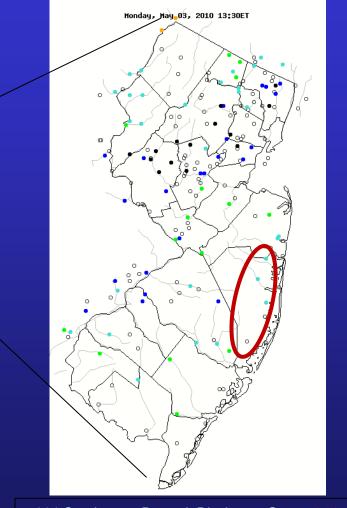

USGS Monitoring and Research in the Barnegat Bay Watershed

New Jersey Department of Environmental Protection Barnegat Bay Stakeholder Meeting Ocean County College May 5, 2010

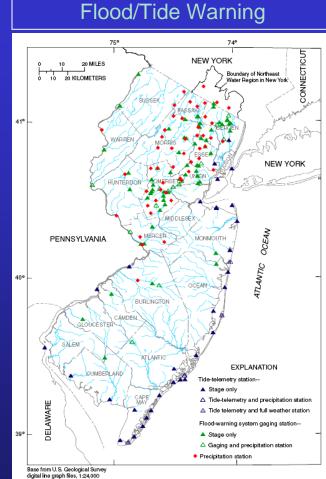
> Robert Nicholson U.S. Geological Survey New Jersey Water Science Center West Trenton, NJ 609-771-3925 rnichol@usgs.gov


USGS STREAMFLOW MONITORING NETWORK

Choose a data retrieval option and select a location on the map $^{\rm O}$ List of all stations in state, $^{\odot}$ State map, or $^{\rm O}$ Nearest stations

Explanation - Percentile classes						
•		•	•			•
Low	<10	10-24	25-75	76-90	>90	High
	Much below normal	Below	Normal	Above	Much above	

USGS



- 114 Continuous Record Discharge Gages / 4 in BBLEH
- 181 Partial Record discharge sites / 15 in BBLEH
- 99 Crest Stage Gages / 5 in BBLEH

Surface-Water Monitoring Networks

Funded cooperatively with various agencies

Water Quality Monitoring

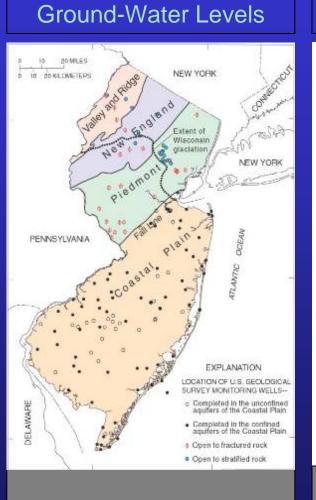
NJ Coastal Tide gages w/ NJOHSP

- 25 Continuous tide gages / 5 in BBLEH
- 33 crest stage gages/ 3 in BBLEH
- 5 weather stations / 1 in BBLEH
- Flood Warning Networks with 5 Counties &

USACE

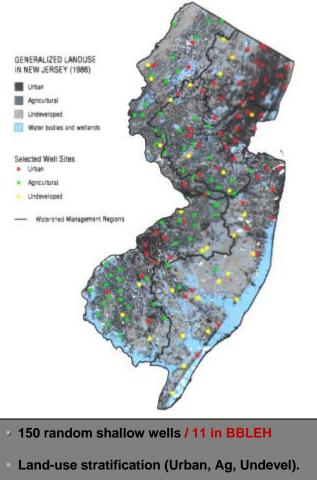
- •45 stage-only gages /1 in BBLEH
- 36 precipitation gages
- •13 continuous-discharge gages

115 Water-quality sites w/ NJDEP


- 7 Background
- 42 Statewide status sites /3 in
- - 23 Watershed integrator sites
 - /1 in BBLEH
 - 43 Land use indicator sites / 1 in BBLEH
 - Sampled seasonally (4 per year)

