

APPENDIX C
ESTUARY INFLOW

EVALUATION

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 2

Integrated Delaware River Basin Model:
OASIS, DYNHYD5 and TOXI5

Documentation of Model Integration

January 2008

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 3

Introduction

Up to this point several standalone computer models have been used to simulate flow and solute
transport in the lower reaches of the Delaware River and its estuary. Among these are the
Delaware River Basin OASIS Flow Model, DYNHYD5, and TOXI5. It was realized that some of the
regulatory applications of these models could be conducted more efficiently if these models were
run in parallel, with a feedback loop to pass information back and forth between them. The models
require feedback because the management of water (simulated in the OASIS model) affects the
salt front in the Delaware River estuary (simulated by DYNHYD5/TOXI5). In turn, the
management of water can be affected by the salt front.

Through this study we’ve integrated the existing DYNHYD5/TOXI5 model of the Delaware River
estuary with the existing OASIS model of the Delaware River Basin. Both DYNHYD5 and TOXI5
were modified to run as external modules for OASIS. The external-module system allows other
types of simulation models to exchange data with an OASIS model in each simulation time step.

The external modules are designed to be very flexible. The modeler should not have to change
the source code to reconfigure the model. This document describes how the modules can be
reconfigured. It also describes how the source code of the module can be changed if the current
module design does not meet future modeling needs.

Models that were Integrated

OASIS
The Delaware River Basin OASIS Model (Delaware OASIS) is a reservoir operations and flow
routing model of the Delaware River and its main tributaries. Users of Delaware OASIS can modify
the physical configuration of the system and operating rules through data entered in input tables or
in the Operations Control Language (OCL) input. Standalone simulations typically cover the whole
period of record (currently about 70 years). The time-step size is one day. An important feature of
any OASIS application, including Delaware OASIS, is that other computer programs in DLLs,
known as external modules, can exchange data with the OASIS model.

DYNHYD5 and TOXI5
DYNHYD5 simulates the hydrodynamics and TOXI5 simulates the chloride transport in the tidal
Delaware River and Bay, from Trenton to the mouth of the Delaware Bay. Standalone simulations
typically cover one to three years. TOXI5 has a time-step size of 15 minutes; DYNHYD5 can
accommodate time steps as small as 30 seconds. Prior to the model integration described by this
document, DYNHYD5 and TOXI5 were run in series. First DYNHYD5 must be run. Then, TOXI5
uses the DYNHYD5 output for flow input. In this relationship, TOXI5 is completely dependent on
DYNHYD5 output.

Overlap between OASIS and DYNHYD5/TOXI5
Each model represents a one-dimensional network of nodes, and they overlap geographically in
their coverage of the tidal portion of the Delaware River. DYNHYD5/TOXI5 represents the estuary
in much finer detail than OASIS. However, OASIS dynamically determines flow that results from
the operating rules that are described in OASIS input. DYNHYD5 determines flow only from the
input boundary conditions and the physics of flow. In the original version of DYNHYD5,
management decisions would be implicit in the boundary conditions. Any change to management
must be pre-processed into the time-series input that DYNHYD5 reads. In the OASIS-module

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 4

version of DYNHYD5, OASIS specifies the dynamically-determined upstream boundary conditions
to DYNHYD5.

Information about DYNHYD5/TOXI5
The linked DYNHYD5/TOXI5 models were calibrated for water surface elevations, current
velocities, and chloride concentrations throughout the Delaware estuary for the 19-month period
from 2001 to 2003. Detailed calibrations results can be found from the DRBC’s technical report,
which can be obtained from http://www.state.nj.us/drbc/TMDL/HydroModelRptDec2003.pdf.
Downstream boundary tidal conditions and constant inflows from point source discharges and
minor tributaries have been modified for this linkage. More detailed description of this work can be
obtained from DRBC staff at http://www.state.nj.us/drbc.

