

RTMFNT HEALTH A BETTER STATE OF HEALTH

Population-Based,

Adverse Beproductive Outcomes

Jim Florio Governor

Bruce Siegel, M.D., M.P.H. Acting State Commissioner of Health

POPULATION-BASED SURVEILLANCE AND ETIOLOGICAL RESEARCH OF ADVERSE REPRODUCTIVE OUTCOMES AND TOXIC WASTES

REPORT ON PHASE III: CORRELATIONAL ANALYSES OF ADVERSE REPRODUCTIVE OUTCOMES AND ENVIRONMENTAL POLLUTION

- Mark C. Fulcomer, PhD
- Frank J. Bove, ScD
- Judith B. Klotz, DrPH
- George J. Halpin, MD
- Rebecca T. Zagraniski, PhD
- Jonathan E. Savrin, MSPH

March, 1992

New Jersey Department of Health

This report was supported in part by funds from the Comprehensive Environmental Response, Compensation, and Liability Act trust fund through a Cooperative Agreement with the Agency for Toxic Substances and Disease Registry, U.S. Public Health Service.

> Project Officer: Larry D. Edmonds Division of Birth Defects and Developmental Disabilities National Center for Environmental Health and Injury Control Centers for Disease Control

PRINCIPAL AUTHORS

Frank J. Bove, ScD, Mark C. Fulcomer, PhD, Judith B. Klotz, DrPH

CO-AUTHORS

Ellen M. Dufficy, BSN, Jorge Esmart, BA, George J. Halpin, MD, Jonathan E. Savrin, MSPH, Rebecca T. Zagraniski, PhD, Leah Z. Ziskin, MD, MS

ACKNOWLEDGMENTS

The principal authors wish to express gratitude to many people for enabling the completion of this multiyear project and its five reports.

We were very fortunate to have a dedicated staff who contributed to the project over a long period of time: many of these individuals continue to work at the Department, continuing to contribute toward the project's objectives:

Jorge Esmart, Ellen Dufficy, Marian McElroy, Kay Knoblauch, Barbara Guidici, Debra Dragnosky-Embert, Suzanne Tschachler, and Donna France conducted interviews of the cases and controls; Jorge Esmart, Ellen Dufficy and Mary Knapp compiled, completed, and cleaned the birth outcomes data.

Carmen Pedroza and Jeanette Corbin contributed their secretarial and data entry skills.

Numerous Departmental personnel supported the project through its many phases:

Elizabeth Shapiro, Pamela Costa and Barbara Kern supported the project through their work on the Birth Defects Registry. Jonathan Savrin assisted in the completion of the reports. Perry Cohn, William Coniglio and Jerald Fagliano contributed technical insights. George Halpin, Susan Lenox-Goldman, Jerald Fagliano, Kathleen Cunningham, Diana Kiel, James Brownlee, Rebecca Zagraniski, and Leah Ziskin provided management support and technical reviews.

This project depended for its success on cooperation and contributions by many individuals outside the Department of Health:

Barker Hamill and his staff in the Bureau of Safe Drinking Water made it possible to conduct the exposure assessment for the drinking water studies. Robert Tucker and Leslie McGeorge of the Division of Science and Research coordinated the technical reviews and communications within Department of Environmental Protection and Energy. Our able Peer Review Panel was composed of Drs. Howard Kipen, Dirk Moore, Nigel Paneth, and Sherry Selevan. We thank the water companies of northern New Jersey for their consistent cooperation. We are indebted to the hundreds of New Jersey women who shared their time and life experiences with us.

Lastly, this project succeeded because of the constant and creative support of our project officer, Larry Edmonds of the Centers for Disease Control.

EXECUTIVE SUMMARY

This report comprises the third phase of the NJDOH-CDC Cooperative Agreement: Population-Based Surveillance and Etiologic Research of Adverse Reproductive Outcomes and Toxic Wastes. Phase III demonstrated some of the potential uses, limitations and methodologic issues in conducting municipality-based ecologic analyses of health outcomes with estimated exposure variables, utilizing readily-available demographic characteristics of these geographic areas. The municipality-based rates of adverse reproductive outcomes, derived from the birth defects registry and vital records were computed in Phase I and linked with the databases considered most appropriate for estimating population exposures to environmental pollutants in Phase II. In addition, demographic variables for each municipality, six from the U.S. Census and six from vital records, were linked with the potential exposure and outcome variables.

Since there was special interest in toxic waste sites, variables were created to represent (although crudely) the potential population exposure to these sites. These variables were (a) the number of "Superfund" sites and/or other hazardous waste sites per square mile of a municipality and (b) the presence of any such site. The other variables used in the ecologic analyses were constructed from USEPA's Toxic Release Inventory (TRI) and NJDEPE's pesticide survey of agricultural applications. These were the databases selected in Phase II, Evaluation of Environmental Databases, as most suitable for such use. The specific variables which were constructed from the TRI and pesticide databases reflected the observed or suspected reproductive toxicity of component chemicals and on chemical groupings related to industrial use and/or chemical similarity.

Four weighting schemes were constructed in order to take into account the greatly disparate number of births among the 561 municipalities which were analyzed. These ranged from fully weighted, proportional to the number of births, to unweighted.

Regressions, simple correlations, and partial correlations, utilizing all four weighting schemes, were performed with the linked data. The partial correlations removed those portions of the variability in the exposures and outcomes which were accounted for by the demographic variables.

All the above analyses indicated that rates of perinatal mortality and stillbirths were related to sociodemographic characteristics of municipalities but that rates of birth defects were largely independent of the municipal demographic characteristics. In addition, a few statistically significant associations between exposure surrogates and reproductive outcomes were found, notably between limb reduction defects and waste sites per square mile (correlation coefficients of 0.11-0.12 for both Superfund and all sites, for all weighting schemes). These partial coefficients were similar to those for the simple correlations generated before removal of the effects of sociodemographic factors on exposure and outcome variables. Since limb reduction defects have previously functioned as sentinel effects (i.e. of thalidomide teratogenicity), these observations are being followed up currently utilizing the birth defects registry and hospital records. Several other observed significant correlations, some of them negative, do not appear to be related to prior toxicity data.

