P for Trend=0.008	
administered questionnaires during			
pregnancy and after delivery and 4 years		Similar findings by stratification for boy	
post-delivery.		and girl, only P for trend for girls was	
		statistically significant, but overall	
		findings were comparative to boys.	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Grandjean et al. (2012) [w. erratum	Gestational maternal serum PFOS	Correlations were determined by pairwise	Maternal PFOS concs at ~75th
2012]	exposure from last maternal ant-natal	Pearson correlation coefficients. Linear	percentile US female conc (4th Nat'l
	exam (32 wks)	regression, covariates and confounders	Rpt)
Grandjean P, Andersen EW, Budtz-		considered include sex and age. For 5-year	
Jørgensen E, Nielsen F, Mølbak K,	Post-natal PFOS exposure from	pre-booster data models adjusted for time	Combined sig neg assoc of tetanus
Weihe P, Heilmann C.	child's serum 5 (pre-booster)	since vaccination, possible PCB exposure,	and diphtheria antibodies in structural
Serum vaccine antibody	,	birth weight, maternal smoking during	equation models suggest that est of
concentrations in children exposed to	Solid-phase extraction, HPLC-MS	pregnancy, and duration of breastfeeding,	independent PFOS effect is influenced
perfluorinated compounds.	w/in and between batch imprecision	and booster type. Structural equation	by overall PFC effect.
JAMA. 2012 Jan 25;307(4):391-7. doi:	(by CV) < 3.0%, 5.2% (respectively)	models were generated to determine the	
10.1001/jama.2011.2034. Erratum in:		joint association of PFCs with the overall	Possible confounding due to
JAMA. 2012 Mar 21;307(11):1142.	Population-Level Exposure:	antibody concentrations. Also controlled for	unmeasured variables, and other
, ,		PFCs in maternal pregnancy serum in some	environmental contaminants
Study Design:	PFOS Geometric mean (IQR):	of these structural models.	
Prospective birth cohort (1997-2000)			Other comments:
	Maternal – 27.3 (23.2-33.1)	PFCs were also categorized when greater	The prospective study design is
Location:		than 0.1 IU/mL – and odds ratios were	powerful.
Faroe Islands (National Hospital)	5 yrs old – 16.7 (13.5-21.1)	estimated.	
	, , ,		The N's are reasonable, but larger
Population: n=656 consecutive		PFCs and antibodies were log-transformed.	n's may have yielded more definitive
singleton births recruited 1997-2000 and			results.
587 followed-up through 2008.		Outcome:	
		Major Findings:	
Outcome Definition:		Tetanus % difference (2-fold)	
Serum antibody concentrations		Maternal PFC	
against tetanus and diphtheria		(Year 5 Pre): -10.1 (95% CI -31.9, 18.7)	
toxoids at ages 5 years prebooster,		(Year 5 Post): -2.3 (95% CI -28.6, 33.6);	
approximately 4 weeks after the		(Year 7): 35.3 (95% CI -3.9, 90.6)	
booster, and at age 7 years.		(Year 7 adj. for 5): 33.1 (95% CI 1.5, 74.6);	
		not significant when controlled for PCBs	
Measurement of specific antibodies			
Tetanus – by enzyme-linked		Child (age 5) PFC	
immunosorbent assay		(Year 5 Pre): -11.9 (95% CI -30.0, 10.9)	
Diphtheria – by cell-based		(Year 5 Post): -28.5 (95% CI -45.5, -6.1)	
neutralization assay		(Year 7): -23.8 (95% CI -44.3,4.2);*	
		significant when controlled for PCBs	
		(Year 7 adj for 5): -11.4 (95% CI -30.5, -12.8))

CC A(A(A(A(A(A(A(Age 5): -55.2 (95% CI -25.4, 144.6) Age 5 adj for maternal): -58.8 (-76.0, -9.3)	
O(Aç Aç CI Aç Aç	odds Ratio Maternal serum ge 5: OR=1.16 (95% CI 0.71, 1.89) ge 7: OR=0.53 (95% CI 0.16, 1.79) child serum ge 5: OR=1.16 (95% CI 0.77, 1.74) ge 7: OR=2.61 (95% CI 0.77, 8.92)	
M: (Y nc (Y (Y (Y	viphtheria % difference (2-fold) laternal PFC Year 5 Pre): -38.6 (95% CI -54.7, -16.9);* ot significant when controlled for PCBs Year 5 Post): -20.6 (95% CI -37.5, 0.9) Year 7): -19.7 (95% CI -41.8, 10.7) Year 7 adj. for 5): -10.0 (95% CI -32.6, 20.0)	
(Y (Y (Y St cc Ag	Child (age 5) PFC Year 5 Pre): -16.0 (95% CI -34.9, 8.3) Year 5 Post): -15.5 (95% CI -31.5, 4.3) Year 7): -27.6 (95% CI -45.8, -3.3); Year 7 adj for 5): -20.6 (95% CI -38.2, 2.1) Extructural Eq. (PFOA, PFOS and PFHxS combined) Ge 5 pre-booster Maternal): -47.9 (95% CI -67.7, -15.9)	

	(Age 5): -7.9 (95% CI -38.0, 37.0) (Age 5 adj for maternal): -1.2 (-33.6, 46.8) Age 7 (Maternal): -42.0 (95% CI -66.1, -0.8) (Age 5): -44.4 (95% CI -65.5, -10.5) (Age 5 adj for maternal): -45.5 (-66.9, -10.3) Odds Ratio Maternal serum Age 5: OR=2.48 (95% CI 1.55, 3.97) Age 7: OR=2.33 (95% CI 0.88, 6.14) Child serum Age 5: OR=1.60 (95% CI 1.10, 2.34) Age 7: OR=2.38 (95% CI 0.89, 6.35) Structural equation — joint For the structural equation model the joint change in antibody showed decreased association with PFCs at age 5 and at age 5 with adjustment for PFC in maternal pregnancy serum (nonsignificant) and significant association with Age 7 joint vaccine.
--	--

Deference and Children Designs	Francius Magazines	Deculto	Commont
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Granum et al. (2013)	PFOS plasma conc by LC-MS/MS	Poisson regression analysis for outcomes with counts (e.g., number of	Low n for most childhood conditions, but nearly 100 % for colds
Granum B1, Haug LS, Namork E,	LOQ = 0.05 ng/ml	episodes of colds)	
Stølevik SB, Thomsen C, Aaberge IS, van Loveren H, Løvik M, Nygaard UC.	< LOQ = 0.035 ng/ml	Logistic regression for binary outcomes	PFOS analyses not adj for other PFCs
J Immunotoxicol. 2013 Oct-	PFOS conc as integrated area under		
Dec;10(4):373-9. doi: 10.3109/1547691X.2012.755580.	linear and branched isomer peaks	Linear regression for continuous outcomes	Other comments:
Epub 2013 Jan 25.	Population-Level Exposure:		Cross-sectional design
Pre-natal exposure to perfluoroalkyl		Multivariate regression for bivariate	
substances may be associated with altered vaccine antibody levels and	Mean PFOS conc in maternal plasma = 5.6 ng/ml	regression w p < 0.1	Small-moderate n for antibody and health outcome analysis
immune-related health outcomes in	(median = 5.5 ng/ml)	Potential confounders selected for p ≤	
early childhood.	(1)075 0500 0400	0.25 for bivariate regression bet	PFOS analyses not controlled for
Study Decien	(NOTE: median PFOS conc ~71% of	confounder and PFOS and bet confounder and outcome	other PFCs although other PFCs
Study Design:	US F (NHANES 4 th Rpt)		also sig neg assoc w rubella vaccine antibody
Nested cross-sectional		Potential confounders:	
Voluntary recruitment from MoBa		- Older sibling - previous breastfeeding	
maternal-child cohort		- maternal, paternal allergies	
maternal office content		- paternal asthma	
Exclusion criteria		- maternal educ	
- maternal autoimmune disease		- income	
- Use of steroids		- birth season	
- Use of ant-inflammatory drugs		- gender	
- Use of anti-epileptic drugs		- age at 3-yr follow-up	
- children not following Norwegian vaccination program		For all regression models, backward	
vaccination program		elimination of least sig var until all vars p	
Maternal blood at 0-3 days post-		≤ 0.05	
partum (P'FOS)			
Child blood at 3 yrs (mean = 35 mos)			
(Abs)			

Vaccine antibody levels measured for:

- Measles
- tetanus
- rubella
- hoemophilus influenza-b (Hib)

Serum samples for allegen-specific IgE Cutoff for pos response at 0.35 PAU/I

Questionnaire at 1, 2, 3 yrs on children's 12 mo history of:

- infectious diseases - cold/upper resp
- otitis media
- pneumonia
- gastroenteritis w vomiting/diarrhea
- urinary tract infect

Allergy/asthma

- diagnosis asthma/asthma bronchitis
- > 10 d dry cough, chest tightness, wheeze
- eczema/itches in face or joints
- diagnosis ectopic eczema
- diagnosis of allergy

Location:

Oslo and Akershus, Norway

Population:

BraMat cohort (est. 4/2007-3/2008) Nested in MoBa maternal-child cohort

N (antibody) = 49-51N (health outcomes) = 65-93

Related Studies:

Outcome:

PFOS assoc w vaccine antibody level

Major Findings:

(multivariate model)

PFOS sig assoc only w rubella antibodies

PFOS sig neg assoc w rubella vaccine antibody levels (p = 0.007) (n = 50)

(NOTE: PFOA, PFNA, PFHxS also sig neg assoc w rubella anitbodies)

Outcome:

Episodes/diagnosis of health outcomes

Major Findings:

PFOS not sig assoc w any health outcomes

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Grice et al. (2007) Grice MM, Alexander BH, Hoffbeck R, Kampa DM. Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med. 2007 Jul;49(7):722-9.	Based on biomonitoring sample (n = 186) reported in Olsen et al. (2003b) (AIHA J (Fairfax, Va). 2003 Sep-Oct;64(5):651-9.) Job titles characterized according to characteristic serum PFOS levels (ppm). Each employee assigned to an exposure category based on job history by title	Logisitcal regression of exposure categories against reported outcomes. "No exposure" category as referent category. Adjustment for age and gender.	Exposure classification based on correspondence of job category to exposure levels (serum PFOS). However, correspondence was based on a sample of 186 = 13% of the number of questionnaire respondents. Variability for some job categories was high including some with high PFOS exposure (95% UCI/geom.mean ≈ 3) (Olsen et al. 2003b)). "No-exposure" category is 5.5 times the median serum PFOS reported by NHANES = 0.02 ppm (Fourth
Study Design: Self-reported medical conditions. Included yr of first diagnosis for each condition. Preg outcomes (F only)	Categories – 1. No direct exposure (0.11- 0.29 ppm) 2. Low (0.39-0.89 ppm) 3. High (1.30-1.97 ppm) Population-Level Exposure:	Associations with exposure examined based on - Ever exposed in a given category - Exposed >1 yr in a given category - Ever exposed - Weighted exposre (No =1; Low =3; H = 10)	National Report on Human Exposure to Environmental Chemicals; http://www.cdc.gov/exposurereport/pdf/fourthreport.pdf) Thus, use of "no-exposure" category as referent will bias against finding associations with medical conditions. Females accounted for only 19% of returned questionnaires.
Attempted follow-up of diagnosis with subjects' physicians.	No exposure – 25% Low – 30%	Outcome:	Significant co-exposure to PFOA (and less to other PFCs) not reported here, but based on Olsen et al.
Location:	High – 45%	Major Findings:	(2003b).
3M facility, Dacatur, AL Population:		Cancer No association with exposure category for any reported cancer (colon, prostate).	Ability to detect exposure-related cancer is diminished by significant percentage of employees with <20 yrs of employment in this facility.
All current, retired, and former employees with cumulative employment ≥1 yr eligible 1,400 participated with returned questionnaire – 74% of eligibile.		Breast cancer risk not calculated because denominator too small for each exposure cateogroy.	Other comments: This study is weak both with respect to accurate exposure classification and with respect to chronic disease ascertainment, particularly cancer, given the relatively short exposure period relative to cancer latency. The use of "no-exposure" category with

58% of respondents worked: <20 yrs
42% <10 yrs;
31% <5 yrs.

Related Studies:

Olsen et al. (2003a) Olsen et al. (2003b) Alexander et al. (2003) Olsen et al. (2004) Alexander et al. (2007) Olsen et al. (2012) Non-cancer conditions

No association with exposure categories for commonly reported conditions:
Cystitis
Prostate hypertrophy

Prostatitis
Colon polyps

Cholelithiasis (gallstones)
Gastric ulcers

Or for any other reported condition.

Birth outcomes

- Birthweight lowest in no-exposure category and not different across exposure categories
- No association of exposure categories with stillbirths

significant exposure relative to NHANES pop. Median biases against finding association at higher exposure categories.

Weak exposure assessment, disease ascertainment, and biased statistical structure.

Reference and Study Design	Exposure Measures	Results	Comment
	•	I .	
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Gump et al. (2011)	PFOS in whole blood	Potential confounders investigated:	Exposure to PFOS ~ ½ that in general US pop 12-19 yrs old (NHANES, 4 th Rpt.)
Gump BB1, Wu Q, Dumas AK,	Extraction by ion-pairing	Age (child, mother, father)	
Kannan K.	HPLC-electrospray tandem-MS	Family income	Cross-sectional design
Environ Sci Technol. 2011 Oct	(HPLC-ESI-MS/MS)	"Parent's"(?) education	
1;45(19):8151-9. doi:		"Parent's"(?) occupational	PFOS assoc not controlled for other PFCs. However,
10.1021/es103712g. Epub 2011	Quantification by isotope dilution	class	IRT effect most sig for total PFCs, suggesting possible
Jun 17.	– 98 +/- 5% recovery	BMI (child, mother, father)	confounding of specific PFOS effect
Perfluorochemical (PFC) exposure in children: associations with	LOQ PFOS = 0.2 ng/ml	Child's gender Child's race	
impaired response inhibition.	LOQ F1 03 = 0.2 fig/fill	Family history of chronic	Other comments:
	Population-Level Exposure:	illnesses	Carlot Commonto.
Study Design:		Blood Pb	Relatively small N.
	Mean PFOS = 9.90 ng/ml (SD =	Blood Hg	Lack of stat controlling of PFOS results for other PFCs
Cross-sectional nested in Pb study	6.09 ng/ml)		
cohort	(NOTE: PFOS levels are low	Confounders included in	Equivocal results, small N, lack of controlling for other
PFOS from Pb blood draw	compared to NHANES 12-19 yrs	model if bivariate relationship	PFCs
PFOS from Pb blood draw	old, mean = 19.3 ng/ml)	w outcome p < 0.2	
Testing of assoc of differential		PFOS conc log-transformed	
reinforcement of low-rates of		Troc conclog transformed	
responding (DRL) w PFOS (other		Outcome:	
PFCs)			
 Money reward for learning 		Median IRT (Inter-response	
correct hidden time interval		time – time between lever	
(20 s) between computer		pushes) (5 min bins)	
level presses - Positive response		(NOTE: Learning is indicated	
corresponds to response		by ↑ IRT in successive 5 min	
inhibition (neg. results		bins – total bins = 4)	
indicate impulsivity)		,	
		Major Findings:	
Brief Mood Introspection Scale			
(BMIS) subsequent to DRL test		For total PFCs, β neg for all	
(measurement of emotional		bins) and sig for bins 2-4	
response)		For PFOS, all β neg, but sig	
		for only bin 3	

Location:		
Oswego, NY		
Population:		
Children 9-11 yrs old		
N = 83 F = 30 M = 53 Mean age = 10.13 yrs Exclusions: - Use of medication for cardiovascular function on day of testing - Developmental disorders affecting test outcome		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Halldorsson et al. (2012) Halldorsson TI1, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G,	Column switching-LC-triple quadropole MS (not in this MS, but in J Chromatogr A. 2009 Jan	NOTE: co-variates reported for PFOA, but not PFOS. It is assumed that these co-variates were at least	Did not account for offspring PFOS exposure postnatal. Other comments:
Henriksen TB, Olsen SF. Environ Health Perspect. 2012 May;120(5):668-73. doi: 10.1289/ehp.1104034. Epub 2012 Feb 3. Prenatal exposure to perfluorooctanoate and risk of	16;1216(3):385-93) LOQ for PFOS (and others) = 0.05 ng/ml Population-Level Exposure:	investigated for PFOS Maternal age Maternal education Smoking (categorical) Pregnancy BMI Parity	Reasonable cohort size (although only moderate for each sex) Longitudinal follow-up Lack of investigation for confounding by post-natal (and
overweight at 20 years of age: a prospective cohort study. Study Design:	Median PFOS = 21.5 ng/ml (IQR = 9.1) Consistent with US female pop	Infant birth wt Offspring age at follow-up Outcome:	older) exposure PFOS Stat control for other PFCs in analyses
Longitudinal nested in birth cohort	(NHANES 4 th report)	Offspring BMI	
Face-to-face interview at wk 30 of gestation and blood sample collected		Major Findings: (adj model)	
Maternal health and birth outcomes from hospital records		No sig assoc w PFOS Outcome:	
Offspring at ~20 yrs (2008-2009) web-based questionnaire health status, lifestyle, dietary habits,		Offspring waist circumference	
height, wt Clinical/anthropometric exam (incl.		Major Findings: (adj model)	
BMI and waist circum data) for partial N		No sig assoc w PFOS	
Clinical BMI/waist circum from clinical exam, n = 423 Self reported n = 242			

	Outcome:	
Adiponectin and leptin by		
immunofluorescence	Risk of overweight	
ininariona di escence	(BMI > 25 kg/m ²)	
Plasma insulin by commercial lab	(Sivii > 20 kg/iii)	
I lacina meanir by commercial lab	Major Findings:	
Location:	,	
	(adj model)	
Aarhus, Denmark	(4-2)	
Admido, Borimana	Rel risk (RR) not significantly	
Population:	> 1.0 for PFOS	
Fopulation.	> 1.0 lol F1 03	
Birth cohort recruited 4/88-1/89	Outcome:	
Bitti concit recrated 1/00 1/00	Outoomo:	
N = 665	Waist circum > action level (>	
M = 320	level 2 – value not specified)	
F = 325	lovoi 2 valao not oposinoa)	
	Major Findings:	
Related Studies:	, ,	
	(adj model)	
	(
	RR not significantly > 1.0 for	
	PFOS	
	NOTE:	
	Positive assoc were seen for	
	several outcomes with PFOA.	
	Authors state that models for	
	PFOA effects that included	
	other PFCs (incl. PFOS) did	
	not change the relationship	
	between PFOA and outcomes	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Hamm et al. (2010) Hamm MP1, Cherry NM, Chan E, Martin JW, Burstyn I. J Expo Sci Environ Epidemiol. 2010 Nov;20(7):589-97. doi: 10.1038/jes.2009.57. Epub 2009 Oct 28. Maternal exposure to perfluorinated acids and fetal growth. Study Design: Cross-sectional maternal-child study Maternal cohort screened at 15-18 wks gestation Blood samples collected 12/2005-6/2006	Solid-phase extraction HPLC-triple quadrupole linear ion trap MS PFOS % recovery = 91.1 +/- 13.9 LOD = 0.125 ng/ml < LOD as LOD/2 Population-Level Exposure: PFOS mean = 9.0 ng/ml Geom mean = 7.4 (geom SD = 2.0) NOTE: geom mean PFOS conc < ½ US female geom mean (NHANES 4th report)	PFOS concs as untransformed and In-transformed Birth wt, length of gestation by linear regression Small for gestational age, preterm-delivery as risk ratio (RR) by Poisson regression Potential confounders Maternal age Maternal wt (dichotomized for high and low) Maternal ht (dichotomized) Smoking during preg (Y/N) Infant gender Maternal race parity	Small N PFOS analyses not controlled for other PFCs PFOS exposure low compared to US female pop Other comments: Good analytical methodology and statistical control (except for PFC co-exposure), but small N and low expsorue
Outcomes		Outcome:	
Birth wt		Birth wt	
Small for gestational age Length of gestation Pre-term delivery		Major Findings: (adj model)	
Location:			
Edmonton, Alberta, Canada		PFOS not sig assoc w birth wt (PFOA and PFHxS not sig assoc)	

Population:	Outcome:
Preg women	Length of gestatsion
> 18 yrs old Live, singleton births No evidence of malformation Delivery ≥ 22 wks gestation Initial N = 1588 252 serum samples selected for	Major Findigs: PFOS (PFOA,) not sig assoc w. length of gest (PFHxS sig assoc w ↑ length gest)
analysis	Outcome:
Related Studies:	Small for gest age (SGA)
	Major Findings:
	3 rd tertile (but not 2 nd (1 st as ref)) PFOS sig assoc w ↓ risk of SGA
	Outcome:
	Preterm delivery
	Major Findings:
	PFOS not sig assoc w risk preterm delivery

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Wethou.	major Elimitations.
Hardell et al. (2014)	UPC, E-MS/MS	OR by unconditional logistic	PFOS analyses not controlled for other PFCs
		reg	The second secon
Hardell E, Kärrman A, van Bavel B,	PFOS LOD = 0.1-? ng/ml (upper		Exposure is relatively low compared to adult US males
Bao J, Carlberg M, Hardell L.	limit not clear due to typo in MS)	<u>Co-variates</u>	(NHANES 4 th Rpt)
Environ Int. 2014 Feb;63:35-9. doi:		Age	
10.1016/j.envint.2013.10.005. Epub	<lod 2<="" lod="" td="" →=""><td>BMI</td><td>N is moderate for a case-control study</td></lod>	BMI	N is moderate for a case-control study
2013 Nov 16.		Year of sampling	
Case-control study on	Population-Level Exposure:	0.1	Other comments:
perfluorinated alkyl acids (PFAAs)	DECC (*** **)	Outcome:	Although the group of coord controls); and
and the risk of prostate cancer.	PFOS (mean) Cases = 11 ng/ml	OD for prostote concer	Although the number of cases (and controls) is only moderate this does not appear to add uncertainty to
Study Design:	Cases = 11 fig/fill Controls = 10 ng/ml	OR for prostate cancer	the finding of an increased risk for PFOS under
Study Design.	Controls = 10 fig/fill	Major Findings:	conditions of hereditary risk
Case-control prostate cancer	(NOTE: exposure level ~ ½ the	major i manigo.	Conditions of Hereditary flox
Case control product carries	geom mean for US mean > 20 yrs	OR for PFOS not sig > 1.0	However, similar hereditary associations were
Controls matched to cases on	old (NHANES 4 th Rpt))		found for all other PFCs in this study. Lack of
Age		Outcome:	control for other PFCs in PFOS analysis of heredity
Location (county)			raises concerns about specificity of the PFOS
		Gleason score	finding
Cases = 201			
Controls = 186		Major Findings:	
Disad samples from second		OD (2002)	
Blood samples from cases and		OR for score 2-6 (n = 70) and 7-10 (n = 123)	
controls drawn during "same time period"		not sig > 1.0	
period		110t sig > 1.0	
Analysis blinded to case-control		Outcome:	
status			
		PSA	
Reporting of Gleason Score			
(prostate cancer stage), prostate		Major Findings:	
spec antigen (PSA) from medical			
records		OR for PSA \leq 10 (n = 110) and	
		PSA ≥ 11 (n = 91)	
Information on first degree relatives		Not sig > 1.0	
w prostate cancer (Y/N)			

Location:	Outcome:
Õrebro, Sweden	PFOS-heredity interaction (heredity = first order relative w
Population:	prostate cancer)
Prostate cancer patients admitted 2007-2011 to University Hosp,	Major Findings:
Õrebro	No heredity, PFOS ≤ median as ref
Controls from Swedish pop registry	
Related Studies:	Heredity, PFOS ≤ median – OR not sig
	No heredity PFOS > median – OR not sig
	Heredity, PFOS > median – OR sig (2.7)

Reference and Study Design	Exposure Measures	Results	Comment
, ,	•		
Reference and Study Design Study: Hoffman et al. (2010) Hoffman K1, Webster TF, Weisskopf MG, Weinberg J, Vieira VM. Environ Health Perspect. 2010 Dec;118(12):1762-7. doi: 10.1289/ehp.1001898. Epub 2010 Jun 15. Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12-15 years of age.	Exposure Measures Exposure Assessment: Solid-phase extraction, reverse-phase HPLC-MS PFOS LOD = 0.2 ng/ml LOD → LOD/√2 Population-Level Exposure: Median PFOS conc 22.6 ng/ml (IQR = 15.9 ng/ml)	Results Stat Method: Potential confounder/covariates Age Sex Race/ethnicity NHANES sample cycle SES Routine health care provider (Y/N) Health insurance coverage (Y/N) Pb	Comment Major Limitations: Total n is moderate Case n is relatively small Overall effect (OR) is relatively small Other comments: Data set is well vetted. PFOS analysis is well conducted Control of PFOS analysis for other PFCs provides evidence for independent PFOS effect
Study Design: Cross-sectional, case-control study of assoc of PFOS and ADHD		ETS Birth wt Admittance to NICU Maternal preg smoking Pre-school	Self (parental) identification of cases introduces uncertainty
Children 12-15 yrs old NHANES data 1999-2000; 2003-2004 -Parental report of prior ADHD diagnosis -Alternative (more stringent definition) parental report of prior ADHD diagnosis AND parental identification of child's taking medication approved for ADHD Location: U.S.		Loistic regression (PFOS as continuous variable) Variables added to model if p < 0.1 in bivariate regression or > 10% chnge model relationship between PFOS and ADHD OR Simultaneous inclusion of PFOS w PFOA, PFNA and PFHxS also principle component analysi Outcome: Risk of ADHD	

Population: National data (

National data (NHANES) children 12-15 yrs old

PFOS sample from children's serum.

N = 571

- -Parental rpt of ADHD diagnosis n = 48
- -Parental rpt ADHD + ADHD medication n = 21

Related Studies:

Major Findings:

(adj model)

OR = 1.03 (sig) for each 1 ng/ml ↑ in PFOS based on parental reporting of diagnosis

OR = 1.05 (sig) for each 1 ng/ml ↑ in PFOS based on parental reporting of diagnosis + ADHD medication

OR = 1.60 for each IQR ↑ in PFOS (which case definition?)

Outcome:

Risk of ADHD for PFOS in combined PFC model

Major Findings:

Principle component analysis showed combined PFCs accounted for 58% of variability for individual PFCs

For logistic regression including combined PFC variable and individual PFCs (incl PFOS), combined PFC variable sig, also PFOS (and PFOA, and PFHxS; but not PFNA) sig.

	Although combined PFCs appear to be pos assoc w risk ADHD, PFOS appears to be independently sig associated w ADHD.
--	--

Exposure Assessment: Stat Method: Major Limitations:
Humblet O1, Diaz-Ramirez LG, Balmes JR, Pinney SM, Hiatt RA. Environ Health Perspect. 2014 Oct;122(10):1129-33. doi: 10.1289/ehp.1306606. Epub 2014 Jun 6. Perfluoroalkyl chemicals and asthma among children 12-19 years of age: NHANES (1999-2008). Study Design: Cross-sectional Self-reported asthma status: - wheezing/whistling in chest past
12 mos - Yes to wheezing + still have symptoms = current asthma - physician-diagnosed asthma (ever) = ever asthma Comparison group for "current asthma" = never diagnosis of asthma Location: US Analysis by 3 models: - linear - In-linear - tertiles (In-linear model gives OR for doubling PFOS conc)

Population:	Outcome:
NHANES	OR for PFOS and Ever asthma
1999-2000; 2003-2004; 2005-2006;	
2007-2008	Major Findings:
12-19 yrs old	OR not sig <> 1.0 for any
N novor asthma – 1 550	model
N – never asthma = 1,559 N – ever asthma = 318	Outcome:
N – no wheeze past 12 mos = 1,660	OR for PFOS and wheeze
N – wheeze past 12 mos = 217	
N – no current asthma = 1,559 N – current asthma = 191	Major Findings:
N - Current astima - 131	OR not sig <>1.0 for any
Related Studies:	model
	Outcome:
	OR for PFOS and current
	asthma
	Major Findings:
	OR not sig <> 1.0 for any model

1			
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Impinen et al. 2018	Cord blood serum PFASs	Differences in health outcomes	Only controlled for sex in final adjusted models.
	concentrations	between boys and girls were	
Impinen, A., U. C. Nygaard, K. C.		tested using chi-square tests.	Did not control for other co-occurring environmental
Lodrup Carlsen, P. Mowinckel, K. H.		Binomial logistic regression	contaminants as potential confounders.
, ,	Population-Level Exposure:	models were computed for	
(2018). "Prenatal exposure to	Mean concentration (ng/mL)	binary health outcomes. PFAS	Other comments:
perfluoralkyl substances (PFASs)	PFOS=5.6	was log transformed. Count	Study population is complicated, number of cases
associated with respiratory tract	PFOA=1.8	data were analyzed using	versus controls is not stated.
infections but not allergy- and asthma-		Poisson regression.	Detection for the second of th
related health outcomes in childhood."			Potential for over-recruitment of children with BO into the
Environ Res 160 : 518-523.	PFNS=0.2	Estimates are based on	10- year study group.
Ctudu Daniana	PFUnDA=0.1	doubling of PFAS concentration	
Study Design:		Bonferroni correction was	
Nested prospective birth cohort study		applied to estimated p-values.	
Location:		Possible confounders examined	
Oslo, Norway		were sex, birth weight, birth	
		month, breastfeeding at 6	
Population:		months and at 12 months,	
Selected from healthy newborns in the		maternal smoking during	
Environment and Childhood Asthma		pregnancy, household smoking	
cohort recruited between 1992 and		at birth, at preschool age and at	
1993 (n=3754).		school age, parental asthma,	
N 044 and delegate the second		AD and allergic rhinitis, parental	
N=641 participants with exposure		education and household	
measured		income. Final models were	
Outcome Assessment:		adjusted for sex only.	
Assessed at 2 and 10 years of age		Outcome:	
and included reported obstructive		Asthma	
airways disease (wheeze by 10 years;		Major Findings:	
asthma by 2 and 10 years; reduced		Current @ 10y OR=1.14 (95%	
lung function at birth; allergic rhinitis		CI 0.84, 1.54)	
by 10 years), atopic dermatitis by 2		Ever @ 10y OR=1.32 (95% CI	
and 10 years, lower respiratory tract		0.89, 1.97)	
infections by 10 years.		,	
		Outcome:	

Collected from questionnaires at birth	Wheeze
and every 6 months until 2 years,	Major Findings:
parental interview and clinical	Before 3y, OR=1.26 (95% CI
investigation. At 10 years of age	0.83, 1.90)
clinical investigation including parental	After 3y, OR=1.08 (95% CI
interview	0.66, 1.77)
	Throughout, OR=1.41 (95% CI
	0.95, 2.08)
	Outcome:
	Severity of obstructive airways
	(2 years) OSS score 1 through
	12
	Major Findings:
	OSS 1-5 v. 0 OR=1.71 (95% CI
	1.16, 2.53)
	OSS 6-12 v. 0 OR=1.15 (95%
	CI 0.71, 1.84)
	Outcome:
	Reduced lung function at birth
	Major Findings:
	OR=0.86 (95% CI 0.43, 1.72)
	Outcome:
	Atopic dermatitis
	Major Findings:
	0-2 years, OR=1.15 (95% CI
	0.88, 1.52)
	10 years – ever OR=0.68 (95%
	CI 0.38, 1.20)
	Outcome
	Outcome:
	Rhinitis & IgE
	Major Findings:10 years ever,
	OR=1.05 (95% CI 0.74, 1.48)
	Rhinits ever and spes IgE>0.35
	OR=1.02 (95% CI 0.71, 1.47)
	At least one pos spes IgE>0.35
	OR=0.88 (95% CI 0.66, 1.17)
	Outcome:

Rhinoconjunctivitis Major Findings: at 10 years (ever), OR=1.02
(95% CI 0.72, 1.45)
Outcome: Allergic sensitization (skin prick test - SPT) Major Findings: Any pos 10 y OR=0.87 (95% CI 0.65, 1.17) SPT+ and/or sIgE>0.35 10 y OR=0.91 (95% CI 0.69, 1.19)
Outcome: Number of episodes of common cold by 2 years Major Findings: β=-0.03 (95% CI -0.08, 0.01)
Outcome: Number of episodes of lower respiratory tract infections by 10 years Major Findings: β=0.50 (95% CI 0.42, 0.57)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Innes et al. (2011) Am J Epidemiol. 2011 Aug 15;174(4):440-50. doi: 10.1093/aje/kwr107. Epub 2011 Jun 27. Innes KE, Ducatman AM, Luster MI, Shankar A. Association of osteoarthritis with serum levels of the environmental contaminants perfluorooctanoate and perfluorooctane sulfonate in a large Appalachian population. Study Design: Cross-sectional Assoc of osteoarthritis and PFOS (PFOA) in 6 water districts w known drinking water contamination by PFOA Baseline data 8/2005-8/2006 Medical history incl. diagnosis of osteoarthritis self-reported by questionnaire Location: Population: Subset of C8 cohort OH, WV.	Protein precip extraction, reverse- phase HPLC-triple quadrupole MS LOD? Population-Level Exposure: Mean PFOS = 23.5 ng/ml (SD = 16.2 ng/ml), median = 20.3 ng/ml (consistent w US pop – NHANES 4 th Rpt) Mean PFOA = 87.4 ng/ml (high – local contamination)	PFOS as categorical and continuous variables Co-variates Age BMI Age Gender Race/ethnicity Marital status SES Exercise prog (Y/N) Vegetarian diet (Y/N) Smoking Alcohol Menopausal status Hormone replacement Specific co-morbidity (by condition) Treatment for hypertension Treatment for hyperlipidemia Serum uric acid Serum cholesterol C-reactive protein Estradiol Other PFCs	No validation of self-reporting data for osteoarthritis Cross-sectional Other comments: Large N allowed detailed model w numerous covariates

Adults ≥ 21 yrs old at time of	Outcome:	
baseline → exclude rheumatoid		
arthritis → exclude missing data for	Risk of osteoarthritis	
PFOA or PFOS → exclude missing		
data for other co-variates of interest	Major Findings:	
$\rightarrow N = 49.432$	(adj model)	
Cases (osteoarthritis) = 3,731	DE00 :	
Controls = 45.701	PFOS sig neg assoc w risk of	
Related Studies:	osteoarthritis	
Related Studies.	n (trand) - 0.00001	
	p (trend) = 0.00001	
	(PFO sig pos assoc w risk of	
	osteoarthritis)	
	No evidence of modifying	
	effect of age or BMI for PFOS	
	assoc w osteoarthritis	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Jain (2013a) Jain RB.	Solid-phase extraction, HPLC-turbo ion spray, MS-MS	Linear regression Log transformed PFCs	Preg n is small, not permitting conclusions re adverse outcomes (cholesterol, triglycerides) for preg pop alone
Effect of pregnancy on the levels of selected perfluoroalkyl compounds for females aged 17-39 years: data	LOD? Population-Level Exposure:	<u>Co-variates</u>	Other comments:
from National Health and Nutrition Examination Survey 2003-2008. J Toxicol Environ Health A.	PFOS conc (median) - Pregnant	Ethnicity/race Pregnancy status (Y/N) Breast feeding (Y/N)	Reasonable consideration of co-variates in model. However, study is largely focused on factors assoc w PFOS (and PFC) levels rather than outcomes
2013;76(7):409-21. Study Design:	10.07 (95% CI = 7.90-12.20) ng/ml - Non-preg 12.11 (11.14-13.09)	Age (Age) ² NHANES cycle	Relatively small preg N precludes conclusions for preg-specific outcomes
Cross-sectional		Parity BMI Serum albumin	
NHANES 2003-4; 2005-6; 2007-8		Serum cotinine Serum creatinine	
Location: U.S. (nationwide)		Serum cholesterol Serum protein	
Population:		Backward elimination to achieve all terms w p ≤ 0.1	
US pregnant and non-preg women		Age as mandatory	
17-39 yrs old (Preg women oversampled in NHANES 2003-4 and 2005-6 (not 2007-8))		Outcome: (combined preg + non-preg) Serum cholesterol	
pregnant women in NHANES, age 17-39		Major Findings:	
N = 180 - 1 st trimes n = 32 - 2 nd trimes n = 59 -3 rd trimes n = 70		PFOS sig pos assoc w serum cholesterol	

Non-pregnant women in NHANES,	Outcome:	e:
ages 17-39 N = 899	(combined	ed preg + non-preg)
N = 899		
	Serum trigl	iglycerides
Related Studies:		
	Major Find	ndings:
	BE00 1	
		ot sig assoc w serum
	triglyceride	des

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Jain et al (2013b)	PFC (PFOS) analytical	Co-variates considered	Cross-sectional design
Jain DD	methodology for NHANES cited	Age Gender	Door not appear that DEOC analyses not controlled for
Jain RB. Association between thyroid profile	Thyroid function variables	Race/ethnicity	Does not appear that PFOS analyses not controlled for other PFCs, however, description of stat approach is
and perfluoroalkyl acids: data from	analytical methodology for	Smoking	ambiguous
NHNAES 2007-2008.	NHANES cited	Iodine status	ambiguous
Environ Res. 2013 Oct;126:51-9.	THI IN HALE ORCH	(deficient/replete)	Exposure statistics not reported (cannot be precisely
doi: 10.1016/j.envres.2013.08.006.	Population-Level Exposure:	C-reactive protein	derived from NHANES due to exclusions)
Epub 2013 Sep 18.	The second secon	BMI	,
	Not reported (but presumably	Fasting time before blood	Other comments:
Study Design:	close to NHANES 4th Rpt but	draw	
	differing by exclusions)	Calories in prev 24 hrs	The structure of the statistical analysis is not entirely
Cross-sectional			clear.
The second second second		Thyroid and PFOS (PFC)	
Thyroid function variables		variables log-transformed	Large n
TSH (thyroid stimulating hormone) FT4 (free thyroxine)		Each thyroid variable	Reliable (CDC) PFOS and thyroid variable analyses
TT4 (free tryfoxine)		examined separately.	Reliable (CDC) FFOS and trigiold variable analyses
FT3 (free triiodothyroxine)		examined Separatery.	
TT3 (total triiodothyroxine)		Interaction terms among age,	
TGN (thyroglobulin)		race, gender investigated a	
		priori and non-sig interaction	
Location:		terms eliminated	
US (nationwide)		PFCs as continuous variables	
Banadattan		(alternatively as categorical if	
Population:		continuous not sig)	
NHANES 2007-8		Outcome:	
≥ 12 yrs old		Outcome.	
		FT3	
<u>Exclusions</u>			
- Pregnant		Major Findings:	
- Diagnosed thyroid problems			
- TPOAb (thyroid autoantimbodies)		PFOS not sig assoc w FT3	
≥ 35 UI/mI			

- TgAB (thyroglobin antibody) ≥20	Outcome:
UI/mI - prescription thyroid med	FT4
- "Other" race/ethnicity category - missing data	Major Findings:
N = 1,540	PFOS not sig assoc w FT4
Related Studies:	Outcome:
	TT3
	Major Findings:
	PFOS not sig assoc w TT3
	Outcome:
	TT4
	Major Findings
	PFOS not sig assoc w TT4
	Outcome:
	TSH
	Major Findings:
	PFOS not sig assoc w TSH
	Outcome:
	TGN
	Major Findings:
	PFOS not sig assoc w TGN

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Ji et al.(2012) Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, Kim S, Choi K. Serum concentrations of major perfluorinated compounds among the general population in Korea: dietary sources and potential impact on thyroid hormones. Environ Int. 2012 Sep 15;45:78-85. doi: 10.1016/j.envint.2012.03.007. Epub 2012 May 9. Study Design: Nested cross-sectional	13C ₄ -internal PFOS standard HPLC-triple quadrupole-MS in electrospray negative ionization mode Recovery = 100.2 +/- 6.6% LOD = 0.04 ng/ml CV = 6.6% Population-Level Exposure: PFOS Median (inter-quartile range)	Co-variates considered Age Sex BMI PFOS, T4, TSH log- transformed < LOD as LOD/√2 Bonferroni correction for sig PFOS considered in model containing other PFCs Outcome:	Cross-sectional; Minimal co-variates considered Exposure ~50% of US (NHANES 4 th Rpt) N relatively small Other comments: Rel low exposure and rel low N result in low power Compared to other studies, few co-variates were controlled for in the models
Blood sampled July-Aug, 2008	M – 9.58 (6.54 -14.00) ng/ml	T4 (total)	
Demographic and dietary questionnaire T4 (total) TSH By commercial chemoluminescence immunoassay. CV ≤ 11% Location: Siheung, S. Korea	F – 7.16 (5.02-10.60) ng/ml	Major Findings: PFOS not sig assoc w T4 Outcome: TSH Major Findings: PFOS not sig assoc w TSH	

Population:		
Portion of previously established Siheung cohort		
≥ 12 yrs old		
Total = 633 M - 258 F - 375		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
otday.	Exposure Assessment.	Stat Metrica.	major Emitations.
Jiang et al. (2014)	Examination of linear and	PFOS conc and blood metrics	No information provided on subject recruitment
J. J	branched PFOS	log-transformed	
Jiang W, Zhang Y, Zhu L, Deng J.	- "n" specifies linear		No information on subject demographics (e.g., age,
Serum levels of perfluoroalkyl acids	- "iso" specifies branched	Outcomes based on Pearson	BMI)
(PFAAs) with isomer analysis and	- "mx" specified degree of	correlation coeff between	,
their associations with medical	branching	∑PFOS isomers, or	PFOS analysis not adj for PFOS or other PFCs
parameters in Chinese pregnant	- Nm (e.g., 4m) refers to carbon on	proportion PFOS isomers;	,
women.	which branch occurs	and hematological/serum	Other comments:
Environ Int. 2014 Mar;64:40-7. doi:		chem parameters	
10.1016/j.envint.2013.12.001. Epub	Solid phase extraction		Moderate N
2013 Dec 20.	Samples spiked with labeled	Outcome:	
	internal stds		Correlation analysis rather than regression
Study Design:		WBC count	
	HPLC-MS/MS analysis		No information on subject recruitment or demographics
Pregnant women		Major Findings:	
8-12 wks gest (1st trimest)	RSD (CV):	(unless specified PFOS forms	
	- linear PFOS < 5%	not sig correlated w outcome)	
samples collected 8-9/2012	- branched PFOS isomers <10%		
(NOTE: text specified serum	(except 4m-PFOS, 1m-PFOS, and	1m-PFOS sig pos corr w	
samples collected, but whole blood	∑m ₂ -PFOS < 30%)	WBC count	
was used to obtain RBC count)	LOD (-II DEA - 0.4.40.0/)	$(r = 0.2, p \le 0.05)$	
	LOD (all PFAs = 0.1-19.0 ng/ml	4 8500 1	
Subject recruitment??	PFOS detected in 100% of	4m-PFOS sig pos corr w	
Subject demographics??		WBC count	
Homotological accomments/services	samples	$(r = 0.187, p \le 0.05)$	
Hematological assessments/serum chem:	Population-Level Exposure:	2 . Em DEOS ein nan ann	
- WC count	Fopulation-Level Exposure.	3 + 5m-PFOS sig pos corr w WBC count	
- RBC count	Mean n-PFOS = 4.75 ng/ml	$(r = 0.183, p \le 0.05)$	
- Hb	Mean iso-PFOS = 0.74 ng/ml	$(1 - 0.163, p \le 0.03)$	
- platelet	Mean ∑PFOS = 7.32 ng/ml	% n-PFOS sig neg corr w	
- total bilirubin		WBC couont	
- total protein	(NOTE: PFOS conc appear to be	$(r = -0.254, p \le 0.01)$	
- albumin	consistent w US F pop (NHANES	(1 = 0.204, p = 0.01)	
- glucose	4 th Rpt))		
- AST	1 77		
- ALT	n-PFOS = 66.7% of ∑PFOS		

Location:	Outcome:
	RBC count
Tianjin, China	Major Findings:
Population:	(unless specified PFOS forms
N = 141	not sig correlated w outcome)
Related Studies:	n-PFOS sig pos corr w RBC count
Neiated Ottudies.	$(r = 0.205, p \le 0.05)$
	iso-PFOS sig pos corr w
	RBC count
	$(r = 0.284, p \le 0.01)$
	3 +5m-PFOS sig pos corr w RBC count
	$(r = 0.172, p \le 0.05)$
	Outcome:
	Hb
	Major Findings:
	(unless specified PFOS forms
	not sig correlated w outcome)
	n-PFOS sig pos corr w Hb
	$(r = 0.279, p \le 0.01)$
	iso-PFOS sig pos corr w Hb $(r = 0.325, p \le 0.01)$
	1m-PFOS sig pos corr w Hb
	$(r = 0.233, p \le 0.01)$

4m-PFOS sig pos corr w Hb (r = 0.235, p ≤ 0.01)
3 + 5m-PFOS sig pos corr w Hb (r = 0.258, p ≤ 0.01)
\sum m ₂ -PFOS sig pos corr w Hb (r = 0.182, p ≤ 0.05)
Outcome:
Platelet count
Major Findings:
(unless specified PFOS forms not sig correlated w outcome)
Iso-PFOS sig pos corr w platelet count $(r = 0.207, p \le 0.05)$
Outcome:
Glucose
Major Findings:
PFOS not sig corr w glucose
Outcome:
Total protein
Major Findings:
PFOS not sig corr w total protein

	Outcome:	
	Albumin	
	Major Findings:	
	PFOS not sig corr w albumin	
	Outcome:	
	Total bilirubin	
	Major Findings:	
	\sum m ₂ -PFOS sig pos corr w total bilirubin (r = 0.201, p ≤ 0.05)	
	Outcome:	
	AST	
	Major Findings:	
	PFOS not sig corr w AST	
	Outcome:	
	ALT	
	Major Findings:	
	PFOS not sig corr w ALT	

Deference and Childre Decision	Evneouve Massacras	Deguite	Comment
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Joensen et al. (2009)	¹⁴ C ₄ -PFOS internal isotope spike	PFOS < LOD = 0 ng/ml	Relatively small N
Joensen et al. (2009) Joensen UN, Bossi R, Leffers H, Jensen AA, Skakkebaek NE, Jørgensen N. Do perfluoroalkyl compounds impair human semen quality? Environ Health Perspect. 2009 Jun;117(6):923-7. doi: 10.1289/ehp.0800517. Epub 2009 Mar 2. Study Design: Nested case-control (high testosterone, low testosterone) Subset of cohort selected on basis of testosterone level Semen and blood samples	14C ₄ -PFOS internal isotope spike HPLC-MS-MS tandem triple quadrupole w electro-spray ionization Population-Level Exposure: Median PFOS = 24.5 ng/ml (consistent w US pop (NANES 4 th Rpt))	PFOS < LOD = 0 ng/ml Sperm conc, semen vol, total sperm count adj for duration of ejaculation abstinence period Sex hormone variables adj for hour of sampling PFOS comparison Goup 1 vs.2 investigated for BMI, smoking status Semen and hormone variables (except morph) Intransformed Assoc analyzed as PFOS and PFOA separately and as PFOS + PFOA	Relatively small N Few co-variates examined Other comments: Few co-variates and small N
collected			
		Outcome:	
Analysis of repro hormones: -Testosterone -Estradiol -Sex hormone binding globin (SHBG) -Luteinizing hormone (LH) -Follicle stimulating hormone (FSH -Inhibin B -Free androgen index (testosterone x 100/SHBG)		Sperm morphology Major Findings: Number and percent morph normally spermatozoa sig neg assoc with sum of PFOS + PFOA, but not sig for PFOS alone	
Semen analysis: -vol by wt -sperm conc			

total anarm count	Outcome:	
-total sperm count	Outcome.	
-percent motile spermatozoa		
-sperm morphology	Sperm vol, conc, total count,	
1 -1	motility,	
Location:	mounty,	
Location.	Market Programme	
	Major Findings:	
Copenhagen, Denmark		
	not sig assoc w PFOS (or	
Denulation.		
Population:	PFOS + PFOA) serum conc	
Military recruits (compulsory) 2003	Outcome:	
Med age = 19 yrs		
mod ago 10 yil	Sex hormones:	
N 405		
N = 105	(Testosterone, Estradiol,	
	SHBG, LH, FSH, Inhibin B,	
- <u>Group 1</u>	Free androgen index	
High testosterone (median = 31.8		
	Major Findings	
nmol/L, range = 30.1-34.8)	Major Findings:	
N = 53		
- Group 2	PFOS (and PFOS + PFOA)	
Low testosterone (median = 14.0	not sig assoc w any sex	
nmol/L, range = 10.5-15.5)	hormones	
· · · · · · · · · · · · · · · · · · ·	nomones	
N = 52		
Thawed serum samples analyzed		
2008		
2000		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Joensen et al. (2013) Joensen UN1, Veyrand B, Antignac	Solid-phase extraction HPLC-MS	Repro hormones (and ratios bet hormones and serum vol) - In-transformed	Cross-sectional study
JP, Jensen MB, Petersen JH,	PFOS LOD = 0.05 ng/ml		Other comments:
Marchand P, Skakkebaek NE,	LOQ = 0.15 ng/ml	Sperm conc, total sperm	
Andersson AM, Le Bizec B,		count – cubic root	Cross-sectional design
Jørgensen N.	Population-Level Exposure:	transformed	
PFOS	Mara BEOO	Daniel de la constitución de la	Moderate N
(perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with	Mean PFOS conc = 8.46 ng/ml (median = 7.79 ng/ml)	Progressively motile values – squared	Small effects (βs)
semen quality, in healthy men. Hum Reprod. 2014 May 8.	PFOS detected in 100% samples	Morphologically normal counts = sq root transformed	Good statistical control
Study Design:		PFOS as continuous var in linear regress	
Cross-sectional			
2008-9		Co-variates incl if sig predictor of individual outcome and → Δ outcome >	
247 M undergoing compulsory		10%	
Danish military physical randomly		- BMI in models for T, E,	
selected		SHBG, FAI, T/LH, T/E	
Abetinoppe from circulation for 49		- smoking in models of T and FT	
Abstinence from ejaculation for 48 hrs		(BMI and smoking incl in all	
1113		models of all repro hormones)	
Blood sample at time of semen		- abstinence time in models of	
collection		semen vol, conc., total count	
FSH, LH and SHBG (sex hormone		Co-variates considered but	
binding globin) by		not included	
fluoroimmunoassay		- time of day of blood sample - ethnicity	
		- alcohol	

Total testosterone (T) and estradiol	- in utero exposure to	
(E) by radioimmunoassay	smoking	
	- previous/current disease	
Inhibin-B by double antibody	- recent fever	
enzyme immunometric assay	- recent medication	
FAI (free androgen index) as T x 100/SHBG	Outcome:	
	Serum/sperm parameters	
FT (free testosterone) from T and SHBG	Major Findings:	
Semen parameters	PFOS not sig assoc with	
- semen volume	any serum or sperm	
- sperm conc (in duplicate)	parameters	
- total sperm count (volume x conc)	(vol, conc, total count,	
- % progressively motile sperm	progressively motile, morph	
- % motile sperm (induplicate) - morphology (two analysts)	normal, total normal count)	
morphology (two analysts)	Outcome:	
Location:	outdome.	
	testosterone	
Denmark		
	Major Findings:	
Population:	, ,	
	PFOS sig neg assoc w	
M undergoing compulsory military	serum testosterone	
physical	β = -0.010	
N = 247	Outcome:	
Mean age = 19.6 yr	FAI	
Related Studies:	Major Findings:	
Joensen et al. (2009)	PFOS sig neg assoc w serum FAI	
	β = -0.20	

Outcome:
FT
Major Findings
PFOS sig neg assoc w serum FT β = -0.016
Outcome:
FT/LH
Major Findings
PFOS sig neg assoc w serum FT/LH β = 0.022
Outcome:
FAI/LH
Major Findings:
PFOS sig neg assoc w serum FAI/LH β = -0.025
Outcome:
T/LH
Major Findings:
PFOS sig neg assoc w serum T/LH β = -0.016

	Outcome:	
	Other sex hormones	
	Major Findings:	
	PFOS not sig assoc w: E, T/E, SHBG, LH, FSH, inhibin-B, inhibin-B/FSH	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Wethou.	Major Limitations.
Jørgensen et al. (2014)	PFOS by LC-MS	Fecundity ratio (FR)	PFOS analyses not adj for PFOA (or other PFCs)
02.gon.con et a (201.)		([probexposure group	although PFOS corr w PFOA – r _s = 0.50
Jørgensen KT, Specht IO, Lenters	PFOS LOD = 0.2 ng/ml	conceiving/time]/[probref	
V, Bach CC, Rylander L, Jönsson		groupconceiving/time])	Moderate N for individual countries
BA, Lindh CH, Giwercman A,	PFOS detected in 100% of	Calculated:	
Heederik D, Toft G, Bonde JP.	samples		Measurement of serum PFOS during preg may not
Perfluoroalkyl substances and time		Country specific tertiles	represent serum conc at time of conception despite adj
to pregnancy in couples from	PFOS CV (dup samples) = 8%		for gest age
Greenland, Poland and Ukraine.		Country specific continuous	
Environ Health. 2014 Dec	Population-Level Exposure:	log-transformed	Time point for attempting preg may not be precisely
22;13:116. doi: 10.1186/1476-			defined
069X-13-116	F - PFOS pooled median conc =	Pooled sample continuous	Other comments.
	10.6 ng/ml	log-transformed	Other comments:
Study Design:	- Greenland median = 17.17 ng/ml	Co variates (E)	Use of F and M serum PFOS
Cross sessional moultiple selecute	- Poland median = 6.98 ng/ml	Co-variates (F) - maternal age	Use of F and M serum PFOS
Cross-sectional, multiple cohorts	- Ukraine median = 3.98 ng/ml	- gest wk at interview	Control for reverse causation by primaparous sens
Enrollment during anti-natal visits	(NOTE: PFOS conc for Greenland	- smoking	analysis
3/2002-2/2004	~2.2 x US F	- parity	dialysis
3/2002-2/2004	Poland consistent w US F	- maternal BMI	Reasonable N
Questionnaire and blood sample at	Ukraine ~ 52% of US F	- country (pooled analysis)	Trodostidato it
enrollment	(NHANES 4 th Rpt))	(poored analysis)	Multiple country cohorts w diff exposure levels
	(11111120 1 1101)	Logistic regression – OR for	, , , , , , , , , , , , , , , , , , , ,
Exclusion:		infertile (TTP > 13 mo)	
- pregnant while using birthcontrol		Same vars as analysis of	
(not time-to preg (TTP))		fecundity ratio	
- no information on TTP			
- no blood sample		Co-variates (M)	
- primaparous		- paternal age	
		- paternal BMI	
Questionnaire info:		- maternal age	
- Starting Time = intercourse w/out		- country (pooled sample)	
birth control in order to conceive			
- How long from Starting Time until			
preg?			

Location:

Greemland, Poland (Warsaw), Ukraine (Kharkiv)

Population:

INUENDO cohort

≥ 18 yrs old Born in country of study

Total N (F) = 938

- Greenland = 448
- Poland = 203
- Ukraine = 287

Total (M spouses) = 401

- Greenland = 160
- Poland = 146
- Ukraine = 95

Related Studies:

Outcome:

FR (fecundity ratio)

Major Findings:

FR **not sig assoc** w maternal PFOS for pooled or individual countries

Restriction to primaparous (N = 59% of total) – FR **not sig assoc** w maternal PFOS for pooled or individual countries

Outcome:

OR infertility

Major Findings:

OR infertility **not sig > 1.0** for any tertile, or for continuous analysis for pooled or individual countries

Restriction to primaparous (N = 59% of total) – OR infertility **not sig > 1.0** for any tertile, or for continuous analysis for pooled or individual countries

Outcome:

Assoc TTP w PFOS for M

Major Findings:

↑ TTP **not sig assoc** w M serum PFOS

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Kielsen et al (2016) Kielsen K, Shamim Z, Ryder LP, Nielsen F, Grandjean P, Budtz-Jørgensen E, Heilmann C. Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to perfluorinated alkylates. J Immunotoxicol. 2016;13(2):270-3. doi: 10.3109/1547691X.2015.1067259. Epub 2015 Jul 16. Study Design: Prospective Booster vaccination w. tetanus-diphtheria vaccine — antibody response during 1 month follow-up Serum PFOS 10 d post-vaccination Pre-vaccine Ab determination. Post vaccine Ab determined day-2, 4, 7, 10, 14, 30 Ab measurement by ELISA Location: Copenhagen, Denmark	On-line solid-phase extraction, HPLC-tandem MS Population-Level Exposure: Median PFOS conc = 9.52 ng/ml	PFOS and Ab concs. log-transformed Relationship of Ab and PFOS conc over time estimated assuming 4-d lag in Ab response, (log)linear increase 4-10 d and constant > 10 d Model calculates △ model prediction of Ab conc for doubling PFOS conc Co-variates in model Age Sex (co-variates allowed to affect intercept and linear slope day 4-10) Outcome: Increase in diphtheria Abs Major Findings: Doubling of PFOS predicted to account for 11.90% decrease in expected linear increase (d 4-10) p = 0.044 (adj for sex and age → slightly stronger effect)	Small n Simultaneous background exposure to a variety of PFCs, PFOS yielded second strongest effect (PFHxS had stronger effect, but borderline sig). Other comments: Samll n, but longitudinal study w close temporal monitoring PFOS effect could not be clearly dissociated from other PFCs (PFOS effect not controlled for other PFCs)

Population:	(NOTE: PFHxS accounted for 13.31% decrease, but borderline sig (p = 0.055)	
Healthy adult hospital staff volunteers (n = 12)	Outcome:	
with no history of tetanus- diphtheria booster vaccination in	Increase in tetanus Abs	
prev. 5 yrs	Major Findings:	
Childhood initial vaccination	Not sig assoc. Doubling of PFOS predicted	
median age = 37.9 yrs	to account for 3.59% decrease in expected linear	
50% M	increase (d 4-10)	
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Method.	wajor Limitations.
Kim et al. (2011)	HPLC-triple quadruple MS in	Thyroid hormones log-	Limited information on statistical methodology
14111 Ct di. (2011)	electrospray neg ion mode	transformed	Elimica information on statistical methodology
Kim S, Choi K, Ji K, Seo J, Kho	olocuropray neg len mede	in an oronnea	Small N
Y, Park J, Kim S, Park S, Hwang	Quantification w ¹³ C-PFOS stds	Adj for	
I, Jeon J, Yang H, Giesy JP.			Overlap of effects between PFOS and ΣPFCs makes
Trans-placental transfer of	All > LOD for PFOS	T3:	determination of PFOS-specific effects uncertain
thirteen perfluorinated		Maternal age	·
compounds and relations with	Population-Level Exposure:	Gestational age	Low exposure relative to US pop
fetal thyroid hormones.			
Environ Sci Technol. 2011 Sep	Median PFOS (IQR) (ng/ml)	T4 and TSH:	
1;45(17):7465-72. doi:		Maternal age	Other comments:
10.1021/es202408a. Epub 2011	Maternal blood:	Gest age	
Aug 12.	(mean)	Maternal BMI	Small N
	All – 2.93 (2.08-4.36)	A salada (sa BEGG sa I	Otaria da la
Study Design:	00 00	Analysis for PFOS and	Statistical methodology not well described
Cross sectional	20-29 yrs old – 2.02 (1.57-3.66)	ΣPFCs	Low evectors
Cross-sectional	30-39 yrs old – 2.91 (2.25-4.16)	Outcome:	Low exposure
Blood samples collected -	30-39 yrs 0id – 2.91 (2.23-4.10)	Outcome.	
Most (n = 27) during 3^{rd} trimest,	40-49 yrs old – 7.85 (n = 2)	T3 - maternal serum	
$N = 7$ during late 2^{nd} trimest	40 40 yi3 old 7.00 (ii = 2)	To maternal seram	
14 = 7 daming late 2 tillinest	NOTE – exposure levels < 50%	Major Findings:	
Cord blood	those reported for US women (CDC-	(adj model)	
- Total n = 43	NHANES 4 th Rpt)	(33)	
- From matched maternal-child	1 /	Sig neg correlated w PFOS	
pairs	Fetal cord blood	(p < 0.05)	
N = 35		Sig neg correlated w ΣPFCs	
	All – 1.26 (0.81-1.82)	(p < 0.05)	
Breast milk at hospital at ~1 mo.			
Post-partum	Maternal 20-29 yrs – 0.94 (0.5-1.19)	Outcome:	
	Maternal 30-39 yrs – 1.52 (1.08-	T3 – fetal serum	
Questionnaire:	2.01)		
Current/prev preg history	Maternal 40-49 yrs – 1.95 (n =2)	Major Findings:	
Med history		(adj model)	
Demographic parameters		Non oig pag as related	
Infant sex		Non-sig neg correlated w PFOS and ΣPFCs	
		FFUS and ZPFUS	

Thyroid hormone analysis data in Suppl Information	Outcome: T4 – maternal serum
Location:	
Souel, Cheongju, and Gumi, S. Korea	Major Findings: (adj model)
Population:	Non-sig neg correlated w PFOS and ΣPFCs
Preg women in three hospitals 8/2008-3/2009	Outcome:
	T4 – fetal serum
N = 44	Major Findings: (adj model)
Related Studies:	Non-sig neg correlated w PFOS and ΣPFCs
	Outcome:
	TSH – maternal serum
	Major Findings: (adj model)
	Non-sig neg correlated w PFOS and ΣPFCs
	Outcome:
	TSH – fetal serum
	Major Findings: (adj model)
	Non-sig neg correlated w PFOS and ΣPFCs

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Knox et al. (2011)	Protein precipition, reverse-phase HPLC-triple quadrupole MS	Regression analyses	Cross-sectional
Knox SS, Jackson T, Frisbee SJ,		Separate analysis of M, F and	↓ T3 uptake w ↑ total T4 suggests ↑ TBG levels.
Javins B, Ducatman AM.	LOQ = 0.5 ng/ml	two age groups ≥ 20-50, >50	However, TBG was not measured
Perfluorocarbon exposure,		yrs old	
gender and thyroid function in the	Population-Level Exposure:		Other comments:
C8 Health Project.		Log-PFOS as quintiles	
J Toxicol Sci. 2011	(NOTE; no overall statistic reported)		Large N
Aug;36(4):403-10.		Co-variates:	
	Mean (by water district) = 20.97-	Age	
Study Design:	26.15 ng/ml	Serum estradiol	
		Alcohol	
Cross-sectional	(NOTE: corresponds to 75-90 th		
	percentile US distribution (NHANES	Stratification of analyses by	
Analysis of clinical parameters by	4 th Rpt)	BMI (< ≥30)	
<u>LabCorp</u>			
Total T4			
T3 uptake (TBG saturation)		Outcome:	
TSH			
Serum albumin		Total T4	
Location:		Major Findings:	
WV and OH		PFOS sig pos assoc w T4 For M and F and all ages in	
Population:		study	
C8 Health Project		Sig higher in F compared to	
≥ 20 yrs old		M	
No thyroid dieseae			
,			
N = 50,044			

M = 25,026 F = 25, 018	Outcome:	
	TSH	
Related Studies:	Major Findings:	
	PFOS not sig assoc w TSH for M or F for any age	
	Outcome:	
	T3 uptake	
	Major Findings:	
	PFOS sig neg assoc w T3 uptake in M, F all age groups	
	Sig lower in F compared to M	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
otady.	Exposure Assessment.	otat metrioa.	major Emitations.
Kristensen et al. (2013)	Column-switching LC/MS	PFOS in tertiles:	Low exposure compared to US
(====)		Low – 0.1-3.0 ng/ml	
Kristensen SL, Ramlau-Hansen	LOQ 0.05 ng/ml	Med – 18.0-23.6	Retrospective/recall for determination of age at
CH, Ernst E, Olsen SF, Bonde		High – 23.6-53.1	menarchy
JP, Vested A, Halldorsson TI,	Population-Level Exposure:		,
Becher G, Haug LS, Toft G.		<u>Outcomes</u>	Other comments:
Long-term effects of prenatal	Median maternal PFOS = 3.6 ng/ml	Age at menarchy	
exposure to perfluoroalkyl	(IQR = 2.8-4.8 ng/ml)	Menstrual cycle length	Longitudinal design
substances on female		Number of follicles	
reproduction.	(NOTE: exposure ~ 1/2 US F	Level of reprod hormones	Relatively small n for contraceptive and non-
Hum Reprod. 2013	NHANES 4 th Rpt)	(total testosterone, SHBG,	contraceptive groups
Dec;28(12):3337-48. doi:		DHEAS, FSH,	
10.1093/humrep/det382. Epub		LH, FAI (free androgen	Relatively low median PFOS exposure compared to US
2013 Oct 15.		index), estradiol,	pop., but relatively large range (high PFOS 23.6-53.1
Otro In Dani's		AMH)	ng/ml)
Study Design:		DEGG	
Longitudinal pasted ashart		PFOS regression analyses w and w/out PFOA entered in	
Longitudinal, nested cohort- mother/daughter		model	
mother/daugnter		model	
Enrollment in cohort at 30-wk		Co-variates	
routine visit		(selected a-priori based on	
Todali To Viole		literature and included in	
Questionnaire:		models w/out prior testing of	
Age		effect on models)	
Parity		,	
Height		Age of menarchy:	
Pre-preg wt		Maternal preg smoking	
Smoking		(Y/N)	
Alcohol		Social class	
		ВМІ	
Blood sample at enrollment (preg		Menstrual cycle length;	
wk 30)		reprod hormones; follicle	
		number:	
Perinatal data from birth cert and		Maternal smoking (Y/N)	
hosp records		Social class	
		Daughter's BMI	

2008 Follow-up of F offspring at 20 yrs old N = 436

Questionnaire:

- Age at menarchy
- History of hormonal contraception

N = 367

Clinical examination of daughters Partial exclusions (for some analyses) for:

- menstrual cycle length (?)
- reproductive hormone levels (?)
- Follicle number (?)
- Breast feeding
- Signs of premature ovarian failure
- incomplete data (incl. contraceptive hormones)

Final N varied by outcome (147-246)

Location:

Denmark

Population:

1988-9 Danish Pregnancy Cohort Original n = 1,212

Daughters' mean age = 19.6 yrs old (sd = 0.4 yrs)

Related Studies:

Daughter's smoking Menstrual cycle phase at exam (FSH LH, estradiol)

Analyses stratified on contraceptive hormone use at exam (except age at menarchy) – FSH, LH and estradiol analyses on nonusers only

Outcome:

Age at menarchy

Major Findings:

PFOS **not sig** assoc w age at menarchy (Low PFOS n = 110

Med PFOS n = 113High PFOS n = 114)

Outcome:

Reproductive parameters

Cycle length
Total testosterone

SHBG FAI DHEAS AMH

Number of follicles/ovary

FSH LH estradiol

Major Findings:	
PFOS not sig assoc w any reprod parametrs (contraceptive (n = 50-66) and non-contraceptive (n = 17-30) users)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
otday.	Exposure Assessment.	otat metrioa.	major Emitations.
Kvist et al. (2012)	Labeled internal standard	Y:X chromosome ratio	41% exclusion rate from original collected sample pool
,		calculated as mean +/- sd	,
Kvist L1, Giwercman YL, Jönsson	Analysis by LC/MS/MS		Relatively small overall N and individual country n
BA, Lindh CH, Bonde JP, Toft G,		Analysis of assoc w	(Note; exact n for individual countries not provided)
Strucinski P, Pedersen HS,	LOD?	continuous PFOS in linear	
Zvyezday V, Giwercman A.		regression.	Relationships are not consistent across countries or by
Reprod Toxicol. 2012	Population-Level Exposure:	Also, MANOVA w categorical	type of analysis (continuous regression, categorical
Dec;34(4):644-50. doi:	(mean (95% CI) PFOS conc)	(quartile) PFOS conc.	MANOVA)
10.1016/j.reprotox.2012.09.007.	0	Analoga CH Interest	(although note that Greenland exposure much larger
Epub 2012 Oct 5.	Greenland (Inuit) – 51.65 ng/ml	Analysis w full dataset	than Poland or Ukraine)
Serum levels of perfluorinated compounds and sperm Y:X	(48.04-55-26)	And w data set w extremem and influential data points	Other comments:
chromosome ratio in two	Poland – 12.12 ng/ml (17.19-19.05)	removed	Other comments.
European populations and in Inuit	Foland = 12.12 hg/mi (17.19-19.03)	Temoved	Relatively small N (and individual n's)
from Greenland.	Ukraine – 8.20 ng/ml (7.52-8.88)	Mandatory confounders	Treatively Small W (and individual 113)
mom Groomana.	Okraine 0.20 fig/fill (7.02 0.00)	included	High non-participation rate possibly resulting in bias
Study Design:		Age	Tright for participation rate possisty resulting in state
		Abstinence time	Lack of consistency across populations (although note
Blood and semen samples		Alcohol intake	exposure diff)
collected (48 hr sexual		PCB-153	
abstinence)			
		Outcome:	
Analysis of PFOS in serum			
		Assoc PFOS and Y:X	
Lifestyle factors by interview		chromosome ratio	
Charm V and V shramasama		Major Findings.	
Sperm X and Y chromosome microscopic analysis by		Major Findings:	
fluorescent-bound nucleic acid		Linear regression analysis	
hybridization probes		<u>Lineal regression analysis</u>	
Tryonal Zation probos		Full dataset	
Location:			
		Pooled data:	
		PFOS sig assoc (pos) w Y:X	
		ratio (p = 0.026, r^2 = 0.016	

Population:

M spouses of pregnant women in Greenland (Inuit), n = 201; Warsaw, Poland, n = 198; and Kharkiv, Ukraine, n = 208 3/2002-2/2004

Exclusions

Insufficient semen (n = 98) Insufficient sperm (n = 95) Lack of exposure data (n = 55)

Final N = 359

Related Studies:

Individual Countries:

PFOS **not sig assoc** w Y:X ratio

Dataset excluding outliers, influential pts

PFOS **not sig assoc** w Y:X ratio for pooled or individual data sets

MANOVA

Full dataset

Pooled data:

Sig diff in Y:X ratio between 2^{nd} and 4^{th} quart of PFOS (p = 0.006)

