# ASSEMBLING INFORMATION ON ADVERSE REPBODUCTIVE OUTCOMES



Adverse Reproductive Outcomes

Jim Florio Governor Bruce Siegel, M.D., M.P.H. Commissioner of Health

#### POPULATION-BASED SURVEILLANCE AND ETIOLOGICAL RESEARCH OF ADVERSE REPRODUCTIVE OUTCOMES AND TOXIC WASTES

## REPORT ON PHASE I: ASSEMBLING INFORMATION ON ADVERSE REPRODUCTIVE OUTCOMES

- Mark C. Fulcomer, PhD
- Frank J. Bove, ScD
- Judith B. Klotz, DrPH
- Jorge Esmart, BA
- Ellen M. Dufficy, BSN
- Jonathan E. Savrin, MSPH
- Leah Z. Ziskin, MD, MS

March, 1992

#### New Jersey Department of Health

This report was supported in part by funds from the Comprehensive Environmental Response, Compensation, and Liability Act trust fund through a Cooperative Agreement with the Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.

> Project Officer: Larry D. Edmonds Division of Birth Defects and Developmental Disabilities National Center for Environmental Health and Injury Control Centers for Disease Control

#### **PRINCIPAL AUTHORS**

Frank J. Bove, ScD, Mark C. Fulcomer, PhD, Judith B. Klotz, DrPH

#### **CO-AUTHORS**

Ellen M. Dufficy, BSN, Jorge Esmart, BA, George J. Halpin, MD, Jonathan E. Savrin, MSPH, Rebecca T. Zagraniski, PhD, Leah Z. Ziskin, MD, MS

#### ACKNOWLEDGMENTS

The principal authors wish to express gratitude to many people for enabling the completion of this multiyear project and its five reports.

We were very fortunate to have a dedicated staff who contributed to the project over a long period of time: many of these individuals continue to work at the Department, continuing to contribute toward the project's objectives:

Jorge Esmart, Ellen Dufficy, Marian McElroy, Kay Knoblauch, Barbara Guidici, Debra Dragnosky-Embert, Suzanne Tschachler, and Donna France conducted interviews of the cases and controls; Jorge Esmart, Ellen Dufficy and Mary Knapp compiled, completed, and cleaned the birth outcomes data.

Carmen Pedroza and Jeanette Corbin contributed their secretarial and data entry skills.

Numerous Departmental personnel supported the project through its many phases:

Elizabeth Shapiro, Pamela Costa and Barbara Kern supported the project through their work on the Birth Defects Registry. Jonathan Savrin assisted in the completion of the reports. Perry Cohn, William Coniglio and Jerald Fagliano contributed technical insights. George Halpin, Susan Lenox-Goldman, Jerald Fagliano, Kathleen Cunningham, Diana Kiel, James Brownlee, Rebecca Zagraniski, and Leah Ziskin provided management support and technical reviews.

This project depended for its success on cooperation and contributions by many individuals outside the Department of Health:

Barker Hamill and his staff in the Bureau of Safe Drinking Water made it possible to conduct the exposure assessment for the drinking water studies. Robert Tucker and Leslie McGeorge of the Division of Science and Research coordinated the technical reviews and communications within Department of Environmental Protection and Energy. Our able Peer Review Panel was composed of Drs. Howard Kipen, Dirk Moore, Nigel Paneth, and Sherry Selevan. We thank the water companies of northern New Jersey for their consistent cooperation. We are indebted to the hundreds of New Jersey women who shared their time and life experiences with us.

Lastly, this project succeeded because of the constant and creative support of our project officer, Larry Edmonds of the Centers for Disease Control.

#### EXECUTIVE SUMMARY

This report constitutes the first phase of the cooperative agreement of the New Jersey Department of Health and the Centers for Disease Control: Population-Based Surveillance and Etiologic Research of Adverse Reproductive Outcomes and Toxic Wastes. Phase I of the project was intended to both enhance and evaluate the operation and data collection of the New Jersey Birth Defects Registry (BDR) and present rates of adverse reproductive outcomes of the state and its subdivisions including comparisons with other such registries. Under this phase, outcome rates for the state, its 21 counties, and 567 municipalities were generated for perinatal mortality (fetal and infant mortality), low birth weight, and congenital anomalies (total and categories). In addition, New Jersey's municipalities were characterized with respect to demographic and health related variables derived from the U.S. Census and vital records databases.

The report incorporates data on live births, fetal deaths (stillbirths) and records in the BDR for the years 1985 through 1987. The means by which the BDR has been implemented and its quality control are described in the Phase I report and other reports previously generated by the Department. The BDR is a modified passive system; reporting of congenital anomalies to the Department of Health by hospitals and physicians are required by statute. Follow-up to ensure completeness of reporting is conducted annually and continually by the registry staff.

Rates of all and selected categories of congenital anomalies were computed by state, county and municipality based on anomalies reported to the BDR up to age one. Comparisons were then made between these rates and rates generated by other birth defects surveillance programs in this country. Most New Jersey rates fell between those of "passive" and "active" systems elsewhere. However, some categories of birth outcomes appeared to show more complete ascertainment due to improved methods used in New Jersey; e.g. central nervous system defects for which fetal death and infant death certificates were combined with BDR data. In addition, rates of low birthweight, fetal deaths and infant mortality for the 1985-1987 birth cohorts were computed by municipality. The municipality-based rates of birth outcomes were also examined in relation to each other and in relation to aggregate sociodemographic characteristics which were extracted from the U.S. Census and from vital records databases. Most notably, rates based upon vital records, especially low birthweight due to both prematurity and small for gestational age, are largely predicted by sociodemographic variables while birth defect rates appear to be unrelated to these independent factors. Correlations between birth outcome categories and between birth outcomes and some of these sociodemographic variables are presented in the report and its appendices. The rates of both the outcomes and the demographic variables also comprised the essential input to the Phase III ecological analyses.

The activities undertaken under this phase of the overall project have served to:

(1) enhance the data quality, completeness, and applications of the birth defects registry,

(2) facilitate the identification and avoidance of duplicate records among birth certificate, fetal death, infant death, and birth defects registries,

(3) identify demographic factors statistically correlated with rates of adverse birth outcomes,

(4) identify adverse birth outcomes that have rates correlated with other, outcomes rates,

(5) enable comparison rates of specific birth defects in New Jersey with other registries in this country, and

(6) facilitate the accomplishment of the other phases of the project, particularly Phase III.

Notably, merging of data from birth certificates, death certificates, fetal death certificates, and the Birth Defects Registry has improved the completeness and quality of adverse reproductive outcomes rates and other data. In particular, reporting of central nervous system defects and chromosomal anomalies were thereby improved over those derived from the BDR alone.

#### TABLE OF CONTENTS

| PAGE                                                                                                                                       |      |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| List Of Tablesiii                                                                                                                          |      |
| I. Introduction1                                                                                                                           | I.   |
| II. Sociodemographic and Health Variables To Characterize New Jersey's<br>Municipalities3                                                  | II.  |
| A. Selection of U.S. Census Variables4                                                                                                     |      |
| B. Selection of Health Variables Based on Vital Records                                                                                    |      |
| III. Adverse Reproductive Outcomes Involving Congenital Anomalies15                                                                        | III  |
| A. Collecting Individual-Based Data on Congenital Anomalies15                                                                              |      |
| B. Frequencies and Rates of Congenital Anomalies                                                                                           |      |
| IV. Correlations and Other Descriptive Results for Selected Variables27                                                                    | IV.  |
| A. Methods                                                                                                                                 |      |
| B. Descriptive Statistics for the Sociodemographic (Independent)<br>Variables28                                                            |      |
| C. Descriptive Statistics for the Outcome (Dependent) Variables29                                                                          |      |
| V. Summary                                                                                                                                 | v.   |
| VI. References                                                                                                                             | VI.  |
| /II. Appendices                                                                                                                            | VII. |
| A. Summary Descriptive Statistics, Including Regression Results<br>Treating Each Sociodemographic (Independent) Variable as<br>Dependent42 |      |
| B. Correlations Within the Subset of Sociodemographic (Independent)<br>Variables                                                           |      |
| C. Correlations Within the Subset of Vital Records Outcome<br>Variables                                                                    |      |
| D. Correlations Within the Subset of Birth Defects Registry Outcome<br>Variables47                                                         |      |

| E. | Correlations Between the Subsets of Vital Records (Columns) and<br>Birth Defects Registry (Rows) Outcome Variables |
|----|--------------------------------------------------------------------------------------------------------------------|
| F. | Correlations Between the Sociodemographic (Rows) and Vital<br>Records Outcome (Columns) Variables                  |
| G. | Correlations Between the Sociodemographic (Rows) and Birth<br>Defects Registry Outcome (Columns) Variables53       |

### <u>PAGE</u>

#### LIST OF TABLES

| Table | 1 | - | Descriptive Statistics for Demographic Variables Included in<br>Correlational Studies of New Jersey's County/Municipality<br>Units                                                                                                                                           |
|-------|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table | 2 | - | Frequencies of New Jersey Resident Live Births, Neonatal and<br>Post-Natal Infant Deaths, and Fetal Deaths for 1985, 1986,<br>and 1987                                                                                                                                       |
| Table | 3 | - | Outcome Frequencies By Source of Ascertainment and Total Rates<br>per 1000 Live Births of Congenital Anomalies in New Jersey<br>from 1985 to 1987: Unduplicated Cases Found Through the<br>Birth Defects Registry (B.D.R.), Infant Deaths (I.D.), and<br>Fetal Deaths (F.D.) |
| Table | 4 | - | Rates per 1000 Live Births of Selected Congenital Anomalies as<br>Reported by Different Birth Defects Reporting Systems25                                                                                                                                                    |
| Table | 5 | - | Descriptive Statistics for Each Vital Records Outcome, Including<br>Regression Results for the Independent Variables                                                                                                                                                         |
| Table | 6 | - | Descriptive Statistics for Each Birth Defects Registry Outcome,<br>Including Regressions Results from the Independent<br>Variables                                                                                                                                           |

۰.

•

#### I. INTRODUCTION

In 1986, the New Jersey Department of Health (NJDOH) entered into a fiveyear cooperative agreement with the U.S. Centers for Disease Control (CDC). The goal of the project was to develop and apply appropriate methodology to assess relationships between adverse reproductive outcomes (AROs) and population exposures to environmental pollutants, particularly toxic waste site contamination. It was anticipated that the results of the project would be useful for the prevention of adverse reproductive outcomes.

Listed below are the four main objectives of the project.

- To enhance the Department of Health's capability to conduct surveillance and etiological research of AROs, including birth defects, low birthweight, fetal deaths and infant mortality.
- (2) To evaluate the appropriateness of available data on environmental pollution for estimating exposures to populations.
- (3) To perform ecological (correlational) analyses at the municipality level of fetal and infant mortality, birth defects and low birthweight and estimated population exposure to environmental pollutants (using appropriate environmental databases).
- (4) To conduct etiological studies of selected adverse reproductive outcomes and exposures to environmental pollutants.

The project was divided into four "phases" corresponding to these four objectives. Separate reports have been prepared for each of the four phases.

This report describes the activities undertaken in Phase I of the project as outlined in the research protocol (Fulcomer et al., 1987) and greatly expands on an earlier report (Fulcomer et al., 1986) that highlighted the development of New Jersey's new Birth Defects Registry (BDR). [Recently, BDR staff prepared a report (NJDOH, 1991) that provides much more up-to-date results from the Registry.] As a first step in assessing relationships

between adverse reproductive outcomes and exposures to environmental pollutants, the current report presents information on the methods used to assemble the necessary data on ARO cases so that stable rates could be generated for small geographic areas. The report focuses on our work in the three areas listed below and may be of special interest to others collecting such data as part of routine surveillance programs.

- (1) Characterizing the State's municipalities in terms of U.S. Census and other demographic and health-related variables.
- (2) Assembling individual data on adverse reproductive outcomes, including a description of the activities undertaken to gather information on a range of specific congenital anomalies.
- (3) Establishing outcome rates for the municipalities and for the entire State and describing some of their statistical characteristics.

The analyses included in this report are based on data from the 327,015 live births and 3,548 fetal deaths (stillbirths) that occurred to New Jersey residents from 1985 to 1987. By combining information from this large group of births with that on exposures to environmental pollutants from the project's second phase (Bove, 1992) and on other sociodemographic attributes available on the selected geographic areas, subsequent correlational analyses in the project's third phase (Fulcomer et al., 1992a) overcame many of the confounding and conceptual difficulties encountered in smaller-scale studies. Similarly, enhancing the ascertainment of birth defects and other AROs through the efforts described here improved the statistical power and generalizability of the etiological studies in the project's fourth phase (Bove et al., 1992a and 1992b).

#### II. SOCIODEMOGRAPHIC AND HEALTH VARIABLES TO CHARACTERIZE NEW JERSEY'S MUNICIPALITIES

This chapter briefly describes the selection of U.S. Census and six other health variables that were used as sociodemographic indicators to summarize the entire State and its 567 municipalities. Other health variables described are either AROs themselves or play an important role in explaining outcome rates for both this report and the later correlational analyses. The next chapter addresses the acquisition of those AROs involving congenital anomalies.

New Jersey possesses several characteristics which make it suitable as a location for the population-based surveillance of toxic waste effects on reproductive outcomes. With a population of 7.36 million people living within an area of 7,496 square miles according to the 1980 U.S. Census (NJDOL, 1984), it is the most densely populated state in the nation, yet it has great internal hetereogeneity and contrasts. The northern portion of the State is highly industrialized and heavily populated while the southern portion has large rural, forested areas, many of which have been used for waste disposal. Because of the State's central location in the Northeast Corridor, New Jersey is also a major conduit for the transport of industrial and chemical products. Finally, because of the large population, the number of live births has grown to well over 100,000 per year over the past decade.

Given the diversity within the State, it is not surprising that municipalities often differ widely with respect to the number of births and other indices of reproductive risks. For example, in 1985, the number of births in specific municipalities ranged from 0 to 5,643, reflecting the extreme dispersion of the birthing population throughout New Jersey. Therefore, for ecologic (or correlational) analyses that are based on geographic areas such as municipalities, it is important to assess the variability of births among geographic locations and to consider how to "weight" the geographically-aggregated events (e.g., by the number of births by area) so that the occurrence of spurious, "size-related" associations would be minimized.

#### A. SELECTION OF U.S. CENSUS VARIABLES

Assembling the U.S. Census variables to characterize New Jersey's municipalities was among the first activities undertaken as part of the cooperative agreement and was completed by the end of 1987. The selection of the characteristics to be included was based on the following:

- Access to 1980 U.S. Census tapes provided through the State Data Center of the New Jersey Department of Labor.
- (2) Published tables from the 1980 Census (NJDOL, 1982a; NJDOL, 1982b;
  NJDOL, 1982c; NJDOL, 1982d; NJDOL, 1982e).
- (3) Historical data on the State's population since 1790 (NJDOL, 1984).

Four broad categories of demographic attributes were selected for use in the project. A total of 38 original and 16 calculated variables (54 altogether) were categorized as follows:

- (1) Land area, 1970/1980 census, and urban/rural distribution of population (7 original; 4 calculated).
- (2) Income and education (10 original; 3 calculated).
- (3) Housing characteristics (6 original; 4 calculated).
- (4) Selected characteristics of individuals (15 original; 5 calculated).

For these census variables, some details such as codebooks have been listed in the project's technical documentation (Fulcomer et al., 1992b) and, therefore, are not presented as part of this report. Several steps were taken to ensure the accuracy of the census variables.

- Values of original variables were verified against available, published sources (e.g., the published tables available from the State Data Center mentioned above).
- (2) Descriptive statistics calculated for the original variables (e.g., population totals) were also compared to published summary statistics provided by the State Data Center.
- (3) Results found in the calculations of new variables were carefully evaluated, including the checking of computations of values as well as inspecting sums, minima, and maxima.

The inclusion of three distinct types of numerical location codes for the municipalities (commonly referred to as "geocodes") permitted flexible linkage of files of census characteristics to other information for comparable areas (e.g., health outcomes data for the municipalities). Two of these codes (i.e., the federal FIPS codes for county and minor civil divisions and the official state codes for municipalities) are listed in a readily available publication (NJDOL, 1983). The third set of geocodes, used by NJDOH's Bureau of Vital Statistics, are unique identifiers needed to link outcome information derived from vital records.

In addition to the three types of geocodes, a subset of 21 (9 original; 12 calculated) of the census variables was chosen for this project's analyses of New Jersey municipalities, based on an approach presented in an earlier study (Fulcomer et al., 1981). These variables have already been used for several other NJDOH projects (Fulcomer et al., 1988 and Fulcomer and Ziskin, 1989).

In order to facilitate the analyses of communities of vastly different sizes, preference in forming this subset was given to the most readilycomparable version of a variable (e.g., figures expressed as percents rather than as actual numbers). Furthermore, to avoid complications of collinearity (i.e., linear predictability from other variables) within groups of related

items in subsequent regression analyses, an attempt was made to eliminate highly-redundant items (except for the retention of the five separate income variables to explore the possible influences of outliers). Finally, the six municipalities having no births in one or more years during the period from 1983 to 1986 were deleted from further consideration. The removal of the six municipalities eliminated all missing values found among the census variables and is described in the next section. For the remaining 561 county/ municipality units included in the file, Table 1 lists some descriptive statistics (means, standard deviations, minima, and maxima) for the selected census variables.

Based on "covariates" often reported in the literature on adverse reproductive outcomes (e.g., see Myrianthopoulos, 1985, Janerich and Bracken, 1986, and Kallen, 1988), a final set of six demographic variables derived from the U.S. Census characteristics were incorporated into the project's correlational and regression analyses to control for some aspects of socioeconomic status (SES) as follows:

- Per capita income (in dollars).
- Mostly rural (a dichotomous variable indicating if more than 50% of a community's population resided in rural areas).
- Population density (number of persons per square mile in a municipality).
- Percent of housing units with 1.01 or more persons per room ("% crowded housing").
- Percent of housing units built before 1960 ("% old housing").
- Percent of female-headed households with related children under six years of age living below poverty status ("% female-headed poverty").

These six census-based variables remained after a "backward elimination" method (e.g., see Kerlinger and Pedhazur, 1973, Draper and Smith, 1981, and Cohen and Cohen, 1983) was applied to earlier regression analyses using the full set of 21 sociodemographic variables with preliminary data for the outcomes. Because the regression algorithm permitted the inspection of

traditional diagnostic statistics (e.g., regression coefficients, standard errors, coefficients of determination, etc.) for several dependent variables simultaneously along with some measures of redundancy within the independent variable set related to principal components (e.g., collinearity measured by the percent of each independent variable's variance accounted for by the remaining explanatory variables), it was possible to exclude 15 of the 21 census variables which did not explain significant portions of the outcomes' variances but which were highly correlated with other independent variables.

#### TABLE 1

#### DESCRIPTIVE STATISTICS FOR DEMOGRAPHIC VARIABLES INCLUDED IN CORRELATIONAL STUDIES OF NEW JERSEY'S COUNTY/MUNICIPALITY UNITS\*

#### NEW JERSEY DEPARTMENT OF HEALTH

| VARIABLE                                                                  | MEAN     | STANDARD<br>DEVIATION | MINIMUM | MAXIMUM  |
|---------------------------------------------------------------------------|----------|-----------------------|---------|----------|
| AREA IN SQUARE MILES                                                      | 13.26    | 18.50                 | 0.09    | 113.40   |
| 1980 POPULATION                                                           | 13127.17 | 22371.67              | 192     | 329248   |
| POPULATION DENSITY                                                        | 3239.33  | 4568.48               | 7.53    | 43548.89 |
| 1970 POPULATION                                                           | 12809.88 | 24756.52              | 204     | 381930   |
| % CHANGE: 1970-1980                                                       | 14.77    | 41.87                 | -89.86  | 465.43   |
| % IN RURAL AREAS                                                          | 28.82    | 42.44                 | 0.00    | 100.00   |
| MEDIAN HOUSEHOLD INCOME                                                   | 22082.31 | 6806.77               | 9285    | 49484    |
| MEDIAN FAMILY INCOME                                                      | 24622.96 | 6833.60               | 10010   | 51101    |
| MEAN HOUSEHOLD INCOME                                                     | 25266.25 | 8813.96               | 11756   | 78956    |
| MEAN FAMILY INCOME                                                        | 27823.94 | 9158.04               | 11792   | 77812    |
| PER CAPITA INCOME                                                         | 8651.39  | 2683.50               | 3692    | 25185    |
| % HIGH SCHOOL GRADUATES                                                   | 72.29    | 10.87                 | 25.57   | 94.37    |
| * HOUSING UNITS BUILT                                                     | 62.57    | 19.53                 | 4.22    | 100.00   |
| & OCCUPIED HOUSING UNITS                                                  | 94.10    | 6.96                  | 32.68   | 100.00   |
| * OWNER OCCUPIED HOUSING                                                  | 72.39    | 17.52                 | 12.89   | 96.73    |
| * CROWDED HOUSING UNITS (1.01                                             | 2.23     | 1.81                  | 0.00    | 12.32    |
| & FEMALES                                                                 | 51.47    | 2.60                  | 24.29   | 57.25    |
| <pre>% NON-WHITES</pre>                                                   | 8.12     | 12.42                 | 0.00    | 98.65    |
| * POPULATION UNDER FIVE YEARS                                             | 6.05     | 1.72                  | 0.46    | 19.30    |
| * FAMILIES WITH YOUNG CHILDREN                                            | 0.96     | 1.26                  | 0.00    | 10.82    |
| <pre>% FEMALE-HEADED FAMILIES WITH<br/>YOUNG CHILDREN BELOW POVERTY</pre> | 0.53     | . 84                  | 0.00    | 5.15     |
|                                                                           |          |                       |         |          |

\* Except for 1970 POPULATION, data are based on the 1980 U.S. Census.