This study demonstrates techniques whereby potential associations between health outcomes and environmental characteristics can be explored through the analysis of aggregate data already in existence before embarking on more expensive individual-based investigations such as case-control studies.

CONTENTS

				<u>PAGE</u>
	List	Of Tabl	les	.v
I.	Intro	ductior	1	.1
	A.	Select	ted Results From Previous Studies Of Environmental Pollution And AROs	.4
		A.1	Air Pollution	.4
		A.2	Industrial Plant Emissions	.5
		A.3	Drinking Water Contamination	.6
		A.4	Potential Community Exposures To Pesticides	.6
		A.5	Studies Of Communities Near Toxic Waste Sites	.9
		A.6	Brief Summary	11
	В.	Organi	zation Of This Report	11
II.	Metho	ds	• • • • • • • • • • • • • • • • • • • •	13
	A.	Study	Area	13
	В.	Advers	se Reproductive Outcomes (AROs)	13
	c.	Enviro	onmental Variables	15
		C.1	Variables For Toxic Waste Sites	16
		C.2	Variables For Industrial Emissions	17
		C.3	Variables For Agricultural Pesticide Applications	20
	D.	Sociod	lemographic Variables	22
	E.	Statis	tical Methods	24
		E.1	Data Linkages	24
		E.2	Weighting	24
		E.3	Initial Univariate And Bivariate Parameter Estimates	30
		E.4	Multivariate Methods	30

III. Re	esults	
	A. Descri	ptive Statistics For The Sociodemographic (Independent) Variables34
	B. Descri	ptive Statistics For The Exposure Variables
	B.1	Correlations Within And Between The Subsets Of
	B.2	Correlations Between The Sociodemographic (Independent)
	B.3	Regressions For The Subsets Of Exposure Variables40
	C. Descri	ptive Statistics For The Outcome (Dependent Variables)45
	C.1	Correlations Within And Between The Two Subsets Of
	C.2	Correlations Between The Sociodemographic And Outcome Variables 47
	C.3	Correlations Between Outcome And Exposure Variables47
	D. Regres	sion Statistics For The Outcome (Dependent) Variables49
	D.1	Regression Results For The Vital Records Variables50
	D.2	Regression Results For The Birth Defects Registry Variables
	E. Partia	1 Regression Results54
	E.1	Partial Correlations For The Subsets Of Outcome (Dependent) Variables
	E.2	Partial Correlations Between The Outcome and Exposure Variables
IV. Di	scussion	
	A. Issues	Of Statistical Analysis And Interpretation63
	A.1	Weighting64
·	A.2	Spatial Autocorrelation65
	A.3	Multiple Comparisons65
	A.4	Ecological Bias
1	B. Review	of Exposure-Outcome Relationships
	B.1	Partial Correlations With Toxic Waste Site Variables68
	В.2	Partial Correlations With Industrial Air Emissions Variables
	B.3	Partial Correlations With Agricultural Pesticide Applications Variables

	C.	Some Additional Observations73				
v.	Summa	nry				
VI.	Refer	ences				
VII.	Apper	Appendices				
	A.	Correlations Within The Subset Of Toxic Waste Site Variables				
	B.	Correlations Within The Subset of Industrial Air Emissions Variables				
	C.	Correlations Within The Subset of Agricultural Pesticide Applications Variables				
	D.	Correlations Between The Subsets Of Toxic Waste Site And Industrial Air Emissions Variables				
	E.	Correlations Between The Subsets Of Toxic Waste Site And Agricultural Pesticide Applications Variables				
	F.	Correlations Between The Subsets Of Industrial Air Emissions And Agricultural Pesticide Applications Variables				
	G.	Correlations Between The Sociodemographic and Toxic Waste Site Variables				
	H.	Correlations Between The Sociodemographic and Industrial Air Emissions Variables				
	I.	Correlations Between The Sociodemographic and Agricultural Pesticide Applications Variables				
	J.	Correlations Between The Subsets Of Toxic Waste Site And Vital Records Variables				
	K.	Correlations Between The Subsets Of Toxic Waste Site And Birth Defects Registry Variables				
	L.	Correlations Between The Subsets of Industrial Air Emissions And Vital Records Variables				
	M.	Correlations Between The Subsets of Industrial Air Emissions And Birth Defects Registry Variables				
	N.	Correlations Between The Subsets of Agricultural Pesticide Applications And Vital Records Variables				
	0.	Correlations Between The Subsets of Agricultural Pesticide Applications And Birth Defects Registry Variables				
	Ρ.	Partial Correlations Within The Subset Of Vital Records Variables iii				

.

- Q. Partial Correlations Within The Subset Of Birth Defects Registry Variables
- R. Partial Correlations Between The Subsets Of Vital Records And Birth Defects Registry Variables
- S. Partial Correlations Between The Subsets Of Toxic Waste Site - And Vital Records Variables
- T. Partial Correlations Between The Subsets Of Toxic Waste Site And Birth Defects Registry Variables
- U. Partial Correlations Between The Subsets of Industrial Air Emissions And Vital Records Variables
- V. Partial Correlations Between The Subsets of Industrial Air Emissions And Birth Defects Registry Variables
- W. Partial Correlations Between The Subsets of Agricultural Pesticide Applications And Vital Records Variables
- X. Partial Correlations Between The Subsets of Agricultural Pesticide Applications And Birth Defects Registry Variables