Pos trend Y:X ratio (p = 0.017)

Individual Countries:
Inuit – **Sig diff** in Y:X ratio between 2nd-4th and 3rd-4th quart PFOS exposure **Neg trend** (p = 0.028)

Dataset excluding outliers, influential pts

Pooled data:

Sig diff in Y:X ratio between 2^{nd} and 4^{th} quart of PFOS (p = 0.043)

Pos trend in Y:X ratio (p = 0.039)

Individual Countries: Inuit –**Neg trend** (p = 0.044)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
La Rocca et al. (2014) La Rocca C, Tait S, Guerranti C,	PFOS measurement in whole blood Extraction with liquid-liquid	Diff between fertile and infertile F by Wilcoxon-Mann-Whitney test (non-parametric	PFOS measurement in whole blood (vs. serum) is unusual. Unclear how this could affect exposure assessment
Busani L, Ciardo F, Bergamasco B, Stecca L, Perra G, Mancini FR, Marci R, Bordi G, Caserta D, Focardi S, Moscarini M,	extraction, HPLC- electrospray ionization-MS PFOS LOD = 0.4 ng/ml	equivalent of 2-sample t-test) Bonferroni adj for multiple comparisons	Small overall N and smaller for each geog area. This is particularly a limitation given the geog stratification of the analysis.
Mantovani A. Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile	< LOD = LOD/2 Population-Level Exposure:	Analyses stratified by geographic area	No indication of co-variate adj of statistical analysis PFOS analysis not controlled for PFOA
women from different Italian areas. Int J Environ Res Public Health.	Mean PFOS conc for total pop: - infertile = 3.5 ng/ml - fertile = 2.2 ng/ml	Outcome: Assoc of PFOS with	Other comments:
2014 Sep 29;11(10):10146-64. doi: 10.3390/ijerph111010146.	Median (both categories) = < 0.4 ng/ml	fertile/infertile status Major Findings:	Unusual PFOS analysis in whole blood Small overall and area N's
Study Design:		inajer i mamger	
Population data from Italian Nat'l Inst Statistics	(NOTE: mean PFOS conc = 29-36% of US F (NHANES 4 th Rpt))	PFOS not sig assoc w fertility status for any geographic study area	No apparent co-variate adjustment of statistical analysis
1/2009-12/2011			
Location:			
Italy Rome ("metropolitan area), Ferrara ("urban area"), Sora ("rural area")			
Population:			
Women			

Total:		
- 110 infertile, 43 fertile Metropolitan:		
- 49 infertile; 13 fertile		
Urban:		
- 38 infertile, 22 fertile		
Rural: 23 infertile, 8 fertile		
20 mortile, o fertile		
Fertile:		
- regular menstrual cycle		
 spontaneous preg in prev yr stopped breastfeeding ≥ 6 mos 		
before entry into study		
Infertile: - diagnosis of primary infertility, or		
unexplained infertility		
- enrolled in study prior to		
infertility treatment		
Inclusion criteria:		
- residence in one of study areas		
- 18-40 yrs old		
- BMI < 30		
- PBMC (periph blood mononuclear cells) in normal		
range		
Exclusion criteria: - occupational exposure to PFOS		
(or other study substs)		
- smoking		
- vegetarian diet		
- BMI > 30 - evidence of inflammatory or		
infectious disease		
Related Studies:		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Liew et al. (2014)	Solid-phase extraction	1 st trimester blood sample used preferentailly	Different times of maternal blood sample during gest
Am J Epidemiol. 2014 Sep 15;180(6):574-81. doi:	LC-MS	PFOS as continuous var w	Other comments:
10.1093/aje/kwu179. Epub 2014 Aug 19.	Population-Level Exposure:	and w/out log-transform	Case-control design
Prenatal exposure to perfluoroalkyl substances and the	PFOS median maternal serum conc. by sex of child:	Also quartiles based on control disturb	Adj of PFOS for all PFCs analyzed
risk of congenital cerebral palsy in children.	Boys	Risk ratios from GLM w	Clear case ascertainment
Liew Z, Ritz B, Bonefeld- Jørgensen EC, Henriksen TB,	- cases = 28.90 ng/ml - controls = 27.60	Poisson distrib	Blood samples from either 1st or 2nd tri-mest
Nohr EA, Bech BH, Fei C, Bossi R, von Ehrenstein OS, Streja E,	Girls - cases = 27.50	Generalized additive models to examine non-linear assoc	CP is likely to be an umbrella rubric for several diff conditions
Uldall P, Olsen J.	- controls = 26.20	bet PFOS and CP	Conditions
Study Design:	(NOTE: PFOS med conc ~ 3.5 x US F (NHANES 4 th Rpt))	Analyses stratified by sex, term and pre-term birth status	
Case-control cohort study	PFOS detected in 100% of samples	Adjustment for potential	
Two blood samples for most, 1st and 2 nd trimester	Troo detected in 100 % of Samples	confounders - maternal age at birth	
Inclusion criteria:		- parity	
- singleton births		- smoking	
- telephone interview 14-19 wks t		- alcohol - education	
- blood sample during 1st or 2nd tri-mest		- maternal psychiatric illnesses	
		- child's sex	
Source pop = 83,389 mother- child pairs			

Location:

Denmark

Population:

Danish National Birth Cohort (1996-2002)

Source pop = 83,389 motherchild pairs

Cerebral palsy (CP) cases in source pop identified from Danish Nat'l CP Re N = 156

Controls

Random selection from source pop

N = **550** M = 440

F = 110

Related Studies:

Co-variates included

- fish consumption
- organic food consumption
- housing attributes
- bisphenol-A exposure
- phthalate exposure

Co-variates investigated, but not included

- gest wk blood sampling
- birth yr
- father's age at birth
- maternal pre-preg BMI
- season of conception
- maternal preg illness

Outcome:

CP - Boys

Major Findings:

All Boys (n = 86) Risk ratio **sig > 1.0** (= 1.7 (1.0-2.8)

Risk ratio **sig >1.0** for quarts 1 and 3 (but not quart 2)

Adj for other PFCs did not sig affect outcome

Boys born at term (n = 65) Risk ratio **sig >1.0** (= 2.1 (1.2-3.8)

Outcome:	
CP – Girls	
Major Findings:	
All Girls (n = 66) Risk ratio not sig > 1.0	
Girls born at term (n = 45) Risk ratio not sig > 1.0	

Reference and Study Design	Exposure Measures	Results	Comments
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Liew et al. (2015)	Plasma samples	Risk ratio by generalized	Most PFOS analyses from 1st trimester sample
Liou 7 Ditz D von Ehronatain	Solid phase sytraction	linear models - PFOS continuous concln-	129/ from 2nd trimoctor comple possible expecture
Liew Z, Ritz B, von Ehrenstein OS, Bech BH, Nohr EA, Fei C,	Solid phase extraction	transformed	13% from 2 nd trimester sample – possible exposure misclassification
Bossi R, Henriksen TB, Bonefeld-	LC-MS	- Gen. additive models to	IIIIsciassification
Jørgensen EC, Olsen J.		investigate non-linear	Moderate N in general
Attention deficit/hyperactivity	LLOQ PFOS = 0.28 ng/ml	relationships	Weighted toward boys because of higher risk of autism,
disorder and childhood autism in	100% PFOS analyses > LOD		however, results in low power for girls
association with prenatal		OR by unconditional logistic	
exposure to perfluoroalkyl	Population-Level Exposure:	regression	Other comments:
substances: a nested case-	Median PFOS conc:	- categorized in quartiles	Case-control
control study in the Danish National Birth Cohort.	- controls = 27.40 ng/ml	Potential confounders in final	Case-control
Environ Health Perspect. 2015	- ADHD cases = 26.80 ng/ml	model (a priori)	Mostly 1st trimmest exposure analysis – unclear as to
Apr;123(4):367-73	- autism cases = 25.40 ng/ml	- maternal age at delivery	predictive value
, , , , , , , , ,	g,	- parity	Also, possible confounding by partial 2 nd trmest
Study Design:		- SES	sampling
		- smoking	
Nested case-control		- alcohol	
Recruitment at 6-12 wks gest		- self-reported psychiatric illness	
Recruitment at 6-12 wks gest		- gest wk of blood draw	
Exclusion		- birth yr	
- not fluent in Danish		- sex	
- non-singleton births			
		Multiple PFAS model	
Telephone interviews		considered	
- 2 x during preg			
- ~ 12 wk; - timing of 2 nd interview?		Outcome:	
- 2 postpartum (dates?)		Juicome.	
(200021)		ADHD	
1-2 blood samples (1st			
and/or 2 nd trimester)			
		659	

- 87% of samples analyzed were	Major Findings:	
from 1st trimester	(adj model)	
0'1-61-41	DD with the 4.0	
Singleton births	RR not sig > 1.0	
ABUB II II II I	No quart sig > 1.0 (1st quart	
ADHD, autism diagnosis through	as ref)	
Danish Nat'l Hosp reg based on		
10.7 yr follow-up of birth cohort	Outcome:	
Cases and controls matched on	autism	
sex	duisiii	
ook		
Location:	Major Findings:	
Denmark	(adj model)	
Population:	RR not sig > 1.0	
·	No quart sig > 1.0 (1st quart	
Danish National Birth Cohort	as ref)	
1996-2002		
60% participation		
ADHD - N = 220		
- M = 179		
- F = 41		
Autism - N = 220		
- M = 187		
F = 33		
control - N = 550		
- M = 440		
- F = 110		
Related Studies:		
Troidiod Ordanos.		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
otady.	Exposure Assessment.	Ctat Metrica.	major Emitations.
Lin et al. (2009)	Solid-phase extraction, HPLC,	Stratification of analyses by	Corss-sectional
,	negative ion turbo-ion spray	age	
Lin CY, Chen PC, Lin YC, Lin LY.	ionization tandem MS	- 12-20 yrs	PFOS analyses not controlled for PFOA or other PFCs
Association among serum		- > 20 yrs	•
perfluoroalkyl chemicals, glucose	Isotope-labeled internal standards		Incomplete alcohol consumption data for adolescents
homeostasis, and metabolic		Multiple linear reg models for	
syndrome in adolescents and	LOD(?)	assoc PFOS w glucose,	Other comments:
adults.		insulin, HOMA-IR	
Diabetes Care. 2009	Population-Level Exposure:		Large N
Apr;32(4):702-7. doi:		OR for metabolic syndrome	
10.2337/dc08-1816. Epub 2008	Mean (SE)	by logistic regression	Thorough consideration of co-variates (although
Dec 29.	12-20 yrs = 22.42 ng/ml (1.15)		incomplete alcohol data for 12-20 yrs)
	> 20 yrs = 24.29 ng/ml (0.99)	<u>Covariates – linear regression</u>	
Study Design:		- Age	
Onne continual		- Sex - Race	
Cross-sectional			
Data from NILLANES 1000 2000		- Smoking - Alcohol	
Data from NHANES 1999-2000; 2003-2004		- Household income	
2003-2004		- Waist meas	
Serum total cholesterol and		- CRP	
triglycerides by enzymatic assay		- Insulin/glucose/HOMA	
tingly defides by enzymatic assay		- Medications	
HDL cholesterol by dedicated		(antihypertensive,	
instrument (?)		antidepressive,	
,		antihyperglycemic	
Serum C-reactive protein (SCRP)		71 07	
by latex enhanced neflalometry		Covariates - logistic	
		regression	
Plasma insulin by		As above + other components	
immunoendymatic assay		of metabolic syndrome	
Insulin resistance (HOMA-IR) by		Outcome:	
homeostasis model assessment			
(HOMA2)		Glucose	

Metabolic syndrome determined	Major Findings:
based on:	(fully adj models)
- Waist measurement (↑)	
Serum triglyceride (↑)	12-20 yrs
- serum HDL (\(\psi\))	Glucose not sig assoc w
- BP (SBP, DBP) (↑) (or anti-	PFOS
hypertensive med)	
Typertensive medy	> <u>20 yrs</u>
Location:	Glucose not sig assoc w
Location.	PFOS
US	PFUS
05	Outcome:
Banada Can	Outcome.
Population:	La avella
	Insulin
US sample (NHANES)	
	Major Findings:
≥ 12 yrs old, blood sample for	(fully adj models)
PFCs (3,695) →	
Morning exam, fasting glucose,	12-20 yrs
insulin, triglyceride data (1,788)	Insulin not sig assoc w
→ (',' '5')	PFOS
No other missing data →	
N = 1,443	>20 yrs
12-20 yr old n = 474	Insulin sig pos assoc w
> 20 yrs old n = 969	PFOS (p < 0.01)
> 20 yrs old rr = 909	PFO3 (β < 0.01)
Deleted Ctudios	Outcome
Related Studies:	Outcome:
-	
Fisher et al. (2013) (Canada)	HOMA-IR
	Major Findings:
	(fully adj models)
	12-20 yrs
	HOMA-IR not sig assoc w
	PFOS

> <u>20 yrs</u> HOMA-IR sig pos assoc w PFOS (p < 0.01)
Outcome:
β cell function
Major Findings: (fully adj models)
<u>12-20 yrs</u>
β cell function not sig assoc w PFOS
> <u>20 yrs</u>
β cell function sig pos assoc w PFOS (p < 0.01)
Outcome:
Metabolic syndrome
Major Findings: (fully adj model)
<u>12-20 yrs</u>
OR for metabolic syndrome (waist) sig < 1.0 (OR = 0.37, p < 0.05)
OR for full metabolic syndrome and other components not sig diff from 1.0

	> 20 yrs	
	OR for metabolic syndrome (HDL cholesterol) sig > 1.0 (OR = 1.61, p < 0.05)	
	OR for full metabolic syndrome and other components not sig diff from 1.0	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lin et al. (2011) Lin CY, Lin LY, Wen TW, Lien GW, Chien KL, Hsu SH, Liao CC, Sung FC, Chen PC, Su TC. Association between levels of serum perfluorooctane sulfate and carotid artery intima-media thickness in adolescents and young adults. Int J Cardiol. 2013 Oct 9;168(4):3309-16. doi: 10.1016/j.ijcard.2013.04.042. Epub 2013 May 7 Study Design: Cross-sectional Cohort of hypertensive (and non-hypertensive) school age children drawn from school pop-based urine screening (gr 1-12) 1992-2000 2006-2008 follow-up → 707 hypertensive, 690 non-hypertens Demographic, medication, income by interview Blood draw after ≥ 8 hr fasting	PFOS (PFCs) by UPLC-triple quadrupole MS PFOS LOQ = 0.22 ng/ml < LOQ (1.7% for PFOS) = LOQ/2 Population-Level Exposure: PFOS median conc (total) = 8.93 ng/ml (range (max-min) = 67.14 ng/ml) M = 11.82 ng/ml (range = 67.14) F = 8.10 ng/ml (range = 28.34) Note: - PFOS conc consistent w US pop (NHANES 4th Rpt)	Linear regression models with categorical PFOS (< 50 th , 75 th -89 th , > 90 th percentiles) Ln-transform of adiponectin, CRP, HOMA-IR, triglyceride to produce normal distrib Co-variates Age Gender Smoking Alcohol Income Waist circum SBP Total cholesterol HOMA-IR creatinne Outcome: Glucose homeostasis Major Findings: Glucose homeostasis not sig assoc w PFOS Outcome: Adiponectin	Major Limitations: Small N (n for 12-19 yrs old is only 78) PFOS analyses not adjusted for other PFCs Other comments: Small n – especially for adolescents raises issues of power to detect relatively subtle associations

Triglycerides, plasma cholesterol,	Major Findings:	
LDL, HDL, glucose by		
autoanalyzer	Adiponectin levels not sig	
autoanaryzer		
	assoc w PFOS	
Adiponectin and Insulin by		
commercial kit	Outcome:	
Commercial Kit	Catoonic.	
C-reactive protein (CRP) by	Lipid profile	
enzyme-immunoassay		
	Major Findings:	
HOMA-IR calculated		
110MA-IIX Calculated	_	
	Lipid profile not sig assoc w	
BP measured twice	PFOS	
Lisialet vet DMI	Outcome	
Height, wt → BMI	Outcome:	
Metabolic syndrome	Inflamatory markers	
determination based on ≥ 3 of:	,	
- ↑ waist circum	Maiar Findings	
	Major Findings:	
- ↑ serum triglyceride		
- ↓ HDL	Inflammatory markers not	
- ↑ SBP or ↑DBP or anti-	sig assoc w PFOS	
hypertensive med	319 43300 W 1 1 00	
- ↑ glucose or anti-hyperglycemic		
med		
Location:		
Location.		
Tapei, Taiwan		
Population:		
i opulation.		
_ , , , , ,		
Exclusion for insuff vol, budgetary		
constraints, diabetes meds \rightarrow N =		
287		
M = 121		
F = 166		
I .		

Hypertensive = 17 Non-hypertens = 270		
12-19 yrs, n = 78 20-30 yrs n = 209		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Questionnaire: Alcohol Smoking Measurement: - Wt, height → BMI - BP → ↑ BP (or reported BP med)		Major Findings: (adj model) FT4 not sig assoc w PFOS (for total N or for subgroups – smoking, BMI, hypertension)	

Blood sample (when?):	Outcome:	
- Fasting glucose (or reported	TOU	
insulin med→ diabetes - Thyroid (immunoluminescence	TSH	
assay)	Major Findings:	
- TSH (CV = 2.09%, 3.34% 2)	(adj model)	
- FT4 (CV = 1.37%, 4.51% <u>2</u>)		
Leastion	TSH not sig assoc w PFOS	
Location:	Outcome:	
Tapei, Taiwan	Outcome.	
., .,	OR for TSH > normal range	
Population:		
	Major Findings:	
School children (gr 1-12)	OD TCH - normal range not	
participants in pop-wide urine screening	OR TSH > normal range not sig > 1.0 for PFOS conc	
Sorcering	categories	
Nested cohort from urine		
screening 1992-2000 w and w/out		
↑BP		
↑BP		
Nested cohort – $707 \rightarrow \mathbf{n} = 40$		
Normal BP		
Nested cohort – 6,390 w → n = 505		
505		
M - n = 214		
F - n = 337		
40.40		
12-19 yrs old – n = 212 20-30 yrs old – n = 339		
20-30 yrs old - 11 = 339		
Related Studies:		

Lin et al. (2011)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure / toosesmont.		major Emmadorio.
Lin et al. (2013b)	Serum PFOS	To correct for multiple	Moderate N
		comparisons among 4	
Lin CY, Lin LY, Wen TW, Lien	UPLC-triple quadrupole MS	PFCs, Bonferoni correcton	Authors identify limitation resulting from original urine
GW, Chien KL, Hsu SH, Liao CC,		applied to p-value (α =	screening cohort consisting of subjects w abnormal
Sung FC, Chen PC, Su TC.	LOQ = 0.22 ng/ml	0.025) for sig	urinalysis (proteinuria, glucosuria, hematuria). However,
Association between levels of		, ,	it is not clear if all subjects were abnormal in urine
serum perfluorooctane sulfate	< LOQ (1.6% of PFOS samples) =	Linear regression models	screen. Does not appear that urine screen positives will
and carotid artery intima-media	LOQ/2		necessarily bias CIMT outcomes.
thickness in adolescents and		PFOS treated as categorical	
young adults.	Population-Level Exposure:	$(< 25^{ht}, 25^{th} 50^{th} - 75^{th}, > 75^{th})$	Other comments:
Int J Cardiol. 2013 Oct		percentile)	
9;168(4):3309-16. doi:	(geom mean (95% CI on geom		Moderate N – particularly for adolescents
10.1016/j.ijcard.2013.04.042.	mean))	assoc between [SBP, BMI,	
Epub 2013 May 7	_ , , , , , , , , , , , , , , , , ,	LDL, CRP, triglycerides	PFOS investigated as individual factor and adjusted for
	Total = 7.85 ng/ml (5.13-11.78)	(TG), HOMA-IR] and PFOS	other PFCs
Study Design:	M 0.07 pg/ml/2.24.42.70	(PFCs)	Don many mat have a series loss as a set to conjugate size. This many
Once continued	M = 8.97 ng/ml (3.24-12.72)	La transfermention	Pop may not be normal w respect to urinalysis. This may
Cross-sectional	F = 7.21 ng/ml (4.41-11.75)	Ln-transformation (for CRP, HOMA-IR, TG)	introduce a bias
Interview:	12-19 yrs = 7.25 ng/ml (2.44-23.69)	(IOI CRP, HOWA-IR, TG)	
Age	20-30 yrs = 8.21 ng/ml (6.27-34.71)	Co-variates:	
Gender	20-30 yrs = 0.21 fig/fill (0.27-34.71)	Gender	
Med history		Age	
Household income		Smoking	
		SBP	
Questionnaire:		BMI	
Alcohol		LDL	
Smoking		CRP	
-		HOMA-IR	
Measurement:			
- Wt, height → BMI		For analysis of assoc CIMT	
- BP → ↑ BP (or reported BP		and PFOS, PFOS analyzed	
med)		separately and adj for other	
- Heart rate		PFCs	
- cholesterol			

- triglycerides	Logistic regression	
- HĎĹ		
- LDL	OR of ↑ CIMT w 50% ↑ in	
- glucose	PFOS conc	
- insulin (commercial kit)		
- C-reactive protein	Outcome:	
(chemoluminescence-		
immunoassay)	Cardiovascular risk factors	
- HOMA-IR (glucose x insulin)	(SBP, BMI, LDL, TG, UA,	
- Diabetes (↑ glucose ordiabetes	HOMA-IR)	
med)		
- Uric acid (UA) (reported but not	Major Findings:	
in Methods)		
iii iiioaiioao)	Cardiovascular risk factors	
CIMT (Carotid artery intima-	not sig assoc w PFOS	
media thickness)		
- sub-clinical marker of	Outcome:	
atherosclerosis		
- by ultrasonography	CIMT – linear regression	
- computer assisted, 150	l mied regressien	
measurements of 10 mm section	Major Findings:	
of common carotid artery	(fully adj model)	
- repeat measurement of record	(*****, *******************************	
of 30 random samples after 2 wks	PFOS individual model	
→ 98.5-98.8% coeff correlation	<u> </u>	
reliability	CIMT sig pos assoc w	
	PFOS	
Apiloprotein E (APOE) genotypes		
measured by sequence specific	PFOS model adj for other	
PCR	PFCs	
Location:	CIMT sig pos assoc w	
	PFOS	
Taipei, Taiwan		
*		

Population:

School children (gr 1-12) participants in pop-wide urine screening

Nested cohort from urine screening 1992-2000

– 790 → full PFC analysis only →

N = 644

M - n = 250F - n = 394

12-19 yrs old - n = 23120-30 yrs old - n = 413

Related Studies:

PFOS individual model stratified by subpopulations (as indicated)

Sex – CIMT sig pos assoc w PFOS for F CIMT not sig assoc w PFOS for M

Age – CIMT sig pos assoc w PFOS for 12-19 yrs CIMT not sig assoc w PFOS for 20-30 yrs

BMI – CIMT sig pos assoc w PFOS for BMI = < 24 kg/m²

CIMT **not sig assoc** w PFOS for BMI > 24 24 kg/m²

Smoking – CIMT **sig pos assoc** w PFOS

for never smoked CIMT **not sig assoc** w PFOS

for has smoked

HOMA-IR – CIMT not sig assoc w PFOS

for HOMA-IR ≤

0.93

CIMT sig assoc

w PFOS for

HOMA-IR >

0.93

APOE genotype – CIMT sig assoc w
PFOS for
E2 carrier and
E3/E3
CIMT not sig assoc w
PFOS for
E4 carrier
Outcome:
OR of ↑ CIMT w 50% ↑ in PFOS – logistic regression
Major Findings:
OR sig > 1.0 (2.93) for
APOE E2 carriers OR sig > 1.0 (1.84) for
APOE E3/E3

Reference and Study Design	Exposure Measures	Results	Comment
	Exposure Assessment:	Stat Method:	Major Limitations:
Lin (2014)	CDC analytical proc	<u>Co-variates</u>	Cross-sectional design
		- age	
	PFOS LOD = 0.2 ng/ml	- race	Self-reported fracture
PC, Lin CY.		- BMI	
	Population-Level Exposure:	- smoking	Other comments:
serum perfluorooctane sulfate	Geom mean PFOS serum conc	- alcohol - osteoarthritis	Lorgo N
concentration and bone mineral density in US premenopausal	Geom mean PFOS serum conc	- daily use of prednisone or	Large N
	M = 19.23 ng/ml	cortisone	Careful statistical design and analysis
	F = 12.09	- prior osteoporosis	Carerui statisticai design and analysis
Jun;99(6):2173-80. doi:	1 - 12.00	treatment	
	< 40 yrs old = 11.95	u odinoni	
	< 60 = 15.22	Separate models for:	
	≥ 60 = 21.13	- men	
Study Design:		- women non-menopausal	
		- women menopausal	
Cross-sectional			
		NHANES sample weights	
F ≥ 12 yr old		AA DO LO	
D al a al a a al a a a (DVA)		Multiple linear regression	
Dual x-ray absorptiometry (DXA) measurement over lumbar and		And	
spine for bone mineral density		Logistic regression of OR for self-reported fractures w unit	
(BMD)		increase in In- PFOS	
(BIVID)		morease m m 11 00	
Self-reported fractures			
		Outcome:	
Exclusion:			
- pregnant		Total lumbar spine BMD	
- radiographic contrast material		(g/cm ²)	
use in past 7 d			
- nuclear med study past 3 d		Major Findings:	
- wt > 300 lb		M. James and J. DAAD at 4	
Leastion		M – lumber spine BMD not	
Location:		sig assoc w PFOS	
US			

	F- Non-menopausal –
Population:	lumber spine BMD sig neg
	assoc w PFOS
Premenopausal women in	sig for trend across
NHANES	quartiles
(2005-6; 2007-8)	·
	F - Menopausal – lumber
N = 2339 (w PFOS and DXA	spine BMD not sig assoc w
measurement)	BMD
Related Studies:	Outcome:
	Total hip BMD (g/cm²)
	Major Findings:
	M – hip BMD not sig assoc
	w PFOS
	F- Non-menopausal – hip
	BMD not sig neg assoc w
	PFOS
	E. Marrier and The DMD
	F - Menopausal – hip BMD
	not sig assoc w BMD
	Outcome:
	OR for bone fracture as
	function of unit incr in In-
	PFOS
	Major Findings
	Major Findings:
	For all groups (M. E. non
	For all groups (M, F-non-
	menopausal/menopausal)
	OR not sig <>1.0

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lind et al. (2014)	Rapid protein precip,automated	Logisitic regression for assoc	Cross-sectional design
	column-switching UPLC-MS/MS	PFOS and prevalent diabetes	
Lind L, Zethelius B, Salihovic S,	Electrospray interface in neg ion	(OR)	Low-moderate n for diabetes
van Bavel B, Lind PM.	mode	PFOS as linear and squared	
Circulating levels of perfluoroalkyl		forms	Confined to spec, elderly pop.
substances and prevalent	LOD (all PFAS) = 0.01-0.17 ng/ml		
diabetes in the elderly.		For continuous analysis adj	Other comments:
Diabetologia. 2014	Population-Level Exposure:	for:	
Mar;57(3):473-9. doi:	Mana DEOC alcomo ano (linear)	- Sex	Moderate n for diabetes
10.1007/s00125-013-3126-3.	Mean PFOS plasma conc (linear) =	- serum cholesterol	Decemble statemelysis
Epub 2013 Dec 14.	13.2 ng/ml	- triglycerides - BMI	Reasonable stat analysis
Study Dociany	(NOTE adult geiom mean PFOS =	- smoking	
Study Design:	9.7 ng/ml (NHANES 4rh Rpt))	- exercise	
Cross-sectional	9.7 Hg/IIII (NI IANES 4III Kpt/)	- energy intake	
01033 Sectional		- alcohol	
Fasting ≥ 8 hrs prior to sampling		- education	
i doming = o mo prior to camping		ouddailoi.	
Questionnaire:		Linear regression for assoc	
- med history		PFOS w proinsulin/insuln	
- edu		ratio and HOMA-IR	
- exercise		(analysis for non-diabetic	
- smoking		subjects only)	
- regular medication			
- diagnosis of diabetes (Y/N)		Bonferroni correction for p-	
		values for prevalent diabetes	
Measure plasma proinsulin and		due to 7-PFAS, $\alpha = 0.0071$	
insulin by ELISA			
Butter Parker Parker		No Bonferroni correction for	
Proinsulin/insulin ratio as		proinsul/insulin ratio or	
measure of insulin secretion		HOMA-IR (i.e., α = 0.05)	
HOMA-IR as index of insulin		(i.e., u = 0.05)	
resistance			
TOSISTATIOE			
			1

Location:	Outcome:	
Upsala, Sweden	Prevalent di	iabetes
Population:	Major Findi (adj model)	ings:
PIVUS cohort 2001-2004 Age = 70 yrs	OR for asso	
N = 1, 016	Outcome:	
N w diabetes = 119 (mean duration diabetes = 8.9 yrs)	Proinsulin/ir	nsulin ratio
Related Studies:	Major Findi (adj model)	
	PFOS not s proinsulin/in	sig assoc w sulin ratio
	Outcome:	
	HOMA-IR	
	Major Findi (adj model)	
	PFOS not s HOMA-IR	sig assoc w

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Wethod.	Major Limitations.
Looker et al. (2014)	Solid-phase extraction, reverse-	Antibody titer ↑ post-	Moderate N
2001.01.01.01.1)	phase HPLC, isotope dilution	vaccination = post vaccine -	Wodorato 14
Looker C1, Luster MI, Calafat	tandem MS	pre-vaccine (value log-	PFOS analyses not controlled for PFOA
AM, Johnson VJ, Burleson GR,	tandom me	transformed)	
Burleson FG, Fletcher T.	PFOS LD = 0.2 ng/ml	l anoronnou)	Influenza vaccinations in prev yrs was found to be a sig
Influenza vaccine response in	1 · · · · · · · · · · · · · · · · · · ·	Ratio Post-vaccination/Pre-	determinant of these outcomes, but was self-reported.
adults exposed to	Inter-day precision (CV for 60 repeat	vaccination (value log-	This raises possibility uncertainty w respect to control
perfluorooctanoate and	measurements) = 7.3-7.6%	transformed)	by this variable. However, unclear if this is directional
perfluorooctanesulfonate.	, , , , , , , , , , , , , , , , , , , ,	,	,
Toxicol Sci. 2014 Mar;138(1):76-	Intra-day precision (CV 5	PFOS analyzed as log-	Other comments:
88. doi: 10.1093/toxsci/kft269.	measurements) = 4.9-5.8%	transformed and categorical	
Epub 2013 Nov 27.	, , , , , , , , , , , , , , , , , , , ,	(quartiles)	Study is well designed with clear cut determination of
	Population-Level Exposure:	(1	outcomes. Co-variattes appear to be reasonably
Study Design:	The second secon	Linear regression	complete. The N is moderate
	Log ₁₀ median PFOS conc = 0.96 =		·
Longitudinal (?)	9.12 ng/ml (linear)	Co-variates:	
	IQR = 5.75-14.45 ng/ml (linear)		
2010- 2011		- Age (obligatory)	
		(as non-linear cubic spline)	
Part of C8-Science Panel		- Gender (obligatory)	
Interview of subset 2010		Retained if p in model ≤ 0.05:	
		- smoking	
Participants (not already		- previous (> 3 mos) influenza	
vaccinated) received influenza		vaccine	
vaccine (FLUVIRIN)		- day of serum collection	
, ,		- co-existing medical	
1st serum sample collected at		conditions	
vaccination		- anti-inflamatory/pain-relief	
		meds	
2 nd serum sample 21 +/- 3 days		- mobility (no. of address	
post-vaccination		since 1970)	
Serum testing for influenza-			
specific antibody by			
hemaglutination inhibition (HI)			

assay for A/H3N2, A/H1N1 and	Logistic regression	
influenza B		
	OR of achieving	
Influenza-specific titer measured	Seroconversion (4 x ↑ in titer)	
milderiza specific titel measured	seroprotection (≥ 40 x	
Landing		
Location:	absolute titer ↑)	
	_	
WV, OH	Co-variates retained in model	
	if p < 0.05	
Population:	Age (obligatory) as	
•	categorical variable (10 yr	
Adult (> 18 yrs) C8- study	bands)	
participants who had not received	ballas	
influenza vaccine in prev 3 mos	OR of self-reported	
inilidenza vaccine in prev 3 mos		
	cold/influenza in past yr	
N = 403 (titer studies)	 Age (obligatory), gender 	
N = 755 (self-reported	(obligatory)	
cold/influenza in past yr)	 smoking, alcohol, BMI, 	
	diabetes, educatin –	
	considered, but rejected	
Related Studies:	concidered, but rejected	
Tolatou otaaloo.	Outcome:	
	Outcome.	
	Antibody titor As antibody titor	
	Antibody titer ↑; antibody titer	
	ratio post-vaccine	
	Major Findings:	
	(adj model)	
	Titer ↑ or ratio not sig assoc	
	w PFOS conc	

Outcome:
OR seroconversion
Major Findings: (adj model)
OR for seroconversion not sig assoc w PFOS conc
Outcome:
OR seroprotection
Major Findigns:
OR for seroprotection not sig assoc w PFOS conc
Outcome:
OR self-reported cold/influenza in past yr
Major Findings:
OR for self-reported cold/influenza past yr not sig assoc w PFOS conc

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lopez-Espinosa et al. (2011) Lopez-Espinosa MJ, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal D, Ducatman A, Leonardi G. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol. 2011 Oct 1;45(19):8160-6. doi: 10.1021/es1038694. Epub 2011	"Liquid chromatography separation" (HPLC?)-tandem MS Precision +/- ~10% in multiple replicates LOD = 0.5 ng/ml < LOD = LOD/2 (n = 11) Population-Level Exposure: Median PFOS conc M – 20 ng/ml	Assoc of pubertal status and PFOS by logistic regression Covariates considered Age at survey (mandatory) BMI Height Annual household family income Ethnicity (non-Hisp white/other) Smoking (ever Y/N) Alcohol (ever Y/N) Time of sample collection	Cross-sectional For F, uncertainty regarding measurement of onset of puberty due to: 1. Confounding of estradiol conc by hormone contraceptive use; 2. Self-reporting of onset of menarche. Authors consider menarche basis more reliable. 3. Variable offset between PFOS sample and puberty Potential reverse causation bias for F. Blood loss due to menstruation would result in lower PFOS conc. Later menarche would allow greater retention of PFOS – later menarche → ↑ PFOS; early menarche → ↓ PFOS
May 2.	F – 18 ng/ml	(mo, hr)	However, does not appear to have parallel for M
Study Design: Cross-sectional C8 Science Panel enrolled 8/2005-7/2006 Location: WV, OH Population: C8 Science Panel	(NOTE : levels are 2-3 x US levels for 12-19 yr old (NHANES 4 th Rpt))	Only age included (BMI and height in sensitivity analyses) PFOS as categorical (quartiles) and continuous Intransformed PFOS analysis adj for PFOA in model Outcome: M Age at puberty assoc w PFOS	Other comments: Large N Objective hormone measure + self-reported menarche data Reasonable statistical controls Large effect level
8-18 yrs old at recruitment N = 6,007 (F = 2.931 M = 3076)		Major Findings: (full adj model – incl PFOA) PFOS sig assoc w delay in onset of puberty for quartiles	

Hormone determination in clinical lab

Estradiol (LOD = 7 pg/ml) , total testosterone (LOD = 10 ng/dL) by electrochemiluminesscent immunoassay

Free testosterone by radioimmunoassay (LOD = 0.2 pg/ml)

F w estradiol < LOD = 149 M w total, free testosterone < LOD = 158, 608

Questionnaire:

- Residential history
- Employment history
- Lifestyle (?)
- Family medical history
- Health variables (?)
- F age at first menstruation (don't know → exclusion)

M - free testosterone levels dichotomized as indicators of sexual maturation

F – estradiol levels confounded by contraception medication. Therefore, sexual maturation based on estradiol cutoff or menarche

Related Studies:

3 and 4 (1st Q as ref) and for continuous model.

Delays for Q3 (compared to Q1) = 118, 122 days based on total, free testosterone Delays for Q4 (compared to Q1) = 187, 123 days (total, free testosterone Delay for In unit PFOS in continuous model = 128, 76 d

Outcome:

F Age at puberty assoc w PFOS

Major Findings:

(fully adj model incl PFOA)

Based on age at menarche:
PFOS sig assoc w delay in
puberty for Q3,
Borderline sig assoc w delay
for Q4
PFOS sig assoc w delay for
continuous model

Delay for Q3 (compared to Q1) = 117 d Delay for In unit PFOS in continuous model = 94 d

Based on estradiol levels
PFOS sig assoc w delay in
puberty for Q3 and Q4 (1st Q
as ref)
And for continuous model

Delay for Q3 (compared to Q1) = 175 d Delay for Q4 (compared to	
Q1) = 268 d Delay for In unit PFOS in continuous model = 76 d	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Lopez-Espinosa et al. (2012a)	Liquid chromatography (HPLC?) – MS	Co-variates considered	Cross-sectional
Lopez-Espinosa MJ, Mondal D,		Age	Other comments:
Armstrong B, Bloom MS, Fletcher	PFOS precision +/- 10% w multiple	Sex	
T.	replicates	Race/ethnicity	Large N
Thyroid function and perfluoroalkyl acids in children	LOD = 0.5 ng/ml	BMI Month of sampling	Reasonable statistical controls
living near a chemical plant.	< LOD (PFOS = 16) as LOD/2	Household income	Treasonable statistical controls
Environ Health Perspect. 2012	1202 (1.00 13) 4.0 20272	Ever smoking	Measurement of clinical and sub-clinical endpoints
Jul;120(7):1036-41. doi:	Population-Level Exposure:	Ever alcohol	
10.1289/ehp.1104370. Epub			Note, however, that the magnitude of endpoints assoc w
2012 Mar 27.	Median PFOS = 20 ng/ml	Co-variates employed	PFOS were small, ≤ 2%
Study Design:	(IQR = 15-28 ng/ml)	(> 10% change when omitted)	
Study Design.	(Note; ~ 3 x most recent NHANES	Age	
Cross-sectional	levels for 12-19 yrs old (NHANES 4 th	Sex	
	Rpt))	Month of sampling	
TSH by			
electrochemiluminescence immunosassay		TSH In-transformed	
		Linear regression of TSH or	
total T4 (TT4) by cloned enzyme		<u>T4</u>	
immunodonor assay		(exclusion of clinical	
Sub-clinical hypothyroidism		thryroidism)	
defined as TSH > age-specific		Regression w continuous In-	
normal range <i>and</i> TT4 w/in		transformed PFOS (stratified	
normal range		by sex and age group)	
(N = 365)			
Code aliminal home of the code Process		Regression w (non-	
Sub-clinical hyperthyroidism defined as TSH < age-specific		transformed) categorical (quartile) PFOS concs.	
normal range and TT4 w/in		(quartile) FFO3 concs.	
normal range		PFOS analyzed w and w/out	
(N = 78)		adj for other PFCs	

Clinical hypo/hyperthyroidism
based on self-reported diagnosis
or medication
(n = 61)

(NOTE : In addition to measured
serum PFOS in 1-17 yr olds at
time of entry into study, Lopez-
Espinosa et al. also modeled in

utero PFOS exposure. As this is not empirical, those results are

Location:

WV, OH

Population:

2005-6 C8 cohort

not reported here)

Children 1-17 yrs

N = 10,657 w serum PFOS measurement

(N =4, 713 matched to maternal serum PFC)

Related Studies:

Logistic regression

OR for:

- Clinical hypohyperthyroidism
- sublinical hypo-
- sublicinical hyper-

Outcome:

TSH level

Major Findings: (adj model)

PFOS **borderline sig pos assoc** w TSH level for 4th Q (1st Q as ref) for full cohort

For M, PFOS **sig pos assoc** w TSH levels 1-5 yrs old

(NOTE: results for PFOS similar in models adj for PFOA)

Outcome:

TT4 level

Major Findings: (adj model)

PFOS **sig pos assoc** w TT4 level for 4th Q (1st Q as ref) for full cohort

PFOS sig pos assoc w TT4 for full cohort And for 6-10 yrs and > 10 yrs – continuous analysis
For M, PFOS sig pos assoc w TT4 for full cohort And for >10 yrs
For F, PFOS sig pos assoc w TT4 for full cohort And for 6-10 yrs and >10 yrs
(NOTE: results for PFOS similar in models adj for PFOA)
Outcome:
Clinical thyroid disease/hypothyroidism
Major Findings:
OR for clinical thyroid disease or hypothyroidism not sig for PFOS
Outcome:
Sub-clinical hypothyroidism
Major Findings:
OR for sub-clinical hypothyroidism not sig for PFOS

	Outcome:	
	Sub-clinical hyperthyroidism	
	Major Findings:	
	OR for sub-clinical hyperthyroidism not sig for PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Louis et al. (2012) Louis GM, Peterson CM, Chen Z, Hediger	Ion-pair extraction w ¹³ C ₄ - PFOS spike Recovery 98-140%	OR for endometriosis relative to PFOS by logistic regression	Small N for endometriosis (190, operative + 14, non-operative)
ML, Croughan MS, Sundaram R, Stanford JB, Fujimoto VY, Varner MW, Giudice LC, Kennedy A, Sun L, Wu Q, Kannan K	RSD for duplicate analyses < 5%	PFOS conc log-transformed	Moderate N for non-endometriosis (283, operative + 113, non-operative)
Perfluorochemicals and endometriosis: the ENDO study	HPLC-MS + tandem	<u>Co-variates</u>	LOD/LOQ not reported for PFOS (or other PFCs)
Epidemiology.2012ov;23(6):799- 805.doi:10.1097/EDE.0b013e31826cc0cf.	electrospray MS (?)	Age (<i>a priori</i>) BMI (<i>a priori</i>)	Other comments:
Study Design:	PFOS 100% > LOQ LOD (LOQ) ?	Investigated in sens	N (depending on category) was small to moderate
Case-control	Population-Level Exposure:	analyses: - Parity (conditioned on gravidity)	Categorization of status (operative positive, operative neg, non-operative pos, non-operative neg, normal pelvis, non-normal pelvis) is complicated and not clearly
Baseline interview by nurses 2 mos before surgery (cases) or MRI (controls)	PFOS geom mean conc (endometriosis – operated,	- restriction of endometriosis to stage 3 and 4 - restricting cases to post-	explained and makes interpretation relative to cases and controls difficult
Std anthropometric assessment	non-operated) = 6.11-7.41 ng/ml	operative finding of (otherwise) normal pelvis	
Non-fasting blood sample			
MRIs read by 2 radiologists	(Note: consistent w US F pop (NHANES 4 th Rpt))	Outcome: OR for endometriosis per	
Location:		log-unit change in PFOS	
Salt Lake City, UT San Francisco, CA		(operative sample, non- operative sample)	
Population:		Major Findings: (adj model)	
Women scheduled for surgery (laparoscopy, laparotomy)		OR for endometriosis not sig assoc w PFOS log-unit	
N = 473 (79% eligible participation)		change for either operative or non-operative sample	

Non-surgery pop identified through UT Pop Database and phone directory

age-matched surgery pop limited to menstruating women in referent pop to same clinical facilities (50 mile radius)

Exclusions (non-surgery):

- -Pelvic MRI to exclude unknown cases
- previous case of endometriosis
- <18, > 44 yrs
- history of cancer
- injectable hormones in ≤ 2 yrs prev
- current breastfeeding ≥ 6 mos

N = 127

(81% eligible participation)

Surgery pop \rightarrow **N = 190** endometriosis cases

Non-surgery \rightarrow **N** = 113 non-endometriosis (based on MRI)

Related Studies:

Outcome:

OR for endometriosis per log-unit change in PFOS conc Operative sample restricted to endometriosis stage 3 and 4

Major Findings:

OR (1.86) sig for PFOS adj

OR (1.50) **not sig** for PFOS adj for age, BMI and parity

Outcome:

OR for endometriosis per log-unit change in PFOS conc Comparison pop = operative sample w normal pelvis

Major Findings: (adj model)

OR **not sig** for PFOS (w or w/out parity adj)

Reference and Study Design	Exposure Measures	Results	Comment
, ,	•	Stat Method:	Major Limitations:
Study:	Exposure Assessment:	Stat Wethod:	wajor Limitations:
Louis et al. (2015)	Analyses by NIEHS-CDC	Linear mixed models to	There were 35 parameters assessed w α = 0.05. No Bonferroni correction. Therefore ~ 2 sig associations
Lavia CM Chan 7 Cabiataman FF	Jantana dibatan LIDLO MO	investigate assoc	
Louis GM, Chen Z, Schisterman EF,	Isotope dilution HPLC-MS	semen/sperm parameters w Δ 1 unit In-PFOS	expected by chance
Kim S, Sweeney AM, Sundaram R,	410/ DEOC complex 41 OD	W & T UNIT IN-PFOS	Other comments.
Lynch CD, Gore-Langton RE, Barr	< 1% PFOS samples < LOD	Converience	Other comments:
DB.	Bandatian Land Francisco	Co-variates	Market 2 a Ni
Perfluorochemicals and human	Population-Level Exposure:	- age (a priori)	Modest size N
semen quality: the LIFE study.		- BMI (a priori)	
Environ Health Perspect. 2015	MI	- smoking (a priori)	Good analytical methodology
Jan;123(1):57-63. doi:	- geom mean = 17.39 ng/ml	- abstinence time (a priori)	
10.1289/ehp.1307621. Epub 2014	- median = 19.15	- study site (a priori)	Multiple comparisons w chance outcome (~2 sig findings
Aug 15.	TX	- sample age (a priori)	expected, 2 sig outcomes observed)
	 geom mean = 21.23 ng/ml 		
Study Design:	- median = 21.6 ng/ml	(Note; only sig outcomes	PFOS spec findings are not a priori biologically
		are noted here)	plausible.
Yr sample collection?	(NOTE: PFOS conc ~ 42% (MI)	Outcome:	
	and 75% larger than current US		
Data and sample collection in	M (NHANES 4th Rpt))	Motility	
participants' homes	, , , ,	(distance migrated in	
- blood		straw)	
- BMI		,	
- ejaculate		Major Findings:	
2 sample following 2-day abstinence		PFOS sig pos assoc w	
- 80% provided 2 samples		distance migrated	
- General characteristics		Outcome:	
e.g., vol			
- Motility measures		Morphology	
- sperm head measures		(coiled tail)	
- morphology measures		(colled tall)	
- chromatin stability measures		Major Findings:	
- Chromatin Stability measures		wajor rindings.	
		PFOS sig neg assoc w %	
Location:			
Location.		sperm w coiled tail	
MI, TX			
,		1	<u>l</u>

Population:		
LIFE cohort - MI, n = 96 - TX, n = 366		
M of couples discontinuing contraception to achieve preg		
Recruiting through marketing database in MI; Hunting/fishing licensing in TX		
M ≥ 18 yrs old		
No medical diagnosis of sterility		
Related Studies:		
Joensen et al. (2009) Raymer et al. (2012) Toft et al. (2012)		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
,	,		
Lyngsø et al. (2014)	LC-MS	Co-variates/confounders	Recall of menstrual cycle length at some unspecified
		investigated	number of months in past
	LOD = 0.2 ng/ml		
Lyngsø J1, Ramlau-Hansen CH,	100% samples > LOD for PFOS	Age	Imputation of missing data based on predictive models
Høyer BB, Støvring H, Bonde JP,		BMI	for missing data. However, analysis with complete
Jönsson BA, Lindh CH, Pedersen HS,	CV for repeat analyses (diff days)	Parity	datasets only gave comparable results (but with smaller
Ludwicki JK, Zviezdai V, Toft G.	= 9%	Smoking	N (48-56% of N w imputed data)
Menstrual cycle characteristics in fertile women from Greenland, Poland	Denuistian Lavel Expenses	Education Alcohol	DEOC analysis not controlled for DEOA (and other
and Ukraine exposed to	Population-Level Exposure:	Alcohol	PFOS analyses not controlled for PFOA (and other PFCs)
perfluorinated chemicals: a cross-	Median PFOS conc	Imputation of missing data	FFC5)
sectional study.	iviculari i i oo conc	by replacement of missing	Other comments:
Hum Reprod. 2014 Feb;29(2):359-67.	Greenland – 20.2 ng/ml	values by random plausible	
doi: 10.1093/humrep/det390. Epub	Poland – 8.0 ng/ml	values through model using	Cross-sectional
2013 Oct 25.	Ukraine – 5.0 ng/ml	following data as predictors:	
		- PFOS, PFOA levels	Large N for pooled analyses
	(Note: Poland and Ukraine PFOS	- mean length of cycle	
Study Design:	concs are consistent w US pop,	- irregular cycle	Reasonable statistical controls
	Greenland PFOS ~ 3 x current	- age at menarche	
Cross-sectional	US F population (NHANES 4 th	- age at pregnancy	Uncertain error/bias due to recall of cycle length
questionnaire	Rpt.))	- pre-preg BMI	Uncertainty/bigs in imputed analysis (non-imputed
questionnaire		- smoking - parity	Uncertainty/bias in imputed analyses (non-imputed analyses w smaller N)
Menstrual cycle characteristics pre-		- education level	analyses w smaller ty
preg w intercourse w/birth control		Caddation icve	
prog w intersective w/birth control		A priori variables	
Length from one "bleeding" to next			
"bleeding" as average cycle length (if		Age at menarche	
given as range, average was		Age at preg	
calculated)		Parity	
		Pre-preg BMI	
Location:		Smoking (Y/N)	
Ukraina Baland Creanland		100 data complete data	
Ukraine, Poland, Greenland		100 data complete data sets created by imputation	
		sets created by imputation	
	L	<u>l</u>	

Population:

INJENDO cohort (?) Enrolled 6/2002-5/2004 During ante-natal visits

≥ 18 yrs

Born in country in which enrolled

- 1,735 interviewed Exclusions:
- oral contraceptives ≥ 2 mos priorto preg
- reported menstrual cycle < 16 days (interpreted as error)

N = 1,623 Greenland = 528 Poland = 452 Ukraine = 643

Related Studies:

PFOS association w cycle length by mult logistic regression

Stratification by country and pooled analysis (adj for country)

PFOS as tertiles Also as continuous (logtransformed) varaible

OR for short and long cycles (separate analyses)

Outcome:

Menstrual cycle

Major Findings: (adj model)

PFOS **not sig assoc** w irregular, short, or long cycles
By categorical (H, M, L) or continuous analysis
Similar results w imputed datasets and full data sets-only

Study: Maisonet et al. (2012) Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, Marcus M. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect. 2012 Oct; 120(10):1432-7. doi: 10. Study Design: Longitudinal Sample as sub-sample of nested Exposure Assessment: Analysis by CDC Analysis by CDC Analysis by CDC Co-vairates/confounders considered Gestational age Maternal age at delivery Prec live births Maternal age at delivery Prev live births Maternal preg smoking (Y/N) Maternal ethnicity Breast feeding to 4 wks (Y/N) Gestational age at blood sample Sample is subsample of previously selected sample of larger cohort for study of	not clear to
Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, Marcus M. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect. 2012 Oct;120(10):1432-7. doi: 10.1289/ehp.1003096. Epub 2012 Jul 10. Study Design: Longitudinal Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, Marcus M. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect. 2012 Oct;120(10):1432-7. doi: 10.1289/ehp.1003096. Epub 2012 Jul 10. Study Design: Longitudinal Self-reporting of maternal characteristics Maternal preg smoking (Y/N) Maternal ethnicity Breast feeding to 4 wks (Y/N) Gestational age at blood sample Sample is subsample of previously selected sample of larger cohort for study of	not clear to
cohort selected for menarche onset case-control study - Cases = menarche < 11.5 yrs (n = 218) - Controls = random sample w menarche ≥ 11.5 yrs (n = 230) Maternal serum sample during preg (median = 15 wks) Full N = 447 N for each analysis varied due to missing maternal data onset of menarche. To correct potential sampling bias, current sample was weighted based on menarche onset parameter Linear regression of birth wt, birth wt, gestational age, ponderal index (wt/length x 100) on maternal PFOS Backward elimination with exclusion for p > 0.2 in model Trends sig at α < 0.05	

Birth wt and gestational age from med Outcome: records Birth wt (n = 422)Wt, height at 2 and 20 mos from routine health surveillance prgm **Major Findings:** Maternal characteristics self-reported (adj for maternal preg smoking, maternal pre-preg during preg BMI, prev live births, gest Breast feeding info from age) PFOS sig neg assoc w questionnaires at 4 wks post-delivery birth wt Location: p-trend 0.0053 Avon County, UK Outcome: Population: Birth length (N = 356)**Major Findings** ALSPAC cohort (adj for maternal preg Pregnant women w expected delivery smoking, maternal pre-preg $4/1991-12/1992 \rightarrow 14,610 \text{ offspring} \rightarrow$ BMI, maternal educ, prev 11,820 at 13 yrs old \rightarrow 5,756 F \rightarrow live births, gestational age) 3,682 w ≥ 2 assessments of pubertal status 8-13 yrs → sample of 447 PFOS sig neg assoc w birth length p-trend = 0.013 **Related Studies:** Outcome: Gestational age (N = 444)**Major Findings:** PFOS not sig assoc w gest age

Outcome:
Ponderal index (N = 360)
Major Findings:
PFOS not sig assoc w ponderal index
Outcome:
Wt at 20 mos (N = 320)
Major Findings: (adj for maternal age at delivery, maternal educ, prev live births, ht at 20 mos, birth wt)
PFOS sig pos assoc w wt at 20 mos p-trend < 0.0001
When stratified by tertile of PFOS and tertile of birth wt (n = 107)
PFOS sig pos assoc w wt at 20 mos only for highest tertile of birth wt (borderline sig for lowest tertile birth wt)
(adj for maternal educ, maternal age at delivery, prev live births, birth wt as continuous variable)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		
Location:		(ever) not sig > 1.0 f or PFOS	
U.S.			

	Outcome:	
Population:		
	Calf remarked the raid discose	
NULLANIES (000 0000 0000)	Self-reported thyroid disease –	
NHANES 1999-2000, 2003-2004,	current	
2005-2006		
	Major Findings:	
4/0 1	major i manigo.	
1/3 random sample of ≥ 12 yrs old		
NHANES participants	F - OR for thyroid disease	
·	(current) not sig > 1.0 for	
Participants + 20 yrs avaluded due to	PFOS	
Participants < 20 yrs excluded due to	FFOS	
no information on disease prevalence		
	M – OR for thyroid disease	
N-total = 3,966	(current) not sig > 1.0 for	
1		
Cases (ever thyroid disease)	OR for 4 th Q vs. Q 1 and Q2	
F = 292 (adj % = 16.08%)	(i.e., below median) sig > 1.0	
M = 69 (ad % = 3,06%)	(OR = 2.68 (1.03-6.98), p =	
55 (4.4.75 5,5575)	0.043)	
	0.043)	
Cases (current thyroid disease)		
F = 164 (adj n = 9.89%)		
M = 46 (adj n = 1.18%)		
W = 40 (ddj H = 1:1070)		
Related Studies:		
I and the second se		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Clady.			maje:
Nelson et al. (2010)	By CDC-NCEH, isotope dilution	<u>Co-variates</u>	PFOS analyses not controlled for other PFCs
	HPLC-tandem MS	(A priori)	
Nelson JW1, Hatch EE, Webster TF.			TC and non-HDL analyses are linked since non-
Exposure to polyfluoroalkyl chemicals	Automated solid-phase	Age	HDL = 70-80% of TC
and cholesterol, body weight, and	extraction	Sex Race	Cross sectional
insulin resistance in the general U.S. population.	Population-Level Exposure:	SES	Cross-sectional
Environ Health Perspect. 2010	opulation-Ecver Exposure.	Saturated fat intake	Potential for reverse causality (however, controlling
Feb;118(2):197-202. doi:	PFOS median conc = 21.0 ng/ml	Exercise (past 30 d)	for albumin did not change outcomes)
10.1289/ehp.0901165		Time in front of TV/monitor	,
		Alcohol (> 20 yrs old)	Other comments:
Study Design:		Smoking (> 20 yrs old)	
Ones and in al		December 1	Cross-sectional
Cross-sectional		Regression analyses for PFCs separately	Rel large N
Serum samples at NHANES interview		Separatery	The large IV
Total cholesterol (TC), HDL, non-HDL,		HOMA log transf	Large number co-variates in model
LDL,			
		PFOS as quartiles for total pop	Stratification by age
- TC measured enzymatically		and for age/sex categories	
- HDL measured after precip of			
apoliprotein B - non-HDL as TC-HDL		NHANES weighting factors not	
- LDL only measured in fasting subset		used	
of participants based on "Friedwald		Outcome:	
formula"			
		Total cholesterol (TC)	
- Weight		(20-80 yrs)	
- height			
- BMI - Waist Circumf		Major Findings:	
- waist Circum - insulin resistance by homeostatic		PFOS sig pos assoc w TC (p-	
model assessment (HOMA)		trend = 0.01)	
,		0.27 µg/dL ↑ in TC/ng/ml ↑ in	
		PFOS	

Location: Outcome: Non-HDL US (20-80 yrs) Population: **Major Findings:** PFOS sig pos assoc w non-NHANES cohort ≥ 12 yrs old HDL (p-trend = 0.02) 0.25 μg/dL ↑ in non-HDL/ng/ml Exclusions: - > 80 yrsper µg/L ↑ in PFOS - Pregnant - Breast feeding Outcome: - Insulin medication - Dialysis HDL - Cholesterol lowering med (for (20-80 yrs) cholesterol analyses) **Major Findings:** N for PFOS analyses = 860 PFOS not sig assoc w HDL **Related Studies:** Outcome: LDL (20-80 yrs) **Major Findings:** PFOS not sig assoc w LDL Outcome: BMI **Major Findings:** For M 12-19 yrs; 20-59 yrs, PFOS sig neg assoc w BMI (ptrend = 0.004)

For M 60-80 yrs PFOS sig pos assoc w BMI (ptrend?) PFOS not sig assoc w BMI for
Outcome:
Major Findings: PFOS not sig assoc w HOMA

Peteranae and Study Design	Evnocuro Moscuros	Results	Comment
Reference and Study Design	Exposure Measures		
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Ode et al. (2014)	Isotopically labeled internal std	Conditional logistic reg	PFOS analyses not controlled for PFOA
Ode A, Källén K, Gustafsson P, Rylander L, Jönsson BA, Olofsson P, Ivarsson SA, Lindh CH, Rignell-	LC/MS-MS LOD (all PFCs) = 0.2 ng/ml	OR calc based on: - unit incr in PFOS - ≥75 th percentile of PFOS conc	Other comments: Case control design
Hydbom A. Fetal exposure to perfluorinated	Results as aver of 2 samples on	of controls	Clear diagnostic records and diagnostic criteria
compounds and attention deficit	diff days	Co-variates (based on	
hyperactivity disorder in childhood. PLoS One. 2014 Apr 23;9(4):e95891.	CV for dup samples PFOS =	literature) - smoking (cotinine)	Mod large n for cases
doi: 10.1371/journal.pone.0095891. eCollection 2014.	11%	- parity - gestational age at birth-	PFOS analyses not controlled for PFOA
Study Design:	Population-Level Exposure:	Outcome:	
Study Design.	PFOS median conc	Outcome.	
Case-control design	Cases = 6.92 ng/ml Controls = 6.77 ng/ml	OR for ADHD	
Children born and living in Malmo 1978-2000 w clinical diagnosis of	Ç	Major Findings:	
ADHD in study hospital		OR for ADHD not sig <> 1.0 for Unit ↑ PFOS	
ADHD cases linked to Swedish Nat'l		Or ≥ 75 th percentile control PFOS	
Birth Reg for demographic, obstetric data		conc	
Banked cord serum collected from Malmo Maternal Unit Serum Bloodbank			
Controls matched on yr of birth and maternal country of birth			
Location:			
Malmo, Sweden			

Population:		
N (study and control) = 206		
Related Studies:		

B.C. and an I Of the D. t.	F	D	0
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Okada et al. (2012)	Serum analyzed by column- switching LC-MS	Analysis of IgE and PFOS assoc	Small N for full cohort sample – esp for M-only and F-only
Okada E, Sasaki S, Saijo Y, Washino	3	<u> </u>	
N, Miyashita C, Kobayashi S, Konishi K, Ito YM, Ito R, Nakata A, Iwasaki Y,	PFOS LOD = 0.5 ng/ml	PFOS, IgE log-transformed	Allergy/disease outcomes based on maternal self-identification
Saito K, Nakazawa H, Kishi R. Prenatal exposure to perfluorinated	Population-Level Exposure:	Polynomial regression	Other comments:
chemicals and relationship with	Mean maternal PFOS conc = 5.6	Co-variates/confounders	
allergies and infectious diseases in infants.	ng/ml (median = 5.2 ng/ml)	considered: (vars in full model in bold)	Prospective cohort design
Environ Res. 2012 Jan;112:118-25. doi: 10.1016/j.envres.2011.10.003.	PFOS detect = 100%	Maternal age	Self-identification of allergy disease outcome
Epub 2011 Oct 24.	(NOTE: PFOS exposure ~30% lower than US F pop (NHANES	Maternal allergy history Infant gender	Limited power due to small N
Study Design:	4 th Rpt))	Birth season Home distance to highway	
Prospective cohort		Sampling period Parity	
Women self-admin questionnaire in 2 nd trimester:		Deep sea fish preg intake	
- Med history		Also stratification by infant	
- education - household income		gender	
- smoking		Analysis of infant allergies and	
- alcohol - caffeine		infect diseases	
- food intake freq		Binomial logistic regression	
From med records:		OR for risk of	
- maternal age - maternal height		allergies/infectious diseases with PFOS levels	
- pre-preg wt			
- Preg complications - gestational age		Co-variates in full model:	
- gestational age - parity		Maternal age	
- infant gender		Maternal educ	
- birth wt		Pre-preg BMI	

Self admin questionnaire at 18 mos post-natal:

- breastfeeding
- current infant wt, length
- smoking (both parents)
- ETS
- pets
- "living environment"
- day care
- vaccinations
- infant med history allergies, infectious diseases

Assessment of infant allergies based on maternal questionnaire responses at 18 mos

Maternal blood sample after 2nd trimester (post-delivery if maternal anemia)

IgE from cord blood by enzyme-linked immunosorbant assay

- mean cord IgE conc = 0.62 IU/ml (median = 0.21 IU/mI)

Location:

Sapporo, Hokkaido, Japan

Maternal/paternal allergy history (Y/N) Parity (prima/multiparous) Infant gender Breast feed (< ≥ 4 mos) ETS (Y/N) Day care (Y/N) Maternal blood sampling period (pre-post birth)

Outcome:

IgE

Major Findings:

Full cohort

IgE not sig assoc w log PFOS

M-only

IgE not sig assoc w log PFOS

F-only

IgE **not sig assoc** w log PFOS

Outcome:

Allergies/infectious diseases at 18 mos

Population:	Major Fi	ndings:	
Birth cohort from Sapporo 7/2002- 10/2005 1796 eligible → 514 agreed to participate → 10 excluded due to stillbirth, miscarriage, relocation withdrawal → 13 excluded due to infant death, or withdrawal ≤ 18 mos → N = 343 for PFOS; N = 231 for IgE Related Studies:	Full coho OR for a function of 1.0 M-only OR for a function of 1.0 F-only OR for a	•	

Reference and Study Design	Exposure Measures	Results	Comment
	•		
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Okada et al. (2014)	Blood samples 28-32 wks of gest	Categorical analysis by quartile PFOS	PFOS analyses not adj for other PFCs
Okada E, Sasaki S, Kashino I,			Other comments:
Matsuura H, Miyashita C, Kobayashi S, Itoh K, Ikeno T, Tamakoshi A, Kishi	PFOS in plasma by ultra-HPLC-triple quadrupole MS	OR as quart 2-4 compared to 1st quart (ref)	Prospective design
R. Prenatal exposure to perfluoroalkyl acids and allergic diseases in early	MDL = 0.3 ng/ml	Potential confounding vars - maternal age*	Large N
childhood. Environ Int. 2014 Apr;65:127-34. doi:	PFOS detect in 100% of samples	- education* - parental allergy history	Outcome data from self-admin questionnaires
10.1016/j.envint.2014.01.007. Epub 2014 Jan 29	PFOS median conc = 5.02 ng/ml	- infant gender* - gest age	No adjustment for other PFCs
Study Design:	(mean = 5.56 ng/ml)	- birth season - breast feeding*	
Prospective birth cohort	Population-Level Exposure:	- siblings* - ETS* - pets	
Mothers and children born in Hakkaido, 2003-2009		- day care*	
Exclusions:		* = final model	
 no baseline questionnaire no 3rd trimmest blood sample 		Outcome:	
- stillbirth - congenital malformation		Total allergic diseases	
- multiple births		Major Findings: (adj model)	
Self-administered questonnaires - 1st trimest		OR not sig < > 1.0 for total	
- 4, 12, 24 mos post-natal		cohort or M/F separately	
Infant allergies developing 12-24 mos - eczema		Outcome:	
- wheezing			
		Eczema	

Location:	Major Findings: (adj model)	
Hokkaido, Japan	, ,	
Population:	OR not sig < > 1.0	
Birth cohort from Hokkaido hospitals	(except 3 rd quart F sig < 1.0)	
Pop meeting all criteria = 6,335 → 300/yr 2003-2008 + 295 in 2009 → 2,095 Excluded late observed congenital malformation and blood samples prior to 26 wks gest → N = 2,063		
Mean maternal age = 30.4 yrs		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Olsen et al. (1999)	Exposure Measures Exposure Assessment:	Results are combined for both	Major Limitations:
Older et al. (1999)	Subjects provided blood	locations.	There is no true control group and PFOS-related
Study Design:	samples as part of voluntary	locations.	effects in lowest exposure group could confound a
Cross-sectional, across two years	medical exam. Serum PFOS	Stat Method:	dose-response relationship in higher exposure
(1995, 1997)	was measured by LC/MS	Regression models; covariates	groups.
(1000, 1001)	mas measured by Ee/me	and confounders considered	groupe.
Location:	Population-Level Exposure:	included age, body mass, current	Only males in the study populations.
Decatur, AL (USA); Antwerp, Belgium	Exposure levels are combined	alcohol consumption, and	, , , , , , , , , , , , , , , , , , , ,
	for both locations.	cigarettes smoked/day	Different serum PFOS analytical methods in 1995
Population:			and 1997 r = 0.92 for individual samples across
3M workers at two PFC manufacturing	Exposure levels in 1995	p-value (Bonferroni adjusted)	sampling periods
plants	Exposure ppm n %	based on comparison to low	
1995 – total n = 178	level ' '	exposure group	No detection limit reported for either year.
Decatur n = 90	1 0-<1 45 25		
Antwerp n = 88	2 1-<3 91 51		Change in total bilirubin was not significant in either
1997 – total = 149	3 3-<6 35 20	Outcome: Total bilirubin	year when results were stratified by plant location.
Decatur n = 84	4 ≥6 7 4		
Antwerp n = 65		Major Findings:	Other comments:
	Exposure levels in 1997	<u>For 1995</u>	
Outcome Definition:	Exposure ppm n %	↓ for exposure levels 2 and 3	The study was well conducted and used serum
Hematology and serum chemistry	level · ·	(p<0.05)	concentration as an unambiguous measure of
Deleted studies.	1 0-<1 60 40	Overall ↓ trend was statistically	relative total exposure. However, the absence of a
Related studies:	2 1-<3 63 43	significant	true control group can lead to underestimating
Follow-up of one or both populations	3 3-<6 21 14	Fa:: 4007	PFOS-exposure-related effects. Despite the two
in: Olsen et al.(2003)	4 ≥6 5 3	For 1997 ↓ for exposure level 2 only	year of the study, there was significant turnover in the worker population and the comparison across
Alexander et al. (2003)			the two years cannot be considered a longitudinal
Olsen et al. (2003)		(p<0.05) Overall ↓trend was statistically	measure. The number of workers in each exposure
Alexander et al. (2007)		significant	category, especially the two highest, is relative
Grice et al. (2007)		Significant	small.
Olsen et al. (2012)			Siliali.
Olself et al. (2012)		Outcome: Direct bilirubin	Suggestive, but inconsistent associations between
		Outcome. Direct billiubili	PFOS exposure and decreased bilirubin; increased
		Major Findings:	cholesterol, LDL.
		1997 only	
		↓ for exposure level 2 only (p	
		<0.05)	
		Overall ↓ trend was statistically	
		significant	

Outcome: Total Cholesterol
Major Findings: 1997 only ↑ for exposure level 3 only (p <0.05) Overall ↑ trend was statistically significant Outcome: LDL
Major Findings: 1997 only ↑ for exposure level 3 only (p <0.05) Overall ↑ trend was statistically significant
Outcome: HDL
Major Findings Overall trend sig ↓ 1995 only
Outcome: Triglycerides
Major Findings no sig trend

Reference and Study Design	Exposure Measures	Results	Comment
	Exposure Assessment:	Statistical Method	Major Limitations
Olsen et al. (2003b)			
	Serum PFOS and PFOA from	Cross-Sectional Analysis	Limit of detection not reported
Study Design:	participants in voluntary PFC medical		
	surveillance.	Covariates considred	No detail about design of longitudinal study
Cross-sectional		Age	
	73-75% participation	BMI	No non-factory controls
Longitudinal	. (000/	Alcohol	Lowest exposure category is till elevated
(1994/1995 and/or 1997 compared	+/- 20% precision (most +/- 10%)	Smoking	Other comments.
with 2000)	Analyzad for	Yrs employment	Other comments:
Langitudinal based on repeated	Analyzed for:	Job title	Partial D2 for DEOC for and points in multiple
Longitudinal based on repeated medical surveillance, but no details	Total organic fluorine (TOF)	Controlled for PFOA and	Partial R ² for PFOS for endpoints in multiple regression models were relatively small = <0.01-
medical surveillance, but no details	(PFOS + PFOA only for longitudinal	TOF	0.27)
Longitudinal analyses for cholesterol	analyses)	101	0.21)
and triglycerides only	anaryses)	Longitudinal Analysis	High exposure
and ingryochides only	- Perfluorohexanesulfonate	<u> </u>	Thigh exposure
Location:	- N-ethyl perfluorooctane-	As repeated measures	No non-factory controls – can reduce power to
	sulfonamidoacetate		detect effect
Decatur, AL (USA)	- N-mthyl perfluorooctane-	Covariates conosidred	
Antwerp (Belgium)	sulfonamidoacetate	Yrs of follow-up	Most outcomes are cross-sectional
	- perfluorooctane-sulfonamidoacetate	Age	
	- perfluorooctane-sulfonamide	BMI	
	Detected at "1-3 order of magnitude	Smoking	
	below PFOS and PFOA" – not	Alcohol	
	reported.	Yr of entry	
		Location	
		Baseline yrs worked	
		Triglycerides (for hepatic	
		chem)	
		Controlled for PFOA and	
		TOF	

Population

Cross-sectional analysis (2000)

	М	F
Antwerp	206	49
Decatur	215	48

No non-factory controls

	M	F
Antwerp		
production	73%	12%
Non-		
production	27%	88%
Decatur		
production	75%	63%
Non-		
production	25%	37%

Longitudinal Analysis

(Employees participating in 1994/5 and/or 1997 and 2000

- -1994/5 and 2000, n = 64
- -1997 and 2000, n = 69
- -1994/5, 1997 and 2000, n = 41 (sex not specified)

Outcome Definition:

Standard hematology and clinical chemistry.