In addition to the census variables, another set of six sociodemographic variables were created by aggregating birth-certificate information for each municipality and used as independent variables in later regression analyses. [Fetal death certificate information could not be aggregated because many of the variables appeared on the certificates but were not available on computerized records.] These six aggregated variables were:

- Average age of mothers at the time of birth ("mother's age").
- Percent of mothers over age 35 at the time of birth ("% mothers > 35").
- Percent of mothers who did not have at least a high school education ("% mothers < H.S.").</li>
- Percent of primiparous mothers ("% primiparous").
- Percent of white mothers ("% white").
- Percent of births with "inadequate" prenatal care ("% inadequate prenatal care").

Because New Jersey has undergone tremendous growth and changes in the dispersion of its population since the 1970's, these additional background variables from birth certificates were used to obtain more recent information than the 1980 Census for maternal age, education, race, and parity. The percent of mothers over age 35 at the time of birth was selected to explore some possible non-linear effects, particularly recent increases in maternal ages and Down Syndrome among births to women in that age-category (e.g., see An earlier algorithm (NAS, 1973) was employed to Fulcomer et al., 1988). calculate values for the prenatal care adequacy variable. The algorithm accounts for the month prenatal care began, the number of prenatal visits, and the gestational age at birth. Characteristics of this algorithm when applied to New Jersey births (e.g., handling of missing information on gestational ages) are described in the cross-sectional report (Bove et al., 1992a), which introduced this approach to the project. [Work on the cross-sectional report also provided the percent of small-for-gestational age births mentioned in the next section.]

The final six census-based variables and the six items aggregated from birth certificates were selected for inclusion as independent variables in the

project's correlational and regression analyses. [Results of some of these analyses are included in this document, although the majority of the work on exposure-outcome relationships is presented in the report on the project's third phase (Fulcomer et al., 1992a).]

#### B. SELECTION OF HEALTH VARIABLES BASED ON VITAL RECORDS

Information on selected health variables comprise the second set of geocoded information used to characterize the State's municipalities. These health variables were derived from three types of state vital records (birth certificates, death certificates, and fetal death certificates maintained by NJDOH's Bureau of Vital Statistics, or BVS) for the years 1985 to 1987. These vital records served as population-based sources for some of the adverse reproductive outcomes of interest (e.g., very low and low birthweight) and provided denominators for some outcome rates (e.g., rates per 1,000 live births) and several other important background variables employed in later analyses (e.g., inadequate prenatal care). [It should be noted that, despite being perhaps the most well-known source of data on health outcomes, vital records are sometimes affected by accuracy and ascertainment problems (e.g., Minton and Seegmiller, 1986, and Greb et al., 1987).] Listed below are the health variables created from each type of certificate.

#### (1) Variables created from birth certificate records:

- (a) Number of births with very low birthweights (< 1500 grams).
- (b) Number of births with low birthweights (< 2500 grams).
- (c) Number of births with unknown birthweights.
- (d) Total number of infants born.
- (e) Rate of births with very low birthweights.
- (f) Rate of births with low birthweights.
- (g) Rate of births with unknown birthweights.
- (h) Percent of preterm births (gestational age less than 38 weeks).
- (i) Percent of small-for-gestational age births (birthweights below the 10th percentile for each week of gestation).

- (2) Variables created from death certificate records:
  - (a) Number of neonatal deaths (up to 28 days after birth).
  - (b) Number of post-neonatal deaths (28 days to one year).
  - (c) Total number of infant deaths (up to one year of age).
  - (d) Rate of neonatal deaths.
  - (e) Rate of post-neonatal deaths.
  - (f) Rate of infant deaths.
- (3) Variables from fetal death certificate records:
  - (a) Number of fetal deaths (20 weeks or more gestational age).
  - (b) Rate of fetal deaths.

With the assistance of NJDOH's Maternal and Child Health Services (MCHS), separate data files of these health variables by municipality were constructed for each birth-year cohort from 1983 through 1988, although only the years from 1985 through 1987 were used in the analyses found in this report. These data formed the basis for a project-based presentation on trend statistics (Fulcomer, 1988). Codebooks for each birth-year's file, including formulae used to create various rates, are available in the project's technical documentation (Fulcomer et al., 1992b).

For each of the three types of certificates, cross-tabulations of the health events by municipality were prepared by MCHS on a mainframe computer and downloaded to a microcomputer for editing and calculating rates. MCHS's processing of vital records information on a mainframe computer is based on tapes of data files initially prepared by BVS and then published by NJDOH's Center for Health Statistics (CHS) in comprehensive statistical reports. The reports for 1985, 1986, and 1987 are available (NJDOH, 1987; NJDOH, 1988; and NJDOH, 1989).

By taking advantage of the availability of certificate-based information within NJDOH for the years from 1983 through 1988, MCHS has developed special, birth-year cohort files to monitor infant and fetal mortality rates and other pregnancy outcomes observed in New Jersey facilities, including the matched linkage of birth and death certificates. In large part, MCHS's treatments of infant birth, infant death, and fetal death records correct errors in the

recording and the entry of data (e.g., in birthweights and in the coding of municipalities) and data omissions or oversights (e.g., inadequately stated causes of deaths). These special files also include other items found on the certificates but not entered by BVS, notably additional diagnoses and other factors possibly related to the causes of infants' deaths, and are constructed to facilitate the analysis of matched birth-death data from the birth-year cohort perspective (vs. the death-year cohorts as published in CHS's statistical reports).

In their special files, MCHS generally edits only those records for instate resident infant and fetal deaths, largely because of their interest in the delivery of services provided within New Jersey and because of difficulties in the receipt and completeness for out-of-state events for New Jersey residents. Therefore, only events both occurring in-state and involving residents of New Jersey are uniformly captured. Furthermore, except for a few changes in some critical items found in the matched birth-death files, the remainder of the computer records are not edited.

For each individual year and the total of the three years from 1985 to 1987, Table 2 lists the number of New Jersey births, infant deaths, and fetal deaths using the special files of the NJDOH's vital records prepared by MCHS. [Rates and other descriptive results for these outcomes are given in the fourth chapter of this report.] By accounting for New Jersey resident births in unspecified locations, the MCHS figures for birth are identical to those reported by CHS (NJDOH, 1987; NJDOH, 1988; and NJDOH, 1989). However, as mentioned above, the MCHS figures for infant deaths are given by birth-year cohort, in contrast to the calendar year of death as provided by CHS. Other important enhancements to the CHS figures are the removal of induced abortions from the reporting of all fetal deaths.

Table 2 also summarizes the exclusion of outcome information found on vital records due to the removal of records from locations not included in this project. Locations for which records were deleted were: state institutions; military posts; unspecified residences; and the six municipalities removed because no births occurred in one or more years during the period from 1983 to 1986. The most important exclusion of information

#### FREQUENCIES OF NEW JERSEY RESIDENT LIVE BIRTHS, NEONATAL AND POST-NEONATAL INFANT DEATHS, AND FETAL DEATHS FOR 1985, 1986, AND 1987

| OUTCOME DERIVED FROM VITAL RECORDS | 1985    | 1986    | 1987     | TOTAL   |
|------------------------------------|---------|---------|----------|---------|
| BIRTHS                             |         |         |          |         |
| Resident Live Births               | 105,329 | 108,446 | 113,240  | 327,015 |
| State Institutions                 | 7       | Q       | 1        | 17      |
| Military Posts                     | 343     | 225     | 190      | 758     |
| Unspecified                        | 545     | 223     | 170<br>6 | , 50    |
| Six Municipalities Deleted         | 6       | 10      | 6        | 22      |
| SIX MUNICIPALITIES Deleted         |         |         |          |         |
| Total For Later Analyses           | 104,973 | 108,200 | 113,037  | 326,210 |
| INFANT DEATHS BY BIRTH-YEAR COHORT |         |         |          |         |
| Resident Neonatal Deaths           | 775     | 710     | 722      | 2,207   |
| Locations Removed:                 |         |         |          |         |
| State Institutions                 | 0       | 0       | 0        | 0       |
| Military Posts                     | 6       | 3       | 4        | 13      |
| Unspecified                        | 2       | 2       | 1        | 5       |
| Six Municipalities Deleted         | 0       | 0       | 0        | 0       |
| Total For Later Anglyses           |         | 705     | <br>717  | 2 189   |
| Iotal for Later Maryses            | /0/     | ,05     | , 1,     | 2,107   |
| Resident Post-Neonatal Deaths      | 359     | 350     | 339      | 1,048   |
| Locations Removed:                 | •       | •       | •        | •       |
| State Institutions                 | 0       | 0       | 0        | 0       |
| Military Posts                     | 3       | 0       | 1        | 4       |
| Unspecified                        | 1       | 1       | 0        | 2       |
| Six Municipalities Deleted         | 0       | 0       | 0        | 0       |
| Total For Later Analyses           | 355     | 349     | 338      | 1,042   |
| Total Infant Deaths                | 1,134   | 1,060   | 1,061    | 3,255   |
| Locations Removed:                 |         |         |          |         |
| State Institutions                 | 0       | 0       | 0        | 0       |
| Military Posts                     | 9       | 3       | 5        | 17      |
| Unspecified                        | 3       | 3       | 1        | 7       |
| Six Municipalities Deleted         | 0       | 0       | 0        | 0       |
| Total For Lator Apolygood          | 1 1 2 2 | 1 05/   | 1 055    |         |
| local for Later Analyses           | 1,122   | 1,054   | 1,055    | 3,231   |
| FETAL DEATHS                       |         |         |          |         |
| Resident Fetal Deaths: Total       | 1,119   | 1,166   | 1,263    | 3,548   |
| With Induced Abortions Removed     | 787     | 851     | 912      | 2,550   |
| Locations Removed:                 |         |         |          | ·       |
| State Institutions                 | 0       | 0       | 0        | 0       |
| Military Posts                     | 2       | 1       | 7        | 10      |
| Unspecified                        | 2       | 0       | 1        | 3       |
| Six Municipalities Deleted         | 1       | 0       | 0        | 1       |
| Total For Later Analyses           | 782     | 850     | 904      | 2,536   |

represented in Table 2 is the birth certificate data for the large number of residents of military posts, for which census figures on population are not comparable to those for the rest of the State. The removal of the six municipalities resulted in the loss of only 22 births (0.0067% of the State's births) and one fetal death for the three-year period from 1985 through 1987. Thus, compiling the complete data file for municipalities in this project (i.e., with no missing information for both outcome and census variables) was accomplished with a minimal loss of outcome-related information.

#### III. ADVERSE REPRODUCTIVE OUTCOMES INVOLVING CONGENITAL ANOMALIES

This chapter discusses the acquisition of data on individuals born with congenital anomalies (or birth defects) using NJDOH's individual-based reporting systems. First, the chapter briefly highlights some of the activities undertaken to collect individual data for this report, covering the 327,015 live births and 3,548 fetal deaths (stillbirths) that occurred to New Jersey residents in the three years from 1985 to 1987. The second section provides rates of selected congenital anomalies for the 8,843 cases having one or more congenital anomalies. These cases were reported principally through the Birth Defects Registry (BDR).

#### A. COLLECTING INDIVIDUAL-BASED DATA ON CONGENITAL ANOMALIES

Like much of the material presented in the previous chapter on acquiring U.S. Census and routine vital statistics data, the collection of individualbased information on congenital anomalies began as soon as the cooperative agreement commenced in the summer of 1986. Much of this work has continued to the present, thereby extending the project's data acquisition efforts far beyond what was initially envisioned, and reflecting the commitment of NJDOH to the first objective of enhancing its surveillance and research capabilities in the area of AROS. The BDR became population-based in 1985, despite a history of providing services on an as-needed basis through the Crippled Children's Program that began in the 1920's.

Because the population-based BDR had been operating for only a short time when the project began, the first few quarters of the cooperative agreement were devoted to enhancing the operations of the Registry to meet the goals of the project. Activities undertaken included staffing the project, obtaining microcomputer hardware and software, preparing and implementing recordhandling procedures, and clarifying diagnoses.

By 1988 several statistical analyses involving BDR data were in progress. These analytic efforts included the completion of a study of the occurrence of chromosomal defects (Fulcomer et al., 1988), an early assessment of the

reporting of birth defects by maternity hospitals to assist in the design of the BDR's quality assurance program, and a first attempt to use ARO data to identify areas to be included in a case-control study for the project's fourth phase. These activities revealed some data quality problems that were later resolved by project staff, especially the handling of duplicate registrations received from multiple reporting sources.

By the summer of 1989, three large 80386 microcomputers were purchased by the project, one for use by the BDR and the remaining two for large-scale applications by the project's research scientists. The system devoted to the BDR enabled the entire set of registrations received since 1985 to reside in a single database, which facilitated further analyses and helped to avoid the entry of duplicate records. A computer program was developed to augment BDR records with selected recodings of diagnostic variables and other values. The new records created by this program grouped congenital anomalies into 32 specific categories, based on work reported on by CDC (CDC, 1988). For each case, the program also formed six broader summary indicators (neural tube defects; eye defects; selected severe cardiac defects; oral clefts; reduction deformities; and chromosomal anomalies) and counted the the total numbers of congenital anomalies (up to eight such diagnoses were possible for each record) and the 32 specific categories that occurred. Through simple reformatting of fields in input records, this program could also be applied to fetal and infant death certificate files.

Beginning in 1990, the arrival of new staff members enabled the BDR to expand its efforts to improve the quality of reports of congenital anomalies submitted to it. About the same time, project staff of the cooperative agreement were able to obtain additional information on congenital anomalies from the three other types of ARO data sources, including fetal death (F.D.) certificates, infant death (I.D.) certificates, and the matching of birth certificates with records from the BDR. Earlier, in the summer of 1989, the process of selecting subjects with congenital anomalies for the case-control study of the project's fourth phase (Bove et al., 1992b) had utilized the fetal and infant death certificates. Later in 1990, the project's crosssectional study (Bove et al., 1992a) relied heavily on the matching of birth certificates to registrations with the BDR, in addition to information on

congenital anomalies ascertained through the fetal and infant death certificates.

#### B. FREQUENCIES AND RATES OF CONGENITAL ANOMALIES

Table 3 lists the frequencies of reported congenital anomalies by the source of ascertainment for New Jersey infants born in 1985 to 1987 and fetal deaths that occurred to residents of the State in that period. The diagnoses reported here are the specific conditions within the twenty major categories designated as congenital anomalies (ICD-9 codes 740 to 759). For each specific diagnosis having at least one report of an affected infant or fetal death, Table 3 indicates the number (simple frequency) of cases obtained from each ascertainment source [i.e., the Birth Defects Registry (BDR), the infant death (I.D.) certificates, and the fetal death (F.D.) certificates]. Also found in Table 3 are the total number of cases for each diagnosis and total rate per 1000 live births for the years from 1985 through 1987.

For live births, the frequencies in Table 3 refer only to those diagnoses made up to age one. Because some reports of birth defects present at or soon after birth are not submitted to the Registry by the child's first birthday, all registrations received up to age two with at least one diagnosis in the 740 to 759 range were checked to determine if such conditions were present before a child's first birthday (i.e., a "true" congenital anomaly vs. an acquired condition or development problem that became apparent later).

Table 3 is quite similar to the corresponding table in the first report on the Registry (Fulcomer et al., 1986) except for being based on more complete ascertainment procedures (e.g., incorporating cases found through matched birth-death and fetal death records and a somewhat longer reporting interval). Further, given the recent steps taken to remove duplicate records from the BDR, the rate of live births with one or more defects (26.14 per 1000 live births) is quite comparable to the earlier value reported (27.00). Although the infant death and fetal death certificates account for only a small fraction of the records in the entire analytic file for this report, these two sources of ascertainment still have an important impact on the

#### TABLE 3

#### OUTCOME FREQUENCIES BY SOURCE OF ASCERTAINMENT AND TOTAL RATES PER 1000 LIVE BIRTHS OF CONGENITAL ANOMALIES IN NEW JERSEY FROM 1985 TO 1987: UNDUPLICATED CASES FOUND THROUGH THE BIRTH DEFECTS REGISTRY (B.D.R.), INFANT DEATHS (I.D.), AND FETAL DEATHS (F.D.)

|             |       | CODES AND DESCRIPTIONS FOR DIAGNOSTIC CATEGORIES  |        | FREQUENCIE | s by sour | CE    |      |
|-------------|-------|---------------------------------------------------|--------|------------|-----------|-------|------|
| <b>7</b> 40 | CODES | ANENCEPHALUS AND SIMILAR ANOMALIES                | B.D.R. | I.D.       | F.D.      | TOTAL | RATE |
|             | 740.0 | Anencephalus                                      | 34     | 22         | 45        | 101   | 0.31 |
| 741         | CODES | SPINA BIFIDA                                      | B.D.R. | 1.D.       | F.D.      | TOTAL | RATE |
|             |       |                                                   |        | •••••      |           |       |      |
|             | 741.0 | With hydrocephalus                                | 43     | 1          | 2         | 46    | 0.14 |
|             | 741.9 | Without mention of hydrocephalus                  | 109    | 1          | 8         | 118   | 0.36 |
| 742         | CODES | OTHER CONGENITAL ANOMALIES OF NERVOUS SYSTEM      | B.D.R. | I.D.       | F.D.      | TOTAL | RATE |
|             |       |                                                   | •••••  |            |           |       |      |
|             | 742.0 | Encephalocele                                     | 28     | 3          | 4         | 35    | 0.11 |
|             | 742.1 | Microcephalus                                     | 159    | 3          | 1         | 163   | 0.50 |
|             | 742.2 | Reduction deformities of brain                    | 32     | 3          | 0         | 35    | 0.11 |
|             | 742.3 | Congenital hydrocephalus                          | 229    | 12         | 18        | 259   | 0.79 |
|             | 742.4 | Other specified anomalies of brain                | 43     | 0          | D         | 43    | 0.13 |
|             | 742.5 | Other specified anomalies of spinal cord          | 4      | 0          | 0         | 4     | 0.01 |
|             | 742.8 | Other specified anomalies of nervous system       | 7      | 0          | 0         | 7     | 0.02 |
|             | 742.9 | Unspecified anomaly of brain, spinal cord,        |        |            |           |       |      |
|             |       | and nervous system                                | 26     | 2          | 5         | 33    | 0.10 |
| 743         | CODES | CONGENITAL ANOMALIES OF EYE                       | B.D.R. | I.D.       | F.D.      | TOTAL | RATE |
|             |       |                                                   | •••    |            |           |       |      |
|             | 743.0 | Ancphthalmos                                      | 7      | 0          | 0         | · 7   | 0.02 |
|             | 743.1 | Microphthalmos                                    | 16     | 0          | 0         | 16    | 0.05 |
|             | 743.2 | Buphthalmos                                       | 14     | 0          | 0         | 14    | 0.04 |
|             | 743.3 | Congenital cataract and lens anomalies            | 42     | 0          | 0         | 42    | 0.13 |
|             | 743.4 | Coloboma and other anomalies of anterior segment  | 25     | 0          | 0         | 25    | 0.08 |
|             | 743.5 | Congenital anomalies of posterior segment         | 7      | 0          | 0         | 7     | 0.02 |
|             | 743.6 | Congenital anomalies of eyelids, lacrimal system, |        |            |           |       |      |
|             |       | and orbit                                         | 28     | 0          | 0         | 28    | 0.09 |
|             | 743.8 | Other specified anomalies of eye                  | 12     | 0          | 0         | 12    | 0.04 |
|             | 743.9 | Unspecified anomaly of eye                        | 7      | 0          | 0         | 7     | 0.02 |
| 744         | CODES | CONGENITAL ANOMALIES OF EAR, FACE, AND NECK       | 8.D.R. | I.D.       | F.D.      | TOTAL | RATE |
|             | 744.0 | Anomalies of ear causing impairment of hearing    | 18     | 0          | 0         | 18    | 0.06 |
|             | 744.1 | Accessory auricle                                 | 414    | 1          | 0         | 415   | 1.27 |
|             | 744.2 | Other specified anomalies of ear                  | 91     | 0          | 0         | 91    | 0.28 |
|             | 744.3 | Unspecified anomaly of ear                        | 27     | 0          | 0         | 27    | 0.08 |
|             | 744.4 | Branchial cleft cyst or fistula; preauricular     |        |            |           |       | -    |
|             |       | sinus                                             | 42     | 0          | 0         | 42    | 0.13 |
|             | 744.5 | Webbing of neck                                   | 5      | 0          | 0         | 5     | 0.02 |
|             | 744.8 | Other specified anomalies of face and neck        | 8      | 0          | 1         | 9     | 0.03 |
|             | 744.9 | Unspecified anomalies of face and neck            | 12     | 0          | 0         | 12    | 0.04 |