Design of the DYNHYD5/TOXI5 modules

Source-code changes
When creating the DYNHYD5 and TOXI5 modules, the goal was to interfere with the existing
source code as little as possible. The source code of the external modules differs from the
standalone versions in the following ways:

• Flow of processing. The protocol for an OASIS external module requires that the module
be divided into three distinct phases of processing: 1) initialization, 2) time-step loop, and 3)
shutdown. This is necessary because OASIS must call the module at least once for every
OASIS time step. In general, it is necessary that the module respond by simulating a
period of time equal to one OASIS time step. Thus, there are three subroutines in the
module which OASIS can call:

o MODULE_INIT: This routine is called only once, while OASIS is initializing.

o MODULE_STEP: This routine is called every time OASIS evaluates a Run_module
command. Thus, this routine is called at least once every OASIS time step.

o MODULE_SHUT: This routine is called only once, when OASIS is shutting down.

The existing code in DYNHYD5 and TOXI5 had to be divided so that it fit into these three
phases. This was not extremely difficult, since the flow of both programs already generally
followed the progression of the three phases. Some change was necessary, because in
the original source code the three phases were not perfectly isolated from each other.

• Routines for the interface. New subroutines had to be added to the module which did not
exist in the original source of the standalone programs. These routines include the callable
routines MODULE_INIT, MODULE_STEP, and MODULE_SHUTDOWN described above.
There are a few new subroutines that are only called from the three callable routines. Also,
there are error-handling subroutines described below.

The routines that are new to the module version (not found in the standalone version) are
found in the following Fortran and C++ source-code files. None of the source code in these
files is found in the original DYNHYD5 or TOXI5.

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 5

In DYNHYD5:
_DynHyd5_init.f90
_DynHyd5_shut.f90
_DynHyd5_step.f90
_OASIS_mod_init.f90
_OASIS_module.f90
mod_oasis.f90
mod_shutdown.f90
_OASIS_mod_initC.cpp

In TOXI5:
_Toxi5_init.f90
_Toxi5_shut.f90
_Toxi5_step.f90
_OASIS_mod_init.f90
_OASIS_module.f90
mod_oasis.f90
mod_shutdown.f90
_OASIS_mod_initC.cpp

The new routines have some effects on the way DYNHYD5 and TOXI5 run. The new
routines manage the current working directory so that DYNHYD5 and TOXI5 execute in a
folder specified by the OCL :MODULE: command. The new routines override input
parameters in DYNHYD5/TOXI5 that specify the length of the run, so that the modules run
as long as OASIS is running. The new routines also override variable-flow input from the
DYNHYD5 input file, applying flow values from the OCL Run_module command instead.
No entirely new subroutines were added to the original DYNHYD5/TOXI5 source-code files.
However, some modifications were done to the original files for error handling and the use
of scratch files as described below.

• Error-handling. In the standalone programs, error handling generally included use of the
Fortran STOP command. This is not acceptable for an external module because OASIS
should process the error and write final output files before terminating. Therefore, the use
of the STOP command was replaced by a call to the new subroutine
FORTRAN_MOD_ERR_SHUTDOWN. This subroutine flags an error and passes the error
message back to OASIS. Furthermore, the error message is constructed by subroutine
ADD_LINE_TO_MESSAGE. This subroutine is used to build a long error message that
OASIS can display, which is otherwise very difficult in Fortran.

• Reading and writing scratch files. Whereas the original versions of DYNHYD5 and
TOXI5 were run in series, the module versions run in parallel, and it is necessary for
DYNHYD5 to pass data to TOXI5 once per 24-hour cycle (one OASIS time step). In order
to make the least interference with the existing source code of DYNHYD5 and TOXI5,
HydroLogics designed a scratch file that is based on the output file that DYNHYD5 was
already writing. This file is named scratch.HYD, and contains all the information that
DYNHYD5 calculated for a single simulated day. The nature of the scratch file is described
in more detail below.

Any part of the original Fortran source-code files that was modified by HydroLogics for the creation
of the external modules is marked with the comment:

! %% OASIS

DYNHYD5 and TOXI5 input and output
The DYNHYD5 module reads the same input files, does the same calculations, and writes the
same output files a the standalone version. However, after the DYNHYD5 module reads the input
file, temp.INP, all of the variable-inflow values are discarded. Instead the module assigns the
variable-inflow values that are passed from OASIS each time step. The DYNHYD5 module still
requires that the input file contain data for each of these inflows, and the formatting has to be
consistent with the original DYNHYD5 input file requirements. However, the actual values entered
do not matter. The current input file has 20 days worth of dummy values, all set to -.005.

DYNHYD5/TOXI5 modules create the same output files, in their entirety, as the original standalone
programs. A modeler can thus do the same analysis of these files as with the standalone version.