LIST OF TABLES

Table	1	-	Frequency Distribution of Births in New Jersey Municipalities (1985-1987)25
Table	2	-	Summary Values for the Four Weighting Schemes
Table	3	-	Summary Information from the 1987 TRI Databases
Table	4	-	Summary Information on Agricultural Pesticide Applications
Table	5	-	Summary Regression Statistics For Explaining Each Toxic Waste Site Variable From The Twelve Independent Variables41
Table	6	-	Summary Regression Statistics For Explaining Each Industrial Air Emissions Variable From The Twelve Independent Variables42
Table	7	-	Summary Regression Statistics For Explaining Each Agricultural Pesticide Applications Variable From The Twelve Independent Variables43
Table	8	-	Summary Regression Statistics For Explaining Each Vital Records Variable From The Independent Variables
Table	9	-	Summary Regression Statistics For Explaining Each Birth Defects Registry Variable From The Independent Variables52
Table	10	-	Significant Exposure-Outcome Partial Correlations Involving Toxic Waste Variables
Table	11	-	Significant Exposure-Outcome Partial Correlations Involving Industrial Air Emissions Variables60
Table	12	-	Significant Exposure-Outcome Partial Correlations Involving Agricultural Pesticide Applications Variables61

•

CORRELATIONAL ANALYSES OF ADVERSE REPRODUCTIVE OUTCOMES

AND ENVIRONMENTAL POLLUTION

I. INTRODUCTION

In 1986, the New Jersey Department of Health (NJDOH) entered into a fiveyear cooperative agreement with the U.S. Centers for Disease Control (CDC) to develop and apply appropriate methodology to assess relationships between adverse reproductive outcomes (AROs) and population exposures to environmental pollutants, particularly toxic waste site contamination. The project was divided into four "phases" corresponding to its objectives and a research protocol was prepared (Fulcomer et al., 1987). This report describes the activities undertaken in the third phase of the project. Rather than a rigorous exploration of specific hypotheses about exposure-outcome relationships, the work on the the third phase is a demonstration of the potential uses and limitations of using data on environmental exposure surrogates and health outcomes, both aggregated at the municipality level of analysis, to investigate possible associations as an early step in identifying preventable hazards. Study designs using aggregated information in such a fashion are often referred to as "ecologic" or "correlational." Because other states may already be collecting such data as part of routine environmental and outcome surveillance programs, this report, as well as those for the project's first and second phases, may be of special interest to others who may plan to replicate the methods and results presented here.

This report links surveillance data from the 327,015 live births and 3,548 fetal deaths (stillbirths) that occurred to New Jersey residents from 1985 through 1987, derived from the project's first phase (Fulcomer et al., 1992b), with data on environmental pollution that resulted from its second phase (Bove, 1992). By combining information from this large group of births with that on potential exposures and on other sociodemographic attributes available on geographic areas, it was hoped that the correlational analyses could provide inexpensive alternatives to case-control studies to explore questions of possible exposure-outcome relationships.

Following the thalidomide tragedy of the 1960's interest has grown in monitoring the occurrence of birth defects and other adverse reproductive (or, perhaps more properly "developmental") outcomes and in identifying preventable causes. In the United States, this interest has led to a tremendous increase in the establishment of effective, population-based surveillance programs (Flynt et al., 1987; National Governors Association, 1987). Building on the success of two early programs sponsored by the Centers for Disease Control (Edmonds et al., 1981) and with considerable encouragement and assistance from CDC (Edmonds et al., 1988), many states have recently undertaken the development of registries for birth defects and other outcomes. Outside of the United States CDCs efforts have also included participation in the establishment and maintenance of the International Clearinghouse for Birth Defects Monitoring Systems (ICBDMS, 1980).

Historically, the desire to conduct etiological research studies has provided much of the impetus behind the development of surveillance programs. More recently, this etiological focus has expanded to include the rapidly

escalating concerns about the possible roles of environmental pollution. Not surprisingly, there has been a growing interest in linking records from surveillance programs with environmental databases to perform ecologic (or correlational) studies and to identify populations for epidemiologic research. Unfortunately, researchers have encountered several major obstacles to these efforts. Most importantly, many of the emerging national and state environmental databases have been developed to track environmental pollution and are much less appropriate for epidemiologic applications such as estimating population exposures (Bove, 1992). In addition, there are severe maintenance and quality control problems with some of the databases, including the lack of validation procedures to ensure accurate coding of residential locations (using county/municipality identifiers) as well as errors with data entry and duplicate records; establishing data linkages between adverse reproductive outcomes and environmental databases are particularly difficult in the absence of accurate, common geographical identifiers.

Given the quantity and quality of its data, New Jersey has a unique opportunity to link records from outcome and environmental databases. With respect to adverse reproductive outcomes, NJDOH is now able to draw on its Birth Defects Registry (BDR) to complement the more traditional reliance on vital records. Based on one of the nation's oldest Crippled Children's Programs that traces its origins to the 1920's, NJDOH established a population-based birth defects registry in 1985 (Fulcomer et al., 1986). Through fetal death certificates and the matching of infants' birth and death records, NJDOH has also had well-developed capabilities regarding related outcomes, including low birthweights, infant mortality, and fetal mortality. Similarly, the New Jersey Department of Environmental Protection and Energy

(NJDEPE, but referred to as NJDEP before the agency's name was changed after June, 1991) has developed statewide databases as part of its monitoring and regulatory programs, particularly on agricultural pesticide applications (Louis et al., 1989), industrial air toxics emissions (Held et al., 1988), and contamination of public drinking water systems (NJDEP, 1987). NJDEPE's Geographic Information System (Rohardt et al., 1986) maps the precise locations and boundaries of the State's "Superfund" sites on the National Priority List (NPL). Finally, both NJDOH and NJDEPE employ similar systems for coding county/municipalities, so that accurate data linkages can be made.

A. SELECTED RESULTS FROM PREVIOUS STUDIES OF ENVIRONMENTAL POLLUTION AND AROS

This section describes selected results from some previous studies of environmental pollution and AROs. Because so-called "negative studies" (i.e., those failing to find significant associations) are seldomly published, this review is necessarily limited to the few "positive findings" that have appeared in print. In addition, it highlights relationships that might merit further investigation in analyses that may have the potential for adequate statistical power, even in instances in which the original study providing the initial result(s) was essentially negative or inconclusive. Therefore, this review should not be construed as a balanced assessment of the current state of knowledge.