|         |       | CODES AND DESCRIPTIONS FOR DIAGNOSTIC CATEGORIES | I         | FREQUENCIE | S BY SOUR | æ        |      |
|---------|-------|--------------------------------------------------|-----------|------------|-----------|----------|------|
| <br>745 | CODES | BULBUS CORDIS ANOMALIES AND ANOMALIES OF CARDIAC |           |            |           |          |      |
|         |       | SEPTAL CLOSURE                                   | B.D.R.    | I.D.       | F.D.      | TOTAL    | RATE |
|         |       |                                                  |           |            |           |          |      |
|         | 745.0 | Common truncus                                   | 11        | 1          | 0         | 12       | 0.04 |
|         | 745.1 | Transposition of great vessels                   | <b>95</b> | 4          | 0         | 99       | 0.30 |
|         | 745.2 | Tetralogy of Fallot                              | 70        | 3          | 0         | 73       | 0.22 |
|         | 745.3 | Common ventricle                                 | 16        | 1          | 1         | 18       | 0.06 |
|         | 745.4 | Ventricular septal defect                        | 504       | 9          | 0         | 513      | 1.57 |
|         | 745.5 | Ostium secundum type atrial septal defect        | 134       | 9          | 4         | 147      | 0.45 |
|         | 745.6 | Endocardial cushion defects                      | 48        | 2          | 0         | 50       | 0.15 |
|         | 745.7 | Cor biloculare                                   | 0         | 0          | 1         | 1        | 0.00 |
|         | 745.8 | Other                                            | 2         | 0          | 1         | 3        | 0.01 |
|         | 745.9 | Unspecified defect of septal closure             | 4         | 0          | 0         | 4        | 0.01 |
| 746     | CODES | OTHER CONGENITAL ANOMALIES OF HEART              | B.D.R.    | I.D.       | F.D.      | TOTAL    | RATE |
|         |       |                                                  |           |            |           | /0       | 0.15 |
|         | 746.0 | Anomalies of pulmonary valve                     | 40        | 0          | 0         | 40       | 0.15 |
|         | 746.1 | Tricuspid atresia and stenosis, congenital       | 21        | U          | 0         | 21       | 0.08 |
|         | 746.2 | Ebstein's anomaly                                | 11        | U          | U         | 11       | 0.05 |
|         | 746.3 | Congenital stenosis of aortic valve              | 9         | U          | 0         | <b>y</b> | 0.05 |
|         | 746.4 | Congenital insufficiency of aortic valve         | 4         | 0          | U         | 4        | 0.01 |
|         | 746.5 | Congenital mitral stenosis                       | 2         | 0          | 0         | 2        | 0.01 |
|         | 746.6 | Congenital mitral insufficiency                  | 5         | 0          | 0         | 5        | 0.02 |
|         | 746.7 | Hypoplastic left heart syndrome                  | 52        | 9          | 1         | 62       | 0.19 |
|         | 746.8 | Other specified anomalies of heart               | 86        | 1          | 4         | 91       | 0.28 |
|         | 746.9 | Unspecified anomaly of heart                     | 288       | 14         | 6         | 308      | 0.94 |
| 747     | CODES | OTHER CONGENITAL ANOMALIES OF CIRCULATORY SYSTEM | B.D.R.    | I.D.       | F.D.      | TOTAL    | RATE |
|         |       |                                                  | / 47      |            |           | /2/      | 1 70 |
|         | 747.0 | Patent ductus arteriosus                         | 415       | 11         | 0         | 424      | 1.30 |
|         | 747.1 | Coarctation of Borta                             | 02        | 2          | 0         | 40       | 0.20 |
|         | 747.2 | Uther anomalies of aorta                         | 19        | 0          | 0         | 19       | 0.00 |
|         | 747.5 | Anomalies of pulmonary artery                    | 85        | 1          | 0         | 84       | 0.20 |
|         | 747.4 | Anomalies of great veins                         | 16        | 1          | U         | 17       | 0.05 |
|         | 747.5 | Absence or hypoplasia of umbilical artery        | 100       | 0          | 0         | 100      | 0.31 |
|         | 747.6 | Other anomalies of peripheral vascular system    | 6         | 0          | 0         | 6        | 0.02 |
|         | 747.8 | Other specified anomalies of circulatory system  | 5         | 1          | 1         | 7        | 0.02 |
|         | 747.9 | Unspecified anomaly of circulatory system        | 104       | 14         | 0         | 118      | 0.36 |
| 748     | CODES | CONGENITAL ANOMALIES OF RESPIRATORY SYSTEM       | B.D.R.    | I.D.       | F.D.      | TOTAL    | RATE |
|         |       |                                                  |           |            |           | 40       |      |
|         | 748.0 | Choanal atresia                                  | 19        | U          | U         | 19       | 0.05 |
|         | 748.1 | Uther anomalies of nose                          | 17        | U          | Ű         | 17       | 0.05 |
|         | 748.2 | web of larynx                                    | 5         | 0          | U         | 3        | 0.01 |
|         | 748.3 | Other anomalies of Larynx, trachea, and bronchus | 49        | 1          | 0         | 50       | 0.15 |
|         | 748.4 | Congenital cystic lung                           | 4         | 0          | 1         | 5        | 0.02 |
|         | 748.5 | Agenesis, hypoplasia, and dysplasia of lung      | 76        | 49         | 8         | 133      | 0.41 |
|         | 748.6 | Other anomalies of lung                          | 8         | 1          | 0         | 9        | 0.03 |
|         | 748.8 | Other specified anomalies of respiratory system  | 3         | 0          | 0         | 3        | 0.01 |
|         | 748.9 | Unspecified anomaly of respiratory system        | 0         | 1          | 0         | 1        | 0.00 |

|     |       | CODES AND DESCRIPTIONS FOR DIAGNOSTIC CATEGORIES        | F      | REQUENCIE | s by sourc | æ     |      |
|-----|-------|---------------------------------------------------------|--------|-----------|------------|-------|------|
| 749 | CODES | CLEFT PALATE AND CLEFT LIP                              | B.D.R. | I.D.      | F.D.       | TOTAL | RATE |
|     |       |                                                         | 4 74   |           |            |       |      |
|     | 749.0 | Cleft palate                                            | 171    | 0         | 1          | 172   | 0.55 |
|     | 749.1 | Cleft Lip<br>Cleft malata with alafa lim                | 02     | 4         | 0          | 02    | 0.25 |
|     | (49.2 | Clert palate with clert lip                             | 100    | 1         | 1          | 102   | 0.50 |
| 750 | CODES | OTHER CONGENITAL ANOMALIES OF UPPER ALIMENTARY<br>TRACT | B.D.R. | 1.D.      | F.D.       | TOTAL | RATE |
|     |       |                                                         |        | ••••      | ••••       |       |      |
|     | 750.0 | Tongue tie                                              | 26     | 0         | 0          | 26    | 0.08 |
|     | 750.1 | Other anomalies of tongue                               | 13     | 1         | 0          | 14    | 0.04 |
|     | 750.2 | Other specified anomalies of mouth and pharynx          | 11     | 0         | 0          | 11    | 0.03 |
|     | 750.5 | and stenosis                                            | 66     | 3         | 0          | 69    | 0.21 |
|     | 750.4 | Other specified anomalies of esophagus                  | 4      | 0         | 0          | 4     | 0.01 |
|     | 750.5 | Congenital hypertrophic pyloric stenosis                | 25     | 1         | 0          | 26    | 0.08 |
|     | 750.6 | Congenital hiatus hernia                                | 2      | 0         | 0          | 2     | 0.01 |
|     | 750.7 | Other specified anomalies of stomach                    | 1      | 0         | 0          | 1     | 0.00 |
|     | 750.8 | Other specified anomalies of upper alimentary           | •      | ·         | -          | ·     |      |
|     |       | tract                                                   | 18     | 0         | 0          | 18    | 0.06 |
|     | 750.9 | Unspecified anomaly of upper alimentary tract           | 6      | 0         | 0          | 6     | 0.02 |
| 751 | CODES | OTHER CONGENITAL ANOMALIES OF DIGESTIVE SYSTEM          | B.D.R. | I.D.      | F.D.       | TOTAL | RATE |
| ••• |       |                                                         |        |           |            |       |      |
|     | 751.0 | Meckel's diverticulum                                   | 4      | 1         | 0          | 5     | 0.02 |
|     | 751.1 | Atresia and stenosis of small intestine                 | 62     | 0         | 2          | 64    | 0.20 |
|     | 751.2 | Atresia and stenosis of large intestine, rectum,        |        |           |            |       |      |
|     |       | and anal canal                                          | 96     | 4         | 0          | 100   | 0.31 |
|     | 751.3 | Hirschsprung's disease and other congenital             |        |           |            |       |      |
|     |       | functional disorders of colon                           | 25     | 0         | 0          | 25    | 0.08 |
|     | 751.4 | Anomalies of intestinal fixation                        | 25     | 1         | 1          | 27    | 0.08 |
|     | 751.5 | Other anomalies of intestine                            | 37     | 2         | 0          | 39    | 0.12 |
|     | 751.6 | Anomalies of gallbladder, bile ducts, and liver         | 23     | 2         | 1          | 26    | 0.08 |
|     | 751.7 | Anomalies of pancreas                                   | 5      | 0         | 0          | 5     | 0.02 |
|     | 751.8 | Other specified anomalies of digestive system           | 8      | 0         | 0          | 8     | 0.02 |
|     | 751.9 | Unspecified anomaly of digestive system                 | 2      | 0         | 0          | 2     | 0.01 |
| 752 | CODES | CONGENITAL ANOMALIES OF GENITAL ORGANS                  | B.D.R. | I.D.      | F.D.       | TOTAL | RATE |
|     | 752.0 | Anomalies of ovaries                                    | 1      | 0         | 0          | 1     | 0.00 |
|     | 752.1 | Anomalies of fallopian tubes and broad ligaments        | 2      | 0         | 0          | 2     | 0.01 |
|     | 752.3 | Other anomalies of uterus                               | 0      | 0         | 2          | 2     | 0.01 |
|     | 752.4 | Anomalies of cervix, vagina, and external female        |        |           |            |       |      |
|     |       | genitalia                                               | 41     | 0         | 0          | 41    | 0.13 |
|     | 752.5 | Undescended testicle                                    | 327    | 0         | 0          | 327   | 1.00 |
|     | 752.6 | Hypospadias and epispadias                              | 650    | 0         | 0          | 650   | 1.99 |
|     | 752.7 | Indeterminate sex and pseudohermaphroditism             | 37     | 1         | 0          | 38    | 0.12 |
|     | 752.8 | Other specified anomalies of genital organs             | 57     | 1         | 0          | 58    | 0.18 |
|     | 752.9 | Unspecified anomaly of genital organs                   | 10     | 0         | 0          | 10    | 0.03 |
|     | 753.0 | Renal agenesis and dysgenesis                           | 38     | 14        | 9          | 61    | 0.19 |
|     | 753.1 | Cystic kidney disease                                   | 41     | 6         | 1          | 48    | 0.15 |

#### TABLE 3 (continued)

|     |       | CODES AND DESCRIPTIONS FOR DIAGNOSTIC CATEGORIES            |           | FREQUENCIE | es by sour | CE    |      |
|-----|-------|-------------------------------------------------------------|-----------|------------|------------|-------|------|
| 753 | CODES | CONGENITAL ANOMALIES OF URINARY SYSTEM                      | B.D.R.    | I.D.       | F.D.       | TOTAL | RATE |
|     | 753.2 | Obstructive defects of renal pelvis and ureter              | <br>91    |            | <br>0      |       | 0.28 |
|     | 753.3 | Other specified anomalies of kidney                         | 19        | ,<br>n     | 1          | 20    | 0.06 |
|     | 753.4 | Other specified anomalies of ureter                         | 12        | n          | י<br>ח     | 12    | 0.00 |
|     | 753.5 | Exstrophy of uninary bladder                                | 5         | ñ          | ů<br>n     | 5     | 0.07 |
|     | 753.6 | Atresia and stenosis of urethra and bladder neck            | 12        | 1          | 0          | 13    | 0.02 |
|     | 753.7 | Anomalies of urachus                                        | 5         | n          | ñ          | 5     | 0.07 |
|     | 753.8 | Other specified anomalies of bladder and urathra            | 15        | 1          | 0          | 14    | 0.02 |
|     | 753.9 | Unspecified anomaly of urinary system                       | 8         | 1          | 3          | 12    | 0.04 |
| 754 | CODES | CERTAIN CONGENITAL MUSCULOSKELETAL DEFORMITIES              | B.D.R.    | I.D.       | F.D.       | TOTAL | RATE |
| ••• | 754.0 | Of skull. face. and iaw                                     |           |            |            |       |      |
|     | 754.1 | Of sternocleidomastoid muscle                               | 0         | 0          | n          | 0     | 0.00 |
|     | 754.2 | Of spine                                                    | 2         | 0          | Ö          | 2     | 0.01 |
|     | 754.3 | Congenital dislocation of hip                               | 454       | n          | 0          | 454   | 1 30 |
|     | 754.4 | Congenital genu recurvatum and bowing of long               |           | ·          | •          | 404   | 1.57 |
|     |       | bones of leg                                                | 22        | 0          | 0          | 22    | 0.07 |
|     | 754.5 | Varus deformities of feet                                   | 287       | 0          | 0          | 287   | 0.88 |
|     | 754.6 | Valgus deformities of feet                                  | 108       | 0          | 0          | 108   | 0.33 |
|     | 754.7 | Other deformities of feet                                   | 271       | 1          | 0          | 272   | 0.83 |
|     | 754.8 | Other specified nonteratogenic anomalies                    | 21        | 0          | 0          | 21    | 0.06 |
| 755 | CODES | OTHER CONGENITAL ANOMALIES OF LIMBS                         | B.D.R.    | I.D.       | F.D.       | TOTAL | RATE |
|     |       |                                                             | •••••     |            |            | ••••• |      |
|     | 755.0 | Polydactyly                                                 | 724       | 0          | 0          | 724   | 2.21 |
|     | 755.1 | Syndactyly                                                  | 275       | 0          | 0          | 275   | 0.84 |
|     | 755.2 | Reduction deformities of upper limb                         | <b>98</b> | 0          | 0          | 98    | 0.30 |
|     | 755.3 | Reduction deformities of lower limb                         | 44        | 0          | 1          | 45    | 0.14 |
|     | 755.4 | Reduction deformities, unspecified limb                     | 10        | 1          | 1          | 12    | 0.04 |
|     | 755.5 | Other anomalies of upper limb, including                    |           | •          | •          | -     |      |
|     | 755.6 | snoulder girale<br>Other anomalies of lower limb, including | 0         | 0          | 0          | 71    | 0.22 |
|     |       | pelvic girdle                                               | 301       | 1          | 0          | 302   | 0.92 |
|     | 755.8 | Other specified anomalies of unspecified limb               | 2         | 0          | 0          | 2     | 0.72 |
|     | 755.9 | Unspecified anomaly of unspecified limb                     | 1         | 1          | 1          | 3     | 0.01 |
| 756 | CODES | OTHER CONGENITAL MUSCULOSKELETAL ANOMALIES                  | B.D.R.    | I.D.       | F.D.       | TOTAL | RATE |
|     | 756.0 | Anomalies of skull and face bones                           | 107       | 0          |            | 108   | 0.33 |
|     | 756.1 | Anomalies of spine                                          | 29        | 1          | 0          | 30    | 0.09 |
|     | 756.3 | Other anomalies of ribs and sternum                         | 12        | 0          | Ō          | 12    | 0.04 |
|     | 756.4 | Chondrodystrophy                                            | 12        | 1          | 1          | 14    | 0.04 |
|     | 756.5 | Osteodystrophies                                            | 18        | 0          | 0          | 18    | 0.06 |
|     | 756.6 | Anomalies of diaphragm                                      | 27        | 16         | 1          | 44    | 0.13 |
|     | 756.7 | Anomalies of abdominal wall                                 | 35        | 2          | 1          | 38    | 0.12 |
|     | 756.8 | Other specified anomalies of muscle, tendon,                |           |            |            |       |      |
|     |       | fascia, and connective tissue                               | 19        | 0          | 0          | 19    | 0.06 |
|     | 756.9 | Other and unspecified anomalies of                          |           |            |            |       |      |
|     |       | musculoskeletal system                                      | 8         | 0          | 1          | 9     | 0.03 |

#### TABLE 3 (continued)

|     |           | CODES AND DESCRIPTIONS FOR DIAGNOSTIC CATEGORIES |        | FREQUENCIE | es by sour | CE    |       |
|-----|-----------|--------------------------------------------------|--------|------------|------------|-------|-------|
| 757 | CODES     | CONGENITAL ANOMALIES OF THE INTEGUMENT           | B.D.R. | 1.D.       | F.D.       | TOTAL | RATE  |
|     | <br>757.0 | Hereditary edema of leas                         |        |            |            |       | 0.01  |
|     | 757.1     | Ichthyosis congenita                             | 6      | 0          | 0          | 6     | 0.07  |
|     | 757.2     | Dermatoglyphic anomalies                         | 6      | 0          | Ŏ          | 6     | 0.02  |
|     | 757.3     | Other specified anomalies of skin                | 773    | 0          | 0          | 773   | 2.36  |
|     | 757.4     | Specified anomalies of hair                      | 1      | 0          | 0          | 1     | 0.00  |
|     | 757.5     | Specified anomalies of nails                     | 8      | Ō          | 0          | 8     | 0.02  |
|     | 757.6     | Specified anomalies of breast                    | 54     | 0          | 0          | 54    | 0.17  |
|     | 757.8     | Other specified anomalies of the integument      | 15     | 0          | 0          | 15    | 0.05  |
|     | 757.9     | Unspecified anomaly of the integument            | 4      | 0          | 0          | 4     | 0.01  |
| 758 | CODES     | CHROMOSOMAL ANOMALIES                            | B.D.R. | I.D.       | F.D.       | TOTAL | RATE  |
| ••• |           | ••••••                                           | •••••  |            |            | ••••• |       |
|     | 758.0     | Down syndrome                                    | 352    | 5          | . 30       | 387   | 1.18  |
|     | 758.1     | Patau's syndrome                                 | 24     | 0          | 7          | 31    | 0.09  |
|     | 758.2     | Edward's syndrome                                | 46     | 6          | 17         | 69    | 0.21  |
|     | 758.3     | Autosomal deletion syndromes                     | 11     | 1          | 1          | 13    | 0.04  |
|     | 758.5     | Other conditions due to autosomal anomalies      | 27     | 0          | 1          | 28    | 0.09  |
|     | 758.6     | Gonadal dysgenesis                               | 15     | 0          | 2          | 17    | 0.05  |
|     | 758.7     | Klinefelter's syndrome                           | 8      | 2          | 4          | 14    | 0.04  |
|     | 758.8     | Other conditions due to sex chromosome anomalies | 10     | 0          | 1          | 11    | 0.03  |
|     | 758.9     | Conditions due to anomaly of unspecified         |        |            |            |       |       |
|     |           | chromosome                                       | 8      | 1          | 18         | 27    | 0.08  |
| 759 | CODES     | OTHER AND UNSPECIFIED CONGENITAL ANOMALIES       | B.D.R. | I.D.       | F.D.       | TOTAL | RATE  |
| ••• |           |                                                  |        | ****       |            |       | ••••• |
|     | 759.0     | Anomalies of spleen                              | 3      | 0          | 0          | 3     | 0.01  |
|     | 759.1     | Anomalies of adrenal gland                       | 2      | 1          | 0          | 3     | 0.01  |
|     | 759.2     | Anomalies of other endocrine glands              | 1      | 0          | 0          | 1     | 0.00  |
|     | 759.3     | Situs inversus                                   | 5      | 0          | 0          | 5     | 0.02  |
|     | 759.4     | Conjoined twins                                  | 4      | 2          | 1          | 7     | 0.02  |
|     | 759.5     | Tuberous sclerosis                               | 5      | 0          | 0          | 5     | 0.02  |
|     | 759.6     | Other hamartoses, not elsewhere classified       | 4      | 0          | 0          | 4     | 0.01  |
|     | 759.7     | Multiple congenital anomalies, so described      | 49     | 35         | 64         | 148   | 0.45  |
|     | 759.8     | Other specified anomalies                        | 118    | 3          | 4          | 125   | 0.38  |
|     | 759.9     | Congenital anomaly, unspecified                  | 30     | 4          | 30         | 64    | 0.20  |

#### TABLE 3 (continued)

.

rates of some specific conditions. Most importantly and as would be expected, the infant and fetal deaths contribute especially heavily to the total rate of anencephalus, greatly improving the ascertainment of one of the central nervous system defects included in the case-control and cross-sectional studies of the project's fourth phase. The infant deaths, and to a lesser extent the fetal deaths as well, also have disproportionate influences on the rates of diagnostic codes 748.5 (agenesis, hypoplasia, and dysplasia of lung) and 753.0 (renal agenesis and dysgenesis). Finally, a large proportion of the fetal deaths involve chromosomal anomalies, especially Down (758.0), Patau's (758.1), and Edward's (758.2) Syndromes. Although there is undoubtedly room enhancing the reporting of congenital anomalies in New Jersev. for particularly through improving the diagnostic information on infant death and fetal death certificates, these initial results of a multiple-source casefinding approach presented in Table 3 are clinically reasonable and encourage future attempts to achieve more complete ascertainment.

Table 4 presents rates of 32 selected groupings of congenital anomalies drawn from readily available, published results provided by six different birth defects monitoring programs, including New Jersey's BDR. For New Jersey, much more current rates from the BDR alone are provided in the Registry's recent report (NJDOH, 1991). Three of the systems external to New Jersey (BDMP/CPHA; BDMP/MDHIS; and MACDP) coordinate their reporting through CDC and are described in a recent publication (CDC, 1988), while the remaining two refer to statewide systems in Iowa (Hanson et al., 1989) and California (CBDMP, 1988). Two of the systems presented in the CDC publication (BDMP/CPHA and BDMP/MDHIS) involve "passive" reporting from hospitals throughout the The first of these birth defects monitoring programs United States. (BDMP/CPHA) is based on information sent to CDC by the Commission on Professional and Hospital Activities and covered 3,096,375 live births (21% of the country's total) from 1982 to 1985. A second system sending reports to CDC is the McDonnell Douglas Health Information System (BDMP/MDHIS), formerly known as "McAuto", which provided data on 2,150,970 live births (14.6% of the U.S. total) from 1982 to 1985. For each of these passive systems, Table 4 displays separate rates for the Northeast (which includes New Jersey) and for the entire United States. The third external source of rates listed in the CDC publication is from the Metropolitan Atlanta Congenital Defects Program

(MACDP), an "active" system jointly directed by CDC, the Georgia Mental Health Institute, and the Emory University School of Medicine. For 1982 to 1985, MACDP rates were derived from information on 116,038 live births. Published reports from two other "active" systems also provide some of the rates found in Table 4. The first of these covers 165,537 live births in Iowa for the years from 1983 to 1986. The California Birth Defects Monitoring Program (CBDMP), now a statewide program, is the second program and reported on congenital anomalies found among 165,854 live births in the five-county San Francisco Bay Area for 1983 and 1984.