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 6

However, if the optional parameter Large_Output=0 is specified in the :MODULE: command, then
DYNHYD5’s original output files are not written by the module. This can save significant disk
space, and the files are not needed by OASIS or the module version of TOXI5.

Additionally, the DYNHYD5 module creates a block of information stored in the file varblock.TMP,
which can be pasted into the DYNHYD5 file temp.INP in the variable-inflow section. Thus, after a
run with the integrated OASIS/DYNHYD5/TOXI5 models is finished, the modeler can run the
standalone DYNHYD5 model with the same data that was used in the integrated model.

The original standalone DYNHYD5 writes data twice per simulated day to a file named temp.HYD.
This file is rather large (approximately 100 MB per simulated day) due to the small time step that
has been used in the Delaware estuary model. In the standalone versions of the estuary models,
this becomes an input file for TOXI5.

HydroLogics added source code to the DYNHYD5 module that writes every single day’s worth of
data to a scratch file designated scratch.HYD. The file scratch.HYD contains all of the same data,
in the exact same format, as in temp.HYD. However, whereas temp.HYD contains all the output
data for the entire DYNHYD5 run, scratch.HYD contains only one simulated day’s worth of data.
The data in scratch.HYD is overwritten every simulated day. The module version of TOXI5 reads
input data from scratch.HYD instead of from temp.HYD. The TOXI5 module still reads the original
input file tempwq.INP. The module version of TOXI5 also uses an entirely new file, segmile.tbl, to
correlate TOXI5 segments to DRBC river miles. Segmile.tbl is described in the implementation
section below.

Since DYNHYD5 is not dependent on TOXI5, it is possible to execute the DYNHYD5 module
without TOXI5. Note, however, that DYNHYD5 by itself does not pass any information to OASIS.
It is not possible to execute the TOXI5 module without the DYHYD5 module running at the same
time.

Interface between OASIS and DYNHYD5/TOXI5

General OCL syntax
The Operations Control Language (OCL), is a form of input to OASIS. An OASIS model can be
designed with great flexibility due to the language-nature of OCL. In the integrated model, the
interface between OASIS, DYNHYD5, and TOXI5 is controlled entirely by OCL commands.

There are two OCL commands that are critical to external modules: :MODULE: and Run_module.

:MODULE: Command
The :MODULE: command is used to declare the module. It identifies the file that contains the
module, and specifies information about how the module is initialized. The :MODULE: command is
an OCL meta command. This means that it only contains information about how OASIS is
initialized. Unlike the Run_module command, it does not contain information that is re-evaluated
every simulation time step.

Run_module Command
The Run_module command is an OCL simulation command. This means that it contains
information that is re-evaluated every simulation time step. The Run_module command contains a
list of values that are sent to the external module (the Input field). It also contains a list of OCL
variables whose values are assigned by the module (the Output field).

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 7

For a complete description of the syntax of these commands, please refer to the OASIS user
manual.

Specific OCL syntax for DYNHYD5 module
The DYNHYD5 external module is programmed to process certain information from the :MODULE:
and Run_module commands.

:MODULE: DLL DynHyd5 = [HomeDir]\DynHyd5_module.dll
 InitParam "Folder=DRBC-DH5 Large_Output=1"

The :MODULE: command tells OASIS to use a module named DynHyd5. The name DynHyd5 is
used to refer to this module in the Run_module command. This module is contained in the file
[HomeDir]\DynHyd5_module.dll ([HomeDir] is the folder where model.exe is found). The InitParam
field is used to pass two parameters named Folder and Large_Output. The module uses the value
of the Folder parameter (DRBC-DH5) as the name of the folder that DYNHYD5 executes in. That
is, DYNHYD5 will look for all input files and write all output files in this folder. The value of the
parameter Large_Output tells the module whether to store the large output files that are created by
standalone DYNHYD5. If Large_Output=1, the large output files are written. If Large_Output=0,
the output files are not written. These files are not needed to run DYNHYD5 or TOXI5 with OASIS.
However, they may be needed to analyze the output files in the same way as standalone
DYNHYD5.