A.1 AIR POLLUTION

A review of the literature revealed only one study on the effects of ambient air pollution on adverse reproductive outcomes, a study of the

relationship between ambient air quality and spontaneous abortions in an industrial area of Finland (Hemminki et al., 1986). The ambient air contaminants evaluated in that study were sulfur dioxide, hydrogen sulfide and carbon disulfide. No significant associations between air quality and outcomes were found.

A.2 INDUSTRIAL PLANT EMISSIONS

A study of a community in the vicinity of a copper and lead smelter in northern Sweden found a statistically significant elevation in the prevalence of spontaneous abortion for those residents living within a few kilometers of the smelter (Nordstrom et al., 1978b). The mean birthweight for births to residents living near the smelter was also significantly lower (Nordstrom et al., 1978a). However, no associations were found with congenital anomalies (Nordstrom et al., 1979). The study controlled for parity but did not control for employment at the smelter or for other risk factors. The major contaminants emitted by the smelter included lead and arsenic.

A study of Ohio residents living in communities located near vinyl chloride polymerization plants found statistically significant elevations in the prevalence of central nervous system (CNS) defects compared to the prevalence in the state (Infante, 1976). Later reports failed to identify working in the plants as a causal explanation of elevated CNS defects, although the occupational information was derived exclusively from males whereas an analysis of community residents found a significant association between these defects and living within three miles of these plants (Edmonds

et al., 1978). Unfortunately, a study of CNS defects and residence near two vinyl chloride plants in NJ had extremely low power and, therefore, provided results that were difficult to interpret (Rosenman et al., 1989).

A.3 DRINKING WATER CONTAMINATION

Another report prepared as part of the fourth phase of this cooperative agreement has reviewed studies of drinking water contamination and adverse reproductive outcomes elsewhere (Bove et al., 1992a). In general, studies in this area have been plagued by small sample size and other analytic problems. As a result, they have produced conflicting results.

Despite design problems and other flaws with research in this area, some isolated findings are important to note. One study found significant associations between chlorinated solvents in the drinking water (e.g., trichloroethylene) and certain groupings of birth defects (Lagakos et al., 1986). Another study has reported associations between drinking water contaminated with nitrates and neural tube and oral cleft defects (Dorsch et al., 1984). Finally, a third study described some slightly positive associations for certain inorganics in drinking water and cardiac defects (Zierler et al., 1988).

A.4 POTENTIAL COMMUNITY EXPOSURES TO PESTICIDES

In contrast to other exposures, the reproductive effects of phenoxy herbicides and their contaminants, particularly dioxin (TCDD), have been investigated extensively, even though many conflicting results have been

reported. Studies of soldiers and civilians exposed to the herbicide Agent Orange during the Vietnam War share many design flaws, most notably extremely crude assessments of exposures. These flaws notwithstanding, elevated prevalences of several adverse reproductive outcomes such as spontaneous abortions among US Air Force veterans and neural tube, oral cleft and cardiac defects among Vietnamese veterans have been reported (Sharp et al., 1986).

Difficulties in defining the exposed population, along with poor statistical power and other design problems, have led to inconclusive results for investigations of spontaneous abortion and birth defects after the accidental release of TCDD at Seveso, Italy (Sharp, loc. cit.). Among these difficulties were the lack of reporting on induced abortions and the possible reluctance by parents in that country to allow the formal identification of children with birth defects. However, among residents potentially exposed for whom data were available, spontaneous abortions and neural tube defects appeared to have been elevated.

In other non-military settings, several ecologic studies have explored the possible relationships between adverse reproductive outcomes and applications of the Agent Orange component 2,4,5-T in farming, forestry, and at utility right-of-ways. Although results of these studies have generally been inconclusive, some suggestive relationships have been reported for neural tube defects, oral cleft defects and spontaneous abortions (Sharp, loc. cit.).

A New Brunswick, Canada, study that employed both ecologic and casecontrol methods examined the possible relationships between use of pesticides in forestry and agriculture and the occurrence of birth defects and

stillbirths (White et al., 1988). The primary pesticides used in forestry during the study period (1973-79) were fenitrothion and aminocarb, although the Agent Orange components 2,4-D and 2,4,5-T were also applied. For the agricultural applications, there was no information available on the quantities of any pesticides used and, except for 2,4-D, nothing was known of the types of chemicals applied. No significant associations between the adverse reproductive outcomes and the use of pesticides in forestry were detected. However, some statistically significant relationships were reported between "agricultural chemical exposure opportunity", based on maps of soil capability, and the occurrence of spina bifida without hydrocephalus (first trimester exposure) and of stillbirths (second trimester exposure).

Some results suggestive of associations between agricultural pesticide usage and adverse reproductive outcomes have also emerged from case-control studies. For example, a study conducted in Iowa and Michigan reported an elevated prevalence of oral clefts (Gordon and Shy, 1981). Although a somewhat similar study of information derived from birth certificates (Schwartz and LoGerfo, 1988) failed to find relationships between congenital limb reduction defects and employment of either parent in agriculture (5.91% of cases and 7.43% of controls, although only 1.6% of all working mothers in the study were classified as agricultural workers), there were statistically significant associations for weaker exposure proxies (among those mothers residing in counties with a high cash value of agricultural productivity and a high per square mile usage of pesticides). Likewise, the study of the relationships between the 1981 and 1982 aerial application of Malathion (to control the Mediterranean Fruit Fly) and birth defects and low birthweight did find some statistically significant associations, while reporting "no

biologically plausible pattern of association" (Grether et al., 1987). These elevations included clubfoot, bowed legs and ear anomalies (when compared to the 1981 unexposed reference group) and for tracheoesophageal fistula (when compared to the 1982 unexposed reference group).