In general, New Jersey's rates in Table 4 tend to fall between those of the two "passive" and the three "active" systems. However, two general groups of conditions show the expected improvement from the inclusion of congenital anomalies based on the more active surveillance of infant and fetal death certificates. The first group is the broad category of diagnoses affecting the central nervous systems, especially anencephalus. Secondly, because of the tremendous case ascertainment that accompanied the studies in Vernon Township (Fulcomer et al., 1988; Fulcomer and Ziskin, 1989), it is not surprising that New Jersey's rates for ascertaining chromosomal defects, particularly of Down Syndrome, equal or exceed those from all of the other reporting systems. Some other conditions for which New Jersey's rates are lower than the other values, most notably patent ductus arteriosus and club feet without CNS, may reflect the inclusion of only more clinically significant cases in the State, especially those for which the county-based case managers of Special Child Health Services may need to help coordinate services.

RATES PER 1000 LIVE BIRTHS OF SELECTED CONGENITAL ANOMALIES AS REPORTED BY DIFFERENT BIRTH DEFECTS REPORTING SYSTEMS

|                                      |                               |                        | REF                           | PORTING SY               | STEMS                            |                             |                                 |                             |
|--------------------------------------|-------------------------------|------------------------|-------------------------------|--------------------------|----------------------------------|-----------------------------|---------------------------------|-----------------------------|
| DIAGNOSTIC DESCRIPTION               | BDMP -<br>1982 -<br>Northeast | CPHA*<br>1985<br>Total | BDMP -<br>1982 -<br>Northeast | MDHIS<br>• 1985<br>Total | Atlanta*<br>(MACDP)<br>1982-1985 | I owa*<br>BDMP<br>1983-1986 | Calif.*<br>(CBDNP)<br>1983-1984 | New*<br>Jersey<br>1985-1987 |
| <u>Central Nervous System:</u>       |                               |                        |                               |                          | *******                          |                             | ••••                            |                             |
| Anencephalus                         | .28                           | .29                    | . 19                          | .20                      | .33                              | .39                         | .30                             | .31                         |
| Spina Bifida without Anencephalus    | .47                           | .48                    | .47                           | .44                      | .65                              | .54                         | .58                             | .50                         |
| Encephalocele                        | .10                           | .11                    | .06                           | .09                      | .22                              | .08                         | .15                             | .11                         |
| Microcephalus                        | .28                           | .25                    | .28                           | .28                      | .53                              | .60                         | 1.21                            | .50                         |
| Hydrocephalus without Spina Bifida   | .62                           | .58                    | .46                           | .52                      | .77                              | .72                         | .57                             | .79                         |
| Eyes:                                |                               |                        |                               |                          |                                  |                             |                                 |                             |
| Anophthalmos/Microphthalmos          | .09                           | .08                    | .07                           | .07                      | .37                              | .24                         | .36                             | .07                         |
| Congenital cataract/lens anomalies   | .13                           | .11                    | . 12                          | .09                      | .17                              | .30                         | .22                             | . 13                        |
| <u>Cardiovascular:</u>               |                               |                        |                               |                          |                                  |                             |                                 |                             |
| Common Truncus                       | .02                           | .03                    | .02                           | .02                      | .07                              | .07                         | .13                             | .04                         |
| Transposition of Great Arteries      | .12                           | .11                    | .11                           | .08                      | .47                              | .43                         | .54                             | .30                         |
| Tetralogy of Fallot                  | .12                           | .11                    | .15                           | .10                      | .32                              | .26                         | .36                             | .22                         |
| Ventricular Septal Defects           | 2.25                          | 1.71                   | 1.78                          | 1.42                     | 1.84                             | 3.56                        | na                              | 1.57                        |
| Atrial Septal Defect                 | .20                           | .21                    | . 10                          | . 16                     | 1.53                             | 1.29                        | na                              | .45                         |
| Endocardial Cushion Defect           | .09                           | .08                    | .08                           | .07                      | .37                              | .36                         | na                              | .15                         |
| Pulmonary Valve Stenosis and Atresia | .27                           | .19                    | .08                           | .14                      | .39                              | .39                         | na                              | . 15                        |
| Tricuspid Valve Stenosis and Atresia | .02                           | .03                    | .02                           | .02                      | .17                              | .31                         | na                              | .08                         |
| Aortic Valve Stenosis and Atresia    | .06                           | .06                    | .05                           | .04                      | .30                              | .39                         | na                              | .04                         |
| Hypoplastic Left Heart Syndrome      | .09                           | .08                    | .07                           | .07                      | .33                              | .38                         | .30                             | . 19                        |
| Patent Ductus Arteriosus             | 3.04                          | 2.96                   | 2.11                          | 2.39                     | 6.16                             | 3.64                        | na                              | 1.30                        |
| Coarctation of Aorta                 | .09                           | .07                    | .09                           | .08                      | .34                              | .41                         | na                              | .20                         |
| Pulmonary Artery Anomaly             | .16                           | .20                    | . 15                          | . 15                     | .56                              | .69                         | na                              | .26                         |

25

ŕ

#### TABLE 4 (continued)

#### RATES PER 1000 LIVE BIRTHS OF SELECTED CONGENITAL ANOMALIES AS REPORTED BY DIFFERENT BIRTH DEFECTS REPORTING SYSTEMS

|                                        |                               |                        | REF                           | PORTING SYS            | STEMS                            |                             |                                 |                             |
|----------------------------------------|-------------------------------|------------------------|-------------------------------|------------------------|----------------------------------|-----------------------------|---------------------------------|-----------------------------|
| DIAGNOSTIC DESCRIPTION                 | BDMP -<br>1982 -<br>Northeast | CPHA*<br>1985<br>Total | BDMP -<br>1982 ·<br>Northeast | MDHIS<br>1985<br>Total | Atlanta*<br>(MACDP)<br>1982-1985 | I owa*<br>BDNP<br>1983-1986 | Calif.*<br>(CBDMP)<br>1983-1984 | New*<br>Jersey<br>1985-1987 |
| Respiratory:                           |                               |                        |                               |                        |                                  |                             |                                 |                             |
| Lung Agenesis and Hypoplasia           | .51                           | .32                    | .31                           | .25                    | .55                              | .65                         | .57                             | .41                         |
| Craniofacial:                          |                               |                        |                               |                        |                                  |                             |                                 |                             |
| Cleft Palate without Cleft Lip         | .55                           | .56                    | .54                           | .53                    | .42                              | .45                         | .77                             | .53                         |
| Cleft Lip with or without Cleft Palate | .85                           | .91                    | .88                           | .86                    | 1.08                             | 1.22                        | 1.11                            | .75                         |
| <u>Gastrointestinal:</u>               |                               |                        |                               |                        |                                  |                             |                                 |                             |
| Tracheo-Esophageal Anomalies           | .24                           | .21                    | .27                           | .20                    | .23                              | .22                         | .27                             | .21                         |
| Rectal/Intestinal Atresia & Stenosis   | .37                           | .35                    | .34                           | .36                    | .37                              | .50                         | .46                             | .31                         |
| Genitourinary:                         |                               |                        |                               |                        |                                  |                             |                                 |                             |
| Renal Agenesis                         | .23                           | .18                    | .14                           | . 15                   | .33                              | .46                         | .42                             | . 19                        |
| <u>Musculoskeletal:</u>                |                               |                        |                               |                        |                                  |                             |                                 |                             |
| Club Foot without CNS                  | 2.76                          | 2.61                   | 2.17                          | 2.39                   | 2.51                             | 3.30                        | na                              | .34                         |
| Reduction Defect of Upper Limbs        | .16                           | .16                    | .17                           | . 15                   | .43                              | .51                         | na                              | .30                         |
| Reduction Defect of Lower Limbs        | .08                           | .09                    | .10                           | .09                    | .16                              | .33                         | na                              | . 14                        |
| <u>Chromosomal:</u>                    |                               |                        |                               |                        |                                  |                             |                                 |                             |
| Down Syndrome/Trisomy 21               | .87                           | .85                    | 1.11                          | .87                    | .97                              | 1.00                        | .97                             | 1.18                        |
| Patau's Syndrome/Trisomy 13            | .06                           | .08                    | .04                           | .06                    | .10                              | .07                         | .10                             | .09                         |
| Edwards' Syndrome/Trisomy 18           | .12                           | .10                    | .12                           | .09                    | .20                              | .21                         | .16                             | .21                         |

\* Reporting system includes case-information on live births up to one year of age and on stillborn infants above 20 weeks gestation.

na = Not Available

#### IV. CORRELATIONS AND OTHER DESCRIPTIVE RESULTS FOR SELECTED VARIABLES

This chapter presents some simple correlations and other descriptive statistics for the subset of the variables gathered as part of Phase I and selected for inclusion in the ecologic (i.e., correlational) analyses of the project's third phase (Fulcomer et al., 1992a). These variables included the twelve sociodemographic characteristics treated as independent variables (described in Section A of Chapter II) and two subsets of information on AROs to serve as outcomes (i.e., dependent variables) in the multiple and partial regression analyses of Phase III. The dependent variables consisted of 8 outcome rates based on vital records (described in Section B of Chapter II) and the rates of 13 categories of congenital anomalies derived from the BDR (using output of the program described in Section A of Chapter III).

#### A. METHODS

As a first step in approaching the regression analyses of the AROs, some univariate descriptive statistics (means, standard deviations, etc.) and simple bivariate correlations (i.e., unadjusted for any covariates) were calculated. For all of the variables described in this section, results are presented in juxtaposition for four weighting schemes intended to address wide variations in the number of births among the 561 municipalities retained in the analytic file. The four schemes ranged from unweighted (i.e., treating each municipality as having an equal number of births) to fully-weighted (i.e., proportional to the number of births in a community) and are explained more fully in Chapter II of the the Phase III report. Two intermediate approaches (common logarithms and square roots) were calculated by applying these simple transformations to the number of live births in a municipality. Similar methods for weighting observations by frequency-related information are also available in standard statistical packages such as BMDP (Dixon et al., 1988, p. 529), SAS (SAS, 1985), and SPSS (SPSS, 1988). These approaches to the weighting of the geographic units in this project have the added advantages of applicability to all of the AROs simultaneously and ease of interpretation.

The linking of records of aggregated results for the municipalities from the various sources of variables was accomplished using several of the MADMANager Utility Programs (Fulcomer and Kriska, 1989). In order to base the later regression analyses on stored results of sufficient statistics rather than requiring cumbersome recalculation with the entire set of records, MAD03C of the MADSTAT Statistics Programs (Fulcomer and Kriska, 1992) was employed to calculate univariate (means and standard deviations) and bivariate statistics (correlations) for all variables included in the final linked data file. Four sets of parameter estimates were prepared as input into the MADSTAT regression algorithm, one for each of the four weighting schemes.

#### B. DESCRIPTIVE STATISTICS FOR THE SOCIODEMOGRAPHIC (INDEPENDENT) VARIABLES

Using MADSTAT program MAD03C, univariate descriptive statistics and simple bivariate correlations were calculated for twelve of the sociodemographic variables serving as independent variables in the later regression analyses (listed in Appendices A and B, respectively). All of these variables have already been described in the second chapter, with six drawn from the set summarizing the 1980 U.S. Census and the remaining six aggregated from the birth certificates to serve as risk factors. Given the ecologic nature of the municipality-based correlations, the substantial magnitudes of the correlations in Appendix B are not surprising, including many of the relationships involving poor prenatal care. Appendix A also lists some summary regression statistics for each variable treated as a dependent variable to be explained from the remaining eleven independent variables that are also utilized in the Phase III regression analyses: the original mean; the intercept term; the original standard deviation; the standard error of prediction; the multiple R;  $\mathbb{R}^2$  expressed as a percent of variance accounted for (i.e., the coefficient of determination x 100.00, the adjusted, or "shrunken" R<sup>2</sup> as a percent to estimate the population  $R^2 = 1 - (1 - R^2)((N - 1)/(N - p - 1))$ , where p is the number of independent variables] originally due to Wherry (1931); and the F-ratio for  $\mathbb{R}^2$ . The high levels of the  $\mathbb{R}^2$  for many of the independent variables (e.g., 97% of the variance of mother's average age is explained by the regression of the other eleven independent variables obtained under the fully-weighted scheme) illustrate that the intercorrelation matrices are nearly singular (i.e., the independent variables are almost collinear).

#### C. DESCRIPTIVE STATISTICS FOR THE OUTCOME (DEPENDENT) VARIABLES

Following the format described above for Appendix A, Tables 5 and 6 present some univariate descriptive statistics for two distinct groupings of 21 AROs retained for the correlational and regression analyses of the project's third phase (Fulcomer et al., 1992a). These tables also contain regression-related results for explaining the outcomes from the twelve sociodemographic variables; these results are more fully described in the Phase III report, where these two tables are presented again (as Tables 4 and 5, respectively in that document).

As shown in Table 5, the first grouping consists of eight ARO variables derived from the vital records information described in the second chapter. Except for the two variables calculated from gestational age information as part of the work on the project's cross-sectional study (Bove et al., 1992a), the other six variables are generally considered traditional AROs based on data found on birth and death certificates.

The second grouping of outcomes, shown in Table 6, covers 13 overlapping categories of congenital anomalies, all formed from the 32 diagnostic categories reported on by CDC (CDC, 1988) and described in the third chapter. In order to overcome the problems associated with "rare" outcomes, these birth defects variables were selected by combining some of the more important groupings of congenital anomalies into a small, meaningful set. Six of these outcomes (neural tube defects, eye defects, selected severe cardiac defects, oral clefts, reduction deformities, and chromosomal anomalies) were already available as broad summary indicators from the computer program that grouped the diagnostic information, while another set of six (chromosomal anomalies, congenital anomalies, major anomalies, minor anomalies, central nervous system defects. and musculoskeletal defects) were derived using simple transformations of the resulting output records. Down Syndrome was the only one of the specific diagnostic categories retained for the correlational analyses and was included because of ongoing interest in its occurrence among births to New Jersey residents (e.g., Fulcomer et al., 1988).

Descriptive Statistics For Each Vital Records Outcome, Including Regression Results From The Independent Variables

| • VARIABLE *    | TYPE        | - MEAN            | : INTERCEPT | - STANDARI | ) : ST | ANDARD  | · MUI | TIPLE  | : MULTIPLE | : ADJUSTED | * F-RATIO *  |
|-----------------|-------------|-------------------|-------------|------------|--------|---------|-------|--------|------------|------------|--------------|
| <b>*</b> 1      | * OF        | *                 | : VALUE     | * DEVIATIO | DN: E  | RROR    | *     | R      | : R-SQUARE | : R-SQUARE | * FOR *      |
| * 1             | * WEIGHTING | ; *               | :           | *          | :      |         | *     |        | : PER CENT | : PER CENT | * R-SQUARE * |
| *******         | **********  | ***********       | **********  | *********  | ****** | ******  | ***** | ****** | ********   | *********  | ***********  |
| Preterm births  | Unweighted  | 8.1143            | 48.9888     | 3.50       | 11     | 2.6924  |       | .6491  | 42.1275    | 40.8602    | 33.2424**    |
| percent         | Log(10)     | 8.2004            | 35.4795     | 3.26       | 32     | 2.3447  | ,     | .7045  | 49.6332    | 48.5302    | 45.0015**    |
|                 | Square Roc  | ot 8.6243         | 37.9345     | 3.354      | 3      | 1.9024  |       | .8278  | 68.5236    | 67.8343    | 99.4154**    |
|                 | Fully-wgto  | 9.8792            | 21.4097     | 3.887      | 70     | 1.4188  | •     | .9325  | 86.9623    | 86.6768    | 304.5994**   |
| Small-for-      | Unweighted  | 10.1453           | 20.5737     | 3.043      | 53     | 2.7763  |       | .4309  | 18.5632    | 16.7799    | 10.4095**    |
| gestational     | Log(10)     | 10.2555           | 14.8874     | 2.74       | 39     | 2.4534  |       | .4695  | 22.0465    | 20.3395    | 12.9153**    |
| age percent     | Square Roc  | t 10.5095         | 15.8276     | 2.442      | 28     | 2.0478  |       | .5589  | 31.2332    | 29.7273    | 20.7413**    |
| -               | Fully-wgto  | <b>i.</b> 11.1511 | 5.4554      | 2.18       | Ж      | 1.5283  |       | .7234  | 52.3282    | 51.2842    | 50.1271**    |
| Very low        | Unweighted  | 10.7042           | 13.4926     | 11.43      | 21     | 10.8973 |       | .3329  | 11.0838    | 9.1368     | 5.6926**     |
| birthweight     | Log(10)     | 10.6736           | 20.5956     | 9.88       | 58     | 9.2746  | ,     | .3724  | 13.8695    | 11.9835    | 7.3537**     |
| rate            | Square Roc  | t 11.1457         | 31.1709     | 8.430      | 58     | 7.3261  |       | .5120  | 26.2132    | 24.5974    | 16.2233**    |
|                 | Fully-wgtc  | 12.9099           | 38.9659     | 7.53       | 5      | 4.9153  |       | .7637  | 58.3314    | 57.4189    | 63.9282**    |
| Low birthweight | Unweighted  | 55.9390           | 201.7679    | 25.850     | )3     | 22.2059 | •     | .5272  | 27.7895    | 26.2082    | 17.5743**    |
| rate            | Log(10)     | 56.8128           | 170.6982    | 24.10      | 6      | 19.4861 |       | .6005  | 36.0548    | 34.6545    | 25.7486**    |
|                 | Square Roc  | ot 59.8551        | 205.6308    | 23.98      | 74     | 15.8368 | •     | .7573  | 57.3532    | 56.4193    | 61.4144**    |
|                 | Fully-wgtc  | 68.7379           | 147.8255    | 27.22      | 54     | 11.2055 |       | .9134  | 83.4231    | 83.0601    | 229.8175**   |
| Neonatal death  | Unweighted  | 5.8728            | 31.1302     | 7.214      | 60     | 7.0876  | •     | .2354  | 5,5426     | 3.4742     | 2.6797**     |
| rate            | Log(10)     | 5.9073            | 22.2913     | 6.39       | 2      | 6.2427  | ,     | .2610  | 6.8115     | 4.7709     | 3.3379**     |
|                 | Square Roo  | ot 6.0906         | 26.4334     | 5.30       | 39     | 5.0336  | •     | .3468  | 12.0292    | 10.1028    | 6.2445**     |
|                 | Fully-wgtc  | 6.7102            | 23.8850     | 4.07       | 55     | 3.4528  | 5     | .5449  | 29.6955    | 28.1560    | 19.2889**    |
| Post-neonatal   | Unweighted  | 2.4211            | - 10, 1002  | 5.11       | 37     | 4.9490  | )     | .2920  | 8.5244     | 6.5213     | 4.2556**     |
| death rate      | Log(10)     | 2.4278            | -3.2981     | 4.184      | 3      | 4.0032  |       | .3229  | 10.4295    | 8,4681     | 5.3174**     |
|                 | Square Roo  | at 2.6201         | 1.5431      | 3.384      | 3      | 3.1166  |       | .4124  | 17.0099    | 15.1926    | 9.3600**     |
|                 | Fully-wgto  | 3.1936            | 5.1492      | 2.663      | 51     | 2.0421  |       | .6516  | 42.4627    | 41.2027    | 33.7021**    |
| Total infant    | Unweighted  | 8,2941            | 21.0260     | 8.764      | 9      | 8.3771  |       | .3258  | 10.6120    | 8.6546     | 5.4215**     |
| death rate      | Log(10)     | 8.3353            | 18.9866     | 7.69       | 54     | 7.2352  | 2     | .3668  | 13.4518    | 11.5566    | 7.0978**     |
|                 | Square Roc  | ot 8.7111         | 27.9574     | 6.56       | 38     | 5.8318  |       | .4782  | 22,8679    | 21,1789    | 13.5391**    |
|                 | Fully-wgto  | 1. 9.9046         | 28.9950     | 5.570      | 55     | 4.0205  |       | .7010  | 49.1335    | 48.0196    | 44.1108**    |
| Fetal mortality | Unweichted  | 6.9253            | 22.7398     | 7.97       | 73     | 7.8918  | 6     | .2057  | 4.2301     | 2.1329     | 2.0171*      |
| rate            | Log(10)     | 6.9347            | 8.9757      | 7.00       | 11     | 6.9073  | ;     | .2179  | 4.7472     | 2.6614     | 2.2760**     |
|                 | Square Roc  | ot 7.0895         | 1.0189      | 5.73       | 20     | 5.5512  | 2     | .2905  | 8.4414     | 6.4364     | 4.2103**     |
|                 | Fully-wgto  | <b>1.</b> 7.6948  | 1.5630      | 4.32       | 27     | 3.8105  | ;     | .4895  | 23.9576    | 22.2924    | 14.3875**    |