Urinalysis - glucose, albumin and RBCs (Decatur only)

Population-Level Exposure: (data presented for 2000 only)

Serum conc. (ppm)

	Mean	Geom. mean	Range
Antwerp			
PFOS	0.80	0.44	0.04- 6.24
PFOA	0.84	0.33	0.01- 7.04
Decatur			
PFOS	1.32	0.91	0.06- 10.06
PFOA	1,78	1,13	0.04- 12.70

Quartiles of Serum ppm

	Quartile 1	Q 2	Q3	Q4
PFOS	0.21	0.59	1.17	2.46
PFOA	0.25	0.86	1.20	2.43
TOF	0.43	1/14	1.88	4.06

Outcome:

Cholesterol

Major Findings:

not sig assoc cross-sectional or long models

Outcome:

HDL

Major Findigs:

Not sig assoc (cross-sectional)

Outcome:

Triglycerides

Major Findings:

Sig ↑ M only For 4th quart

Not sig assoc for F in cross-sectional
Or in longitudinal analysis

Outcome:

Alkaline phosphatase

Major Findings:

Sig ↑ M and F

Outcome:

GGT

Major Findings:

Sig ↑ F 4th quart only M – not sig assoc

Related studies	Outcome: AST	
Olsen et al. (1999) Alexander et al. (2003) Olsen et al. (2004)	Major Findings: Not sig assoc	
Alexander et al. (2007) Grice et al. (2007) Olsen et al. (2012)	Outcome: ALT	
	Major Findings: Sig ↑ - <u>M only</u>	
	Outcome: Total bilirubin	
	Major Findings: Sig ↓ M & F	
	Outcome: TSH	
	Major Findings: Not sig assoc	
	Outcome: T4	
	Major Findings: Not sig assoc	
	Outcome: Free T4	
	Major Findings: Not sig assoc	
	Outcome: T3	
	Major Findings: Sig ↑ - M only – 4 th quart	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Olsen et al. (2004) Marshall JC, Burris JM, Mandel JH. Analysis of episodes of care in a perfluorooctanesulfonyl fluoride production facility. Olsen GW, Burlew MM, J Occup Environ Med. 2004 Aug;46(8):837-46. Study Design: 3M workers in PFC facility.	H, L, and "minimal" (film plant) exposure categories (as per Alexander et al. (2003) based on job title with PFOS exposure within title based on Olsen et al. 2003(b) measurements. Population-Level Exposure: - <u>H</u> = (geom mean) 0.6-2.0 ppm - <u>L</u> = 0.4 ppm - <u>Minimal</u> = 0.1-0.2 ppm	Comparison of all PFC plant employees (n = 652) to all film plant employees (n = 659) Comparison of all workers in H exposure category for 10 yrs solely in PFC plant (n = 211), to film plant workers for 10 yrs (n = 345). Observed number of cases for health condition	Exposure classification for PFC plant employees based on correspondence of job category to exposure levels (serum PFOS). However, correspondence was based on a sample of 186 = 29% of the number of respondants. Variability for some job categories was high including some with high PFOS exposure (95% UCI/geom.mean ≈ 3) (Olsen et al. 2003b)). "Minimal" category (for film plant employees) mean 0.1-0.2 ppm is approx. 10 times the median serum PFOS reported by NHANES = 0.02 ppm (Fourth National Report on Human Exposure to
Use of "episodes of care" (one or more health claims defined by ICD code for related medical conditions (through company's health care insurance system) to identify exposure related health effects.		compared to expected on basis of age and sex. Risk ratio based on claimspec/claimsfilm Outcome:	Environmental Chemicals; http://www.cdc.gov/exposurereport/pdf/fourthreport. pdf) Thus, use of "minimal" category as referent will bias against finding associations with medical conditions. Sig. co-exposure to PFOA.
Chemical plant (direct PFC exposure), and film plant (no direct PFC exposure) workers.		Major Findings: Total episodes of care	Other comments: The study was well designed and conducted. However, it suffers from using an indirect measure
Location:		PFC plant = 10,608 Film plant = 11,957	of disease – episodes of care. In addition, the use of episodes of care results in counting multiple
Decatur, AL Population:		All Employees >2.0 or stat. sig.	episodes in one worker equally with individual episodes among multiple workers.
All active and disability inactive (short and long-term disability to 18 mos.) workers in employment history database 1993-1998.		(Risk Ratios)	It is likely that risk ratios for causally related endpoints were underestimated due to above-background PFOS exposure in the Film Plant workers.

n - I			:	
ĸe	lated	า อน	ıaı	es:

Olsen et al. (2003) Alexander et al. (2003) Alexander et al. (2007) Grice et al. (2007) Olsen et al. (2012)

Cancers and benign tumors

Malignant neoplasms of colon = 5.4 (not sig.)
Malignant neoplasms of lower resp tract = 2.7 (not sig.)
Malignant melanomas of skin = 12 (not sig.)
Malignant neoplasms of prostate = 79 (not sig.)

Gastrointestinal

Cholelithiasis/Acute cholecystitis (gallbladder inflammation) = 8.6 (sig.) Acute pancreatitis = 2.6 (not sig.) (Note: due to 6 episodes from 1 employee)

Reproductive/Developmental

Preterm labor = 3.9 (not sig.)

Long-Term (≥10 yrs) Workers Only

(High Exposure PFC Workers Compared to Film Plant Workers) >2.0 or stat. sig. (Risk Ratios) On the other hand, co-exposure to PFOA may have confounded risk ratios that may have been causally related to PFOA, but not PFOS.

Independent Utility for Hazard Identification

*

Cancers and benign tumors
Malignant neoplasms of colon = 12 (not sig.) Malignant neoplasms of rectum = 11 (not sig.) Benign colonic polyps = 2.4 (sig) Malignant melanomas of skin = 10 (not sig.) Malignant neoplasms of prostate = 8.2 (not sig.)
(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Gastrointestinal
Biliary tract disorders = 2.6 (sig) Cholelithiasis/Acute cholecystitis = 25 (sig) Cholelithiasis/Chronic cholecystitis = 2.5 (not sig.) Acute pancreatitis = 5.5 (not sig) (Note: due to 6 episodes from 1 employee)
Urologic Cystitis = 2.4 (sig) Urinary tract infection (unspec.) = 2.1 (sig)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Olsen et al. (2012)	Serum PFOS (and PFOA)	Matched-pair and linear regression analysis of	Significant co-exposure to PFOA
Longitudinal assessment of lipid	Mean time between baseline and end-	changes in clinical chem.	Unclear if regression of clinical chem outcomes
and hepatic clinical parameters in workers involved with the	of-project assessments = 164 days (38.5% >180 d)	from baseline. Regression co-variates: sex, baseline	against PFOS change controlled for PFOA change.
demolition of perfluoroalkyl		age, BMI, alcohol, time	Other comments:
manufacturing facilities.	Population-Level Exposure:	between assessments.	
Olsen GW, Ehresman DJ, Buehrer			From the standpoint of assessing PFOS effects, this
BD, Gibson BA, Butenhoff JL, Zobel	Increase in contract workers *	Outcome:	paper suffers from sig co-exposure to PFOA.
LR.	Mean = 1.0 ng/ml		Furthermore, changes in PFOS between baseline
J Occup Environ Med. 2012		Matched pair analyses	and end-of-project are not clearly presented for
Aug;54(8):974-83	Decrease in 3M employees *		PFOS per se. Regression analyses are problematic
	Mean = 101.3 ng/ml	Major Findings:	as it is not clear if coefficients for changes in PFOS
Study Design:	N		are controlled for PFOA changes.
	Matched-Pair Change in PFOS * (for	No sig change in:	
Study of workers involved in	workers with baseline PFOS and	- Total cholesterol	
demolition of two 3M PFC plants.	PFOA <95 th percentile)	- Non-HDL	
David and Landard and a control	Martin and Transfer	- HDL	
Baseline and end-of-project medical	Median = +0.7 ng/ml	- Total	
assessments – clinical chemistry.	Mean = +4.2	cholesterol/HDL	
Disad calleges d at sock modical	IQR = -1.0-4.7	- Alkaline	
Blood collected at each medical		phosphatase - AST	
assessment for serum PFOS and	* Authoro do not provido independent	- AST - ALT	
PFOA.	* Authors do not provide independent data for PFOS increases or decrease	- ALI	
Location		Cia but you amall abanga	
Location:	across the population except as	Sig, but very small change (mean =	
Cottogo Crovo MN	stratified by PFOA changes		
Cottage Grove, MN	Increases were almost all for low	-0.05 mg/dL) in total bilirubin.	
Decatur, AL	baseline worker.	Dilirubin.	
Population		Outcomo	
Population:	Workers with highest baseline mostly experienced decrease due to high	Outcome:	
179 workers with baseline and end-	baselines and longer time between	Linear regression analyses *	
of-project assessment, without lipid	baselines and longer time between baseline and end-of-project.	Lineal regression analyses	
lowering medication	Consistent with elimination T1/2.)		
_	Consistent with chimination 1 1/2.)		
14 3M employees			
165 contract workers		717	

	Major Findings:	
Related Studies:	No sig changes except for ↓ ALT for full dataset (No sig change when stratified by low baseline PFOS and PFOA)	
	* Unclear from paper if regression analyses for PFOS controlled for PFOA	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Method.	Major Limitations.
Osuna et al. (2014)	Online solid-phase extract, HPLC-MS	Assoc PFOS w auto-	PFOS LOD not provided
O3dila Ct al. (2014)	Orinine solid priase extract, i'ii Lo ivio	antibodies by linear	1 1 00 LOD not provided
Osuna C, Grandjean P, Weihe P, El-	Population-Level Exposure:	regression	PFOS analyses not adj for PFOA
Fawal HA.	. opaidion zovo zapodalo:	1091000.011	The Continuous for the Continuous and the Continuou
Toxicol Sci. 2014 Nov;142(1):158-	Geom mean PFOS conc	Auto-antibody levels In-	Relatively small N
66. doi: 10.1093/toxsci/kfu163. Epub	- cord blood = 3.1 ng/ml	transformed	
2014 Aug 14.	- serum 7 yrs = 27 ng/ml		Other comments:
Autoantibodies associated with	,	PFOS conc In-transformed	
prenatal and childhood exposure to	(NOTE: 7 yr serum conc ~ 4 x	(to give % change in auto-	Longitudinal design
environmental chemicals in Faroese	NHANES 12-19 yr old geom mean	antibodies per \(\Delta \) 2x change	
children.	(NHANES 4th Rpt))	in PFOS	Analytically specific outcomes
	, , , ,		
Study Design:		Outcome:	Rel small N
Birth cohort - longitudinal		Auto-antibody levels	
Cord blood		Major Findings:	
Inclusion – donated blood sample at		PFOS not sig pos assoc w	
age ~7 yrs		any auto-antibody levels –	
DE00: 111 1		either prenatal or 7 yrs	
PFOS in cord blood and serum		D	
Assess to seller Paradite consentation		Prenatal PFOS neg assoc w	
Assoc auto-antibodies rel to prenatal		actin-specific IgG	
and age-7 PFOS			
Macaurament agrum auta antibadias			
Measurement serum auto-antibodies			
to neurotypic and glyotypic proteins, NF-L, NF-M, NF-H, GFAP, actin,			
keratin, desmin, choline			
acetyltransferase			
acetylitalisterase			
Location:			
2004110111			
Faroe Is.			
. 4.55 15.			
	I	l	I .

Population:		
Birth cohort 1986-7		
N = 37 (cord blood) N = 34 (serum 7 yrs) M = 16 F = 22		
Mean age at post-natal sampling = 6.6 yrs		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Clauy.			major = minanono.
Power et al. (2013)	CDC	Data for "small number" persons	Self-reported status for outcomes
,		missing data on potential	·
Power MC1, Webster TF, Baccarelli	HPLC-MS	confounder vars imputed	Self-evaluation of mental status may be biased by
AA, Weisskopf MG.		·	actual mental status
Neuroepidemiology.	internal spiked stds	<u>Co-variates</u>	
2013;40(2):125-32. doi:			Other comments:
10.1159/000342310. Epub 2012	CV-repeat samples = 10-15%	Main analyses:	
Oct 24.		- Age	Large N
Cross-sectional association	Population-Level Exposure:	- Race	
between polyfluoroalkyl chemicals		- Gender	Good PFOS measurement
and cognitive limitation in the	Geom mean PFOS conc =	- NHANES cycle	
National Health and Nutrition	22.63 ng/ml	- Education	Detailed statistical analysis
Examination Survey.		- Poverty-income ratio	
		- Food security (Y/N)	Uncertain determination of outcomes status
		- Health insurance	
Study Design:		- Social support (Y/N)	
		- Moderate phys activity (Y/N)	
Total N = 1,766		- Smoking	
		- alcohol	
Primary outcomes			
Self-reported limitations (Y/N) in:		Sensitivity analyses:	
- Memory			
- Periods of confusion		Metabolic syndrome factors	
13% (one or both)		- hypercholesterolemia (self-report,	
0		measured, or med)	
Secondary outcomes (sens		- hypertension ((self-report,	
analyses) - Difficulties in daily activities due to		measured, or med)	
senility (Y/N) n =17		- diabetes (self-report, or med) - BMI	
- performance on digit symbol		- DIVII	
substitution test n = 275		- osmolality	
Substitution test II = 213		- glumerular filtration rate	
		giamordiai mitation rate	
Location:		- fish consumption in past 30 d	
110			
US			

Population:	Adjustment for co-variates used in NHANES weights rather than	
NHANES cohort	weights per se	
60-85 yrs old	PFOS conc log-transformed	
1999-2000; 2003-2004; 2005-2006; 2007-2008	Outcome:	
Related Studies:	Difficulty remembering or periods of confusion	
	Major Findings:	
	OR for outcomes not sig < > 1.0 for doubling of PFOS	
	Not affected by adjustment for diabetes, metabolic syndrome factors, fish consumption, or artifact due to changes in serum vol or kidney function	
	Not sig affected by stratification by diabetes	
	OR for outcomes sig < 1.0 for doubling PFOS conc for diabetics w/out medication (n = 54)	
	Outcome:	
	Difficulties w daily life/senility	
	Major Findings:	
	OR for outcomes not sig < > 1.0 for doubling of PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Raymer et al. (2012)	Solid-phase extraction,	Semen and plasma variables kept	PFOS analyses not adj for PFOA
Raymer JH1, Michael LC,	negative elcectrospray ionization, HPLC-MS/MS	un-logged	Other comments:
Studabaker WB, Olsen GW, Sloan	·	Logistic and linear modeling	
CS, Wilcosky T, Walmer DK.	Field blanks, field controls, lab		Mod large N
Reprod Toxicol. 2012 Jul;33(4):419-	method blanks, lab method	Full model w age, duration	
27. doi:	control samples	abstinence, tobacco use (as	Good measurement precision and control for PFOS
10.1016/j.reprotox.2011.05.024.		mandatory co-variates)	and semen characteristics
Epub 2011 Jun 29.	Calibration check sample every		
Concentrations of perfluorooctane	10 samples	Forward selection model w age,	Large number of semen characteristics and
sulfonate (PFOS) and	20	duration of abstinence, tobacco use	hormone variables investigated
perfluorooctanoate (PFOA) and their associations with human	30 plasma samples to interlaboratory QA analysis	incl. if p < 0.5	Well designed statistical analyses
semen quality measurements.	International QA analysis	OR for categorical outcomes	Well-designed statistical analyses
Semen quality measurements.	CV for replicate extraction and	On for categorical outcomes	Failure to control PFOS analyses for PFOA conc
Study Design:	analysis plasma samples for PFOS = 16%	Outcome:	Tailure to control i i Oo analyses for i i OA conc
Cross-sectional		Semen vol	
2002-2005	CV for replicate extraction and		
	analysis semen samples for	Major Findings:	
In conjunction with IVF screen	PFOS = 21%	(adj models)	
Routine sperm analyses (e.g.,	PFOS LOD = 0.4 ng/ml (semen	Semen vol not sig assoc w plasma	
viscosity, volume, pH)	and plasma)	or semen PFOS conc	
Tests of functional motility	Population-Level Exposure:	OR for abnormal vol not sig <>1.0	
Semen sample ≤ 7 d of last	Mean plasma PFOS conc =	Outcome:	
ejaculation, but after 48 hr abstinence	37.4 ng/ml (median = 32.3 ng/ml)	Semen pH	
Delivery to lab ≤ 1 hr post collection	,	•	

_	(NOTE: PFOS conc ~ 2.7 x	Major Findings:	
Spermatozoa conc by Neubauer	current NHANES for M		
hemacytometer	(NHANES 4 th Rpt))	Semen pH not sig assoc w plasma	
		or semen PFOS conc	
- Total testosterone			
Free testosterone		Outcome:	
- Follicle stimulation hormone (FSH)			
- luteinizing hormone (LH)		Sperm conc (x 10 ⁶ /ml)	
- prolactin			
- estradiol		Major Findings:	
- T3			
- T4		Sperm conc not sig assoc w	
- TSH		plasma or semen PFOS conc	
Denned bealth acceptions aim		OD for the series of the series of	
Reprod health questionnaire:		OR for abnormal sperm conc not	
- reprod history		sig <>1.0	
- sexual activity		01	
- duration of abstinence prior to		Outcome:	
sample		WBC conc (x 10 ⁵ /ml)	
Location:		WBC conc (x 10%IIII)	
Location.		Major Findings:	
Durham, NC		Major i munigs.	
Burnam, NO		WPC sone not sig asses w plasma	
Population:		WBC conc not sig assoc w plasma or semen PFOS conc	
Population.		or semen PPOS conc	
N = 252 men for PFOS analyses		Outcome:	
At Duke U. Fertility Center		Outcome.	
At Duke O. I ertility Certier		% motile sperm	
Related Studies:		70 motile sperm	
Troidiou Cradico.		Major Findings:	
Joensen et al. (2009)		major i mamgo.	
(2000)		% motile sperm not sig assoc w	
		plasma or semen PFOS conc	
		plasma of someth 1 00 cone	
		Outcome:	
		Initial total motile sperm (x 106/ml)	
	1	1	1

Major Findings:
Initial total motile sperm not sig assoc w plasma or semen PFOS conc
Outcome:
% swim-up overnight sperm motility
Major Findings:
% swim-up overnight sperm motility not sig assoc w plasma or semen PFOS conc
Outcome:
Swim-up conc (x 10 ⁶ /ml)
Major Findings:
Swim-up conc not sig assoc w plasma or semen PFOS conc
Outcome:
% swim-up motility
Major Findings:
% swim-up motility not sig assoc w plasma or semen PFOS conc
Outcome:
Swim-up total motility (x 10 ⁶ /ml)

Major Findings:
Swim-up total motility not sig assoc w plasma or semen PFOS conc
Outcome:
OR for abnormal liquification
Major Findings:
OR not sig <>1.0
Outcome:
OR for abnormal Viscosity
Major Findings:
OR not sig <>1.0
Outcome:
OR for abnormal motility
Major Findings:
OR not sig <>1.0
Outcome:
PFOS correlation w hormones
Major Findings
PFOS plasma conc sig correlated w T3 (r = 0.138; p = 0.030)
PFOS (semen or plasma) not sig correlated w any other hormones

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Robledo et al. (2015)	Pre-conception blood sample (when?)	PFOS In-transformed	Rel small N
Robledo CA1, Yeung E, Mendola P, Sundaram R, Maisog J,	Analysis by CDC	Multiple linear regression Separately for each parent	Other comments:
Sweeney AM, Barr DB, Louis GM.	Barrelotian Lavel Francesco	Stratified by infant sex	Prospective study
Environ Health Perspect. 2015 Jan;123(1):88-94. doi:	Population-Level Exposure:	Outcomes (birth size	Rel small N
10.1289/ehp.1308016. Epub 2014	PFOS geom mean conc (Suppl	characteristics) as continuous	iver small iv
Aug 5.	info)	variables - Δ per 1 SD change in	Power reduced by stratification by infant sex
Preconception maternal and	F = 12.44 ng/ml	PFOS	
paternal exposure to persistent	M = 24.6 ng/ml		Good stat design
organic pollutants and birth size: the LIFE study.		A-priori adj for: - maternal age	
the LIFE study.		- maternal age - ∆ maternal-paternal age	
Study Design:		- pre-preg BMI	
		- infant sex	
Longitudinal Investigation of		- serum lipids	
Fertility and the Environment		- serum cotinine	
(LIFE) cohort		- non-PFOS PFCs - (other) partner's total serum PFC	
Couples planning preg w/in 6 mos recruited 2005-2009		conc	
		Sens analyses excluding	
Exclusion criteria:		gestational diabetes or	
- either couple sterile		hypertension – no difference,	
contraception discontinued for >2 mos		therefore all pregnancies meeting inclus criteria incl	
- menstrual cycle not between 21-		inclus cinteria inci	
42 d			
- F received injectable			
contraceptive w/in 12 mos			
- could not communicate in English or Spanish			
- >12 mos attempted preg			
- non-singleton birth			

- non-live birth	Outcome:	
- birth wt not reported		
- birth wt > 99th perc	Birth size characteristics	
- head circum > 99 th perc		
·	Major Findings:	
Parental reporting of birth size		
characteristics;	PFOS not sig assoc w birth size	
- Sex	characteristics for either maternal or	
- birth wt		
	paternal pre-preg serum conc	
- length		
- head circum		
- Ponderal index		
Questionnaires to each parent		
separately		
- medical history		
- reprod history		
- alcohol		
- tobacco		
Parental BMI		
Date of conception from journal		
entries for intercourse and fertility		
monitor for peak LH (ovulation)		
mornior for peak Err (evaluation)		
Daily preg journals – wt gain,		
gravid diseases		
graviu diseases		
Location:		
MI, TX		
IVII, I A		
Denulation.		
Population:		
N. 400.000		
N = 180-230		
(for various parental reported birth		
size characteristics)		
Dalata d Otra Para		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Shankar et al. (2011a)	Automated solid-phase extraction, isotope dilution	PFOS as continuous (log-transformed) and categorical	Analysis of PFOA adj of PFOS (but no vice-versa) did not change sig. Not clear if this indicates lack of
Shankar A, Xiao J, Ducatman A. Perfluoroalkyl chemicals and	HPLC-MS	(quartiles) variable	confounding of PFOS analyses by PFOA
chronic kidney disease in US adults.	PFOS LOD = 0.2 ng/ml	Multivariate linear reg for assoc PFOS w eGFR	Moderate sample size (~ 230) for chronic kidney disease subjects
Am J Epidemiol. 2011 Oct 15;174(8):893-900. doi:	PFOS Inter-assay CV = 13%	Also stratified by: - age	Other comments:
10.1093/aje/kwr171. Epub 2011 Aug 26.	Population-Level Exposure:	- race/ethnicity - gender	Analysis for PFOS assoc w eGFR stratified by
PMID: 21873601 [PubMed - indexed for MEDLINE]	PFOS median conc = 18.7 ng/ml	- education - BMI	chronic kidney disease status shows ↑ assoc for non-kidney disease status. Suggests that a priori kidney disease does not influence PFOS function.
Study Design:		Categorical regression - OR for chronic kidney disease for each quart PFOS	Large overall N allows in-depth statistical investigation
Cross-sectional		Co-variates	However, only mod N for chronic kidney disease
Est glomerular filtration rate (eGFR) calc from serum creatinine		Age Sex	Good analytical confidence
conc, age, gender		Race/ethnicity Education	Strong prob of assoc PFOS w outcome, but risk
Chronic kidney disease defined as GFR < 60 mL/min/1.73 m ²		Smoking Alcohol SBP	(OR) is only moderate
Prevalence of chronic kidney disease in sample ≈ 5%		DBP Diabetes	
(depending on quart of PFOS) N≈ 230		Total serum cholesterol % glycohemoglobin	
Serum total cholesterol (enzymatically)		(NHANES?) sample weights applied	

Serum glucose

ΒP

Location:

Population:

NHANES 1999-2000; 2003-2004; 2005-2006; 2007-2008

≥ 20 yrs old

 $5,717 \rightarrow$ exclusions for CV disease, missing data on serum creatinine, or covariates \rightarrow **N** = **4,587**

Prevalence of chronic kidney disease in sample ≈ 5% (depending on quart of PFOS) N ≈ 230

F = 51.8%

Related Studies:

Outcome:

mean change in eGFR/increment PFOS

Major Findings:

(full adj model)

Total sample

PFOS **sig neg assoc** w eGFR for Q 3 and 4 (compared to Q1) p-trend = < 0.0001

stratified – age (Q4 vs. Q1)

PFOS **sig neg assoc** w eGFR < 60 yrs old Borderline neg sig for ≥ 60 yrs

Stratified – sex (Q4 vs. Q1)

PFOS \mathbf{sig} \mathbf{neg} \mathbf{assoc} w eGFR for M and F

Stratified – race/ethnicity (Q4 vs. Q1)

PFOS **sig neg assoc** w eGFR for all categories

 $\underline{\text{Stratified}-\text{education}}$

(Q4 vs. Q1)

PFOS **sig neg assoc** w eGFR for all categories

Stratified – BMI (Q4 vs. Q1)
PFOS sig neg assoc w eGFR for BMI < > 30
Outcome:
OR for chronic kidney disease by quart PFOS
Major Findings: (full adj model)
OR for chronic kidney disease sig > 1.0 for all quarts PFOS (Q2-4 vs. Q1) Max OR (Q4) = 1.82 p-trend = 0.019
inclusion of C-reactive protein in model to address inflammation – no sig change
reverse causation investigated by modeling eGFR w stratification for chronic kidney disease – assoc PFOS and eGFR stronger for non-chronic kidney disease

Before and 100 1 B	F	D	0
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Shankar et al. (2011b)	CDC analyses	PFOS as continuous and categorical var	PFOS analyses not adj for PFOA
Shankar A, Xiao J, Ducatman A.	< LOD = LOD/√2	1 3.	Other comments:
Perfluoroalkyl chemicals and	202 2027,2	Linear regression:	
elevated serum uric acid in US	Population-Level Exposure:	Continuous – PFOS log (base-2)	Cross-sectional design
adults.		transformed	over community
Clin Epidemiol. 2011;3:251-8. doi: 10.2147/CLEP.S21677. Epub	Median PFOS conc = 17.2 ng/ml	Categorical – quartiles	Large N
2011 Sep 30.	(i.e., upper range of 2 nd	Logistic regression:	Reasonable statistical design
PMID: 22003309	quartile)	OR for hyperuricemia	
			PFOS analyses not adj for PFOA (PFOA also pos
Study Design:		<u>Co-variates</u>	assoc)
		- sex	
Cross-sectional NHANES		- age	Although overall summary statistics are consistent
		- race/ethnicity	with a pos assoc w PFOS, not all analyses are sig.
Exclusion:		- educ	
- missing data for PFC s		- smoking	
- missing data for uric acid		- alcohol	
- missing data on included co-		- hypertension (Y/N)	
variates		- diabetes (Y/N)	
		- serum total cholesterol	
Serum total cholesterol measured enzymatically		NHANES sampling weights applied	
Hypertenstion = BP-S ≥ 140 and/or BP-D ≥ 90		Outcome:	
BP-S, BP-D		Uric acid level	
, i		Major Findings:	
Outcomes:		, ,	
- uric acid conc in serum		PFOS sig pos assoc w serum uric	
- presence of hyperuricemia = M-		acid	
uric acid > 6.8 mg/dL		by quartile, sig for trend, and sig for	
F – uric acid >6.0 mg/dL		continuous model (log-transformed	
		PFOS)	

Location:	By sex	
Location.	M – borderline sig pos assoc	
110		
US	F – sig pos assoc by quartile and for	
	trend. Borderline sig (dependent on	
Population:	model) for continuous model (log-	
	transformed PFOS)	
NHANES 1999-2000, 2003-2004,	,	
2005-2006	By BMI	
	\overline{BMI} <30 kg/m ² - sig pos assoc by	
≥ 20 yrs	quart, for trend, and for continuous	
- 20 y.s	model (log-trans PFOS)	
N = 3,883	model (log-trails F1 OS)	
	D	
F = 51.7%	BMI >30 kg/m ² – not sig assoc	
Related Studies:	Outcome:	
	OD for him or microsic	
	OR for hyperuricemia	
	Major Findings:	
	OR sig > 1.0 for quarts. Borderline	
	sig for trend (dependent on model),	
	• • • • • • • • • • • • • • • • • • • •	
	sig pos assoc for continuous model	
	(log-transformed PFOS)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Study.	Exposure Assessment.	Stat Wethou.	Major Limitations.
Shrestha et al. (2015)	Ion-pairing extraction HPLC-MS	Multivariate linear regression	Rel small N
Shrestha S, Bloom MS, Yucel R,		<u>Co-variates</u>	Other comments:
Seegal RF, Wu Q, Kannan K3, Rej	Isotopically labeled internal	- age	
R4, Fitzgerald EF	stds	- sex	Cross sectional design
Environ Int. 2015 Feb;75:206-14.		- educ	-
doi: 10.1016/j.envint.2014.11.018. Epub 2014 Dec 5.	LOQ = 0.5-1.0 ng/ml	- ∑serum PCBs	Small N
Perfluoroalkyl substances and thyroid function in older adults.	PFOS detected in 100% of samples	Outcome:	PFOS analyses adj for PFOA
	1	TSH	
Study Design:	Population-Level Exposure:		
		Major Findings:	
Cross-sectional study	Geom mean PFOS conc = 31.60 ng/ml	(full adj model)	
M, F 55-74 yr old	(Note this is 3.25 x NAHNES value for > 20 yrs old(NHANES	PFOS not sig assoc w serum TSH	
Recruitment 2000-2002	4 th Rpt))	Outcome:	
Blood sample at recruitment		fT4	
≥ 25 yrs residency in Fort Edward,		Major Findings:	
Hudson Falls, Glens Falls, NY		(full adj model)	
Cohort originally estab for study of GE PCBs		PFOS sig pos assoc w fT4 (p = 0.044 - borderline)	
02.000		(1)	
Exclusion criteria: - residence in target towns ≤25 yrs - worked in PCB job ≥ 1 yr - stroke		NOTE: assoc ↓ w PFOA incl in model	
- head injury			
- Parkinson's			
- Alzheimer's			
- severe cognitive impairment			
- TH hormone therapy			
- sex hormone therapy			

	Outcome:	
Thyroid function serum markers:		
- TSH	T4	
- fT4 (free T4)		
- T4	Major Findings:	
- T3	(full adj model)	
By immunoelectro-		
chemiluminometric assy	PFOS sig pos assoc w T4	
Mean inter-run C V = 2.5%	(p = 0.001)	
Location:	NOTE: assoc persists w PFOA incl in	
	model	
Warren, Saratoga, Washington		
counties, NY	Outcome:	
Population:	T3	
N = 87	Major Findings:	
Related Studies:	PFOS not sig assoc w T3	

Study: Exposure Assessment: Stat Method: Major Limitations: Specht et al. (2012) Specht IO, Hougaard KS, Spanò M, Bizzaro D, Manicardi GC, Lindh CH, Toft G, Johnson BA, Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluorallely substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012. Jul. 33(4):577-83. cit. discontinuous environmental perlam of the poland = 18.6 Uraine = 8.1 ng/ml Poland = 18.6 Uraine = 8.1 ng/ml Poland = 1.6 x US M. Ukraine = 0.7.7 x US M (NHANES 4** Rpti)) Interview: - (ifestyle - occupation - reprod history Blood and semen samples 5/2002-2/204 (win 1 ke of each other) Location: Greenland, Poland (Warsaw), Ukraine (Kharkiv) Exposure Assessment: Stat Method: Analysis by generalized linear models (GLM) PFOS act trilles PCOS act trilles PFOS LOD? Outcome vars on continuous scale Analyses stratified by country/region Co-variates - period sexual abstinence - age - period sexual abstinence - age - BMI - continue - self-reported genital infection (Yn) - spillage of semen sample Intercious w PFOS - age - smoking status at preg - serum continuous scale - period sexual abstinence - sege - BMI - continue - continu	Reference and Study Design	Exposure Measures	Results	Comment
Specht et al. (2012) Specht (O, Hougaard KS, Spanè M, Bizzaro D, Manicardi GC, Lindh CH, Toft G, Joinsson BA, Gliwertman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul; 33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal vist Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/22004 Win 1 wk of each other Location: Greenland, Poland (Warsaw),		•		
Specht IO, Hougaard KS, Spanò M, Bizzaro D, Manicardi GC, Lindh CH, Toff G, Jönsson BA, Giwercman A, Bonde JP, Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Juli33(4):577-83. doi: 10.1016/j.reprotox.2012.00.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Creenland, Poland (Warsaw), Radiolabeled internal stds PFOS LOD? Radiolabeled internal stds PFOS LOD? PPOS as tertiles Outcome vars on continuous scale Analyses stratified by country/region Co-variates - period sexual abstinence - age	Study.	Exposure Assessment.	Stat Wethou.	major Limitations.
Specht IO, Hougaard KS, Spanò M, Bizzaro D, Manicardi GC, Lindh CH, Toff G, Jönsson BA, Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Juli33(4):577-83. doi: 10.1016/j.reprotox.2012.00.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Creenland, Poland (Warsaw), Radiolabeled internal stds PFOS LOD? Radiolabeled internal stds PFOS LOD? PFOS as tertiles Outcome vars on continuous scale Analyses stratified by country/region Co-variates - period sexual abstinence - age	Specht et al. (2012)	LC-MS/MS	Analysis by generalized linear	Modest N for each location (Note analyses stratified
Specht IO, Hougaard KS, Spanò M. Bizzaro D, Manicardi GC, Lindh CH, Toff G, Jönsson BA, Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Juli32(4):577-93. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Cross-production and series a	Opecint et al. (2012)	LO MONIO		
M. Bizzaro D. Manicardi GC, Lindh CH, Toff G, Johnson BA, Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - > 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2004 w/in 1 wk of each other Creenland, Poland (Warsaw), PFOS LOD? 100% of samples > LOD 4 Analyses stratified by country/region Co-variates - period sexual abstinence - age - BMI - caffeine - cotinine - reprod genital infection (Y/N) - testicular disorder (Y/N) - spillage of semen sample Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Creenland, Poland (Warsaw),	Specht IO Hougaard KS Spanò	Radiolabeled internal stds	modolo (GEW)	by location,
CH. Toft G. Jönsson BA, Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkly substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - (lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Creenland, Poland (Warsaw), PFOS LOD? Outcome vars on continuous scale Analyses stratified by country/region Cov-variates Analyses stratified by country/region Cov-variates - cov-variates - period sexual abstinence - age - period sex		The analogous and an area	PFOS as tertiles	Greenlad serum samples ~ 1 vr before semen
Giwercman A, Bonde JP. Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Incorporation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Analyses stratified by country/region Co-variates - period sexual abstinence - age		PFOS LOD?		
Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2004 w/in 1 wk of each other Croes sectional design Modest N High PFOS exposure in Greenland increases power to detect effect - age - period sexual abstinence - age - bill - plantalization (Y/N) - spillage of semen sample - period sexual abstinence - age - bill - plantalization (Y/N) - spillage of semen sample - period sexual abstinence - age - bill - plantalization (Y/N) - spillage of semen sample - period			Outcome vars on continuous scale	
exposure to environmental perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/22004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Population-Level Exposure: Mean PFOS serum conc: Greenland = 51.9 ng/ml Poland = 18.6 Ukraine = 8.1 ng/ml Poland = 18.6 Ukraine = 8.1 ng/ml Poland = 1.6 x US M Ukraine = 0.7 x US M (NHANES 4 th Rptl)) Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/22004 w/in 1 wk of each other Greenland, Poland (Warsaw),		100% of samples > LOD		Other comments:
perfluoroalkyl substances - a study of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Poland = 1.6 x US M (NAPE Serum conc. Greenland = 51.9 ng/ml Poland = 1.6 x US M (NAPE Serum tonc. Greenland = 51.9 ng/ml Poland = 1.6 x US M (NAPE Serum tonc. Greenland = 51.9 ng/ml Poland = 1.6 x US M (NAPE Serum tonc. Study M (NHANES 4™ Rpt)) Interactions w PFOS - age - smoking status at preg - serum cotnine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) Greenland, Poland (Warsaw),		•	Analyses stratified by country/region	
of spouses of pregnant women in three geographical regions. Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10,1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2004 w/in 1 wk of each other Location: Greenland = 51.9 ng/ml Poland (Warsaw), Mean PFOS serum conc: Greenland = 51.9 ng/ml Poland (Spendard = 18.6 Ukraine = 8.1 ng/ml Poland = 18.6 Ukraine = 8.1 ng/ml Poland = 1.6 x US M; Poland = 1.6 x US M; Poland = 1.6 x US M (NHANES 4 th Rpt)) Serum cotnine - fever in past 3 mos - self-reported genital infection (Y/N) - testicular disorder (Y/N) - spillage of semen sample Interactions w PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) Co-variates - period sexual abstinence - age - BMI - ligh PFOS exposure in Greenland increases power to detect effect Reasonable statistical controls Modest N High PFOS exposure in Greenland increases power to detect effect Reasonable statistical controls PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation		Population-Level Exposure:	, , , , ,	Cross-sectional design
Reprod Toxicol. 2012 Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - bom in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2/2004 w/in 1 wk of each other Location: Greenland = 51.9 ng/m/ Poland = 18.6 Ukraine = 8.1 ng/ml	of spouses of pregnant women in		<u>Co-variates</u>	-
Jul;33(4):577-83. doi: 10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2/2004 w/in 1 wk of each other Location: Greenland = 18.6 Ukraine = 8.1 ng/ml NOTE: Greenlan PFOS conc = fever in past 3 mos - fever in past 3 mos - self-reported genital infection (Y/N) - testicular disorder (Y/N) - spillage of semen sample Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Poland = 18.6 Ukraine = 8.1 ng/ml Caffeine - cotinine - fever in past 3 mos - self-reported genital infection (Y/N) - spillage of semen sample Interactions w PFOS - age - sming status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation		Mean PFOS serum conc:	- period sexual abstinence	Modest N
10.1016/j.reprotox.2012.02.008. Epub 2012 Mar 15. Study Design: Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2/2004 - w/in 1 wk of each other Location: Greenland, Poland (Warsaw),		Greenland = 51.9 ng/ml		
Epub 2012 Mar 15. Study Design: Study Design: NoTE: Greenlan PFOS conc = 4.5 x US M; Poland = 1.6 x US M Ukraine = 0.7 x US M (NHANES 4 th Rpt)) Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Contine				
Study Design: (NOTE: Greenlan PFOS conc = 4.5 x US M; Poland = 1.6 x US M Utraine = 0.7 x US M (NHANES 4 th Rpt)) Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2/204 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), (NOTE: Greenlan PFOS conc = 4.5 x US M; Poland = 1.6 x US M (Utraine = 0.7 x US M (NHANES 4 th Rpt)) Interview: - lifestyle - occupation - reprod history Reasonable statistical controls - self-reported genital infection (Y/N) - spillage of semen sample Interactions w PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	· · ·	Ukraine = 8.1 ng/ml		to detect effect
Study Design: A.5 x US M; Poland = 1.6 x US M Ukraine = 0.7 x US M (NHANES 4 th Rpt)) Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), - self-reported genital infection (Y/N) - testicular disorder (Y/N) - spillage of semen sample Interactions w PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Wajor Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	Epub 2012 Mar 15.			
Poland = 1.6 x US M Ukraine = 0.7 x US M (NHANES 4 th Rpt)) Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002-2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Poland = 1.6 x US M Ukraine = 0.7 x US M (NHANES 4 th Rpt)) - testicular disorder (Y/N) - spillage of semen sample Interactions w PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation				Reasonable statistical controls
Recruitment at first ante-natal visit Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Ukraine = 0.7 x US M (NHANES 4 th Rpt)) - spillage of semen sample Interactions w PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	Study Design:	,		
Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 W/in 1 wk of each other Location: (NHANES 4 th Rpt)) Interactions w PFOS - age - smoking status at preg - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation			` '	
Inclusion: - ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 W/in 1 wk of each other Location: Greenland, Poland (Warsaw), Interactions w PFOS - age - serum cotinine - PFOA Outcome: - PFOA Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	Recruitment at first ante-natal visit		- spillage of semen sample	
- ≥ 18 yrs old - born in country of study Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw),		(NHANES 4 th Rpt))	l., " DE00	
- born in country of study - smoking status at preg - serum cotinine - PFOA Interview: - Dutcome: - reprod history Blood and semen samples 5/2002- 2/2004 W/in 1 wk of each other Location: Greenland, Poland (Warsaw), - smoking status at preg - serum cotinine - PFOA Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation				
Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 W/in 1 wk of each other Location: - serum cotinine - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation				
Interview: - lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), - PFOA Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	- born in country of study			
- lifestyle - occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	Intervious			
- occupation - reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Outcome: Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation			- PFOA	
- reprod history Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	1		Outcomo	
Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Sperm chromatin/DNA fragmentation Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation			Outcome.	
Blood and semen samples 5/2002- 2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	Topiou fliatory		Sperm chromatin/DNA fragmentation	
2/2004 w/in 1 wk of each other Location: Greenland, Poland (Warsaw), Major Findings: (adj model) PFOS not sig assoc w chromatin/DNA fragmentation	Blood and semen samples 5/2002-		Openii ciliomatii/DNA haginentation	
w/in 1 wk of each other Location: Greenland, Poland (Warsaw), (adj model) PFOS not sig assoc w chromatin/DNA fragmentation			Major Findings:	
Location: Greenland, Poland (Warsaw), PFOS not sig assoc w chromatin/DNA fragmentation				
Greenland, Poland (Warsaw), chromatin/DNA fragmentation	i int or odori othor		(,	
Greenland, Poland (Warsaw), chromatin/DNA fragmentation	Location:		PFOS not sig assoc w	
Greenland, Poland (Warsaw),				
	Greenland, Poland (Warsaw),			

	Outcome:	
Population:	Outcome.	
M partners of preg F Greenland – N = 199	TUNEL assay positive (terminal deoxynucleotidyl transferase driven dUTP nick end labeling) a measure of apoptosis	
Poland – N = 197 Ukraine – N = 208	Major Findings:	
Related Studies:	PFOS not sig assoc w TUNEL pos outcome	
	Outcome:	
	Apoptotic markers (DFI, Fas, BcI)	
	Major Findings:	
	PFOS not sig assoc w apoptotic markers	
	(trend sig pos for Fas for Poland only, but tertiles not sig diff)	
	Outcome:	
	Sex hormone binding globin (SHBG)	
	Major Findings:	
	PFOS not sig assoc w SHBG	
	Outcome:	
	Testosterone	

Major Findings:
PFOS not sig assoc w serum testosterone
Outcome:
Estradiol
Major Findings:
PFOS not sig assoc w serum estradiol
Outcome:
Gonadotrophin hormones
Major Findings:
PFOS not sig assoc w serum gonadotrophins

D.(F	D K.	0
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Starling et al. (2014a)	HPLC-MS	OR by weighted Cox proportional hazard models	PFOS analyses not adj for PFOA
Starling et al. (2014a) Starling AP, Engel SM, Richardson DB, Baird DD, Haug LS, Stuebe AM, Klungsøyr K, Harmon Q, Becher G, Thomsen C, Sabaredzovic A, Eggesbø M, Hoppin JA, Travlos GS, Wilson RE, Trogstad LI, Magnus P, Longnecker MP. Am J Epidemiol. 2014 Apr 1;179(7):824-33. doi: 10.1093/aje/kwt432. Epub 2014 Feb 20. Perfluoroalkyl substances during pregnancy and validated preeclampsia among nulliparous women in the Norwegian Mother and Child Cohort Study. Study Design: Nested case-control in MoBa cohort Recruitment during first trimest preg 2003-2007 Inclusion criteria: - preg w singleton - no prev births or stillbirths - no chronic hypertension pre-preg	LOQ = 0.05 ng/ml PFOS as linear + branched 100% > LOQ Population-Level Exposure: PFOS median conc = 12.87 ng/ml (NOTE: This is ~1.7 times current median in US F (NHANES 4 th Rpt))		Preclampsia is assoc w kidney disease. Although direction of causality is not clear, if sub-clinical preeclampsia conditions are present pre-preg, then changes in kidney function → changes in plasma PFOS Other comments: Case-control design Objective case ascertainment Restricted to nulliparous F to eliminate confounding due to ↓ PFOS conc in preg Hypothetical kidney function/preeclampsia link partly addressed by sens analysis for plasma creatinine and cystatin in 1st trimmest plasma
- mid-preg plasma sample			
Non-fasting blood sample			

preeclampsia determined at antenatal visit based on following criteria determined at same visit: - BP-S ≥ 140, or BP-D ≥ 90 after 20 wks gest - urine proteinuria (dipstick ≥ 1+		
Location:		
Norway		
Population:		
Norwegian Mother and Child Study (MoBa)		
Cases - N = 466 (random selection)		
Controls – N = 510 (random selection)		
Related Studies:		

Defended to the territory of the territo	P	D	0
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Starling et al. (2014b)	HPLC-MS	<u>Co-variates</u> - maternal age	Non-fasting plasma lipid measurements
Starling AP1, Engel SM, Whitworth KW, Richardson DB, Stuebe AM,	PFOS as linear + branched	- pre-preg BMI - parity/inter-preg interval	Other comments:
Daniels JL, Haug LS, Eggesbø M, Becher G, Sabaredzovic A,	CV = 11.3%	- duration breastfeeding most recent child	Cross-sectional design
Thomsen C, Wilson RE, Travlos GS, Hoppin JA, Baird DD,	PFOS measured in 100% of samples	- maternal educ - smoking status at mid-preg	Non-fasting lipids
Longnecker MP. Environ Int. 2014 Jan;62:104-12.	Population-Level Exposure:	- gest wk at blood draw - daily oily fish consumption at mid-	Large N
doi: 10.1016/j.envint.2013.10.004. Epub 2013 Nov 2.	PFOS median conc = 13.03	preg - For HDL, plasma albumin conc	Adequate stat adj
Perfluoroalkyl substances and lipid concentrations in plasma during	ng/ml	Wt gain as (self-reported) current –	Rel high PFOS exposed pop
pregnancy among women in the Norwegian Mother and Child Cohort	(NOTE: PFOS conc = 1.7 x US F conc (NHANES 4 th Rpt))	pre-preg wt	↑ HDL not an adverse effect. Potential adverse effect for PFOS limited to equivocal assoc w total
Study.	T cond (MIANES 4 Rpt))	Multiple linear regression of assoc	cholesterol
Study Design:		PFOS w outcomes (weighted by inverse prob of inclusion in study)	
Cross-sectional		PFOS as quartiles or In-transf continuous var	
MoBa sub-cohort originally created for study of subfecundity (Whitworth et al. 2012b).		Lipids as continuous outcomes Triglycerides In-transformed (to normalize residuals)	
Blood draw at 12-37 wks gest (99% at 14-26 wks, second trimest; 73% at 17-20 wks)		Multi-PFAS (7) model Outcome:	
Measurement of plasma lipids and PFOS		Total cholesterol	

Outcomes:

- total cholesterol
- HDL cholesterol
- LDL cholesterol
- triglycerides

Maternal characteristics/lifestyle info from questionnaire data

Location:

Norway

Population:

Norwegian Mother and Child Cohort study (MoBa)

Enrolled in MoBa 2003-2004

Delivered live birth

Provided mid-preg plasma sample

Provided complete questionnaire info on time-to-preg

N = 891

Related Studies:

Whitworth et al. (2012b)

Major Findings:

Total cholesterol **pos assoc** w In-PFOS as continuous var and for ↑ of interquart range (However, not sig assoc w any quart PFOS)

Outcome:

HDL cholesterol

Major Findings:

HDL cholesterol **sign pos assoc** w PFOS for 4th quart (borderline for 3rd quart) and for In-PFOS as continuous var and for ↑ of IQR

β for In-PFOS ↓ ~50% when adjusted for 6 other PFA

Outcome:

LDL cholesterol

Major Findings:

LDL cholesterol **not sig assoc** w PFOS for any quart, as continuous var, or for ↑ of IQR

Outcome:	
Triglycerides	
Major Findings:	
triglycerides not sig assoc w PFOS for any quart, as continuous var, or for ↑ of IQR	

Defense and Ot 1 D		B #	0
Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Steenland et al. (2009)	LC-MS	Ln-transformation for lipid vars	Cross-sectional design
Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 2009 Nov 15;170(10):1268-78. doi: 10.1093/aje/kwp279. Epub 2009 Oct 21.	Precision "generally" w/in 10% for multiple replicates Population-Level Exposure: Mean PFOS conc = 22.4 ng/ml	Co-variates Based on relation to 1 or more lipids (indep of PFOS) - age - gender - BMI - education - smoking - exercise - education Co-variates maintained in all models	PFOS analyses not controlled for PFOA (PFOA and PFOS gave similar results for all lipid vars) Other comments: Large n Good analytical precision Good statistical analysis
Study Design:		Co-variates maintained in all models	Specific analyses for influence of age, BMI
Cross-sectional Consumers of water from any of 6 contaminated districts for ≥ 1 yr before 12/2004 Blood sample (fasting not required) Lipid analysis: - Total cholesterol (TC) - LDL cholesterol (LDL-C) - HDL cholesterol (HDL-C) - Triglycerides - Non-HDL cholesterol (non-HDL-C) = TC-HDL-C Location: OH, WV		Fasting incl only for triglyceride models (did not sig affect other models) Linear regression: PFOS as continuous and categorical var (deciles) Also, logistic regression model for dichotomous hypercholesterolemia (cholesterol ≥ 240 mg/dL) - PFOS as quartiles - also PFOS as continuous var PFOS analyses w and w/out adjustment for PFOA	Specific consideration of reverse causation. PFOS analyses w and w/out adj for PFOA gave similar results

<u> </u>		
Population:	<u>Linear regression</u>	
Adults > 18 yrs old In C8 Health Project	Outcome:	
2005-2006	TC	
46,494 ≥ 18 yrs → exclusion for cholesterol lowering meds → n =	Major Findings:	
46,294	PFOS sig pos assoc w TC for deciles 2-10 (dec 1 as ref)	
Related Studies:	And trend for continuous var	
	Stratification by gender gave similar results	
	Models w and w/out BMI (under hypothesis that BMI is an intermed var for TC) gave similar results	
	Model w PFOS as dep variable w cholesterol lowering med (Y/N) as indep var (under hypothesis of reverse causation – higher cholesterol → higher PFOS) Cholesterol lowering med (Y/N) not sig predictor of PFOS	
	Outcome:	
	HDL-C	
	Major Findings:	
	PFOS not sig assoc w HDL-C	

Outcome:
LDL-C
Major Findings:
PFOS sig pos assoc w LDL-C (continuous var, categorical not shown)
Outcome:
Triglycerides
Major Findings:
PFOS sig pos assoc w triglycerides (continuous var, categorical not shown)
Outcome:
HDL-C/TC
Major Findings
PFOS sig pos assoc w HDL-C/TC (continuous var, categorical not shown)

	Outcome:	
	Non-HDL-C	
	Major Findings:	
	PFOS sig pos assoc w non-HDL-C (continuous var, categorical not shown)	
	Logistic Regression	
	Outcome:	
	Hypercholesterolemia	
	Major Findings:	
	OR for hypercholesterolemia sig > 1.0 for Q2-4 (Q1 as referent) P-trend <0.0001	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Steenland et al. (2010)	Std C8 methodology	Linear regression w uric acid as dep	
	(LC-MS)	<u>var</u>	Results are stronger for PFOA than PFOS. Also
Steenland K, Tinker S, Shankar A,			serum PFOA ~ 4x serum PFOS. Although PFOS
Ducatman A.	Precision (multiple replicates	Analysis by deciles (1st decile as ref)	analyses controlled for PFOA in alternative
Environ Health Perspect. 2010	generally +/- 10%		analyses, possibility of incomplete adjustment.
Feb;118(2):229-33. doi:	100 05 / 1	<u>Co-variates</u> (a priori)	
10.1289/ehp.0900940.	LOD = 0.5 ng/ml < 1% < LOD	- age	Other comments:
Association of perfluorooctanoic acid (PFOA) and perfluorooctane	< 1% < LOD < LOD = LOD/2	- sex - BMI	Very large N
sulfonate (PFOS) with uric acid	< LOD = LOD/2	- educ	very large in
among adults with elevated	Population-Level Exposure:	- smoking	Adj for PFOA
community exposure to PFOA.	Topulation-Level Exposure.	- alcohol	Adjiorition
community exposure to 11 e/t.	Median = 20.2 ng/ml	- creatinine (logged)	Sens analysis w exclusion of elevated creatinine
		creamine (regges)	(suggestive of kidney disease)
Study Design:		Model w and w/out PFOA	(coggeous or mana) and and
Cross-sectional			
		Logistic regression for dichotomous	
Blood sample at enrollment		<u>outcomes</u>	
Fasting not required for blood		Hyperuricemia (uric acid > 6 mg/dL -	
samples		F; > 6.8 mg/dL- M	
		Company of the contract of the	
Location:		Same co-variates as linear	
OH, WV		regression	
		Outcome:	
		Uric acid	
Population:			
C8 study population		Major Findings:	
		(full adj model)	
Est participation (≥ 20 yrs old) =			
81%		Stat sig pos associated w PFOS	
≥ 18 yrs old		(sig pos trend w PFOA in model, but	
Median age ~ 40-49 yrs		max effect diminished ~ 50%)	
N = 53,454			
IN = 55,454			

Related Studies:	Outcome: hyperuricemia	
	Major Findings: OR sig > 1.0 for quartiles 2-4	
	(OR remains sig pos w PFOA in model)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
otudy.	Exposure Assessment.	Otal Metriod.	major Eminations.
Stein et al. (2009)	Solid-phase extraction,	Logistic regression models	Cross-sectional
	reverse-phase-HPLC		0.000
Stein CR, Savitz DA, Dougan M.	·	OR for outcomes relative to change	
Am J Epidemiol. 2009 Oct	LOD = 0.5 ng/ml	in PFOS = IQR	Self-reported outcomes
1;170(7):837-46. doi:		(9.0-17.7 ng/ml)	
10.1093/aje/kwp212. Epub 2009	< LOD = LOD/2		Outcome data ≤ 5 yrs offset from exposure data
Aug 19.		Also OR based on PFOS category	(although sens analysis conducted for ≤ 3 yr offset
Serum levels of perfluorooctanoic	Population-Level Exposure:	(quartiles)	w similar results)
acid and perfluorooctane sulfonate	Mars DEGG 45 0/	DECO and an all at the DECA	24
and pregnancy outcome.	Mean PFOS conc = 15.0 ng/ml	PFOS analyses adjusted for PFOA	Other comments:
Study Design:	(Median = 13.6)	Mandatory co-variates	Cross-sectional design
Study Design.	90 th percentile = 23.2 ng/ml	<u>ivialidatory co-variates</u>	Cross-sectional design
Cross-sectional	90 percentile = 23.2 fig/fill	- maternal age	Large N
Cross scolloridi	(NOTE: median PFOS conc ~	- parity	Largo
Self-reported outcomes ≤ 5 yrs prior	1.8 x F conc in most recent	- maternal educ	Reasonable stat control of co-variates
to enrollment	NHANES (4 th Rpt)). However,	- smoking	
	90 th percentile ≈ NHANES F		PFOS analyses adj for PFOA
Self-reported preg outcomes:	90 th percentile	Outcome:	
- miscarriage			Self-reported outcomes
- premature birth		Miscarriage	
- low birth wt			Outcome-exposure offset may be sig
- preeclampsia		Major Findings:	(However, exposure misclassification would tend to
- reported birth defects		(adj models)	reduce observed assoc)
Location:		OR for miscarriage not sig <>1.0	
Location.		for either \triangle IQR, or individual quarts	
OH and WV		Tor entrer & IQIX, or marvidual quarts	
Off and vv v		Outcome:	
Population:			
•		Preeclampsia	
C8 study cohort pregnant women		·	
		Major Findings:	
Incl all:		(adj model)	
- singleton miscarriages			
- stillbirths			
- live births			

Exclusion: - non-white F - missing covariate data - preg diabetes	OR for preeclampsia sig > 1.0 (= 1.6) for > 90 th percentile PFOS exposure Outcome:
N = 5,282-4,512 (depending on spec outcome) Related Studies:	Premature birth (< 37 wks) Major Findings: (adj model) OR for premature birth sig > 1.0 for Δ IQR (OR = 1.3), and for Q3 (OR = 1.6), and Q4 (>90th percentile) (OR = 1.8) Outcome: Birth defects Major Findings: (adj model) OR for birth defeces not sig <>1.0 for either Δ IQR, or individual quarts

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		
US - NHANES		Major Findings:	
		Measles Ab level not assoc with PFOS	

Population:		Outcome:	
NHANES 1999-2000; 2003-2004 for vaccine Abs	N	Mumps Ab	
	, n	Major Findings:	
NHANES 2005-2006 for allergy		Mumps Ab <u>sig neg assoc</u> w PFOS	
study	"	doubling PFOS → 7.4% ↓	
Children 12-19 yrs	((5.9% ↓ for sero positive children only)	
N (vaccine) = 1,188			
N (allergy) = 640	(Outcome:	
Related Studies:	F	Rubella Ab	
	ı	Major Findings:	
	2	Sig neg assoc	
		13.3% ↓ for doubling PFOS (but for sero positives only)	
	\	(but for sero positives offly)	
		Outcome:	
	l A	Asthma	
	ı	Major Findings:	
	ı	Not sig assoc w PFOS	
	C	Outcome:	
	V	Wheeze	
	ı	Major Findings:	
	1	Not sig assoc w PFOS	

Outcome:
Allergy (reported)
Major Findings:
Not sig pos assoc w PFOS
Outcome:
Rhinitis
Mafor Findings:
Not sig assoc w PFOS
Outcome:
Allergic sensitization (by total and spec IgE)
Major Findings:
Sig pos assoc w mold allergen (sig neg assoc w "any", plants, cockroach, dust mites, rodents, foods

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Stein and Savitz (2011)	Solid-phase extraction, reverse phase HPLC-MS (?)	PFOS categorized in quartiles	Cross-sectional design
Stein CR, Savitz DA.		Co-variates considered	Self-reported outcomes
Serum perfluorinated compound concentration and attention	PFOS detected in 100% of samples	(bold in final model)	Unclear at what age responses were provided by 5-18 yr olds vs. parents
deficit/hyperactivity disorder in	·	- age	
children 5-18 years of age.	Population-Level Exposure:	- sex	
Environ Health Perspect. 2011		- race/ethnicity	Other comments:
Oct;119(10):1466-71. doi:	Mean (sd) PFOS conc = 22.9	- BMI	
10.1289/ehp.1003538. Epub 2011	ng/ml (12.5 ng/ml)	- aver household income	Large N
Jun 10.	(NOTE; even though PFOS	Logistic regression	Reliable PFOS analytical measurements
Study Design:	exposure is noted by the	OR of ADHD for given quart PFOS	Decemble statistical control in all adjustment of
Cross-sectional/case control	authors to be consistent w	PFOS model adjusted for other	Reasonable statistical control incl adjustment of PFOS analyses for other PFCs
Cross-sectional/case control	NHANES exposure, w respect to current exposure, exposure	PFCs (PFOA, PFHxS, PFNA)	Pros analyses for other Pros
ADHD determination based on self-	of 12-15 yr old segment of	FICS (FICA, FITIAS, FITIA)	Cross-sectional design
reporting of physician diagnosis of	cohort is ~ 2x that of current	Outcome:	Orosa sectional design
ADHD or ADD, plus self-reported	exposure in this NHANES age		Self-reported outcome data (some by ≤18 yrs old)
ADHD med use	range (NHANES 4 th Rpt))	ADHD (phys diagnosis plus med)	
Cases = 5.1%			
		Major Findings:	
Self-reported learning problems			
		OR for ADHD not sig <> 1.0 for any	
Location:		quart PFOS (Q1 as referent)	
OH, WV		Outcome:	
Population:		Learning problems	
C8 Study cohort (n = 69,030)		Major Findings:	
Children 5-18 yrs old		, 3	
With PFC measurements		OR for learning problems sig < 1.0	
(n = 11,046)		for Q2-3 PFOS, borderline sig for	
Non-Hispanic white		Q4	
(n = 10, 546)		(OR = 0.74-0.85)	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Strom et al. (2014)	PFOS by column-switching isotope dilution	PFOS as tertiles	Outcomes for ADHD, depression defined on clinical basis, less severe conditions would not be
Strøm M, Hansen S, Olsen SF,	·	For ADHD and depression, analysis	detected
Haug LS, Rantakokko P, Kiviranta	LC-MS/MS	by Cox proportional hazards	
H, Halldorsson TI.		regression model → hazard ratio	Other comments:
Environ Int. 2014 Jul;68:41-8. doi:	LOQ = 0.05 ng/ml	(HR) (age as underlying scale) –	
10.1016/j.envint.2014.03.002. Epub	Intro comple CV/ 2 00/	dichotomous model	Prospective study design
2014 Apr 2.	Intra-sample CV = 2.8%	For goodomic achiev, analysis by	Long (22 vg) follow up
Persistent organic pollutants measured in maternal serum and	Population-Level Exposure:	For academic achiev, analysis by linear regression-continuous model	Long (22 yr) follow-up
offspring neurodevelopmental	Population-Level Exposure.	illear regression-continuous model	Large N
outcomesa prospective study with	Median PFOS conc = 21.4	Co-variates	Large N
long-term follow-up.	ng/ml	- maternal age	Objective and precise case ascertainment
g		- parity	, , , , , , , , , , , , , , , , , , , ,
Study Design:	(NOTE: median PFOS conc =	- pre-preg BMI	Relatively crude measures for ADHD and
	2.7 times US F median	- maternal educ	depression
Prospective pregnancy cohort	(NHANES 4 th Rpt))	- maternal smoking in preg	
22 yrs follow-up		- maternal cholesterol	Reasonable statistical analysis
		- maternal triglycerides	
Pre-birth cohort		- offspring sex	
Recruitment at wk 30 of gest		Outcome:	
1988-89		ADHD	
Questionnaire and interview at		ADHD	
recruitment – lifestyle, SES, health		Major Findings:	
reordition mostyle, 020, nealth		(adj model)	
Serum sample at recruitment		(,,	
γ		ADHD not sig <> 1.0 for PFOS for	
Outcome assessment through		either tertile (1st tert as reference)	
linkage to Danish pop-based		, , , , , , , , , , , , , , , , , , ,	
registries:			
- <u>ADHD</u> – based on Rx for			
psychostimulant med; or			
in/outpatient for hyperkinetic			
disorder			

- Depression - based on Rx for	Outcome:	
anti-depression med; or		
in/outpatient for depression	Depression	
- Academic achievement - based		
on score on standardized 9thgrade	Major Findings:	
achievement test	(adj model)	
Location:	Depression not sig <> 1.0 for	
	PFOS for either tertile (1st tert as	
Aarhus, Denmark	reference)	
,		
Population:	Outcome:	
•		
Danish Fetal Origins 1988	Academic achievement	
(DaFO88) Cohort		
,	Major Findings:	
N (offspring) =	(adj model)	
876 for ADHD, depression		
822 for academic achievement	Academic achievement not sig	
	assoc w PFOS	
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Taylor et al. (2014)	NHANES-CDC analysis	PFOS as tertiles	PFOS analyses not adj for other PFCs
Taylor KW, Hoffman K, Thayer KA, Daniels JL.	Population-Level Exposure:	Hazard ratio (HR) for normal menopause as function of age and	Other comments:
Environ Health Perspect. 2014 Feb;122(2):145-50. doi:	Median PFOS conc Pre-menopausal = 10.3 ng/ml	serum PFOS by proportional	Cross-sectional design
10.1289/ehp.1306707. Epub 2013 Nov 26.	Menopausal = 14.03 ng/ml Hysterectomy = 17.5 ng/ml	NHANES sample weights not used but sample weight categories	Rel large N across categories
Polyfluoroalkyl chemicals and menopause among women 20-65		included in models	PFOS not adj for other PFCs
years of age (NHANES).		<u>Co-variates</u> - age	Assoc. of menopause w PFOS are modest
Study Design:		- race - parity	Analyses for reverse causality suggest that modest assoc of menopause w PFOS may reflect reverse
Cross-sectional		- educ - smoking	causality
NHANES questionnaire data on			
age at menopause		Assoc between time since menopause and PFOS conc by gen	
Menopause = No menstrual period in last 12 mos		additive models (GAM) and linear regress	
(not due to med condition, preg, breastfeeding, irreg periods)		Outcome:	
Pre-menopause = regular periods,		menopause	
or preg, or breastfeeding		Major Findings:	
Reverse causation (potential higher PFOS serum conc due to		(adj model)	
menopausal retention of blood) addressed by:		HR for menopause sig > 1.0 for 2 nd tert (1.22), but not for 3 rd tert	
1. examining assoc PFOS conc w		16.11 (1.122), 261.1161.161.161.161.161.161.161.161.161	
hysterectomy (i.e., artificial menopause → ↑ PFOS?)			
2. examining assoc bet time since menopause and serum PFOS conc			

(i.e.,↓ time since menopause → ↓ PFOS serum conc?)	Outcome:	
Location:	hysterectomy	
US	Major Findings: (adj model)	
Population:	HR for hysterectomy sig >1.0 for tert-2 (1.44) and tert-3 (2.56)	
NHANES	, , ,	
1999-2000, 2003-2004, 2005-2006, 2007-2008, 2009-2010	Outcome:	
F ≥ 18-65 yrs old	Time since menopause	
	Major Findings:	
Pre-menopause - N = 1,800 Menopause - N = 502	Δ PFOS conc for 1 yr ↑ in time since	
Hysterectomy – N = 431	menopause is pos, but not sig	
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Timmermann et al. (2014)	NHANES-CDC	Linear regression w PFOS as continuous variable	Cross-sectional design
Timmermann CA, Rossing LI, Grøntved A, Ried-Larsen M,	Population-Level Exposure:	Adiposity outcome vars In-transformed	Other comments:
Dalgård C, Andersen LB, Grandjean P, Nielsen F, Svendsen	Median PFOS conc = 41.5 ng/ml	(for normality of residuals)	Cross-sectional design
KD, Scheike T, Jensen TK. Adiposity and glycemic control in children exposed to perfluorinated	(NOTE: median PFOS conc is 6 x US 12-19 yrs old (NHANES	<u>Co-variates</u> - sex - age	Moderate N Reasonable statistical control
compounds. J Clin Endocrinol Metab. 2014	4 th Rpt))	- ethnicity - paternal income	Rel high exposure
Apr;99(4):E608-14. doi: 10.1210/jc.2013-3460. Epub 2014 Feb 25.		- fast food consumption - height (waist circum endpoint) - BMI (glycemic control endpoints)	PFOS analyses not adj for PFOA
Study Design:		- skinfold thickness (glycemiccontrol endpoints) - waist circum ((glycemiccontrol	
Nested-cross-sectonal		endpoints)	
Nested in Danish component of European Youth Heart Study		Outcome:	
Measurement of:		BMI	
- height - wt - waist circum		Major Findings: (adj model)	
- skinfold thickness		BMI not sig assoc w PFOS	
Aerobic fitness test – peal Watts rel to bw		Outcome:	
Pubertal status		Skinfold thickness	
Overweight = age/sex adj BMI at 18 yrs old > 25 kg/m ²		Major Findings: (adj model)	
, ,		Skinfold thickness not sig assoc w PFOS	

Questionnaire to child and parents: - birthweight Outcome: - breastfeeding - ethnicity Waist circum - dietary intake - daily TV watching **Major Findings:** - parental BMI (adj model) - parental educ Waist circum not sig assoc w PFOS - income Location: Outcome: Adiponectin Odense, Denmark **Major Findings:** Population: (adj model) Children 8-10 yrs old Adiponectin **not sig assoc** w PFOS Attending public school Outcome: Cluster sampling from 25 schools Leptin **Major Findings:** N = 590M = 279(adj model) F = 311Leptin not sig assoc w PFOS **Related Studies:** Outcome: Insulin **Major Findings:** (adj model) Insulin **not sig assoc** w PFOS for normal wt Insulin **sig pos assoc** w PFOS for overweight

Outcome:	
НОМА-В	
Major Findings: (adj model)	
HOMA-β not sig assoc w PFOS <u>for</u> normal wt HOMA-β sig assoc w PFOS <u>for</u> overweight	
Outcome:	
HOMA-IR	
Major Findings: (adj model)	
HOMA-IR not sig assoc w PFOS <u>for</u> normal wt HOMA-IR sig assoc w PFOS <u>for</u> overweight	
Outcome:	
glucose	
Major Findings: (adj model)	
glucos not sig assoc w PFOS <u>for</u> normal wt or overweight	