A.5 STUDIES OF COMMUNITIES NEAR TOXIC WASTE SITES

Studies of the prevalence of adverse reproductive outcomes in communities near toxic waste sites have also been hampered by design problems, especially poor statistical power and crude surrogates for exposures (Phillips and Silbergeld, 1985). Chemicals usually detected at toxic waste sites include chlorinated solvents, aromatics and heavy metals. However, almost no information is available on the types and levels of chemicals in exposure pathways emanating from these sites (Bove, 1992 and Upton et al., 1989). Furthermore, studies done to date have been restricted to a few of the possible reproductive endpoints such as total birth defects, low birthweight, mean birthweight and spontaneous abortion. Specific categories of birth defects and groupings of such defects have not been reported in any study known to us.

Although no study has yet been able to demonstrate elevations in total birth defects or spontaneous abortions in communities near toxic waste sites, statistically significant associations between low birthweight and potential exposures to toxic waste have been reported in at least two studies. In the first study at Love Canal in New York State, births to residents living near shallow natural drainage pathways (or "swales") from the dump site had an elevated prevalence of low birthweight when compared to births in upstate NY

during the years in which dumping occurred (Vianna and Polan, 1984). In the second study at the Lipari Landfill in NJ, residents living within 1 km of the site had an elevated prevalence of low birthweight infants as well as lower birthweights when compared to residents living further from the site during the years of heaviest potential exposure (NJDOH, 1989). In contrast, other studies have failed to detect significant elevations in the prevalence of low birthweight infants among residents living near toxic waste sites, including those of sites located in Lowell, MA (Ozonoff et al., 1987), Hamilton, Ontario (Hertzman et al., 1987), Clinton County, PA (Budnick et al., 1984), and Glen Avon, CA (Baker et al., 1988).

Because it referred to New Jersey municipalities and is tangentially related to adverse reproductive outcomes, a correlational study comparing rates of cancer mortality with the number of "chemical toxic waste disposal sites" per square mile is of some relevance (Najem et al., 1985). Although statistically significant correlations were reported for some cancers and the density of waste sites, it was noted that the partial correlations attempting to control for some sociodemographic factors by removing the linear influence of annual per capita income "diminished the significance" of these associations (Najem et al., loc. cit.). This study also attempted to explore possible relationships with adverse reproductive outcomes, including the reporting of some statistically significant correlations between some types of cancer and the prevalences of low birthweights and the rates of total birth defects. Unfortunately, the investigators did not compare the density of waste sites with the prevalences of the adverse reproductive outcomes, making it exceedingly difficult to address possible relationships between the exposure surrogates and the reproductive endpoints. In addition, the birth

defects information pre-dated the state's population-based registry and might introduce bias into the interpretation of the results.

A.6 BRIEF SUMMARY

Although our review of selected positive results from previous studies reveals a lack of uniformity of reported findings, several suggestive relationships have been reported between adverse reproductive outcomes and potential community exposures to industrial pollution, drinking water contaminants, agricultural pesticide applications and toxic waste sites. Furthermore, suspected teratogens (or, perhaps more properly "developmental toxicants" in the context of the present study) such as trichloroethylene, vinyl chloride, benzene, toluene and lead are commonly detected at toxic waste sites (Shepard, 1986). In addition, trichloroethylene in drinking water and industrial emissions of vinyl chloride, arsenic and lead have had significant associations in some of the studies reviewed here. Finally, many of the pesticides used in agricultural applications are suspected teratogens (Watterson, 1988). Because the toxicological data support the biological plausibility of the relationships reported in some of the studies reviewed above, there is a solid rationale for pursuing correlational analyses of linked data as a first step in better understanding exposure-outcome relationships.

B. ORGANIZATION OF THIS REPORT

The second chapter of this report describes the methods and data employed in the analyses. After first describing simple (i.e., unadjusted)

correlations, the analytic methods used here rely heavily on multiple and partial regression techniques, especially to control for selected background variables before evaluating potential associations between environmental exposures and adverse reproductive outcomes. The third chapter presents the results. A discussion of these results in the fourth chapter begins by addressing some important analytic and interpretational issues. In particular, the widely-acknowledged possibility of bias in such ecologic studies, along with the related limitations and cautions in making causal inferences about individuals from results aggregated at the municipality level, is among the issues addressed in the fourth chapter. The need to account for the large variation in population characteristics among the municipalities receives special attention throughout this report.

II. METHODS

A. STUDY AREA

For this correlational study, the units of analysis were the state's municipalities. Of New Jersey's 567 county/municipality units, six having no births in one or more years during the period from 1983 to 1986 were deleted from further consideration (Fulcomer et al., 1992b). The remaining 561 were included in this study.

B. ADVERSE REPRODUCTIVE OUTCOMES (AROs)

The gathering of information on adverse reproductive (or developmental) outcomes has been described in the report on the project's first phase (Fulcomer, loc. cit.). These variables included infant health indicators derived from three types of official records (birth certificates, death certificates, and fetal death certificates) maintained by NJDOH's Bureau of Vital Statistics (BVS) as well as individual-based data on a range of specific congenital anomalies obtained from NJDOH's Birth Defects Registry (BDR). Computer records for the 327,015 live births and 3,548 fetal deaths for the three birth-year cohorts were coded for municipality at the time of birth (and at the time of first notification of a qualifying diagnosis in the case of birth defects). This made it possible to calculate rates per 1,000 live births (or percents in a few instances) for the endpoints below, so that comparisons could be made across municipalities of widely-differing sizes.

Adverse Reproductive Outcome Variables

- * Preterm births percent.
- * Small-for-gestational age (SGA) percent.
- * Very low birthweight (under 1500 grams) rate.
- * Low birthweight (under 2500 grams) rate.
- * Infant Mortality -
 - Neonatal death (up to 28 days after birth) rate.
 - Post-neonatal death (28 days to one year) rate.
 - Total infant death rate.
- * Fetal mortality (greater than 20 weeks gestation) rate.
- * Birth Defects rates for the following defect groupings:
 - Down Syndrome.
 - Neural tube defects.
 - Eye defects.
 - Selected severe cardiac defects.
 - Oral clefts.
 - Reduction deformities.
 - Chromosomal anomalies.
 - Congenital anomalies.
 - Major anomalies.
 - Minor anomalies.
 - Central nervous system defects.
 - Heart defects.
 - Musculoskeletal defects.