**.** .

\* significant at p < .05.</pre>

\*\* significant at p < .01.</pre>

#### TABLE 6

Descriptive Statistics For Each Birth Defects Registry Outcome, Including Regression Results From The Independent Variables

| *** | *******         | *******     | ******* | *********** | *********   | *******  | *******    | ******           | ******           | ******       |
|-----|-----------------|-------------|---------|-------------|-------------|----------|------------|------------------|------------------|--------------|
| *   | VARIABLE *      | TYPE *      | MEAN :  | INTERCEPT   | STANDARD :  | STANDARD | * MULTIPLE | : MULTIPLE       | : ADJUSTED       | F-RATIO *    |
| *   | 1               | • OF *      | :       | VALUE       | DEVIATION : | ERROR    | * R        | : R-SQUARE       | : R-SQUARE       | * FOR *      |
| *   | +               | WEIGHTING * | :       | . 1         | • -         |          | *          | : PER CENT       | : PER CENT       | * R-SQUARE * |
| *** | ********        | ****        | ******  | *********   | **********  | ******** | ********   | ******           | ********         | **********   |
|     |                 |             |         |             |             |          |            | 0.00//           | 007/             | 4 0700       |
| D   | lown syndrome   | Unweighted  | 1.4198  | -13.5659    | 4.3478      | 4.3460   | . 1491     | 2.2244           | .0834            | 1.0389       |
|     |                 | Log(10)     | 1.3475  | -5.9486     | 3.3598      | 3.3618   | . 1425     | 2.0247           | .0000            | .9437        |
|     |                 | Square Root | 1.2845  | -1.1152     | 2.5351      | 2.5384   | .1574      | 1.88//           | .0000            | .8/80        |
|     |                 | Fully-wgtd. | 1.1862  | 3.1069      | 1.6153      | 1.6062   | .1/99      | 5.25/4           | 1.1185           | 1.52/9       |
| N   | leural tube     | Unweighted  | 1.9911  | 8.3697      | 3.9144      | 3.8730   | .2050      | 4.2020           | 2.1042           | 2.0031*      |
|     | defects         | Log(10)     | 1.9959  | 9.4255      | 3.5353      | 3.5004   | .2016      | 4.0632           | 1.9624           | 1.9341*      |
|     |                 | Square Root | 1.9924  | 14.7112     | 2.9092      | 2.8821   | . 1988     | 3.9539           | 1.8507           | 1.8800*      |
|     |                 | Fully-wgtd. | 2.0478  | 11.7121     | 2.0457      | 2.0044   | .2461      | 6.0547           | 3.9975           | 2.9432**     |
|     |                 |             | 24.24   | 0520        | 1 0125      | 1 0107   | 0006       | 8212             | 0000             | 3781         |
| E   | ive defects     | Unweighted  | .2121   | 9528        | 1.0125      | 0700     | .0900      | 0557             | 0000             | .5/07        |
|     |                 | Log(10)     | .2102   | 0140        | .7/32       | .7730    | .0770      | 1 23/0           | .0000            | 5705         |
|     |                 | Square Root | .2101   | 4323        | .0339       | .02/7    | 1/07       | 2 2/22           | 1015             | 1 0474       |
|     |                 | Fully-wgtd. | . 1965  | .7361       | .0302       | .0337    | . 1477     | 2.6466           | . 1015           | 110474       |
| ç   | Selected severe | Unweighted  | 1.3779  | -6.9161     | 3.1674      | 3.1617   | . 1580     | 2.4955           | .3604            | 1.1688       |
|     | cardiac         | Log(10)     | 1.3511  | -5.2168     | 2.8293      | 2.8305   | . 1433     | 2.0541           | .0000            | .9577        |
|     | defects         | Square Root | 1.3095  | -2.6914     | 2.2953      | 2.3024   | .1240      | 1.5364           | .0000            | .7126        |
|     |                 | Fully-wgtd. | 1.2872  | 3.0891      | 1.5705      | 1.5671   | . 1601     | 2.5636           | .4300            | 1.2015       |
|     | Onal clofts     | Unueighted  | 1 3450  | -4.4956     | 2,8932      | 2.8977   | . 1356     | 1.8392           | .0000            | .8556        |
| ``  |                 |             | 1.3401  | -4,1310     | 2.6216      | 2.6273   | .1309      | 1.7139           | .0000            | .7963        |
|     |                 | Square Root | 1.3101  | -3,5220     | 2.1769      | 2.1845   | . 1206     | 1.4553           | .0000            | .6744        |
|     |                 | Fully-watd. | 1.2599  | 2964        | 1.5526      | 1.5590   | .1154      | 1.3312           | .0000            | .6161        |
|     |                 | ,           |         |             |             |          |            |                  |                  |              |
| . 1 | Reduction       | Unweighted  | .4378   | .6883       | 1.4981      | 1.5042   | .1159      | 1.3444           | .0000            | .6223        |
|     | deformities     | Log(10)     | .4438   | .9969       | 1.4048      | 1.4101   | .1185      | 1.4045           | .0000            | .6505        |
|     |                 | Square Root | .4358   | 2.0165      | 1.2041      | 1.2089   | .1170      | 1.3699           | .0000            | .6343        |
|     |                 | Fully-wgtd. | .4204   | 1.7536      | .8806       | .8834    | . 1232     | 1.5167           | .0000            | .7033        |
|     | Chromosomal     | Unweighted  | 2,0124  | -17,1261    | 4.7591      | 4.7617   | .1427      | 2.0359           | .0000            | .9490        |
|     | anomalies       | 1.00(10)    | 1.9567  | -8.8550     | 3.82%       | 3.8384   | . 1300     | 1.6907           | .0000            | .7853        |
|     | anniatics       | Square Root | 1,9091  | -4,1499     | 2,9935      | 3.0047   | .1187      | 1.4099           | .0000            | .6531        |
|     |                 | Fully-wgtd. | 1.8273  | 1.5649      | 2.0039      | 2.0039   | . 1463     | 2.1415           | .0000            | .9994        |
|     |                 |             |         |             |             | 0/ F7/7  | 0570       | 4 4040           | / 764/           | 7 4370++     |
|     | Congenital      | Unweighted  | 28.26/1 | 55.16/5     | 25.0865     | 24.5347  | .2730      | 0.4010<br>E 714E | 4.3214           | 2 54/2**     |
|     | anomalies       | Log(10)     | 27.7806 | 68,2228     | 21.9302     | 21.5775  | .2300      | 7.3107           | 2.2432           | 2.3042~~     |
|     |                 | Square Root | 27.2878 | 145.1566    | 18.2189     | 17.9/41  | .2181      | 4./333           | 2.0090<br>/ 0377 | 2.2001**     |
|     |                 | Fully-wgtd. | 27.0898 | 1/5.9276    | 15.5644     | 13.2005  | .240/      | 0.0042           | 4.02//           | 2.7707**     |
|     | Major anomalies | Unweighted  | 21.8319 | 2.1828      | 19.7944     | 19.1366  | .2922      | 8.5387           | 6.5359           | 4.2634**     |
|     |                 | Log(10)     | 21.4571 | 22.6626     | 17.7063     | 17.2166  | .2735      | 7.4810           | 5.4550           | 3.6926**     |
|     |                 | Square Root | 20.9822 | 72.5735     | 14.8180     | 14.5105  | .2482      | 6.1626           | 4.1078           | 2.9991**     |
|     |                 | Fully-wgtd. | 20.6488 | 96.4496     | 10.9744     | 10.7530  | .2460      | 6.0516           | 3.9943           | 2.9416**     |

#### TABLE 6 (continued) CONTINUED

Descriptive Statistics For Each Birth Defects Registry Outcome, Including Regression Results From The Independent Variables

| *****           | ******     | ******   | ******      | t <del>i</del> t i | ********  | ***      | *****     | **** | ******  | <b>lente</b> 1 | *******  | ræær    | *******  | i de d | ********   |
|-----------------|------------|----------|-------------|--------------------|-----------|----------|-----------|------|---------|----------------|----------|---------|----------|--------|------------|
| * VARIABLE *    | TYPE       | * MEAN   | : INTERCEPT | *                  | STANDARD  | :        | STANDARD  | * H  | ULTIPLE | :              | MULTIPLE | : /     | ADJUSTED | *      | F-RATIO *  |
| * *             | OF         | *        | : VALUE     | *                  | DEVIATION | :        | ERROR     | *    | R       | :              | R-SQUARE | : 1     | R-SQUARE | *      | FOR *      |
| * *             | WEIGHTING  | *        | :           | *                  |           | :        |           | *    |         | :              | PER CENT | : 1     | PER CENT | *      | R-SQUARE * |
| ************    | ******     | ******   | ****        | k w w              | ********  | lestes d | ********* | **** | ******  | inder:         | *******  | rikilei | ******** | init d | *******    |
| Minor anomalies | Unweighted | 6.4351   | 50.9895     |                    | 10.2648   |          | 10.1834   |      | . 1921  |                | 3.6884   |         | 1.5794   |        | 1.7489     |
|                 | Log(10)    | 6.3234   | 45.5652     |                    | 8.3933    |          | 8.3853    |      | . 1526  |                | 2.3291   |         | . 1903   |        | 1.0890     |
|                 | Square Roo | t 6.3056 | 72.5879     |                    | 6.7436    |          | 6.6844    |      | . 1963  |                | 3.8540   |         | 1.7486   |        | 1.8305*    |
|                 | Fully-wgtd | . 6.4408 | 79.4781     |                    | 4.9560    |          | 4.7627    | ,    | .3103   |                | 9.6280   |         | 7.6490   |        | 4.8652**   |
| Central nervous | Unweighted | 2.3125   | 7.4071      |                    | 4.1813    |          | 4.1468    |      | . 1936  |                | 3.7498   |         | 1.6422   |        | 1.7791*    |
| system defects  | Log(10)    | 2.3112   | 8.9093      |                    | 3.7842    |          | 3.7544    |      | . 1919  |                | 3.6824   |         | 1.5732   |        | 1.7459     |
| ·               | Square Roo | t 2.2870 | 14.8164     |                    | 3.1154    |          | 3.0927    | ,    | . 1888  |                | 3.5662   |         | 1.4545   |        | 1.6888     |
|                 | Fully-wgtd | . 2.3118 | 12.6967     |                    | 2.1840    |          | 2.1490    |      | .2292   |                | 5.2544   |         | 3.1796   |        | 2.5326**   |
| Heart defects   | Unweighted | 4.9757   | 9.5225      |                    | 6.1269    |          | 6.0975    |      | .1755   |                | 3.0798   |         | .9575    |        | 1.4511     |
|                 | Log(10)    | 5.0704   | 11.8802     |                    | 5.7063    |          | 5.6820    | )    | .1725   |                | 2.9762   |         | .8516    |        | 1.4008     |
|                 | Square Roo | t 5.1780 | 23.7546     |                    | 4.9666    |          | 4.9306    | ,    | . 1886  |                | 3.5587   |         | 1.4468   |        | 1.6851     |
|                 | Fully-wgtd | 5.3954   | 28.3944     |                    | 3.8619    |          | 3.7692    | ŀ    | .2605   |                | 6.7845   |         | 4.7433   |        | 3.3237**   |
| Musculoskeletal | Unweighted | 7.8740   | -9.1620     |                    | 9.4364    |          | 9.2270    | )    | .2538   |                | 6.4389   |         | 4.3902   |        | 3.1428**   |
| defects         | Log(10)    | 7.7790   | -3.5389     |                    | 8.3248    |          | 8.1751    |      | .2373   |                | 5.6308   |         | 3.5643   |        | 2.7248**   |
| Gerects         | Square Roo | t 7.8220 | 12.5166     |                    | 7.0767    |          | 6.9336    | ì    | .2462   |                | 6.0624   |         | 4.0053   |        | 2.9471**   |
|                 | Fully-wgtd | 8.1600   | 32.3502     |                    | 5.5455    |          | 5.2970    | )    | .3274   |                | 10.7168  |         | 8.7617   |        | 5.4814**   |

\* significant at p < .05.

\*\* significant at p < .01.</pre>

Simple bivariate correlations within the subsets of outcome variables were also derived from vital records and the BDR using MADSTAT program MADO3C and are displayed in Appendices C and D, respectively. Correlations between the two subsets are found in Appendix E. The correlations between the sociodemographic (independent) variables and the two subsets of adverse reproductive outcome (dependent) variables play an important role in the calculation of regression coefficients and are described later in this chapter.

Correlations Within Vital Records Variables. The substantial levels of correlation among the variables within the subset of items derived from vital records are readily apparent from an inspection of Appendix C. Of the 112 off-diagonal correlations (28 for each of 4 weighting schemes), 93 exceed the critical value for significance at p<.01 (i.e.,  $|r| \ge .115$ ), while 9 of the remaining values are significant at p<.05 (i.e., .088≤|r|<.115). The remaining ten correlations that are <u>not</u> significant involve five relationships of outcome variables with the rate of post-neonatal deaths and five associations of other vital-record outcomes with the rate of fetal deaths. Beyond levels of significance, the sizes and directions (all of the significant values are positive) indicate considerable "concurrent" and "predictive" validity (Cronbach, 1960). While it makes good clinical sense that the percents of preterm and small-for-gestational infants are positively correlated with the rate of neonatal deaths, the high magnitudes of the relationships, most notably for the fully-weighted scheme, are somewhat surprising. Although there have been a few studies of more specific adverse reproductive outcomes in smaller geographic areas such as census tracts (Fulcomer et al., 1981), many of the reports in the literature have been at a cruder level of geographic aggregation, mostly counties, and over shorter time intervals, leading to the likely attenuation of associations. In the present study, the inclusion of three year's worth of data and the use of alternative weighting schemes partially offset the problem of small sample sizes that often plagues research into relatively rare outcomes.

<u>Correlations Within Birth Defects Registry Variables</u>. The correlations among the variables derived from the Birth Defects Registry are listed in Appendix D. Of the 312 off-diagonal correlations (78 for each of 4 weighting

schemes), 174 exceed the critical value for significance at p<.01 (i.e.,  $|r| \ge .115$ ), while 29 of the remaining values are significant at the 5 percent level (i.e.,  $.088 \le |r| < .115$ ). However, despite the substantial levels of some correlations in this table, it is important to point out that values for several of the pairings of variables are inflated because of "part-whole" (or "autocorrelated") relationships that occur when items are also included in linear combinations (i.e., as part of weighted composite measures involving two or more constituent variables). Among the pairings of variables in this subset that are inflated in this manner are the following: Down Syndrome-chromosomal defects; neural tube defects-central nervous system defects; cardiac-heart; reduction deformities-musculoskeletal; congenital anomalies-major defects; and congenital anomalies-minor defects.

Correlations Between Vital Record And Birth Defects Registry Variables. The correlations between the eight vital records variables and the thirteen rates derived from the Birth Defects Registry are presented in Appendix E and represent one of the first attempts to bring together adverse reproductive outcome variables from more than two data sources (i.e., typically matched birth-deaths in contrast to the four sources of information represented in these two subsets of dependent variables). Of the 416 correlations (8x13 -104 for each of 4 weighting schemes), 104 exceed the critical value for significance at p<.01 (i.e.,  $|r|\geq$ .115), while 34 of the remaining values are significant at p<.05 (i.e.,  $.088\leq|r|<.115$ ). Although the magnitudes of the correlations are lower than the levels generally evident in the within-subset matrices, there are still a substantial proportion of significant values.

<u>Correlations Between The Sociodemographic (Independent) And Vital Records</u> <u>Variables.</u> The correlations between the twelve independent variables and the subset of eight dependent variables based on information obtained from vital records are presented in Appendix F. Of the 384 correlations (12x8 - 96 for each of 4 weighting schemes), 300 exceed the critical value for significance at p<.01 (i.e.,  $|r_{XY}| \ge .115$ ); 19 of the remaining values are significant at the 5 percent level (i.e.,  $.088 \le |r_{XY}| < .115$ ). In addition, the directions of the significant relationships are all consistent with "risk factors" reported in the literature (e.g., see Myrianthopoulos, 1985, Janerich and Bracken, 1986, and Kallen, 1988) and the magnitudes of the associations are substantial, even

for the unweighted scheme. Therefore, even these unadjusted correlations provide evidence of considerable potential for concurrent and predictive validity of the explanatory variables with respect to these outcomes. The lack of significant values is concentrated in the two with the most tenuous status as "risk factors" (i.e., mostly rural and percent of primiparous mothers).

Correlations Between The Sociodemographic (Independent) And Birth Defects <u>Registry Variables</u>. The correlations between the twelve independent variables and the subset of thirteen rate variables derived from the Birth Defects Registry are listed in Appendix G. Of the 624 correlations (12x13 = 156 for each of 4 weighting schemes), 72 exceed the critical value for significance at p<.01 (i.e.,  $|r_{xy}| \ge .115$ ); 57 of the remaining values are significant at the 5 percent level (i.e.,  $.088 \le |r_{xy}| < .115$ ). The number of significant simple correlations provides an initial indication of possible associations between the risk factors and the rates of selected birth defects for future investigations. However, the results in Appendix G are much less dramatic than their counterparts for the dependent variables based on vital records information. Besides a much lower proportion of significant values and generally lower magnitudes, the directions of the relationships do not follow the same consistent pattern of positive correlations noted in Appendix F.

#### V. SUMMARY

This report has described the activities undertaken in the first phase of a cooperative agreement between the New Jersey Department of Health (NJDOH) and the U.S. Centers for Disease Control (CDC). The overall goal of the project was to develop and apply appropriate methodology to assess relationships between adverse reproductive outcomes (ARO) and population exposures to environmental pollutants, particularly toxic waste site contamination. With the objective of enhancing NJDOH's capability to conduct surveillance and etiological research of birth defects, low birthweight, fetal and infant mortality, work in this phase concentrated on assembling information on AROs so that stable rates of their occurrence could be established.

The second chapter has described the selection of six variables from the U.S. Census and six other health variables derived from vital records to serve as sociodemographic indicators to summarize the entire State and its 567 municipalities. Health variables incorporated in the correlational and etiological studies of the project's third and fourth phases were also introduced in the second chapter. Many of these sociodemographic and other health variables have also been employed in other NJDOH studies and project staff have been actively involved in obtaining comparable data from the 1990 U.S. Census and with updating health outcome data to account for the new modifications of vital records introduced in 1989 as part of the national effort spearheaded by the National Center for Health Statistics (NCHS).

The third chapter described the collection of data on individuals with AROs involving congenital anomalies. Much of this work has continued to the present, thereby extending the project's data acquisition efforts far beyond what was initially envisioned, and reflecting the commitment of NJDOH to the first objective of enhancing its surveillance and research capabilities in the area of AROs. In particular, NJDOH's future efforts in analysis and evaluation of ARO information should benefit from the improvements in data quality, integration of historical data, and merging of AROs from multiple sources made possible by the cooperative agreement. A table displaying the frequencies and rates of specific diagnostic categories for the 8843 affected

cases has shown that the acquisition of information from infant and fetal death certificates improves the reporting of some congenital anomalies. Specifically, another table comparing New Jersey rates to those from five other birth defects monitoring programs has demonstrated that the reporting of central nervous system defects and chromosomal anomalies were improved over those derived from the Birth Defects Registry (BDR) alone.

Finally, simple correlations and other descriptive statistics for all of the AROs incorporated into this report have been listed in the fourth chapter, covering 327,015 live births and 3,548 fetal deaths (stillbirths) that occurred in New Jersey residents in the three years from 1985 to 1987. Some of these correlational results have provided encouraging evidence of potential validity of the ARO information gathered as part of the project's first phase. Combined with the evaluation of databases and assembling of information on environmental exposures in Phase II, the success of the project's efforts to acquire reliable and reasonably complete information on AROs will facilitate future ecological and etiological studies, particularly by improving the statistical power and generalizability of the studies involving potentially "weak" associations with environmental exposures.

#### VI. REFERENCES

Bove, F.J. (1992). <u>Population-Based Surveillance and Etiological Research of</u> <u>Adverse Reproductive Outcomes-Report on Phase Two: The Evaluation and</u> <u>Development of Databases on Potential Environmental Exposures</u>. State of New Jersey Department of Health, Division of Occupational and Environmental Health, Trenton, NJ.

Bove, F.J., Fulcomer, M.C., Klotz J.B., Esmart, J., Dufficy, E.M., & Zagraniski, R.T. (1992a). <u>Population-Based Surveillance and Etiological</u> <u>Research of Adverse Reproductive Outcomes-Report on Phase IVA: Public Drinking</u> <u>Water Contamination and Birthweight. Fetal Deaths and Birth Defects: A</u> <u>Cross-Sectional Study</u>. State of New Jersey Department of Health, Division of Occupational and Environmental Health, Trenton, NJ.

Bove, F.J., Fulcomer, M.C., Klotz J.B., Esmart, J., Dufficy, E.M., & Zagraniski, R.T. (1992b). <u>Population-Based Surveillance and Etiological</u> <u>Research of Adverse Reproductive Outcomes-Report on Phase IVB: Case-Control</u> <u>Study of Public Drinking Water Systems and Selected Birth Defects and Low</u> <u>Birthweight</u>. State of New Jersey Department of Health, Division of Occupational and Environmental Health, Trenton, NJ.

California Birth Defects Monitoring Program. (1988). <u>Birth Defects in</u> <u>California, January 1, 1983 - December 31, 1984: A Report of the California</u> <u>Birth Defects Monitoring Program</u>. California Department of Health Services, California Birth Defects Monitoring Program, Berkeley, CA.

Centers for Disease Control. (1988). <u>Congenital Malformations Surveillance</u> <u>Report: January 1982 - December 1985, Issued March, 1988</u>. Atlanta, GA.

Cohen, J., & Cohen, P. (1983). <u>Applied Multiple Regression/Correlation</u> <u>Analysis for the Behavioral Sciences</u>. Second edition. Hillsdale, NJ: Lawrence Erbium Associates.

Cronbach, L.J. (1960). <u>Essentials of Psychological Testing</u>. Second edition. New York: Harper and Row.

Dixon, W.J., Brown, M.B., Engelman, L., Hill, M.A., & Jennrich, R.I., editors. (1988). <u>BMDP Statistical Software Manual</u>. Berkeley, CA.: University of California Press.

Draper, N.R., & Smith, H. (1981). <u>Applied Regression Analysis</u>. Second edition. New York: Wiley.

Fulcomer, M.C. (1988). Trend statistics: early data analytic considerations. Paper presented before the Third National Environmental Health Conference, New Orleans, February, 1988.

Fulcomer, M.C., Pellegrini, S.G., & Lefebvre, L.C. (1981). Demographic and health-related predictors of the incidence of sudden infant death. <u>Journal of Evaluation and Program Planning</u>, <u>4</u>, 43-56.

Fulcomer, M.C., Halpin, G.J., Knapp, M.M., & Kern, B.P. (1986). <u>New Jersey</u> <u>Birth Defects Registry: Preliminary Report of Birth Defects Among Infants Born</u> in 1985. Special Child Health Services, State of New Jersey Department of Health, Division of Local and Community Health Services, Trenton, NJ.

Fulcomer, M.C., Halpin, G.J., & Bove, F. (1987). <u>Population-Based</u> <u>Surveillance and Etiological Research of Adverse Reproductive Outcomes; Final</u> <u>Research Protocol. March, 1987</u>. Special Child Health Services Program, State of New Jersey Department of Health, Division of Local and Community Health Services, Trenton, NJ.

Fulcomer, M.C., Ziskin, L.Z., France, D.M., & Bove, F. (1988). <u>Report on the Study of Vernon Township, NJ: Study of the Occurrence of Chromosomal Anomalies in Vernon Township Between January 1, 1975 and June 30, 1987</u>. State of New Jersey Department of Health, Division of Community Health Services, Trenton, NJ.