Ground-Water Network

Funded cooperatively with NJDEP



USGS

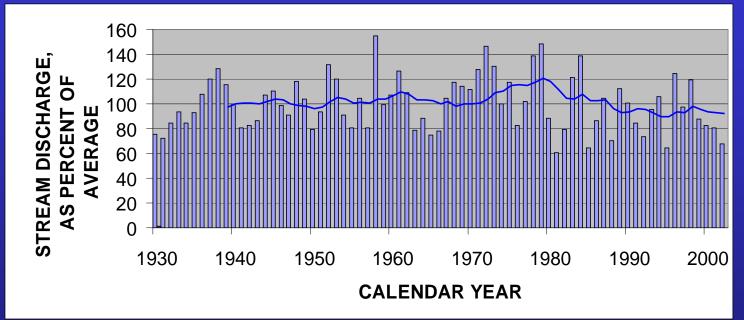
189 Sites total / 24 in BBLEH

Ground-Water Quality

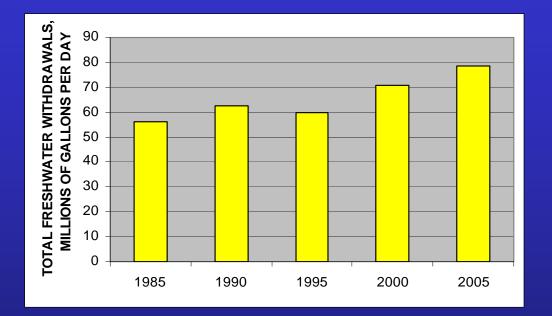
30 wells sampled annually (USGS & NJGS)

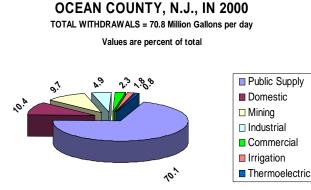
FRESHWATER INPUTS

590 million gallons per day (average)



FRESHWATER INPUTS


Toms River Streamflow 1929-2002



FRESHWATER INPUTS

FRESHWATER WITHDRAWALS

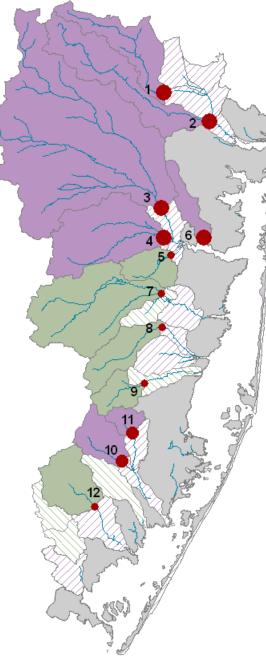
FRESHWATER WITHDRAWALS Ocean County 1985 - 2005

Nitrogen

Importance -- Biological productivity in coastal waters is normally limited by the availability of nitrogen, with secondary P limitation (demonstrated in Barnegat Bay by Seitzinger, et al, 2001)

Common forms

- Organic nitrogen
- Inorganic forms: NO₃⁻, NO₂⁻, NH₃, NH₄⁺

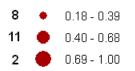

Common sources

- Residential and commercial areas
 - Lawn fertilizer, septic system waste, leaky sewer pipes, industrial discharge
- Agricultural areas
 - Crop fertilizer, animal manure, septic system waste
- Atmosphere
 - Automobile emissions, industrial emissions, natural N-fixation processes, emissions from agricultural sources