Run_Module : DynHyd5
{
 Input: { RunFlag, ParamType, DynHyd5JunctionNumber,
 OasisFlowValue }
 Output : { }
}
Run_Module : DynHyd5
{
 Input : { RunFlag }
 Output : { }
}

The Run_module command for DYNHYD5 is used for two purposes: passing flow values and
executing. The different uses are determined by the first parameter, RunFlag. In neither case are
there any output values that OASIS receives from the module. For the purpose of passing flow
values, the module is programmed to receive one flow value per Run_module command. Thus,
there are generally several Run_module commands with RunFlag=0, but there must be only one
Run_module command with RunFlag=1. The input parameters of the Run_module command are:

RunFlag = [0 or 1].
• If RunFlag=0, DYNHYD5 is not executed, but the subsequent input parameters specify a

value that OASIS passes to the module.
• If RunFlag=1, then the module does not read the parameters ParamType,

DynHyd5JunctionNumber, and OasisFlowValue (they should be omitted). DYNHYD5 is
executed for 24 simulated hours. RunFlag should equal 1 only in the last Run_module
command. DHYHYD5 can not be run more than once per simulated OASIS day, so
RunFlag must not equal 1 in more than one Run_module command. It would serve no
purpose to follow the Run_module command with RunFlag=1 with another Run_module
command with RunFlag=0.

ParamType = [1]

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 8

• This parameter should be used only if RunFlag=0. ParamType specifies the type of data
that is being passed in the Run_module command. The only value that is currently
recognized is 1, which specifies that the value OasisFlowValue is a variable flow. If a future
need arises, the module can be programmed to recognize other types of parameters.

 DynHyd5JunctionNumber = [Integer]
• This parameter should be used only if RunFlag=0. The value should be the integer number

of a junction defined for variable flow in the DYNHYD5 input file temp.INP.
 OasisFlowValue = [Real number (CMS)]

• This parameter should be used only if RunFlag=0. This value should be a flow in CMS that
OASIS determines for the DYNHYD5 junction number given by DynHyd5JunctionNumber.
The module overrides the value from DYNHYD5 input file temp.INP with OasisFlowValue.

Specific OCL syntax for TOXI5 module
The TOXI5 external module is programmed to process certain information from the :MODULE: and
Run_module commands.

:MODULE: DLL Toxi5 = [HomeDir]\Toxi5_module.dll
 InitParam "Folder=DRBC-DH5 Large_Output=1"

This command tells OASIS to use a module named Toxi5. The name Toxi5 is used to refer to this
module in the Run_module command. This module is contained in the file [HomeDir]\
Toxi5_module.dll ([HomeDir] is the folder where model.exe is found). The InitParam field is used
to pass two parameters named Folder and Large_Output. The module uses the value of the
Folder parameter (DRBC-DH5) as the name of the folder that TOXI5 executes in. That is, TOXI5
will look for all input files and write all output files in this folder. Because the TOXI5 module is
dependent on the scratch file generated by the DYNHYD5 module, it would not make sense to
specify a TOXI5 Folder value different that what is used for DYNHYD5. The value of the
parameter Large_Output tells the module whether to store the large output files that are created by
standalone TOXI5. If Large_Output=1, the large output files are written. If Large_Output=0, the
output files are not written. These files are not needed to run TOXI5 with OASIS. However, they
may be needed to analyze the output files in the same way as standalone TOXI5.

Run_module : Toxi5
{
 Input: { RunFlag, ParamType, ParamInput }
 Output: { Return_Value }
}

The Run_module command for TOXI5 is used for two purposes: passing water-quality values and
executing. Executing is done only when parameter RunFlag is 1. The passing of water quality
values occurs whether or not RunFlag is 1. The module is programmed to send one water-quality
value per Run_module command. There are four different types of water-quality information that
can be sent by the TOXI5 module. In each Run_module command, the type of water quality
information to be sent is specified by parameter ParamInput. There can be more than one
Run_module command for TOXI5, but only one of these Run_module commands can have
RunFlag=1, and that command should be the first one. The input and output parameters of the
Run_module command are:

RunFlag = [0 or 1]
• If RunFlag=1, TOXI5 is executed for 24 simulated hours, and send one water-quality value

to OASIS. RunFlag can equal 1 only in the first Run_module command.

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 9

• If RunFlag=0, TOXI5 is not executed, but one water-quality value from the previous 24-hour
execution is sent to OASIS. It would not make sense to apply RunFlag=0 in a Run_module
command before the Run_module command where RunFlag=1.