Fulcomer, M.C., & Kriska, S.D. (1989). <u>MADMANager Utility Programs Users'</u> <u>Guide: Version B-03</u>. Columbus: Restat Systems, Inc.

Fulcomer, M.C. and Ziskin, L.Z. (1989). <u>Report on the Study of Vernon</u> <u>Township</u>, <u>NJ</u>; <u>Updated Results-October</u>, <u>1989</u>. State of New Jersey Department of Health, Division of Community Health Services, Trenton, NJ.

Fulcomer, M.C., Bove, F.J., Klotz, J.B., Halpin, G.J., Zagraniski, R.T., & Savrin, J.E. (1992a). <u>Population-Based Surveillance and Etiological Research</u> of Adverse Reproductive Outcomes: Report on Phase III - Correlational Analyses of Adverse Reproductive Outcomes and Environmental Pollution. State of New Jersey Department of Health, Trenton, NJ.

Fulcomer, M.C., Esmart, J., Dufficy, E.M., Bove, F.J., & Klotz, J.B. (1992b). <u>Population-Based Surveillance and Etiological Research of Adverse Reproductive</u> <u>Outcomes: Technical Documentation</u>. State of New Jersey Department of Health, Trenton, NJ.

Fulcomer, M.C., & Kriska, S.D. (1992). <u>MADSTAT Statistical Programs Users'</u> <u>Guide: Version D-01</u>. Columbus: Restat Systems, Inc. (In Press).

Greb, A.E., Pauli, R.M., & Kirby, R.S. (1987). Accuracy of fetal death reports: comparison with data from an independent stillbirth assessment program. <u>American Journal of Public Health</u>, <u>77</u>, 1202-1205.

Hanson, J.W., Isacson, P., & McKeen, K. (1989). <u>Birth Defects in Iowa:</u> <u>Surveillance Report, 1983 - 1986</u>. State Health Registry of Iowa, Birth Defects Program, Iowa City, IA.

Janerich, D.T., & Bracken, M.B. (1986). Epidemiology of Trisomy 21: a review and theoretical analysis. <u>Journal of Chronic Diseases</u>, <u>89</u>, 1079-1093.

Kallen, B. (1988). <u>Epidemiology of Human Reproduction</u>. Boca Raton, FL: CRC Press.

Kerlinger, F.N., & Pedhazur, E.J. (1973). <u>Multiple Regression in Behavioral</u> <u>Research</u>. New York: Holt, Rinehart and Winston.

Minton, S.D., & Seegmiller, R.E. (1986). An improved system for reporting congenital malformations. <u>Journal of the American Medical Association</u>, <u>256</u>, 2976-2979.

Myrianthopoulos, N.C. (1985). <u>Malformations in Children from One to Seven</u> <u>Years; A Report from the Collaborative Perinatal Project</u>. New York: Alan R. Liss, Inc.

National Academy of Science. (1973). <u>Institute of Medicine: Study on Infant</u> <u>Mortality</u>. Washington, DC.

NJDOH. (1987). <u>New Jersey Health Statistics, 1985</u>. State of New Jersey Department of Health, Division of Research, Policy and Planning, Trenton, NJ.

NJDOH. (1988). <u>New Jersey Health Statistics. 1986</u>. State of New Jersey Department of Health, Division of Research, Policy and Planning, Trenton, NJ.

NJDOH. (1989). <u>New Jersey Health Statistics, 1987</u>. State of New Jersey Department of Health, Division of Research, Policy and Planning, Trenton, NJ.

NJDOH. (1991). <u>Special Child Health Services Registry</u>, <u>Birth Years</u> <u>1985-1989</u>; <u>A Report of New Jersey's Birth Defects and Special Needs</u> <u>Registries</u>. State of New Jersey Department of Health, Division of Family Health Services, Trenton, NJ.

NJDOL. (1982a). <u>New Jersey 1980 Census of Population and Housing, Municipal</u> <u>Profiles, Volume I: Characteristics of Persons</u>. State Data Center, State of New Jersey Department of Labor, Division of Planning and Research, Trenton, NJ.

NJDOL. (1982b). <u>New Jersey 1980 Census of Population and Housing, Municipal</u> <u>Profiles. Volume II: Characteristics of Households and Families</u>. State Data Center, State of New Jersey Department of Labor, Division of Planning and Research, Trenton, NJ.

NJDOL. (1982c). <u>New Jersey 1980 Census of Population and Housing, Municipal Profiles.</u> Volume III: Characteristics of Housing Units. State Data Center, State of New Jersey Department of Labor, Division of Planning and Research, Trenton, NJ.

NJDOL. (1982d). <u>New Jersey 1980 Census of Population and Housing, Municipal</u> <u>Profiles. Volume V: Income and Poverty Estimates for Families. Households and</u> <u>Persons. Parts A and B</u>. State Data Center, State of New Jersey Department of Labor, Division of Planning and Research, Trenton, NJ.

NJDOL. (1982e). <u>New Jersey 1980 Census of Population and Housing, Municipal Profiles</u>, <u>Volume VI: School Enrollment and Years of School Completed</u>. State Data Center, State of New Jersey Department of Labor, Division of Planning and Research, Trenton, NJ.

NJDOL. (1983). <u>Geocodes: New Jersey Geographic Identification Codes System</u>. State Data Center, State of New Jersey Department of Labor, Division of Planning and Research, Trenton, NJ.

NJDOL. (1984). <u>New Jersey Population Trends. 1790 to 1980</u>. State Data Center, State of New Jersey Department of Labor, Division of Planning and Research, Trenton, NJ.

SAS Institute, Inc. (1985). <u>SAS User's Guide: Basics. Version 5 Edition</u>. Cary, NC: SAS Institute, Inc.

SPSS, Inc. (1988). <u>SPSS/PC+ V2.0</u>; <u>Base Manual for the IBM PC/XT/AT and PS/2</u>. Chicago: SPSS, Inc.

Wherry, R.J. (1931). A new formula for predicting the shrinkage of the multiple correlation coefficient. <u>Annals of Mathematical Statistics</u>, <u>2</u>, 440-457.

#### APPENDIX A

Summary Descriptive Statistics, Including Regression Results Treating Each Sociodemographic (Independent) Variable As Dependent

| ************************************** | ************ | **********      | ************************************** | ************************************** | ********** | * MIITTDIF | • MIN TTD) F | • AD.UISTED | ************************************** |
|----------------------------------------|--------------|-----------------|----------------------------------------|----------------------------------------|------------|------------|--------------|-------------|----------------------------------------|
| * *                                    | • OF *       | nenn            | : VALLE                                | * DEVIATION :                          | ERROR      | * R        | : R-SQUARE   | : R-SQUARE  | * FOR *                                |
| * 1                                    | WEIGHTING *  |                 | :                                      | * ;                                    |            | *          | : PER CENT   | : PER CENT  | * R-SQUARE *                           |
| ******                                 | *****        | **********      | ********                               | ******                                 | ****       | ****       | *******      | *********   | ******                                 |
| Mother's age                           | Unweighted   | 28.0119         | 27.0930                                | 1.8732                                 | .5327      | .9595      | 92.0706      | 91.9117     | 579.5112                               |
|                                        | Log(10)      | 27 <b>.9539</b> | 26.6521                                | 1.8779                                 | .5113      | .9630      | 92.7318      | 92.5862     | 636.7713                               |
|                                        | Square Root  | 27.7352         | 26.8376                                | 1.9151                                 | .3964      | .9788      | 95.7993      | 95.7151     | 1138.2014                              |
|                                        | Fully-wgtd.  | 27.1230         | 26.0403                                | 2.0595                                 | .3570      | .9852      | 97.0549      | 96.9959     | 1644.7661                              |
| % Mothers > 35                         | Unweighted   | 10.6993         | -86.9354                               | 5.9073                                 | 2.6285     | .8977      | 80.5902      | 80.2013     | 207.2239                               |
|                                        | Log(10)      | 10.5091         | -78.9762                               | 5.5818                                 | 2.3417     | .90%       | 82.7457      | 82.3999     | 239.3460                               |
|                                        | Square Root  | 10.0395         | -88.7517                               | 5.1359                                 | 1.8552     | .9339      | 87.2082      | 86.9519     | 340.2549                               |
|                                        | Fully-wgtd.  | 9.0458          | -71.1823                               | 4.4322                                 | 1.4615     | .9452      | 89.3396      | 89.1260     | 418.2629                               |
| % Mothers < H.S.                       | Unweighted   | 9.7631          | 98.4995                                | 8.9053                                 | 3.5489     | .9189      | 84.4306      | 84.1187     | 270.6507                               |
|                                        | Log(10)      | 10.1437         | 95.3007                                | 9.3080                                 | 3.4445     | .9305      | 86.5744      | 86.3054     | 321.8364                               |
|                                        | Square Root  | 11.7082         | 127.7592                               | 10.8378                                | 3.1439     | .9579      | 91.7504      | 91.5851     | 555.0811                               |
|                                        | Fully-wgtd.  | 16.2884         | 134.7967                               | 13.7065                                | 3.0558     | .9753      | 95.1272      | 95.0296     | 974.3292                               |
| Per capita                             | Unweighted   | 8651.3922       | -9741.8109                             | 2683.5033                              | 1607.5692  | .8051      | 64.8181      | 64.1132     | 91.9510                                |
| income                                 | Log(10)      | 8569.3256       | -9239.7823                             | 2553.0353                              | 1454.1563  | .8258      | 68.1952      | 67.5579     | 107.0140                               |
|                                        | Square Root  | 8328.1426       | -14220.0458                            | 2388.7302                              | 1225.3600  | .8614      | 74.2025      | 73.6856     | 143.5558                               |
|                                        | Fully-wgtd.  | 7707.3145       | -12584.0567                            | 2241.4851                              | 902.2320   | .9171      | 84.1164      | 83.7981     | 264.3086                               |
| Mostly rural                           | Unweighted   | .2799           | -1.4249                                | .4493                                  | .3848      | .5300      | 28.0915      | 26.6507     | 19.4973                                |
|                                        | Log(10)      | .2403           | -1.3982                                | .4274                                  | .3734      | .5017      | 25.1668      | 23.6674     | 16.7846                                |
|                                        | Square Root  | .1784           | -1.5534                                | .3828                                  | .3438      | .4578      | 20.9547      | 19.3710     | 13.2308                                |
|                                        | Fully-wgtd.  | . 1003          | 9239                                   | .3004                                  | .2765      | .4110      | 16.8941      | 15.2290     | 10.1457                                |
| Population                             | Unweighted   | 3239.3344       | -43962.3497                            | 4568.4837                              | 3325.6380  | .6932      | 48.0495      | 47.0086     | 46.1613                                |
| density                                | Log(10)      | 3587.8796       | -47281.1157                            | 4984.2766                              | 3514.8884  | .7159      | 51.2468      | 50.2700     | 52.4618                                |
| •                                      | Square Root  | 4493.3101       | -78389.3356                            | 5943.2729                              | 3870.7599  | .7643      | 58.4161      | 57.5829     | 70.1111                                |
|                                        | Fully-wgtd.  | 6529.8812       | -95495.8156                            | 7169.7743                              | 4416.0349  | .7925      | 62.8090      | 62.0638     | 84.2875                                |
| % Crowded                              | Unweighted   | 2.2329          | 6.7456                                 | 1.8138                                 | .9988      | .8383      | 70.2751      | 69.6795     | 117.9942                               |
| housing                                | Log(10)      | 2.3372          | 4.1664                                 | 1.9319                                 | .9795      | .8649      | 74.7991      | 74.2942     | 148.1357                               |
|                                        | Square Root  | 2.7547          | 1277                                   | 2.4308                                 | 1.0219     | .9093      | 82.6749      | 82.3278     | 238.1650                               |
|                                        | Fully-wgtd.  | 4.0010          | -7.4888                                | 3.4276                                 | 1.1045     | .9477      | 89.8202      | 89.6163     | 440.3678                               |
| % Old housing                          | Unweighted   | 62.5674         | 48,8733                                | 19,5312                                | 17,8681    | .4237      | 17.9494      | 16,3054     | 10.9181                                |
|                                        |              | 62,2500         | 51,9899                                | 19.9676                                | 17,9969    | .4512      | 20.3610      | 18.7653     | 12.7600                                |
|                                        | Square Root  | 62.5222         | 69.6903                                | 20.7734                                | 17.9889    | .5146      | 26.4839      | 25.0109     | 17.9796                                |
|                                        | Fully-wgtd.  | 65.1010         | 35.2067                                | 21.5207                                | 16.7579    | .6368      | 40.5561      | 39.3651     | 34.0509                                |
| % Female-headed                        | Unweighted   | -5321           | 2.3036                                 | .8441                                  | .6030      | .7069      | 49.9678      | 48.9653     | 49.8448                                |
| poverty                                | Log(10)      | .5818           | 2.1076                                 | .9012                                  | .5926      | .7590      | 57.6020      | 56.7525     | 67.8065                                |
| F •/                                   | Square Root  | .7634           | 2.5577                                 | 1.1227                                 | .5858      | .8562      | 73.3079      | 72.7731     | 137.0717                               |
|                                        | Fully-wgtd.  | 1.3058          | 3.7807                                 | 1.5736                                 | .5766      | .9319      | 86.8379      | 86.5741     | 329.2778                               |
|                                        |              |                 |                                        |                                        |            |            |              |             |                                        |

#### APPENDIX A (continued)

Summary Descriptive Statistics, Including Regression Results Treating Each Sociodemographic (Independent) Variable As Dependent

| ******        | **** | *******    | ***** | ******  | ********  | ***** | ********  | ***     | ********* |            | ******* | rarwa |          | rww. | ******** |   | ******   |      |
|---------------|------|------------|-------|---------|-----------|-------|-----------|---------|-----------|------------|---------|-------|----------|------|----------|---|----------|------|
| * VARIABLE    | *    | TYPE       | *     | MEAN    | : INTERCE | PT *  | STANDARD  | :       | STANDARD  | * 14       | JLTIPLE | : M   | NLTIPLE  | :    | ADJUSTED | * | F-RATIO  | *    |
| *             | *    | OF         | *     |         | : VALUE   | *     | DEVIATION | :       | ERROR     | *          | R       | : R   | R-SQUARE | :    | R-SQUARE | * | FOR      | *    |
| *             | *    | WEIGHTING  | *     |         | :         | *     |           | :       |           | *          |         | : P   | PER CENT | :    | PER CENT | * | R-SQUARE | : *  |
| *****         | **** | *******    | ***** | ******* | ********  | ***** | ********* | irdr th | ********* | k de de de | ******  | hini  | *******  | ***  | *******  |   | *******  | 1818 |
| % Primiparous | U    | nweighted  |       | 44.3046 | 117.8     | 316   | 6.4356    |         | 5.5619    |            | .5175   |       | 26.7774  |      | 25.3103  |   | 18.2517  | 7    |
| •             | L    | .og(10)    |       | 44.4598 | 98.3      | 784   | 5.8124    |         | 4.9858    |            | .5279   |       | 27.8653  |      | 26.4200  |   | 19.2797  | 7    |
|               | S    | quare Roo  | t     | 44.6993 | 115.9     | 713   | 5.2162    |         | 4.2365    |            | .5944   |       | 35.3312  |      | 34.0355  |   | 27.2674  | 4    |
|               | F    | ully-wgtd  | •     | 44.8525 | 88.3      | 378   | 4.5810    |         | 3.3626    |            | .6869   |       | 47.1790  |      | 46.1207  |   | 44.5781  | I    |
| % White       | U    | Inweighted |       | 90.7091 | -1.7      | 042   | 13.3401   |         | 9.8523    |            | .6821   |       | 46.5259  |      | 45.4545  |   | 43.4241  | 1    |
|               | L    | .og(10)    |       | 89.6922 | -18.7     | 124   | 14.3440   |         | 10.2119   |            | .7093   |       | 50.3115  |      | 49.3159  |   | 50.5349  | 9    |
|               | S    | iquare Roo | t     | 86.5512 | -110.4    | 766   | 17.4785   |         | 11.2471   |            | .7708   |       | 59.4066  |      | 58.5933  |   | 73.0398  | 8    |
|               | F    | ully-wgtd  | •     | 78.7489 | -263.6    | 616   | 22.5721   |         | 12.3552   |            | .8404   |       | 70.6277  |      | 70.0391  |   | 120.0096 | 5    |
| % Inadequate  | U    | Inweighted |       | 23.3982 | 157.5     | 6497  | 13.1936   |         | 7.6266    |            | .8200   |       | 67.2416  |      | 66.5853  |   | 102.446  | 1    |
| prenatal care | e L  | .og(10)    |       | 23.4316 | 153.8     | 3991  | 13.0821   |         | 7.1985    |            | .8386   |       | 70.3168  |      | 69.7221  |   | 118.2301 | 1    |
| -             | S    | iquare Roo | t     | 24.4733 | 211.5     | 6040  | 13.5306   |         | 6.5912    |            | .8760   |       | 76.7361  |      | 76.2699  |   | 164.625  | 1    |
|               | F    | ully-wgtd  | •     | 27.9343 | 221.8     | 3850  | 14.6626   |         | 6.5112    |            | .8982   |       | 80.6677  |      | 80.2804  |   | 208.2554 | 4    |
|               |      |            |       |         |           |       |           |         |           |            |         |       |          |      |          |   |          |      |

#### APPENDIX B

#### Correlations Within The Subset Of Sociodemographic (Independent) Variables

|                  |             | x        | *                                                                                                                                                                       | Per cap. |          | Pop.    | % Crowd. | % Old   | % Fem.hd | X        | ×     | % Inadq. |
|------------------|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|----------|---------|----------|----------|-------|----------|
| VARIABLE         | WEIGHTING   | Moms >35 | Morns <hs< th=""><th>Income</th><th>MstlyRur</th><th>Density</th><th>Housing</th><th>Housing</th><th>Poverty</th><th>Primipr.</th><th>White</th><th>Prenatal</th></hs<> | Income   | MstlyRur | Density | Housing  | Housing | Poverty  | Primipr. | White | Prenatal |
| Mother's Age     | Unweighted  | .8,418   | 8281                                                                                                                                                                    | .7589    | 0077     | 1637    | 6751     | 0646    | 5524     | 0568     | .4731 | 7363     |
|                  | Log(10)     | .8515    | 8338                                                                                                                                                                    | .7775    | .0190    | 1919    | 6797     | 0818    | 5961     | 0298     | .4998 | 7670     |
|                  | Square Root | .8568    | 8631                                                                                                                                                                    | .8167    | .0783    | 2894    | 7180     | 1652    | 6927     | .0168    | .5806 | 8194     |
|                  | Fully-wgtd. | .8546    | 9021                                                                                                                                                                    | .8779    | .1600    | 4299    | 7847     | 3468    | 8069     | .1307    | .7058 | 8555     |
| % Mothers > 35   | Unweighted  |          | 5692                                                                                                                                                                    | .7316    | .0315    | 1162    | 4745     | 0271    | 3680     | 1550     | .2203 | 4935     |
|                  | Log(10)     |          | 5792                                                                                                                                                                    | .7595    | .0352    | 1201    | 4719     | 0205    | 3952     | 1482     | .2402 | 5392     |
|                  | Square Root |          | 5841                                                                                                                                                                    | .7884    | .0587    | 1511    | 4658     | 0414    | 4383     | 1155     | .2936 | 5848     |
|                  | Fully-wgtd. |          | 6271                                                                                                                                                                    | .8217    | .0981    | 2263    | 5110     | 1394    | 5313     | 0175     | .4088 | 6428     |
| % Mothers < H.S. | Unweighted  |          |                                                                                                                                                                         | 5996     | .0289    | .3024   | .7576    | . 1612  | .6439    | 1388     | 5421  | .7504    |
|                  | Log(10)     |          |                                                                                                                                                                         | 6183     | 0092     | .3590   | .7931    | . 1980  | .7085    | 1420     | 5747  | .7704    |
|                  | Square Root |          |                                                                                                                                                                         | 6708     | 0880     | .4831   | .8514    | .3038   | .8170    | 1660     | 6566  | .8036    |
|                  | Fully-wgtd. |          |                                                                                                                                                                         | 7851     | 1770     | .6026   | .8993    | .4871   | .9023    | 2271     | 7438  | .8377    |
| Per capita       | Unweighted  |          |                                                                                                                                                                         |          | 0979     | 1267    | 5650     | 0001    | 4125     | .0016    | .2565 | 55555    |
| Income           | Log(10)     | •        |                                                                                                                                                                         |          | 0713     | 1537    | 5741     | 0119    | 4483     | .0203    | .2799 | 5874     |
|                  | Square Root |          |                                                                                                                                                                         |          | 0181     | 2478    | 6119     | 0722    | 5412     | .0683    | .3655 | 6455     |
|                  | Fully-wgtd. |          |                                                                                                                                                                         |          | .0673    | 4173    | 7252     | 2509    | 7102     | . 1706   | .5367 | 7330     |
| Mostly rural     | Unweighted  |          |                                                                                                                                                                         |          |          | 3809    | 0265     | 2409    | 1543     | 2249     | .1551 | .1721    |
|                  | Log(10)     |          |                                                                                                                                                                         |          |          | 3558    | 0534     | 2528    | 1538     | 2305     | .1661 | .1274    |
|                  | Square Root |          |                                                                                                                                                                         |          |          | 3195    | 1174     | 2720    | 1720     | 2253     | .1918 | .0423    |
|                  | Fully-wgtd. |          |                                                                                                                                                                         |          |          | 2857    | 1818     | 3027    | 1996     | 1854     | .2177 | 0766     |
| Population       | Unweighted  |          |                                                                                                                                                                         |          |          |         | .4561    | .3802   | .3830    | .2241    | 2670  | .0326    |
| density          | Log(10)     |          |                                                                                                                                                                         |          |          |         | .5135    | .4038   | .4214    | .2187    | 3086  | .0790    |
|                  | Square Root |          |                                                                                                                                                                         |          |          |         | .6175    | .4589   | .5204    | . 1832   | 4066  | . 1970   |
|                  | Fully-wgtd. |          |                                                                                                                                                                         |          |          |         | .6940    | .5601   | .6101    | .1210    | 5076  | .3497    |
| % Crowded        | Unweighted  |          |                                                                                                                                                                         |          |          |         |          | . 1649  | .6131    | .0349    | 5745  | .5405    |
| housing          | Log(10)     |          |                                                                                                                                                                         |          |          |         |          | .2068   | .6751    | .0245    | 6059  | .5768    |
|                  | Square Root |          |                                                                                                                                                                         |          |          |         |          | .3169   | .8020    | 0071     | 6782  | .6347    |
|                  | Fully-wgtd. |          |                                                                                                                                                                         |          |          |         |          | .4890   | .8972    | 0477     | 7429  | .6907    |
| % Old housing    | Unweighted  |          |                                                                                                                                                                         |          |          |         |          |         | .1617    | .0841    | 0828  | 0180     |
|                  | Log(10)     |          |                                                                                                                                                                         |          |          |         |          |         | .1998    | .0893    | 1270  | .0089    |
|                  | Square Root |          |                                                                                                                                                                         |          |          |         |          |         | .3014    | .0820    | 2438  | . 1037   |
|                  | Fully-wgtd. |          |                                                                                                                                                                         |          |          |         |          |         | .4696    | .0477    | 4210  | .2983    |
| % Female-headed  | Unweighted  |          |                                                                                                                                                                         |          |          |         |          |         |          | 0288     | 5082  | .4635    |
| poverty          | Log(10)     |          |                                                                                                                                                                         |          |          |         |          |         |          | 0554     | 5601  | .5277    |
|                  | Square Root |          |                                                                                                                                                                         |          |          |         |          |         |          | 1032     | 6722  | .6301    |
|                  | Fully-wgtd. |          |                                                                                                                                                                         |          |          |         |          |         |          | 1691     | 7709  | .7198    |