Outcome:	
triglycerides	
Major Findings: (adj model)	
triglycerides not sig assoc w PFOS for normal wt triglycerides sig assoc w PFOS for overweight	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
otady.	Exposure Assessment.	Otal method.	major Emitations.
Toft et al. (2012)	PFOS serum conc	Combined and pop-stratified analyses	Cross-sectional
, ,			
Toft G, Jönsson BA, Lindh CH,	PFOS by LC//MS/MS	Analyses w PFOS categorized as tertiles	Small n for individual countries
Giwercman A, Spano M, Heederik			
D, Lenters V, Vermeulen R,	PFOS LOD = 0.2 ng/ml	PFOS In-transformed	Low participation from cohort in Poland and
Rylander L, Pedersen HS, Ludwicki	Demulation Level Evenenue	Converience	Ukraine
JK, Zviezdai V, Bonde JP.	Population-Level Exposure:	Co-variates:	Temporal relation but blood comple and
Exposure to perfluorinated compounds and human semen	Total	(a priori)	Temporal relation bet blood sample and semen sample unknown
quality in Arctic and European	- PFOS median = 18.4 ng/ml	- Abstinence time	Semen sample unknown
populations.	- P66 = 27.3 ng/ml	- age	Other comments:
Hum Reprod. 2012 Aug;27(8):2532-		- spillage (Y/N)	
40. doi: 10.1093/humrep/des185.	Greenland	- smoking (Y/N)	Rel small n's for each individual pop. Given
Epub 2012 May 30.	- PFOS median = 44.7 ng/ml	- ever urogenital infection	large differences in PFOS conc across pops,
	- P66 = 56.1 ng/ml	- BMI	small individual n's could reduce power to
Study Design:		- country (combined analyses)	see differences.
	Poland	A 11 (DECC () 11 DEC () 11 11	
Cross-sectional	- PFOS median = 18.5 ng/ml	Adj of PFOS for other PFCs in sensitivity	Pops differences in PFOS conc makes
Abstinence from sexual activity for	- P66 = 21.2 ng/ml	analysis	interpretation of combined analyses unclear
≥ 2 d	Ukraine	Analyses of vol and count restricted to no	Good statistical control
= 2 u	- PFOS median = 7.6 ng/ml	spillage	Good statistical control
Analysis of semen samples w/in 1	- P66 = 8.5 ng/ml	Spinage	Good sample QC
hr of ejaculation for 83% of samples		Analyses of motility restricted to analysis w/in	
	(NOTE: PFOS conc total,	1 hr	Temporal blood/semen relationship unknown
Analysis for conc, motility,	Greenland, and Poland larger		
morphology	than current US M pop.	Also, analyses w generalized additive mode	
CV for conc, motility = 8.1, 11%	(median = 11.8). Poland less	(GAM) to capture non-linear relationships	
Companies automorphisms	than US M pop (NHANES 4th	Outcome	
Semen/sperm outcome measures In-transformed	Rpt)).	Outcome:	
in-uansionneu		Sperm conc	
Location:		Openin conto	
		Major Findings:	
Greenland, Poland (Warsaw),		(adj model)	
Ukraine (Kharkiv)		, ,	

Population: Sperm conc not sig diff across PFOS tertiles, combined or for any pop INJENDO cohort Outcome: participation Greenland - 79% Semen vol Poland - 29% **Major Findings:** Ukraine – 36% (adj model) M ≥ 18 yrs old Semen vol not sig diff across PFOS tertiles, N = 588combined or for any single pop Greenland = 196 Poland = 189Outcome: Ukraine = 203Sperm total count **Related Studies: Major Findings:** Kvist et al (2012) (adj model) Sperm count sig diff between 1st and 2nd tert for Polan (but not 1st and 3rd tert) Not sig diff for combined or any other pop Outcome: Percent motile sperm **Major Findings:** (adj model) % motile sperm **not sig diff** across PFOS tertiles, combined or for any single pop

Outcome:	
Percent normal cells	
Major Findings:	
% normal cells sig diff between 1 st and 2 and 1 st and 3 rd terts for combined analysis only (not for any single pop) p-trend (combined) borderline sig (p = 0.0	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Uhl et al. (2013)	CDC - Solid-phase extraction, HPLC-MS	PFOS characterized by quartiles Q1 = ≤ 2.95 ng/ml	Cross-sectional study design
Uhl SA, James-Todd T, Bell ML.		Q2 = > 8.56-13.59 ng/ml	Self-reported osteoarthritis status
Environ Health Perspect. 2013 Apr;121(4):447-52. doi:	Population-Level Exposure:	Q3 = >13.59-20.97 ng/ml Q4 = > 20.97 ng/ml	PFOS analyses not adj for PFOA
10.1289/ehp.1205673. Epub 2013	Mean PFOS conc = 21.23		,
Feb 7. Association of Osteoarthritis with	ng/ml	Co-variates considered (selected for full model based on p <	Small n (365) for cases, esp stratified by sed (F = 238, M = 127)
Perfluorooctanoate and		0.05 in model)	$(\Gamma = 230, \text{ IVI} = 121)$
Perfluorooctane Sulfonate in		,	Other comments:
NHANES 2003-2008.		- age - sex	Cross-sectional design
Study Design:		- poverty status	· ·
Cross-sectional		- race/ethnicity	Large N, but rel small N for cases, especially
Cross-sectional		- daily fat intake - daily calorie intake	stratified by sex
Osteoarthritis self-reported by		- BMÍ	Good statistical control of analyses
questionnaire ("Had doctor/health professional ever told you"). If Y,		- history bone fractures (self-reported) - participation in	Good analytical precision
type of arthritis (DK, or non-osteo,		sports/fitness/recreational physical	
excluded		activities - smoking	Suggestive, but ambiguous findings of PFOS-osteoarthritis assoc
Missing data on ≥ 1 co-variawte →		- smoking - parity (F)	Osteodrimus assoc
exclusion			
Location:		Multivariate logistic regression for odds assoc osteoarthritis w PFOS	
US		CDC-recommended NHANES sampling weights applied	
Population:			
NHANES cohort 2003-2008		Analyses for combined and separate M and F	
20-84 yrs old			

	Outcome:
N = 3,809	
Cases n = 365	OR for osteoarthritis for specified ↑ in
- M = 127	PFOS
- F = 238	· · ·
	Major Findings:
Related Studies:	(full adj model)
Innes et al. (2011)	<u>M + F</u>
	OR sig > 1.0 for Q3 (OR = 1.99) and Q4 (OR = 1.77) (Q1 as ref) OR not sig > 1.0 for continuous (unit incr) analysis
	<u>M</u>
	OR not sig > 1.0 for any PFOS quart or for unit ↑ in PFOS
	<u>E</u>
	OR not sig > 1.0 for any PFOS quart or for unit ↑ in PFOS (borderline sig OR = Q3-1.92; Q4-1.73; unit ↑-1.22) (OR sig > 1.0 for Q3-4 and unit ↑ in PFOS for <i>crude</i> analysis)

Study: Vagi et al. (2014) Vagi et al. (2014) Vagi SJ, Azziz-Baumgartner E, Sjödin A, Calafat AM, Dumesic D, Gonzalez L, Kato K, Silva MJ, Ye X, Azziz R BMC Endocr Disord. 2014 Oct 28:14-86. Exploring the potential association between brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perflucintated compounds, phthalates, and bisphenol a in polycystic ovary syndrome: a case-control design Study Design: Case-control design Study of polycystic ovary syndrome (PCOS) Self-provided information on: - age - race - ethnicity - BMI Solid-phase extraction, HPLC-MS/MS Multivariate logistic regression of PCOS outcome Co-variates Co-variates Co-variates Co-variates - age - BMI - white vs. other race Outcome: Outcome: Case-control design Small N Since PCOS is under hormonal control, there is potential for reverse causality if hormones mediate PFOS storage/elimination. Also PCOS necessarily corresponds to reduced menstruation which would bias toward higher PFOS conc in cases (8.2 ng/ml) sig higher than in controls (n = 4.9), p = 0.01. OR for PCOS sig > 1.0 for Tert-3 (5.79) PFOS conc. OR for T2 (3.43) borderline sig P = 0.062	Reference and Study Design	Exposure Measures	Results	Comment
Nagi SJ, Azziz-Baumgartner E, Sjödin A, Calafat AM, Durnesic D, Gonzalez L, Kato K, Silva MJ, Ye X, Azziz R BMC Endocr Disord. 2014 Oct 28;14:86. doi: 10.1186/1472-6823-14-86. Exploring the potential association between brominated diphenyl, ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol a in polycystic ovary syndrome: a case-control study. Study Design: Study of polycystic ovary syndrome (PCOS) Self-provided information on: - age - race - ethnicity - BMI - virilization (Msex-related) Multivariate logistic regression of PCOS outcome Outcome Co-variates Multivariate logistic regression of PCOS outcome Outcome Co-variates - age - age - BMI - white vs. other race - age - BMI - white vs. other race - age - age - age - atom control study. Multivariate logistic regression of PCOS outcome Co-variates - age - age - age - age - ethnicity - BMI - wirilization (Msex-related) Multivariate logistic regression of PCOS outcome Multivariate logistic regression of PCOS outcome Multivariate logistic regression of PCOS outcome Co-variates - age - age - age - age - age - age - ethnicity - BMI - wirilization (Msex-related) Multivariate logistic regression of PCOS outcome Multivariate logistic regression of PCOS outcome Co-variates - age		•		
	Vagi et al. (2014) Vagi SJ, Azziz-Baumgartner E, Sjödin A, Calafat AM, Dumesic D, Gonzalez L, Kato K, Silva MJ, Ye X, Azziz R BMC Endocr Disord. 2014 Oct 28;14:86. doi: 10.1186/1472-6823-14-86. Exploring the potential association between brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol a in polycystic ovary syndrome: a casecontrol study. Study Design: Case-control design Study of polycystic ovary syndrome (PCOS) Self-provided information on: - age - race - ethnicity - BMI - virilization (M sex-related	Solid-phase extraction, HPLC-MS/MS < LOD = LOD/√2 Population-Level Exposure: Geom mean PFOS conc: - cases = 8.2 ng/ml - controls = 4.9 ng/ml (NOTE: case PFOS conc is consistent with latest NHANES F data. Control PFOS ~ 67%	PFOS as tertiles Multivariate logistic regression of PCOS outcome Co-variates - age - BMI - white vs. other race Outcome: PCOS Major Findings: (adj model) PFOS conc in cases (8.2 ng/ml) sig higher than in controls (n = 4.9), p = 0.01. OR for PCOS sig > 1.0 for Tert-3 (5.79) P = 0.005 OR for T2 (3.43) borderline sig	Small sample size for cases (n = 52) and controls (n = 50) POCS is associated with reduced menstruation. Therefore cases may have higher body burdens of PFOS compared to those with regular menstruation (and greater elimination of PFOS). Therefore, there is a potential for reverse causation. Other comments: Case-control design Small N Since PCOS is under hormonal control, there is potential for reverse causality if hormones mediate PFOS storage/elimination. Also PCOS necessarily corresponds to reduced menstruation which would bias toward higher

Exclusion criteria: - current preg - use of hormones (incl contraceptives) or "other medication" in prev 3 mos - diabetes - menopause		
Case definition: - anovulation or oligo ovulation (cycle > 35 d) - hirsutism score > 6 - lab evidence of hperandrogenism - exclusion of related disorders (thyroid, hyperprolactinemia, non- classic adrenal hyperplasia, androgen secreting tumors)		
Single spot urine and blood samples		
Location:		
CA (Los Angeles area)		
Population:		
F 52 cases 50 controls Recruited through specialty clinics and advertisements		
18-45 yrs old		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Vested et al. (2013)	Column-switching isotope dilution, LC-MS	PFOS as tertiles	Small sample size
Vested A, Ramlau-Hansen CH, Olsen SF, Bonde JP, Kristensen SL, Halldorsson TI, Becher G, Haug	PFOS LOD = 0.05 ng/ml	Multivariate regression analysis w PFOS as continuous var	Self-measurement of testicular volume PFOS analyses not controlled for PFOA
LS, Ernst EH, Toft G. Associations of in utero exposure to	CV for in-house QC samples for PFOS = 4.4%	Outcome vars In-transformed	(PFOA analysis adj for PFOS is sens analysis, but unclear if this is predictive for PFOS adj for
perfluorinated alkyl acids with human semen quality and	PFOS Interlab comparison w/in	Co-variates (a priori)	PFOA)
reproductive hormones in adult	1 SD of consensus values	- history of reprod tract disease	Other comments:
men. Environ Health Perspect. 2013 Apr;121(4):453-8. doi:	Population-Level Exposure:	- flistory of reprod tract disease - BMI - smoking status	Longitudinal design
10.1289/ehp.1205118. Epub 2013 Jan 23.	PFOS median conc = 21.2 ng/ml	- maternal smoking - SES at birth	Good analytical performance
Study Design:	(NOTE: PFOS median conc ~	- abstinence time (for applicable outcomes)	Small sample size
Longitudinal	2x most recent adult M conc (NHANES 4th Rpt))	- spillage (Y/N)	Lack of statistical control for PFOA confounding
Somon cample		Outcome: (as function of maternal PFOS at preg wk	
Semen sample, Self-measured testicle vol Blood sample		30)	
·		Sperm concentration	
Semen analysis w/in 1 hr of ejaculation for 86% 100% w/in 2 hr		Major Findings:	
- vol - motility		Maternal PFOS not sig assoc w sperm conc	
- concentration			
PFOS analysis in maternal and sons' blood			

Serum sex hormone binding globin (SHBG

Reproductive hormones:

- testosterone
- estradiol
- LH
- FSH
- inhibin B
- free androgen index (FAI)

Location:

Denmark

Population:

2008-2009 follow-up of sons of mothers in 1988-1989 cohort from Aarhus, Denmark

Semen sample, Self-measured testicle vol Blood sample

468 invited → 176 consented → **169 PFOS analysis**Additional 45 excluded from analysis of sperm count and semen vol due to spillage

Related Studies:

Toft et al. (2012); Raymer et al. (2012); Joensen et al. (2009)

Outcome:

(as function of maternal PFOS at preg wk 30)

Total sperm count

Major Findings:

Maternal PFOS **not sig assoc** w sperm count

Outcome:

(as function of maternal PFOS at preg wk 30)

Semen vol

Major Findings:

Maternal PFOS **not sig assoc** w semen vol

Outcome:

(as function of maternal PFOS at preg wk 30)

% progressive spermatozoa

Major Findings:

Maternal PFOS **not sig assoc** w % progressive spermatoza

	Outcome: (as function of maternal PFOS at preg wk 30)	
	Mean testicular vol	
	Major Findings:	
	Maternal PFOS not sig assoc w mean testicular vol	
	Outcome: (as function of maternal PFOS at preg wk 30)	
	Testosterone serum conc	
	Major Findings:	
	Maternal PFOS not sig assoc w testosterone serum conc	
	Outcome: (as function of maternal PFOS at preg wk 30)	
	Estradiol serum conc	
	Major Findings:	
	Maternal PFOS not sig assoc w estradiol serum conc	

Outcome: (as function of maternal PFOS at preg wk 30)	
LH	
Major Findings:	
Maternal PFOS not sig assoc w LH serum conc	
Outcome: (as function of maternal PFOS at preg wk 30)	
FSH	
Major Findings:	
Maternal PFOS not sig assoc w FSH serum conc In multivar regression w PFOS as continuus var, maternal PFOS borderlins assoc w FSH (p-trend = 0.06), however β is minimal and categorical analysis is not sig	
Outcome: (as function of maternal PFOS at preg wk 30)	
Inhibin B	
Major Findings:	
Maternal PFOS not sig assoc w inhibin B serum conc	

Outcome: (as function of maternal PFOS at preg wk 30)
SHBG
Major Findings: Maternal PFOS not sig assoc w SHBG serum conc
Outcome: (as function of maternal PFOS at preg wk 30)
FAI
Major Findings: Maternal PFOS not sig assoc w FAI serum conc

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Vestergaard et al. (2012)	LC-MS/MS	<u>Co-variates</u>	Moderate sample size
Wasternam I O4 Nichard F	/** *** OV		DECC and according to the Health DECA
Vestergaard S1, Nielsen F, Andersson AM, Hjøllund NH,	w/in batch CV = < 3% between batch CV = < 5.2%	- age - BMI	PFOS analyses not controlled for PFOA
Grandjean P, Andersen HR, Jensen	Detween patch $CV = < 5.2\%$	- Bivii - smoking	Other comments:
TK.	LOQ = 0.03 ng/ml	- caffeine consumption	Other comments.
Hum Reprod. 2012 Mar;27(3):873-	20Q = 0.03 fig/fill	- cycle length	Prospective study design
80. doi: 10.1093/humrep/der450.	100% of samples detectable for	- last contraception method	Troopsouve duay assign
Epub 2012 Jan 13.	PFOS	- diseases related to fecundity (self-report)	High PFOS exposure
Association between perfluorinated		- sperm conc (oligospermia Y/N)	
compounds and time to pregnancy	Population-Level Exposure:	, - ,	Good statistical control and sens analyses
in a prospective cohort of Danish		PFOS conc dichotomized at median	
couples attempting to conceive.	Median PFOS conc		Precise analytical determination
	- No pregnancy = 35.75 ng/ml	OR for subfecundity by logistic regression	
Study Design:	- Preg = 36.29 ng/ml	Diff in TTD by high law DEGG data made a	Not subject to reverse causation arising from
Dragnostiva	(NOTE: Median PFOS conc. ~	Diff in TTP by high-low PFOS determined by fecundity ratio (FR - prob of preg/time)	reduced serum PFOS due to previous pregnancies
Prospective	5 x US F pop, and > 90 th	analyzed by discrete time-survival models	pregnancies
Sample collection - 1992-1995	perecentile (NANES 4 th Rpt))	Also w log-transformed and continuous	
Campic concension 1332 1330		PFOS models	
Enrollment with cessation of			
contraception		Outcome:	
·			
Followed for 6 menstrual cycles or		OR subfecundity for PFOS > median	
until preg achieved			
		Major Findings:	
Questionnaire at enrollment:		(adj model)	
- Demographic - medical		OB aubtoquadity for BEOC , madian met	
- medical - occupational		OR subfecundity for PFOS > median not sig <> 1.0	
- reproductive		sig <> 1.0	
- Lifestyle			
551,10			
M – semen sample			
F – blood sample			

Outcome – time-to-preg (TTP) over ≤ 6 mesntrual cycles Menstrual cycle log books Cycle-spec information on freq of sexual intercourse Subfecundity = TTP > 6 menstrual cycles Location:		Outcome: Monthly FR for PFOS > median compared to < median Major Findings: (adj model) Monthyly FR for > PFOS median compared to < PFOS med not sig dif from 1.0	
Denmark Population:			
Women attempting preg for first time			
Couples w/out prev reproductive experience planning to break contraception			
430 couples enrolled → N = 222 w blood samples			
20-35 yrs old			
Related Studies:			
	1		1

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		
Versterholm-Jensen et al. (2014)	Umbilical cord serum	PFOS In-transformed	Mod low exposure
Vesterbelm Janean D1	On line colid phage systraction	La DEOS as tartiles and continuous yers	Other comments.
Vesterholm Jensen D1, Christensen J, Virtanen HE,	On-line solid-phase extraction, LC-MS/MS	Ln-PFOS as tertiles and continuous vars	Other comments:
Skakkebæk NE, Main KM, Toppari	LC-IVIO/IVIO	Sens analysis for primapara	Prospective case-control design
J, Veje CW, Andersson AM,	LOQ = 0.03 ng/ml	Octio analysis for primapara	1 Tospective case control design
Nielsen F, Grandjean P, Jensen		Multiple logistic regress for OR	Mod large (for case-control) Ns
TK.	PFOS quantified in 100% of	cryptorchidism for continuous and tertiles	
Reproduction. 2014 Mar	samples		
2;147(4):411-7. doi: 10.1530/REP-		Co-variates:	
13-0444. Print 2014.	Population-Level Exposure:	- bw	
No association between exposure		- gest age	
to perfluorinated compounds and	Median	- parity	
congenital cryptorchidism: a nested	total PFOS cord serum conc=	Davish and Finish schools consentsly	
case-control study among 215 boys from Denmark and Finland.	9.1 ng/ml Danish - controls =10.2 ng/ml	Danish and Finish cohorts separately	
Hom Denmark and Filliand.	Cases = 8.9 ng/ml	Outcome:	
Study Design:	Finnish - controls = 5.5 n/ml	Outcome.	
otaay 200igiii	Cases = 4.8 ng/ml	OR for cryptorchidism	
Nested case-control study	<i>y</i>	3,	
		Major Findings:	
Preg women recruited 1997-2001		(adj model)	
(Denmark) and 1997-1999			
(Finland). Additional cases		OR not sig <>1.0 for PFOS as	
recruited in Finland 1999-2002)		continuous var or for any tertile. Trend not	
Denmark Children evenings at		sig.	
<u>Denmark</u> - Children examined at birth and 3 mos			
bitti and 3 mos			
Finland – M w cryptorchidism and			
every 10 th M of cohort + 2			
controls/case matched on:			
- date of birth			
- gest age			
- parity			
- maternal diabetes			
- smoking			

Followed for 18 mos (timing of examination(s)?)		
Testicular position determined at birth and dichotomized on cryptorchidism		
Gest age from sonogram or last menstruation		
Location:		
Denmark, Finland		
Population:		
Danish-Finish birth cohort		
N cases cryptorchidism = 107 N controls = 108		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		•
Wang et al. (2011b)	UHPLC – triple quadrupole MS	Cord blood IgE, 2-yr serum IgE and PFOS	Small number (43) of cases
Mara at I. Haiah MC Ohan OV	DECC 00 00 10 1/11	log-transformed	Assessment of AD at O. was as foundtion of
Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL,	PFOS LOQ = 0.22 ng/ml	Linear regression IgE on unit ↑ in PFOS	Assessment of AD at 2 yrs as function of gestational exposure could be confounded by
Chiang CF, Wu TN, Chen PC.	< LOQ = LOQ/2	Also categorical PFOS (quartiles)	post-natal exposure
Environ Res. 2011 Aug;111(6):785-	PFOS 99.6% detect	Also categorical i i OS (quartiles)	post riatai exposure
91. doi:		Assoc of PFOS and AD by multivariate	Other comments:
10.1016/j.envres.2011.04.006.	Population-Level Exposure:	linear regression	
Epub 2011 May 23.		-	Prospective study
The effect of prenatal perfluorinated	Cord blood PFOS median conc	Co-variates ingestigates	
chemicals exposures on pediatric	= 5.5 ng/ml	Gender	Reasonable analytical precision
atopy.		Gestational age	Comprehensive modeling
Study Design:		Parity Delivery type	Comprehensive modeling
otudy Design.		Maternal age	Small sample size – especially cases
Prospective case-control		Maternal age	cinal cample size soperially sacce
		Maternal occupation	
Cord blood → PFOS analysis		Preg alcohol '	
		Preg smoking	
Parental lifestyle/demographic		Income	
questionnaire		Parental history atopy	
Hospital neonate health records:		Duration breastfeeding Post-natal ETS	
- head circum		Incense use	
- birth wt		Home carpet	
- birth ht		Fungi/mold on walls	
- wks gestation		3	
- type of delivery		Co-variates included w 10% in est	
2-yr questionnaire:			
duration of breastfeeding< 1 yr egg consumption			
- < 1 yr egg consumption			
- <1 yr wheat consumption			
- <1 yr shrimp consumption			
- older siblings			
- furry pets			

- home carpet
- fungi on walls
- incense use at home
- post-natal ETS

IgE in cord blood and serum at 2 yrs

Location:

Taiwan

Population:

Preg F in 3rd trimester w prenatal exams recruited

Cases of AD defined by questionnaire data on children at 2 yrs

- presence of atopic dermatitis AD
- recurrent rash for ≥ 6 mos
- location of rash
- ever diagnosed AD by Dr.

Exclusion criteria:

- multiple gestation (twins etc)
- inability to answer questions (in Chinese)
- relocate prior to delicery

N = 244

AD cases = 43Non-AD = 201

Related Studies:

Outcome:

Cord blood IgE

Major Findings:

(adj model)

Cord blood IgE **sig pos assoc** w cord blood PFOS (p = 0.017)

Stratified by gender, assoc is spec to M

Outcome:

2-yr blood IgE

Major Findings:

(adj model)

2-yr old blood IgE **not sig assoc** w cord blood PFOS

Outcome:

OR for AD by PFOS cord blood quartile

Major Findings:

(adj model)

OR for AD **not sig <> 1.0** for any quart PFOS

(trend is pos, and Q4 is sig in crude analysis only)

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		
Wang et al. (2013)	HPLC-MS	TSH In-transformed	Cross-sectional
W W NA OF 12 AD 11	DE00100 005 / 1		DE00 1 116 DE04
Wang Y1, Starling AP, Haug LS,	PFOS LOQ = 0.05 ng/ml	Sub-fecund and fecund pops not sig diff	PFOS analyses not adj for PFOA
Eggesbo M, Becher G, Thomsen C, Travlos G, King D, Hoppin JA,	Intro 00001/ CV + 100/	for TSH and were combined	Other comments:
Rogan WJ, Longnecker MP.	Intra-assay CV < 10% Inter-assay CV < 15%	Assoc TSH w PFOS by linear regression	Other comments:
Environ Health. 2013 Sep	Inter-assay CV < 1376	Assoc 1311 W F1 O3 by linear regression	Reasonable N
8;12(1):76. doi: 10.1186/1476-	Population-Level Exposure:	Also, logistic regression for PFOS	Trodooriable IV
069X-12-76.		dichotomized at 95 th percentile	PFOSCross-sectional design (subject to
Association between perfluoroalkyl	PFOS median conc = 12.8		reverse causation if (e.g.) TSH affects
substances and thyroid stimulating	ng/ml	Co-variates examined	glomerular filtration rate \rightarrow high TSH \rightarrow low
hormone among pregnant women:	(IQR = 10.1-16.5 ng/ml)		serum PFOS (therefore, low TSH assoc w rel ↑
a cross-sectional study.		- age (a priori)	PFOS)
	(NOTE: PFOS median conc	- gestational age at blood draw (a priori)	
Study Design:	~1.6 times US F median	- pre-preg BMI	Reasonable stat control
	(NHANES 4 th Rpt))	- preg smoking	
Cross-sectional		- parity - time between prev birth and current preg	
Norwegian Mother and Child		- duration of prev breastfeeding	
Cohort Study (MoBa)		- total seafood intake (mid-preg)	
Recruited 2003-2004		- plasma HDL	
recordined 2000 2004		- plasma albumin	
Questionnaire preg wk 13-17		F 100 110 211 111	
		Vars incl in models if p < 0.1 in bivariate	
Blood sample preg wk 17-18		models w PFOS and TSH	
TSH by immunoassay		Outcome:	
Minimal detection limit = 0.01		TOU	
μU/ml		TSH	
Intra-inter assay CV < 10%		Major Findings:	
Location:		(adj model)	
Loodion.		(adj model)	
Norway		TSH sig pos assoc w PFOS	
7		(p = 0.03)	
		,	

Population:	0.8% ↑ in TSH for ea ng/ml ↑ in serum PFOS	
Norwegian Mother and Child Cohort Study (MoBa)	When stratified by fecundity status, TSH	
Recruited 2003-2004	sig assoc w PFOS only for fecund group	
Radom selection among subfecund F (> 12 mos to preg) N = 400	(NOTE: PFOS was only PFC sig assoc w TSH in adj models)	
Additional random selection (w/out prior condition) N = 550		
Exclusion for reported thyroid abnormality, missing co-variate data		
N (total) = 903		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Wang et al. (2014b)	HPLC-triple quadrupole MS	Linear regression of thyroid hormones (w and w/out In-transformation)	PFOS analyses not adj for other PFCs
Wang Y, Rogan WJ, Chen PC, Lien	LOQ?		Other factors potentially influencing thyroid
GW, Chen HY, Tseng YC, Longnecker MP, Wang SL.	100% PFOS sample > LOQ	Co-variates considered - maternal age (a priori)	hormones (e.g., iodine status) not controlled
Association between maternal serum perfluoroalkyl substances	Intra-assay CV (all PFASs) = 0.83-7.94%	- maternal educ - prev live births	Other comments:
during pregnancy and maternal and cord thyroid hormones: Taiwan	Inter-assay CV (all PFASs) = 1.57-24.7%	- income - pre-preg BMI	Longitudinal study design
maternal and infant cohort study. Environ Health Perspect. 2014	Population-Level Exposure:	- fish consumption - neonate sex (for models of maternal)	Moderate size N
May;122(5):529-34. doi: 10.1289/ehp.1306925. Epub 2014	Maternal serum PFOS conc =	PFOS and cord blood hormones) - method of delivery (for models of	Incomplete co-variate control (e.g., iodine status)
Feb 21.	12.73 ng/ml	maternal PFOS and cord blood hormones)	status)
Study Design:	(NOTE: This is ~1.6 x US F PFOS median (NHANES 4 th	Outcome:	
Longitudinal birth cohort study	Rpt))	Maternal free-T4	
Blood samples during 3 rd trimest		Major Findings: (adj model)	
Umbilical cord blood at delivery		Maternal free-T4 not sig assoc w	
Exclusion: - missing PFOS mes		maternal serum PFOS	
Missing FFO3 mes Missing thyroid horm mes thyroid disease		Outcome:	
		Maternal total-T4	
- Free-T4 - Total T4		Major Findings:	
- Total T3 - TSH		(adj model)	
All by radioimmunoassay (commercial kits)		Maternal total-T4 not sig assoc w maternal serum PFOS	
Intra-assay CV = < 5% Inter-assay CV < 10%		material setuii F1 OS	
111.01 doddy 0 v 1 1070			

Location:	Outcome:	
Central Taiwan	Maternal total-T3	
Population:	Major Findings: (adj model)	
Pregnant women recruited 12/2000-11/2001	Maternal total-T3 not sig assoc w maternal serum PFOS	
N = 285		
Related Studies:	Outcome:	
	TSH	
	Major Findings: (adj model)	
	Maternal TSH not sig assoc w maternal serum PFOS	
	Outcome:	
	Cord blood free-T4	
	Major Findings: (adj model)	
	Cord blood free-T4 not sig assoc w maternal PFOS	
	Outcome:	
	Cord blood total-T4	
	Major Findings: (adj model)	
	Cord blood total-T4 not sig assoc w maternal PFOS	

	Outcome:	
	Cord blood total-T3	
	Major Findings: (adj model)	
	Cord blood total T3 not sig assoc w maternal PFOS	
	Outcome:	
	Cord blood TSH	
	Major Findings: (adj model)	
	Cord blood TSH not sig assoc w maternal PFOS	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		•
Washino et al. (2009)	LC-MS/MS	Co-variates investigated	PFOS analyses not adj for PFOA
		(in full model)	
Washino N, Saijo Y, Sasaki S, Kato	Spike recovery = 97.5- 99.3%		Although regression analysis controlledfor
S, Ban S, Konishi K, Ito R, Nakata	CV = 3.0-6.3%	- maternal age	during vs. post-preg blood sampling for PFOS,
A, Iwasaki Y, Saito K, Nakazawa H,		- maternal age	not clear that model can completely adjust
Kishi R.	LOD = 0.5 ng/ml	- Preg BMI	since diff is large (during preg = 1.5 x post preg
Correlations between prenatal	PFOS detect in 100% of	- preg smoking	PFOS)
exposure to perfluorinated	samples	- gestational age	Other comments:
chemicals and reduced fetal growth.	Population-Level Exposure:	- gender	Other comments:
Environ Health Perspect. 2009	Population-Level Exposure.	parityblood sampling time (preg or post	Prospective cohort design
Apr;117(4):660-7. doi:	Mean maternal PFOS serum	preg)	Prospective condit design
10.1289/ehp.11681. Epub 2008	sampling during preg conc. =	- infant disease	Moderate sample size
Nov 4.	5.6 ng/ml	- birth wt	Woderate sample size
	(med = 5.2 ng/ml)	- birth size	Good analytical performance
Study Design:	(,	- preg complications	,
	Mean maternal PFOS serum		Reasonable stat analysis (except failure to adj
Prospective cohort	conc	- delivery mode (for head cirum outcome)	PFOS analyses for PFOA)
	Sampling post-delivery = 3.8		
Self-admin questionnaire after 2 nd	ng/ml	PFOS conc log-transformed	Self-administered questionnaire, but during
trimmest			preg likely to reduce recall bias
- dietary	(NOTE: during-preg PFOS	Multiple regression model	
- smoking	conc ~73% of US F mean conc	_	
- alcohol	(NANES 4 th Rpt))	Outcome:	
- caffeine		District Control of the Control of t	
- income		Birth wt	
- educ		Moier Findings.	
Blood sample after 2 nd trimester –		Major Findings: (adj model)	
72.4%		(auj modei)	
Blood sample after delivery –		Birth wt sig neg assoc w PFOS	
27.6%		P = 0.046	
2.1070		1 = 0.010	
Location:		Not sig when stratified for M only	
		Sig when stratified for F only	
Sapporo, Hokkaido, Japan		P = 0.007	
·			

Population:	Outcome:	
7/2002-10/2005	Birth length	
F in wks 23-35 of preg during routne GYN checkup	Major Findings: (adj model)	
Native Japanese	PFOS not sig assoc w birth length	
1,796 eligible → 514 participated → 10 excluded for birth outcome, or volunatary withdrawal, preg-	Bordeline sig (p = 0.055) when stratified for F only	
induced hypertension, diabetes, fetal heart failure, twins	Outcome:	
N = 428	Chest circum	
Related Studies:	Major Findings:	
	PFOS not sig assoc w chest circum	
	Outcome:	
	Head circum	
	Major Findings:	
	PFOS not sig assoc w head circum	

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
olday.	Exposure / toosselliont.	Stat Motifica.	major Emmanono.
Watkins et al. (2013)	(Note explicitly provided, but	Multiple imputation for missing co-variates	Cross-sectional design
	same as for other C8 study	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	g and a second and a second
Watkins DJ, Josson J, Elston B,	reports)	Multiple linear regression for assoc PFOS	Multiple imputation used for missing variables:
Bartell SM, Shin HM, Vieira VM,		and eGFR	- 21% missing income
Savitz DA, Fletcher T, Wellenius	Population-Level Exposure:	PFOS as continuous variable	- 0.8% missing BMI
GA.			
Exposure to perfluoroalkyl acids	Median serum PFOS = 20.0	PFOS conc log-transformed	Potential for reverse causality of ↓ GFR results
and markers of kidney function	ng/ml	l	in ↑ retention of PFOS
among children and adolescents		Also as categorical analysis (quart PFOS)	
living near a chemical plant.	(NOTE: median PFOS conc ~ 2		Failure to adj PFOS analyses for PFOA
Environ Health Perspect. 2013	x current US levels (NHANES	<u>Co-variates</u>	011
May;121(5):625-30. doi:	4 th Rpt))	000	Other comments:
10.1289/ehp.1205838. Epub 2013 Mar 7.		- age	Lorgo N
IVIAI 7.		- sex - race	Large N
Study Design:		- smoking	Missing/imputed co-variate data
Study Design.		- income	wissing/imputed co-variate data
Cross-sectional		- regular exercise	
Cross scotional		- BMI	
Questionnaire on -enrollment:		- total cholesterol	
- Demographics			
- Personal health history		Outcome:	
- Residential history			
- lifestyle		Assoc eGFR w PFOS	
Blood sample on enrollment		Major Findings:	
- fasting not required		(full adj model)	
Est glomerular filtration rate (eGFR)		eGFR sig neg assoc w PFOS	
based on serum creatinine and		p < 0.0001	
height		Cin non toon door on the DECC	
Location		Sig neg trend across quartiles PFOS	
Location:			
OH, WV			
O11, VV V		789	

Population:		
C8 Health Study cohort 8/2006-8/2006		
1 - < 18 yrs old at enrollment N = 9,783 \rightarrow exclusion for questionable data \rightarrow N = 9.660 F = 48% M = 52%		
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
	•		,
Webster et al. (2014)	HPLC/MS/MS	Co-variates investigated	Rel small N and small N for high TPOAb
		- maternal age	
Webster GM, Venners SA, Mattman	100% > DL	- ethnicity	lodine sufficiency est by questionnaire
A, Martin JW.		- educ	
Environ Res. 2014 Aug;133:338-47.	Population-Level Exposure:	- income	Other comments:
doi: 10.1016/j.envres.2014.06.012.		- current stress level	
Epub 2014 Jul 12.	Mean maternal serum PFOS =	- smoking	Longitudinal cohort design w two time points
Associations between perfluoroalkyl	5.1 ng/ml (sd = 2.8 ng/ml)	- ETS	Delegand New degree UN for high TDOAh
acids (PFASs) and maternal thyroid	Median = 4.8 ng/ml	- drug use - alcohol	Rel small N and small N for high TPOAb
hormones in early pregnancy: a	(NOTE: PFOS conc ~62% of	- alconol - prenatal vitamins (w iodine)	subset
population-based cohort study.	US F (NHANES 4th Rpt))	- iodized salt	Stratification by TPOAb (as indicator of thyroid
Study Design:	031 (NHANES 4 1(pt/))	- time of day of blood draw	autoantibody hypothyroidism)
otudy Design.		- wk of gest	
Longitudinal cohort		- gest age at delivery	Consideration of total PFA effect
Longituaniai conort		goot ago at donvery	
Blood sample 12/2006-6/2008		Mixed-effects models w random intercept	Est of iodine sufficiency by questionnaire →
Collected twice ~15 and 18 wks gest		Continuous vars for PFOS (as IQR) and	uncertainty
Ĭ		thyroid hormones	,
Free-T4			Apparent control (in thyroid hormone analytical
Total-T4		"Variance components" correlation	method) for variable serum protein levels
TSH		structure for thyroid meas at 2 time points	during preg
Thyroid peroxidase antibody		Models of all PFAs investigated but not	
(TPOAb) (marker of autoimmune		reported due to dominance by PFOS	
hypothyroidism)			
The second of Devices		Outcome:	
Thyroid hormones by Beckman		Free-T4	
Access 2 Thyroid peroxidase Ab immunoassay		Fiee-14	
Claimed that this method is rel		Major Findings:	
insensitive to bias from changing		(adj model)	
levels of serum-binding proteins			
during preg		Free-T4 not sig assoc w PFOS	
3 - 3 - 3		W or w/out strat for high/low TPOAb	
		3	

Location:	Outcome:	
Vancouver, Canada	TSH	
Population:	Major Findings: (adj model)	
2007-2008	,	
152 women ≤15 wks preg	TSH sig assoc w PFOS only when interaction term (H/L) for TPOAb included – sig for high TPOAb only, n =	
Inclusion criteria:	14)	
- euthyroid (normal thyroid)	0.11	
- non-smokers - singleton preg	Outcome:	
- normal (non-hormonal) conception - no thyroid affected med	Total T4	
- lived in N. America past 3 consec	Major Findings:	
yrs	(adj model)	
- fluent in English - ≥ 19 yrs old	Total T4 not sig acces w DEOS (w or	
- 2 13 y15 0lu	Total T4 not sig assoc w PFOS (w or w/out adj for TPOAb)	
Related Studies:		

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
, ,	•		
Location:			
US			

Population: Outcome: NHANES 2007-2008, 2009-2010 Total T4 ≥ 20 yrs old **Major Findings:** Not preg Not nursing (adj model) PFC and thyroid measures Total T4 not sig assoc w PFOS for M or F Exclusion: Outcome: - Reported history thyroid disease - missing data on alcohol Log free T4 - missing data on urine iodine **Major Findings:** N = 1,181(adj model) M = 672F = 509Log free T4 not sig assoc w PFOS for M or F **Related Studies:** Outcome: Total T3 **Major Findings:** (adj model) Total T3 not sig assoc w PFOS for M or F Outcome: Log free T3 **Major Findings:** (adj model) Log free T4 not sig assoc w PFOS for M

or F

Outcome:
Log TSH
Major Findings: (adj model)
Log TSH not sig assoc w PFOS for M or F
Outcome:
Log thyroglobulin
Major Findings:
Log thyroglobulin not sig assoc w PFOS for M or F
Outcome:
Sub-clinical hypothyroidism
Major Findings: (adj model)
OR for assoc of sub-clinical hypothyroidism w unit ↑ in PFOS sig pos for M and F (OR M = 1.98; OR F = 3.03) N = 23 (M = 15, F = 8)
Outcome:
Sub-clinical hyperthyroidism
Major Findings:
OR for assoc sub-clinical hyperthyroidism not sig <> 1.0 for M or F

Reference and Study Design	Exposure Measures	Results	Comment
Study:	Exposure Assessment:	Stat Method:	Major Limitations:
Whitworth et al. (2012a)	HPLC-MS	Linear regression	Cross-sectional design
Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, Thomsen C, Eggesbo M, Travlos G,	Population-Level Exposure: PFOS median conc = 19.3	Co-variates considered (included in adj model)	Small no. cases for small for gest age (n = 35)
Wilson R, Cupul-Uicab LA, Brantsaeter AL, Longnecker MP.	ng/ml	fish consumption (lean,oily)interpregnancy interval	PFOS analyses not controlled for PFOA
Perfluorinated compounds in relation to birth weight in the	(NOTE: median exposure ~2.5 x current US F exposure	- maternal age - maternal albumin	Other comments:
Norwegian Mother and Child Cohort Study.	(NHANES 4 th Rpt))	pregnancy wt gain at 17 wksgestational age at blood draw	Large N for birth wt z-scores
Am J Epidemiol. 2012 Jun 15;175(12):1209-16. doi:	LOD = 0.05 ng/ml 100% detect	smokingalcohol	Small number cases for pre-term birth
10.1093/aje/kwr459. Epub 2012 Apr 19.	w/in batch CV for PFOS = 4.5%	maternal educationmaternal diabetes	Broad statistical controls
Study Design:	between batch CV = 11.3%	- child's gender - income	
Nested cross-sectional		Weighted methods to address previous selection criteria (subfecundity)	
MoBa Pregnancies linked to		, , , , , , , , , , , , , , , , , , , ,	
Norway Birth Reg		Regression analysis based on continuous	
- birth wt - gestational age		PFOS conc, and on quartiles	
gestational age		Birth wt z-scores adj for :	
Birth wt z-scores based on		(a-priori)	
Norwegian births 1987-1998		- maternal age	
Pre-term birth = < 37 wks		- preg BMI - parity	
Small for gestational age = < 10 th percentile – gender and gest age specific		Backwards elimination – retention in model w ≥ 10% change	
		Also, logistic regression for OR for assoc PFOS w outcomes	

Large gest age = > 90th percent – gender, gest age specific

Food freq questionnaire at preg wk 22

- consumption 15 kinds fish

Data on interpreg interval (mos. From prev birth to current conception)

Location:

Norway

Population:

Norwegian mother-child cohort study (MoBa)

Enrollment 2003-2004 At ~ 17 wks gestation

Based on sub-cohort from MoBa subfecundity study

- random sample n = 550
- cases n = 400

Exclusions:

- missing preg BMI
- missing gestational age at birth
- twins
- pre-term birth (excluded from analysis of birth wt z-score

- preterm birth
- small for gest age
- large for gest age

Models included a-priori vars only

Outcome:

Birth wt z-scores

Major Findings: (adj model)

Birth wt z-scores **not sig assoc** w PFOS either by quarts or in continuous model

(Crude regression sig neg assoc for quarts and continuous model)

Outcome:

OR for preterm birth

Major Findings:

(adj model)

OR's **not sig <> 1.0** for any quart PFOS However, Q4 borderline sig **P-trend stat sig for neg trend** (ORs < 1.0) (p = 0.03)

Birth wt z-score - N = 866	Outcome:	
Pre-term birth, small for gest age,		
large for gest age – total N = 901	OR for small for gest age	
Preterm birth cases, N = 35		
Small for gest age, N = 60	Major Findings:	
Large for gest age, N = 125	(adj model)	
Related Studies:	ORs not sig <> 1.0 for any quart PFOS (Q3 borderline sig) P-trend not sig	
	Outcome:	
	OR for large for gest age	
	Major Findings: (adj model)	
	ORs not sig <> 1.0 for any quart PFOS p-trend not sig	

Study:	Reference and Study Design	Exposure Measures	Results	Comment	
Whitworth et al. (2012b) Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, Thomsen C, Eggesbo M, Travios G, Wilson R, Longnecker MP Perfluorinated compounds and subfectundity in pregnant women. Epidemiology. 2012 Mar;23(2):257-63. doi: 10.1097/EDE.0b013e31823b5031. Study Design: Case-control design PFOS assoc w subfectundity by parous/fulliparous status PFOS assoc w subfectundity by parous/fulliparous status PFOS in US F (NAHNES 4™ Rpt)) Cuestionnaire on enrollment: - demographic factors - lifestyle factors - medical history - reprod history - reprod history - reprod history - prod history - prod history - reprod history - reprod history - was current preg planned? - How many mos. of non-contraception intercourse before prieg? - if ≥ 3 mos, specific time Cube condition and the presence of the price o		•			
Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, Thomsen C, Eggesbo M, Travlos G, Wilson R, Longnecker MP Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 2012 Mar;23(2):257-63. doi: 10.1997/EDE.0b013e31823b5031. Study Design: Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml Questionnaire on enrollment: - demographic factors - medical history - perpod history - breastfeeding - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg DFOS LOQ = 0.05 ng/ml 100% of samples detect for PFOS Within batch CV = 4.5% Between batch CV = 11.3% Between batch	Study.	Exposure Assessment.	otat metriou.	major Emitations.	
Whitworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, Thomsen C, Eggesbo M, Travlos G, Wilson R, Longnecker MP Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 2012 Mar;23(2):257-63. doi: 10.1097/EDE.0b013e31823b5031. Study Design: Case-control design PFOS median conc Case - control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml PFOS in US F (NAHNES 4 th Rpt)) Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - perpod history - breastfeeding - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg	Whitworth et al. (2012b)	HPLC-MS	Logistic regression for OR subfecundity	PFOS analyses not controlled for PFOA	
Becher G, Hoppin JÅ, Skjærven R, Thomsen C, Eggesbo M, Travlos G, Wilson R, Longnecker MP Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 2012 Mar;23(2):257-63. doi: 10.1097/EDE.0b013e31823b5031. Population-Level Exposure: PFOS median conc Cases = 14 ng/ml Cases = 14 ng/ml Cases = 14 ng/ml PFOS in US F (NAHNES 4th Rpt)) Cuestionnaire on enrollment: - demographic factors - lifestyle factors - lifestyle factors - lifestyle factors - medical history - reprod history - breastfeeding - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Time since prev preg Down of samples detect for PFOS - Maternal age (a priori) - Pre-preg BMI (a priori) - Pia-mas albumin - plasma albumin - pres g BMI (a priori) - Pre-preg BMI (a priori) - plasma albumin - pres g BMI (a priori) - plasma albumin - pres g BMI (a priori) - plasma albumin - previous dirace with a prior of associations resulting from reverse causation than in Danish study (parity as model var) - Stratification by parity may offer better control of associations resulting from reverse causation than in Danish study (parity as model var) - Parity aligned in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) - Analyses stratified by parity (nulliparous/parous) - Parous models adj for inter-preg interval Outcome: Outcome: Or for subfecundity Stratified by parity (nulliparous/parous) Major Findings: (adj model)	, ,				
Thomsen C, Eggesbo M, Travlos G, Wilson R, Longnecker MP PFOS Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 2012 Mar;23(2):257-63. doi: 10.1097/EDE.0b013e31823b5031. Study Design: Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml Controls = 13 ng/ml Controls = 13 ng/ml Comparable factors I demographic factors I defeating approved intercourse before preg? I file 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg Moderate N Moderate N Moderate N Moderate N Moderate N Reasonable statistical control of analyses For blood draw - smoking - smokin		PFOS LOQ = 0.05 ng/ml		Other comments:	
Wilson R, Longnecker MP Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 2012 Mar;23(2):257-63. doi: 10.1097/EDE.0b013e31823b5031. Study Design: Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml Controls = 13 ng/ml Controls = 13 ng/ml Questionnaire on enrollment: - demographic factors - ilfestyle factors - medical history - reprod history - previous births - Was current preg planned? - Hatermal age (apriori) - Pre-preg BMI (a priori) - plasma albumin - yr of blood draw - smoking - alcohol - fish consumption - maternal education - maternal education - meaternal diseases - paternal age - paternal education - menstrual irregularities - freq sexual intercourse Vars retained in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) - Analyses stratified by parity (nulliparous/parous/ parous/nulliparous/parous/ - pre-preg BMI (a priori) - plasma albumin - yr of blood draw - smoking - alcohol - fish consumption - maternal education - meterical histore - paternal education - menstrual irregularities - freq sexual intercourse Vars retained in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) - Analyses stratified by parity (nulliparous/parous) - Parous models adj for inter-preg interval - Outcome: Outcome: Study Design: - At ng/ml - maternal age (apriori) - pre-preg BMI (a priori) - yro blood draw - smoking - alcohol - fish consumption - maternal deucation - meaternal diseases - paternal age - paternal education - menternal inregularities - freq sexual intercourse - Vars retained in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) - Analyses stratified by parity (nulliparous/parous) - Parous models adj for inter-preg interval - Outcome: - Outcome: - Maternal age (apriori) - Pre-preg BMI (a priori) - plasma albumin - yr of blood draw - smoking - Stratification to py arity model var - paternal age - paternal education - menter line ducation - menter line ducation - menter line ducation - menter line d			Co-variates considered		
Perfluorinated compounds and subfecundity in pregnant women. Epidemiology. 2012 Mar;23(2):257-63. doi: 10.1097/EDE.0b013e31823b5031. Study Design: Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml Proson in UND FOO is n US F (NAHNES 4th Rpt)) Questionnaire on enrollment: - demographic factors - lifestyle factors - reprod history - reprod history - reprod history - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg Within batch CV = 4.5% Between batch CV = 41.5% Between batch CV = 41.5% Between batch CV = 4.5% Between				Case-control design	
subfecundity in pregnant women. Within batch CV = 4.5% - plasma albumin - yr of blood draw - smoking - smoking - smoking - smoking - smoking - stratification by parity may offer better control of analyses Study Design: Population-Level Exposure: - fish consumption - smoking - stratification by parity may offer better control of associations resulting from reverse causation than in Danish study (parity as model var) Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml Controls = 13 ng/ml PFOS in US F (NAHNES 4™ Rptl) - paternal aducation - selected maternal diseases - paternal adg - pat		PFOS	- Maternal age (a priori)		
Epidemiology. 2012 Mar;23(2):257-63. doi: 0.1097/EDE.0b013e31823b5031. Study Design: Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml Controls = 13 ng/ml Controls = 13 ng/ml Controls = 1.75 current median PFOS in US F (NAHINES 4 th Rpt)) Questionnaire on enrollment: - demographic factors - lifestyle factors - lifestyle factors - lifestyle factors - medical history - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg Between batch CV = 11.3% - yr of blood draw - smoking - sanoking - salcohol - fish consumption - maternal education - meternal diseases - paternal age - paternal deucation - menstrual irregularities - freq sexual intercourse Vars retained in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) - Analyses stratified by parity (nulliparous/parous) - Parous models adj for inter-preg interval Outcome: Outcome: Time since prev preg Time since prev preg				Moderate N	
63. doi: 10.1097/EDE.0b013e31823b5031. Study Design: Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml PFOS assoc w subfecundity by parous/nulliparous status Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - reprod history - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Time since prev preg Time since prev preg POpulation-Level Exposure: - smoking - alcohol - maternal education - maternal education - maternal education - meternal education - meternal education - menstrual irregularities - paternal age - paternal age - paternal education - menstrual irregularities - freq sexual intercourse Vars retained in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) Analyses stratified by parity (nulliparous/ parous) Parous models adj for inter-preg interval Outcome: Outcome: Outcome: Time since prev preg Time since prev preg					
10.1097/EDE.0b013e31823b5031. Study Design: Case-control design Case-control design PFOS median conc Cases = 14 ng/ml Controls = 13 ng/ml NOTE: ~ 1.75 current median PFOS in US F (NAHNES 4th Rpt)) Cuestionnaire on enrollment: - idensyraphic factors - lifestyle factors - medical history - reprod history - preprod history - prevous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Time since prev preg Time since prev preg Stratification by parity may offer better control of associations resulting from reverse causation than in Danish study (parity as model var) - alcohol - fish consumption - fish consumption - fish consumption - maternal education - selected maternal diseases - paternal age - paternal age - paternal age - paternal age - paternal education - menstrual irregularities - freq sexual intercourse - freq sexual intercours		Between batch CV = 11.3%		Reasonable statistical control of analyses	
Study Design: - fish consumption - maternal education - selected maternal diseases - paternal aeducation - paternal aeducation <th c<="" td=""><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td>				
Study Design: PFOS median conc Cases = 14 ng/ml - maternal education - selected maternal diseases - selected maternal diseases causation than in Danish study (parity as model var) PFOS assoc w subfecundity by parous/nulliparous status (NOTE: ~ 1.75 current median PFOS in US F (NAHNES 4th PRt)) - menstrual irregularities - menstrual irregularities - freq sexual intercourse - freq sexual intercourse Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - reprod history - breastfeeding - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Analyses stratified by parity (nulliparous/parous) Parous models adj for inter-preg interval Subfecundity = time to preg (TTP) > 12 mos Major Findings: (adj model)	10.1097/EDE.0b013e31823b5031.	Population-Level Exposure:			
Case = 14 ng/ml Controls = 13 ng/ml PFOS assoc w subfecundity by parous/nulliparous status Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - reprod history - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Cases = 14 ng/ml Controls = 13 ng/ml - selected maternal diseases - paternal age - paternal age - paternal age - paternal diseases - paternal d	Cturdu Danieus	DECC madian and			
Case-control design PFOS assoc w subfecundity by parous/nulliparous status Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - reprod history - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Controls = 13 ng/ml (NOTE: ~ 1.75 current median PFOS in US F (NAHNES 4th RPI)) Vars retained in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) Analyses stratified by parity (nulliparous/ parous) Parous models adj for inter-preg interval OR for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)	Study Design:			, ,,	
PFOS assoc w subfecundity by parous/nulliparous status Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - perous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Time since prev preg (NOTE: ~ 1.75 current median PFOS in US F (NAHNES 4th Rpt)) - paternal education - menstrual irregularities - freq sexual intercourse Vars retained in model if deletion → △ OR > 10% (No a prior var met inclusion criterion) Analyses stratified by parity (nulliparous/parous) Parous models adj for inter-preg interval - paternal education - menstrualirregularities - freq sexual intercourse Vars retained in model if deletion → △ OR > 10% (No a prior var met inclusion criterion) Analyses stratified by parity (nulliparous/parous) Parous models adj for inter-preg interval Outcome: OR for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)	Coop control design			model var)	
PFOS assoc w subfecundity by parous/nulliparous status Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - reprod history - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Time since prev preg (NOTE: ~ 1.75 current median PFOS in US F (NAHNES 4th) PROS in US F (NAHNES 4th) Vars retained in model if deletion → Δ OR > 10% (No a prior var met inclusion criterion) Analyses stratified by parity (nulliparous/parous) Parous models adj for inter-preg interval OR for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)	Case-control design	Controls = 13 fig/fill	, ,	Egilure to control for DEOA in DEOS analyses	
Questionnaire on enrollment:	DEOS assoc w subfocundity by	(NOTE:1.75 current median		Failure to control for PFOA in PFOS analyses	
Questionnaire on enrollment: - demographic factors - lifestyle factors - medical history - medical history - reprod history - breastfeeding - pervious births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Outcome: Subfecundity = time to preg (TTP) > 12 mos OR for subfecundity Time since prev preg Major Findings: (adj model)					
Questionnaire on enrollment: - demographic factors - lifestyle factors (No a prior var met inclusion criterion) - medical history Analyses stratified by parity (nulliparous/parous) - breastfeeding parous - previous births Parous models adj for inter-preg interval - How many mos. of non-contraception intercourse before preg? Outcome: - if ≥ 3 mos, specific time OR for subfecundity Subfecundity = time to preg (TTP) > 12 mos Major Findings: (adj model)	parodo/ridiiiparodo status		neq sexual interessine		
- demographic factors - lifestyle factors - medical history - reprod history - breastfeeding - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time OR > 10% (No a prior var met inclusion criterion) Analyses stratified by parity (nulliparous/parous) Parous models adj for inter-preg interval Outcome: OR for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)	Questionnaire on enrollment:	1457)	Vars retained in model if deletion $\rightarrow \Lambda$		
- lifestyle factors - medical history - reprod history - breastfeeding - previous births - Was current preg planned? - How many mos. of non-contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg (No a prior var met inclusion criterion) Analyses stratified by parity (nulliparous/parous) Parous models adj for inter-preg interval Outcome: OR for subfecundity Stratified by parity (nullparous/parous)					
- medical history - reprod history - breastfeeding - previous births - Was current preg planned? - How many mos. of non- contraception intercourse before preg? - if ≥ 3 mos, specific time Outcome: Outcome: Outcome: Outcome: Or for subfecundity Stratified by parity (nulliparous/ parous) Outcome: Or for subfecundity Stratified by parity (nulliparous/ parous) Major Findings: (adj model)					
- breastfeeding - previous births - Was current preg planned? - How many mos. of non- contraception intercourse before preg? - if ≥ 3 mos, specific time Outcome: Outcome: Outcome: Or for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)					
- previous births - Was current preg planned? - How many mos. of non- contraception intercourse before preg? - if ≥ 3 mos, specific time Outcome: Outcome: OR for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)	- reprod history		Analyses stratified by parity (nulliparous/		
- Was current preg planned? - How many mos. of non- contraception intercourse before preg? - if ≥ 3 mos, specific time Outcome: OR for subfecundity Subfecundity = time to preg (TTP) > 12 mos Major Findings: (adj model)	- breastfeeding		parous)		
- How many mos. of non- contraception intercourse before preg? - if ≥ 3 mos, specific time OR for subfecundity Subfecundity = time to preg (TTP) > 12 mos Major Findings: (adj model)	- previous births				
contraception intercourse before preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg Outcome: OR for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)			Parous models adj for inter-preg interval		
preg? - if ≥ 3 mos, specific time Subfecundity = time to preg (TTP) > 12 mos Time since prev preg Outcome: OR for subfecundity Stratified by parity (nullparous/parous) Major Findings: (adj model)					
- if ≥ 3 mos, specific time OR for subfecundity Subfecundity = time to preg (TTP) > 12 mos Major Findings: (adj model)					
Subfecundity = time to preg (TTP) > 12 mos Major Findings: (adj model)			Outcome:		
Subfecundity = time to preg (TTP) > 12 mos Major Findings: (adj model)	- if ≥ 3 mos, specific time				
12 mos Major Findings: (adj model)	0.16 (7770)		•		
Time since prev preg Major Findings: (adj model)			Stratified by parity (nullparous/parous)		
Time since prev preg (adj model)	12 11105		Major Findings:		
	Time since prev pred				
	- from Nor. Birth Reg		(auj mouei)		

	Nullparous	
Eligibility		
- live-born child	OR for subfecundity not sig <> 1.0	
- plasma sample at ~17 wks gest	B	
Location:	<u>Parous</u>	
Location:	OD for a life of the A Ofen OA of	
Norway	OR for subfecundity sig > 1.0 for Q4 of PFOS (≥16.61 ng/ml) OR = 2.1	
Population:	(borderline sig for Q2, Q3 (OR = 1.5, 1.5)	
Norwegian Mother and Child Cohort	Outcome not affected by adjustment for	
Study (MoBa)	duration of breastfeeding	
Enrollment 2003-2004		
Random selection among planned		
preg, subfecund N = 416		
N = 410		
Random selection – no restriction		
N = 484		
Related Studies:		
Vestergaard et al. (2012)		
Fei et al. (2009)		

Appendix 7: Benchmark dose modeling results

Butenhoff *et al.* (2012) Benchmark Dose Analysis **Hepatocellular Hypertrophy**

BMR = 10%

Pages	Model	Beta/Power/Slope	Poly	Chi-square	AIC	BMD	BMDL
				<i>p</i> -value		(ng/mL)	(ng/mL)
2-3	Gamma	Restrict Power ≥ 1	-	0.173	212.51	10203.40	8368.92
4-5	Gamma	No Power Restriction	-	0.147	213.86	8291.14	4550.43
6-7	Logistic	-	-	0.000	238.66	31419.00	26497.40
8-9	Log Logistic	Restrict Slope ≥ 1	-	0.274	212.48	8699.10	5699.63
10-11	Log Logistic	No Slope Restriction	-	0.274	212.48	8699.12	5225.39
12-13	Log Probit	No Slope Restriction	-	0.246	212.76	8370.95	5213.28
14-15	Log Probit	Restrict Slope ≥ 1	-	0.014	219.42	16623.90	13644.30
16-17	Multistage	Restrict Betas ≥ 0	1st	0.173	212.51	10203.40	8368.92
18-19	Multistage	Restrict Betas ≥ 0	2nd	0.173	212.51	10203.40	8368.92
20-21	Multistage	Restrict Betas ≥ 0	3rd	0.173	212.51	10203.40	8368.92
22-23	Multistage	No Beta Restriction	1st	0.173	212.51	10203.40	8368.92
24-25	Multistage	No Beta Restriction	2nd	0.287	212.56	7737.04	5485.69
26-27	Multistage	No Beta Restriction	3rd	0.353	212.32	10641.20	6596.30
28-29	Multistage - Cancer	-	1st	0.173	212.51	10203.40	8368.92
30-31	Multistage - Cancer	-	2nd	0.173	212.51	10203.40	8368.92
32-33	Multistage - Cancer	-	3rd	0.173	212.51	10203.40	8368.92
34-35	Probit	-	-	0.000	236.38	28960.60	24709.50
36-37	Weibull	Restrict Power ≥ 1	-	0.173	212.51	10203.40	8368.92
38-39	Weibull	No Power Restriction	-	0.163	213.68	8105.33	4571.23
40-41	Quantal-Linear	-	-	0.173	212.51	10203.40	8368.92

Gamma Model. (Version: 2.16; Date: 2/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.plt

Thu May 12 15:06:57 2016

BMDS_Model_Run

The form of the probability function is:

 $\label{eq:problem} $$ P[response] = background + (1-background) *CumGamma[slope*dose,power], $$ where $CumGamma(.)$ is the cummulative $Gamma$ distribution function $$ $$ (2.5) $$ and $1.5 $$ (2.5) $$

Dependent variable = Effect Independent variable = Dose

Power parameter is restricted as power >=1

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00746269 Slope = 2.28367e-005

Power = 1.3

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background -Power
 have been estimated at a boundary point, or have been specified by the user,

and do not appear in the correlation matrix)

Slope

Slope

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0	NA		
Slope	1.0326e-005	1.28026e-006	7.81674e-006	1.28353e-005
Power	1	NA		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-105.254	1	6.15087	4	0.1882
Reduced model	-161.64	1	118.923	4	< .0001

AIC: 212.509

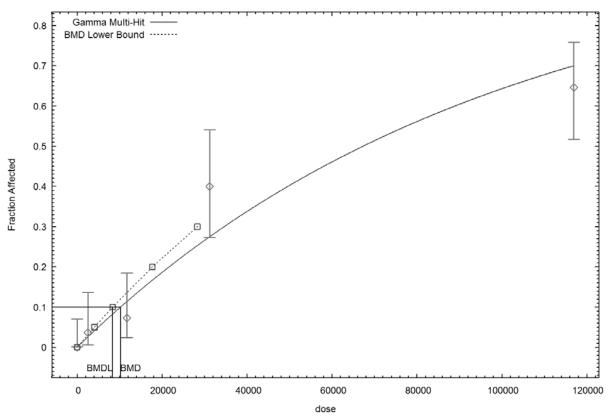
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000 2554.0000 11724.0000 31225.0000 116950.0000	0.0003 0.0260 0.1140 0.2756 0.7011	0.017 1.432 6.271 15.159 45.571	0.000 2.000 4.000 22.000 42.000	65.000 55.000 55.000 55.000	-0.130 0.481 -0.964 2.065 -0.968

Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 10203.4

BMDL = 8368.92

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:06 05/12 2016

Gamma Model. (Version: 2.16; Date: 2/28/2013)

Input Data File: $U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.(d)$ Gnuplot Plotting File: $U:/PFOS/PFOS_DataFiles/gam_Butenhoff2012_Hypertrophy_Opt.plt$

Thu May 12 15:08:09 2016

BMDS Model Run

The form of the probability function is:

 $\label{eq:problem} $$ P[response] = background + (1-background) *CumGamma[slope*dose,power], $$ where $CumGamma(.)$ is the cummulative $Gamma$ distribution function $$ $$$

Dependent variable = Effect Independent variable = Dose

Power parameter is not restricted

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values Background = 0.00746269

Slope = 2.28367e-005 Power = 1.3

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	Slope	Power
Slope	1	0.91
Power	0.91	1

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0	NA		
Slope	8.25002e-006	2.66765e-006	3.02152e-006	1.34785e-005
Power	0.865611	0.157436	0.557042	1.17418

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Mode	÷Τ	Log(likelihood)	#	Param's	Deviance	Test	d.i.	P-v	a⊥ue
Full m	nodel	-102.179		5					
Fitted m	nodel	-104.931		2	5.50426		3		0.1384
Reduced m	nodel	-161.64		1	118.923		4		<.0001

AIC: 213.862

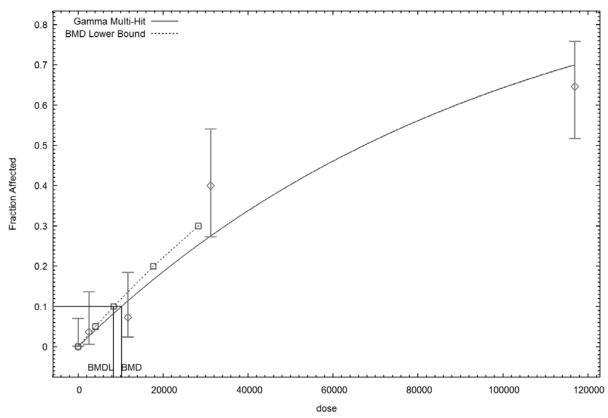
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000 2554.0000 11724.0000 31225.0000	0.0007 0.0369 0.1332 0.2894 0.6783	0.044 2.028 7.328 15.918 44.087	0.000 2.000 4.000 22.000 42.000	65.000 55.000 55.000 55.000	-0.210 -0.020 -1.321 1.808 -0.554
110930.0000	0.0763	44.007	42.000	03.000	-0.554

Chi^2 = 5.37 d.f. = 3 P-value = 0.1469

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 8291.14

BMDL = 4550.43

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:06 05/12 2016

Logistic Model. (Version: 2.14; Date: 2/28/2013)
Input Data File: U:/PFOS/PFOS_DataFiles/log_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/log_Butenhoff2012_Hypertrophy_Opt.plt

Thu May 12 15:10:08 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = 1/[1+EXP(-intercept-slope*dose)]

Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted

Total number of observations = 5
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

background = 0 Specified

intercept = -3.23556 slope = 3.69044e-005

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

 $\begin{array}{ccc} & \text{intercept} & \text{slope} \\ \\ \text{intercept} & 1 & -0.73 \\ \\ \\ \text{slope} & -0.73 & 1 \\ \end{array}$

Parameter Estimates

 Variable intercept slope
 Estimate 2.80924e-005
 Std. Err. Std. Err. Lower Conf. Limit Upper Conf. Limit 1.298628
 Upper Conf. Limit 1.298628
 Upper Conf. Limit 2.198628
 Upper Conf.