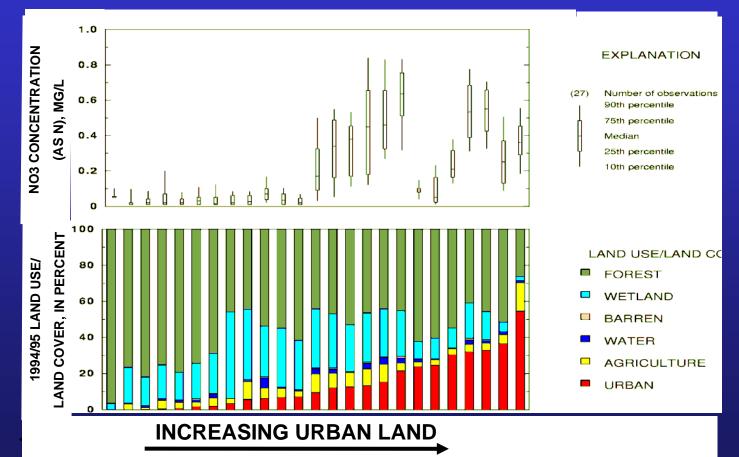
Total Nitrogen Concentrations in Streams

Median concentrations of total nitrogen (TN) at 12 stream sites in the Barnegat Bay Little Egg Harbor watershed, 1987 2008