A detailed description of the data acquisition, validation, and aggregation procedures are found in the report on the project's first phase (Fulcomer et al., 1992b). The selected birth defects are the same as those actively monitored by the US Centers for Disease Control (CDC, 1988) and incorporated in several recent surveillance reports for which rates were given in the Phase I report, including state programs in California (CBDMP, 1988) and Iowa (Hanson et al., 1989).

C. ENVIRONMENTAL VARIABLES

An informative review of computerized federal and state environmental databases is found in the report on the project's second phase (Bove, 1992). Evaluations of these databases led to the selection of those listed below for inclusion in the correlational analyses.

Environmental Databases

- * NJDEP Toxic Release Inventory for 1988.
- * USEPA Toxic Release Inventory for New Jersey for 1987.
- * NJDEP Pesticide Survey for 1986.

In addition, because of the project's original focus on studying adverse reproductive outcomes around toxic waste sites, New Jersey sites on the National Priority List (Superfund) and a list of CERCLIS sites (toxic waste sites in the federal Comprehensive Environmental Responsibility and Cleanup Liability - Information System database), both maintained by NJDEP, were also

used in this study. In contrast, NJDEP's drinking water databases were not used in this study because of difficulties in linking information on public drinking water purveyors with the populations served on a municipality basis.

C.1 VARIABLES FOR TOXIC WASTE SITES

NJDEP's information on the location of New Jersey sites on the National Priority List (NPL) sites is stored on its Geographical Information System (GIS). NJDEP has mapped state plane coordinates of the property boundaries of the NPL sites to determine the county and municipality of each Superfund Site. Because the U.S. EPA receives its information on NPL locations from NJDEP, there are no discrepancies in these data between the two agencies.

For the correlational analyses, the variables used to represent population exposure to NPL sites were the number of NPL sites per square mile in a municipality ("NPL-density") and a dichotomous variable indicating whether or not a municipality contained one (or more) NPL sites ("NPLpresence"). Admittedly, these two variables are extremely crude indicators of population exposure to NPL sites. Therefore, we explored the possibility of developing more suitable NPL variables by incorporating a site's hazard ranking score as well as information from its remedial investigation. Unfortunately, the general absence of reliable information with respect to population exposure led to no practical alternatives to the use of site location as the sole surrogate for NPL exposures (Bove, 1992).

NJDEP's CERCLIS (i.e., toxic waste) list covers all sites identified in New Jersey, ranging in pollution severity from small dumping areas with a few

barrels of waste to man-made lagoons at operating industries and, finally, to sites ranked highly on the U.S. EPA's NPL list. Except for NPL sites, no information other than the location of the site is available in the CERCLIS database. Thus, for the correlational analyses, the variable used to represent population exposure to the CERCLIS sites were the number of CERCLIS sites per square mile in a municipality ("CERCLIS-density") and a dichotomous variable indicating whether or not a municipality contained one (or more) such sites ("CERCLIS-presence").

C.2 VARIABLES FOR INDUSTRIAL EMISSIONS

The U.S. EPA's Toxic Release Inventory (TRI) for 1987 was used to obtain air emissions data for all New Jersey manufacturing plants (SIC codes 20-39) which used any of the 308 chemicals or 20 chemical categories specified in the federal Community Right-To-Know Act and which had a workforce of at least 10 full-time employees. Similar data were obtained from NJDEP's Right-To-Know Program for 1988. [Because they were not available at the time of this study, information on air emissions from the EPA TRI database for 1988 was not included here.]

Although the TRI relies on the employers to furnish emissions data, it contains information on how the employers estimated their emission rates. However, while there are standard methods for estimating emissions using mass balance or throughput modeling (USEPA/OAQPS, 1989), as well as standard methods for actual monitoring of releases, most of the data on emissions in the TRI have been based on so-called "best engineering judgments", so that estimates were not performed using a standardized method. In addition, the

TRI has excluded several important emitters such as gas stations, dry cleaners, incinerators, sewage treatment plants and power plants. These limitations notwithstanding, the TRI air emission database was considered satisfactory for use in the correlational analyses.

For releases of 1,000 pounds or greater, facilities were required to report the estimated number of pounds emitted. In contrast, for releases less than 1,000 pounds, an estimated number of pounds was often specified even though not required; or, two ranges may have been checked by a facility (1-499 and 500-999 pounds, respectively). If the estimated number of pounds was not specified and if one of the two ranges for releases less than 1,000 pounds was not checked, a value was treated as representing zero pounds of emissions. In the present study, the midpoint of 750 pounds, inserted by NJDEP, was considered a reasonable estimate for unspecified emissions in the range 500 to 999 pounds. However, considering the total amount of emissions reported (in excess of 39.5 million pounds), including some reporting of approximate emissions even in the lowest category, it seemed reasonable to assume that unspecified emissions in the range from 1 to 499 pounds (i.e., those for which no midpoint or other estimate was inserted by NJDEP) were essentially negligible and a value of zero was inserted. [Revising the survey forms to record smaller releases could be used to evaluate this assumption in the future.]

(a) <u>PRELIMINARY TRI VARIABLES</u>

The first set of variables created from the TRI database were the overall quantities of air emissions of all TRI chemicals per square mile in a

municipality ("air-density"). [Note that the separately-recorded "stack" air emissions (i.e., those emitted through an intended discharge point) and "fugitive" air emissions (i.e., those escaping from a plant unintentionally during any phase of industrial processing or waste treatment) were combined into a single variable for each of the TRI categories used in the correlational analyses. Then, "total" variables were created representing emission quantities per square mile for each municipality , during the year to which the TRI survey pertained.] Similarly, separate "total" variables were created for the hydrocarbons, halogenated hydrocarbons, and inorganics ("inorganics-density").