Analysis of Deviance Table

 Model
 Log(likelihood)
 # Param's
 Deviance
 Test d.f.
 P-value

 Full model
 -102.179
 5

 Fitted model
 -117.328
 2
 30.2983
 3
 1.1943847e-006

 Reduced model
 -161.64
 1
 118.923
 4
 <.0001</td>

AIC: 238.656

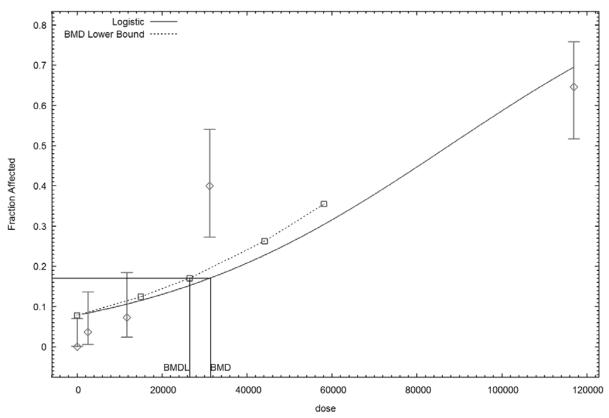
Goodness of Fit

			Goodiiebb	01 110	Scaled
Dose	EstProb.	Expected	Observed	Size	Residual
25.0000	0.0784	5.099	0.000	65.000	-2.352
2554.0000	0.0837	4.606	2.000	55.000	-1.268
11724.0000	0.1057	5.816	4.000	55.000	-0.796
31225.0000	0.1698	9.338	22.000	55.000	4.547
116950.0000	0.6945	45.141	42.000	65.000	-0.846

Chi^2 = 29.17 d.f. = 3 P-value = 0.0000

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 31419

BMDL = 26497.4

Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:10 05/12 2016

Logistic Model. (Version: 2.14; Date: 2/28/2013)
Input Data File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.plt

Thu May 12 15:26:09 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]

Dependent variable = Effect Independent variable = Dose

Slope parameter is restricted as slope >= 1

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Default Initial Parameter Values

background = 0
intercept = -11.5141

slope = 1

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

 $\begin{array}{ccc} & \text{intercept} & \text{slope} \\ \\ \text{intercept} & 1 & -1 \\ \end{array}$

slope -1 1

Parameter Estimates

95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit background 0 NA -12.3597 1.71835 -15.7276 -8.9918 intercept 1.12033 0.161139 0.804503 1.43616

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-104.24	2	4.12288	3	0.2485
Reduced model	-161.64	1	118.923	4	<.0001

AIC: 212.481

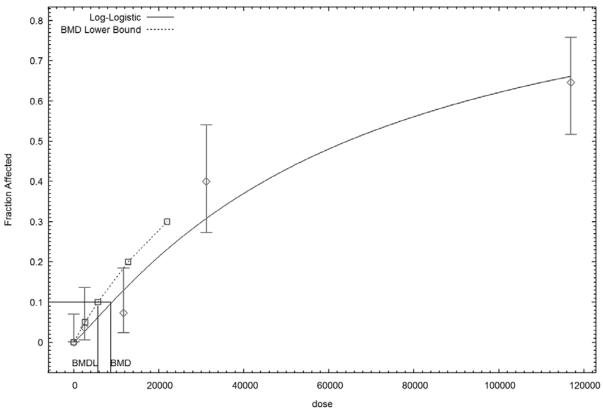
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000 2554.0000 11724.0000 31225.0000 116950.0000	0.0002 0.0274 0.1344 0.3175 0.6713	0.010 1.506 7.390 17.461 43.633	0.000 2.000 4.000 22.000 42.000	65.000 55.000 55.000 55.000	-0.101 0.408 -1.340 1.315 -0.431

Chi^2 = 3.89 d.f. = 3 P-value = 0.2737

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 8699.1

BMDL = 5699.63

Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:26 05/12 2016

Logistic Model. (Version: 2.14; Date: 2/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnl_Butenhoff2012_Hypertrophy_Opt.plt

Thu May 12 15:27:22 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]

Dependent variable = Effect Independent variable = Dose

Slope parameter is not restricted

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Default Initial Parameter Values

background = 0
intercept = -7.43678

slope = 0.628536

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

intercept slope
intercept 1 -1
slope -1 1

Parameter Estimates

95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit background 0 NA -12.3597 1.71835 -15.7276 -8.99182 intercept 1.12033 0.161139 0.804504 1.43616

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Mode:	1	Log(likelihood)	# Param's	Deviance	Test	d.f.	P-value
Full m	odel	-102.179	5				
Fitted m	odel	-104.24	2	4.12288		3	0.2485
Reduced m	odel	-161.64	1	118.923		4	<.0001

AIC: 212.481

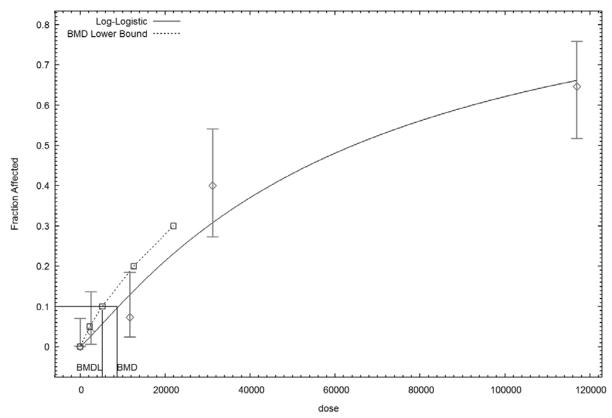
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000 2554.0000 11724.0000	0.0002 0.0274 0.1344	0.010 1.506 7.390	0.000 2.000 4.000	65.000 55.000 55.000	-0.101 0.408 -1.340
31225.0000 116950.0000	0.3175	17.461 43.633	22.000 42.000	55.000 55.000 65.000	1.315 -0.431
110930.0000	0.0713	13.033	12.000	03.000	0.131

Chi^2 = 3.89 d.f. = 3 P-value = 0.2737

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 8699.12

BMDL = 5225.39

Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:27 05/12 2016

Probit Model. (Version: 3.3; Date: 2/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.plt

Thu May 12 16:14:10 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = Background

+ (1-Background) * CumNorm(Intercept+Slope*Log(Dose)),

where CumNorm(.) is the cumulative normal distribution function

Dependent variable = Effect

Independent variable = Dose

Slope parameter is not restricted

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Default Initial (and Specified) Parameter Values

background = 0

intercept = -3.75187

slope = 0.314285

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

intercept slope

intercept 1 -0.99

slope -0.99 1

Parameter Estimates

95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit background 0 NA -7.06514 0.912463 -8.85354 -5.27675 intercept 0.640308 0.0866154 0.470545 0.810071 slope

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-104.381	2	4.40412	3	0.221
Reduced model	-161.64	1	118.923	4	<.0001

AIC: 212.762

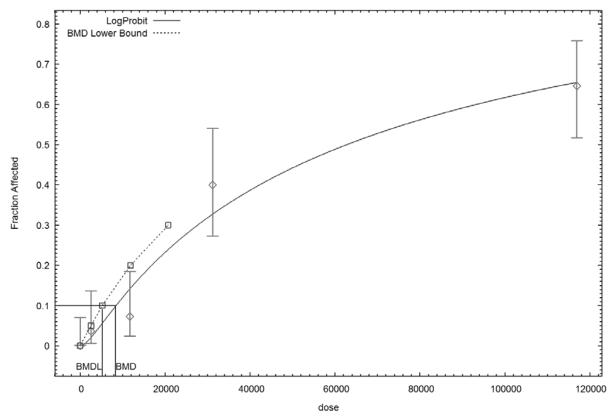
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000	0.0000	0.000	0.000	65.000	-0.004
2554.0000	0.0206	1.133	2.000	55.000	0.824
11724.0000	0.1432	7.879	4.000	55.000	-1.493
31225.0000	0.3305	18.176	22.000	55.000	1.096
116950.0000	0.6580	42.768	42.000	65.000	-0.201

Chi^2 = 4.15 d.f. = 3 P-value = 0.2458

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 8370.95

BMDL = 5213.28

LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:14 05/12 2016

Probit Model. (Version: 3.3; Date: 2/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.(d)

Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lnp_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 16:16:07 2016

BMDS Model Run

The form of the probability function is:

P[response] = Background

+ (1-Background) * CumNorm(Intercept+Slope*Log(Dose)),

where CumNorm(.) is the cumulative normal distribution function

Dependent variable = Effect

Independent variable = Dose

Slope parameter is restricted as slope >= 1

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Default Initial (and Specified) Parameter Values

background = 0

intercept = -11.2785slope =

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -slope

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

background intercept

background 1 -0.33

-0.33 intercept 1

slope

Parameter Estimates

95.0% Wald Confidence Interval Estimate Std. Err. 0.0190665 0.0134251 Variable Lower Conf. Limit Upper Conf. Limit -11.2416 Conf. Limi 0.0453792 -0.00724625 background 0.123171 intercept -11.0001

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-107.708	2	11.058	3	0.01142
Reduced model	-161.64	1	118.923	4	<.0001

AIC: 219.416

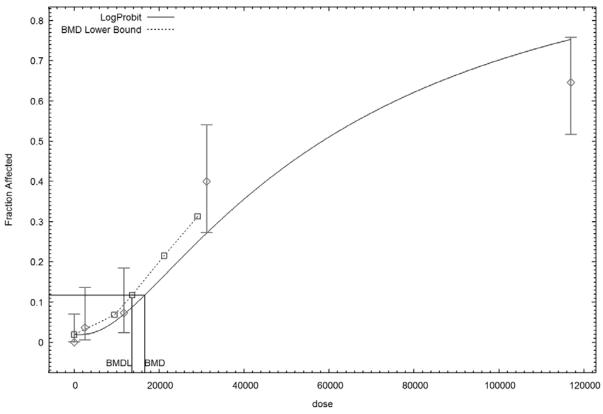
Goodness of Fit

	Goodness of Fit					
Dose	EstProb.	Expected	Observed	Size	Scaled Residual	
25.0000	0.0191	1.239	0.000	65.000	-1.124	
2554.0000	0.0199	1.092	2.000	55.000	0.878	
11724.0000	0.0696	3.826	4.000	55.000	0.092	
31225.0000	0.2716	14.939	22.000	55.000	2.140	
116950.0000	0.7532	48.956	42.000	65.000	-2.001	

Chi^2 = 10.63 d.f. = 3 P-value = 0.0139

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 16623.9

BMDL = 13644.3

LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:16 05/12 2016

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt
Thu May 12 16:18:30 2016

BMDS Model Run

The form of the probability function is:

The parameter betas are restricted to be positive

Dependent variable = Effect Independent variable = Dose

Total number of observations = 5

Total number of records with missing values = 0

Total number of parameters in model = 2

Total number of specified parameters = 0

Degree of polynomial = 1

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
Background = 0.0432491
Beta(1) = 8.87016e-006

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

Beta(1)

Beta(1) 1

Parameter Estimates

 Variable
 Estimate
 Std. Err.
 Lower Conf. Limit
 Upper Conf. Limit

 Background
 0
 NA

 Beta(1)
 1.0326e-005
 1.28026e-006
 7.81672e-006
 1.28353e-005

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

 Model
 Log(likelihood)
 # Param's
 Deviance
 Test d.f.
 P-value

 Full model
 -102.179
 5

 Fitted model
 -105.254
 1
 6.15087
 4
 0.1882

 Reduced model
 -161.64
 1
 118.923
 4
 <.0001</td>

AIC: 212.509

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Residual
25.0000	0.0003	0.017	0.000	65.000	-0.130
2554.0000	0.0260	1.432	2.000	55.000	0.481
11724.0000	0.1140	6.271	4.000	55.000	-0.964
31225.0000	0.2756	15.159	22.000	55.000	2.065
116950.0000	0.7011	45.571	42.000	65.000	-0.968

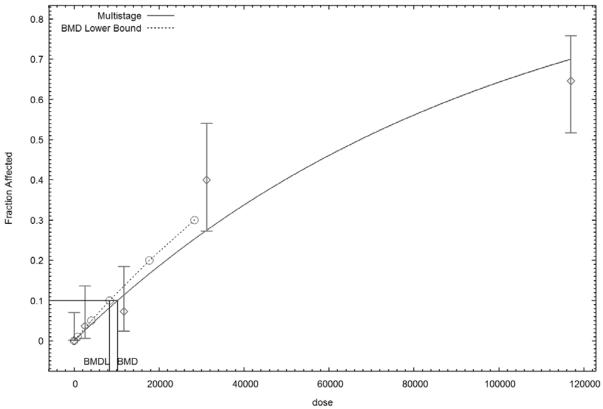
Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95


BMD = 10203.4

BMDL = 8368.92

BMDU = 12592

Taken together, (8368.92, 12592 $\,$) is a 90% two-sided confidence interval for the BMD $\,$

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:18 05/12 2016

______ Multistage Model. (Version: 3.4; Date: 05/02/2014) Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 16:20:29 2016 ______ BMDS Model Run The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2)] The parameter betas are restricted to be positive Dependent variable = Effect Independent variable = Dose Total number of observations = 5 Total number of records with missing values = 0 Total number of parameters in model = 3Total number of specified parameters = 0 Degree of polynomial = 2Maximum number of iterations = 500Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Default Initial Parameter Values Background = 0.0432491 Beta(1) = 8.87016e-006Beta(2) =Asymptotic Correlation Matrix of Parameter Estimates (*** The model parameter(s) -Background -Beta(2) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix) Beta(1) Beta(1) Parameter Estimates 95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Variable Std. Err. Estimate Background NA Beta(1) 1.0326e-005 1.28026e-006 7.81673e-006 1.28353e-005 Beta(2) NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error. Analysis of Deviance Table Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.179 5

6.15087

118.923

1 1

Fitted model

AIC:

Reduced model

-105.254

-161.64

212.509

4

4

0.1882

<.0001

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual	
25.0000	0.0003	0.017	0.000	65.000	-0.130	
2554.0000	0.0260	1.432	2.000	55.000	0.481	
11724.0000	0.1140	6.271	4.000	55.000	-0.964	
31225.0000	0.2756	15.159	22.000	55.000	2.065	
116950.0000	0.7011	45.571	42.000	65.000	-0.968	

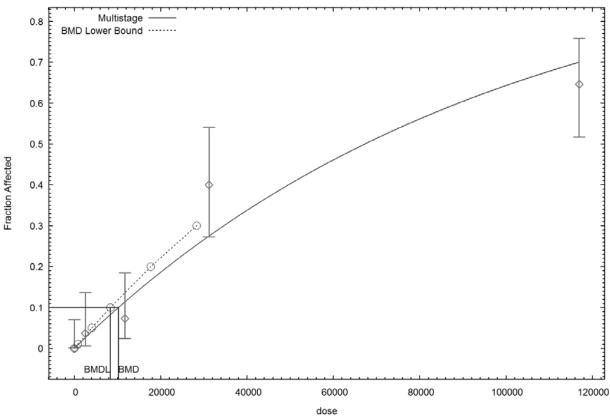
Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95


BMD = 10203.4

BMDL = 8368.92

BMDU = 12937

Taken together, (8368.92, 12937 $\,$) is a 90% two-sided confidence interval for the BMD $\,$

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:20 05/12 2016

```
_____
```

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt
Thu May 12 16:22:20 2016

BMDS_Model_Run

The form of the probability function is:

The parameter betas are restricted to be positive

Dependent variable = Effect Independent variable = Dose

Total number of observations = 5

Total number of records with missing values = 0

Total number of parameters in model = 4

Total number of specified parameters = 0

Degree of polynomial = 3

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values Background = 0.0432491Beta(1) = 8.87016e-006Beta(2) = 0

Beta(3) =0

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background -Beta(2) -Beta(3) have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

Beta(1)

Beta(1) 1

Parameter Estimates

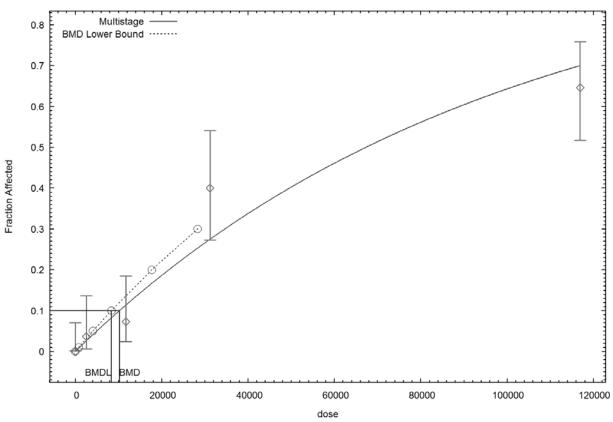
			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0	NA		
Beta(1)	1.0326e-005	1.28026e-006	7.81673e-006	1.28353e-005
Beta(2)	0	NA		
Beta(3)	0	NA		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-105.254	1	6.15087	4	0.1882
Reduced model	-161.64	1	118.923	4	<.0001
AIC:	212.509				

Goodness of Fit


Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000 2554.0000 11724.0000 31225.0000 116950.0000	0.0003 0.0260 0.1140 0.2756 0.7011	0.017 1.432 6.271 15.159 45.571	0.000 2.000 4.000 22.000 42.000	65.000 55.000 55.000 55.000	-0.130 0.481 -0.964 2.065 -0.968

Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

Benchmark Dose Computation

Specified effect = 0.1 Risk Type = Extra risk Confidence level = 0.95 BMD = 10203.4 BMDL = 8368.92 12937 BMDU =

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:22 05/12 2016

```
______
```

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt
Thu May 12 16:24:10 2016

```
BMDS_Model_Run
```

```
The form of the probability function is:
```

The parameter betas are not restricted

Dependent variable = Effect Independent variable = Dose

Total number of observations = 5 Total number of records with missing values = 0

Total number of parameters in model = 2
Total number of specified parameters = 0

Degree of polynomial = 1

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
Background = 0.0432491
Beta(1) = 8.87016e-006

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

Beta(1)

Beta(1)

Parameter Estimates

 Variable
 Estimate
 Std. Err.
 Lower Conf. Limit
 Upper Conf. Limit

 Background
 0
 NA

 Beta(1)
 1.0326e-005
 1.28026e-006
 7.81672e-006
 1.28353e-005

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -102.179 5 Fitted model -105.254 1 6.15087 4 0.1882 4 1 Reduced model -161.64 118.923 <.0001

AIC: 212.509

Goodness of Fit

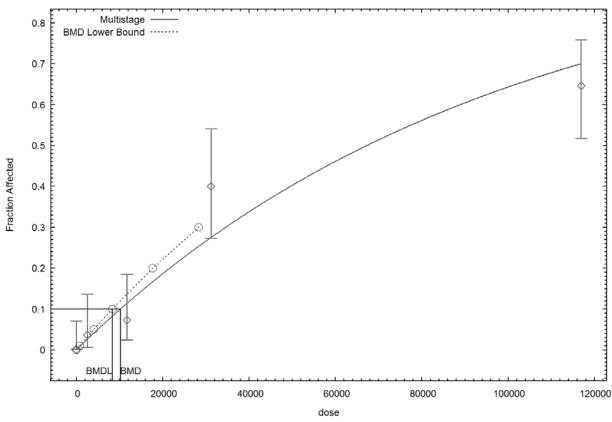
	doddiess of fit					
Dose	EstProb.	Expected	Observed	Size	Scaled Residual	
25.0000 2554.0000 11724.0000 31225.0000 116950.0000	0.0003 0.0260 0.1140 0.2756 0.7011	0.017 1.432 6.271 15.159 45.571	0.000 2.000 4.000 22.000 42.000	65.000 55.000 55.000 55.000 65.000	-0.130 0.481 -0.964 2.065 -0.968	

Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk


Confidence level = 0.95

BMD = 10203.4

```
BMDL = 8368.92
BMDU = 12592
```

Taken together, (8368.92, 12592 $\,$) is a 90% two-sided confidence interval for the BMD $\,$

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:24 05/12 2016

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt
Thu May 12 16:26:29 2016

BMDS_Model_Run

The form of the probability function is:

The parameter betas are not restricted

Dependent variable = Effect Independent variable = Dose

Total number of observations = 5

Total number of records with missing values = 0

Total number of parameters in model = 3

Total number of specified parameters = 0Degree of polynomial = 2

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

Background =

Beta(1) = 1.86003e-005

Beta(2) = -8.04616e-011

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

Beta(1) Beta(2)

Beta(1) 1 -0.92

-0.92 Beta(2) 1

Variable

Parameter Estimates

95.0% Wald Confidence Interval

Std. Err. Lower Conf. Limit Upper Conf. Limit

Estimate Background 0 NA Beta(1) 1.39424e-005 3.17421e-006 -4.19729e-011 3.13141e-011 Beta(2)

7.72109e-006 2.01637e-005 -1.03347e-010 1.94016e-011

NA - Indicates that this parameter has hit a bound

implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model Log(likelihood) # Param's Deviance Test d.f. P-value

-104.28 -102.179 Full model 4.20197 3 118.923 4 Fitted model 0.2405 Reduced model -161.64 1 <.0001

> 212.56 ATC:

> > Goodness of Fit

Scaled Est._Prob. Expected Observed Size Residual Dose ______
 25.0000
 0.0003
 0.023
 0.000
 65.000
 -0.151

 554.0000
 0.0347
 1.909
 2.000
 55.000
 0.067

 724.0000
 0.1459
 8.024
 4.000
 55.000
 -1.537

 225.0000
 0.3259
 17.926
 22.000
 55.000
 1.172

 6950.0000
 0.6523
 42.401
 42.000
 65.000
 -0.104
 2554.0000 11724.0000 22.0000 0.3259 116950.0000 0.757 1.172 -0.104

d.f. = 3 P-value = 0.2869 $Chi^2 = 3.77$

Benchmark Dose Computation

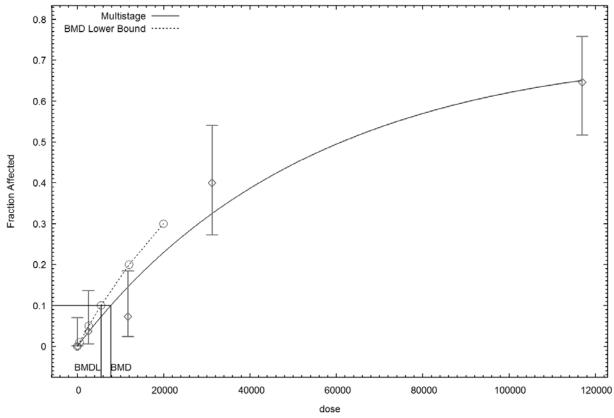
Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95

BMD = 7737.04

BMDL = 5485.69


BMDU = 11384.9

0

% two-sided confidence

Taken together, (5485.69, 11384.9) is a 90 interval for the BMD

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:26 05/12 2016

Multistage Model. (Version: 3.4; Date: 05/02/2014) Input Data File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/mst_Butenhoff2012_Hypertrophy_Opt.plt Thu May 12 16:28:22 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2-beta3*dose^3)]

The parameter betas are not restricted

Dependent variable = Effect Independent variable = Dose

Total number of observations = 5

Total number of records with missing values = 0

Total number of parameters in model = 4

Total number of specified parameters = 0

Degree of polynomial = 3

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

Background = 0.0157298

Beta(1) = -2.38607e-006

Beta(2) = 7.60553e-010

Beta(3) = -5.6892e-015

Asymptotic Correlation Matrix of Parameter Estimates

and do not appear in the correlation matrix)

Beta(3)	Beta(2)	Beta(1)	
0.8	-0.85	1	Beta(1)
-0.99	1	-0.85	Beta(2)
1	-0.99	0.8	Beta(3)

Parameter Estimates

			95.0% Wald Confidence Interval			
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
Background	0	NA				
Beta(1)	6.05017e-006	4.84163e-006	-3.43925e-006	1.55396e-005		
Beta(2)	3.95687e-010	2.64238e-010	-1.22209e-010	9.13584e-010		
Beta(3)	-3.17562e-015	1.97114e-015	-7.03899e-015	6.87746e-016		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-103.159	3	1.96035	2	0.3752
Reduced model	-161.64	1	118.923	4	<.0001

AIC: 212.318

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000	0.0002	0.010	0.000	65.000	-0.099
2554.0000	0.0178	0.980	2.000	55.000	1.040
11724.0000	0.1133	6.229	4.000	55.000	-0.949
31225.0000	0.3800	20.900	22.000	55.000	0.306
116950.0000	0.6465	42.023	42.000	65.000	-0.006

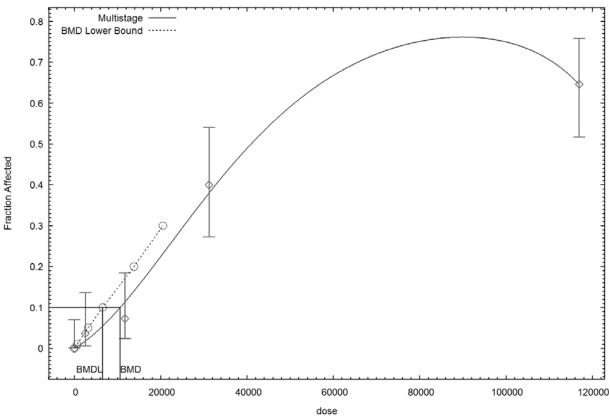
Chi^2 = 2.08 d.f. = 2 P-value = 0.3528

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95


BMD = 10641.2

BMDL = 6596.3

BMDU = 16808.1

Taken together, (6596.3, 16808.1) is a 90% two-sided confidence interval for the ${\tt BMD}$

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

16:28 05/12 2016

```
-----
```

BMDS_Model_Run

```
The form of the probability function is:
```

The parameter betas are restricted to be positive

Dependent variable = Effect Independent variable = Dose

```
Total number of observations = 5
Total number of records with missing values = 0
Total number of parameters in model = 2
Total number of specified parameters = 0
Degree of polynomial = 1
```

Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

Background = 0.0432491Beta(1) = 8.87016e-006

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

Beta(1)

Beta(1) 1

Parameter Estimates

 Variable
 Estimate
 Std. Err.
 Lower Conf. Limit
 Upper Conf. Limit

 Background
 0
 NA

 Beta(1)
 1.0326e-005
 1.28026e-006
 7.81672e-006
 1.28353e-005

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.179 5 Fitted model -105.254 6.15087 0.1882 1 Reduced model -161.64 1 118.923 4 <.0001 212.509 AIC:

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000	0.0003	0.017	0.000	65.000	-0.130
2554.0000	0.0260	1.432	2.000	55.000	0.481
11724.0000	0.1140	6.271	4.000	55.000	-0.964
31225.0000	0.2756	15.159	22.000	55.000	2.065
116950.0000	0.7011	45.571	42.000	65.000	-0.968
110000.0000	0.7011	13.371	12.000	03.000	0.500

Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

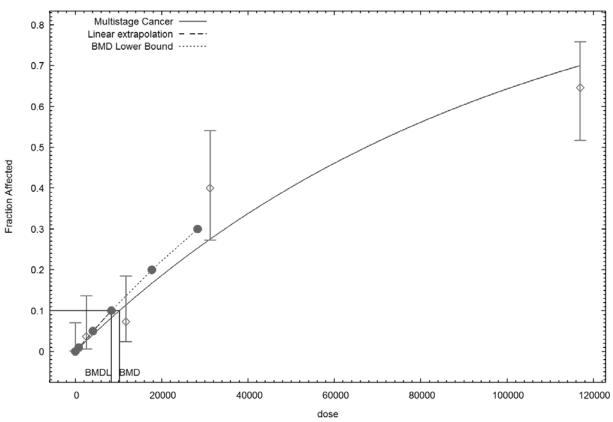
Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95

BMD = 10203.4


BMDL = 8368.92

BMDU = 12592

Taken together, (8368.92, 12592) is a 90% two-sided confidence

Cancer Slope Factor = 1.1949e-005

Multistage Cancer Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:06 05/13 2016

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/msc_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/msc_Butenhoff2012_Hypertrophy_Opt.plt
Fri May 13 09:08:57 2016

BMDS_Model_Run

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
Background = 0.0432491
Beta(1) = 8.87016e-006
Beta(2) = 0

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background -Beta(2)
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

Beta(1)

Beta(1) 1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0	NA		
Beta(1)	1.0326e-005	1.28026e-006	7.81673e-006	1.28353e-005
Beta(2)	0	NA		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-105.254	1	6.15087	4	0.1882
Reduced model	-161.64	1	118.923	4	<.0001

AIC: 212.509

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000 2554.0000 11724.0000 31225.0000 116950.0000	0.0003 0.0260 0.1140 0.2756 0.7011	0.017 1.432 6.271 15.159 45.571	0.000 2.000 4.000 22.000 42.000	65.000 55.000 55.000 55.000	-0.130 0.481 -0.964 2.065 -0.968

Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

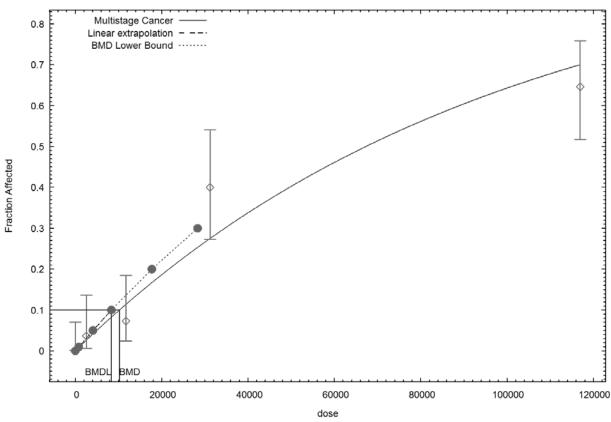
Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95

BMD = 10203.4


BMDL = 8368.92

```
BMDU = 12937
```

Taken together, (8368.92, 12937 $\,$) is a 90% two-sided confidence interval for the BMD $\,$

Cancer Slope Factor = 1.1949e-005

Multistage Cancer Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:08 05/13 2016

```
______
```

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/msc_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/msc_Butenhoff2012_Hypertrophy_Opt.plt
Fri May 13 09:10:19 2016

BMDS_Model_Run

```
The form of the probability function is:
```

The parameter betas are restricted to be positive

Dependent variable = Effect Independent variable = Dose

Total number of observations = 5

Total number of records with missing values = 0

Total number of parameters in model = 4

Total number of specified parameters = 0

Degree of polynomial = 3

Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
Background = 0.0432491
Beta(1) = 8.87016e-006
Beta(2) = 0
Beta(3) = 0

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background -Beta(2) -Beta(3)
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

Beta(1)

Beta(1) 1

Parameter Estimates

95.0% Wald Confidence Interval Lower Conf. Limit Upper Conf. Limit Estimate Variable Std. Err. Background 0 NA Beta(1) 1.0326e-005 1.28026e-006 7.81673e-006 1.28353e-005 Beta(2) NA 0 Beta(3) 0

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.179 5 Fitted model -105.254 1 6.15087 0.1882 118.923 Reduced model -161.64 1 4 <.0001 212.509 ATC:

Goodness of Fit

0--1--

Dose	EstProb.	Expected	Observed	Size	Residual
25.0000 2554.0000 11724.0000 31225.0000	0.0003 0.0260 0.1140 0.2756	0.017 1.432 6.271 15.159	0.000 2.000 4.000 22.000	65.000 55.000 55.000 55.000	-0.130 0.481 -0.964 2.065
116950.0000	0.7011	45.571	42.000	65.000	-0.968

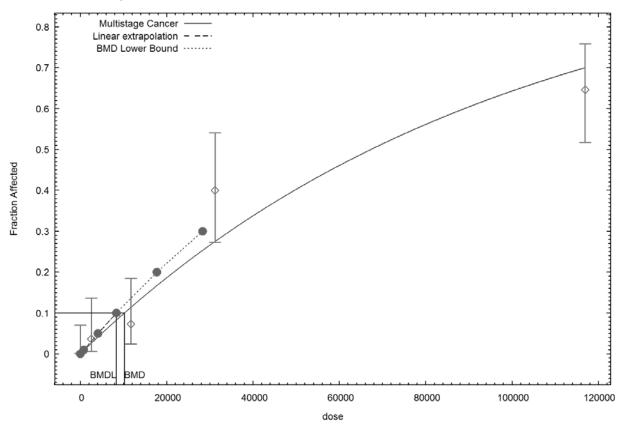
Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95


BMD = 10203.4

BMDL = 8368.92 BMDU = 12937

Taken together, (8368.92, 12937 $\,$) is a 90% two-sided confidence interval for the BMD $\,$

Cancer Slope Factor = 1.1949e-005

Multistage Cancer Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:10 05/13 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = CumNorm(Intercept+Slope*Dose),

where $\operatorname{CumNorm}(.)$ is the cumulative normal distribution function

Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

0 Specified

background = 0
intercept = -1.93881 slope = 2.18876e-005

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	intercept	slope
intercept	1	-0.7
slope	-0.7	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
intercept	-1.47696	0.130632	-1.733	-1.22093
slope	1.70641e-005	1.89166e-006	1.33565e-005	2.07717e-005

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-116.192	2	28.0266	3	3.5857184e-006
Reduced model	-161.64	1	118.923	4	<.0001
AIC:	236.384				

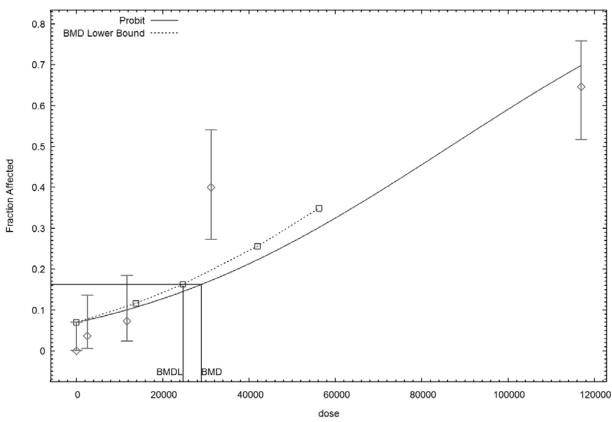
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000	0.0699	4.543	0.000	65.000	-2.210
2554.0000	0.0759	4.173	2.000	55.000	-1.107
11724.0000	0.1008	5.545	4.000	55.000	-0.692
31225.0000	0.1725	9.490	22.000	55.000	4.464
116950.0000	0.6980	45.371	42.000	65.000	-0.911

 $Chi^2 = 27.35$ d.f. = 3 P-value = 0.0000

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

```
Confidence level = 0.95

BMD = 28960.6

BMDL = 24709.5
```

Probit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:11 05/13 2016

```
-----
```

```
Weibull Model using Weibull Model (Version: 2.16; Date: 2/28/2013)
Input Data File: U:/PFOS/PFOS_DataFiles/wei_Butenhoff2012_Hypertrophy_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/wei_Butenhoff2012_Hypertrophy_Opt.plt
Fri May 13 09:13:47 2016
```

```
BMDS_Model_Run
```

```
The form of the probability function is:
```

P[response] = background + (1-background)*[1-EXP(-slope*dose^power)]

Dependent variable = Effect

Independent variable = Dose
Power parameter is restricted as power >= 1.000000

Total number of observations = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00746269 Slope = 8.71439e-006 Power = 1

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background -Power
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

Slope

Slope 1

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0	NA		
Slope	1.0326e-005	1.28026e-006	7.81673e-006	1.28353e-005
Power	1	NΑ		

 ${\tt NA}$ - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

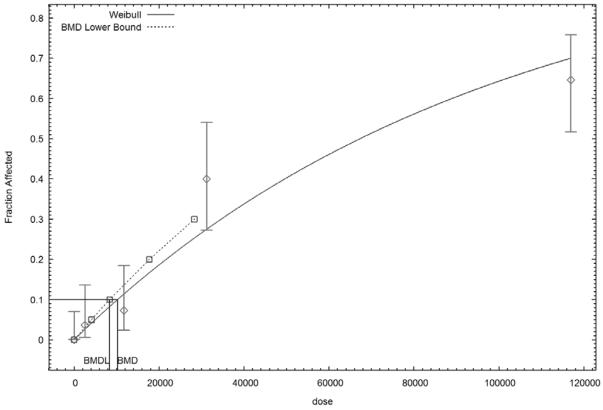
Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-105.254	1	6.15087	4	0.1882
Reduced model	-161.64	1	118.923	4	<.0001

AIC: 212.509

Goodness of Fit

	Scaled esidual
2554.0000 0.0260 1.432 2.000 55.000 11724.0000 0.1140 6.271 4.000 55.000	0.130 0.481 0.964 2.065
116950.0000 0.7011 45.571 42.000 65.000	-0.968

Chi^2 = 6.38 d.f. = 4 P-value = 0.1728


Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95BMD = 10203.4BMDL = 8368.92

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:13 05/13 2016

Weibull Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/wei_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/wei_Butenhoff2012_Hypertrophy_Opt.plt Fri May 13 09:14:45 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-slope*dose*power)]

Dependent variable = Effect Independent variable = Dose Power parameter is not restricted

Total number of observations = 5 Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00746269Slope = 0.0004981890.653284 Power =

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	Slope	Power
Slope	1	-1
Power	-1	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0	NA		
Slope	3.61268e-005	4.82997e-005	-5.85389e-005	0.000130793
Power	0.886429	0.1213	0.648686	1.12417

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-102.179	5			
Fitted model	-104.841	2	5.32319	3	0.1496
Reduced model	-161.64	1	118.923	4	<.0001

AIC: 213.681

Goodness of Fit

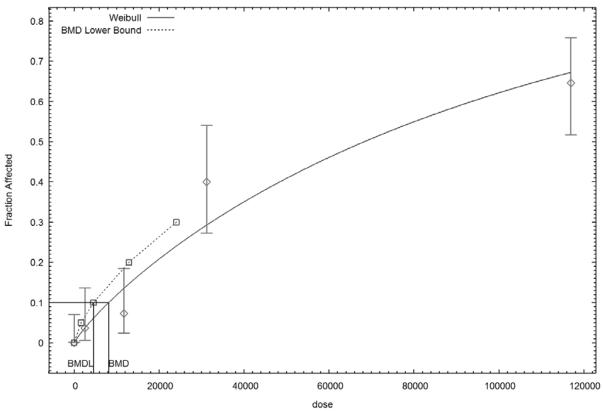
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
25.0000 2554.0000 11724.0000 31225.0000 116950.0000	0.0006 0.0371 0.1360 0.2941 0.6746	0.041 2.043 7.478 16.174 43.848	0.000 2.000 4.000 22.000 42.000	65.000 55.000 55.000 55.000 65.000	-0.202 -0.031 -1.368 1.724 -0.489

Chi^2 = 5.13 d.f. = 3 P-value = 0.1628

4571.23

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 8105.33

BMDL =

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:14 05/13 2016

Quantal Linear Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/PFOS/PFOS_DataFiles/qln_Butenhoff2012_Hypertrophy_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/qln_Butenhoff2012_Hypertrophy_Opt.plt Fri May 13 09:16:10 2016

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-slope*dose)]

Dependent variable = Effect Independent variable = Dose

Total number of observations = 5Total number of records with missing values = 0

Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00746269 Slope = 8.71439e-006

Power = Specified

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Background -Power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

Slope

Slope 1

Parameter Estimates

95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit Background 0 NA

Slope 1.0326e-005 1.28026e-006

7.81673e-006 1.28353e-005

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -102.179 5 4 4 0.1882 Fitted model 6.15087 -105.254 1 Reduced model 1 118.923 -161.64 <.0001

> AIC: 212.509

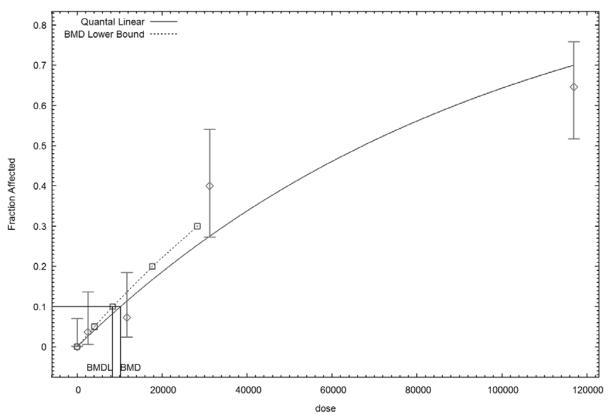
Goodness of Fit

Dose EstProb. Expected Observed Size Residu. 25.0000 0.0003 0.017 0.000 65.000 -0.130			
	-	Dose EstProb. Expected	Scaled Residual
11724.0000 0.1140 6.271 4.000 55.000 -0.964 31225.0000 0.2756 15.159 22.000 55.000 2.065	1.432 2.000 55.000 0 6.271 4.000 55.000 -0 15.159 22.000 55.000 2	.0000 0.0260 1.432 .0000 0.1140 6.271 .0000 0.2756 15.159	

Chi^2 = 6.38 d.f. = 4 P-value = 0.1728

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 10203.4

BMDL = 8368.92

Quantal Linear Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:16 05/13 2016

Dong *et al.* (2009) Benchmark Dose Analysis - Relative Liver Weight **BMR = 10% Relative Deviation**

Pages	Model	Variance	Beta/Power/Slope	Distribution	Poly	Chi- square p-value	AIC	BMD (ng/mL)	BMDL (ng/mL)
2-5	Exponential (Model 4) ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	1	< 0.0001	-90.65	10,534.5	10,159.5
6-9	Exponential (Models 2&3) ^a	Not Constant	Restrict Power ≥ 1	Normal	ı	< 0.0001	-95.17	15,553.5	15,217.0
10-13	Exponential (Model 4)	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	< 0.0001	323.09	10,557.7	9,399.3
14-17	Exponential (Model 4)	Not Constant	Restrict Power ≥ 1	Lognormal	-	< 0.0001	323.09	10,557.7	9,399.3
-	Hill ^b	-	-	-	-	-	-	-	-
18-19	Linear a	Constant (Rho=0)	-	-	1st	< 0.0001	-92.66	10,535.0	10,160.0
20-21	Linear ^a	Not Constant	-	-	1st	< 0.0001	-94.18	10,585.3	10,175.0
22-24	Polynomial ^a	Constant (Rho=0)	-	-	2nd	< 0.0001	-96.06	12,122.8	10,904.9
25-27	Polynomial	Constant (Rho=0)	-	-	3rd	0.84	- 165.53	6,086.2	5,584.3
28-30	Polynomial ^a	Not Constant	-	-	2nd	< 0.0001	-95.53	13,461.1	11,093.4
31-33	Polynomial	Not Constant	•	•	3rd	0.84	- 163.56	6,085.3	5,586.7
34-36	Power ^a	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	-90.89	11,158.7	10,176.7
37-39	Power ^a	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	-94.18	10,585.3	10,175.0
40-42	Power ^a	Constant (Rho=0)	No Power Restriction	-	-	< 0.0001	-90.89	11,158.7	9,085.9
43-45	Power ^a	Not Constant	No Power Restriction	-	-	< 0.0001	- 106.45	6,209.8	5,121.9

a. P-values are less than 0.1. Scaled residuals for one or more doses/serum concentrations were > |2|.

b. Model failed because of unequal variance in response.

```
Exponential Model. (Version: 1.10; Date: 01/12/2015)
Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File:
```

Tue Jan 17 10:02:20 2017

BMDS Model Run

```
The form of the response function by Model:
   Model 2:
                Y[dose] = a * exp{sign * b * dose}
   Model 3:
                Y[dose] = a * exp{sign * (b * dose)^d}
               Y[dose] = a * [c-(c-1) * exp{-b * dose}]

Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]
   Model 4:
   Model 5:
Note: Y[dose] is the median response for exposure = dose;
       sign = +1 for increasing trend in data;
       sign = -1 for decreasing trend.
   Model 2 is nested within Models 3 and 4.
   Model 3 is nested within Model 5.
   Model 4 is nested within Model 5.
Dependent variable = Mean
Independent variable = Dose
Data are assumed to be distributed: normally
Variance Model: exp(lnalpha +rho *ln(Y[dose]))
rho is set to 0.
A constant variance model is fit.
Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008
```

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 2		Model 3		Model 4		Model 5	
lnalpha	-3.93121		-3.93121		-3.93121		-3.93121	
rho	0	*	0	*	0 -	k	0	*
a	5.39611		5.39611		4.9115		4.9115	
b	6.3622e-006		6.3622e-006		1.09401e-006		1.09401e-006	
С	0	*	0	*	11.6767		11.6767	
d	1	*	1		1 :	k	1	

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-2.5553	-2.5553	-2.64421	-2.64818
rho	0 *	0 *	0 *	0 *
a	5.43715	5.43715	5.27813	5.29708
b	6.21968e-006	6.21968e-006	8.74416e-010	6.24887e-010
C			10857	18764.2
d		1		1.02264

-- Indicates that this parameter does not appear in model

 $\mbox{\ensuremath{^{\star}}}$ Indicates that this parameter has been specified

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	3.20663e-152	0.0141804	0.0129742	0.0129227
rho	NA	NA	NA	NA
а	0.0429546	0.0429546	0.044434	0.0587216
b	9.57868e-008	9.57868e-008	1.41099e-008	1.43594e-008
С	NA	NA	175167	440750
d	NA	NA	NA	0.0470605

 ${\tt NA}$ - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N		Obs Mean	Obs Std Dev
48	10		5.17	0.12
674	10		5.21	0.17
7132	10		5.78	0.13
2.164e+	-004	10	6.67	0.11
6.543e+	-004	10	8.17	0.21
1.207e+	-005	10	11.47	0.12

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	48	5.439	0.2787	-3.05
	674	5.46	0.2787	-2.837
	7132	5.684	0.2787	1.092
2.1	.64e+004	6.22	0.2787	5.101
6.5	43e+004	8.168	0.2787	0.02644
1.2	07e+005	11.52	0.2787	-0.528
3	48	5.439	0.2787	-3.05
	674	5.46	0.2787	-2.837
	7132	5.684	0.2787	1.092
2.1	.64e+004	6.22	0.2787	5.101
6.5	43e+004	8.168	0.2787	0.02644
1.2	107e+005	11.52	0.2787	-0.528
4	48	5.281	0.2666	-1.311
	674	5.312	0.2666	-1.209
	7132	5.635	0.2666	1.715
2.1	.64e+004	6.362	0.2666	3.651
6.5	43e+004	8.556	0.2666	-4.58
1.2	107e+005	11.32	0.2666	1.735
5	48	5.299	0.266	-1.534
	674	5.327	0.266	-1.392
	7132	5.632	0.266	1.757
2.1	.64e+004	6.34	0.266	3.926
6.5	43e+004	8.53	0.266	-4.275
1.2	107e+005	11.34	0.266	1.519

Other models for which likelihoods are calculated:

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} \mbox{Var} \big\{ \mbox{e(ij)} \big\} \ = \mbox{Sigma^2}$

 $\label{eq:Model A2: Yij = Mu(i) + e(ij)} \mbox{Var} \big\{ \mbox{e(ij)} \big\} = \mbox{Sigma(i)^2}$

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	87.93617	7	-161.8723
A2	91.36709	12	-158.7342
A3	87.93617	7	-161.8723
R	-77.86119	2	159.7224
2	46.65895	3	-87.31791
3	46.65895	3	-87.31791
4	49.32627	4	-90.65254
5	49.44547	5	-88.89094

Additive constant for all \log -likelihoods = -55.14. This constant added to the above values gives the \log -likelihood including the term that does not depend on the model parameters.

Explanation of Tests

```
Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs. 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs. 4)
Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs. 5)
Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
Test 7c: Is Model 5 better than Model 4? (5 vs. 4)
```

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	338.5	10	< 0.0001
Test 2	6.862	5	0.2311
Test 3	6.862	5	0.2311
Test 4	82.55	4	< 0.0001
Test 5a	82.55	4	< 0.0001
Test 5b	-7.441e-011	0	N/A
Test 6a	77.22	3	< 0.0001
Test 6b	5.335	1	0.02091
Test 7a	76.98	2	< 0.0001
Test 7b	5.573	2	0.06164
Test 7c	0.2384	1	0.6254

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled

variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is greater than .05. Model 5 does not seem to fit the data better than Model 3.

The p-value for Test 7c is greater than .05. Model 5 does not seem to fit the data better than Model $4.\,$

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	15324	14941
3	15324	14941
4	10534.5	10159.5
5	11159	10176.5

```
______
```

Exponential Model. (Version: 1.10; Date: 01/12/2015)
Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File:

Tue Jan 17 10:10:43 2017

BMDS Model Run

The form of the response function by Model:
 Model 2: Y[dose] = a * exp{sign * b * dose}
 Model 3: Y[dose] = a * exp{sign * (b * dose)^d}
 Model 4: Y[dose] = a * [c-(c-1) * exp{-b * dose}]
 Model 5: Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]

Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data; sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4.

Model 3 is nested within Model 5. Model 4 is nested within Model 5.

Dependent variable = Mean
Independent variable = Dose

Data are assumed to be distributed: normally Variance Model: exp(lnalpha + rho *ln(Y[dose])) The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 2	Model	3 Model 4	Model 5
lnalpha	-3.94818	-3.9481	8 -3.94818	-3.94818
rho	0.00416179	0.0041617	9 0.00416179	0.00416179
a	5.39611	5.3961	1 4.9115	4.9115
b	6.3622e-006	6.3622e-00	6 1.09401e-006	1.09401e-006
С	0	*	0 * 11.6767	11.6767
d	1	*	1 1	. * 1

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	2.63812	2.63812	-5.65148	-5.65237
rho	-2.78895	-2.78895	1.53982	1.54029
a	5.47838	5.47838	5.2844	5.28439
b	6.12788e-006	6.12788e-006	1.04996e-009	1.64997e-009
C			8999.06	5727.1
d		1		1

⁻⁻ Indicates that this parameter does not appear in model

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	NA	1.48266	1.60768	1.61535
rho	NA	0.763955	0.834182	0.838265
a	NA	0.0471546	0.0377385	0.0377831
b	NA	8.06043e-008	4.29893e-008	1.13047e-007
C	NA	NA	368392	392284
d	NA	NA	NA	NA

 ${\tt NA}$ - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N		Obs Mean	Obs Std Dev
48	10		5.17	0.12
674	10		5.21	0.17
7132	10		5.78	0.13
2.164e+	-004	10	6.67	0.11
6.543e+	-004	10	8.17	0.21
1.207e+	-005	10	11.47	0.12

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	48	5.48	0.3489	-2.81
	674	5.501	0.347	-2.652
	7132	5.723	0.3284	0.5478
2.1	64e+004	6.255	0.2901	4.522
6.5	343e+004	8.18	0.1995	-0.1638
1.2	207e+005	11.48	0.1245	-0.1535
3	48	5.48	0.3489	-2.81
	674	5.501	0.347	-2.652
	7132	5.723	0.3284	0.5478
2.1	64e+004	6.255	0.2901	4.522
6.5	343e+004	8.18	0.1995	-0.1638
1.2	207e+005	11.48	0.1245	-0.1535
4	48	5.287	0.2136	-1.729
	674	5.318	0.2146	-1.592
	7132	5.64	0.2245	1.965
2.1	.64e+004	6.365	0.2464	3.919
6.5	43e+004	8.551	0.3093	-3.892
1.2	207e+005	11.31	0.3836	1.332
5	48	5.287	0.2136	-1.729
	674	5.318	0.2146	-1.592
	7132	5.64	0.2245	1.965
2.1	.64e+004	6.365	0.2464	3.919
6.5	343e+004	8.551	0.3093	-3.892
1.2	207e+005	11.31	0.3836	1.332

Other models for which likelihoods are calculated:

$Var\{e(ij)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	87.93617	7	-161.8723
A2	91.36709	12	-158.7342
A3	87.9594	8	-159.9188
R	-77.86119	2	159.7224
2	51.58325	4	-95.16651
3	51.58325	4	-95.16651
4	51.09213	5	-92.18426
5	51.09196	5	-92.18393

Additive constant for all log-likelihoods = -55.14. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

- Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
- Test 2: Are Variances Homogeneous? (A2 vs. A1)
- Test 3: Are variances adequately modeled? (A2 vs. A3)
- Test 4: Does Model 2 fit the data? (A3 vs. 2)
- Test 5a: Does Model 3 fit the data? (A3 vs 3)
- Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
- Test 6a: Does Model 4 fit the data? (A3 vs 4)
- Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
- Test 7a: Does Model 5 fit the data? (A3 vs 5)
- Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
- Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	338.5	10	< 0.0001
Test 2	6.862	5	0.2311
Test 3	6.815	4	0.146
Test 4	72.75	4	< 0.0001
Test 5a	72.75	4	< 0.0001
Test 5b	-7.503e-012	0	N/A
Test 6a	73.73	3	< 0.0001
Test 6b	-0.9822	1	N/A
Test 7a	73.73	3	< 0.0001
Test 7b	-0.9826	1	N/A
Test 7c	-0.0003348	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. Consider running a homogeneous model.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	15553.5	15217
3	15553.5	15217
4	10584.8	10174.4
5	10584.4	10174.1

```
______
```

Exponential Model. (Version: 1.10; Date: 01/12/2015)
Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File:

Tue Jan 17 10:13:49 2017

BMDS Model Run

The form of the response function by Model:

Model 2: Y[dose] = a * exp{sign * b * dose}

Model 3: Y[dose] = a * exp{sign * (b * dose)^d}

Model 4: Y[dose] = a * [c-(c-1) * exp{-b * dose}]

Model 5: Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]

Note: Y[dose] is the median response for exposure = dose;

sign = +1 for increasing trend in data;

sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4. Model 3 is nested within Model 5. Model 4 is nested within Model 5.

Dependent variable = Calculated Median
Independent variable = Dose
Data are assumed to be distributed: lognormally
Variance Model: Log-scale variance = exp(lnalpha)
rho is set to 0.
A constant log-scale variance model is fit.

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

MLE solution provided: Approximate

Initial Parameter Values

Variable	Model 2		Model 3		Model 4		Model 5	
lnalpha	-7.65737		-7.65737		-7.65737		-7.65737	
rho	0	*	0	*	0	*	0 -	k
a	5.3943		5.3943		4.91018		4.91018	
b	6.3642e-006		6.3642e-006		3.6257e-006		3.6257e-006	
С	0	*	0	*	4.67167		4.67167	
d	1	*	1		1	*	1	

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-6.17123	-6.17123	-6.51819	-6.51816
rho	0 *	0 *	0 *	0 *
a	5.3943	5.3943	5.27911	5.2783
b	6.3642e-006	6.3642e-006	3.68053e-008	8.96714e-008
С			258.398	106.958
d		1		1

- $\mbox{--}$ Indicates that this parameter does not appear in \mbox{model}
- * Indicates that this parameter has been specified

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
С	NA	NA	NA	NA
d	NA	NA	NA	NA

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Cal	.c'd Median	Calc'd GSD
48	10		5.169	1.023
674	10		5.207	1.033
7132	10		5.779	1.023
2.164e+	004	10	6.669	1.017
6.543e+	004	10	8.167	1.026
1.207e+	005	10	11.47	1.011

Estimated Values of Interest

Model	Dose	Est Median	Est GSD	Scaled Residual
2	48	5.396	1.047	-0.6868
	674	5.417	1.047	-0.6352
	7132	5.645	1.047	0.4041
2.1	.64e+004	6.191	1.047	1.445
6.5	43e+004	8.18	1.047	-0.03923
1.2	107e+005	11.63	1.047	-0.4755
3	48	5.396	1.047	-0.6868
	674	5.417	1.047	-0.6352
	7132	5.645	1.047	0.4041
2.1	.64e+004	6.191	1.047	1.445
6.5	43e+004	8.18	1.047	-0.03923
1.2	107e+005	11.63	1.047	-0.4755
4	48	5.282	1.039	-0.3436
	674	5.313	1.039	-0.3213
	7132	5.636	1.039	0.4345
2.1	.64e+004	6.361	1.039	0.938
6.5	43e+004	8.547	1.039	-1.156
1.2	107e+005	11.3	1.039	0.5132
5	48	5.281	1.039	-0.3411
	674	5.312	1.039	-0.3191
	7132	5.636	1.039	0.4342
2.1	.64e+004	6.362	1.039	0.9332
6.5	43e+004	8.55	1.039	-1.164
1.2	107e+005	11.3	1.039	0.5232

Other models for which likelihoods are calculated:

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} \mbox{Var} \{ \mbox{e(ij)} \} \ = \mbox{Sigma^2}$

 $\label{eq:model A2: Yij = Mu(i) + e(ij)} \mbox{Var} \big\{ \mbox{e(ij)} \big\} \ = \mbox{Sigma(i)^2}$

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	199.7212	7	-385.4425
A2	206.2318	12	-388.4635
A3	199.7212	7	-385.4425
R	45.58656	2	-87.17312
2	155.1368	3	-304.2737
3	155.1368	3	-304.2737
4	165.5457	4	-323.0914
5	165.5449	4	-323.0898

Additive constant for all log-likelihoods = -55.14. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

```
Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs. 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs. 4)
Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs. 5)
Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
Test 7c: Is Model 5 better than Model 4? (5 vs. 4)
```

Tests of Interest

Test	Test -2*log(Likelihood Ratio)		p-value
Test 1	321.3	10	< 0.0001
Test 2	13.02	5	0.02318
Test 3	13.02	5	0.02318
Test 4	89.17	4	< 0.0001
Test 5a	89.17	4	< 0.0001
Test 5b	-1.097e-011	0	N/A
Test 6a	68.35	3	< 0.0001
Test 6b	20.82	1	< 0.0001
Test 7a	68.35	3	< 0.0001
Test 7b	20.82	1	< 0.0001
Test 7c	-0.00162	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model $3. \,$

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	14976	14468.8
3	14976	14468.8
4	10557.7	9399.27
5	10529.7	9398.94

```
______
```

Exponential Model. (Version: 1.10; Date: 01/12/2015)
Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File:

Tue Jan 17 10:16:21 2017

BMDS Model Run

The form of the response function by Model:
 Model 2: Y[dose] = a * exp{sign * b * dose}
 Model 3: Y[dose] = a * exp{sign * (b * dose)^d}
 Model 4: Y[dose] = a * [c-(c-1) * exp{-b * dose}]
 Model 5: Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]

Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data;

sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4.

Model 3 is nested within Model 5. Model 4 is nested within Model 5.

Dependent variable = Calculated Median
Independent variable = Dose
Data are assumed to be distributed: lognormally
Variance Model: Log-scale variance = exp(lnalpha)
rho is set to 0.

A constant log-scale variance model is fit.

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

MLE solution provided: Approximate

Initial Parameter Values

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-7.65737	-7.65737	-7.65737	-7.65737
rho	0 *	0 *	0 *	0 *
a	5.3943	5.3943	4.91018	4.91018
b	6.3642e-006	6.3642e-006	3.6257e-006	3.6257e-006
C	0 *	0 *	4.67167	4.67167
d	1 *	1	1 *	1

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-6.17123	-6.17123	-6.51819	-6.51816
rho	0 *	0 *	0 *	0 *
a	5.3943	5.3943	5.27911	5.2783
b	6.3642e-006	6.3642e-006	3.68053e-008	8.96714e-008
С			258.398	106.958
d		1		1

- $\mbox{--}$ Indicates that this parameter does not appear in \mbox{model}
- * Indicates that this parameter has been specified

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
С	NA	NA	NA	NA
d	NA	NA	NA	NA

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Cal	c'd Median	Calc'd GSD
48	10		5.169	1.023
674	10		5.207	1.033
7132	10		5.779	1.023
2.164e+	004	10	6.669	1.017
6.543e+004		10	8.167 1.03	
1.207e+	005	10	11.47	1.011

Estimated Values of Interest

N	Model	Dose	Est Median	Est GSD	Scaled Residual
	2	48	5.396	1.047	-0.6868
		674	5.417	1.047	-0.6352
		7132	5.645	1.047	0.4041
	2.1	64e+004	6.191	1.047	1.445
	6.5	43e+004	8.18	1.047	-0.03923
	1.2	07e+005	11.63	1.047	-0.4755
	3	48	5.396	1.047	-0.6868
		674	5.417	1.047	-0.6352
		7132	5.645	1.047	0.4041
	2.1	64e+004	6.191	1.047	1.445
	6.5	43e+004	8.18	1.047	-0.03923
	1.2	07e+005	11.63	1.047	-0.4755
	4	48	5.282	1.039	-0.3436
		674	5.313	1.039	-0.3213
		7132	5.636	1.039	0.4345
	2.1	64e+004	6.361	1.039	0.938
	6.5	43e+004	8.547	1.039	-1.156
	1.2	07e+005	11.3	1.039	0.5132
	5	48	5.281	1.039	-0.3411
		674	5.312	1.039	-0.3191
		7132	5.636	1.039	0.4342
	2.1	64e+004	6.362	1.039	0.9332
	6.5	43e+004	8.55	1.039	-1.164
	1.2	07e+005	11.3	1.039	0.5232

Other models for which likelihoods are calculated:

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} \mbox{Var} \{ \mbox{e(ij)} \} \ = \mbox{Sigma^2}$

 $\label{eq:model A2: Yij = Mu(i) + e(ij)} \mbox{Var} \big\{ \mbox{e(ij)} \big\} \ = \mbox{Sigma(i)^2}$

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	199.7212	7	-385.4425
A2	206.2318	12	-388.4635
A3	199.7212	7	-385.4425
R	45.58656	2	-87.17312
2	155.1368	3	-304.2737
3	155.1368	3	-304.2737
4	165.5457	4	-323.0914
5	165.5449	4	-323.0898

Additive constant for all log-likelihoods = -55.14. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

```
Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
Test 2: Are Variances Homogeneous? (A2 vs. A1)
Test 3: Are variances adequately modeled? (A2 vs. A3)
Test 4: Does Model 2 fit the data? (A3 vs. 2)

Test 5a: Does Model 3 fit the data? (A3 vs. 3)
Test 5b: Is Model 3 better than Model 2? (3 vs. 2)

Test 6a: Does Model 4 fit the data? (A3 vs. 4)
Test 6b: Is Model 4 better than Model 2? (4 vs. 2)

Test 7a: Does Model 5 fit the data? (A3 vs. 5)
Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
Test 7c: Is Model 5 better than Model 4? (5 vs. 4)
```

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	321.3	10	< 0.0001
Test 2	13.02	5	0.02318
Test 3	13.02	5	0.02318
Test 4	89.17	4	< 0.0001
Test 5a	89.17	4	< 0.0001
Test 5b	-1.097e-011	0	N/A
Test 6a	68.35	3	< 0.0001
Test 6b	20.82	1	< 0.0001
Test 7a	68.35	3	< 0.0001
Test 7b	20.82	1	< 0.0001
Test 7c	-0.00162	0	N/A

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model.

The p-value for Test 3 is less than .1. You may want to consider a different variance model.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model $3. \,$

Degrees of freedom for Test 7c are less than or equal to 0. The Chi-Square test for fit is not valid.

Benchmark Dose Computations:

Specified Effect = 0.100000

Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	14976	14468.8
3	14976	14468.8
4	10557.7	9399.27
5	10529.7	9398.94

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Liver_Opt.plt Tue Jan 17 10:23:32 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose rho is set to 0

Signs of the polynomial coefficients are not restricted

A constant variance model is fit

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 0.0218

rho = 0 Specified

5.27814 beta_0 = $beta_1 = 5.01008e-005$

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

beta_1	beta_0	alpha	
3.5e-009	1.1e-008	1	alpha
-0.63	1	1.1e-008	beta_0
1	-0.63	3.5e-009	beta_1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.071057	0.0129732	0.04563	0.0964839
beta_0	5.27814	0.044431	5.19106	5.36523
beta_1	5.01008e-005	7.82158e-007	4.85678e-005	5.16338e-005

Table of Data and Estimated Values of Interest

Dose	N	ſ	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
		_					
48	10		5.17	5.28	0.12	0.267	-1.31
674	10		5.21	5.31	0.17	0.267	-1.21
7132	10		5.78	5.64	0.13	0.267	1.71
2.164e+0	004	10	6.67	6.36	0.11	0.267	3.65
6.543e+0	004	10	8.17	8.56	0.21	0.267	-4.58
1.207e+0	005	10	11.5	11.3	0.12	0.267	1.73

Model A1: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Yij = Mu(i) + e(ij)Model A2: $Var\{e(ij)\} = Sigma(i)^2$

Yij = Mu(i) + e(ij)Model A3:

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model Log(likelihood) # Param's AIC 7 87.936175 -161.872349 A1 91.367090 12 Α2 -158.734179 A3 87.936175 7 -161.872349 49.328205 fitted 3 -92.656411 R -77.861187 159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	77.2159	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 0.1

Risk Type Relative deviation

Confidence level = 0.95

> BMD = 10535

BMDL = 10160 BMDL computation failed for one or more point on the BMDL curve.