ParamType = [1, 2, 3, or 4]
• If ParamType=1, then Return_Value is the river mile of the isochlor of ParamInput -- that is,

the most upstream River Mile where chloride concentration exceeds ParamInput. The
module does linear interpolation to find the precise river mile.

• If ParamType=2, then Return_Value is the TOXI5 segment number of the isochlor of
ParamInput -- that is, the most upstream segment number where chloride concentration
exceeds ParamInput.

• If ParamType=3, then Return_Value is the chloride concentration at river mile equal to
ParamInput. The module does linear interpolation to find the precise concentration.

• If ParamType=4, then Return_Value is the chloride concentration at TOXI5 segment
number ParamInput.

 ParamInput = [chloride concentration (mg/L), River Mile, or TOXI5 segment number]
• If ParamType=1, ParamInput is a chloride concentration in mg/L.
• If ParamType=2, ParamInput is a chloride concentration in mg/L.
• If ParamType=3, ParamInput is a river mile
• If ParamType=4, ParamInput is a TOXI5 segment number.

 ReturnValue = [River Mile, TOXI5 segment number, or chloride concentration (mg/L)]
• If ParamType=1, Return_Value is the river mile of the isochlor of ParamInput
• If ParamType=2, Return_Value is the TOXI5 segment number of the isochlor of ParamInput
• If ParamType=3, Return_Value is the chloride concentration (mg/L) at river mile ParamInput.
• If ParamType=4, Return_Value is the chloride concentration (mg/L) at TOXI5 segment

number ParamInput

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 10

Modifying the source code of the DYNHYD5/TOXI5 modules

The DYNHYD5/TOXI5 modules were designed to be very flexible. However, if the module
interface does not provide the necessary control, the source code can be modified.

Initialization Parameters
If new initialization parameters are needed, then the module must be programmed to process
them. This is done in subroutine MODULE_INITIALIZE in file _OASIS_mod_initC.cpp. The
comments indicate a section where processing loops through all arguments of the initialization
parameters. Within this loop, each parameter should be handled by its own IF block. For
example, the current parameter FOLDER is handled by this IF statement:

 if(strnicmp(temp_string, "FOLDER=", 7)==0)

Parameters passed in the Run_module command
If new values are to be passed by the Run_module command, then the module must be
programmed to send or receive them. This is done in subroutine MODULE_STEP in file
_OASIS_module.f90. The only argument of the subroutine is named argument, and it is an array
of type real*4. That reflects the fact that all parameters of the Run_module command are floating-
point numbers.

One of the first things that should occur in MODULE_STEP is that the elements of the argument
array should be assigned to local variables. This is how the input values from the Run_module
command are assigned to variables in MODULE_STEP.

One of the last things that should occur in MODULE_STEP is that the values of local variables are
assigned to elements of the argument array. This is how variables in MODULE_STEP are
assigned to output variables (OCL variables) in the Run_module command.

As described above, the DYNHYD5 and TOXI5 modules have been designed so that Run_module
command can be used as a sort of inquiry command. The second input parameter is a code for
which type of data to retrieve, and the succeeding parameters identify for which segment or
junction data should be retrieved or assigned. It is suggested that any changes to the module
conform to this protocol. That is, a new code can be defined. The module can be programmed to
recognize this code and respond appropriately. Additional Run_module commands that apply this
code can then be added to the OCL input.

Limitations of the DYNHYD5/TOXI5 modules

The DYNHYD5 and TOXI5 modules have limitations that are inherited from the original standalone
programs.

1. DYNHYD5 was originally coded to be limited to 700 variable flow time steps. This
practically translates to 700 daily variable inflow steps. This was increased to 55,000.
Tests indicate that the module runs properly for runs greater than 5 simulated years in
length. With 55,000 variable inflow values, the longest possible run should be 150
simulated years.

2. DYNHYD5/TOXI5 output files are very large – combined about 100 Megabytes per month
when using the supplied time steps. On Windows computers with hard drives formatted
with the FAT32 file system, this will artificially limit the length of runs when a single output
files reaches 4 Gigabytes. Computers with hard drives formatted with the NTFS file system

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 11

will not have this limitation. However, to run these files with OASIS, the only output that is
strictly necessary are the small scratch files. The module versions have been programmed
so that the large output files can be turned off using the Large_output=0 parameter in the
:MODULE: command.