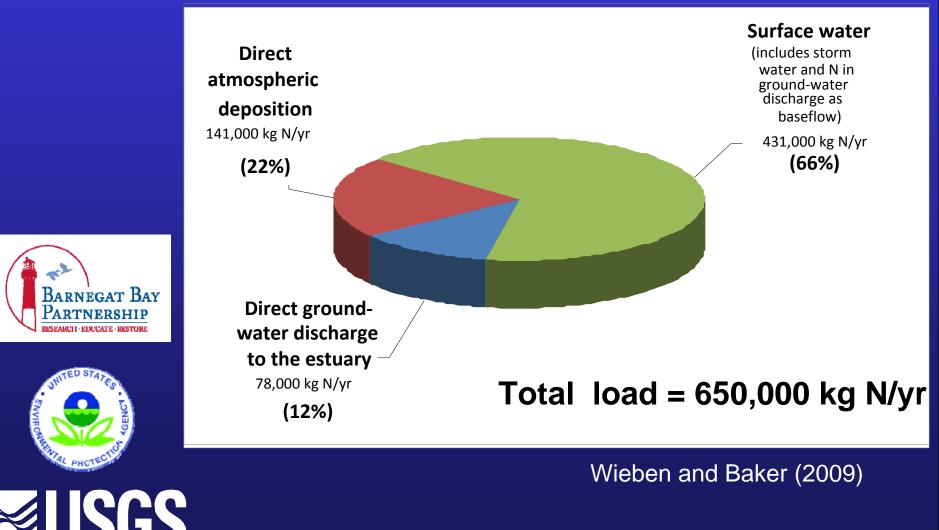
USGS


EXPLANATION

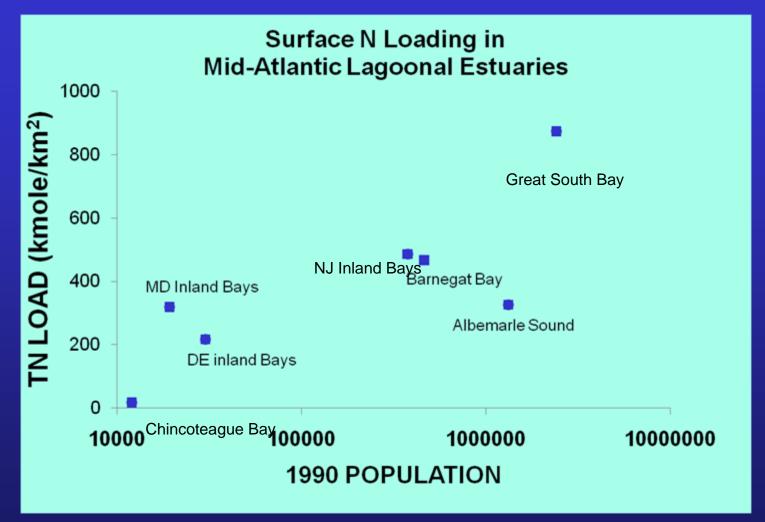
Ground-water discharge area


River basin type

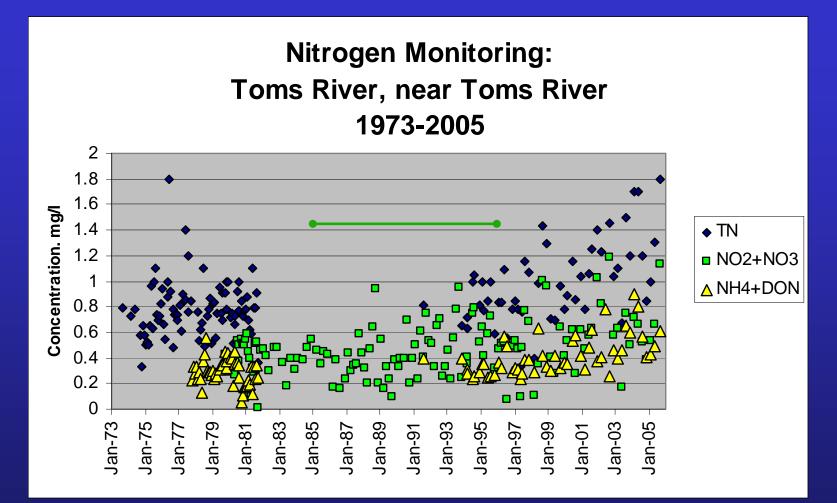
Stream site and number-size of circle indicates median TN concentration, in milligrams per liter



RELATION BETWEEN WATER QUALITY AND LAND USE/LAND COVER



Source: Hunchak-Kariouk and Nicholson, 2001


Updated (2009) Estimate of Delivered Load

USHS

Source: NOAA Estuarine Typology Database (Smith and others, 2003)

Source: USGS/NJDEP Cooperative Ambient Stream Monitoring Network

Increasing trend in NO2+NO3 during 1985-95 is statistically significant (p = 0.10) (Hickman and Barringer, 1999)

Atmospheric Deposition

NADP Monitoring Station at E.B. Forsythe National Wildlife Refuge



ISAS

Sources of N in atmospheric deposition: Primarily local and regional combustion of fossil fuels

Barnegat Bay NOx Airshed (NOAA-ARL and USEPA-NERL, 2001)

Regional sources: N may be transported over long distances before deposition



Surface water inputs

How does nitrogen get into streams that flow into the estuary?

Cedar Creek Monitoring Station

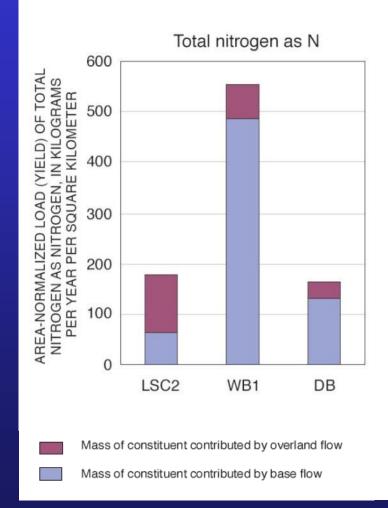
GROUNDWATER FLOW TO STREAMS

Baseflow sustains flow during dry periods

In southern New Jersey, 80% of streamflow is baseflow (comes from groundwater discharge)

How much of the nitrogen load in streams comes from groundwater?