The BMDL curve will not be plotted

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Liver_Opt.(d)

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean

Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.82585

rho = 0 beta_0 = 5.27814

 $beta_1 = 5.01008e-005$

Asymptotic Correlation Matrix of Parameter Estimates

beta_1	beta_0	rho	lalpha	
-0.012	0.0077	-0.99	1	lalpha
0.013	-0.0081	1	-0.99	rho
-0.52	1	-0.0081	0.0077	beta_0
1	-0.52	0.013	-0.012	beta_1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-5.64988	1.60651	-8.79859	-2.50118
rho	1.53899	0.833581	-0.0948016	3.17278
beta_0	5.28442	0.0376651	5.21059	5.35824
beta_1	4.9922e-005	9.50874e-007	4.80583e-005	5.17857e-005

Table of Data and Estimated Values of Interest

Dose	1	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		5.17	5.29	0.12	0.214	-1.73
674	10		5.21	5.32	0.17	0.215	-1.59
7132	10		5.78	5.64	0.13	0.225	1.97
2.164e+	004	10	6.67	6.36	0.11	0.246	3.92
6.543e+	004	10	8.17	8.55	0.21	0.309	-3.89
1.207e+	005	10	11.5	11.3	0.12	0.383	1.33

 ${\tt Model\ Descriptions\ for\ likelihoods\ calculated}$

```
Model A1:
              Yij = Mu(i) + e(ij)
```

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Yij = Mu(i) + e(ij)Model A3:

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that

were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.959403	8	-159.918806
fitted	51.092424	4	-94.184848
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.81537	4	0.146
Test 4	73.734	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. Consider running a homogeneous model

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect =

Risk Type Relative deviation

Confidence level = 0.95

> 10585.3 RMD =

BMDL = 10175 $\ensuremath{\mathsf{BMDL}}$ computation failed for one or more point on the $\ensuremath{\mathsf{BMDL}}$ curve. The $\ensuremath{\mathsf{BMDL}}$ curve will not be plotted

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:32:45 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values alpha = 0.0218

rho = 0 Specified beta_0 = 5.33405

beta_1 = 4.32907e-005 beta_2 = 5.85061e-011

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1	beta_2
alpha	1	-4.9e-008-	-1.3e-0081.7e-	008 beta_0
-5e-008		1	-0.61	0.48
beta_1	-2.3e-008	-0.61	1	-0.97
beta 2	2e-008	0.48	-0.97	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0649369	0.0118558	0.0417	0.0881739
beta_0	5.33405	0.0485464	5.2389	5.4292
beta_1	4.32907e-005	2.95983e-006	3.74896e-005	4.90919e-005
beta_2	5.85061e-011	2.46034e-011	1.02843e-011	1.06728e-010

Table of Data and Estimated Values of Interest

Dose	N	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		5.17	5.34	0.12	0.255	-2.06
674	10		5.21	5.36	0.17	0.255	-1.9
7132	10		5.78	5.65	0.13	0.255	1.67
2.164e+0	004	10	6.67	6.3	0.11	0.255	4.61
6.543e+0	004	10	8.17	8.42	0.21	0.255	-3.06
1.207e+0	005	10	11.5	11.4	0.12	0.255	0.746

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Var{e(i)} = Mu + e(i)} \begin{tabular}{ll} Var & (i) & Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.936175	7	-161.872349
fitted	52.030162	4	-96.060325
R	-77.861187	2	159.722374

Explanation of Tests

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	71.812	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

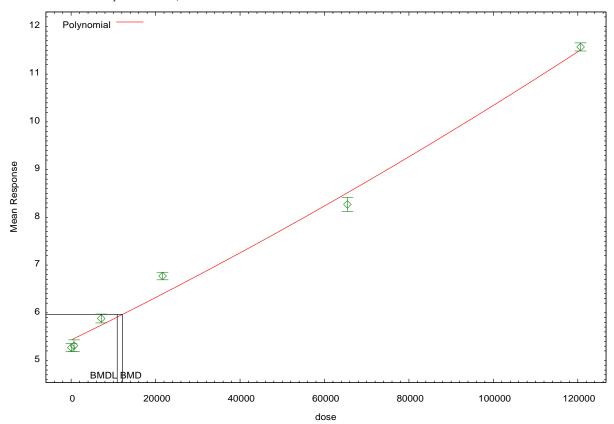
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 12122.8

BMDL = 10904.9

 ${\tt BMDL}$ computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:32 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:34:56 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 alpha = 0.0218
 rho = 0 Specified
 beta_0 = 5.16309
 beta_1 = 9.14981e-005
 beta_2 = -1.13601e-009
 beta_3 = 6.71994e-015

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1	beta_2	beta_3
alpha	1	-1.4e-006	-2.6e-007	-1.8e-006	-2.4e-006
beta_0	4.8e-010	1	-0.64	0.53	-0.48
beta_1	-6.7e-011	-0.64	1	-0.97	0.93
beta_2	-1.2e-011	0.53	-0.97	1	-0.99
beta_3	-7.8e-012	-0.48	0.93	-0.99	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0197337	0.00360286	0.0126722	0.0267951
beta_0	5.16309	0.030477	5.10335	5.22282
beta_1	9.14981e-005	4.42392e-006	8.28274e-005	0.000100169
beta_2	-1.13601e-009	1.02789e-010	-1.33747e-009	-9.34542e-010
beta_3	6.71994e-015	5.73204e-016	5.59649e-015	7.8434e-015

Table of Data and Estimated Values of Interest

Dose	N	Obs Me	ean Es	t Mean Obs	Std Dev Est	Std Dev	Scaled Res.
48	10	5.17	_	. 17	0.12	0.14	0.0568
			-				
674	10	5.21	5	. 22	0.17	0.14	-0.321
7132	10	5.78	5	.76	0.13	0.14	0.443
2.164e+0	004	10	6.67	6.68	0.11	0.14	-0.205
6.543e+0	004	10	8.17	8.17	0.21	0.14	0.0295
1.207e+0	005	10	11.5	11.5	0.12	0.14	-0.00361

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

were specified s₁ one user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	s AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.936175	7	-161.872349
fitted	87.762867	5	-165.525734
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	0.346615	2	0.8409

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

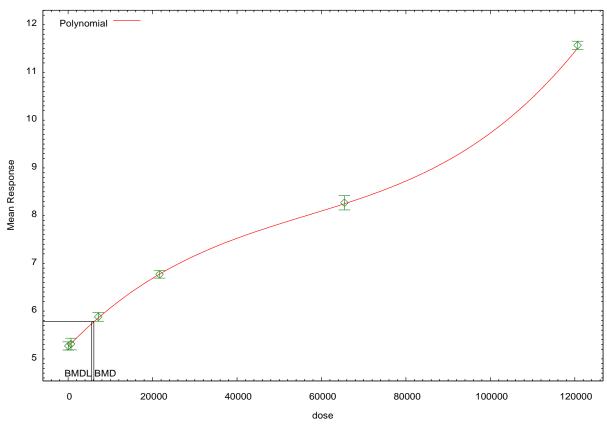
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 6086.17

BMDL = 5584.28

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:34 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:38:56 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.82585
 rho = 0
beta_0 = 5.33405
beta_1 = 4.32907e-005
beta_2 = 5.85061e-011

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1	beta_2
lalpha	1	-1	0.51	-0.7	0.7
rho	-1	1	-0.51	0.7	-0.7
beta_0	0.51	-0.51	1	-0.76	0.68
beta_1	-0.7	0.7	-0.76	1	-0.99
beta_2	0.7	-0.7	0.68	-0.99	1

Parameter Estimates

			05 00 11 6	
			95.0% Wald Confi	
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	0.551001	2.23604	-3.83156	4.93356
rho	-1.7275	1.15931	-3.99971	0.544715
beta_0	5.38067	0.0655846	5.25213	5.50922
beta_1	3.86764e-005	3.8435e-006	3.11433e-005	4.62095e-005
beta_2	9.6248e-011	2.99501e-011	3.75468e-011	1.54949e-010

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

48	10		5.17	5.38	0.12	0.308	-2.18
674	10		5.21	5.41	0.17	0.307	-2.03
7132	10		5.78	5.66	0.13	0.295	1.27
2.164e+	004	10	6.67	6.26	0.11	0.27	4.77
6.543e+	004	10	8.17	8.32	0.21	0.211	-2.29
1.207e+	005	10	11.5	11.4	0.12	0.16	0.409

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $\label{eq:Var} Var\big\{e(\text{ij})\big\} = \exp(\text{lalpha} + \text{rho*ln}(\text{Mu(i)}))$ Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Yi = Mu + e(i)} $$ Var\{e(i)\} = Sigma^2$$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.959403	8	-159.918806
fitted	52.767002	5	-95.534004
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.81537	4	0.146
Test 4	70.3848	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. Consider running a homogeneous model $\,$

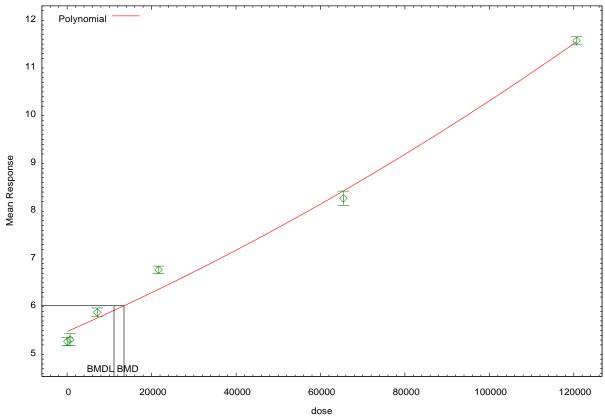
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 13461.1

BMDL = 11093.4

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:38 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:40:56 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.82585
 rho = 0
beta_0 = 5.16309
beta_1 = 9.14981e-005
beta_2 = -1.13601e-009
beta_3 = 6.71994e-015

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1	beta_2	beta_3
lalpha	1	-0.99	0.014	-0.013	0.0081	-0.0056
rho	-0.99	1	-0.014	0.013	-0.008	0.0054
beta_0	0.014	-0.014	1	-0.64	0.53	-0.47
beta_1	-0.013	0.013	-0.64	1	-0.97	0.93
beta_2	0.0081	-0.008	0.53	-0.97	1	-0.99
beta_3	-0.0056	0.0054	-0.47	0.93	-0.99	1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-4.19139	1.36174	-6.86035	-1.52243
rho	0.138596	0.704933	-1.24305	1.52024
beta_0	5.16301	0.0299484	5.10431	5.2217
beta_1	9.15089e-005	4.39336e-006	8.2898e-005	0.00010012
beta_2	-1.13617e-009	1.02431e-010	-1.33693e-009	-9.35408e-010
beta_3	6.72059e-015	5.72518e-016	5.59848e-015	7.84271e-015

Table of Data and Estimated Values of Interest

Dose	1	N.	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		5.17	5.17	0.12	0.138	0.0597
674	10		5.21	5.22	0.17	0.138	-0.325
7132	10		5.78	5.76	0.13	0.139	0.449
2.164e+	004	10	6.67	6.68	0.11	0.14	-0.207
6.543e+	004	10	8.17	8.17	0.21	0.142	0.0269
1.207e+	005	10	11.5	11.5	0.12	0.146	-0.00274

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$ Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Vi = Mu + e(i)} \begin{tabular}{ll} $\text{Var}\{e(i)\}$ = Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.959403	8	-159.918806
fitted	87.782326	6	-163.564652
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.81537	4	0.146
Test 4	0.354155	2	0.8377

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. Consider running a homogeneous model

The p-value for Test 3 is greater than .1. The modeled variance appears

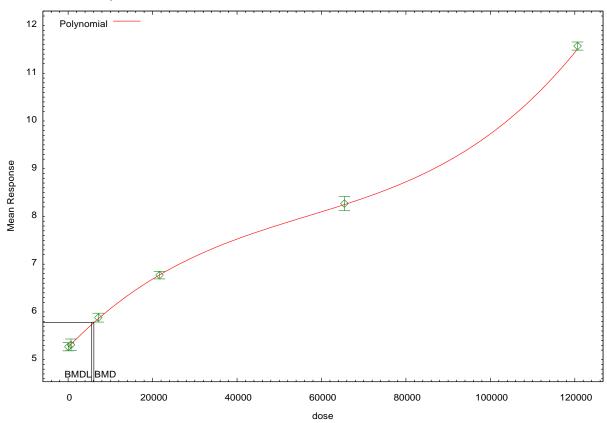
to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 6085.31

BMDL = 5586.74

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:40 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:46:09 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
The power is restricted to be greater than or equal to 1
A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 alpha = 0.0218
 rho = 0 Specified
 control = 5.17

slope = 9.52033e-005 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

power	slope	control	alpha	
-1.3e-008	1.2e-008	-3.6e-008	1	alpha
0.66	-0.67	1	-3.6e-008	control
-1	1	-0.67	1.2e-008	slope
1	-1	0.66	-1.3e-008	power

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0707776	0.0129222	0.0454506	0.0961046
control	5.29707	0.0587205	5.18198	5.41216
slope	3.84483e-005	2.11856e-005	-3.07477e-006	7.99713e-005
power	1.02262	0.0470562	0.930389	1.11485

Table of Data and Estimated Values of Interest

Dose	N	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		5.17	5.3	0.12	0.266	-1.53
674	10		5.21	5.33	0.17	0.266	-1.39
7132	10		5.78	5.63	0.13	0.266	1.76
2.164e+	004	10	6.67	6.34	0.11	0.266	3.93
6.543e+	004	10	8.17	8.53	0.21	0.266	-4.27
1.207e+	005	10	11.5	11.3	0.12	0.266	1.52

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Var{e(i)} = Mu + e(i)} \begin{tabular}{ll} Var & (i) & Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.936175	7	-161.872349
fitted	49.446384	4	-90.892769
R	-77.861187	2	159.722374

Explanation of Tests

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	76.9796	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

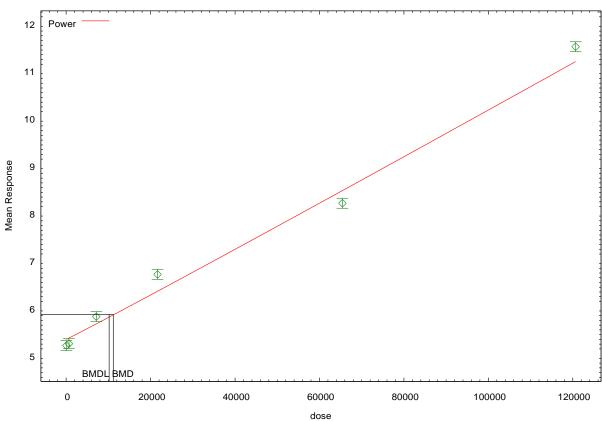
The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 11158.7

BMDL = 10176.7

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:46 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:48:17 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean

Independent variable = Dose

The power is restricted to be greater than or equal to 1

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.82585 rho = 0 control = 5.17 slope = 9.52033e-005 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -power

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	lalpha	rho	control	slope
lalpha	1	-0.99	-0.0058	0.00019
rho	-0.99	1	0.0021	-0.00081
control	-0.0058	0.0021	1	-0.53
slope	0.00019	-0.00081	-0.53	1

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-5.64988	1.60643	-8.79842	-2.50135
rho	1.53899	0.833514	-0.0946689	3.17265
control	5.28442	0.0377331	5.21046	5.35837
slope	4.9922e-005	9.53887e-007	4.80524e-005	5.17916e-005
nower	1	NΔ		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	N		Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
		_					
48	10		5.17	5.29	0.12	0.214	-1.73
674	10		5.21	5.32	0.17	0.215	-1.59
7132	10		5.78	5.64	0.13	0.225	1.97
2.164e+	004	10	6.67	6.36	0.1	0.246	3.92
6.543e+	004	10	8.17	8.55	0.2	1 0.309	-3.89
1.207e+	005	10	11.5	11.3	0.1	2 0.383	1.33

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.959403	8	-159.918806
fitted	51.092424	4	-94.184848
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.81537	4	0.146
Test 4	73.734	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

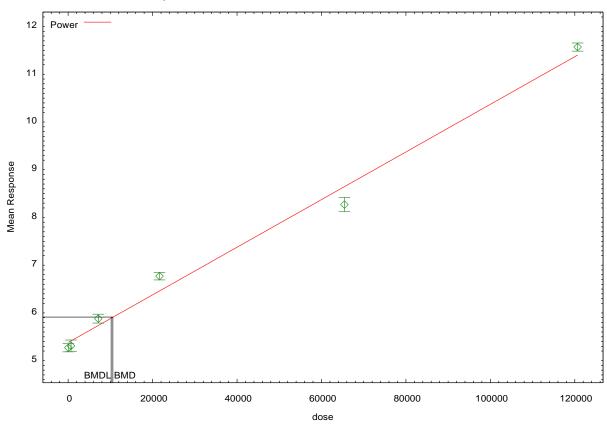
The p-value for Test 2 is greater than .1. Consider running a homogeneous model $\,$

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 10585.3

BMDL = 10175

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:48 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:49:49 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values alpha = 0.0218

rho = 0 Specified control = 5.17

slope = 9.52033e-005 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

power	slope	control	alpha	
2.3e-007	-2.3e-007	5e-007	1	alpha
0.66	-0.67	1	5e-007	control
-1	1	-0.67	-2.3e-007	slope
1	-1	0.66	2.3e-007	power

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
alpha	0.0707775	0.0129221	0.0454506	0.0961045	
control	5.29707	0.0587209	5.18198	5.41216	
slope	3.84483e-005	2.11859e-005	-3.07534e-006	7.99718e-005	
power	1.02262	0.0470569	0.930387	1.11485	

Table of Data and Estimated Values of Interest

Dose	1	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		5.17	5.3	0.12	0.266	-1.53
674	10		5.21	5.33	0.17	0.266	-1.39
7132	10		5.78	5.63	0.13	0.266	1.76
2.164e+	004	10	6.67	6.34	0.11	0.266	3.93
6.543e+	004	10	8.17	8.53	0.21	0.266	-4.27
1.207e+	005	10	11.5	11.3	0.12	0.266	1.52

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Var e(i)} \begin{array}{ll} \text{Model } R: & \text{Yi = Mu + e(i)} \\ & \text{Var}\{e(i)\} = \text{Sigma^2} \end{array}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.936175	7	-161.872349
fitted	49.446384	4	-90.892769
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.86183	5	0.2311
Test 4	76.9796	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

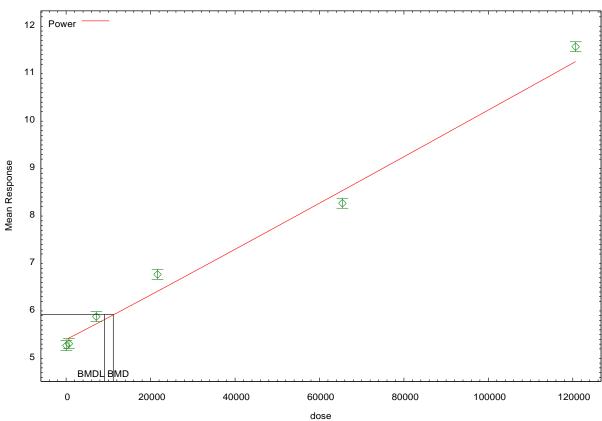
The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 11158.7

BMDL = 9085.95

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:49 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Liver_Opt.plt
Tue Jan 17 10:51:09 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose The power is not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.82585
 rho = 0
control = 5.17
 slope = 9.52033e-005
 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	control	slope	power
lalpha	1	-0.99	0.21	-0.47	0.48
rho	-0.99	1	-0.22	0.47	-0.49
control	0.21	-0.22	1	-0.65	0.63
slope	-0.47	0.47	-0.65	1	-1
power	0.48	-0.49	0.63	-1	1

Parameter Estimates

		95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-11.5554	1.49838	-14.4921	-8.61861
rho	4.50298	0.780027	2.97416	6.03181
control	5.15831	0.0331157	5.0934	5.22321
slope	0.00042575	0.000166971	9.84923e-005	0.000753007
power	0.81289	0.0349903	0.74431	0.88147

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

48	10		5.17	5.17	0.12	0.125	0.0452
674	10		5.21	5.24	0.17	0.129	-0.812
7132	10		5.78	5.74	0.13	0.158	0.889
2.164e+	004	10	6.67	6.58	0.11	0.215	1.3
6.543e+	004	10	8.17	8.66	0.21	0.399	-3.85
1.207e+	005	10	11.5	10.9	0.12	0.672	2.63

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: War} \begin{array}{ll} \mbox{Model R:} & \mbox{Yi = Mu + e(i)} \\ \mbox{Var} \big\{ \mbox{e(i)} \big\} & \mbox{sigma^2} \end{array}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	87.936175	7	-161.872349
A2	91.367090	12	-158.734179
A3	87.959403	8	-159.918806
fitted	58.223539	5	-106.447077
R	-77.861187	2	159.722374

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	338.457	10	<.0001
Test 2	6.86183	5	0.2311
Test 3	6.81537	4	0.146
Test 4	59.4717	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

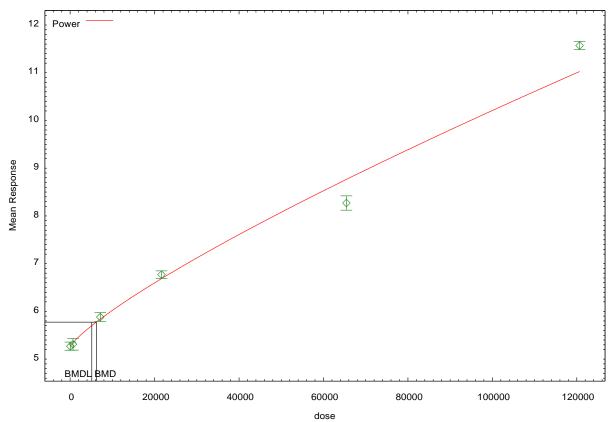
The p-value for Test 2 is greater than .1. Consider running a homogeneous model $\,$

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 6209.76

BMDL = 5121.93

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:51 01/17 2017

Dong *et al.* (2009) Benchmark Dose Analysis - Plaque Forming Cell Response $\mathbf{BMR} = \mathbf{1} \mathbf{SD}$

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi-square <i>p</i> -value	AIC	BMD (ng/mL)	BMDL (ng/mL)
	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	-	-	-	-
	Exponential ^a	Not Constant	Restrict Power ≥ 1	Normal	-	-	-	-	-
	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
	Exponential ^a	Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
2-4	Hill	Constant (Rho=0)	Restrict n > 1	-	-	< 0.0001	531.04	1722.11	1251.23
5-7	Hill	Constant (Rho=0)	No Restriction	-	-	0.0066	519.29	27.27	3.17
8-10	Linear	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.90
11-13	Linear	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.50
14-16	Polynomial	Constant (Rho=0)	-	-	1st	< 0.0001	594.31	25147.70	21038.90
17-19	Polynomial	Constant (Rho=0)	-	-	2nd	< 0.0001	572.70	9628.70	7761.42
20-22	Polynomial	Constant (Rho=0)	-	-	3rd	0.0006	524.01	2440.00	2028.48
23-25	Polynomial	Not Constant	-	-	1st	< 0.0001	566.19	39674.70	32215.50
26-28	Polynomial	Not Constant	-	-	2nd	< 0.0001	547.78	19843.10	15292.70
29-31	Polynomial	Not Constant	-	-	3rd	0.0037	498.09	3650.90	2884.27
32-34	Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	594.31	25147.60	21038.90
35-37	Power	Not Constant	Restrict Power ≥ 1	-	-	< 0.0001	566.19	39674.70	32215.50
38-40	Power	Constant (Rho=0)	No Power Restriction	-	-	0.0196	517.12	4.20	0.11
41-43	Power	Not Constant	No Power Restriction	-	-	< 0.0001	507.30	59.08	3.08

c. Scaled residuals for one or more doses/serum concentrations for each of the four exponential models were > |2|. The fit was inadequate for benchmark does modeling, and the model failed to calculate BMD and BMDL.

Hill Model. (Version: 2.17; Date: 01/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_Opt.plt

Mon May 16 14:28:20 2016

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean Independent variable = Dose

rho is set to 0

Power parameter restricted to be greater than 1 A constant variance model is fit

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1679.17

0 597 -460 rho = Specified intercept = v =

n = 0.78290113774.9 k =

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

k	v	intercept	alpha	
4.5e-008	-6e-008	2.9e-008	1	alpha
-0.54	-0.27	1	2.9e-008	intercept
-0.54	1	-0.27	-6e-008	v
1	-0.54	-0.54	4.5e-008	k

Parameter Estimates

			95.0% Wald Confidence Interval				
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit			
alpha	2247.04	410.251	1442.96	3051.11			
intercept	576.607	11.8091	553.462	599.753			
V	-451.743	20.7845	-492.48	-411.006			
n	1	NA					
k	14689.4	2943.87	8919.51	20459.3			

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose]	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
	-						
48	10		597	575	64	47.4	1.46
674	10		538	557	52	47.4	-1.25
7132	10		416	429	43	47.4	-0.865
2.164e+	004	10	309	308	27	47.4	0.0979
6.543e+	004	10	253	208	21	47.4	3.02
1.207e+	005	10	137	174	16	47.4	-2.46

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-261.521002	4	531.042004
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When ${\tt rho=0}$ the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	23.8005	3	<.0001

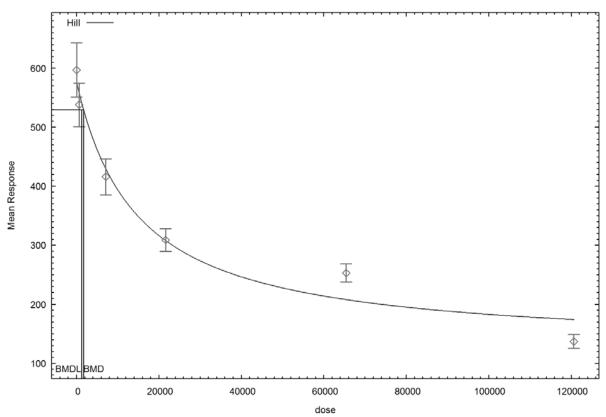
The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. Consider running a $non-homogeneous\ variance\ model$

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation


Specified effect = 1

Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 1722.11 BMDL = 1251.23

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:28 05/16 2016

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean Independent variable = Dose rho is set to 0 Power parameter is not restricted A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 alpha = 1679.17
 rho = 0 Specified
intercept = 597
 v = -460
 n = 0.782901
 k = 13774.9

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	intercept	V	n	k
alpha	1	-0.032	0.042	0.04	-0.042
intercept	-0.032	1	-0.77	-0.9	0.78
v	0.042	-0.77	1	0.95	-1
n	0.04	-0.9	0.95	1	-0.96
k	-0.042	0.78	-1	-0.96	1

Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	1789.53	327.523	1147.6	2431.47
intercept	649.477	40.7811	569.548	729.407
v	-1819.52	2132.62	-5999.39	2360.34
n	0.328658	0.119732	0.0939867	0.563329
k	2.3719e+006	1.33946e+007	-2.3881e+007	2.86248e+007

Table of Data and Estimated Values of Interest

Dose	1	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	599	64	42.3	-0.133
674	10		538	533	52	42.3	0.363
7132	10		416	414	43	42.3	0.114
2.164e+0	004	10	309	329	27	42.3	-1.51
6.543e+0	004	10	253	222	21	42.3	2.33
1.207e+0	005	10	137	153	16	42.3	-1.16

Yij = Mu(i) + e(ij)Model A1:

 $Var\{e(ij)\} = Sigma^2$

 $\label{eq:condition} \begin{array}{lll} \mbox{Yij} &=& \mbox{Mu(i)} + \mbox{e(ij)} \\ \mbox{Var}\{\mbox{e(ij)}\} &=& \mbox{Sigma(i)}^2 \end{array}$ Model A2:

 $\label{eq:Yij = Mu(i) + e(ij)} $$ Var\{e(ij)\} = Sigma^2$$ Model A3:

Model A3 uses any fixed variance parameters that were specified by the user

Yi = Mu + e(i)Model R: $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-254.644604	5	519.289207
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

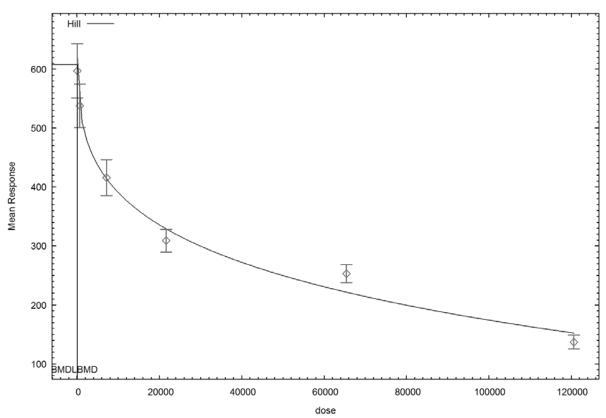
Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	10.0477	2	0.006579

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$


Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95 BMD = 27.2712 BMDL = 3.16641

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:30 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.plt

Mon May 16 14:35:11 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0

Signs of the polynomial coefficients are not restricted $\ensuremath{\mathtt{A}}$ constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 alpha = 1
 rho = 0 Specified
 beta_0 = 491.678
 beta_1 = -0.00324724

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1
alpha	1	2e-007	2e-008
beta_0	2e-007	1	-0.63
beta_1	1.9e-008	-0.63	1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	6668.43	1217.48	4282.21	9054.66
beta_0	491.678	13.6112	465	518.355
beta_1	-0.00324724	0.000239609	-0.00371687	-0.00277762

Table of Data and Estimated Values of Interest

Dose	N	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
4.0	1.0		505	400	<i>C</i> 4	01 5	4 00
48	10		597	492	64	81.7	4.08
674	10		538	489	52	81.7	1.88
7132	10		416	469	43	81.7	-2.03
2.164e+	004	10	309	421	27	81.7	-4.35
6.543e+	004	10	253	279	21	81.7	-1.02
1.207e+	005	10	137	99.8	16	81.7	1.44

 ${\tt Model\ Descriptions\ for\ likelihoods\ calculated}$

```
Model A1: Yij = Mu(i) + e(ij)
```

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that

were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-294.154191	3	594.308383
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	3 25.8777	5	<.0001
Test 4	89.0668	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

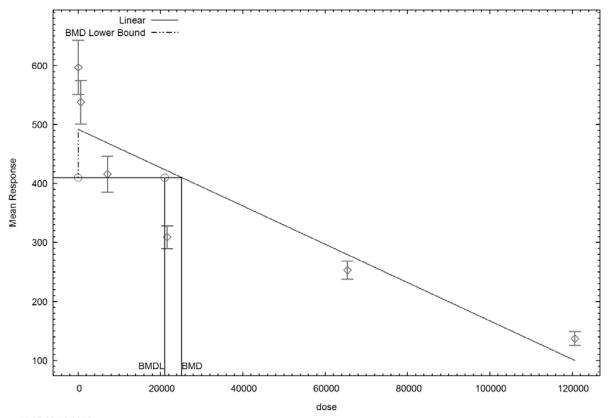
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 25147.7

BMDL =

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:35 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_Opt.plt

Mon May 16 14:37:47 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.42605
 rho = 0
beta_0 = 491.678
beta_1 = -0.00324724

Asymptotic Correlation Matrix of Parameter Estimates

beta_1	beta_0	rho	lalpha	
-0.27	0.25	-1	1	lalpha
0.27	-0.25	1	-1	rho
-0.96	1	-0.25	0.25	beta_0
1	-0.96	0.27	-0.27	beta_1

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-10.8803	2.36936	-15.5241	-6.23639
rho	3.29819	0.406286	2.50188	4.09449
beta_0	459.997	15.5146	429.589	490.405
beta_1	-0.00269154	0.0001381	-0.00296221	-0.00242087

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	460	64	107	4.06
674	10	538	458	52	106	2.38

7132	10		416	441	43	99.5	-0.788
2.164e+	004	10	309	402	27	85.4	-3.43
6.543e+	004	10	253	284	21	48.2	-2.03
1.207e+	0.05	10	137	135	16	14.2	0.4

Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Yij = Mu(i) + e(ij)Model A2:

 $Var\{e(ij)\} = Sigma(i)^2$

Yij = Mu(i) + e(ij)Model A3:

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$ Model A3 uses any fixed variance parameters that

were specified by the user

Model R: Yi = Mu + e(i)

 $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-237.453463	8	490.906925
fitted	-279.094501	4	566.189001
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	1.54306	4	0.819
Test 4	83.2821	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

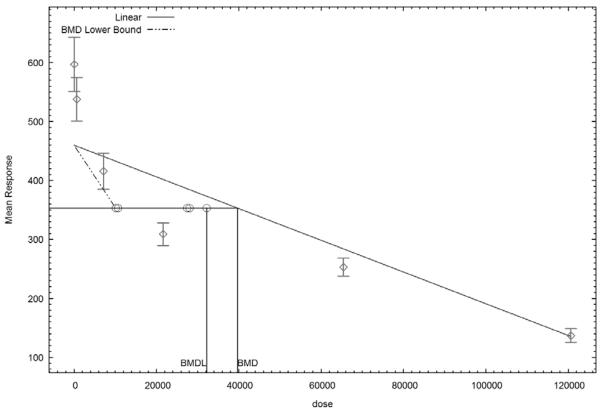
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 39674.7

BMDL = 32215.5

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:37 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt
Mon May 16 14:42:08 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 alpha = 1
 rho = 0 Specified
 beta_0 = 491.678
 beta_1 = -0.00324724

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1
alpha	1	2e-007	2e-008
beta_0	2e-007	1	-0.63
beta_1	1.9e-008	-0.63	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	6668.43	1217.48	4282.21	9054.66
beta_0	491.678	13.6112	465	518.355
beta_1	-0.00324724	0.000239609	-0.00371687	-0.00277762

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	492	64	81.7	4.08
674	10	538	489	52	81.7	1.88

7132 1	0	416	469	43	81.7	-2.03
2.164e+004	10	309	421	27	81.7	-4.35
6.543e+004	10	253	279	21	81.7	-1.02
1.207e+005	10	137	99.8	16	81.7	1.44

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user $\,$

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-294.154191	3	594.308383
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	89.0668	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

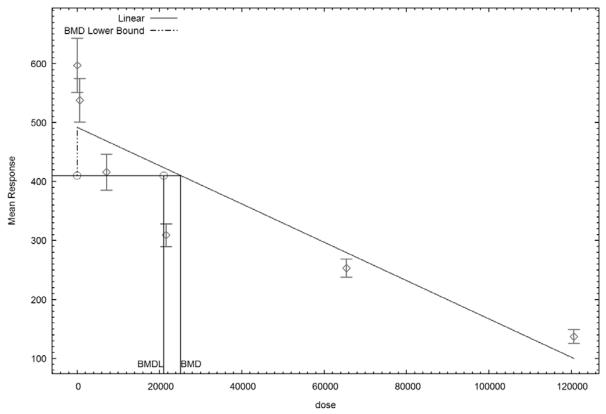
The p-value for Test 2 is less than .1. Consider running a $non-homogeneous\ variance\ model$

The p-value for Test 3 is less than .1. You may want to consider a different variance model $\,$

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 25147.7

BMDL = 21038.9

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:42 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d)

Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt

Mon May 16 14:44:10 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose rho is set to 0

Signs of the polynomial coefficients are not restricted

A constant variance model is fit

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha =

rho = 0 Specified 524.96

beta_0 = 52 beta_1 = -0.00730166 beta_2 = 3.48318e-008

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1	beta_2
alpha	1	-1.4e-008	-1.7e-008	-5.2e-010
beta_0	-2e-008	1	-0.61	0.48
beta_1	-3.9e-009	-0.61	1	-0.97
beta 2	-7e-010	0.48	-0.97	1

Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	4499.22	821.443	2889.22	6109.21
beta_0	524.96	12.7785	499.915	550.005
beta_1	-0.00730166	0.000779093	-0.00882866	-0.00577467
heta 2	3 48318e-008	6 47615e-009	2 21388e-008	4 75249e-008

Table of Data and Estimated Values of Interest

Dose	N	I	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
		-					
48	10		597	525	64	67.1	3.41
674	10		538	520	52	67.1	0.846
7132	10		416	475	43	67.1	-2.77
2.164e+0	004	10	309	383	27	67.1	-3.5
6.543e+0	004	10	253	196	21	67.1	2.67
1.207e+0	005	10	137	151	16	67.1	-0.663

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

 $Var\{e(ij)\} = Sigma 2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user $\,$

 $\label{eq:model_R: Vi = Mu + e(i)} \begin{tabular}{ll} $\text{Var}\{e(i)\}$ = Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-282.349691	4	572.699381
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	65.4578	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

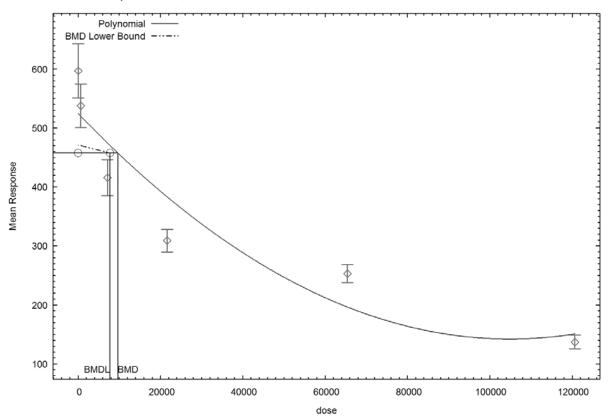
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model $\,$

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 9628.7

BMDL = 7761.42

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:44 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt

Mon May 16 14:47:00 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1
 rho = 0 Specified
beta_0 = 565.695
beta_1 = -0.0187881

beta_1 = -0.0187881 beta_2 = 3.1945e-007 beta_3 = -1.60117e-012

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1	beta_2	beta_3
alpha	1	-5.3e-007	1.9e-007	-4.2e-008	-9.7e-008
beta_0	-5.3e-007	1	-0.64	0.53	-0.48
beta_1	1.9e-007	-0.64	1	-0.97	0.93
beta_2	-4.6e-008	0.53	-0.97	1	-0.99
beta_3	-9.4e-008	-0.48	0.93	-0.99	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.		Upper Conf. Limit
alpha	1932.86	352.89	1241.21	2624.52
beta_0	565.695	9.53824	547	584.389
beta_1	-0.0187881	0.00138454	-0.0215017	-0.0160745
beta_2	3.1945e-007	3.21695e-008	2.56399e-007	3.82501e-007
beta_3	-1.60117e-012	1.79393e-013	-1.95278e-012	-1.24957e-012

Table of Data and Estimated Values of Interest

Dose	N	1	Obs Mean	Est Mean	Obs Std Dev E	st Std Dev	Scaled Res.
48	10		597	565	64	44	2.32
674	10		538	553	52	44	-1.09
7132	10		416	447	43	44	-2.26
2.164e+	004	10	309	293	27	44	1.19
6.543e+	004	10	253	255	21	44	-0.177
1.207e+	005	10	137	137	16	44	0.0219

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-257.002766	5	524.005532
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	14.764	2	0.0006224

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

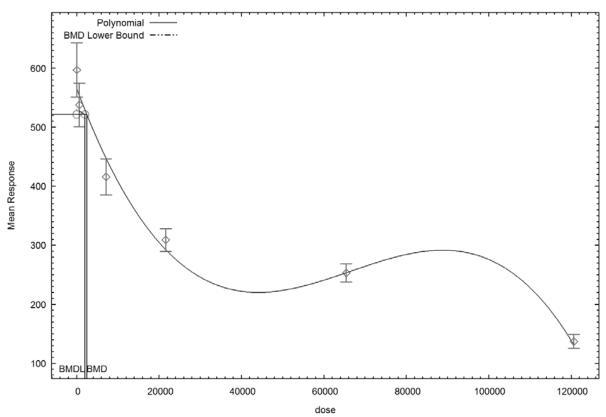
The p-value for Test 2 is less than .1. Consider running a $non-homogeneous\ variance\ model$

The p-value for Test 3 is less than .1. You may want to consider a different variance $\ensuremath{\mathsf{model}}$

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 2440

BMDL = 2028.48

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:47 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt

Mon May 16 15:14:33 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.42605
 rho = 0
beta_0 = 491.678
beta_1 = -0.00324724

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1
lalpha	1	-1	0.25	-0.27
rho	-1	1	-0.25	0.27
beta_0	0.25	-0.25	1	-0.96
beta_1	-0.27	0.27	-0.96	1

Parameter Estimates

		95.0% Wald Confi	5.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
lalpha	-10.8803	2.36936	-15.5241	-6.23639	
rho	3.29819	0.406286	2.50188	4.09449	
beta_0	459.997	15.5146	429.589	490.405	
beta_1	-0.00269154	0.0001381	-0.00296221	-0.00242087	

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	460	64	107	4.06
674	10	538	458	52	106	2.38

7132 10		416	441	43	99.5	-0.788
2.164e+004	10	309	402	27	85.4	-3.43
6.543e+004	10	253	284	21	48.2	-2.03
1.207e+005	10	137	135	16	14.2	0.4

Model A1: Yij = Mu(i) + e(ij)

 $Var{e(ij)} = Sigma^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that

were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-237.453463	8	490.906925
fitted	-279.094501	4	566.189001
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	1.54306	4	0.819
Test 4	83.2821	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

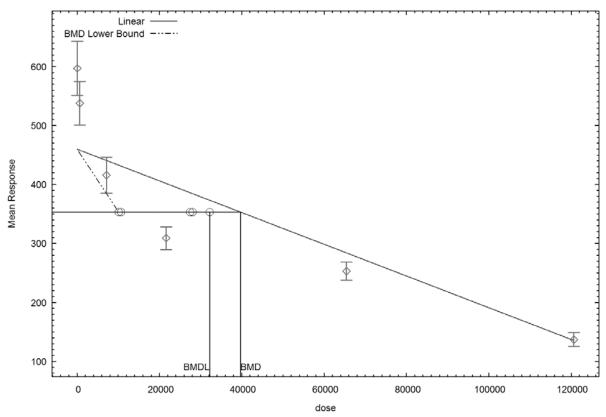
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 39674.7

BMDL = 32215.5

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:14 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt Mon May 16 15:15:56 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean

Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.42605 rho = 0

beta_0 = 524.96 beta_1 = -0.00730166 524.96

 $beta_2 = 3.48318e-008$

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1	beta_2
lalpha	1	-1	0.23	-0.35	0.37
rho	-1	1	-0.23	0.35	-0.36
beta_0	0.23	-0.23	1	-0.81	0.69
beta_1	-0.35	0.35	-0.81	1	-0.98
beta_2	0.37	-0.36	0.69	-0.98	1

Parameter Estimates

			idence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
lalpha	-9.16857	2.40287	-13.8781	-4.45904	
rho	2.94198	0.410824	2.13678	3.74718	
beta_0	498.965	16.7818	466.073	531.856	
beta_1	-0.00514312	0.000580806	-0.00628148	-0.00400477	
beta 2	1.78211e-008	3.99255e-009	9.99583e-009	2.56463e-008	

Table of Data and Estimated Values of Interest

Est Mean Obs Std Dev Est Std Dev Scaled Res. Dose N Obs Mean

48	10		597	499	64	95	3.27
674	10		538	496	52	94.1	1.43
7132	10		416	463	43	85.2	-1.75
2.164e+	004	10	309	396	5 27	67.7	-4.07
6.543e+	004	10	253	239	21	32.1	1.4
1.207e+	005	10	137	138	3 16	14.3	-0.186

Model A1: Yij = Mu(i) + e(ij)

 $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i

 $\label{eq:Yi} \begin{array}{lll} \text{Yi} &=& \text{Mu} + \text{e(i)} \\ \text{Var}\{\text{e(i)}\} &=& \text{Sigma^2} \end{array}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-237.453463	8	490.906925
fitted	-268.888044	5	547.776088
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	1.54306	4	0.819
Test 4	62.8692	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

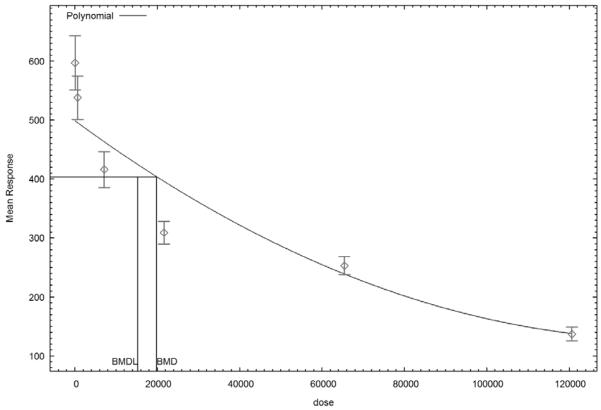
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean


Confidence level = 0.95

BMD = 19843.1

BMDL = 15292.7

 ${\tt BMDL}$ computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:15 05/16 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_Opt.plt

Mon May 16 15:21:26 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.42605
 rho = 0
beta_0 = 565.695
beta_1 = -0.0187881
beta_2 = 3.1945e-007

 $beta_3 = -1.60117e-012$

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1	beta_2	beta_3
lalpha	1	-1	0.063	-0.11	0.11	-0.1
rho	-1	1	-0.06	0.1	-0.11	0.1
beta_0	0.063	-0.06	1	-0.78	0.68	-0.63
beta_1	-0.11	0.1	-0.78	1	-0.98	0.95
beta_2	0.11	-0.11	0.68	-0.98	1	-0.99
beta 3	-0.1	0.1	-0.63	0.95	-0.99	1

Parameter Estimates

			95.0% Wald Confi	dence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-5.44423	1.99353	-9.35147	-1.53699
rho	2.15673	0.341106	1.48818	2.82529
beta_0	559.962	12.3896	535.678	584.245
beta_1	-0.0176032	0.00127633	-0.0201047	-0.0151016
beta_2	2.92455e-007	2.69672e-008	2.396e-007	3.4531e-007
beta_3 -	1.45517e-012 1.43294e	e-013 -1.73602e-0	12 -1.17432e-012	

Table of Data and Estimated Values of Interest

Dose	1	V	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	559	64	60.3	1.99
674	10		538	548	52	59.1	-0.548
7132	10		416	449	43	47.6	-2.18
2.164e+0	004	10	309	301	27	31	0.791
6.543e+0	004	10	253	253	21	. 25.6	0.0503
1.207e+0	005	10	137	137	16	13.3	-0.0955

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} $$ Var{e(ij)} = Sigma^2$$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Vi = Mu + e(i)} \begin{tabular}{ll} $\text{Var}\{e(i)\}$ = Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-237.453463	8	490.906925
fitted	-243.046806	6	498.093612
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	1.54306	4	0.819
Test 4	11.1867	2	0.003723

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears

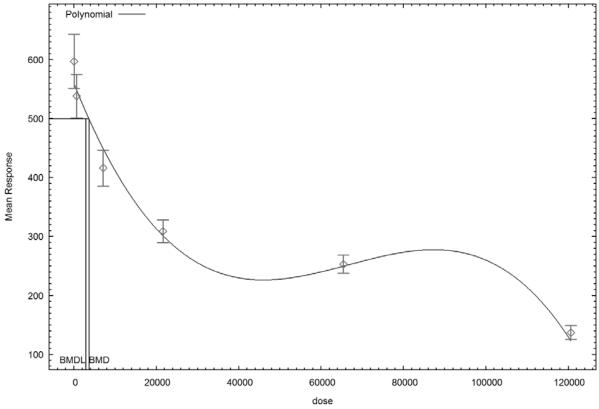
to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect =

Risk Type = Estimated standard deviations from the control mean


Confidence level = 0.95

BMD = 3650.9

BMDL = 2884.27

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:21 05/16 2016

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt

Mon May 16 15:23:45 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
The power is restricted to be great

The power is restricted to be greater than or equal to 1 A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1679.17
 rho = 0 Specified
control = 597
 slope = -10810.9
 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho -power
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

slope	control	alpha	
-5.5e-007	6.6e-007	1	alpha
-0.63	1	6.6e-007	control
1	-0.63	-5.5e-007	slope

Parameter Estimates

			95.0% Wald Confidence Interval			
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
alpha	6668.43	1217.48	4282.21	9054.65		
control	491.678	13.6111	465	518.355		
slope	-0.00324724	0.000239609	-0.00371687	-0.00277762		
power	1	NA				

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	1	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	492	64	81.7	4.08
674	10		538	489	52	81.7	1.88
7132	10		416	469	43	81.7	-2.03
2.164e+	004	10	309	421	27	81.7	-4.35
6.543e+	004	10	253	279	21	81.7	-1.02
1.207e+	005	10	137	99.8	16	81.7	1.44

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} $$ Var{e(ij)} = Sigma^2$$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-294.154191	3	594.308383
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	89.0668	4	< .0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

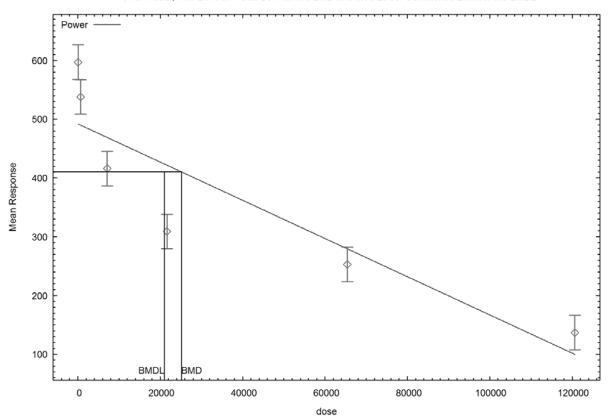
The p-value for Test 3 is less than .1. You may want to consider a

different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 25147.6

BMDL = 21038.9

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:23 05/16 2016

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt

Mon May 16 15:25:13 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean

Independent variable = Dose

The power is restricted to be greater than or equal to 1

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.42605 rho = 0 control = 597 slope = -10810.9 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -power

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	lalpha	rho	control	slope
lalpha	1	-1	0.45	-0.52
rho	-1	1	-0.48	0.54
control	0.45	-0.48	1	-0.97
slope	-0.52	0.54	-0.97	1

Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-10.8803	2.72652	-16.2241	-5.53638
rho	3.29819	0.473361	2.37042	4.22596
control	459.997	16.0757	428.489	491.505
slope	-0.00269154	0.000143549	-0.00297289	-0.00241019
power	1	NA		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose]	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
	-						
48	10		597	460	64	107	4.06
674	10		538	458	52	106	2.38
7132	10		416	441	43	99.5	-0.788
2.164e+	004	10	309	402	27	85.4	-3.43
6.543e+	004	10	253	284	21	48.2	-2.03
1.207e+	005	10	137	135	16	14.2	0.4

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-237.453463	8	490.906925
fitted	-279.094501	4	566.189001
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	1.54306	4	0.819
Test 4	83.2821	4	< .0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

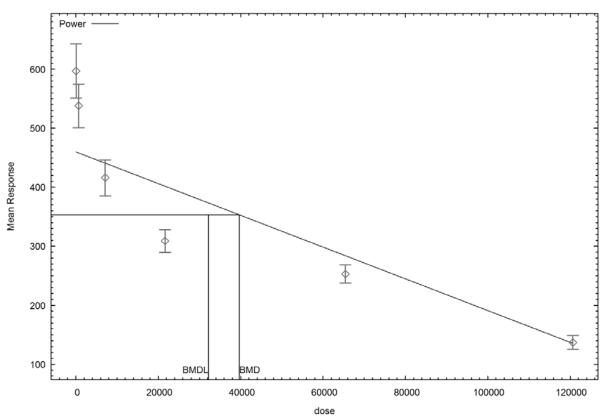
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 39674.7

BMDL = 32215.5

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:25 05/16 2016

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt

Mon May 16 15:26:35 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit

Total number of dose groups = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1679.17
 rho = 0 Specified
control = 597
 slope = -4.9279
 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

power	slope	control	alpha	
2.2e-008	2.4e-008	-2.9e-008	1	alpha
-0.94	-0.96	1	-2.9e-008	control
1	1	-0.96	2.4e-008	slope
1	1	-0.94	2.2e-008	power

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
alpha	1781.78	325.307	1144.19	2419.37	
control	677.226	34.7472	609.123	745.33	
slope	-29.6574	13.7892	-56.6837	-2.63106	
power	0.245967	0.0353409	0.1767	0.315234	

Table of Data and Estimated Values of Interest

Dose	N	Obs	s Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
4.0	1.0		- 0.7	600	<i>C</i> 4	40.0	0.053
48	10	:	597	600	64	42.2	-0.253
674	10	į	538	530	52	42.2	0.597
7132	10	4	416	414	43	42.2	0.13
2.164e+0	004	10	309	332	27	7 42.	.2 -1.7
6.543e+0	004	10	253	224	21	42.	.2 2.2
1.207e+0	005	10	137	150	16	5 42.	.2 -0.97

Yij = Mu(i) + e(ij)Model A1:

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

 $\label{eq:Yij = Mu(i) + e(ij)} $$ Var\{e(ij)\} = Sigma^2$$ Model A3:

Model A3 uses any fixed variance parameters that were specified by the user

Yi = Mu + e(i)Model R: $Var{e(i)} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-249.620772	7	513.241544
fitted	-254.561041	4	517.122081
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	25.8777	5	<.0001
Test 4	9.88054	3	0.01961

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

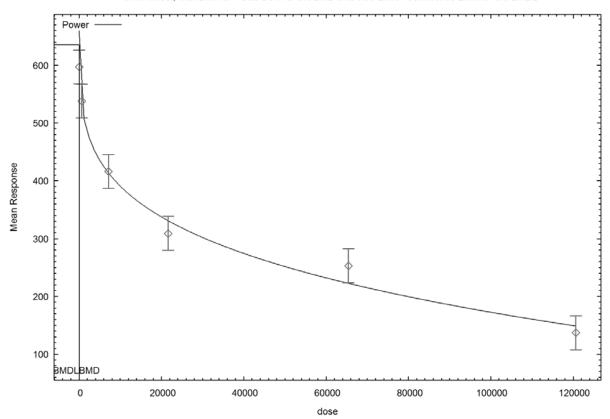
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 4.19984

BMDL = 0.1126

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:26 05/16 2016

Power Model. (Version: 2.18; Date: 05/19/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_Opt.plt

Mon May 16 15:31:14 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean

Independent variable = Dose

The power is not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.42605 rho = 0 control = 597 slope = -4.9279 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	control	slope	power
lalpha	1	-1	0.35	-0.38	-0.38
rho	-1	1	-0.35	0.38	0.38
control	0.35	-0.35	1	-0.96	-0.94
slope	-0.38	0.38	-0.96	1	1
power	-0.38	0.38	-0.94	1	1

Parameter Estimates

		95.0% Wald Confidence Interva				
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
lalpha	-1.21246	2.4579	-6.02986	3.60495		
rho	1.46111	0.421182	0.635608	2.28661		
control	652.901	36.7731	580.827	724.975		
slope	-20.1667	10.8362	-41.4052	1.07175		
power	0.275756	0.0406081	0.196165	0.355346		

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

48	10		597	594	64	58	0.15
674	10		538	531	52	53.4	0.392
7132	10		416	420	43	45	-0.281
2.164e+	004	10	309	337	27	38.3	-2.28
6.543e+	004	10	253	224	21	. 28.4	3.26
1.207e+	005	10	137	145	16	20.7	7 -1.2

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

var(e(1)); = Sigma 2

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))

Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Yi = Mu + e(i)} $$ Var\{e(i)\} = Sigma^2$$

Likelihoods of Interest

	- (3.13 3.13 3.)		
Model	Log(likelihood)	# Param's	AIC
A1	-249.620772	7	513.241544
A2	-236.681934	12	497.363868
A3	-237.453463	8	490.906925
fitted	-248.649393	5	507.298786
R	-336.197537	2	676.395075

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	199.031	10	<.0001
Test 2	25.8777	5	<.0001
Test 3	1.54306	4	0.819
Test 4	22.3919	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

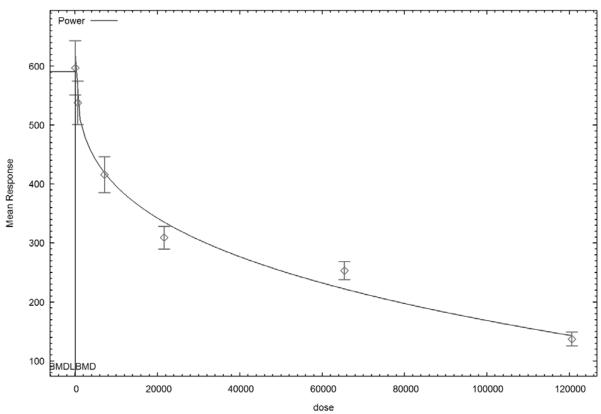
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect =


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 59.0797

BMDL = 3.07716

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

15:31 05/16 2016

Dong *et al.* (2009) Benchmark Dose Analysis - Plaque Forming Cell Response $\mathbf{BMR} = \mathbf{1} \ \mathbf{SD}$

Dropped Highest Dose

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi-square p-value	AIC	BMD (ng/mL)	BMDL (ng/mL)
-	Exponential	Constant (Rho=0)	Restrict Power ≥ 1	Normal	ı	-	-	-	-
-	Exponential	Not Constant	Restrict Power ≥ 1	Normal	1	-	-	-	-
-	Exponential	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
-	Exponential	Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
2-4	Hill	Constant (Rho=0)	Restrict n > 1	-	-	0.2008	435.07	1040.97	717.23
5-7	Hill	Not Constant	Restrict n > 1	1	1	0.3049	421.5	1574.6	NA b
8-10	Hill	Constant (Rho=0)	No Restriction	1	1	0.1995	435.51	375.08	11.85
11-13	Hill	Not Constant	No Restriction	1	1	0.1273	423.5	1346.94	NA b
14-16	Linear	Constant (Rho=0)	1	1	1st	< 0.0001	496.28	18119.90	14610.50
17-19	Linear	Not Constant	-	1	1st	< 0.0001	484.49	31885.20	23977.00
20-22	Polynomial	Constant (Rho=0)	-	1	2nd	0.0004	447.46	3110.14	2550.69
23-25	Polynomial	Constant (Rho=0)	-	-	3rd	0.0336	438.38	1534.12	1189.84
26-28	Polynomial	Not Constant	-	-	2nd	0.0016	432.06	4821.99	3667.36
29-31	Polynomial	Not Constant	-	-	3rd	0.0979	423.89	2239.22	1630.89
32-34	Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	496.28	18119.90	14610.50
35-37	Power	Not Constant	Restrict Power ≥ 1	-	1	< 0.0001	484.49	31885.20	23977.00
38-40	Power	Constant (Rho=0)	No Power Restriction	-	-	0.0606	437.47	0.28	0.28
41-43	Power	Not Constant	No Power Restriction	-	-	0.0093	428.52	0.24	0.24

- a. Scaled residuals for one or more doses/serum concentrations for each of the four exponential models were > |2|. The fit was inadequate for benchmark does modeling, and the model failed to calculate BMD and BMDL.
- b. BMDL computation failed.

Hill Model. (Version: 2.17; Date: 01/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed May 18 10:29:57 2016

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean Independent variable = Dose rho is set to 0

Power parameter restricted to be greater than 1 A constant variance model is fit

Total number of dose groups = 5 Total number of records with missing values = 0 Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 alpha = 1963.8
 rho = 0 Specified
intercept = 597
 v = -344
 n = 1.19729
 k = 6655.59

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho -n
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

k	v	intercept	alpha	
-1.9e-007	-4.3e-007	4.8e-007	1	alpha
-0.49	-0.29	1	4.8e-007	intercept
-0.55	1	-0.29	-4.3e-007	v
1	-0.55	-0.49	-1.9e-007	k

Parameter Estimates

			93.0% Wald Colli.	Idelice Ilicelval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	1884.65	376.929	1145.88	2623.42
intercept	585.482	11.3098	563.315	607.649
v	-372.931	21.1027	-414.291	-331.57
n	1	NA		
k	7901.36	1828.04	4318.47	11484.2

95 0% Wald Confidence Interval

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus

has no standard error.

Table of Data and Estimated Values of Interest

Dose	1	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	583	64	43.4	1
674	10		538	556	52	43.4	-1.32
7132	10		416	409	43	43.4	0.542
2.164e+	004	10	309	312	27	43.4	-0.241
6.543e+	004	10	253	253	21	43.4	0.0192

Model Descriptions for likelihoods calculated

Yij = Mu(i) + e(ij)Model A1: $Var\{e(ij)\} = Sigma^2$

Yij = Mu(i) + e(ij)Model A2: $Var\{e(ij)\} = Sigma(i)^2$

Yij = Mu(i) + e(ij)Model A3: $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-213.537400	4	435.074800
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3) Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	3.21099	2	0.2008

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right)$

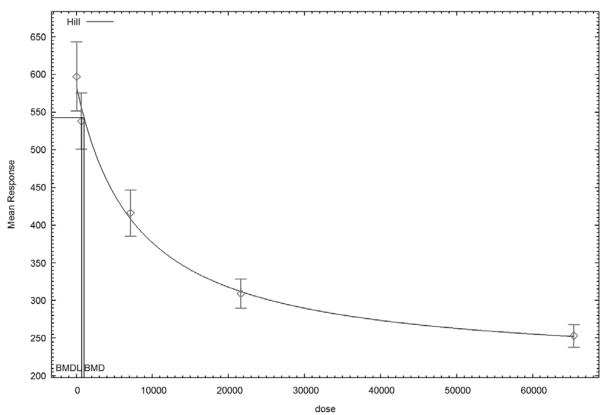
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance $\ensuremath{\mathsf{model}}$

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $\,$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 1040.97

BMDL = 717.233

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:29 05/18 2016

Hill Model. (Version: 2.17; Date: 01/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed Apr 12 10:36:51 2017

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean Independent variable = Dose

Power parameter restricted to be greater than 1

The variance is to be modeled as Var(i) = exp(lalpha + rho * ln(mean(i)))

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 lalpha = 7.58264
 rho = 0
 intercept = 597
 v = -344
 n = 1.19729
 k = 6655.59

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -n

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	lalpha	rho	intercept	v	k
lalpha	1	-1	0.12	-0.16	-0.026
rho	-1	1	-0.12	0.16	0.026
intercept	0.12	-0.12	1	-0.75	-0.57
v	-0.16	0.16	-0.75	1	-0.026
k	-0.026	0.026	-0.57	-0.026	1

Parameter Estimates

			95.0% Wald Confi	Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
lalpha	-8.55461	3.81915	-16.04	-1.06921		
rho	2.6328	0.63629	1.38569	3.8799		
intercept	584.81	14.7565	555.888	613.732		
V	-373.886	16.2724	-405.779	-341.993		
n	1	NA				
k	8086.21	1358.83	5422.95	10749.5		

 ${\tt NA}$ - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	N	Ob	s Mean	Est Mean	Obs Std Dev	Est Std De	v Scaled Res.
48	10		597	583	64	60.6	0.751
674	10		538	556	52	57	-1
7132	10		416	410	43	38.1	0.532
2.164e+0	004	10	309	31	.3 27	26	.7 -0.43
6.543e+0	004	10	253	25	2 21	20	.1 0.149

Model A1: Yij = Mu(i) + e(ij)

 $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $\label{eq:Var} $$ Var\{e(ij)\} = \exp(lalpha + rho*ln(Mu(i))) $$ Model A3 uses any fixed variance parameters that $$$

were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Mode	l Log(likelihood)	# Param'	s AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-205.767530	5	421.535060
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	2.3755	2	0.3049

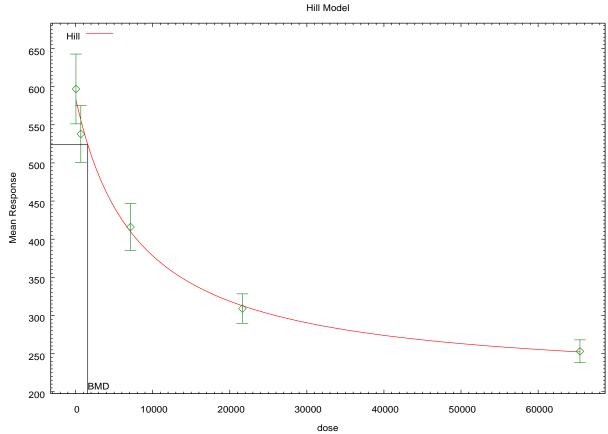
The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data

Benchmark Dose Computation


Specified effect = 1

Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 1574.57

BMDL computation failed.

10:36 04/12 2017

Hill Model. (Version: 2.17; Date: 01/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed May 18 10:33:16 2016

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Power parameter is not restricted
A constant variance model is fit

Total number of dose groups = 5
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1963.8
 rho = 0 Specified
intercept = 597
 v = -344
 n = 1.19729
 k = 6655.59

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	intercept	v	n	k
alpha	1	1.4e-007	-1.4e-007	-9.3e-008	8.1e-008
intercept	1.4e-007	1	-0.79	-0.83	0.41
v	-1.4e-007	-0.79	1	0.95	-0.87
n	-9.3e-008	-0.83	0.95	1	-0.76
k	8.1e-008	0.41	-0.87	-0.76	1

Parameter Estimates

		95.0% Wald Con	fidence Interval
Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
1826.58	365.317	1110.58	2542.59
605.321	23.5272	559.208	651.433
-456.561	102.566	-657.586	-255.536
0.685578	0.217284	0.259709	1.11145
	1826.58 605.321 -456.561	1826.58 365.317 605.321 23.5272 -456.561 102.566	Estimate Std. Err. Lower Conf. Limit 1826.58 365.317 1110.58 605.321 23.5272 559.208 -456.561 102.566 -657.586

k 10287.6 5558.45 -606.802 21181.9

Table of Data and Estimated Values of Interest

Dose	1	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	594	64	42.7	0.216
674	10		538	544	52	42.7	-0.464
7132	10		416	406	43	42.7	0.773
2.164e+	004	10	309	320	27	42.7	-0.82
6.543e+	004	10	253	249	21	42.7	0.296

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-212.755056	5	435.510113
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels?

(A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	1.64631	1	0.1995

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

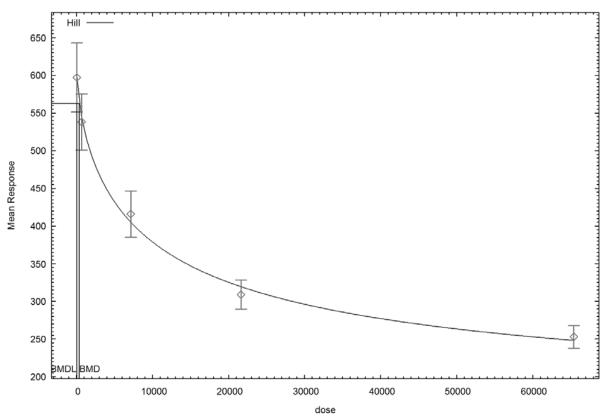
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model $\,$

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $\,$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 375.075

BMDL = 11.8505

Hill Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:33 05/18 2016

Hill Model. (Version: 2.17; Date: 01/28/2013)

Input Data File: U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/hil_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed Apr 12 10:45:06 2017

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean Independent variable = Dose

Power parameter is not restricted

The variance is to be modeled as Var(i) = exp(lalpha + rho * ln(mean(i)))

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.58264
 rho = 0
intercept = 597
 v = -344
 n = 1.19729
 k = 6655.59

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	intercept	v	n	k
lalpha	1	-1	0.27	-0.3	-0.27	0.093
rho	-1	1	-0.28	0.31	0.27	-0.092
intercept	0.27	-0.28	1	-0.86	-0.76	-0.073
V	-0.3	0.31	-0.86	1	0.96	-0.37
n	-0.27	0.27	-0.76	0.96	1	-0.37
k	0.093	-0.092	-0.073	-0.37	-0.37	1

Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-8.31302	3.98605	-16.1255	-0.500505
rho	2.59235	0.664136	1.29066	3.89403
intercept	588.576	23.2807	542.946	634.205
V	-385.905	59.9108	-503.328	-268.482
n	0.927451	0.314852	0.310353	1.54455
k	8185.26	1607.79	5034.06	11336.5

Table of Data and Estimated Values of Interest

Dose	N	Ok	os Mean	Est Mean	Obs Std Dev	Est Std De	ev Scaled Res.
48	10		597	585	64	60.5	0.61
674	10		538	554	52	56.3	-0.893
7132	10		416	408	43	37.9	0.673
2.164e+0	004	10	309	314	2	7	27 -0.596
6.543e+0	004	10	253	252	23	L :	20.3 0.206

Model A1: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-205.742257	6	423.484514
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	2.32495	1	0.1273

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is greater than .1. The model chosen seems to adequately describe the data $\ensuremath{\text{A}}$

Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 1346.94

BMDL computation failed.

Hill Model 650 600 550 500 350 350 250 BMD

30000

dose

40000

50000

60000

10:45 04/12 2017

0

10000

20000

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed May 18 10:38:41 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose

rho is set to 0

Signs of the polynomial coefficients are not restricted

A constant variance model is fit

Total number of dose groups = 5Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha =

1 0 Specified rho =

508.174 beta_0 =

beta_1 = -0.00450779

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

a beta_0	alpha	
1 6.4e-008	1	alpha
8 1	6.4e-008	beta_0
8 -0.61	-7.1e-008	beta_1

Parameter Estimates

	95.0% Wa			idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	6671.7	1334.34	4056.44	9286.95
beta_0	508.174	14.616	479.527	536.821
beta_1	-0.00450779	0.000471724	-0.00543235	-0.00358322

Table of Data and Estimated Values of Interest

DOSE						
Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.

48	10	597		508	64	81.7	3.4	15
674	10	538		505	52	81.7	1.2	27
7132	10	416		476	43	81.7	-2.3	32
2.164e	+004	10	309	411		27	81.7	-3.93
6.543e	+004	10	253	213		21	81.7	1.54

Yij = Mu(i) + e(ij)Model A1:

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

 $\label{eq:Yij = Mu(i) + e(ij)} $$ Var\{e(ij)\} = Sigma^2$$ Model A3:

 $Var\{e(i)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i)

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-245.140728	3	496.281455
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	66.4176	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

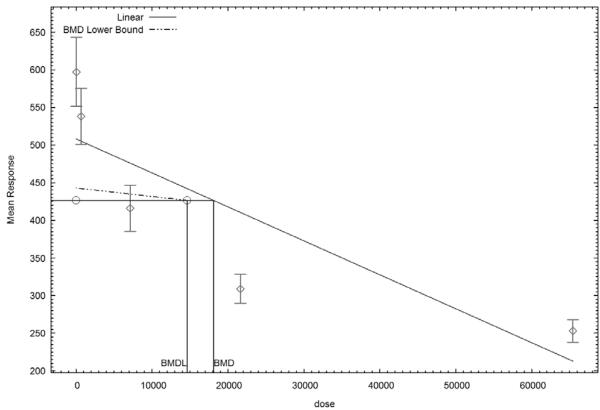
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 18119.9

BMDL = 14610.5

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:38 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

Glupiot Plotting File:

U:/PFOS/PFOS_DataFiles/lin_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:39:54 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean

Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.58264 rho = 0 beta_0 = 508.174

 $beta_1 = -0.00450779$

Asymptotic Correlation Matrix of Parameter Estimates

beta_1	beta_0	rho	lalpha	
-0.45	0.4	-1	1	lalpha
0.45	-0.4	1	-1	rho
-0.94	1	-0.4	0.4	beta_0
1	-0.94	0.45	-0.45	beta_1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-21.5468	5.95672	-33.2218	-9.87189
rho	5.02009	0.993433	3.07299	6.96718
beta_0	476.405	18.7928	439.572	513.239
beta_1	-0.00346267	0.000322659	-0.00409507	-0.00283027

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	476	64	110	3.46

674	10		538	474	52	109	1.85
7132	10		416	452	43	96.6	-1.17
2.164e+	004	10	309	401	2'	7 71.9	9 -4.07
6.543e+	004	10	253	250	2	1 21.9	0.455

Model A1: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-238.246601	4	484.493202
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels?
(A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	67.3336	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

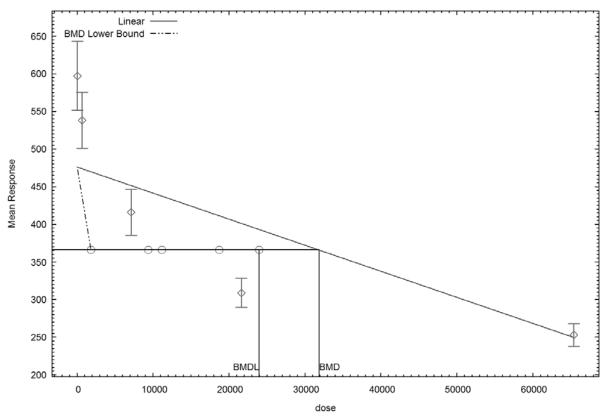
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 31885.2

BMDL = 23977

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:39 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed May 18 10:42:05 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coeffi

Signs of the polynomial coefficients are not restricted

A constant variance model is fit

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1

rho = 0 Specified

beta_0 = 562.079 beta_1 = -0.0163526

 $beta_1 = -0.0163526$ $beta_2 = 1.78072e-007$

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1	beta_2
alpha	1	3.7e-008	-5.1e-009	1.5e-009
beta_0	1.4e-007	1	-0.65	0.55
beta_1	-3.6e-008	-0.65	1	-0.98
beta_2	1.8e-008	0.55	-0.98	1

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
alpha	2414.38	482.877	1467.96	3360.81	
beta_0	562.079	10.5008	541.498	582.66	
beta_1	-0.0163526	0.001293	-0.0188868	-0.0138184	
beta_2	1.78072e-007	1.89647e-008	1.40902e-007	2.15243e-007	

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10	597	561	64	49.1	2.3
674	10	538	551	52	49.1	-0.846
7132	10	416	455	43	49.1	-2.48
2.164e+0		10 309	292			1.12
6.543e+0	04	10 253	254	21	49.1	-0.0928

Model A1: Yij = Mu(i) + e(ij)

 $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-219.729990	4	447.459980
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	15.5962	2	0.0004105

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

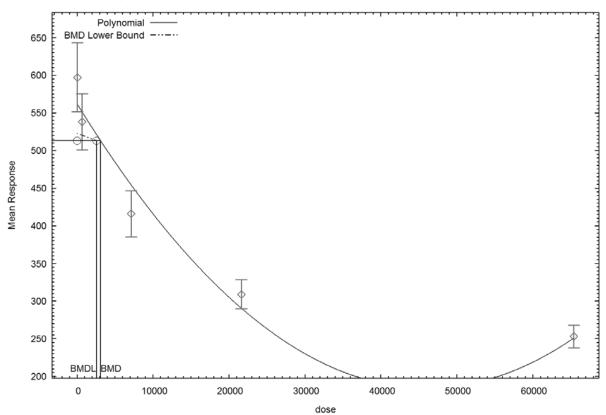
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different model $\,$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 3110.14

BMDL = 2550.69

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:42 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed May 18 10:44:55 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose rho is set to 0

Signs of the polynomial coefficients are not restricted ${\tt A}$ constant variance model is fit

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1

rho = 0 Specified

 $beta_0 = 579.511$

beta_1 = -0.0302335 beta_2 = 1.03508e-006 beta_3 = -9.92359e-012

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1	beta_2	beta_3
alpha	1	-1.1e-006	-2e-008	3.8e-009	5.9e-009
beta_0	-1.1e-006	1	-0.61	0.5	-0.47
beta_1	-9.6e-009	-0.61	1	-0.98	0.96
beta_2	-1.7e-009	0.5	-0.98	1	-1
beta_3	-2e-009	-0.47	0.96	-1	1

Parameter Estimates

		95.0% Wald Confidence Interval		
Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
1934.37	386.873	1176.12	2692.63	
579.511	10.6224	558.691	600.33	
-0.0302335	0.00410718	-0.0382834	-0.0221835	
1.03508e-006	2.43895e-007	5.57057e-007	1.51311e-006	
	1934.37 579.511 -0.0302335	1934.37 386.873 579.511 10.6224 -0.0302335 0.00410718	Estimate Std. Err. Lower Conf. Limit 1934.37 386.873 1176.12 579.511 10.6224 558.691 -0.0302335 0.00410718 -0.0382834	

beta_3 -9.92359e-012 2.81729e-012 -1.54454e-011 -4.40181e-012

Table of Data and Estimated Values of Interest

Dose	1	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	578	64	44	1.36
674	10		538	560	52	44	-1.55
7132	10		416	413	43	44	0.22
2.164e+	004	10	309	309	27	44	-0.0296
6.543e+	004	10	253	253	21	44	0.000795

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-214.188543	5	438.377085
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels?