3. The DYNHYD5/TOXI5 modules have been tested with OASIS for position analysis. The
tests indicate that the module will work properly for position analysis. However, it should be
noted that not all DYNHYD5/TOXI5 output is saved when doing position analysis. Position
analysis is accomplished by running the OASIS model multiple times – once for each
position analysis trace. With each trace run, the DYNHYD5/TOXI5 output files are
overwritten. This is probably not a problem for the modeler, since the most important
results can be stored by OASIS. Anyway, it would be difficult to analyze the large number
of DYNHYD5/TOXI5 output files from a position analysis.

4. Examination of the original DYNHYD5 source code indicates that the Restart Function
(using file temp.RST) contains errors, and should not be used.

Modifications to input files for the integrated model.

DYNHYD5 and TOXI5 input and output
TOXI5 and DYNHYD5 files are placed in the folder specified by the Folder parameter in the
:MODULE: commands. The folder name DRBC-DH5 was chosen for this folder, although the
folder name is easily changed. The folder is assumed to be a subfolder of the OASIS run folder.

segmile.tbl – This is a new file not used by standalone TOXI5. It contains a table of values listing
the river mile that corresponds to each TOXI5 segment number. The format is strictly column-
based. Each row contains a 3-digit TOXI5 segment number followed by an 8-digit river mile value
with up to 2 decimal places. The file starts at the highest river mile (133.3) and continues to the
lowest river mile (8.0).

For Example:

 76 133.3
 75 132.0
 74 130.6
...
 84 18.6
 85 8.0

temp.inp– This file is used by the standalone TOXI5 and DYNHYD5, but the input data was
modified slightly for use with the module versions. The variable inflow data was abbreviated, since
the module was configured to override variable inflow data from this file (values passed through the
OASIS Run_module commands are used instead). Each inflow is assigned 20 dummy data points
(the number 20 is arbitrary). The value of each data point is unimportant. With each variable
inflow, a note was added to identify the corresponding OASIS node number.

 For Example:

*VARIABLE INFLOW DATA: negative=inflow; positive=withdrawal ****
 12
 90 20 Del. Riv. at Trenton [OASIS:365]
 1. 0 0 -.005 2. 0 0 -.005 3. 0 0 -.005 4. 0 0 -.005
 5. 0 0 -.005 6. 0 0 -.005 7. 0 0 -.005 8. 0 0 -.005
 9. 0 0 -.005 10. 0 0 -.005 11. 0 0 -.005 12. 0 0 -.005
 13. 0 0 -.005 14. 0 0 -.005 15. 0 0 -.005 16. 0 0 -.005
 17. 0 0 -.005 18. 0 0 -.005 19. 0 0 -.005 20. 0 0 -.005

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 12

…
 24 20 Inflows [OASIS:540]
 1. 0 0 -.005 2. 0 0 -.005 3. 0 0 -.005 4. 0 0 -.005
 5. 0 0 -.005 6. 0 0 -.005 7. 0 0 -.005 8. 0 0 -.005
 9. 0 0 -.005 10. 0 0 -.005 11. 0 0 -.005 12. 0 0 -.005
 13. 0 0 -.005 14. 0 0 -.005 15. 0 0 -.005 16. 0 0 -.005
 17. 0 0 -.005 18. 0 0 -.005 19. 0 0 -.005 20. 0 0 -.005

tempwq.inp – This file is used by standalone TOXI5. The module version of TOXI5 uses the file in
exactly the same way. This file was not modified in any way from the version that DRBC provided.

Modifications to OASIS model input:
Of the OASIS input files, only OCL files were modified, as described here.

_module_declare.ocl – This is a new file. It contains the :MODULE: commands for DYNHYD5
and TOXI5, as described in the syntax section

main.ocl – This file existed in the previous model, but contains some modifications for the
integration with DYNHYD5 and TOXI5. A new :SUBSTITUTE: command sets a flag ([UseToxi5])
with which you can specify whether OASIS should use original regression formula or the TOXI5
module to model the salt front. New :INCLUDE: commands are also used to apply the new OCL
files. The file also contains a new SOLVE command. In the previous version of the model, the
SOLVE command was implicit only. In the integrated model, the SOLVE command must be
explicitly applied because DYNHYD5 and TOXI5 are called after flow information has been solved
in each OASIS time step.

udef_list.ocl – This file existed in the previous model, but contains some modifications for the
integration with DYNHYD5 and TOXI5. Udef commands were added for variables that were used
to store information from TOXI5.