#### APPENDIX B (continued)

Correlations Within The Subset Of Sociodemographic (Independent) Variables

| V1014015      |             | %<br>H <i>o</i> res | <b>\</b> 75 | %<br>Nome | ~#5 | Per cap. | MstivRur | Pop.<br>Density | % Crowd.<br>Housing | % Old<br>Housing | % Fem.hd<br>Poverty | %<br>Primipr. | %<br>White | % Inadq.<br>Prenatal |
|---------------|-------------|---------------------|-------------|-----------|-----|----------|----------|-----------------|---------------------|------------------|---------------------|---------------|------------|----------------------|
| VARIABLE      | WEIGHIING   |                     |             |           |     |          | · ·····  |                 |                     |                  |                     |               |            |                      |
| * Priminarous | Unweighted  |                     |             |           |     |          |          |                 |                     |                  |                     |               | .0239      | 1921                 |
| A Frinnparous |             |                     |             |           |     |          |          |                 |                     |                  |                     |               | .0092      | 2021                 |
|               | Scuare Root |                     |             |           |     |          |          |                 |                     |                  |                     |               | .0032      | 2457                 |
|               | Fully-wgtd. |                     |             |           |     |          |          |                 |                     |                  |                     |               | .0354      | 3396                 |
| % White       | Unweighted  |                     |             |           |     |          |          |                 |                     |                  |                     |               |            | 4402                 |
|               | Log(10)     |                     |             |           |     |          |          |                 |                     |                  |                     |               |            | 4747                 |
|               | Square Root |                     |             |           |     |          |          |                 |                     |                  |                     |               |            | 5448                 |
|               | Fully-wgtd. |                     |             |           |     |          |          |                 |                     |                  |                     |               |            | 6191                 |

.

.

#### APPENDIX C

#### Correlations Within The Subset Of Vital Records Outcome Variables

|                 |             | S.G.A.  | Very low | LOW      | Neonatal | Post-n.  | Tot.Inf. | Fetal   |
|-----------------|-------------|---------|----------|----------|----------|----------|----------|---------|
| VARIABLE        | WEIGHTING   | percent | B.W.rate | B.W.rate | Dth.rate | Dth.rate | Dth.rate | M. rate |
|                 |             |         |          |          |          |          | *******  | •••••   |
| Preterm births  | Unweighted  | .2122** | .2672**  | .5616**  | .1810**  | .1426**  | .2323**  | .0907*  |
| percent         | Log(10)     | .2513** | .3359**  | .6093**  | .2185**  | .2011**  | .2911**  | .1177** |
|                 | Square Root | .3594** | .4770**  | .7395**  | .3114**  | .3308**  | .4222**  | .2155** |
|                 | Fully-wgtd. | .5716** | .7290**  | .8934**  | .5174**  | .6067**  | .6678**  | .4340** |
| Small-for-      | Unweighted  |         | .1780**  | .4543**  | .2211**  | .0677    | .2216**  | .0070   |
| gestational age | Log(10)     |         | .2018**  | .4792**  | .2079**  | .0896*   | .2216**  | .0182   |
| percent         | Square Root |         | .2564**  | .5321**  | .2192**  | .1629**  | .2611**  | .0706   |
|                 | Fully-wgtd. |         | .4347**  | .6637**  | .3216**  | .3907**  | .4216**  | .2351** |
| Very low        | Unweighted  |         |          | .5340**  | .5677**  | .0479    | .4953**  | .1055*  |
| birthweight     | Log(10)     |         |          | .5531**  | .5691**  | .1045*   | .5301**  | .1246** |
| rate            | Square Root |         |          | .6272**  | .5775**  | .2248**  | .5826**  | .1825** |
|                 | Fully-wgtd. |         |          | .7994**  | .6533**  | .5264**  | .7287**  | .3782** |
| Low birthweight | Unweighted  |         |          |          | .4077**  | .0296    | .3529**  | .0940*  |
| rate            | Log(10)     |         |          |          | .4074**  | .1048*   | .3958**  | .1145*  |
|                 | Square Root |         |          |          | .4324**  | .2576**  | .4823**  | .2034** |
|                 | Fully-wgtd. |         |          |          | .5560**  | .5732**  | .6800**  | .4233** |
| Neonatal death  | Unweighted  |         |          |          |          | 0193     | .8118**  | .1489** |
| rate            | Log(10)     |         |          |          |          | .0141    | .8392**  | .1474** |
|                 | Square Root |         |          |          |          | .0976*   | .8585**  | .1741** |
|                 | Fully-wgtd. |         |          |          |          | .3415**  | .8936**  | .3059** |
| Post-neonatal   | Unweighted  |         |          |          |          |          | .5682**  | .0426   |
| death rate      | Lcg(10)     |         |          |          |          |          | .5556**  | .0623   |
|                 | Square Root |         |          |          |          |          | .5941**  | .1108*  |
|                 | Fully-wgtd. |         |          |          |          |          | .7270**  | .2969** |
| Total infant    | Unweighted  |         |          |          |          |          |          | .1475** |
| death rate      | Log(10)     |         |          |          |          |          |          | .1565** |
|                 | Square Root |         |          |          |          |          |          | .1978** |
|                 | Fully-wgtd. |         |          |          |          |          |          | .3653** |
| Fetal mortality | Unweighted  |         |          |          |          |          |          |         |
| rate            | Log(10)     |         |          |          |          |          |          |         |
|                 | Square Root |         |          |          |          |          |          |         |
|                 | Fully-wgtd. |         |          |          |          |          |          |         |

\* significant at p < .05, two-tailed.

\*\* significant at p < .01, two-tailed.</pre>

#### APPENDIX D

#### Correlations Within The Subset Of Birth Defects Registry Outcome Variables

| VARIABLE      | WEIGHTING   | NTDS  | Eyes   | Cardiacs | Clefts  | Reductn. | Chromo. | Con. An. | Major D. | Minor D. | CNS     | Keart D. | Musculo.  |
|---------------|-------------|-------|--------|----------|---------|----------|---------|----------|----------|----------|---------|----------|-----------|
| Down syndrome | Unweighted  | .0327 | 0045   | 0075     | .0184   | .0032    | .9344** | . 1873** | .2338**  | .0068    | .0519   | .0629    | 0386      |
|               | Log(10)     | .0457 | .0046  | .0090    | .0429   | .0157    | .9095** | .2061**  | .2408**  | .0306    | .0694   | .0994*   | 0149      |
|               | Square Root | .0494 | .0231  | .0345    | .0776   | .0316    | .8900** | .2368**  | .2659**  | .0555    | .0757   | . 1398** | .0175     |
|               | Fully-wgtd. | .0432 | .0602  | .0817    | .1420** | .0495    | .8662** | .2810**  | .3108**  | .0809    | .0728   | . 1998** | .0534     |
| Neural tube   | Unweighted  |       | .0241  | .2299**  | 0041    | .0244    | .0417   | .4149**  | .4353**  | .1747**  | .9451** | .3186**  | .2040**   |
| defects       | Log(10)     |       | .0321  | .2218**  | .0076   | .0324    | .0529   | .4230**  | .4361**  | . 1855** | .9429** | .2965**  | .2218**   |
|               | Square Root |       | .0505  | .2163**  | .0294   | .0457    | .0564   | .4145**  | .4279**  | .1797**  | .9414** | .2762**  | .2292**   |
|               | Fully-wgtd. |       | .0906* | .2172**  | .0695   | .0707    | .0564   | .3853**  | .4076**  | .1522**  | .9412** | .2538**  | .2231**   |
| Eye defects   | Unweighted  |       |        | .0624    | 0138    | 0016     | .0405   | .0986*   | .1023*   | .0437    | .0809   | .0804    | .0329     |
|               | Log(10)     |       |        | .0626    | 0094    | .0003    | .0586   | .1144*   | .1161**  | .0542    | .0868   | .0819    | .0431     |
|               | Square Root |       |        | .0604    | .0030   | .0053    | .0829   | .1327**  | .1334**  | .0653    | .0988*  | .0819    | .0585     |
|               | Fully-wgtd. |       |        | .0536    | .0314   | .0123    | .1187*  | . 1564** | .1558**  | .0830    | .1250** | .0713    | .0838     |
| Selected      | Unweighted  |       |        |          | .1276*  | *0102    | .0081   | .3639**  | .4081**  | .1024*   | .2271** | .6117**  | .1108*    |
| severe        | Log(10)     |       |        |          | .1118*  | 0039     | .0259   | .3648**  | .3980**  | .1137*   | .2225** | .5962**  | .1251**   |
| cardiac       | Square Root |       |        |          | .1068*  | .0074    | .0493   | .3586**  | .3864**  | .1198**  | .2231** | .5784**  | .1389**   |
| defects       | Fully-wgtd. |       |        |          | .1157*  | * .0301  | .0861   | .3546**  | .3779**  | .1337**  | .2357** | .5629*1  | .1591**   |
| Oral clefts   | Unweighted  |       |        |          |         | .1112*   | .0619   | .2584**  | .3279**  | 0010     | 0165    | . 1551** | .1238**   |
|               | Log(10)     |       |        |          |         | .1112*   | .0907*  | .2772**  | .3344**  | .0190    | 0055    | .1627**  | .1496**   |
|               | Square Root |       |        |          |         | .1061*   | .1263** | .3010**  | .3472**  | .0503    | .0166   | .1873**  | .1758**   |
|               | Fully-wgtd. |       |        |          |         | .0870    | .1900** | .3469**  | .3769**  | .1149*   | .0591   | .2365**  | .2077**   |
| Reduction     | Unweighted  |       |        |          |         |          | -0059   | .1879**  | .2042**  | .0655    | .1074*  | .0922*   | .2693**   |
| deformities   | Log(10)     |       |        |          |         |          | -0188   | . 1978** | .2133**  | .0669    | .1041*  | .0925*   | .2879**   |
|               | Square Root |       |        |          |         |          | .0360   | .2000**  | .2192**  | .0588    | .1023*  | .0933*   | .2917**   |
|               | Fully-wgtd. |       |        |          |         |          | .0582   | .2000**  | .2244**  | .0506    | .1066*  | .0934*   | .2810**   |
| Chromosomal   | Unweighted  |       |        |          |         |          |         | .2093**  | .2627**  | .0049    | .0612   | .1010*   | 0310      |
| anomalies     | Log(10)     |       |        |          |         |          |         | .2352**  | .2777**  | .0288    | .0767   | .1393**  | .0014     |
|               | Square Root |       |        |          |         |          |         | .2771**  | .3148**  | .0571    | .0830   | .1815**  | .0491     |
|               | Fully-wgtd. |       |        |          |         |          |         | .3430**  | .3812**  | .0946*   | .0858   | .2428**  | .1144*    |
| Congenital    | Unweighted  |       |        |          |         |          |         |          | .9221**  | .6658**  | .4514** | .5652**  | .6914**   |
| anomalies     | Log(10)     |       |        |          |         |          |         |          | .9323**  | .6467**  | .4628** | .6008**  | .6892**   |
|               | Square Root |       |        |          |         |          |         |          | .9372**  | .6423**  | .4573** | .6334**  | .7027**   |
|               | Fully-wgtd. |       |        |          |         |          |         |          | .9400**  | .6554**  | .4348** | .6750**  | .7355**   |
| Major         | Unweighted  |       |        |          |         |          |         |          |          | .3252**  | .4677** | .6128**  | · .6299** |
| anomalies     | Log(10)     |       |        |          |         |          |         |          |          | .3271**  | .4712** | .6339**  | .6380**   |
|               | Square Root |       |        |          |         |          |         |          |          | .3346**  | .4668** | .6594**  | .6536**   |
|               | Fully-wgtd. |       |        |          |         |          |         |          |          | .3585**  | .4554** | .6928**  | .6836**   |
| Minor         | Unweighted  |       |        |          |         |          |         |          |          |          | .2013** | . 1995** | .4751**   |
| anomalies     | Log(10)     |       |        |          |         |          |         |          |          |          | .2154** | .2328**  | .4555**   |
|               | Square Root |       |        |          |         |          |         |          |          |          | .2095** | .2622**  | .4622**   |
|               | Fully-wgtd. |       |        |          |         |          |         |          |          |          | .1815** | .3134**  | .4992**   |

#### Correlations Within The Subset Of Birth Defects Registry Outcome Variables

| VARIABLE        | WEIGHTING       | NTDs | Eyes | Cardiacs | Clefts | Reductn. | Chromo. | Con. | An. | Majo | r D. | Minor | D.  | CNS | Heart D. | Musculo. |
|-----------------|-----------------|------|------|----------|--------|----------|---------|------|-----|------|------|-------|-----|-----|----------|----------|
| Central nervous | Unweighted      |      |      |          |        |          |         |      |     |      |      |       | ••• |     | .3298**  | .2464**  |
| system defects  | Log(10)         |      |      |          |        |          |         |      |     |      |      |       |     |     | .3106**  | .2633**  |
|                 | Square Root     |      |      |          |        |          |         |      |     |      |      |       |     |     | .2967**  | .2669**  |
|                 | Fully-wgtd.     |      |      |          |        |          |         |      |     |      |      |       |     |     | .2867**  | .2583**  |
| Heart defects   | Unweighted      |      |      |          |        |          |         |      |     |      |      |       |     |     |          | .2170**  |
|                 | Log(10)         |      |      |          |        |          |         |      |     |      |      |       |     |     |          | .2556**  |
|                 | Square Root     |      |      |          |        |          |         |      |     |      |      |       |     |     |          | .3013**  |
|                 | Fully-wgtd.     |      |      |          |        |          |         |      |     |      |      |       |     |     |          | .3633**  |
| Musculoskeletal | ,<br>Unweighted |      |      |          |        |          |         |      |     |      |      |       |     |     |          |          |
| defects         | Log(10)         |      |      |          |        |          |         |      |     |      |      |       |     |     |          |          |
|                 | Square Root     |      |      |          |        |          |         |      |     |      |      |       |     |     |          |          |
|                 | Fully-wgtd.     |      |      |          |        |          |         |      |     |      |      |       |     |     |          |          |

\* significant at p < .05, two-tailed.</pre>

\*\* significant at p < .01, two-tailed.</pre>

#### APPENDIX E

Correlations Between The Subsets Of Vital Records (Columns) And Birth Defects Registry (Rows) Outcome Variables

|                 |             | Preterm  | S.G.A.  | Very low | LOW      | Neonatal | Post-n.  | Tot.Inf. | Fetal    |
|-----------------|-------------|----------|---------|----------|----------|----------|----------|----------|----------|
| VARIABLE        | WEIGHTING   | percent  | percent | B.W.rate | B.W.rate | Dth.rate | Dth.rate | Dth.rate | M. rate  |
| Down syndrome   |             | .0235    | .0056   | .0222    | 0266     | .0450    | .5326**  | .3481**  | 0222     |
|                 | Log(10)     | .0133    | .0049   | .0486    | 0001     | .0686    | .3764**  | .2617**  | 0146     |
|                 | Square Root | 0180     | 0057    | .0481    | 0086     | .0727    | .2483**  | .1867**  | 0171     |
|                 | Fully-wgtd. | 0929*    | 0454    | 0212     | 0748     | .0330    | .0410    | .0436    | 0492     |
| Neural tube     | Unweighted  | .0599    | .0699   | .0935*   | . 1465** | .1276**  | 0331     | .0857    | .0412    |
| defects         | Log(10)     | .0752    | .0692   | .1018*   | .1551**  | .1346**  | 0226     | .0996*   | .0322    |
|                 | Square Root | .0978*   | .0820   | .1124*   | .1606**  | .1451**  | .0042    | .1194**  | .0324    |
|                 | Fully-wgtd. | .1665**  | .1530** | .1545**  | . 1971** | .1748**  | .0954*   | .1732**  | .0723    |
| Eye defects     | Unweighted  | 0414     | .0079   | 0011     | 0324     | .0108    | 0297     | 0084     | .1414**  |
|                 | Log(10)     | 0380     | .0054   | .0031    | 0337     | .0171    | 0278     | 0009     | .1513**  |
|                 | Square Root | 0263     | .0059   | .0087    | 0286     | .0279    | 0159     | .0144    | . 1573** |
|                 | Fully-wgtd. | 0027     | .0155   | .0196    | 0097     | .0498    | .0207    | .0463    | . 1525** |
| Selected severe | Unweighted  | 0346     | .0111   | .0862    | 0196     | .1700**  | 0440     | .1142*   | . 1034*  |
| cardiac         | Log(10)     | 0344     | .0002   | .0808    | 0200     | .1482**  | 0362     | .1036*   | . 1024*  |
| defects         | Square Root | 0300     | 0065    | .0657    | 0112     | .1144*   | 0196     | .0824    | . 1032*  |
|                 | Fully-wgtd. | .0007    | .0120   | .0624    | .0323    | .0721    | .0284    | .0661    | .1170**  |
| Oral clefts     | Unweighted  | .0135    | .0291   | 0368     | .0500    | 0105     | .0241    | .0054    | 0577     |
|                 | Log(10)     | .0174    | .0207   | 0233     | .0436    | 0097     | .0381    | .0126    | 0457     |
|                 | Square Root | .0134    | .0092   | 0070     | .0285    | 0065     | .0468    | .0188    | 0146     |
|                 | Fully-wgtd. | .0031    | 0162    | .0044    | .0026    | 0033     | .0507    | .0218    | .0502    |
| Reduction       | Unweighted  | .0278    | 0283    | 0343     | 0355     | 0450     | .0131    | 0294     | 0212     |
| deformities     | Log(10)     | .0414    | 0300    | 0298     | 0276     | 0409     | .0274    | 0191     | 0120     |
|                 | Square Root | .0540    | 0238    | 0176     | 0082     | 0292     | .0471    | .0006    | .0051    |
|                 | Fully-wgtd. | .0729    | 0041    | .0210    | .0297    | .0031    | .0849    | .0428    | .0351    |
| Ch romosoma l   | Unweighted  | .0202    | .0018   | .0138    | 0466     | .0319    | .4975**  | .3168**  | 0144     |
| anomalies       | Log(10)     | .0118    | 0041    | .0370    | 0251     | .0515    | .3492**  | .2327**  | 0055     |
|                 | Square Root | 0107     | 0192    | .0391    | 0271     | .0603    | .2384**  | .1715**  | 0039     |
|                 | Fully-wgtd. | 0655     | 0619    | 0122     | 0710     | .0455    | .0692    | .0663    | 0242     |
| Congenital      | Unweighted  | .0599    | .0834   | .0493    | 0149     | .1274**  | .0531    | .1359**  | .0551    |
| anomalies       | Log(10)     | .0835    | .0523   | .0880*   | .0295    | .1448**  | .0476    | .1463**  | .0759    |
|                 | Square Root | .1119*   | .0371   | .1291**  | .0765    | .1666**  | .0682    | .1698**  | .1073*   |
|                 | Fully-wgtd. | . 1564** | .0322   | .1964**  | .1405**  | .2149**  | . 1328** | .2203**  | . 1861** |
| Major anomalies | Unweighted  | .0565    | .0777   | .0624    | .0125    | .1456**  | .0737    | .1629**  | .0498    |
|                 | Log(10)     | .0758    | .0571   | .0975*   | .0430    | .1603**  | .0546    | .1629**  | .0683    |
|                 | Square Root | .0936*   | .0451   | .1307**  | .0723    | .1790**  | .0652    | .1783**  | .0989*   |
|                 | Fully-wgtd. | .1210**  | .0443   | .1758**  | .1126*   | .2130**  | .1110*   | .2086**  | .1717**  |
| Minor anomalies | Unweighted  | .0376    | .0540   | .0000    | 0605     | .0306    | 0124     | .0180    | .0388    |
|                 | Log(10)     | .0584    | .0161   | .0243    | 0136     | .0403    | .0094    | .0387    | .0545    |
|                 | Square Root | .0965*   | .0009   | .0615    | .0478    | .0569    | .0410    | .0671    | .0727    |
|                 | Fully-wgtd. | .1600**  | 0099    | .1483**  | .1351**  | .1164**  | .1175**  | .1411**  | .1291**  |

#### APPENDIX E (continued)

Correlations Between The Subsets Of Vital Records (Columns) And Birth Defects Registry (Rows) Outcome Variables

| VARIABLE        | WEIGHTING   | Preterm<br>percent | S.G.A.<br>percent | Very low<br>B.W.rate | Low<br>B.W.rate | Neonatal<br>Dth.rate | Post-n.<br>Dth.rate | Tot.Inf.<br>Dth.rate | Fetal<br>M. rate |
|-----------------|-------------|--------------------|-------------------|----------------------|-----------------|----------------------|---------------------|----------------------|------------------|
| Central nervous | Unweighted  | .0503              | .0689             | .1053*               | . 1454**        | .1428**              | 0196                | .1061*               | .0663            |
| system defects  | Log(10)     | .0665              | .0673             | .1164**              | .1537**         | .1502**              | 0060                | .1216**              | .0585            |
|                 | Square Root | .0903*             | .0780             | .1270**              | .1569**         | .1593**              | .0204               | .1393**              | .0561            |
|                 | Fully-wgtd. | .1570**            | . 1409**          | .1632**              | . 1877**        | .1849**              | . 1035*             | .1845**              | .0862            |
| leart defects   | Unweighted  | .0003              | .0410             | .0945*               | .0156           | .1131*               | 0338                | .0733                | .0718            |
|                 | Log(10)     | .0203              | .0335             | .1072*               | .0275           | .1075*               | 0136                | .0820                | .0683            |
|                 | Square Root | .0574              | .0422             | .1265**              | .0652           | .1094*               | .0217               | .0996*               | .0791            |
|                 | Fully-wgtd. | .1233**            | .0847             | .1792**              | . 1456**        | .1381**              | .1006*              | .1490**              | . 1340**         |
| Musculoskeletal | Unweighted  | .0816              | .0755             | .0280                | .0386           | .1049*               | 0013                | .0856                | .0207            |
| defects         | Log(10)     | .1180**            | .0571             | .0669                | .0883           | .1229**              | .0326               | .1199**              | .0559            |
|                 | Square Root | .1824**            | .0614             | .1329**              | .1567**         | .1586**              | .0849               | .1720**              | .1180**          |
|                 | Fully-wgtd. | .2823**            | .0963*            | .2696**              | .2579**         | .2513**              | .2037**             | .2809**              | .25%**           |

\* significant at p < .05, two-tailed.