(A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	4.51328	1	0.03363

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

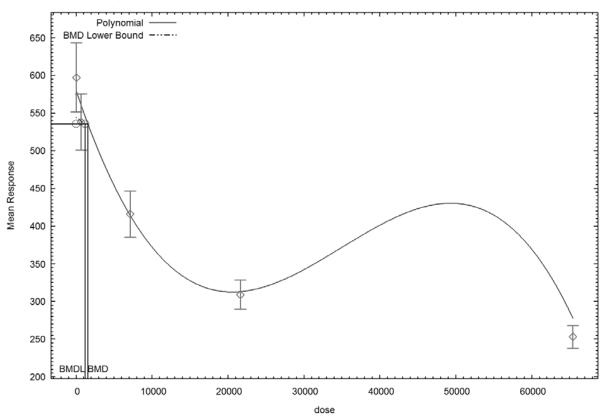
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model $\,$

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 1534.12

BMDL = 1189.84

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:44 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed May 18 10:46:53 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean

Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.58264 rho = 0 beta_0 = 562.079 beta_1 = -0.0163526

 $beta_2 = 1.78072e-007$

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1	beta_2
lalpha	1	-1	0.18	-0.23	0.23
rho	-1	1	-0.18	0.23	-0.23
beta_0	0.18	-0.18	1	-0.85	0.77
beta_1	-0.23	0.23	-0.85	1	-0.99
beta_2	0.23	-0.23	0.77	-0.99	1

Parameter Estimates

			95.0% Wald Conf	Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
lalpha	-11.3364	3.98747	-19.1517	-3.52108		
rho	3.13195	0.664244	1.83006	4.43385		
beta_0	551.921	13.5682	525.328	578.515		
beta_1	-0.0148449	0.00108815	-0.0169776	-0.0127121		
beta 2	1.57106e-007	1.42079e-008	1.29259e-007	1.84952e-007		

Table of Data and Estimated Values of Interest

Dose	N	Obs	s Mean	Est Mean	Obs Std	Dev Est	Std Dev	Scaled Res.
48	10	į	597	551	64		67.8	2.14
674	10	į	538	542	52		66	-0.191
7132	10	4	416	454	43		50	-2.4
2.164e+0	004	10	309	3	04	27	26.7	0.56
6.543e+0	004	10	253	2	53	21	20	-0.0285

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Var(e(1))) - Sigma 2

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))

Model A3 uses any fixed variance parameters that were specified by the user

 $\label{eq:model_R: Var{e(i)} = Mu + e(i)} \begin{tabular}{ll} Var & (i) & Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-211.032108	5	432.064216
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	12.9047	2	0.001577

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

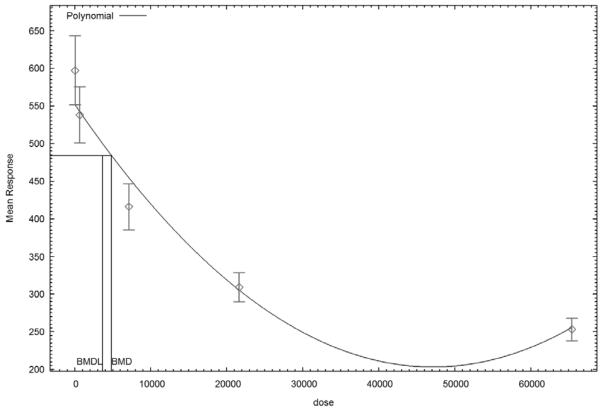
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean


Confidence level = 0.95

BMD = 4821.99

BMDL = 3667.36

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:46 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gruplot Plotting File:

Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/ply_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 10:48:17 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.58264
 rho = 0
beta_0 = 579.511
beta_1 = -0.0302335
beta_2 = 1.03508e-006
beta_3 = -9.92359e-012

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1	beta_2	beta_3
lalpha	1	-1	0.024	-0.036	0.035	-0.035
rho	-1	1	-0.025	0.036	-0.036	0.036
beta_0	0.024	-0.025	1	-0.73	0.63	-0.6
beta_1	-0.036	0.036	-0.73	1	-0.98	0.97
beta_2	0.035	-0.036	0.63	-0.98	1	-1
beta_3	-0.035	0.036	-0.6	0.97	-1	1

Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-9.00682	3.73684	-16.3309	-1.68274
rho	2.70942	0.622381	1.48958	3.92927
beta_0	578.205	14.3857	550.01	606.401
beta_1	-0.0294538	0.00425681	-0.037797	-0.0211106
beta_2	9.89721e-007	2.34882e-007	5.2936e-007	1.45008e-006
beta 3	-9.40773e-012	2.64749e-012	-1.45967e-011	-4.21875e-012

Table of Data and Estimated Values of Interest

Dose	N	Obs Mea	an Est Mea	n Obs Std	Dev Est Std	Dev Scaled Res.
48	10	597	577	64	60.9	1.05
674	10	538	559	52	58.3	-1.13
7132	10	416	415	43	39	0.0754
2.164e+0	004	10	309	309	27	26.1 0.00417
6.543e+0	004	10	253	253	21	19.9 0.000791

Model Descriptions for likelihoods calculated

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} $$ Var{e(ij)} = Sigma^2$$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))

Model A3 uses any fixed variance parameters that were specified by the user

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-205.949166	6	423.898333
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	2.73877	1	0.09794

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears

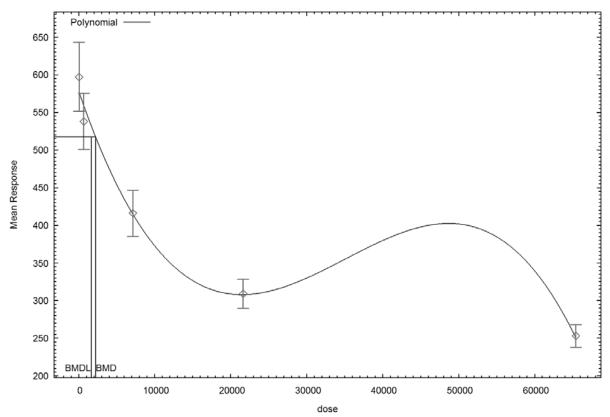
to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean


Confidence level = 0.95

BMD = 2239.22

BMDL = 1630.89

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:48 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 13:02:37 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose rho is set to 0

The power is restricted to be greater than or equal to 1

A constant variance model is fit

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1963.8

rho = 0 Specified control = 597 slope = -41724.5 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho -power

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

slope	control	alpha	
6.2e-009	-1.2e-008	1	alpha
-0.61	1	-1.2e-008	control
1	-0.61	6.2e-009	slope

Parameter Estimates

			95.0% Wald Confidence In		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
alpha	6671.69	1334.34	4056.44	9286.95	
control	508.174	14.616	479.527	536.821	
slope	-0.00450779	0.000471724	-0.00543235	-0.00358322	
novion	1	NT 7A			

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
4.0				- 4	0.4	0.45
48	10	597	508	64	81.7	3.45
674	10	538	505	52	81.7	1.27
7132	10	416	476	43	81.7	-2.32
2.164e+0	004	10 3	09 41	1 27	81.7	-3.93
6.543e+0	004	10 2	53 21	3 21	81.7	1.54

Model Descriptions for likelihoods calculated

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} $$ Var{e(ij)} = Sigma^2$$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that
were specified by the user

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-245.140728	3	496.281455
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	66.4176	3	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

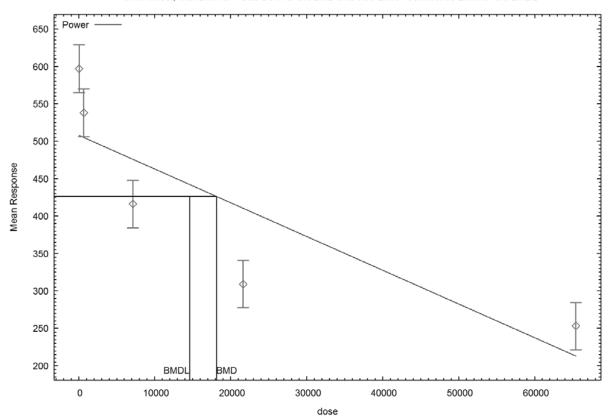
The p-value for Test 3 is less than .1. You may want to consider a

different variance model

The p-value for Test 4 is less than .1. You may want to try a different model $% \left(1\right) =\left(1\right) +\left(1$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 18119.9

BMDL = 14610.5

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:02 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 13:04:15 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean

Independent variable = Dose

The power is restricted to be greater than or equal to 1

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.58264 rho = 597 control = slope = -41724.5 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -power

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	lalpha	rho	control	slope
lalpha	1	-1	0.57	-0.64
rho	-1	1	-0.58	0.66
control	0.57	-0.58	1	-0.94
slope	-0.64	0.66	-0.94	1

Parameter Estimates

95.0% Wald Confidence Interval						
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
lalpha	-21.5468	7.0519	-35.3683	-7.72537		
rho	5.02009	1.18835	2.69097	7.3492		
control	476.405	18.9808	439.204	513.607		
slope	-0.00346267	0.00032474	-0.00409915	-0.00282619		
power	1	NA				

 ${\tt NA}$ - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	1	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	476	64	110	3.46
674	10		538	474	52	109	1.85
7132	10		416	452	43	96.6	-1.17
2.164e+	004	10	309	401	. 27	71.9	-4.07
6.543e+	004	10	253	250	21	21.9	0.455

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-238.246601	4	484.493202
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	67.3336	3	< .0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

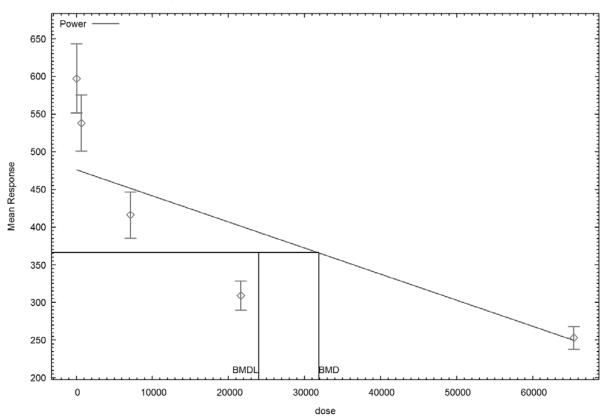
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 31885.2

BMDL = 23977

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:04 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d) Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt Wed May 18 13:06:15 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 1963.8

0 597 rho = Specified control =

-4.09032 slope = -9999 power =

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

power	slope	control	alpha	
-2.1e-007	-2.1e-007	2e-007	1	alpha
-0.97	-0.98	1	2e-007	control
1	1	-0.98	-2.1e-007	slope
1	1	-0.97	-2.1e-007	power

Parameter Estimates

95.0% Wald Confidence Interval						
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
alpha	1977.12	395.423	1202.1	2752.13		
control	724.488	64.2179	598.623	850.353		
slope	-56.9526	36.6253	-128.737	14.8316		
power	0.192873	0.0475148	0.0997454	0.286		

Table of Data and Estimated Values of Interest

Dose	N	Ok	os Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
4.0	1.0		F 0 7	604	6.4	44.5	-0.521
48	10		597	004	64	44.5	-0.521
674	10		538	524	52	44.5	0.963
7132	10		416	409	43	44.5	0.483
2.164e+0	04	10	309	334	2	7 44	.5 -1.77
6.543e+0	04	10	253	241	23	1 44	.5 0.85

Model Descriptions for likelihoods calculated

Yij = Mu(i) + e(ij)Model A1:

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3:

Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Yi = Mu + e(i)Model R: $Var{e(i)} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-211.931903	6	435.863807
fitted	-214.734861	4	437.469721
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	14.8981	4	0.004917
Test 4	5.60591	2	0.06063

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

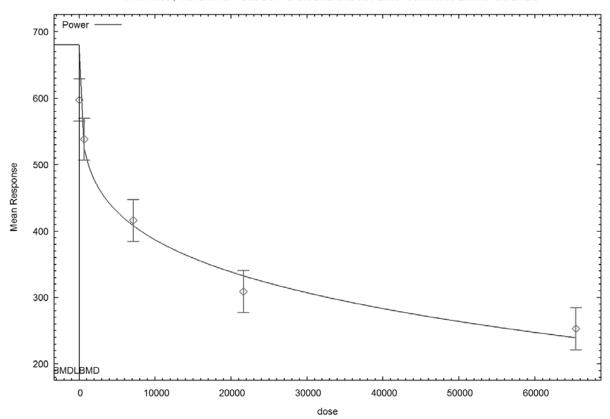
The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 0.277109

BMDL = 0.277103

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:06 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014)

Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.(d)
Gnuplot Plotting File:

U:/PFOS/PFOS_DataFiles/pow_DongEtAl2009_Plaque_DroppedHighDose_Opt.plt

Wed May 18 13:07:45 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean

Independent variable = Dose

The power is not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 5

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = 7.58264
 rho = 0
control = 597
 slope = -4.09032
 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

power	slope	control	rho	lalpha	
0.25	0.24	-0.21	-1	1	lalpha
-0.25	-0.24	0.21	1	-1	rho
-0.98	-0.99	1	0.21	-0.21	control
1	1	-0.99	-0.24	0.24	slope
1	1	-0.98	-0.25	0.25	power

Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-6.81322	4.19657	-15.0383	1.4119
rho	2.36545	0.699237	0.994968	3.73593
control	808.056	118.681	575.445	1040.67
slope	-111.871	78.5631	-265.852	42.1097
power	0.145296	0.044859	0.0573738	0.233218

Table of Data and Estimated Values of Interest

Dose	N	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
48	10		597	612	64	65.5	-0.711
674	10		538	520	52	54	1.06
7132	10		416	402	43	39.9	1.11
2.164e+0	004	10	309	331	. 27	31.7	-2.19
6.543e+0	004	10	253	248	3 21	22.5	0.738

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i)

 $\label{eq:Yi} \begin{array}{lll} \text{Yi} &=& \text{Mu} + \text{e(i)} \\ \text{Var}\{\text{e(i)}\} &=& \text{Sigma^2} \end{array}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-211.931903	6	435.863807
A2	-204.482849	10	428.965699
A3	-204.579781	7	423.159562
fitted	-209.258337	5	428.516675
R	-271.115271	2	546.230542

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	133.265	8	<.0001
Test 2	14.8981	4	0.004917
Test 3	0.193864	3	0.9786
Test 4	9.35711	2	0.009292

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

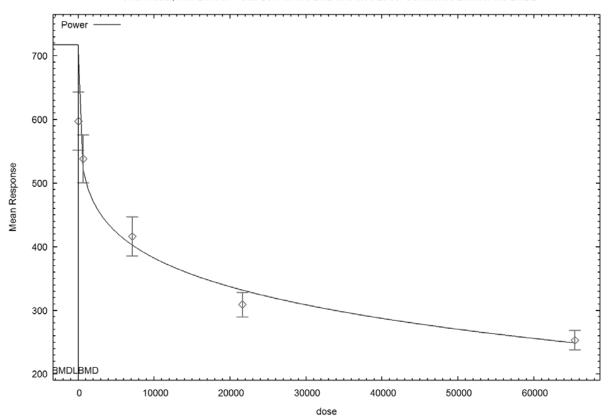
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 0.242147

BMDL = 0.242142

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:07 05/18 2016

Dong *et al.* (2012a) Benchmark Dose Analysis - Relative Liver Weight **BMR = 10% Relative Deviation**

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi-square <i>p</i> -value	AIC	BMD (ng/mL)	BMDL (ng/mL)
2-5	Exponential (Model 5) ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	0.070	-91.8	9,973.7	8,182.2
6-9	Exponential (Model 5) ^a	Not Constant	Restrict Power ≥ 1	Normal	1	0.010	-92.4	10,011.4	8,357.7
10-13	Exponential (Model 5) ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	1	0.005	- 249.8	9,958.04	8,365.6
14-17	Exponential (Model 5) ^a	Not Constant	Restrict Power ≥ 1	Lognormal	ı	0.005	- 249.8	9,958.0	8,365.6
18-20	Hill ^a	Constant (Rho=0)	Restrict n > 1	-	1	0.070	-91.8	10,116.5	8,252.3
21-23	Hill ^a	Constant (Rho=0)	No Restriction	-	1	0.070	-91.8	10,116.5	8,252.3
24-26	Linear a	Constant (Rho=0)	-	-	1st	0.0003	-79.7	7,727.3	7,476.6
27-29	Linear a	Not Constant	-	-	1st	0.0002	-83.8	7,622.3	7,343.8
30-32	Polynomial	Constant (Rho=0)	-	-	2nd	0.003	-85.1	6,801.1	6,305.2
33-35	Polynomial	Constant (Rho=0)	-	-	3rd	0.05	-91.2	8,909.6	7,501.2
36-38	Polynomial	Not Constant	-	-	2nd	0.0003	-84.9	6,962.7	6,413.1
39-41	Polynomial a	Not Constant	-	-	3rd	0.007	-91.7	9,012.4	7,673.2
42-44	Power ^a	Constant (Rho=0)	Restrict Power ≥ 1	-	1	0.0003	-79.7	7,727.3	7,476.6
45-47	Power ^a	Not Constant	Restrict Power ≥ 1	-	-	0.0002	-83.8	7,622.3	7,343.8
48-50	Power ^a	Constant (Rho=0)	No Power Restriction	-	1	0.0005	-80.8	6,520.7	5,487.8
51-53	Power ^a	Not Constant	No Power Restriction	-	1	< 0.0001	-82.1	7,182.1	5,968.9

a. P-values are less than 0.1. Scaled residuals for one or more doses/serum concentrations were > |2|.

```
______
```

Exponential Model. (Version: 1.10; Date: 01/12/2015) Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File:

Tue Jan 17 11:19:42 2017

BMDS Model Run

The form of the response function by Model:

Model 2: $Y[dose] = a * exp{sign * b * dose}$ Model 3: $Y[dose] = a * exp{sign * (b * dose)^d}$

Note: Y[dose] is the median response for exposure = dose;

sign = +1 for increasing trend in data;

sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4.

Model 3 is nested within Model 5.

Model 4 is nested within Model 5.

Dependent variable = Mean

Independent variable = Dose

Data are assumed to be distributed: normally

Variance Model: exp(lnalpha +rho *ln(Y[dose]))

rho is set to 0.

A constant variance model is fit.

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 2		Model 3		Model 4		Model 5	
lnalpha	-3.59227		-3.59227		-3.59227		-3.59227	
rho	0	*	0	*	0	*	0	*
a	5.08312		5.08312		4.6265		4.6265	
b	8.08852e-006		8.08852e-006		4.22254e-006		4.22254e-006	
C	0	*	0	*	5.23506		5.23506	
d	1	*	1		1	*	1	

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

riable	Model 2	Model 3	Model 4	Model 5
alpha	-1.7284	-1.7284	-3.21065	-3.42385
rho	0 *	0 *	0 *	0 *
а	5.1952	5.1952	4.8761	4.9757
b	7.62753e-006	7.62753e-006	2.29212e-006	9.35168e-006
С			7.46727	3.16215
d		1		1.28574

⁻⁻ Indicates that this parameter does not appear in model

Std. Err. Estimates by Model

Model 2 Model 4 Variable Model 3 Model 5

^{*} Indicates that this parameter has been specified

lnalpha	1.8247e-147	0.0387485	0.00880079	0.00711097
rho	NA	NA	NA	NA
a	0.0742775	0.0742775	0.0453054	0.0483308
b	1.82398e-007	1.82398e-007	8.24975e-007	1.74015e-006
C	NA	NA	2.02423	0.316667
д	NA	NA	NΑ	0.0917806

NA - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N		Obs Mean	Obs Std Dev
40	6		4.87	0.13
580	6		5.13	0.15
4350	6		5.09	0.12
8210	6		5.39	0.15
2.453e+	004	6	6.48	0.14
5.974e+	004	6	9.03	0.27
1.142e+	005	6	12.11	0.25

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	40	5.197	0.4214	-1.9
	580	5.218	0.4214	-0.5129
	4350	5.37	0.4214	-1.63
	8210	5.531	0.4214	-0.8193
2.4	153e+004	6.264	0.4214	1.255
5.9	974e+004	8.194	0.4214	4.859
1.1	L42e+005	12.41	0.4214	-1.76
3	40	5.197	0.4214	-1.9
	580	5.218	0.4214	-0.5129
	4350	5.37	0.4214	-1.63
	8210	5.531	0.4214	-0.8193
2.4	153e+004	6.264	0.4214	1.255
5.9	974e+004	8.194	0.4214	4.859
1.1	L42e+005	12.41	0.4214	-1.76
4	40	4.879	0.2008	-0.1096
	580	4.918	0.2008	2.586
	4350	5.189	0.2008	-1.207
	8210	5.464	0.2008	-0.9024
2.4	153e+004	6.6	0.2008	-1.467
5.9	974e+004	8.912	0.2008	1.444
1.1	L42e+005	12.14	0.2008	-0.3439
5	40	4.976	0.1805	-1.44
	580	4.989	0.1805	1.916
	4350	5.15	0.1805	-0.8083
	8210	5.365	0.1805	0.3372
2.4	153e+004	6.48	0.1805	0.0005407
5.9	974e+004	9.03	0.1805	-0.006322
1.1	L42e+005	12.11	0.1805	0.001331

Other models for which likelihoods are calculated:

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	54.4377	8	-92.8754
A2	58.52754	14	-89.05508
A3	54.4377	8	-92.8754
R	-60.00776	2	124.0155
2	15.29648	3	-24.59296
3	15.29648	3	-24.59296
4	46.42371	4	-84.84743
5	50.90095	5	-91.80189

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

- Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
- Test 2: Are Variances Homogeneous? (A2 vs. A1)
- Test 3: Are variances adequately modeled? (A2 vs. A3)
- Test 4: Does Model 2 fit the data? (A3 vs. 2)
- Test 5a: Does Model 3 fit the data? (A3 vs 3)
- Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
- Test 6a: Does Model 4 fit the data? (A3 vs 4)
- Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
- Test 7a: Does Model 5 fit the data? (A3 vs 5)
- Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
- Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	237.1	12	< 0.0001
Test 2	8.18	6	0.2252
Test 3	8.18	6	0.2252
Test 4	78.28	5	< 0.0001
Test 5a	78.28	5	< 0.0001
Test 5b	-3.151e-012	0	N/A
Test 6a	16.03	4	0.002982
Test 6b	62.25	1	< 0.0001
Test 7a	7.074	3	0.06959
Test 7b	71.21	2	< 0.0001
Test 7c	8.954	1	0.002768

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

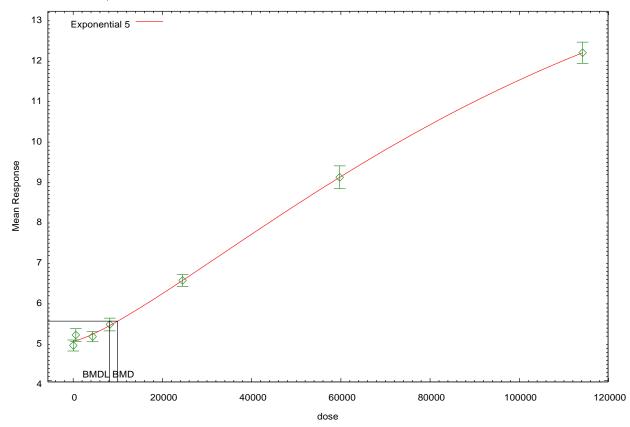
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	12495.6	12015
3	12495.6	12015
4	6798.63	6271.16
5	9973.65	8182.24

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

11:04 01/17 2017

Exponential Model. (Version: 1.10; Date: 01/12/2015)
Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d)
Gnuplot Plotting File:

Tue Jan 17 11:43:36 2017

BMDS Model Run

The form of the response function by Model:

Model 2: Y[dose] = a * exp{sign * b * dose} Model 3: Y[dose] = a * exp{sign * (b * dose)^d} Model 4: Y[dose] = a * [c-(c-1) * exp{-b * dose}] Model 5: Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]

Note: Y[dose] is the median response for exposure = dose; sign = +1 for increasing trend in data;

sign = +1 for increasing trend in data; sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4.

Model 2 is nested within Models 3 and 4 Model 3 is nested within Model 5.

Model 4 is nested within Model 5.

Dependent variable = Mean

Independent variable = Dose

Data are assumed to be distributed: normally

Variance Model: exp(lnalpha +rho *ln(Y[dose]))

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

MLE solution provided: Exact

Initial Parameter Values

Variable	Model 2		Model 3		Model 4		Model 5
lnalpha	-6.72298		-6.72298		-6.72298		-6.72298
rho	1.6671		1.6671		1.6671		1.6671
а	5.08312		5.08312		4.6265		4.6265
b	8.08852e-006		8.08852e-006		4.22254e-006		4.22254e-006
C	0	*	0	*	5.23506		5.23506
d	1	*	1		1	*	1

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-11.8586	-11.8586	-5.08657	-5.41677
rho	4.98185	4.98185	0.979158	1.03221
a	4.98597	4.98597	4.88892	4.97669
b	9.33653e-006	9.33653e-006	1.82863e-006	9.41578e-006
C			8.89019	3.15055
d		1		1.28918

⁻⁻ Indicates that this parameter does not appear in model

Std. Err. Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	0.00354128	1.13475	1.42142	1.26221

rho	0.580071	0.580071	0.75079	0.664593
a	0.0341907	0.0341907	0.0407136	0.0414736
b	4.28353e-007	4.28353e-007	9.82051e-007	1.81161e-006
С	NA	NA	3.82353	0.325062
d	NA	NA	NA	0.0883494

 ${\tt NA}$ - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Obs Mean		Obs Std Dev
40	6		4.87	0.13
580	6		5.13	0.15
4350	6		5.09	0.12
8210	6		5.39	0.15
2.453e+	-004	6	6.48	0.14
5.974e+	-004	6	9.03	0.27
1.142e+	-005	6	12.11	0.25

Estimated Values of Interest

Model	Dose	Est Mean	Est Std	Scaled Residual
2	40	4.988	0.1457	-1.981
	580	5.013	0.1475	1.942
	4350	5.193	0.161	-1.561
	8210	5.383	0.1762	0.09465
2.4	:53e+004	6.269	0.2575	2.005
5.9	74e+004	8.709	0.5839	1.345
1.1	.42e+005	14.48	2.072	-2.802
3	40	4.988	0.1457	-1.981
	580	5.013	0.1475	1.942
	4350	5.193	0.161	-1.561
	8210	5.383	0.1762	0.09465
2.4	53e+004	6.269	0.2575	2.005
5.9	74e+004	8.709	0.5839	1.345
1.1	.42e+005	14.48	2.072	-2.802
4	40	4.892	0.171	-0.3114
	580	4.93	0.1717	2.857
	4350	5.195	0.1761	-1.454
	8210	5.464	0.1805	-1
2.4	:53e+004	6.581	0.1977	-1.251
5.9	74e+004	8.881	0.229	1.595
1.1	.42e+005	12.16	0.2671	-0.4435
5	40	4.977	0.1526	-1.72
	580	4.99	0.1528	2.251
	4350	5.149	0.1553	-0.9352
	8210	5.364	0.1586	0.3997
2.4	:53e+004	6.478	0.1748	0.02275
5.9	74e+004	9.032	0.2075	-0.02375
1.1	.42e+005	12.11	0.2414	0.005477

Other models for which likelihoods are calculated:

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	54.4377	8	-92.8754
A2	58.52754	14	-89.05508
A3	57.84574	9	-97.69149
R	-60.00776	2	124.0155
2	30.41492	4	-52.82985
3	30.41492	4	-52.82985
4	47.35266	5	-84.70531
5	52.20468	6	-92.40935

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

- Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
- Test 2: Are Variances Homogeneous? (A2 vs. A1)
- Test 3: Are variances adequately modeled? (A2 vs. A3)
- Test 4: Does Model 2 fit the data? (A3 vs. 2)
- Test 5a: Does Model 3 fit the data? (A3 vs 3)
- Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
- Test 6a: Does Model 4 fit the data? (A3 vs 4)
- Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
- Test 7a: Does Model 5 fit the data? (A3 vs 5)
- Test 7b: Is Model 5 better than Model 3? (5 vs. 3)
- Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	237.1	12	< 0.0001
Test 2	8.18	6	0.2252
Test 3	1.364	5	0.9283
Test 4	54.86	5	< 0.0001
Test 5a	54.86	5	< 0.0001
Test 5b	-9.607e-012	0	N/A
Test 6a	20.99	4	0.0003187
Test 6b	33.88	1	< 0.0001
Test 7a	11.28	3	0.01029
Test 7b	43.58	2	< 0.0001
Test 7c	9.704	1	0.001839

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. Consider running a homogeneous model.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

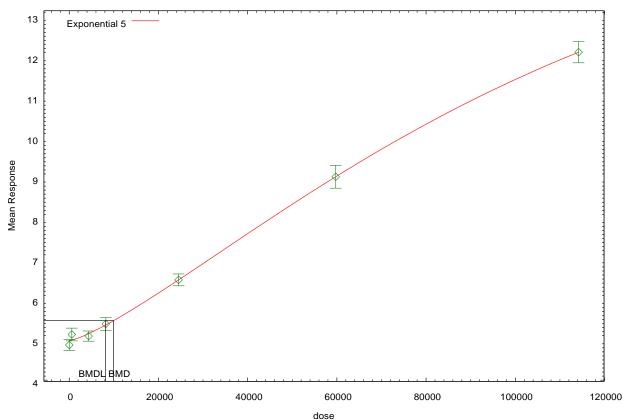
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model $4\,.$

Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	10208.3	9456.7
3	10208.3	9456.7
4	6975.14	6394.07
5	10011.4	8357.73

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

11:04 01/17 2017

Exponential Model. (Version: 1.10; Date: 01/12/2015)

Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File:

Tue Jan 17 11:46:15 2017

BMDS Model Run

The form of the response function by Model:

Model 2: $Y[dose] = a * exp{sign * b * dose}$ $Y[dose] = a * exp{sign * (b * dose)^d}$ Model 3:

Model 4:

Y[dose] = a * [c-(c-1) * exp{-b * dose}] Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}] Model 5:

Note: Y[dose] is the median response for exposure = dose;

sign = +1 for increasing trend in data;

sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4.

Model 3 is nested within Model 5.

Model 4 is nested within Model 5.

Dependent variable = Calculated Median

Independent variable = Dose

Data are assumed to be distributed: lognormally

Variance Model: Log-scale variance = exp(lnalpha)

rho is set to 0.

A constant log-scale variance model is fit.

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

MLE solution provided: Approximate

Initial Parameter Values

	Model 5	Model 4	Model 3		Model 2	Variable
	-7.49202	-7.49202	-7.49202		-7.49202	lnalpha
*	0	* 0 *	0	*	0	rho
	4.62485	4.62485	5.08129		5.08129	a
	4.22243e-006	4.22243e-006	8.08938e-006		8.08938e-006	b
	5.23581	* 5.23581	0	*	0	C
	1	1 *	1	*	1	Ь

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-5.83943	-5.83943	-6.9712	-7.18662
rho	0 *	0 *	0 -	* 0 *
a	5.08129	5.08129	4.89774	4.97271
b	8.08938e-006	8.08938e-006	1.24805e-006	9.33737e-006
C			12.2098	3.16586
d		1		1.2848

⁻⁻ Indicates that this parameter does not appear in model

Std. Err. Estimates by Model

Variable Model 2 Model 3 Model 4 Model 5

^{*} Indicates that this parameter has been specified

lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
C	NA	NA	NA	NA
d	NA	NA	NA	NA

 ${\tt NA}$ - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Cal	c'd Median	Calc'd GSD
40	6		4.868	1.027
580	6		5.128	1.03
4350	6		5.089	1.024
8210	6		5.388	1.028
2.453e+	004	6	6.478	1.022
5.974e+	004	6	9.026	1.03
1.142e+	005	6	12.11	1.021

Estimated Values of Interest

Model	Dose	Est Median	Est GSD	Scaled Residual
2	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	153e+004	6.197	1.055	0.6543
5.9	974e+004	8.239	1.055	1.827
1.3	L42e+005	12.8	1.055	-1.603
3	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	153e+004	6.197	1.055	0.6543
5.9	974e+004	8.239	1.055	1.827
1.3	L42e+005	12.8	1.055	-1.603
4	40	4.9	1.031	-0.07653
	580	4.937	1.031	0.4522
	4350	5.195	1.031	-0.2528
	8210	5.457	1.031	-0.1651
2.4	153e+004	6.553	1.031	-0.1773
	974e+004	8.842	1.031	0.4362
	L42e+005	12.19	1.031	-0.1967
5	40	4.973	1.028	-0.2499
	580	4.986	1.028	0.3382
	4350	5.147	1.028	-0.1391
	8210	5.363	1.028	0.05993
	153e+004	6.478	1.028	0.001557
	974e+004	9.027	1.028	-0.003654
1.3	L42e+005	12.11	1.028	0.001288

Other models for which likelihoods are calculated:

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	136.3324	8	-256.6649
A2	137.0945	14	-246.1891
A3	136.3324	8	-256.6649
R	26.37242	2	-48.74485
2	101.6281	3	-197.2563
3	101.6281	3	-197.2563
4	125.3952	4	-242.7904
5	129.9191	5	-249.8381

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

- Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
- Test 2: Are Variances Homogeneous? (A2 vs. A1)
- Test 3: Are variances adequately modeled? (A2 vs. A3)
- Test 4: Does Model 2 fit the data? (A3 vs. 2)
- Test 5a: Does Model 3 fit the data? (A3 vs 3)
- Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
- Test 6a: Does Model 4 fit the data? (A3 vs 4)
- Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
- Test 7a: Does Model 5 fit the data? (A3 vs 5)
- Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	221.4	12	< 0.0001
Test 2	1.524	6	0.9579
Test 3	1.524	6	0.9579
Test 4	69.41	5	< 0.0001
Test 5a	69.41	5	< 0.0001
Test 5b	-4.547e-013	0	N/A
Test 6a	21.87	4	0.0002123
Test 6b	47.53	1	< 0.0001
Test 7a	12.83	3	0.005027
Test 7b	56.58	2	< 0.0001
Test 7c	9.048	1	0.00263

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

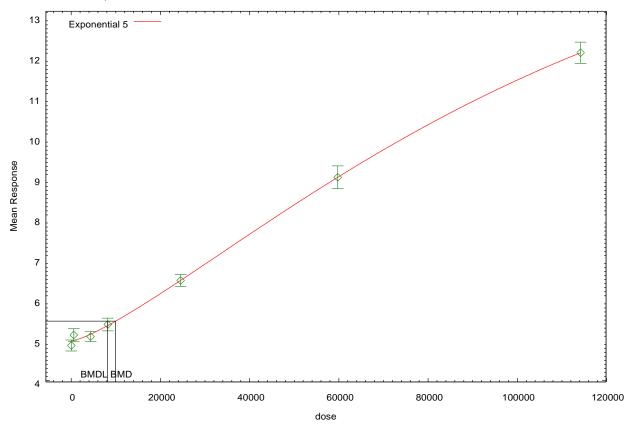
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	11782.1	11289.9
3	11782.1	11289.9
4	7179.8	6586.55
5	9958.04	8365.56

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

11:04 01/17 2017

Exponential Model. (Version: 1.10; Date: 01/12/2015)
Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtAl2012_Liver_Opt.(d)

Input Data File: U:/PFOS/PFOS_DataFiles/exp_DongEtA12012_Liver_Opt.(c)
Gnuplot Plotting File:

Tue Jan 17 11:50:03 2017

BMDS Model Run

The form of the response function by Model:

Model 2: Y[dose] = a * exp{sign * b * dose} Model 3: Y[dose] = a * exp{sign * (b * dose)^d}

Model 4: $Y[dose] = a * [c-(c-1) * exp{-b * dose}]$ Model 5: $Y[dose] = a * [c-(c-1) * exp{-(b * dose)^d}]$

Note: Y[dose] is the median response for exposure = dose;

sign = +1 for increasing trend in data;

sign = -1 for decreasing trend.

Model 2 is nested within Models 3 and 4.

Model 3 is nested within Model 5.

Model 4 is nested within Model 5.

Dependent variable = Calculated Median

Independent variable = Dose

Data are assumed to be distributed: lognormally

Variance Model: Log-scale variance = exp(lnalpha)

 ${\it rho}$ is ${\it set}$ to 0.

A constant log-scale variance model is fit.

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

MLE solution provided: Approximate

Initial Parameter Values

	Model 5	Model 4	Model 3		Model 2	Variable
	-7.49202	-7.49202	-7.49202		-7.49202	lnalpha
*	0	* 0 *	0	*	0	rho
	4.62485	4.62485	5.08129		5.08129	a
	4.22243e-006	4.22243e-006	8.08938e-006		8.08938e-006	b
	5.23581	* 5.23581	0	*	0	C
	1	1 *	1	*	1	Ь

^{*} Indicates that this parameter has been specified

Parameter Estimates by Model

Variable	Model 2	Model 3	Model 4	Model 5
lnalpha	-5.83943	-5.83943	-6.9712	-7.18662
rho	0 *	0 *	0 *	0 *
a	5.08129	5.08129	4.89774	4.97271
b	8.08938e-006	8.08938e-006	1.24805e-006	9.33737e-006
C			12.2098	3.16586
d		1		1.2848

⁻⁻ Indicates that this parameter does not appear in model

Std. Err. Estimates by Model

Variable Model 2 Model 3 Model 4 Model 5

^{*} Indicates that this parameter has been specified

lnalpha	NA	NA	NA	NA
rho	NA	NA	NA	NA
a	NA	NA	NA	NA
b	NA	NA	NA	NA
С	NA	NA	NA	NA
d	NA	NA	NA	NA

 ${\tt NA}$ - Indicates that this parameter was specified (by the user or because of the model form) or has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Stats From Input Data

Dose	N	Cal	.c'd Median	Calc'd GSD
40	6		4.868	1.027
580	6		5.128	1.03
4350	6		5.089	1.024
8210	6		5.388	1.028
2.453e+	004	6	6.478	1.022
5.974e+	004	6	9.026	1.03
1.142e+	005	6	12.11	1.021

Estimated Values of Interest

Model	Dose	Est Median	Est GSD	Scaled Residual
2	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	53e+004	6.197	1.055	0.6543
5.9	74e+004	8.239	1.055	1.827
1.1	42e+005	12.8	1.055	-1.603
3	40	5.083	1.055	-0.4982
	580	5.105	1.055	0.05251
	4350	5.263	1.055	-0.4054
	8210	5.43	1.055	-0.09816
2.4	53e+004	6.197	1.055	0.6543
5.9	74e+004	8.239	1.055	1.827
1.1	42e+005	12.8	1.055	-1.603
4	40	4.9	1.031	-0.07653
	580	4.937	1.031	0.4522
	4350	5.195	1.031	-0.2528
	8210	5.457	1.031	-0.1651
2.4	53e+004	6.553	1.031	-0.1773
5.9	74e+004	8.842	1.031	0.4362
1.1	42e+005	12.19	1.031	-0.1967
5	40	4.973	1.028	-0.2499
	580	4.986	1.028	0.3382
	4350	5.147	1.028	-0.1391
	8210	5.363	1.028	0.05993
	53e+004	6.478	1.028	0.001557
	74e+004	9.027	1.028	-0.003654
1.1	42e+005	12.11	1.028	0.001288

Other models for which likelihoods are calculated:

Likelihoods of Interest

Model	Log(likelihood)	DF	AIC
A1	136.3324	8	-256.6649
A2	137.0945	14	-246.1891
A3	136.3324	8	-256.6649
R	26.37242	2	-48.74485
2	101.6281	3	-197.2563
3	101.6281	3	-197.2563
4	125.3952	4	-242.7904
5	129.9191	5	-249.8381

Additive constant for all log-likelihoods = -38.6. This constant added to the above values gives the log-likelihood including the term that does not depend on the model parameters.

Explanation of Tests

- Test 1: Does response and/or variances differ among Dose levels? (A2 vs. R)
- Test 2: Are Variances Homogeneous? (A2 vs. A1)
- Test 3: Are variances adequately modeled? (A2 vs. A3)
- Test 4: Does Model 2 fit the data? (A3 vs. 2)
- Test 5a: Does Model 3 fit the data? (A3 vs 3)
- Test 5b: Is Model 3 better than Model 2? (3 vs. 2)
- Test 6a: Does Model 4 fit the data? (A3 vs 4)
- Test 6b: Is Model 4 better than Model 2? (4 vs. 2)
- Test 7a: Does Model 5 fit the data? (A3 vs 5)
- Test 7b: Is Model 5 better than Model 3? (5 vs. 3) Test 7c: Is Model 5 better than Model 4? (5 vs. 4)

Tests of Interest

Test	-2*log(Likelihood Ratio)	D. F.	p-value
Test 1	221.4	12	< 0.0001
Test 2	1.524	6	0.9579
Test 3	1.524	6	0.9579
Test 4	69.41	5	< 0.0001
Test 5a	69.41	5	< 0.0001
Test 5b	-4.547e-013	0	N/A
Test 6a	21.87	4	0.0002123
Test 6b	47.53	1	< 0.0001
Test 7a	12.83	3	0.005027
Test 7b	56.58	2	< 0.0001
Test 7c	9.048	1	0.00263

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels, it seems appropriate to model the data.

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here.

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here.

The p-value for Test 4 is less than .1. Model 2 may not adequately describe the data; you may want to consider another model.

The p-value for Test 5a is less than .1. Model 3 may not adequately describe the data; you may want to consider another model.

Degrees of freedom for Test 5b are less than or equal to 0. The Chi-Square test for fit is not valid.

The p-value for Test 6a is less than .1. Model 4 may not adequately describe the data; you may want to consider another model.

The p-value for Test 6b is less than .05. Model 4 appears to fit the data better than Model 2.

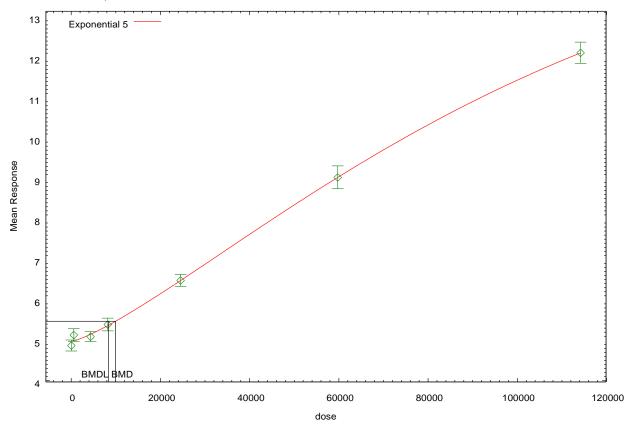
The p-value for Test 7a is less than .1. Model 5 may not adequately describe the data; you may want to consider another model.

The p-value for Test 7b is less than .05. Model 5 appears to fit the data better than Model 3.

The p-value for Test 7c is less than .05. Model 5 appears to fit the data better than Model 4.

Benchmark Dose Computations:

Specified Effect = 0.100000


Risk Type = Relative deviation

Confidence Level = 0.950000

BMD and BMDL by Model

Model	BMD	BMDL
2	11782.1	11289.9
3	11782.1	11289.9
4	7179.8	6586.55
5	9958.04	8365.56

Exponential 5 Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

11:50 01/17 2017

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Power parameter restricted to be greater than 1
A constant variance model is fit

Total number of dose groups = 7
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
 alpha = 0.0330429
 rho = 0 Specified
intercept = 4.87
 v = 7.24
 n = 18
 k = 67196.2

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

k	n	v	intercept	alpha	
6.4e-007	-4.4e-007	6.3e-007	4.9e-008	1	alpha
-0.47	0.6	-0.49	1	4.9e-008	intercept
1	-0.95	1	-0.49	6.3e-007	v
-0.96	1	-0.95	0.6	-4.4e-007	n
1	-0.96	1	-0.47	6.4e-007	k

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0325915	0.00711204	0.0186521	0.0465308
intercept	4.97932	0.0487351	4.8838	5.07484
V	16.2191	3.10398	10.1355	22.3028
n	1.32434	0.108677	1.11133	1.53734
k	137138	36180.3	66225.5	208050

Table of Data and Estimated Values of Interest

Dose	N	Obs Me	ean Est N	Mean Obs Std	Dev Est Std I	Dev Scaled Res.
40	6	4.87	4.98	0.13	0.181	-1.49
580	6	5.13	4.99	0.15	0.181	1.89
4350	6	5.09	5.15	0.12	0.181	-0.754
8210	6	5.39	5.36	0.15	0.181	0.41
2.453e+0	04	6	6.48	6.49	0.14	0.181 -0.0719
5.974e+0	04	6	9.03	9.03	0.27	0.181 0.0222
1.142e+0	05	6	12.1	12.1	0.25	0.181 -0.0047

Model A1: Yij = Mu(i) + e(ij)

 $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that

were specified by the user

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	50.897783	5	-91.795566
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	8.17968	6	0.2252
Test 4	7.07983	3	0.0694

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance

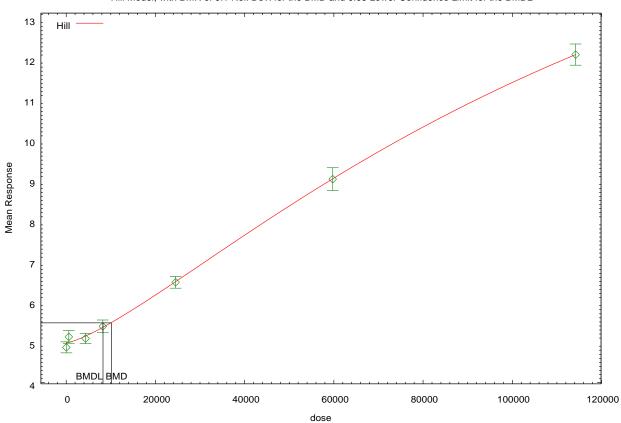
model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 10116.5

BMDL = 8252.33

Hill Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:05 01/17 2017

BMDS Model Run

The form of the response function is:

Y[dose] = intercept + v*dose^n/(k^n + dose^n)

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Power parameter is not restricted
A constant variance model is fit

Total number of dose groups = 7
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

al	Parameter Values	
=	0.0330429	
=	0	Specified
=	4.87	
=	7.24	
=	18	
=	67196.2	
		= 0.0330429 = 0 = 4.87 = 7.24 = 18

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

k	n	v	intercept	alpha	
-2.3e-007	1.9e-007	-2.2e-007	1.4e-007	1	alpha
-0.47	0.6	-0.49	1	1.4e-007	intercept
1	-0.95	1	-0.49	-2.2e-007	v
-0.96	1	-0.95	0.6	1.9e-007	n
1	-0.96	1	-0.47	-2.3e-007	k

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0325915	0.00711205	0.0186521	0.0465309
intercept	4.97932	0.0487349	4.8838	5.07484
V	16.2191	3.10394	10.1355	22.3027
n	1.32434	0.108676	1.11134	1.53734
k	137137	36179.8	66226.3	208048

Table of Data and Estimated Values of Interest

Dose	N	Ok	s Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4	1.87	4.98	0.13	0.181	-1.49
580	6	5	5.13	4.99	0.15	0.181	1.89
4350	6	5	5.09	5.15	0.12	0.181	-0.754
8210	6	5	5.39	5.36	0.15	0.181	0.41
2.453e+0	04	6	6.48	6.49	0.14	0.181	-0.0719
5.974e+0	04	6	9.03	9.03	0.27	0.181	0.0222
1.142e+0	05	6	12.1	12.1	0.25	0.181	-0.0047

Model A1: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that

were specified by the user

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	50.897783	5	-91.795566
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	8.17968	6	0.2252
Test 4	7.07983	3	0.0694

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. A homogeneous variance

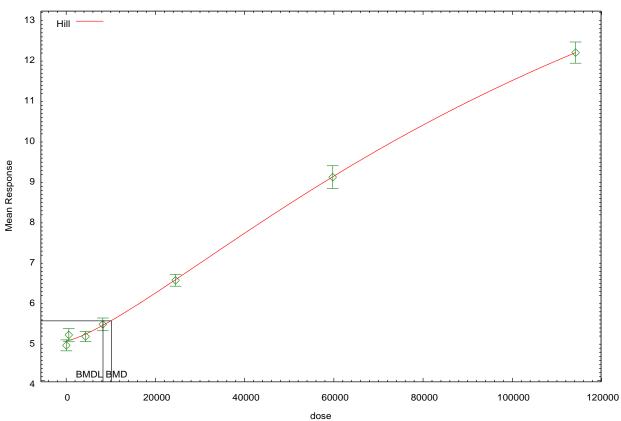
model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $\,$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 10116.5

BMDL = 8252.33

Hill Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:08 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.plt
Tue Jan 17 13:12:27 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 7
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values
alpha = 0.0330429
rho = 0 Spe

rho = 0 Specified beta_0 = 4.93898

beta_1 = 6.39157e-005

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

beta_1	beta_0	alpha	
-4.6e-009	1.8e-009	1	alpha
-0.61	1	1.8e-009	beta_0
1	-0.61	-4.6e-009	beta_1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0477827	0.010427	0.0273461	0.0682193
beta_0	4.93898	0.0424934	4.8557	5.02227
beta 1	6.39157e-005	8.5485e-007	6.22402e-005	6.55912e-005

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

40	6	4	.87	4.94	0.13	0.219	-0.802
580	6	5	.13	4.98	0.15	0.219	1.73
4350	6	5	.09	5.22	0.12	0.219	-1.42
8210	6	5	.39	5.46	0.15	0.219	-0.826
2.453e+	004	6	6.48	6.51	0.14	0.219	-0.301
5.974e+	004	6	9.03	8.76	0.27	0.219	3.06
1.142e+	005	6	12.1	12.2	0.25	0.219	-1.43

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = Sigma^2
Model A3 uses any fixed variance parameters that

Model A3 uses any fixed variance parameters tha were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	42.862930	3	-79.725860
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	8.17968	6	0.2252
Test 4	23.1495	5	0.0003161

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

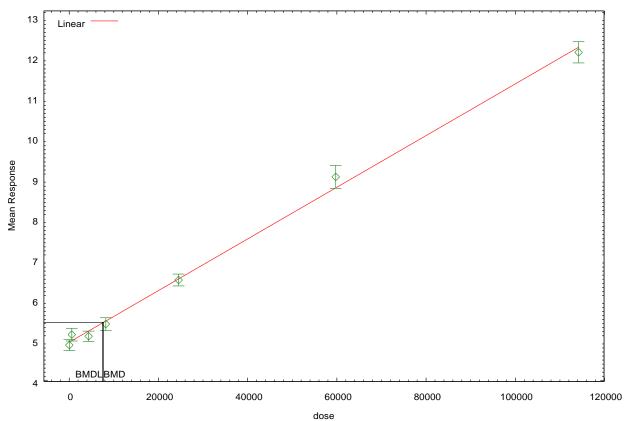
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 7727.34

BMDL = 7476.55

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Linear Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:12 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_DongEtAl2012_Liver_Opt.plt Tue Jan 17 13:14:41 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose

Signs of the polynomial coefficients are not restricted The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 7 Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.40995rho = beta_0 = 4.93898 $beta_1 = 6.39157e-005$

Asymptotic Correlation Matrix of Parameter Estimates

beta_1	beta_0	rho	lalpha	
-0.19	0.11	-0.99	1	lalpha
0.19	-0.11	1	-0.99	rho
-0.5	1	-0.11	0.11	beta_0
1	-0.5	0.19	-0.19	beta_1

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-6.34952	1.33386	-8.96383	-3.73521
rho	1.69143	0.703445	0.312705	3.07016
beta_0	4.92152	0.0340717	4.85474	4.9883
beta_1	6.45675e-005	1.1362e-006	6.23405e-005	6.67944e-005

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4.87	4.92	0.13	0.161	-0.823
580	6	5.13	4.96	0.15	0.162	2.59

4350	6	5	.09	5.2	0.12	0.169	-1.63
8210	6	5	.39	5.45	0.15	0.175	-0.86
2.453e+0	04	6	6.48	6.51	0.14	0.204	-0.305
5.974e+0	04	6	9.03	8.78	0.27	0.262	2.34
1.142e+0	05	6	12.1	12.3	0.25	0.349	-1.29

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = exp(lalpha + rho*ln(Mu(i)))
Model A3 uses any fixed variance parameters that
were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	57.845743	9	-97.691487
fitted	45.894594	4	-83.789189
R	-60.007759	2	124.015518

Explanation of Tests

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	1.3636	5	0.9283
Test 4	23.9023	5	0.0002267

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. Consider running a homogeneous model $\,$

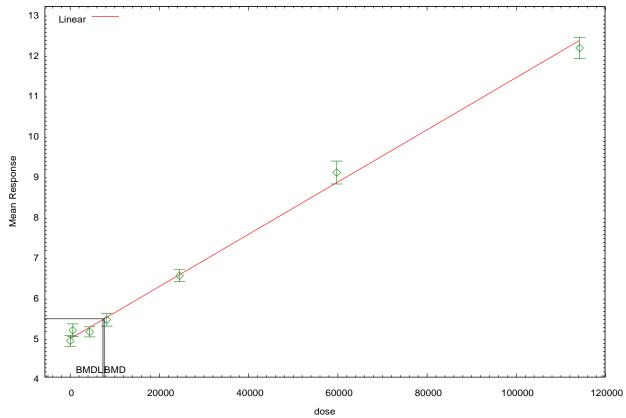
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 7622.29

BMDL = 7343.76

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Linear Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:14 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt Tue Jan 17 13:16:42 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose rho is set to 0 Signs of the polynomial coefficients are not restricted A constant variance model is fit

Total number of dose groups = 7Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 0.0330429

rho = Specified

4.87527 beta_0 = $beta_1 = 7.21979e-005$ $beta_2 = -7.55541e-011$

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

beta_2	beta_1	beta_0	alpha	
1.8e-007	-5.7e-008	1.2e-008	1	alpha
0.5	-0.62	1	3.8e-009	beta_0
-0.97	1	-0.62	5.5e-010	beta_1
1	-0.97	0.5	-6.2e-011	beta_2

Parameter Estimates

			95.0% Wald Confid	dence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0400871	0.00874773	0.0229419	0.0572324
beta_0	4.87527	0.0449266	4.78721	4.96332
beta_1	7.21979e-005	3.02005e-006	6.62787e-005	7.81171e-005
beta_2	-7.55541e-011 2.660826	e-011 -1.27705e-0	10 -2.34029e-011	

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev Est	Std Dev	Scaled Res.
40	6	4.87	4.88	0.13	0.2	-0.0998
580	6	5.13	4.92	0.15	0.2	2.6
4350	6	5.09	5.19	0.12	0.2	-1.2
8210	6	5.39	5.46	0.15	0.2	-0.892
2.453e+00)4	6 6.48	6.6	0.14	0.2	-1.48
5.974e+00	04	6 9.03	8.92	0.27	0.2	1.36
1.142e+00)5	6 12.1	12.1	0.25	0.2	-0.298

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	46.550697	4	-85.101394
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	8.17968	6	0.2252
Test 4	15.774	4	0.003338

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears

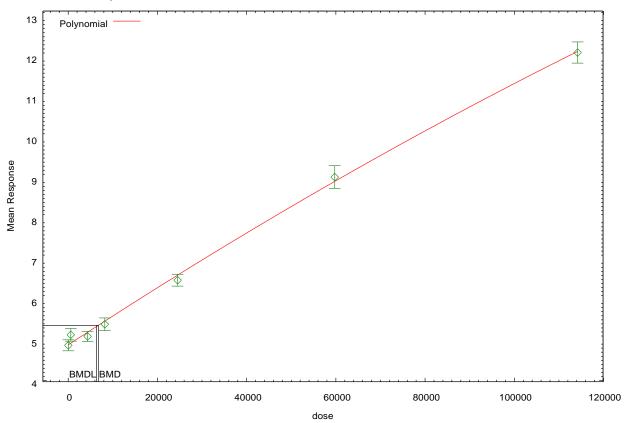
to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 6801.05

BMDL = 6305.17

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

13:16 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt
Tue Jan 17 14:18:23 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 7
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 0.0330429

rho = 0 Specified

beta_0 = 4.94609 beta_1 = 5.14209e-005 beta_2 = 4.89896e-010 beta_3 = -3.42281e-015

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1	beta_2	beta_3
alpha	1	-1.8e-007	-4.8e-007	-8.2e-008	-6.4e-007
beta_0	-1.1e-008	1	-0.66	0.55	-0.5
beta_1	-6.2e-011	-0.66	1	-0.97	0.93
beta_2	-6.5e-012	0.55	-0.97	1	-0.99
beta_3	-4e-012	-0.5	0.93	-0.99	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0330514	0.00721241	0.0189153	0.0471874
beta_0	4.94609	0.047172	4.85364	5.03855
beta_1	5.14209e-005	7.47016e-006	3.67796e-005	6.60621e-005
beta_2	4.89896e-010	1.90645e-010	1.16239e-010	8.63554e-010
beta_3	-3.42281e-015	1.14472e-015	-5.66642e-015	-1.17921e-015

Table of Data and Estimated Values of Interest

Dose	N	Ob	s Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4	.87	4.95	0.13	0.182	-1.05
580	6	5	.13	4.98	0.15	0.182	2.07
4350	6	5	.09	5.18	0.12	0.182	-1.2
8210	6	5	.39	5.4	0.15	0.182	-0.126
2.453e+0	04	6	6.48	6.45	0.14	0.182	0.381
5.974e+0	04	6	9.03	9.04	0.27	0.182	-0.0888
1.142e+0	05	6	12.1	12.1	0.25	0.182	0.00905

Yij = Mu(i) + e(ij)Model A1:

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Yij = Mu(i) + e(ij)Model A3:

 $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that

were specified by the user

 $\label{eq:Yi} \begin{array}{rcl} \text{Yi} &=& \text{Mu} + \text{e(i)} \\ \text{Var}\{\text{e(i)}\} &=& \text{Sigma^2} \end{array}$ Model R:

Likelihoods of Interest

Model	Log(likelihood)	# Param's	s AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	50.603523	5	-91.207047
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	8.17968	6	0.2252
Test 4	7.66835	3	0.05339

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. A homogeneous variance

model appears to be appropriate here

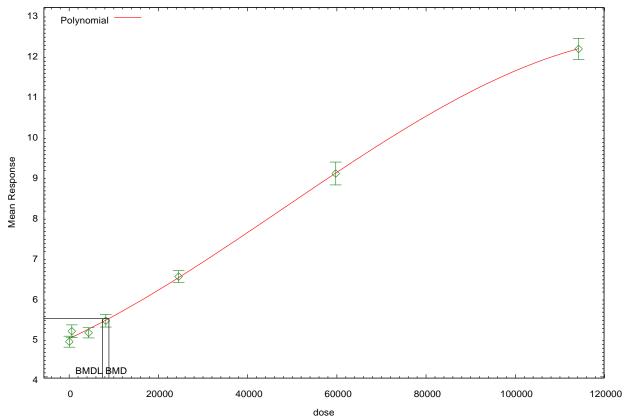
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 8909.64

BMDL = 7501.21

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:18 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt
Tue Jan 17 14:19:48 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.40995rho = 0

beta_0 = 4.87527

 $beta_1 = 7.21979e-005$

 $beta_2 = -7.55541e-011$

Asymptotic Correlation Matrix of Parameter Estimates

beta_2	beta_1	beta_0	rho	lalpha	
-0.38	0.38	-0.22	-0.99	1	lalpha
0.38	-0.38	0.23	1	-0.99	rho
0.51	-0.62	1	0.23	-0.22	beta_0
-0.96	1	-0.62	-0.38	0.38	beta_1
1	-0.96	0.51	0.38	-0.38	beta_2

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
lalpha	-5.03945	1.40762	-7.79833	-2.28057	
rho	0.95182	0.743283	-0.504987	2.40863	
beta_0	4.88771	0.0407528	4.80784	4.96758	
beta_1	7.06258e-005	3.41542e-006	6.39317e-005	7.73199e-005	
beta_2	-6.13465e-011	3.16066e-011	-1.23294e-010	6.013e-013	

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

		_					
40	6		4.87	4.89	0.13	0.171	-0.294
580	6		5.13	4.93	0.15	0.172	2.87
4350	6		5.09	5.19	0.12	0.176	-1.44
8210	6		5.39	5.46	0.15	0.181	-0.996
2.453e+0	004	6	6.48	6.58	0.14	0.197	-1.28
5.974e+0	004	6	9.03	8.89	0.27	0.228	1.53
1.142e+0	005	6	12.1	12.2	0.25	0.264	-0.395

 $\label{eq:model_A2: Yij = Mu(i) + e(ij)} \mbox{Var}\{e(ij)\} = \mbox{Sigma(i)^2}$

Model A3: Yij = Mu(i) + e(ij)

 $\label{eq:Var} Var\big\{e(ij)\big\} = \exp(lalpha + rho*ln(Mu(i))) \\ Model A3 uses any fixed variance parameters that \\ were specified by the user$

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	57.845743	9	-97.691487
fitted	47.437173	5	-84.874346
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	1.3636	5	0.9283
Test 4	20.8171	4	0.0003442

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. Consider running a homogeneous model

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

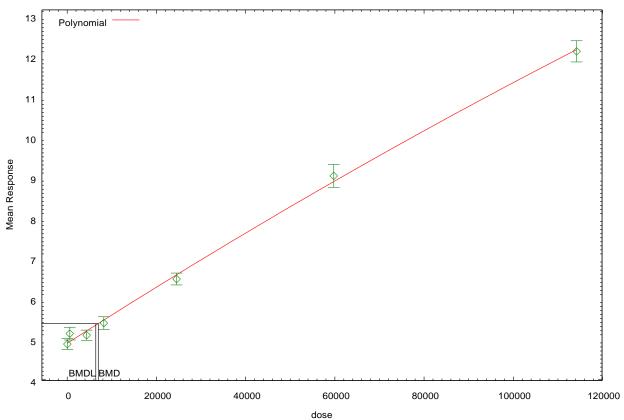
The p-value for Test 4 is less than .1. You may want to try a different

model

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 6962.68

BMDL = 6413.07

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:19 01/17 2017

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:21:44 2017

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.409950

rho =

4.94609 beta_0 =

 $beta_1 = 5.14209e-005$ $beta_2 = 4.89896e-010$

 $beta_3 = -3.42281e-015$

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	beta_0	beta_1	beta_2	beta_3
lalpha	1	-0.99	-0.04	0.079	-0.086	0.087
rho	-0.99	1	0.042	-0.082	0.089	-0.09
beta_0	-0.04	0.042	1	-0.65	0.54	-0.48
beta_1	0.079	-0.082	-0.65	1	-0.96	0.91
beta_2	-0.086	0.089	0.54	-0.96	1	-0.99
beta_3	0.087	-0.09	-0.48	0.91	-0.99	1

Parameter Estimates

			95.0% Wald Confi	dence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-5.35428	1.26864	-7.84076	-2.86779
rho	1.00823	0.668212	-0.301441	2.3179
beta_0	4.94885	0.0406379	4.8692	5.0285
beta_1	5.0575e-005	6.99304e-006	3.68689e-005	6.42811e-005
beta_2	5.13283e-010	1.8598e-010	1.48769e-010	8.77796e-010
beta_3 -3	3.56533e-015 1.14578	e-015 -5.81102e-0)15 -1.31964e-015	

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4.87	4.95	0.13	0.154	-1.29
580	6	5.13	4.98	0.15	0.154	2.41
4350	6	5.09	5.18	0.12	0.158	-1.37
8210	6	5.39	5.4	0.15	0.161	-0.102
2.453e+0	04	6 6.48	6.45	0.14	0.176	0.478
5.974e+0	04	6 9.03	9.04	0.27	0.209	-0.14
1.142e+0	05	6 12.1	12.1	0.25	0.242	0.0178

Yij = Mu(i) + e(ij)Model A1:

 $Var\{e(ij)\} = Sigma^2$

 $\label{eq:Yij = Mu(i) + e(ij)} Var\{e(ij)\} = Sigma(i)^2$ Model A2:

Model A3:

 $\label{eq:continuity} \begin{array}{ll} \mbox{Yij} = \mbox{Mu(i)} + \mbox{e(ij)} \\ \mbox{Var}\{\mbox{e(ij)}\} = \mbox{exp}(\mbox{lalpha} + \mbox{rho*ln}(\mbox{Mu(i)})) \end{array}$

Model A3 uses any fixed variance parameters that were specified by the user

Yi = Mu + e(i)Model R:

 $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	57.845743	9	-97.691487
fitted	51.834274	6	-91.668547
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	1.3636	5	0.9283
Test 4	12.0229	3	0.007305

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

The p-value for Test 2 is greater than .1. Consider running a homogeneous model

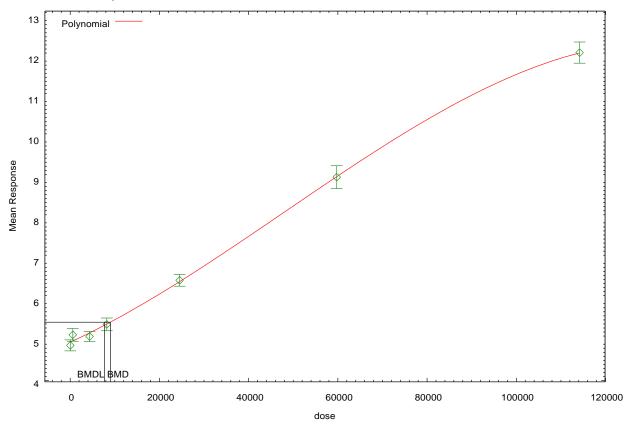
The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Relative deviation


Confidence level = 0.95

BMD = 9012.43

BMDL = 7673.2

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:21 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt
Tue Jan 17 14:24:15 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
The power is restricted to be greater than or equal to 1

The power is restricted to be greater than or equal to 1 A constant variance model is fit

Total number of dose groups = 7
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 0.0330429

rho = 0 Specified

control = 4.87
 slope = 0.00146704
 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho -power
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

slope	control	alpha	
2.9e-008	6.2e-008	1	alpha
-0.61	1	6.2e-008	control
1	-0.61	2.9e-008	slope

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
alpha	0.0477827	0.010427	0.0273461	0.0682193
control	4.93898	0.0424934	4.8557	5.02227
slope	6.39157e-005	8.5485e-007	6.22402e-005	6.55912e-005
power	1	NA		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
40	6	4.87	4.94	0.13	0.219	-0.802
580	6	5.13	4.98	0.15	0.219	1.73
4350	6	5.09	5.22	0.12	0.219	-1.42
8210	6	5.39	5.46	0.15	0.219	-0.826
2.453e+0	04	6 6.48	6.51	0.14	0.219	-0.301
5.974e+0	04	6 9.03	8.76	0.27	0.219	3.06
1.142e+0	05	6 12.1	12.2	0.25	0.219	-1.43

Yij = Mu(i) + e(ij)Model A1:

 $Var\{e(ij)\} = Sigma^2$

 $\label{eq:condition} \begin{array}{rcl} \mbox{Yij} &=& \mbox{Mu(i)} + \mbox{e(ij)} \\ \mbox{Var}\{\mbox{e(ij)}\} &=& \mbox{Sigma(i)}^2 \end{array}$ Model A2:

 $\label{eq:Yij = Mu(i) + e(ij)} $$ Var\{e(ij)\} = Sigma^2$$ Model A3:

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	42.862930	3	-79.725860
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	8.17968	6	0.2252
Test 4	23.1495	5	0.0003161

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data

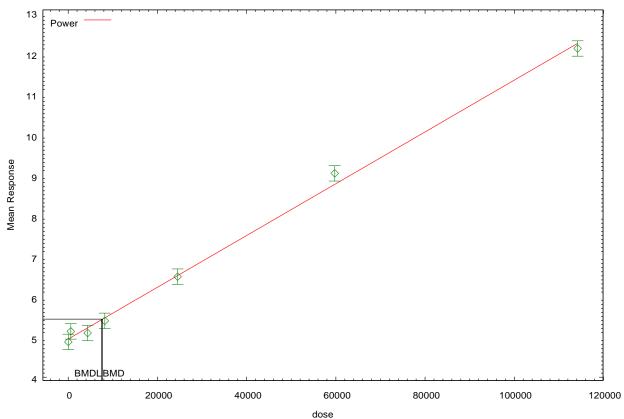
The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 7727.34

BMDL = 7476.55

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:24 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt
Tue Jan 17 14:26:06 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean

Independent variable = Dose

The power is restricted to be greater than or equal to 1

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.40995 rho = 0 control = 4.87 slope = 0.00146704 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -power

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	lalpha	rho	control	slope
lalpha	1	-0.99	0.083	-0.16
rho	-0.99	1	-0.089	0.16
control	0.083	-0.089	1	-0.5
slope	-0.16	0.16	-0.5	1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-6.34952	1.3258	-8.94804	-3.75099
rho	1.69143	0.698986	0.321445	3.06142
control	4.92152	0.0340441	4.85479	4.98824
slope	6.45675e-005	1.13294e-006	6.23469e-005	6.6788e-005
power	1	NA		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	N		Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
		-					
40	6		4.87	4.92	0.13	0.161	-0.823
580	6		5.13	4.96	0.15	0.162	2.59
4350	6		5.09	5.2	0.12	0.169	-1.63
8210	6		5.39	5.45	0.15	0.175	-0.86
2.453e+0	04	6	6.48	6.51	0.14	0.204	-0.305
5.974e+0	04	6	9.03	8.78	0.27	0.262	2.34
1.142e+0	05	6	12.1	12.3	0.25	0.349	-1.29

Model A1: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that

were specified by the user

 $\label{eq:model_R: Var(e(i)) = Mu + e(i)} \begin{tabular}{ll} Var(e(i)) &= Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	57.845743	9	-97.691487
fitted	45.894594	4	-83.789189
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	1.3636	5	0.9283
Test 4	23.9023	5	0.0002267

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. Consider running a

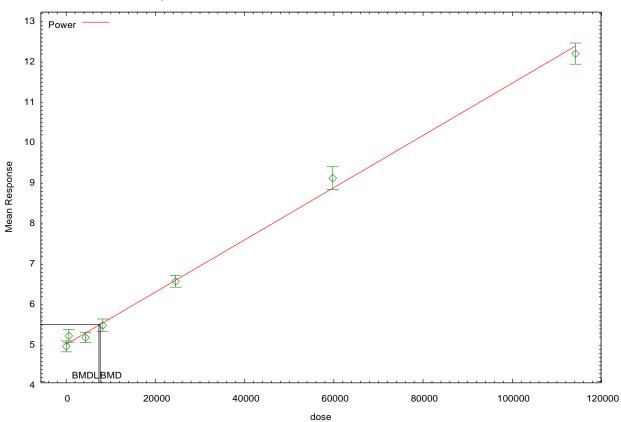
homogeneous model

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different model $\,$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 7622.29

BMDL = 7343.76

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:26 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt Tue Jan 17 14:27:48 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit

Total number of dose groups = 7Total number of records with missing values = 0 Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 0.0330429

rho = Specified

4.87 control = slope = 0.00146704 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

power	slope	control	alpha	
-3.2e-008	3.3e-008	-9.1e-008	1	alpha
0.65	-0.66	1	-9.1e-008	control
-1	1	-0.66	3.3e-008	slope
1	-1	0.65	-3.2e-008	power

Parameter Estimates

		95.0% Wald Confidence Interval			
Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
0.0443943	0.00968763	0.0254069	0.0633817		
4.87726	0.0543039	4.77083	4.98369		
0.000120968	4.19328e-005	3.87813e-005	0.000203155		
0.945261	0.0297276	0.886996	1.00353		
	0.0443943 4.87726 0.000120968	0.0443943 0.00968763 4.87726 0.0543039 0.000120968 4.19328e-005	Estimate Std. Err. Lower Conf. Limit 0.0443943 0.00968763 0.0254069 4.87726 0.0543039 4.77083 0.000120968 4.19328e-005 3.87813e-005		

Table of Data and Estimated Values of Interest

Dose	N	0	bs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
		-					
40	6		4.87	4.88	0.13	0.211	-0.13
580	6		5.13	4.93	0.15	0.211	2.36
4350	6		5.09	5.21	0.12	0.211	-1.39
8210	6		5.39	5.48	0.15	0.211	-1.09
2.453e+0	04	6	6.48	6.58	0.14	0.211	-1.21
5.974e+0	04	6	9.03	8.84	0.27	0.211	2.26
1.142e+0	05	6	12.1	12.2	0.25	0.211	-0.807

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A3: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	54.437700	8	-92.875399
fitted	44.407529	4	-80.815058
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? (A2 vs. R)

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	8.17968	6	0.2252
Test 4	20.0603	4	0.0004859

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is greater than .1. A homogeneous variance model appears to be appropriate here

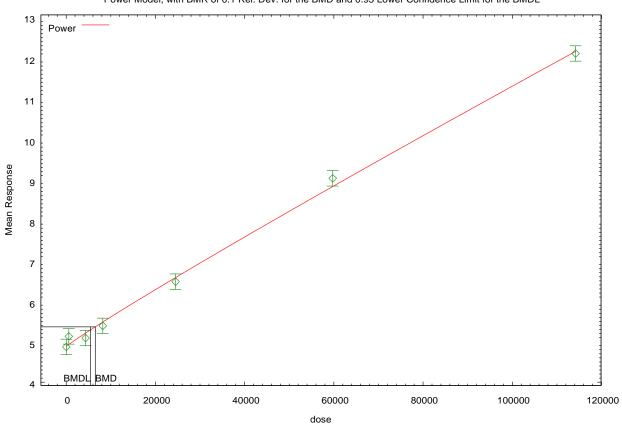
The p-value for Test 3 is greater than .1. The modeled variance appears

to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 6520.71

BMDL = 5487.84

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:27 01/17 2017

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_DongEtAl2012_Liver_Opt.plt
Tue Jan 17 14:29:51 2017

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose The power is not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 7

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -3.40995 rho = 0 control = 4.87 slope = 0.00146704 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

	lalpha	rho	control	slope	power
lalpha	1	-0.99	-0.32	0.52	-0.53
rho	-0.99	1	0.32	-0.53	0.53
control	-0.32	0.32	1	-0.67	0.66
slope	0.52	-0.53	-0.67	1	-1
power	-0.53	0.53	0.66	-1	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-5.87143	1.55454	-8.91828	-2.82459
rho	1.43172	0.822781	-0.180905	3.04434
control	4.9049	0.0460417	4.81466	4.99514
slope	8.29349e-005	3.56283e-005	1.31047e-005	0.000152765
power	0.978124	0.0374242	0.904774	1.05147

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

		-					
40	6		4.87	4.91	0.13	0.166	-0.561
580	6		5.13	4.95	0.15	0.167	2.69
4350	6		5.09	5.21	0.12	0.173	-1.63
8210	6		5.39	5.46	0.15	0.179	-1.01
2.453e+0	004	6	6.48	6.54	0.14	0.204	-0.671
5.974e+0	004	6	9.03	8.8	0.27	0.252	2.24
1.142e+0	05	6	12.1	12.2	0.25	0.319	-1.04

Model A3: Yij = Mu(i) + e(ij)

 $\label{eq:Var} $$ Var\{e(ij)\} = \exp(lalpha + rho*ln(Mu(i))) $$ Model A3 uses any fixed variance parameters that were specified by the user$

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	54.437700	8	-92.875399
A2	58.527542	14	-89.055084
A3	57.845743	9	-97.691487
fitted	46.056811	5	-82.113622
R	-60.007759	2	124.015518

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	237.071	12	<.0001
Test 2	8.17968	6	0.2252
Test 3	1.3636	5	0.9283
Test 4	23.5779	4	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

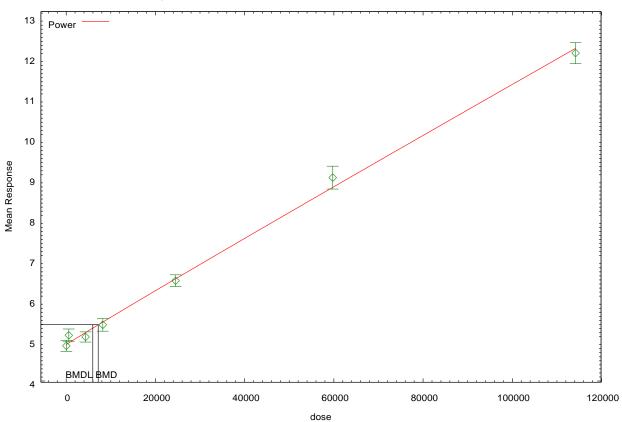
The p-value for Test 2 is greater than .1. Consider running a homogeneous model

The p-value for Test 3 is greater than .1. The modeled variance appears to be appropriate here

The p-value for Test 4 is less than .1. You may want to try a different

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Relative deviation

Confidence level = 0.95

BMD = 7182.14

BMDL = 5968.86

Power Model, with BMR of 0.1 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

14:29 01/17 2017

Wang *et al.* (2011c) Benchmark Dose Analysis - Offspring Total T4 (at PND7) $\mathbf{BMR} = \mathbf{1} \mathbf{SD}$

Pages	Model	Variance	Beta/Power/Slope/n	Distribution	Poly	Chi-square <i>p</i> -value	AIC	BMD (ng/mL)	BMDL (ng/mL)
-	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Normal	-	-	-	-	-
-	Exponential ^a	Not Constant	Restrict Power ≥ 1	Normal	-	-	-	-	-
-	Exponential ^a	Constant (Rho=0)	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
-	Exponential ^a	Not Constant	Restrict Power ≥ 1	Lognormal	-	-	-	-	-
-	Hill ^a	Constant (Rho=0)	Restrict n > 1	=	-	-	-	-	-
-	Hill ^a	Constant (Rho=0)	No Restriction	-	-	-	-	-	-
2-4	Linear	Constant (Rho=0)	-	-	1st	< 0.0001	149.22	5273.85	4103.69
5-7	Linear	Not Constant	-	=	1st	< 0.0001	118.60	8782.32	6467.23
8-10	Polynomial b	Constant (Rho=0)	-	=	2nd	NA	29.34	110.16	90.76
-	Polynomial ^c	Constant (Rho=0)	-	=	3rd	-	-	-	-
11-13	Polynomial b	Not Constant	-	-	2nd	NA	27.26	70.42	50.74
-	Polynomial ^c	Not Constant	-	=	3rd	-	-	-	-
14-16	Power	Constant (Rho=0)	Restrict Power ≥ 1	-	-	< 0.0001	149.23	5273.85	4103.69
17-19	Power	Not Constant	Restrict Power ≥ 1	=	-	< 0.0001	118.60	8782.33	6467.23
20-22	Power ^b	Constant (Rho=0)	No Power Restriction	-	-	NA	29.34	0.00	0.00
23-25	Power b	Not Constant	No Power Restriction	-	-	NA	27.26	0.00	0.00

- a. Model fails because of optimization issue.
- b. Too few *df* to run chi-square test for fit.
- c. The number of parameters estimated by the model is greater than the number of observations.