For example:

...
Udef : _SaltFrontMile_T5 init{[InitSalt] , [InitSalt] , [InitSalt] , [InitSalt] ,
 [InitSalt] , [InitSalt] , [InitSalt] }

Udef : _SaltFrontMovAv_T5 init{[InitSalt] , [InitSalt] , [InitSalt] , [InitSalt] ,
 [InitSalt] , [InitSalt] , [InitSalt] }

/* For DynHyd5 / Toxi5 Module testing and reference */

Udef : _SegNum_T5
Udef : _ConcMile_T5
Udef : _ConcSeg_T5
...

dynhyd5.ocl – This is a new file. It contains all Run_module commands for DYNHYD5. A
Run_Module command is required for every DYNHYD5 variable flow that is set by the OASIS
model. DYNHYD5 is configured to process flow in CMS, so a conversion from MG (the units used
by OASIS) is necessary. The final Run_module command tells the DYNHYD5 module to simulate
one day.

 For example:

Run_Module : DynHyd5
{
 Input : { 0, 1, 90, Convert_Units{ Flow365.994, MG, CMS} }
 Output : { }

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 13

}
…
/* After all inputs are sent to the DynHyd5 Module, run it. All output goes
 to Toxi5 through scratch files, so no data transfer is necessary between Oasis
*/

Run_Module : DynHyd5
{
 Input : {1}
 Output : { }
}

toxi5.ocl – This is a new file. It contains all Run_module commands for TOXI5. The first
Run_module command tells TOXI5 to simulate one day. Then, a Run_module command is
required for every value that OASIS retrieves from TOXI5.

 For example:

Run_Module : Toxi5
{
 Input : { 1, 1, 250 }
 Output : { _SaltFrontMile_T5 }
}
Run_Module : Toxi5
{
 Input : { 0, 2, 250 }
 Output : { _SegNum_T5 }
}
Run_Module : Toxi5
{
 Input : { 0, 3, _SaltFrontMile_T5 }
 Output : { _ConcMile_T5 }
}
Run_Module : Toxi5
{
 Input : { 0, 4, _SegNum_T5 }
 Output : { _ConcSeg_T5 }
}

salt_front.ocl – This file existed in the previous model, but contains some modifications for the
integration with DYNHYD5 and TOXI5. The [UseToxi5] flag, declared in Main.ocl, is applied here.
If it [UseToxi5] equals 1, the model uses the TOXI5 output to create a moving average of the river
mile where the salt front is located. If [UseToxi5] is not equal to 1, then the model uses the
previously existing regression relationship to create a moving average of the river mile where the
salt front is located.

 For example:

/* If the [UseToxi5] flag is used, it uses the value returned from the Toxi5 Module */

:IF: { [UseToxi5] = 1 }

 Set : _SaltFrontMile_T5 { Value: _SaltFrontMile(-1) }

 Set : _SaltFrontMovAv_T5
 {
 Condition: Abs_Period <= 7
 Value : _SaltFrontMile_T5

 Condition: default
 Value : accumulate { _SaltFrontMile_T5 , -7 , -1 } / 7
 }

/* Otherwise Use the current approximation method */
//:ELSE:

…

Integrated Delaware River Basin Model: OASIS, DYNHYD5 and TOXI5

Page 14

Modifications to OASIS GUI input:

GUI.ini – This file (which is always used by the OASIS GUI) contains one important modification
for the integrated model. The new parameter AddnlCopyFiles is applied such that the GUI will
copy the DYNHYD5 and TOXI5 input files whenever the GUI is used to copy a run folder. The new
parameter appears as such:

AddnlCopyFiles=DRBC-DH5*.inp;DRBC-DH5*.tbl

Where DRBC-DH5 is the name chosen for the folder that contains DYNHYD5/TOXI5 input files.

Modifications to OASIS database:

Statdata.mdb – Each run needed to updated to work with the latest version of OASIS. This was
accomplished by using Hydrologics’ OASISConv.exe program. A double-entry in the lookup table,
Nevers_Rel, had to be manually deleted in OASIS to get the run to work.