(b) TRI VARIABLES BASED ON TOXICOLOGICAL INFORMATION

A second set of TRI variables were created based on available toxicological information. One group of variables included those chemicals known or suspected of being human teratogens ("teratogen-density") using a published list (Jelovsek et al., 1989) as well as one provided by NJDOH's Right-To-Know Program. Another group of variables ("cancer-density") was formed by incorporating known or suspected carcinogens and mutagens from a published list (USEPA, 1989) as well as that compiled by NJDOH's Right-To-Know Program to the list of teratogens. Because statistically significant associations have been reported between adverse reproductive outcomes and industrial air emissions of lead, arsenic, and vinyl chloride in the studies reviewed earlier. the three chemicals were also combined in a single variable ("special-density").

(c) VARIABLES BASED ON INDUSTRIAL USE

A published list of organic solvents (NIOSH, 1987) was used to create a variable for "solvent-density".

(d) VARIABLES BASED ON CHEMICAL STRUCTURES OR PHYSICAL PROPERTIES

All hydrocarbons were combined to create the variable "hydrocarbondensity". Next, all halogenated hydrocarbons were grouped together to form the variable "halogen-density".

C.3 VARIABLES FOR AGRICULTURAL PESTICIDE APPLICATIONS

The third set of environmental variables were derived from data on agricultural pesticide use in New Jersey obtained from NJDEP's Pesticide Control Program. In 1986, NJDEP surveyed all agricultural pesticide applicators in the state requesting the pesticide(s) applied, the number of acres treated, the types of crops treated, the method of application, and the municipality where the pesticide was applied (Louis et al., 1989). Not included in the survey were the non-agricultural use of pesticides such as applications in homes, lawns and golf courses, mosquito and gypsy moth control, among others. [Note that most of the agricultural use of pesticides occurred in the southern portion of the state.] Much like the TRI database, the pesticide survey relied solely on the information as it was supplied by the applicators, and no independent assessment of reliability or validity was attempted.

Compared to other exposures such as industrial air emissions or contaminated drinking water, the link between agricultural applications of pesticides and community exposures is more tenuous because it is unclear which, if any, route of exposure would be dominant. While there is a possibility of direct occupational exposures in the process of application, it is extremely difficult to estimate other types of indirect exposures to residents of surrounding areas. However, drift from aerial spraying and runoff from farms can contaminate air, surface water, and soil, thereby increasing exposures to nearby communities.

For all pesticide variables, air and ground applications were combined. The amount of active ingredients applied (in pounds) was then used to form the variables below for the amount applied per square mile for each municipality, during the year to which the pesticide survey data pertained.

Agricultural Pesticide Variables

- Total Pesticides ("pesticide-density")
- Phthalimides ("phthalimide-density")*
- Organophosphates ("organophosphates-density")
- Carbamates ("carbamate-density")
- Herbicides, especially 2,4-D ("herbicide-density")
- Halogenated Organics ("halogens-density")

^{*} N-sulfenyl phthalimide pesticides are structurally similar to thalidomide (Klaassen et al., 1986)

D. SOCIODEMOGRAPHIC VARIABLES

Twelve demographic variables were also included in the correlational analyses. The variables selected for inclusion were a representative subset of those described in the report on the project's first phase (Fulcomer et al., 1992b). In the context of exploring possible exposure-outcome relationships, it should be pointed out that the demographic variables may represent partial surrogates for probabilities of exposures.

Six of the demographic variables were derived directly from the 1980 U.S. Census and are listed below.

Sociodemographic variables from the 1980 U.S. Census

*	Per capita income (in dollars).
*	Mostly rural (a dichotomous variable indicating if more than
*	50% of a community's population resided in rural areas).
*	Population density (number of persons per square mile in a
*	municipality).
*	Percent of housing units with 1.01 or more persons per room
	("% crowded housing").
*	Percent of housing units built before 1960 ("% old
	housing").
*	Percent of female-headed households with related children

under six years of age living below poverty status ("% female-headed poverty").

The remaining six sociodemographic variables given below were created by aggregating birth-certificate information for each municipality. [Fetal death certificate information could not be aggregated because many of the variables appear on the certificates but are not entered onto computerized records.]

Sociodemographic variables aggregated from birth certificates

- * Average age of mothers at the time of birth ("mother's age").
- * Percent of mothers over age 35 at the time of birth
 ("% mothers > 35").
- * Percent of mothers who did not have at least a high school education ("% mothers < H.S.").</p>
- * Percent of primiparous mothers ("% primiparous").
- * Percent of white mothers ("% white").
- * Percent of births with "inadequate" prenatal care
 - ("% inadequate prenatal care").

Based on "covariates" often reported in the literature on adverse reproductive outcomes (including an earlier correlational study of the occurrence of Sudden Infant Death Syndrome at the census-tract level in Philadelphia described by Fulcomer et al., 1981), the U.S. Census variables were incorporated into the present analyses to control for some aspects of socioeconomic status (SES). Because New Jersey has experienced considerable growth and changes in the dispersion of its population since the 1970's, additional background variables such as maternal age, education, and race, were obtained from birth certificates to provide more recent information than

the 1980 Census. The percent of mothers over age 35 at the time of birth was selected to explore some possible non-linear effects, particularly with respect to recent increases in maternal ages and well-documented elevations in Down Syndrome in births to women in that age category (e.g., see Fulcomer et al., 1988). An earlier algorithm (NAS, 1973) was employed to calculate values for the prenatal care adequacy variable. The algorithm accounts for the month prenatal care began, the number of prenatal visits, and the gestational age at birth.

E. STATISTICAL METHODS

E.1 DATA LINKAGES

The linking of records for the municipalities from the various sources of variables was accomplished using several of the MADMANager Utility Programs (Fulcomer and Kriska, 1989). In particular, because different geocoding systems are used in some of the databases (see Fulcomer et al., 1992b or a brief description of this issue), the MADMATCH program was used to combine information from multiple databases to form unified, continuous records. Some "weighting" variables described below were also incorporated into the combined records.