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.plt
Wed May 18 09:55:33 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 3

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values alpha = 0.772667

rho = 0 Specified beta_0 = 34.1325

 $beta_1 = -0.000958452$

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	alpha	beta_0	beta_1
alpha	1	-4.7e-008	1.2e-008
beta_0	-4.7e-008	1	-0.66
beta_1	1.2e-008	-0.66	1

Parameter Estimates

95.0% Wald Confidence Interval						
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
alpha	28.2258	6.94872	14.6066	41.8451		
beta_0	35.1127	1.23098	32.7001	37.5254		
beta_1	-0.00100739	0.000119967	-0.00124252	-0.000772255		

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
5	12	40.3	35.1	0.5	5.31	3.39
2290	9	24.8	32.8	1.2	5.31	-4.52

1.69e+004 12 18.9 18.1 0.9 5.31 0.529

Model Descriptions for likelihoods calculated

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} $$ Var{e(ij)} = Sigma^2$$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

Var{e(ij)} = Sigma^2

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-10.671908	4	29.343815
fitted	-71.613919	3	149.227838
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

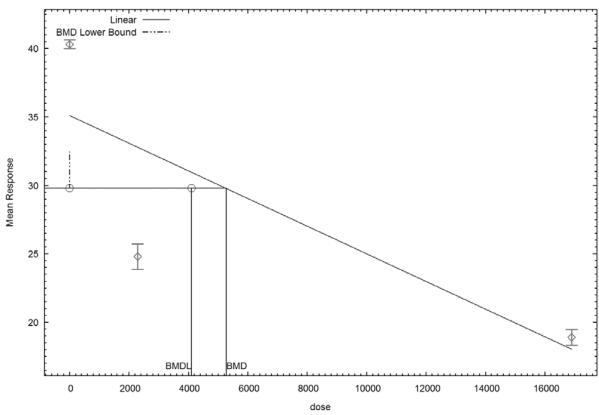
Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	7.37453	2	0.02504
Test 4	121.884	1	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different model


Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95 BMD = 5273.85 BMDL = 4103.69

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:55 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/lin_WangEtAl2011_Opt.plt
Wed May 18 09:56:52 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 3

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -0.257908rho = 0

beta_0 = 34.1325

 $beta_1 = -0.000958452$

Asymptotic Correlation Matrix of Parameter Estimates

beta_1	beta_0	rho	lalpha	
-0.15	0.15	-1	1	lalpha
0.15	-0.15	1	-1	rho
-0.99	1	-0.15	0.15	beta_0
1	-0.99	0.15	-0.15	beta_1

Parameter Estimates

			95.0% Wald Conf	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-22.4908	3.16525	-28.6946	-16.287
rho	7.56038	0.960311	5.6782	9.44255
beta_0	33.468	1.60457	30.3231	36.6129
beta_1	-0.000862901	9.63096e-005	-0.00105166	-0.000674138

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
5	12	40.3	33.5	0.5	7.57	3.13
2290	9	24.8	31.5	1.2	6.02	-3.33

1.69e+004 12 18.9 18.9 0.9 0.871 0.0596

Model Descriptions for likelihoods calculated

 $\label{eq:model Al: Yij = Mu(i) + e(ij)} $$ Var{e(ij)} = Sigma^2$$

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $\label{eq:Var} $$ Var\{e(ij)\} = \exp(lalpha + rho*ln(Mu(i))) $$ Model A3 uses any fixed variance parameters that were specified by the user$

 $\label{eq:model_R: Var{e(i)} = Mu + e(i)} \begin{tabular}{ll} Var & (i) & Sigma^2 \end{tabular}$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-8.632413	5	27.264826
fitted	-55.300810	4	118.601620
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

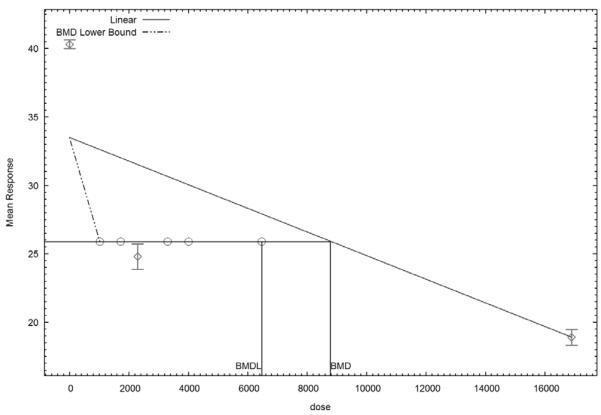
Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	3.29554	1	0.06947
Test 4	93.3368	1	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate

The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different model


Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95 BMD = 8782.32 BMDL = 6467.23

Linear Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:56 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.plt
Wed May 18 09:58:43 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean
Independent variable = Dose
rho is set to 0
Signs of the polynomial coefficients are not restricted
A constant variance model is fit

Total number of dose groups = 3
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 0.772667

rho = 0 Specified

beta_0 = 40.3382 beta_1 = -0.00764996 beta_2 = 3.77599e-007

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

beta_2	beta_1	beta_0	alpha	
2.3e-008	-2.6e-007	5.7e-008	1	alpha
0.6	-0.65	1	-2.6e-008	beta_0
-0.99	1	-0.65	1.7e-009	beta_1
1	-0.99	0.6	2e-009	beta_2

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
alpha	0.702424	0.172925	0.363498	1.04135	
beta_0	40.3382	0.242543	39.8629	40.8136	
beta_1	-0.00764996	0.000185693	-0.00801391	-0.00728601	
beta_2	3.77599e-007	1.05008e-008	3.57018e-007	3.9818e-007	

Table of Data and Estimated Values of Interest

Dose	N	I Obs	Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
5	12	40	.3	40.3	0.5	0.838	1.05e-007
2290	9	24	. 8	24.8	1.2	0.838	7.82e-008
1.69e+00	04	12	18.9	18.9	0.9	0.838	-8.84e-008

Degrees of freedom for Test A3 vs fitted <= 0

Model Descriptions for likelihoods calculated

Model A3: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-10.671908	4	29.343815
fitted	-10.671908	4	29.343815
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test -2	2*log(Likelihood Ratio)	Test di	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	7.37453	2	0.02504
Test 4	2.4869e-014	0	NA

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. Consider running a non-homogeneous variance model

The p-value for Test 3 is less than .1. You may want to consider a different variance model

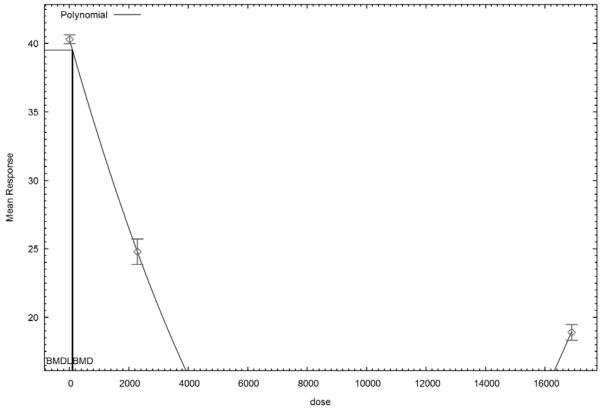
 ${\tt NA}$ - ${\tt Degrees}$ of freedom for ${\tt Test}$ 4 are less than or equal to 0. The ${\tt Chi-Square}$

test for fit is not valid

Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean


Confidence level = 0.95

BMD = 110.156

BMDL = 90.7604

 ${\tt BMDL}$ computation failed for one or more point on the ${\tt BMDL}$ curve. The ${\tt BMDL}$ curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:58 05/18 2016

Polynomial Model. (Version: 2.20; Date: 10/22/2014) Input Data File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/ply_WangEtAl2011_Opt.plt Wed May 18 10:01:43 2016

BMDS Model Run

The form of the response function is:

Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...

Dependent variable = Mean Independent variable = Dose

Signs of the polynomial coefficients are not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 3

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -0.257908rho = 0

40.3382 beta_0 =

 $beta_0 = 40.3382$ $beta_1 = -0.00764996$

 $beta_2 = 3.77599e-007$

Asymptotic Correlation Matrix of Parameter Estimates

beta_2	beta_1	beta_0	rho	lalpha	
0.054	-0.044	-0.0016	-1	1	lalpha
-0.05	0.041	0.002	1	-1	rho
0.43	-0.48	1	0.002	-0.0016	beta_0
-0.99	1	-0.48	0.041	-0.044	beta_1
1	-0.99	0.43	-0.05	0.054	beta_2

Parameter Estimates

			idence Interval	
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	5.67563	2.91533	-0.0383121	11.3896
rho	-1.87073	0.882943	-3.60126	-0.140192
beta_0	40.3397	0.155728	40.0345	40.6449
beta_1	-0.00766159	0.000163078	-0.00798121	-0.00734196
beta 2	3.7836e-007	9.49108e-009	3.59757e-007	3.96962e-007

Table of Data and Estimated Values of Interest

Est Mean Obs Std Dev Est Std Dev Scaled Res. Dose N Obs Mean

5 12 40.3 40.3 0.5 0.538 -0.00903 0.848 0.0749 2290 9 24.8 1.69e+004 18.9 18.9 0.9 1.09 12 -0.0703

Warning: Likelihood for fitted model larger than the Likelihood for model A3.

Model Descriptions for likelihoods calculated

Model A2: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\}$ = exp(lalpha + rho*ln(Mu(i)))

Model A3 uses any fixed variance parameters that were specified by the user $\,$

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-8.632413	5	27.264826
fitted	-8.632413	5	27.264826
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels?
(A2 vs. R)

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	3.29554	1	0.06947
Test 4	-1.0413e-011	0	NA

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

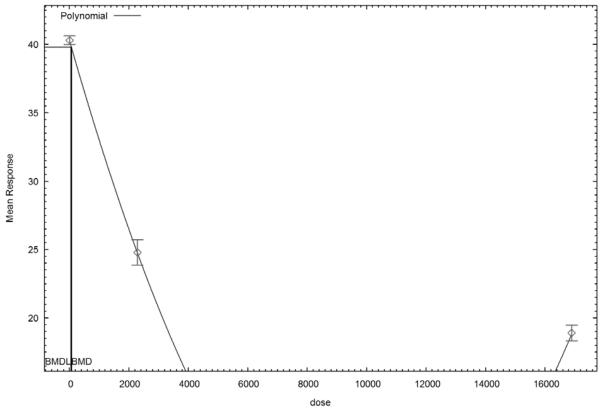
The p-value for Test 3 is less than .1. You may want to consider a different variance model

 ${\tt NA}$ - Degrees of freedom for Test 4 are less than or equal to 0. The Chi-Square test for fit is not valid

Benchmark Dose Computation

Specified effect = 1

Risk Type = Estimated standard deviations from the control mean


Confidence level = 0.95

BMD = 70.4203

BMDL = 50.7412

 ${\tt BMDL}$ computation failed for one or more point on the BMDL curve. The BMDL curve will not be plotted

Polynomial Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:01 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014) Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d) Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt Wed May 18 10:04:04 2016

BMDS Model Run

The form of the response function is:

A constant variance model is fit

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is restricted to be greater than or equal to 1

Parameter Convergence has been set to: 1e-008

Total number of dose groups = 3Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008

power =

Default Initial Parameter Values

alpha = 0.772667 rho = 0 Specified

control = 40.3 slope = -0.00126627-9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho -power have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

slope	control	alpha	
-1.7e-009	-4.1e-009	1	alpha
-0.66	1	-4.1e-009	control
1	-0.66	-1.7e-009	slope

Parameter Estimates

			95.0% Wald Confidence Interval		
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
alpha	28.2258	6.94872	14.6066	41.8451	
control	35.1127	1.23098	32.7001	37.5254	
slope	-0.00100739	0.000119967	-0.00124252	-0.000772255	
power	1	NA			

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	N	1	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
5	12		40.3	35.1	0.5	5.31	3.39
2290	9		24.8	32.8	1.2	5.31	-4.52
1.69e+00	04	12	18.9	18.1	0.9	5.31	0.529

Model Descriptions for likelihoods calculated

Model A3: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-10.671908	4	29.343815
fitted	-71.613919	3	149.227838
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	7.37453	2	0.02504
Test 4	121.884	1	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

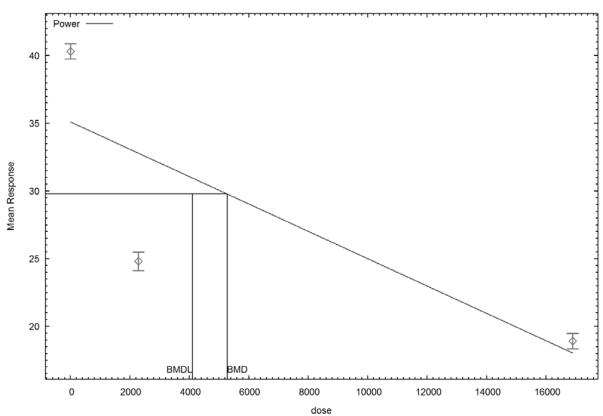
The p-value for Test 3 is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different

model

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 5273.85

BMDL = 4103.69

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:04 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt
Wed May 18 10:08:33 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean
Independent variable = Dose

The power is restricted to be greater than or equal to 1

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 3

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -0.257908 rho = 0 control = 40.3 slope = -0.00126627 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -power

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	lalpha	rho	control	slope
lalpha	1	-1	0.59	-0.61
rho	-1	1	-0.63	0.65
control	0.59	-0.63	1	-0.99
slope	-0.61	0.65	-0.99	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	-22.4908	3.97916	-30.2898	-14.6918
rho	7.56038	1.24884	5.11271	10.0081
control	33.468	1.64111	30.2515	36.6846
slope	-0.000862901	9.85577e-005	-0.00105607	-0.000669732
power	1	NA		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev E	Est Std Dev	Scaled Res.
5	12	40.3	33.5	0.5	7.57	3.13
2290	9	24.8	31.5	1.2	6.02	-3.33
1.69e+00	04 1	.2 18.9	18.9	0.9	0.871	0.0596

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) $Var{e(ij)} = Sigma^2$

Model A2: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-8.632413	5	27.264826
fitted	-55.300810	4	118.601620
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (A1 vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	3.29554	1	0.06947
Test 4	93.3368	1	<.0001

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

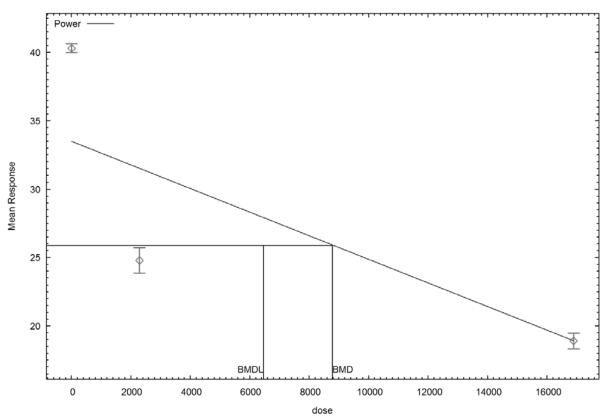
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

The p-value for Test ${\bf 3}$ is less than .1. You may want to consider a different variance model

The p-value for Test 4 is less than .1. You may want to try a different $\ensuremath{\mathsf{model}}$

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 8782.33

BMDL = 6467.23

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:08 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt
Wed May 18 10:09:52 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose rho is set to 0 The power is not restricted A constant variance model is fit

Total number of dose groups = 3
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

alpha = 0.772667

rho = 0 Specified

control = 40.3
 slope = -4.44772
 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -rho

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

power	slope	control	alpha	
5.3e-008	7e-008	-7.8e-008	1	alpha
-1	-1	1	-7.8e-008	control
1	1	-1	7e-008	slope
1	1	-1	5.3e-008	power

Parameter Estimates

		95.0% Wald Conf	idence Interval
Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
0.702424	0.172925	0.363498	1.04135
98.5987	34.9733	30.0522	167.145
-54.7977	34.5778	-122.569	12.9735
0.0384799	0.0199071	-0.000537281	0.0774971
	0.702424 98.5987 -54.7977	0.702424 0.172925 98.5987 34.9733 -54.7977 34.5778	Estimate Std. Err. Lower Conf. Limit 0.702424 0.172925 0.363498 98.5987 34.9733 30.0522 -54.7977 34.5778 -122.569

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Res.
5	12	40.3	40.3	0.5	0.838	4.54e-006
2290	9	24.8	24.8	1.2	0.838	1.26e-006
1.69e+00	12	18.9	18.9	0.9	0.838	6.96e-007

Degrees of freedom for Test A3 vs fitted <= 0

Model Descriptions for likelihoods calculated

Model A1: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma^2$

Model A3: Yij = Mu(i) + e(ij)Var $\{e(ij)\}$ = Sigma^2

Model A3 uses any fixed variance parameters that were specified by the user

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-10.671908	4	29.343815
fitted	-10.671908	4	29.343815
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels? $({\tt A2\ vs.\ R})$

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted)

(Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	7.37453	2	0.02504
Test 4	2.3654e-011	0	NA

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

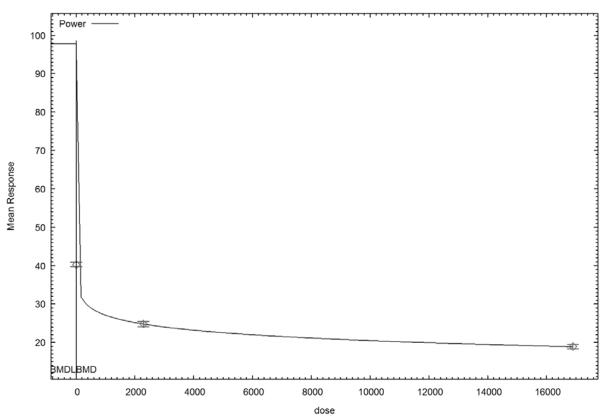
The p-value for Test 3 is less than .1. You may want to consider a different variance model

NA - Degrees of freedom for Test 4 are less than or equal to 0. The Chi-Square

test for fit is not valid

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 6.61465e - 048

BMDL = 6.61465e - 048

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:09 05/18 2016

Power Model. (Version: 2.18; Date: 05/19/2014)
Input Data File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.(d)
Gnuplot Plotting File: U:/PFOS/PFOS_DataFiles/pow_WangEtAl2011_Opt.plt
Wed May 18 10:11:37 2016

BMDS Model Run

The form of the response function is:

Y[dose] = control + slope * dose^power

Dependent variable = Mean Independent variable = Dose The power is not restricted

The variance is to be modeled as Var(i) = exp(lalpha + log(mean(i)) * rho)

Total number of dose groups = 3

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

lalpha = -0.257908 rho = 0 control = 40.3 slope = -4.44772 power = -9999

Asymptotic Correlation Matrix of Parameter Estimates

power	slope	control	rho	lalpha	
-0.078	-0.077	0.076	-1	1	lalpha
0.077	0.076	-0.076	1	-1	rho
-1	-1	1	-0.076	0.076	control
1	1	-1	0.076	-0.077	slope
1	1	-1	0.077	-0.078	power

Parameter Estimates

			95.0% Wald Conf.	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
lalpha	5.67563	2.91677	-0.0411307	11.3924
rho	-1.87073	0.883455	-3.60227	-0.139189
control	102.718	42.7736	18.8838	186.553
slope	-58.8798	42.3928	-141.968	24.2085
power	0.0362495	0.0217656	-0.00641027	0.0789093

Table of Data and Estimated Values of Interest

Dose N Obs Mean Est Mean Obs Std Dev Est Std Dev Scaled Res.

5 12 40.3 40.3 0.5 0.538 -0.00903 0.0749 2290 9 24.8 0.848 1.69e+004 18.9 18.9 0.9 1.09 12 -0.0703

Warning: Likelihood for fitted model larger than the Likelihood for model A3.

Model Descriptions for likelihoods calculated

Model A2: Yij = Mu(i) + e(ij) $Var\{e(ij)\} = Sigma(i)^2$

Model A3: Yij = Mu(i) + e(ij)

 $Var\{e(ij)\} = exp(lalpha + rho*ln(Mu(i)))$

Model A3 uses any fixed variance parameters that were specified by the user $\,$

-

Model R: Yi = Mu + e(i) $Var\{e(i)\} = Sigma^2$

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-10.671908	4	29.343815
A2	-6.984641	6	25.969283
A3	-8.632413	5	27.264826
fitted	-8.632413	5	27.264826
R	-90.476587	2	184.953175

Explanation of Tests

Test 1: Do responses and/or variances differ among Dose levels?

(A2 vs. R)

Test 2: Are Variances Homogeneous? (Al vs A2)

Test 3: Are variances adequately modeled? (A2 vs. A3)

Test 4: Does the Model for the Mean Fit? (A3 vs. fitted) (Note: When rho=0 the results of Test 3 and Test 2 will be the same.)

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	p-value
Test 1	166.984	4	<.0001
Test 2	7.37453	2	0.02504
Test 3	3.29554	1	0.06947
Test 4	-4.89564e-012	0	NA

The p-value for Test 1 is less than .05. There appears to be a difference between response and/or variances among the dose levels It seems appropriate to model the data $\frac{1}{2}$

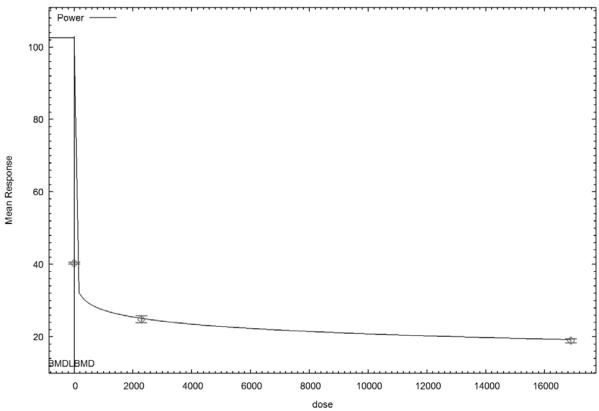
The p-value for Test 2 is less than .1. A non-homogeneous variance model appears to be appropriate $\,$

The p-value for Test 3 is less than .1. You may want to consider a different variance model

 ${\tt NA}$ - Degrees of freedom for Test 4 are less than or equal to 0. The Chi-Square test for fit is not valid

Benchmark Dose Computation

Specified effect = 1


Risk Type = Estimated standard deviations from the control mean

Confidence level = 0.95

BMD = 1.83728e-067

BMDL = 1.83728e-067

Power Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:11 05/18 2016

Benchmark Dose Analysis

Data from Butenhoff et al. (2012) and Thomford et al. (2002) - Hepatocellular Adenomas and Carcinomas in Female Rats

BMR = 0.10; **Model Type** = **Dichotomous**

Pages	Model	Parameter Restrictions	Poly	Chi-square p-value	AIC	BMD (ng/ml)	BMDL (ng/ml)	BMDU (ng/ml)
2-3	Gamma	No Power Restriction	-	0.7254	91.72	223,921	136,931	NA
4-5	Gamma	Restrict Power ≥ 1	-	0.7254	91.72	223,921	146,863	NA
6-7	Log Logistic ¹	No Slope Restriction	-	0.7252	89.78	293,786	135,695	NA
8-9	Log Logistic	Restrict Slope ≥ 1	-	0.7278	91.71	222,762	145,871	NA
10-11	Log Probit ¹	No Slope Restriction	-	0.7065	89.89	341,864	134,024	NA
12-13	Log Probit	Restrict Slope ≥ 1	-	0.7297	91.77	224,375	163,078	NA
14-15	Logistic ¹	-	-	0.8680	89.54	217,195	172,669	NA
16-17	Multistage ²	No Beta Restriction	3rd	0.5175	93.16	207,177	144,054	NA
18-19	Multistage ³	Restrict Betas ≥ 0	3rd	0.7266	91.52	219,137	149,798	583,971
20-21	Multistage	Restrict Betas ≥ 0	2nd	0.6971	91.64	228,610	148,097	600,557
22-23	Multistage ²	No Beta Restriction	2nd	0.6971	91.64	228,610	135,207	NA
24-25	Probit ¹	-	-	0.8582	89.57	220,249	168,550	NA
26-27	Quantal-Linear ⁴	-	-	0.7698	89.81	257,440	145,713	NA
28-29	Weibull ⁵	No Power Restriction	-	0.7272	91.70	222,462	137,093	NA
30-31	Weibull 5	Restrict Power ≥ 1	-	0.7272	91.70	222,462	147,127	NA

¹Background parameter estimate hit a boundary.

² BMDU did not converge, so BMDU calculation failed.

³ The beta2 parameter estimate hit a boundary.

⁴Power parameter estimate hit a boundary.

⁵ Background, slope, and power parameter estimates hit boundaries.

Gamma Model. (Version: 2.16; Date: 2/28/2013)

Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.plt

Tue Oct 03 09:30:58 2017

BMDS_Model_Run

The form of the probability function is:

 $\label{eq:problem} $$ P[response] = background + (1-background) *CumGamma[slope*dose,power], $$ where $CumGamma(.)$ is the cummulative $Gamma$ distribution function $$ $$ (2.5) $$ and $1.5 $$ (2.5) $$

Dependent variable = Effect Independent variable = Dose

Power parameter is not restricted

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00806452 Slope = 1.30141e-006

Power = 1.41289

Asymptotic Correlation Matrix of Parameter Estimates

Power	Slope	Background	
0.68	0.67	1	Background
1	1	0.67	Slope
1	1	0.68	Power

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0.0125262	0.0114921	-0.00999787	0.0350503
Slope	3.30913e-006	1.31846e-005	-2.25323e-005	2.91505e-005
Power	2.3869	4.97383	-7.36163	12.1354

Analysis of Deviance Table

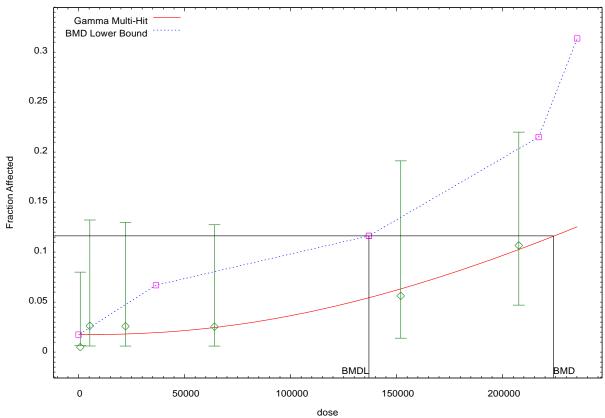
Model Full model	Log(likelihood) -41.869	# Param's	Deviance	Test d.f.	P-value
ruii modei	-41.009	0			
Fitted model	-42.862	3	1.98589	3	0.5753
Reduced model	-47.235	1	10.732	5	0.05696
AIC:	91.7239				

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0125	0.752	0.000	60.000	-0.872
5309.0000	0.0125	0.590	1.000	47.000	0.538
22153.0000	0.0132	0.631	1.000	48.000	0.467
64073.0000	0.0197	0.964	1.000	49.000	0.037
151939.0000	0.0585	2.280	2.000	39.000	-0.191
207633.0000	0.0980	5.783	6.000	59.000	0.095

Benchmark Dose Computation

Specified effect = 0.1


Risk Type Extra risk

Confidence level = 0.95

> 223921 BMD =

BMDL = 136931

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:31 10/03 2017

Gamma Model. (Version: 2.16; Date: 2/28/2013)

Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/gam_2017_10_03_Opt.plt

Tue Oct 03 09:35:11 2017

BMDS_Model_Run

The form of the probability function is:

P[response]= background+(1-background)*CumGamma[slope*dose,power], where CumGamma(.) is the cummulative Gamma distribution function

Dependent variable = Effect Independent variable = Dose

Power parameter is restricted as power >=1

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values
 Background = 0.00806452

Slope = 1.30141e-006 Power = 1.41289

Asymptotic Correlation Matrix of Parameter Estimates

	Background	Slope	Power
Background	1	0.67	0.68
Slope	0.67	1	1
Power	0.68	1	1

Parameter Estimates

			95.0% Wald Confi	dence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0.0125262	0.0114934	-0.0100005	0.0350529
Slope	3.30913e-006	1.31962e-005	-2.25549e-005	2.91731e-005
Power	2.3869	4.97812	-7.37003	12.1438

Analysis of Deviance Table

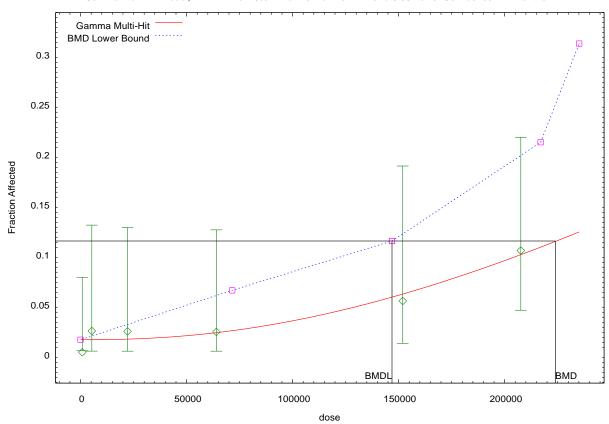
Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-41.869	6			
Fitted model	-42.862	3	1.98589	3	0.5753
Reduced model	-47.235	1	10.732	5	0.05696
AIC:	91.7239				

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0125	0.752	0.000	60.000	-0.872
5309.0000	0.0125	0.590	1.000	47.000	0.538
22153.0000	0.0132	0.631	1.000	48.000	0.467
64073.0000	0.0197	0.964	1.000	49.000	0.037
151939.0000	0.0585	2.280	2.000	39.000	-0.191
207633.0000	0.0980	5.783	6.000	59.000	0.095

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 223921

BMDL = 146863

Gamma Multi-Hit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:35 10/03 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]

Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted

Total number of observations = 6
Total number of records with missing values = 0
Maximum number of iterations = 500
Relative Function Convergence has been set to: 1e-008
Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background
 have been estimated at a boundary point, or have been specified by the user,
 and do not appear in the correlation matrix)

intercept slope
intercept 1 -1
slope -1 1

Parameter Estimates

95.0% Wald Confidence Interval Variable Std. Err. Lower Conf. Limit Upper Conf. Limit Estimate background 0 NA -10.2442 3.29018 -16.6928 -3.79555 intercept 0.284386 slope 0.639124 0.0817374 1.19651

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model $-41.869 \ \ 6$

Fitted model -42.8899 2 2.04172 4 0.7281 Reduced model -47.235 1 10.732 5 0.05696

AIC: 89.7798

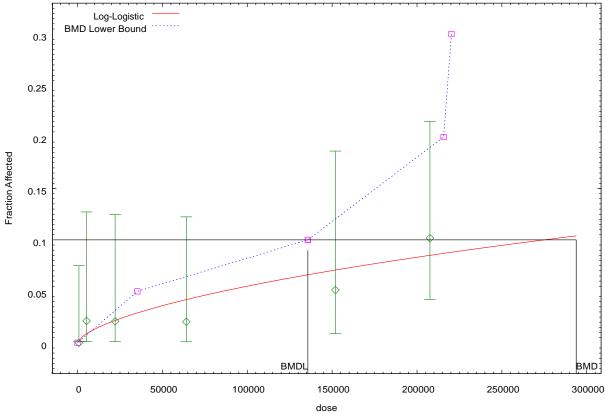
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0026	0.155	0.000	60.000	-0.394
5309.0000	0.0085	0.398	1.000	47.000	0.958
22153.0000	0.0209	1.001	1.000	48.000	-0.001
64073.0000	0.0403	1.974	1.000	49.000	-0.708
151939.0000	0.0679	2.650	2.000	39.000	-0.414
207633.0000	0.0817	4.822	6.000	59.000	0.560

Chi^2 = 2.06 d.f. = 4 P-value = 0.7252

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 293786

BMDL = 135695

Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:40 10/03 2017

Logistic Model. (Version: 2.14; Date: 2/28/2013)

Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnl_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnl_2017_10_03_Opt.plt

Tue Oct 03 09:45:34 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = background+(1-background)/[1+EXP(-intercept-slope*Log(dose))]

Dependent variable = Effect Independent variable = Dose

Slope parameter is restricted as slope >= 1

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Default Initial Parameter Values

Asymptotic Correlation Matrix of Parameter Estimates

	background	intercept	slope
background	1	-0.66	0.66
intercept	-0.66	1	-1
slope	0.66	-1	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
background	0.0124825	0.0111172	-0.00930693	0.0342719
intercept	-29.0511	41.4378	-110.268	52.1655
slope	2.18079	3.40031	-4.48371	8.84528

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-41.869	6			
Fitted model	-42.8555	3	1.97294	3	0.578
Reduced model	-47.235	1	10.732	5	0.05696

AIC: 91.711

Goodness of Fit

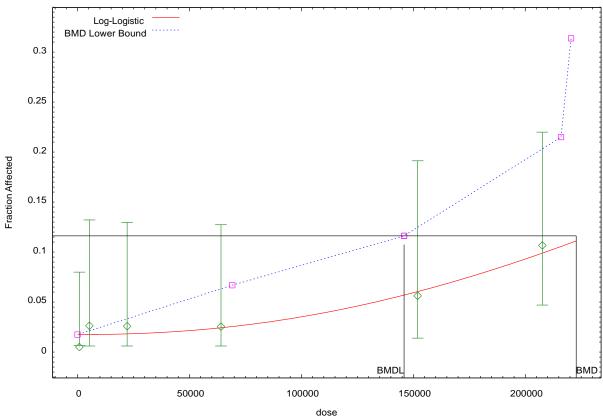
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0125	0.749	0.000	60.000	-0.871
5309.0000	0.0125	0.588	1.000	47.000	0.540
22153.0000	0.0132	0.633	1.000	48.000	0.464
64073.0000	0.0197	0.964	1.000	49.000	0.037
151939.0000	0.0579	2.259	2.000	39.000	-0.178
207633.0000	0.0984	5.806	6.000	59.000	0.085

Chi^2 = 1.31 d.f. = 3 P-value = 0.7278

145871

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 222762

BMDL =

Log-Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:45 10/03 2017

Probit Model. (Version: 3.3; Date: 2/28/2013)
Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.plt

Tue Oct 03 09:53:10 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = Background

+ (1-Background) * CumNorm(Intercept+Slope*Log(Dose)),

where CumNorm(.) is the cumulative normal distribution function

Dependent variable = Effect

Independent variable = Dose

Slope parameter is not restricted

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Default Initial (and Specified) Parameter Values

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

intercept slope intercept 1 -0.99

slope -0.99 1

Parameter Estimates

 Variable
 Estimate
 Std. Err.
 Lower Conf. Limit
 Upper Conf. Limit

 background
 0
 NA

 intercept
 -4.63098
 1.2583
 -7.0972
 -2.16476

 slope
 0.262862
 0.110879
 0.0455437
 0.48018

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-41.869	6			
Fitted model	-42.9471	2	2.1562	4	0.7071
Reduced model	-47.235	1	10.732	5	0.05696

AIC: 89.8942

Goodness of Fit

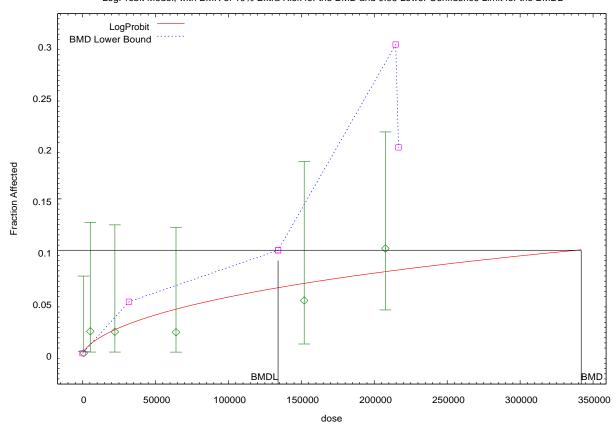
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0021	0.124	0.000	60.000	-0.352
5309.0000	0.0087	0.411	1.000	47.000	0.923
22153.0000	0.0227	1.090	1.000	48.000	-0.087
64073.0000	0.0426	2.086	1.000	49.000	-0.768
151939.0000	0.0675	2.632	2.000	39.000	-0.404
207633.0000	0.0789	4.654	6.000	59.000	0.650

Chi^2 = 2.16 d.f. = 4 P-value = 0.7065

134024

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 341864

BMDL =

LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:53 10/03 2017

Probit Model. (Version: 3.3; Date: 2/28/2013)
Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/lnp_2017_10_03_Opt.plt

Tue Oct 03 09:56:28 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = Background

+ (1-Background) * CumNorm(Intercept+Slope*Log(Dose)),

where CumNorm(.) is the cumulative normal distribution function

Dependent variable = Effect

Independent variable = Dose

Slope parameter is restricted as slope >= 1

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

User has chosen the log transformed model

Default Initial (and Specified) Parameter Values

background = 0

intercept = -13.2026
 slope = 1

Asymptotic Correlation Matrix of Parameter Estimates

	background	intercept	slope
background	1	-0.56	0.56
intercept	-0.56	1	-1
slope	0.56	-1	1

Parameter Estimates

			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
background	0.0132652	0.010165	-0.00665789	0.0331882
intercept	-14.3071	18.4895	-50.5458	21.9316
slope	1.05717	1.51836	-1.91875	4.0331

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance Test	d.f.	P-value
Full model	-41.869	6			
Fitted model	-42.8832	3	2.02844	3	0.5665
Reduced model	-47.235	1	10.732	5	0.05696

AIC: 91.7665

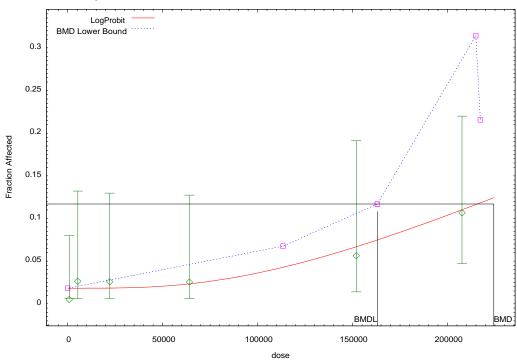
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0133	0.796	0.000	60.000	-0.898
5309.0000	0.0133	0.623	1.000	47.000	0.480
22153.0000	0.0134	0.641	1.000	48.000	0.451
64073.0000	0.0178	0.871	1.000	49.000	0.139
151939.0000	0.0578	2.255	2.000	39.000	-0.175
207633.0000	0.0985	5.810	6.000	59.000	0.083

Chi^2 = 1.30 d.f. = 3 P-value = 0.7297

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 224375

BMDL = 163078

LogProbit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:56 10/03 2017

Logistic Model. (Version: 2.14; Date: 2/28/2013)

Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/log_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/log_2017_10_03_Opt.plt

Tue Oct 03 09:59:09 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = 1/[1+EXP(-intercept-slope*dose)]

Dependent variable = Effect Independent variable = Dose Slope parameter is not restricted

Total number of observations = 6 Total number of records with missing values = 0Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

background = 0 Specified
intercept = -4.01375

slope = 9.0843e-006

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

intercept slope intercept -0.88 -0.88 slope

Parameter Estimates

95.0% Wald Confidence Interval riable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit ercept -4.51669 0.667985 -5.82591 -3.20746 slope 1.11565e-005 4.03513e-006 3.24783e-006 1.90653e-005 Variable intercept

Analysis of Deviance Table

Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -41.869 6 Fitted model 2 1 1.81181 4 0.7703 10.732 5 0.05696 -42.7749 Reduced model -47.235 AIC: 89.5498

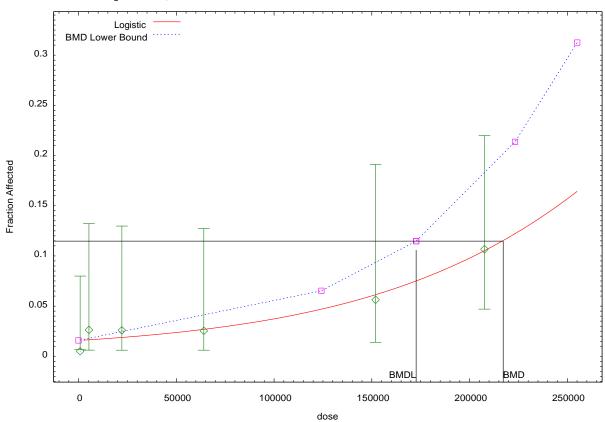
Goodness of Fit

	GOOGHESS OF FIC				
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000 5309.0000	0.0109 0.0115	0.654 0.539	0.000 1.000	60.000 47.000	-0.813 0.632
22153.0000	0.0138	0.662	1.000	48.000	0.418
64073.0000	0.0218	1.070	1.000	49.000	-0.069
151939.0000	0.0562	2.191	2.000	39.000	-0.133
207633.0000	0.0997	5.884	6.000	59.000	0.050

Chi^2 = 1.26 d.f. = 4 P-value = 0.8680

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 217195

BMDL = 172669

Logistic Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

09:59 10/03 2017

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt
Tue Oct 03 10:04:42 2017

BMDS_Model_Run

The form of the probability function is:

The parameter betas are not restricted

Dependent variable = Effect Independent variable = Dose

Total number of observations = 6

Total number of records with missing values = 0

Total number of parameters in model = 4 Total number of specified parameters = 0

Degree of polynomial = 3

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

Background = 0.00992005

Beta(1) = 4.10803e-007

Beta(2) = -4.2263e-012

Beta(3) = 2.17477e-017

Asymptotic Correlation Matrix of Parameter Estimates

	Background	Beta(1)	Beta(2)	Beta(3)
Background	1	-0.76	0.65	-0.57
Beta(1)	-0.76	1	-0.94	0.86
Beta(2)	0.65	-0.94	1	-0.98
Beta(3)	-0.57	0.86	-0.98	1

Parameter Estimates

			95.0% Wald Conf:	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0.00475102	0.0124066	-0.0195654	0.0290674
Beta(1)	8.40464e-007	1.21818e-006	-1.54713e-006	3.22806e-006
Beta(2)	-9.69896e-012	1.63302e-011	-4.17055e-011	2.23076e-011
Beta(3)	3.90821e-017	5.5654e-017	-6.99978e-017	1.48162e-016

Analysis of Deviance Table

Mod	lel Log(likeli	.hood) # Param's	Deviance	Test d.f.	P-value	
Full	model	-41.869	6			
Fitted	model	-42.5822	4	1.42635	2	0.4901
Reduced	model	-47.235	1	10.732	5	0.05696

AIC: 93.1644

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0054	0.326	0.000	60.000	-0.572
5309.0000	0.0089	0.419	1.000	47.000	0.901
22153.0000	0.0189	0.906	1.000	48.000	0.100
64073.0000	0.0287	1.404	1.000	49.000	-0.346
151939.0000	0.0446	1.740	2.000	39.000	0.202
207633.0000	0.1050	6.197	6.000	59.000	-0.084

Chi^2 = 1.32 d.f. = 2 P-value = 0.5175

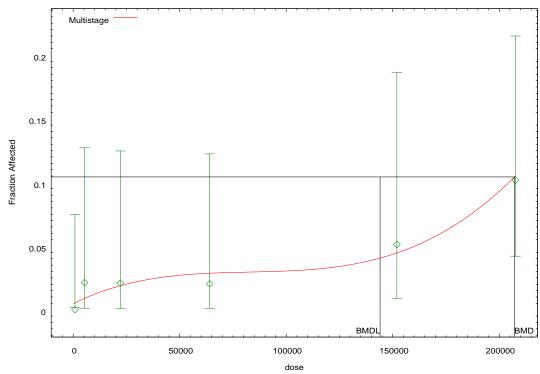
Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95

BMD = 207177


BMDL = 144054

BMDU did not converge for BMR = 0.100000

BMDU calculation failed

BMDU = 3.81336e + 008

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:04 10/03 2017

Multistage Model. (Version: 3.4; Date: 05/02/2014)
Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt
Tue Oct 03 10:08:56 2017

BMDS_Model_Run

The form of the probability function is:

The parameter betas are restricted to be positive

Dependent variable = Effect Independent variable = Dose

Total number of observations = 6

Total number of records with missing values = 0

Total number of parameters in model = 4

Total number of specified parameters = 0

Degree of polynomial = 3

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

Background = 0.0128563

Beta(1) = 8.11345e-008

Beta(2) = 0Beta(3) = 8.54188e-018

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Beta(2)

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

	Background	Beta(1)	Beta(3)
Background	1	-0.67	0.53
Beta(1)	-0.67	1	-0.91
Beta(3)	0.53	-0.91	1

Parameter Estimates

			95.0% Wald Confidence Interval			
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
Background	0.00975469	0.0107621	-0.0113387	0.030848		
Beta(1)	1.9283e-007	4.09015e-007	-6.08825e-007	9.94484e-007		
Beta(2)	0	NA				
Beta(3)	5.99669e-018	1.07517e-017	-1.50762e-017	2.70696e-017		

NA - Indicates that this parameter has hit a bound implied by some inequality constraint and thus has no standard error.

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-41.869	6			
Fitted model	-42.7586	3	1.7792	3	0.6195
Reduced model	-47.235	1	10.732	5	0.05696

AIC: 91.5172

Goodness of Fit

P-value = 0.7266

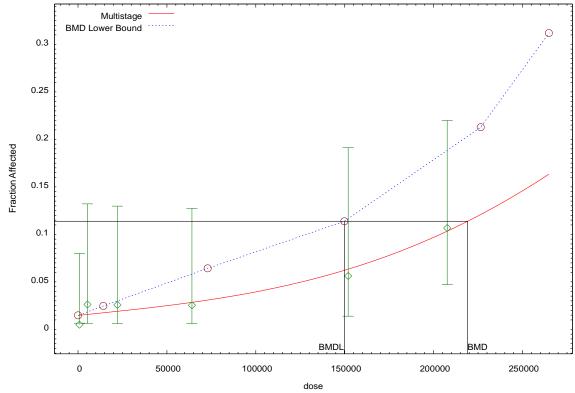
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0099	0.595	0.000	60.000	-0.775
5309.0000	0.0108	0.506	1.000	47.000	0.698
22153.0000	0.0140	0.674	1.000	48.000	0.400
64073.0000	0.0235	1.149	1.000	49.000	-0.141
151939.0000	0.0584	2.276	2.000	39.000	-0.189
207633.0000	0.0983	5.802	6.000	59.000	0.087

Benchmark Dose Computation

 $Chi^2 = 1.31$

Specified effect = 0.1

Risk Type = Extra risk


Confidence level = 0.95

BMD = 219137 BMDL = 149798 BMDU = 583971

d.f. = 3

Taken together, (149798 , 583971) is a 90% two-sided confidence interval for the $\ensuremath{\mathtt{BMD}}$

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:10 10/03 2017

Multistage Model. (Version: 3.4; Date: 05/02/2014) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt Tue Oct 03 10:14:48 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2)]

The parameter betas are restricted to be positive

Dependent variable = Effect Independent variable = Dose

Total number of observations = 6

Total number of records with missing values = 0

Total number of parameters in model = 3

Total number of specified parameters = 0

Degree of polynomial = 2

Maximum number of iterations = 500 Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values Background = 0.0123231

Beta(1) =

Beta(2) = 2.09922e-012

Asymptotic Correlation Matrix of Parameter Estimates

	Background	Beta(1)	Beta(2)
Background	1	-0.72	0.63
Beta(1)	-0.72	1	-0.96
Beta(2)	0.63	-0.96	1

Parameter Estimates

	Pā	arameter Estimates		
			95.0% Wald Confi	idence Interval
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit
Background	0.0097495	0.0116091	-0.013004	0.032503
Beta(1)	1.56493e-007	6.03753e-007	-1.02684e-006	1.33983e-006
Beta(2)	1.33145e-012	3.09826e-012	-4.74102e-012	7.40392e-012

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.i.	P-value
Full model	-41.869	6			
Fitted model	-42.8176	3	1.89719	3	0.594
Reduced model	-47.235	1	10.732	5	0.05696

AIC: 91.6352

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000 5309.0000 22153.0000 64073.0000	0.0099 0.0106 0.0138 0.0250	0.593 0.499 0.663	0.000 1.000 1.000	60.000 47.000 48.000 49.000	-0.774 0.714 0.416 -0.205

 151939.0000
 0.0623
 2.429
 2.000
 39.000
 -0.284

 207633.0000
 0.0949
 5.598
 6.000
 59.000
 0.179

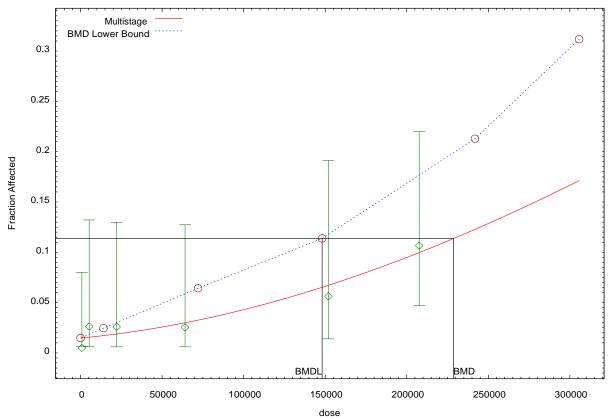
Chi^2 = 1.44 d.f. = 3 P-value = 0.6971

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95


BMD = 228610

BMDL = 148097

BMDU = 600557

Taken together, (148097 , 600557) is a 90% two-sided confidence interval for the $\ensuremath{\mathtt{BMD}}$

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:14 10/03 2017

Multistage Model. (Version: 3.4; Date: 05/02/2014) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/mst_2017_10_03_Opt.plt Tue Oct 03 10:17:08 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2)]

The parameter betas are not restricted

Dependent variable = Effect Independent variable = Dose

Total number of observations = 6 Total number of records with missing values = 0

Total number of parameters in model = 3

Total number of specified parameters = 0

Degree of polynomial = 2

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial Parameter Values

Background = 0.0139536 Beta(1) = -8.34895e-008

Beta(2) = 2.49199e-012

Asymptotic Correlation Matrix of Parameter Estimates

	Background	Beta(1)	Beta(2)
Background	1	-0.72	0.63
Beta(1)	-0.72	1	-0.96
Beta(2)	0.63	-0.96	1

Parameter Estimates

			95.0% Wald Conf:	idence Interval	
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit	
Background	0.00974951	0.0116092	-0.013004	0.032503	
Beta(1)	1.56493e-007	6.03753e-007	-1.02684e-006	1.33983e-006	
Beta(2)	1.33145e-012	3.09826e-012	-4.74102e-012	7.40392e-012	

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-41.869	6			
Fitted model	-42.8176	3	1.89719	3	0.594
Reduced model	-47.235	1	10.732	5	0.05696

AIC: 91.6352

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0099	0.593	0.000	60.000	-0.774
5309.0000	0.0106	0.499	1.000	47.000	0.714
22153.0000	0.0138	0.663	1.000	48.000	0.416
64073.0000	0.0250	1.224	1.000	49.000	-0.205
151939.0000	0.0623	2.429	2.000	39.000	-0.284
207633.0000	0.0949	5.598	6.000	59.000	0.179

Chi^2 = 1.44 d.f. = 3 P-value = 0.6971

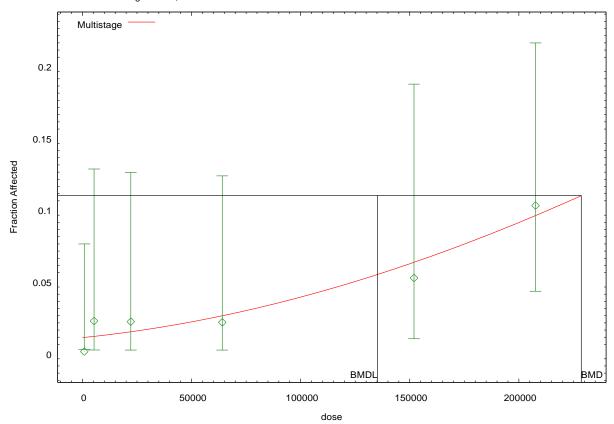
Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk

Confidence level = 0.95

BMD = 228610


BMDL = 135207

BMDU did not converge for BMR = 0.100000

BMDU calculation failed

BMDU = 5.84472e+009

Multistage Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:17 10/03 2017

Probit Model. (Version: 3.3; Date: 2/28/2013)

Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/pro_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/pro_2017_10_03_Opt.plt

Tue Oct 03 10:21:00 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = CumNorm(Intercept+Slope*Dose),

where CumNorm(.) is the cumulative normal distribution function

Dependent variable = Effect
Independent variable = Dose
Slope parameter is not restricted

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

background = 0 Specified
intercept = -2.36759

intercept = -2.36759slope = 5.33993e-006

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -background

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

intercept slope

intercept 1 -0.84 slope -0.84 1

Parameter Estimates

 Variable
 Estimate
 Std. Err.
 Lower Conf. Limit
 Upper Conf. Limit

 intercept
 -2.31402
 0.261709
 -2.82696
 -1.80108

 slope
 4.92061e-006
 1.72775e-006
 1.53428e-006
 8.30694e-006

Analysis of Deviance Table

Model Log(likelihood) # Param's Deviance Test d.f. P-value Full model -41.869 6 Fitted model -42.783 2 1.82805 0.7673 -47.235 5 0.05696 Reduced model 1 10.732

AIC: 89.5661

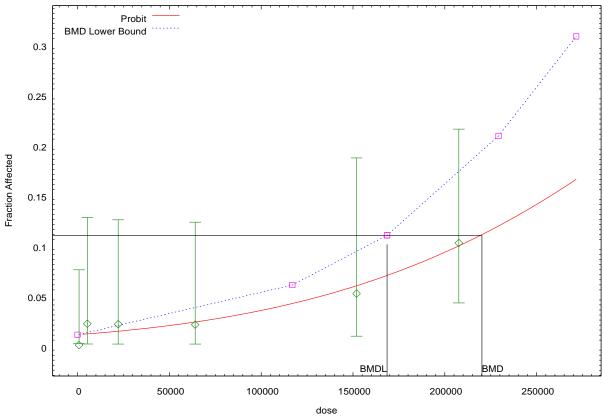
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0104	0.627	0.000	60.000	-0.796
5309.0000	0.0111	0.520	1.000	47.000	0.669
22153.0000	0.0137	0.659	1.000	48.000	0.423
64073.0000	0.0228	1.118	1.000	49.000	-0.113
151939.0000	0.0586	2.287	2.000	39.000	-0.195
207633.0000	0.0981	5.789	6.000	59.000	0.092

Chi^2 = 1.32 d.f. = 4 P-value = 0.8582

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 220249

BMDL = 168550

Probit Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:21 10/03 2017

Quantal Linear Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/qln_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/qln_2017_10_03_Opt.plt

Tue Oct 03 10:24:56 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-slope*dose)]

Dependent variable = Effect Independent variable = Dose

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00806452 Slope = 5.48047e-007

Power = 1 Specified

Asymptotic Correlation Matrix of Parameter Estimates

(*** The model parameter(s) -Power

have been estimated at a boundary point, or have been specified by the user, and do not appear in the correlation matrix)

Background Slope

Background 1 -0.46

Slope -0.46 1

Parameter Estimates

 Variable
 Estimate
 Std. Err.
 Lower Conf. Limit
 Upper Conf. Limit

 Background
 0.00692364
 0.00834718
 -0.00943653
 0.0232838

 Slope
 4.09262e-007
 1.65659e-007
 8.45761e-008
 7.33948e-007

Analysis of Deviance Table

Log(likelihood) # Param's Deviance Test d.f. P-value Model Full model -41.869 6 Fitted model -42.9045 2 2.07089 0.7227 Reduced model -47.235 1 10.732 5 0.05696

AIC: 89.8089

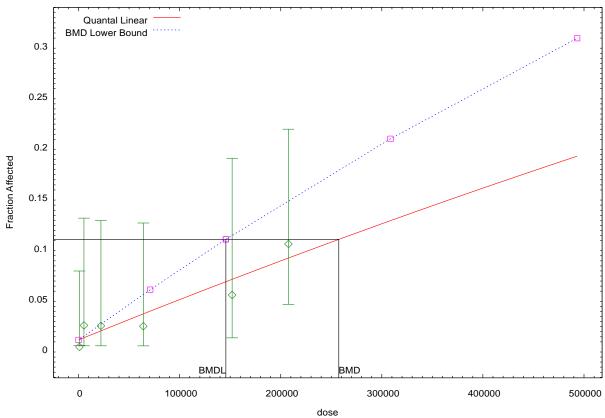
Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000 5309.0000 22153.0000 64073.0000 151939.0000 207633.0000	0.0073 0.0091 0.0159 0.0326 0.0668 0.0878	0.435 0.427 0.763 1.599 2.605 5.182	0.000 1.000 1.000 1.000 2.000 6.000	60.000 47.000 48.000 49.000 39.000 59.000	-0.662 0.882 0.274 -0.481 -0.388

Chi^2 = 1.81 d.f. = 4 P-value = 0.7698

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 257440

BMDL = 145713

Quantal Linear Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:24 10/03 2017

Weibull Model using Weibull Model (Version: 2.16; Date: 2/28/2013)
Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.(d)
Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.plt
Tue Oct 03 10:29:25 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-slope*dose*power)]

Dependent variable = Effect Independent variable = Dose Power parameter is not restricted

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00806452 Slope = 7.78752e-009 Power = 1.34744

Asymptotic Correlation Matrix of Parameter Estimates

Power	Slope	Background	
1.\$	1.\$	1.\$	Background
1.\$	1.\$	1.\$	Slope
1.\$	1.\$	1.\$	Power

Parameter Estimates

95.0% Wald Confidence Interval Variable Estimate Std. Err. Lower Conf. Limit Upper Conf. Limit 0.0123715 1.#QNAN 1.#QNAN Background 1.#QNAN 0.0123715 6.07921e-013 Slope 1.#QNAN 1.#QNAN 1.#QNAN 1.#QNAN 1.#QNAN 2.10179 1.#QNAN Power

Analysis of Deviance Table

 Model
 Log(likelihood)
 # Param's
 Deviance
 Test d.f.
 P-value

 Full model
 -41.869
 6
 1.96664
 3
 0.5794

 Fitted model
 -42.8523
 3
 10.732
 5
 0.05696

 Reduced model
 -47.235
 1
 10.732
 5
 0.05696

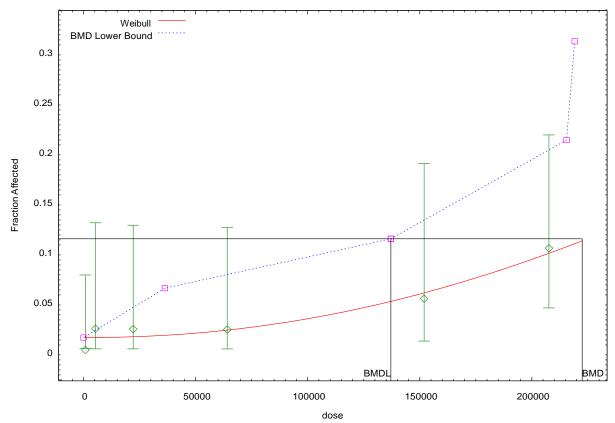
AIC: 91.7047

Goodness of Fit

Dose	EstProb.	Expected	Observed	Size	Residual
816.0000 5309.0000	0.0124 0.0124	0.742 0.583	0.000	60.000 47.000	-0.867 0.549
22153.0000	0.0132	0.633	1.000	48.000	0.464
64073.0000 151939.0000	0.0199 0.0580	0.977 2.261	1.000 2.000	49.000 39.000	0.023 -0.179
207633.0000	0.0984	5.806	6.000	59.000	0.085

Benchmark Dose Computation

Specified effect = 0.1


Risk Type = Extra risk

Confidence level = 0.95

BMD = 222462

BMDL = 137093

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:29 10/03 2017

Weibull Model using Weibull Model (Version: 2.16; Date: 2/28/2013) Input Data File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.(d) Gnuplot Plotting File: U:/BMDS/ButtenholfEtAl2012/2017_10_03/wei_2017_10_03_Opt.plt

Tue Oct 03 10:38:14 2017

BMDS_Model_Run

The form of the probability function is:

P[response] = background + (1-background)*[1-EXP(-slope*dose*power)]

Dependent variable = Effect Independent variable = Dose

Power parameter is restricted as power >= 1.000000

Total number of observations = 6

Total number of records with missing values = 0

Maximum number of iterations = 500

Relative Function Convergence has been set to: 1e-008

Parameter Convergence has been set to: 1e-008

Default Initial (and Specified) Parameter Values

Background = 0.00806452

Slope = 7.78752e-009 Power = 1.34744

Asymptotic Correlation Matrix of Parameter Estimates

Power	Slope	Background	
1.\$	1.\$	1.\$	Background
1.\$	1.\$	1.\$	Slope
1.\$	1.\$	1.\$	Power

Parameter Estimates

	IUT	ameter Battmates				
			95.0% Wald Confidence Interval			
Variable	Estimate	Std. Err.	Lower Conf. Limit	Upper Conf. Limit		
Background	0.0123715	1.#QNAN	1.#QNAN	1.#QNAN		
Slope	6.07921e-013	1.#QNAN	1.#QNAN	1.#QNAN		
Power	2.10179	1.#QNAN	1.#QNAN	1.#QNAN		

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	P-value
Full model	-41.869	6			
Fitted model	-42.8523	3	1.96664	3	0.5794
Reduced model	-47.235	1	10.732	5	0.05696

AIC: 91.7047

Goodness of Fit

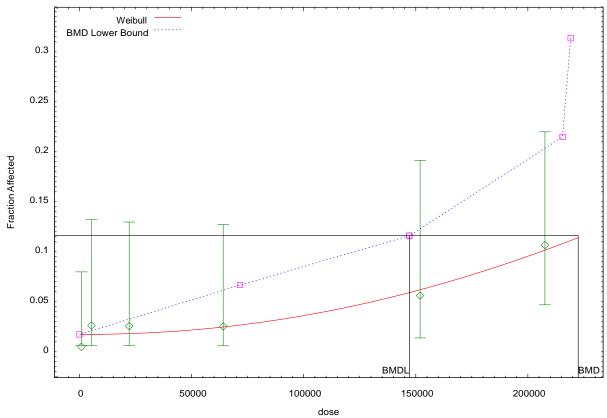
Dose	EstProb.	Expected	Observed	Size	Scaled Residual
816.0000	0.0124	0.742	0.000	60.000	-0.867
5309.0000	0.0124	0.583	1.000	47.000	0.549
22153.0000	0.0132	0.633	1.000	48.000	0.464
64073.0000	0.0199	0.977	1.000	49.000	0.023
151939.0000	0.0580	2.261	2.000	39.000	-0.179
207633.0000	0.0984	5.806	6.000	59.000	0.085

Chi^2 = 1.31 d.f. = 3 P-value = 0.7272

Benchmark Dose Computation

Specified effect = 0.1

Risk Type = Extra risk


Confidence level = 0.95

BMD = 222462

147127

BMDL =

Weibull Model, with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

10:38 10/03 2017