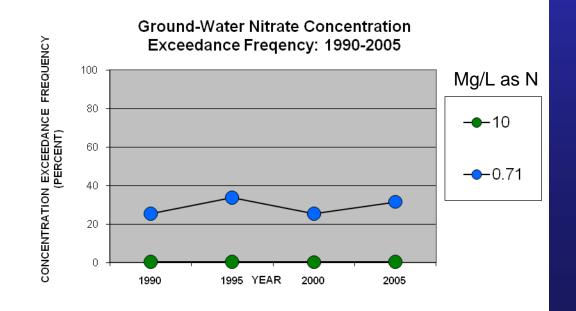
Nearly all baseflow originates as aquifer recharge



Relative Loads from Stormwater and Baseflow

USGS/NJDEP Toms River study (2006)

- R. Baker and K. Hunchak-Kariouk (2006, USGS)
- Connell and Schuster (NJDEP, 1999)
- Base flow contributed more of the N load than overland flow in 2 of 3 tributaries
- Groundwater is an important nitrogen transport pathway

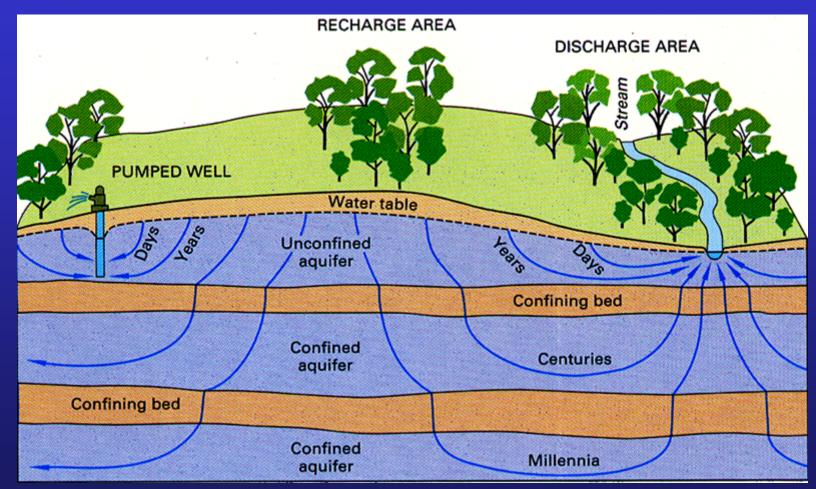

Source: Baker and Hunchak-Kariouk, 2006

Using N in Groundwater as an Indicator of Potential Load C. Wieben, USGS (2007)

1,700+ Ocean County ground-water sample results for 1990-2005

26-34% of ground-water sample concentrations were above proposed 0.71 mg/l N criteria for rivers and streams in Nutrient Ecoregion XIV (Atlantic Coast).

Data Source: Wieben, 2007


Ongoing USGS Research

- Simulation of nitrogen transport in groundwater
- Quantifying sources of Nitrogen
- Exploring linkage between nutrient loads and biotic responses

Transport

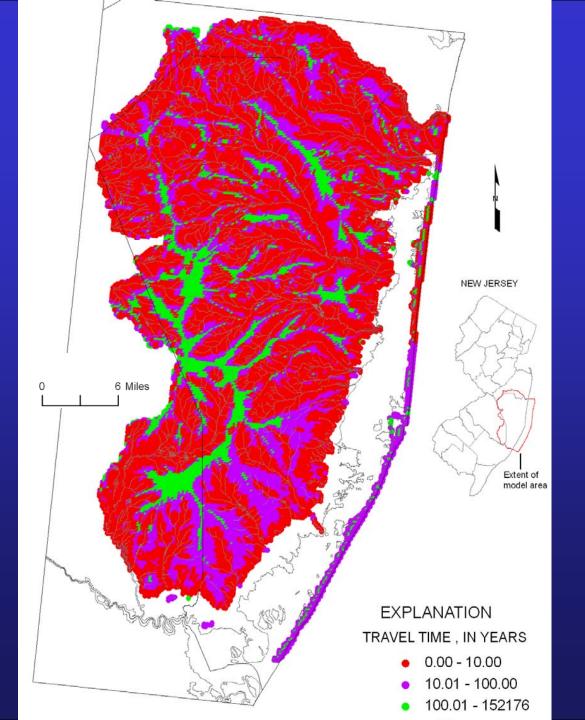
GROUNDWATER INPUTS

≈USGS

Transport

Groundwater Flowpath Analysis

- S. Cauller and L. Voronin, USGS (ongoing)
- Exploring the link between historical land use and nutrient loads
- Utilizing existing groundwater-flow model developed for water-supply analysis