\*\* significant at p < .01, two-tailed.</pre>

.

#### APPENDIX F

#### Correlations Between The Sociodemographic (Rows) And Vital Records Outcome (Columns) Variables

|                  |              | Preterm | S.G.A.         | Very low | Low      | Neonatal | Post-n.         | Tot.Inf. | Fetal   |
|------------------|--------------|---------|----------------|----------|----------|----------|-----------------|----------|---------|
| VARIABLE         | WEIGHTING    | percent | percent        | B.W.rate | B.W.rate | Dth.rate | Dth.rate        | Dth.rate | M. rate |
|                  | •••••        |         |                | •••••••  | *******  | ******   | •••••           |          | •••••   |
| Mother's age     | UNWE I GHTED | 4793**  | 3688**         | 1859**   | 3910**   | 1503**   | 1878**          | 2334**   | 1200**  |
|                  | LOG(10)      | 5498**  | 4036**         | 2373**   | 4598**   | 1836**   | 2259**          | 2756**   | 1344**  |
|                  | SQUARE ROOT  | 6765**  | 4945**         | 3740**   | 6074**   | 2752**   | 3 <u>22</u> 4** | 3886**   | 2124**  |
|                  | FULLY-WGTD.  | 8102**  | 6515**         | 6263**   | 7849**   | 4720**   | 5502**          | 6076**   | 4106**  |
| % Mothers > 35   | UNWE I GHTED | 2120**  | 2872**         | 1344**   | 2034**   | 0933*    | 1506**          | 1647**   | 0760    |
|                  | LOG(10)      | 3076**  | 3282**         | 1623**   | 2681**   | 1255**   | 1684**          | 1960**   | 0884*   |
|                  | SQUARE ROOT  | 4055**  | 3892**         | 2441**   | 3667**   | 1912**   | 2153**          | 2655**   | 1343**  |
|                  | FULLY-WGTD.  | 5318**  | 5064**         | 4222**   | 5156**   | 3440**   | 3609**          | 4237**   | 2706**  |
| % Mothers < H.S. | UNWEIGHTED   | .5015** | .3625**        | .2129**  | .4272**  | . 1453** | .2355**         | .2571**  | .1266** |
|                  | LOG(10)      | .5895** | .4027**        | .2607**  | .5060**  | .1789**  | .2689**         | .2951**  | .1530** |
|                  | SQUARE ROOT  | .7260** | .4990**        | .3955**  | .6592**  | .2670**  | .3619**         | .4023**  | .2403** |
|                  | FULLY-WGTD.  | .8554** | .6814**        | .6376**  | .8263**  | .4580**  | .5905**         | .6167**  | .4386** |
| Per capita       | UNWE I GHTED | 3060**  | 2638**         | 1453**   | 3056**   | 1560**   | 1324**          | 2057**   | 0312    |
| income           | LOG(10)      | 3664**  | 3068**         | 1758**   | 3438**   | 1735**   | 1605**          | 2316**   | 0488    |
|                  | SQUARE ROOT  | 4844**  | 3933**         | 2749**   | 4532**   | 2315**   | 2351**          | 3083**   | 1149*   |
|                  | FULLY-WGTD.  | 6681**  | 5763**         | 5071**   | 6505**   | 3946**   | 4517**          | 5041**   | 3016**  |
| Mostly rural     | UNWE I GHTED | 0311    | 1260**         | .0589    | 0743     | .0322    | .0294           | .0437    | .0800   |
|                  | LOG(10)      | 0721    | 1474**         | .0317    | 1114*    | .0186    | 0036            | .0135    | .0636   |
|                  | SQUARE ROOT  | 1330**  | 1981**         | 0233     | 1701**   | 0173     | 0570            | 0434     | .0174   |
|                  | FULLY-WGTD.  | 2010**  | 2682**         | 1276**   | 2301**   | 0964*    | 1512**          | 1427**   | 0800    |
| Population       | UNWE I GHTED | .1821** | .1434**        | .0420    | .1801**  | .0336    | .0485           | .0561    | .0089   |
| density          | LOG(10)      | .2406** | .1664**        | .0809    | .2281**  | .0526    | .0801           | .0874    | .0355   |
|                  | SQUARE ROOT  | .3721** | .2457**        | . 1877** | .3570**  | . 1061*  | .1518*          | .1640**  | .1090*  |
|                  | FULLY-WGTD.  | .5241** | .3970**        | .3819**  | .5198**  | .2284**  | .3110**         | .3155**  | .2658** |
| % Crowded        | UNWEIGHTED   | .4341** | .2930**        | . 1494** | .3775**  | . 1008*  | .1609**         | .1770**  | .0718   |
| housing          | LOG(10)      | .5235** | .3355**        | .2083**  | .4544**  | . 1344** | .2041**         | .2228**  | .1010*  |
|                  | SQUARE ROOT  | .6667** | .4440**        | .3531**  | .6177**  | .2168**  | .3017**         | .3307**  | .2009** |
|                  | FULLY-WGTD.  | .7940** | <b>.6380**</b> | .5977**  | .7938**  | .3953**  | .5261**         | .5402**  | .4103** |
| % Old housing    | UNWE I GHTED | .0540   | .0846          | . 1210** | .1405**  | .1023*   | .0650           | . 1221** | .0495   |
|                  | LOG(10)      | . 1054* | .1047*         | . 1396** | .1837**  | .1242**  | .0852           | .1496**  | .0728   |
|                  | SQUARE ROOT  | .2195** | .1550**        | .2062**  | .2833**  | .1725**  | .1519**         | .2177**  | .1338** |
|                  | FULLY-WGTD.  | .4284** | .3202**        | .3822**  | .4709**  | .3036**  | .3361**         | .3823**  | .2966** |

•

#### APPENDIX F (continued)

Correlations Between The Sociodemographic (Rows) And Vital Records Outcome (Columns) Variables

| VARIABLE         | WEIGHTING    | Preterm<br>percent | S.G.A.<br>percent | Very low<br>B.W.rate | Low<br>B.W.rate | Neonatal<br>Dth.rate | Post-n.<br>Dth.rate | Tot.Inf.<br>Dth.rate | Fetal<br>M. rate |
|------------------|--------------|--------------------|-------------------|----------------------|-----------------|----------------------|---------------------|----------------------|------------------|
| * Femal e-headed |              | <br>30/8##         |                   | 1575**               | 7957**          | 1101**               | 1000                | 45/0++               |                  |
| noverty          |              |                    | 3116**            | 22/5**               | .JUJ7***        | 1550++               | . 1000~             | . 1309***            | .0/9/            |
| povercy          |              | .4703**            | .3110**           | .2243**              | .4007""         | . 1550               | . 1001              | . 2204**             | .1112"           |
|                  | SQUARE ROUT  | .0/09**            | .4321**           | .3003**              | .0482**         | .244/**              | .510/**             | .3580**              | .2078**          |
|                  | FULLY-WGTD.  | .8287**            | .6443**           | .6562**              | .8385**         | .4391**              | .5836**             | .5995**              | .4144**          |
| % Primiparous    | UNWEIGHTED   | .0107              | .0651             | 0909*                | .0075           | 0370                 | 0969*               | 0870                 | 0006             |
|                  | LOG(10)      | 0134               | .0838             | 0534                 | .0092           | 0241                 | 1017*               | 0753                 | -0039            |
|                  | SQUARE ROOT  | 0523               | .0609             | 0388                 | 0135            | 0277                 | 1195**              | 0840                 | .0045            |
|                  | FULLY-WGTD.  | 1319**             | 0372              | 0626                 | 0771            | 0632                 | 1778**              | 1311**               | 0116             |
| % White          | UNWEIGHTED   | 5415**             | 1353**            | 2532**               | 4243**          | 1342**               | 1853**              | 2187**               | - 1149*          |
|                  | LOG(10)      | 6247**             | 1745**            | 3145**               | 5072**          | 1691**               | 2424**              | 2725**               | - 1348**         |
|                  | SQUARE ROOT  | 7607**             | 2875**            | 4713**               | 6826**          | 2704**               | 3509**              | 3994**               | 2246**           |
|                  | FULLY-WGTD.  | 8807**             | 4756**            | 7352**               | 8582**          | 4859**               | 5905**              | 6371**               | 4276**           |
| % Inadequate     | UNWE I GHTED | .4387**            | .2372**           | . 1926**             | .3352**         | . 1192**             | .2149**             | .2236**              | .1054*           |
| prenatal care    | LOG(10)      | .5085**            | .2839**           | .2221**              | .4013**         | . 1565**             | .2441**             | .2629**              | .1333**          |
| •                | SQUARE ROOT  | .6217**            | .3838**           | .3311**              | .5360**         | .2360**              | .3208**             | .3560**              | .2135**          |
|                  | FULLY-WGTD.  | .7291**            | .5725**           | .5270**              | .6837**         | .3918**              | .5013**             | .5257**              | .3940**          |

\* significant at p < .05, two-tailed.

.

\*\* significant at p < .01, two-tailed.</pre>

APPENDIX G

Correlations Between The Sociodemographic (Rows) And And Birth Defects Registry Outcome (Columns) Variables

| VARIABLE      | WEIGHTING    | Down S.            | NTDS           | Eyes ( | ardiacs | Clefts | Reductn. Cl | hromo. Co | m. An. Ma | jor D. Mil | nor D.  | CNS Her       | rt D. M       | usculo.       |
|---------------|--------------|--------------------|----------------|--------|---------|--------|-------------|-----------|-----------|------------|---------|---------------|---------------|---------------|
| Mother's age  | Umweighted   | 1 .0223            | 0688           | 0372   | 0223    | 0359   | 6900.       | .0331     | 0335      | 0519       | .0181   | 0439          | 0683          | 0816          |
|               | Log(10)      | .0358              | 0804           | 0366   | 0189    | 0370   | -0034       | .0463     | 0694      | 0771       | 0187    | 0546          | 0859          | 1213**        |
|               | Square Roo   | ot .0545           | - 1094         | 0385   | 0185    | 0365   | 0010        | .0601     | 1158**    | 1133*      | 0639    | 0837          | 1214*         | - 1829**      |
|               | Fully-wgto   | 11032              | • 1883**       | 0500   | 0431    | 0311   | 0133        | •0%6*     | 1792**    | 1647**     | 1256**  | 1624**        | 1850**        | - 2759**      |
| % Mothers > 3 | 5 Unweighted | 1 .0152            | 0368           | 0398   | 0409    | 0421   | .0133       | .0196     | -0143     | 0161       | .0659   | 0092          | 0842          | 0204          |
|               | Log(10)      | .0343              | 0477           | 0391   | 0394    | 0482   | .0148       | .0395     | 0280      | 0474       | .0269   | 0174          | - 0993*       | 0665          |
|               | Square Roo   | it .0566           | 0720           | 0391   | 0385    | 0530   | 5110.       | 0090.     | 0749      | 0874       | 0103    | 0401          | - 1262**      | 1200**        |
|               | Fuily-wgtd   | I1015 <sup>1</sup> | •1423*         | 0489   | 0573    | 0588   | .0157       | -0943     | 1501**    | 1550**     | 0675    | - 1095*       | 1803**        | - 2104**      |
| X Mothers     | lthweigh ted | 10067              | .0492          | .0440  | .0148   | -0242  | 0230        | 0108      | .0218     | .0346      | 0135    | .0317         | .0299         | 2670.         |
| < H.S.        | Log(10)      | 0307               | .0606          | .0430  | 0600.   | .0220  | 0151        | 0332      | .0471     | .0504      | .0167   | .0437         | .0418         | .1170**       |
|               | Square Roo   | it0516             | <b>*</b> 2260° | .0423  | .0051   | .0153  | 0036        | 0505      | 1220.     | .0724      | .0492   | .0761         | <b>5020</b> . | .1672**       |
|               | Fully-wgtd   | 10984              | 1796           | .0517  | .0280   | 6200.  | -0179       | 0888*     | .1220**   | .1103*     | -0898   | .1610**       | .1313**       | .2380**       |
| Per capita    | Unneighted   | 1000.              | 0276           | 0425   | 0189    | 0371   | 0396        | .0176     | 0900-     | 0486       | . 1083  | 0179          | 0498          | 0485          |
| income        | Log(10)      | .0185              | 0432           | 0411   | 0180    | 0442   | 0390        | .0283     | - 0490    | 0804       | .0416   | 0301          | 0732          | 0995*         |
|               | Square Roo   | it .0348           | 0773           | 0389   | 0223    | 0507   | 0367        | .0436     | 0989      | 1157**     | 0130    | 0593          | 1154**        | 1516**        |
|               | Fully-wgtd   | 10823              | 1633**         | 0416   | 0514    | 0513   | 0220        | .0834     | - 1634**  | 1643**     | 0835    | - 1374**      | - 1879**      | 2311**        |
| Mostly rural  | Umveighted   | 1 .0024            | 0766           | 7020.  | 0065    | .0126  | 0055        | 0007      | 0423      | 0600" -    | 0859    | 0450          | 09194         | 0139          |
|               | Log(10)      | 0230               | 0632           | .0330  | 0003    | 7700.  | 0122        | 0218      | 0487      | 0185       | 0881*   | 0311          | 0864          | 0165          |
|               | Square Roo   | it0316             | 0428           | .0321  | .0117   | 0095   | 0132        | 0278      | 0573      | 0278       | - 0938* | 0131          | 0782          | 0306          |
|               | Fully-wgtd   | 10239              | 0198           | .0254  | .0318   | 0342   | 0085        | 0192      | 5210      | 0422       | - 1044* | .0019         | 0673          | 0606          |
| Population    | Umweighted   | I .0122            | -0572          | 0125   | .0086   | .0215  | .0157       | 8600*     | .0224     | .0138      | .0282   | 7670"         | .0204         | .0159         |
| density       | Log(10)      | .0178              | .0460          | 0170   | 6200.   | -0143  | .0142       | .0100     | .0243     | .0089      | -0447   | .0393         | -0151         | .0236         |
|               | Square Roo   | it .0034           | .0378          | 0205   | 0062    | -000   | .0107       | 0118      | .0251     | .0010      | .0658   | .0333         | .0169         | .0517         |
|               | Fully-wgtd   | 10408              | .0584          | 0197   | - ,0094 | 0166   | 8600.       | 0670      | .0445     | .0066      | . 1073* | .0555         | .0450         |               |
| X Crowded     | Umweighted   | 10015              | .0886*         | .0344  | .0033   | .0305  | .0179       | 0128      | .0389     | .0473      | .0039   | .0725         | .0451         | .0826         |
| housing       | Log(10)      | 0071               | -0892          | .0288  | - 0047  | .0289  | .0197       | 0195      | .0576     | .0574      | .0293   | .0737         | .0600         | .1052*        |
|               | Square Roo   | it0284             | *7860*         | .0172  | .0126   | .0165  | .0166       | 0374      | .0733     | .0644      | .0564   | .0844         | +0760"        | .1412**       |
|               | Fully-wgtd   | I0912 <sup>-</sup> | • .1525**      | .0092  | .0525   | 0011   | .0190       | 0925*     | .1013*    | .0808      | •0984   | <b>1370**</b> | .1667**       | <b>1978**</b> |

# APPENDIX G (continued)

.

Correlations Between The Sociodemographic (Rows) And And Birth Defects Registry Outcome (Columns) Variables

| VARIABLE       | VEIGHTING              | Down S. | NTDS    | Eyes 1 | Cardiacs      | Clefts        | Reductn. ( | Chromo. C     | on. An. Maj    | jor D. Mir       | hor D. | CNS Hea       | rt D. Mus      | culo.    |
|----------------|------------------------|---------|---------|--------|---------------|---------------|------------|---------------|----------------|------------------|--------|---------------|----------------|----------|
| X Old housing  | Unweighted             | -0724   | .1076*  | .0224  | 628.          | 8670.         | 6900.      | 9070.         | . 1265**       | -1309**          | .0568  | .1137*        | .0289          | .0802    |
|                | Log(10)<br>Samere Prov | - 0622  | .1104*  | .0318  | .0359<br>7202 | 9230.<br>5720 | 6700       | .0608<br>1212 | .1215**        | -1233**<br>1078* | .0576  | .1155**       | 0280.<br>17060 | - 1825   |
|                | Fully-Hgtd             | 0461    | .1451** | 9830.  | .050          | 0017          |            | 0394          | - 1023         | .0861            | .0530  | .1453**       | .0493          | .1379**  |
| X Female-heade | d Unweighted           | 0391    | .1072*  | .0121  | .0882         | 0644          | 0259       | 0549          | .1055*         | -1319**          | .0035  | •0924*        | -0945*         | .1396**  |
| poverty        | Log(10)                | 0365    | .1051*  | .0119  | .0695         | .050          | 0208       | 0536          | . 1036*        | .1186**          | .0206  | .0901*        | .0847          | **7971.  |
|                | Square Roo             | t0435   | .1122*  | .0133  | .0427         | .0278         | 1200 1     | 0560          | *5760.         | •0995*           | .0448  | <b>.</b> 0972 | .0845          | .1685**  |
|                | Fully-ugtd             | 0849    | .1771.  | .0224  | .0553         | -0086         | . 0206     | 0878          | .1220**        | -1111*           | .0878  | .1605**       | -1349**        | .2218**  |
| X Primiparous  | Unweighted             | 0025    | .0524   | .0085  | 86%).         | 0470.         | 0554       | .0121         | 6290-          | .0928*           | 0131   | .0466         | .0484          | -1033*   |
|                | Log(10)                | .0151   | .0399   | .0028  | .0395         | -0471         | .0536      | .0274         | .0636          | .0808            | 0044   | .0329         | .0415          | .0843    |
|                | Square Roo             | t .0054 | 7200.   | 0137   | .0233         | .0338         | 1 .0427    | .0133         | .0363          | .0439            | .0016  | .0015         | .0261          | .0502    |
|                | Fully-wgtd             | 0458    | 0634    | 0467   | .0144         | -0061         | 2210.      | 0379          | 0044           | 0150             | .0210  | 0622          | 0179           | -0107    |
| X White        | Unweighted             | .0515   | 0045    | .0155  | .0445         | -0306         | . 0055     | .0592         | .0369          | .0606            | 0266   | .0031         | <b>7110</b> .  | 0578     |
|                | Log(10)                | .0486   | 0126    | .0193  | .0406         | .0298         | .0022      | .0548         | .0083          | .0401            | 0630   | 0057          | .002           | 0953*    |
|                | Square Roo             | t .0566 | 0356    | .0201  | .0295         | E0E0-         | 0054       | .0552         | 0382           | .0051            | 1144*  | 0300          | 0379           | - 1650** |
|                | Fully-wgtd             | 1068*   |         | .0106  | <b>*600</b>   | SEE0.         | 0306       | .0886         | - 1182**       | 0551             | 2013** | 0951*         | 1200##         | 2799* -  |
| % Inadequate   | Umeighted              | -0393   | 1240.   | .0131  | .0169         | .0459         | 0115       | .0152         | -0495          | .0677            | 0097   | .0396         | .0082          | .1266**  |
| prenatal car   | 'e Log(10)             | .0158   | .0634   | .0162  | .0146         | 0446          |            | 0068          | .0654          | .0780            | .0063  | -0544         | .0324          | -1443**  |
|                | Square Roo             | t0082   | -0916   | .0208  | .0068         | .0410         | 0029       | 0223          | <b>*6060</b> ° | -0988            | .0284  | .080          | .0715          | .1805**  |
|                | Fully-wgtd             | 0426    | .1620** | .0316  | .0014         | 2620.         | 001        | 0416          | .1203**        | -1316**          | .0380  | .1432**       | . 1286**       |          |

\* significant at p < .05, two-tailed.

**\*\*** significant at p < .01, two-tailed.

.