• Objectives:

- Determine if observed trends in base flow nutrient loads can be predicted from historical land use
- Predict loads under alternative management strategies

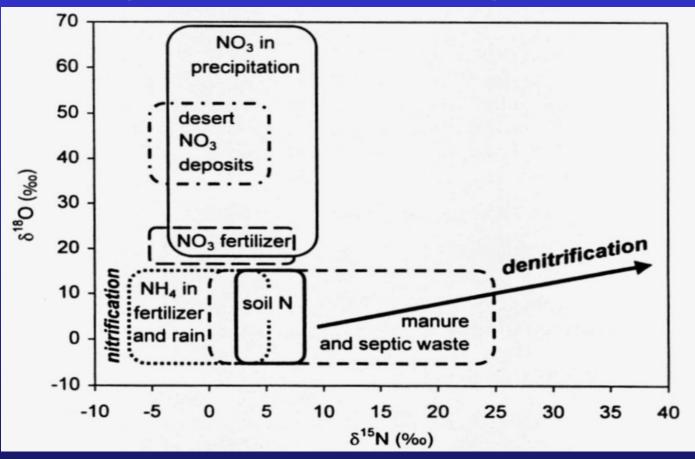
Preliminary simulated groundwater travel time from recharge to discharge area

USGS

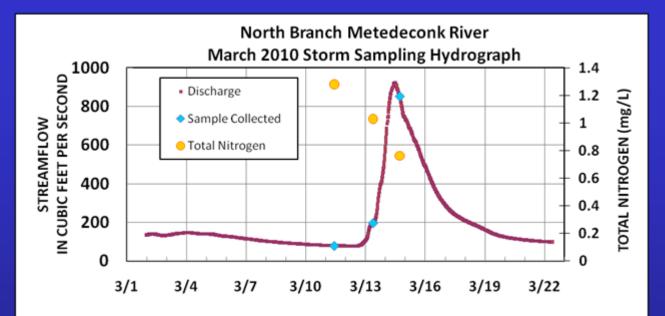
QUANTIFYING SOURCES OF NUTRIENT INPUTS TO THE BARNEGAT BAY-LITTLE EGG HARBOR ESTUARY

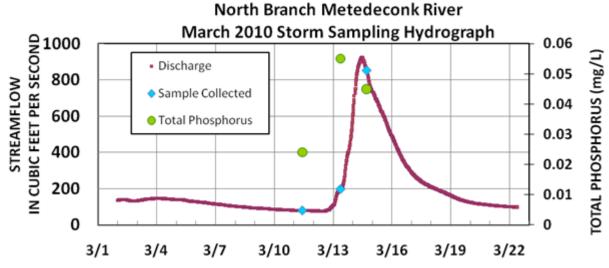
R. Baker and C. Wieben, USGS (ongoing)

Objectives:


- Improve current understanding of nutrient (N + P) sources
 - (Using N and O isotope analysis)
- Quantify loading to previously unmonitored streams.
- Improve estimates of direct and indirect groundwater nutrient loading.

Using Isotopes to identify nitrogen sources


From OHTE and others, 2008



2010 STREAM SAMPLING BEFORE AND DURING STORM EVENTS

USGS

ECOLOGICAL CONSEQUENCES

ASSESSMENT OF NUTRIENT LOADING AND BIOTIC RESPONSE IN SUPPORT OF NUTRIENT MANAGEMENT PLANNING

M. Kennish, R. Lathrop, S. Haag (Rutgers University/CRSSA/JCNERR) R. Baker, C. Wieben (USGS) -- Ongoing: 2009-2012

- Joint project -- Rutgers University and USGS
- EPA funding through NEIWPCC
- <u>One Objective:</u> Determine spatial and temporal relations between nutrient loadings and biotic conditions in Barnegat Bay

NITROGEN LOAD SUMMARY

What we have learned:

- Primary nutrient delivery pathway is probably surface water
- Nutrient loads from surface water are related to land use
- Groundwater contribution to surface water N load is substantial; large reservoir of N in shallow GW
- Potentially long lag time from release to GW to delivery
- Atmospheric N input is substantial

USGS Contributors

Ron Baker Stephen Cauller Robert Nicholson Lois Voronin Christine Wieben

Selected References on Nutrient Inputs to Barnegat Bay Robert S. Nicholson, US Geological Survey, New Jersey Water Science Center NJDEP Barnegat Bay Stakeholders Meeting, Ocean County College, May 5, 2010

- 1. Baker, R.J. and Hunchak-Kariouk, K, 2006. Relations of water quality to streamflow, season, and land use for four tributaries to the Toms River, Ocean County, New Jersey, 1994-99: U.S. Geological Survey Scientific Investigations Report 2005-5274, 72 p.
- 2. Bowen, J.L., Ramstack, J.M., Mazzilli, S., and Valiela, I., 2007. NLOAD: An interactive, web-based modeling tool for nitrogen management in estuaries, in: Ecological Applications, 17(5) Supplement, pp. S17-S30.
- 3. Carter, G., P., Eight Characterizing Indicators in the Barnegat Bay watershed, Ocean County, New Jersey: Journal of Coastal Research, Special Issue 32, pp. 82-101.
- 4. Guo Q., and Psuty, N.P., 2000. The nitrogen flux through Barnegat Inlet: The ocean as source as well as sink: *The Jersey ShoreLine*, New Jersey Sea Grant College Program, 19(4), August, 2000.
- 5. Hickman, R.E. and Barringer, T.H., 1999, Trends in waterquality of New Jersey streams, Water Years 1986-95: U.S. Geological Survey water Resources Investigations Report 98-4204, 174.
- Hunchak-Kariouk, K., and Nicholson, R.S., 2001, Watershed contributions of nutrients and other nonpoint source contaminants to the Barnegat Bay-Little Egg Harbor estuary: Journal of Coastal Research, Special Issue 32, pp. 28-82.
- Seitzinger, S.P., Styles, R.M., and Pilling, I.E., 2001. Benthic macroalgal and Phytoplankton production in Barnegat Bay, New Jersey (USA): microcosm experiments and data synthesis: Journal of Coastal Research, Special Issue 32, pp. 144-162
- 8. Seitzinger, S.P. and Pilling, I.E., 1992, Eutrophication and nutrient loading in Barnegat Bay: initial studies of the importance of sediment-water nutrient interactions, Report No. 92-24F, The Academy of Natural Sciences, Philadelphia, PA.
- 9. Smith, S., Bricker, S., P. Pacheco, P., and Buddemeier, R.W., 2003. Preliminary NOAA Estuarine Typology Database Available from: http://drysdale.kgs.ku.edu/estuary/hp_firststep.cfm .
- 10. Wieben, C., 2007, Assessment of a Shallow Ground-Water-Quality Indicator. Barnegat Bay Partnership, http://www.bbep.org/studies.html
- 11. Weiben, C., and Baker, R., 2009, ☜◻◀♦◻₭₰♦♦₭◻■▸ ◻↗ ≵₭♦◻◻∿Ო■ ♦◻ ♦₥Ო ♨☺◻∎Ო∿☺♦ ♨☺⊠এ৩₭♦♦●Ო ☜∿∿ ฅ☺◻₰◻◻ ☜∙♦♦☺◻⊠⊒ ฿◻≗☺♦Ო≗ ☺◻☺≗₭■∿ ☜∙♦米೦☺♦Ო▸ ថെ ♨☺◻■Ო∿©♦ ♨☺⊠ ฅ©Ე♦■ᲝᲔ∙₥₭םថെ <u>http://www.bbep.org/studies.html</u>