E.2 WEIGHTING

In order to account for differences among the municipalities with respect to the number of births (e.g., ranging from 6 to 17,439 in the three years covered by this study), it was important to consider how to "weight" the

municipality-based data in the correlational analyses. In particular, because the precision of a disease rate can be affected by the size of the population under study and because ecologic correlations based on aggregated data are generally highly inflated over those found at the individual-case level of analysis, it was clearly desirable to explore how alternative methods for weighting the "size" of a community might affect associations between variables.

To illustrate the wide variations among New Jersey's communities, a grouped frequency distribution of the number of births for the three years of the study is presented in Table 1; later work on this topic would likely benefit from attention to graphical displays of this type of information. Table 1 lists the values corresponding to 1st, 5th, 25th, 50th, 75th, 95th, and 99th percentiles.

	TABLE 1			
Frequency	Distribution	of Bi	rths	in
New Jersey	Municipalities	(198	5 to	1987)

Number of Births in Mun.	Frequency (Number of Muns.)	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
1 - 12	6	1.07%	6	1 079
13 - 37	22	3.92%	28	4,998
38 - 124	113	20.14%	141	25.13%
125 - 289	139	24.78%	280	49.91%
290 - 602	141	25.13%	421	75.04%
603 -1850	112	19.96%	533	95.01%
1851 -4377	22	3.92%	555	98.93%
4378+	6	1.07%	561	100.00%

Although the median number of births per municipality over the three-year period was 290, the mean of 581 and standard deviation of 1192 births reveals that the distribution is affected by the extremely large municipalities (i.e.,

it has considerable positive skew). Thus, while the majority of the state's municipalities have a relatively small number of births, there are a few which contribute disproportionately to the total. For example, residents of the city of Newark had 17,439 live births in 1985 to 1987, representing 5.33% of the total for the entire state during that period. Similarly, the 28 cities at or above the 95th percentile accounted for 36.45% of the live births in the state (119,196 infants).

Pocock and associates (Pocock et al., 1981; Pocock et al., 1982; and Cook and Pocock, 1983) have identified three sources of variation in the rates of a disease across geographic areas: (1) sampling variation; (2) explained variation; and (3) unexplained variation. The distribution of population sizes across geographic units contributes to sampling variation. Explained variation represents the degree to which the independent variables in a regression model are associated with, or "explain", a disease. Similarly, the unexplained variation of a disease rate is that due to unknown or unmeasurable factors.

In general, techniques of weighting units by their population size address only the sampling variation component of the total variation of a disease rate across geographic areas. Typically, weights are chosen to be proportional to the inverse of the variance of the sampling error of the disease rate. In the present study, this method is equivalent to selecting weights proportional to the number of births in a community. Use of this weighting scheme assumes that 100% of the variation in the rates of an outcome that is not explained by the independent variables in the model is due to sampling variation (i.e. that there is no unexplained variation other than
sampling variation). As the unexplained variation due to unknown or unmeasurable factors increases in size, the use of this weighting scheme will lead to bias in parameter estimation. In particular, the geographical units with relatively large birth population sizes will dominate the analysis.

Ideally, an optimal set of weights could be determined by a maximum likelihood approach (e.g., Pocock et al., 1981), which requires iterative computations. The multiple outcomes to be investigated and the need to develop sets of weights for <u>each</u> would have made computations and interpretations prohibitively complex. However, sophisticated weighting schemes may improve future analyses dealing exclusively with <u>single</u> outcomes (vs. emphasis on an entire set of outcomes) and in which stronger assumptions such as underlying Poisson distributions (in contrast to the essentially distribution-free nature of the present data) may be tenable. For such analyses, a Poisson method suggested by Breslow (1984) may be of particular interest.

Instead, as a consequence of the unequal dispersion of births throughout New Jersey, the present study concentrated on presenting results for each of four simple alternative approaches for weighting the geographic units included in the analyses. The four schemes are described below and ranged from an unweighted strategy (i.e., treating each area as being equal in size) to one that was fully-weighted (i.e., proportional to the number of births). The two intermediate approaches (common logarithms and square roots) were calculated using simple transformations of the number of births. Similar methods for weighting observations by frequency-related information are also available in standard statistical packages such as BMDP (Dixon et al., 1988, p. 529), SAS

(SAS, 1985), and SPSS (SPSS, 1988). These approaches to the weighting of the geographic units in the present study have the added advantages of applicability to all of the adverse reproductive outcomes simultaneously and ease of interpretation. Treating the weight for each municipality as a probability estimate (i.e., a converted value for a municipality divided by the sum of the converted values over the 561 geographic units) made it possible to calculate weighted univariate and bivariate parameter estimates using well-known formulae for grouped frequency distributions that are (except for adjusting for degrees of freedom) analogous to those based on the algebra of expectations (Hays, 1973). Table 2 lists some values summarizing each of the four weighting schemes, including the minimum and maximum weights observed and the weighted number of births (both the mean and the standard deviations) obtained.

TABLE 2

Weighted Number of Births Weighting Minimum Maximum Standard Scheme Weight Weight Mean Deviation -------------Unweighted .0018 .0018 581 1192 Logarithm .0006 .0031 740 1479 Square Root .0002 .0118 1305 2494 Fully-weighted .0000+ .0533 3019 4427

Summary Values For The Four Weighting Schemes

1. <u>UNWEIGHTED</u>. [Weight value=1 for each town/561]. In this type of scheme, differences among the 561 municipalities in the number of births were not considered at all. That is, Newark with its 17,439 births in the three-year period was given the same weight as the municipality with only 6 births from 1985 to 1987. Although this is clearly an unrealistic assumption,

earlier ecologic studies (e.g., Najem et al., 1985) have often not specified that any such weights were used, thereby implying that analyses were performed on unweighted data. Therefore, the unweighted scheme was included here so that comparisons to previous values could be made.

2. <u>LOG(10)</u>. <u>[Weight value=LOG(number of births)/(Sum of LOGS)]</u>. The common logarithms (i.e., base 10) of the municipalities' number of births in the three-year study period, divided by the sum of the logarithms (1,370.95), comprised the second set of weights. With this approach, Newark's weight was 5.45 times that of the municipality with the smallest number of births. However, while having the advantage of giving slightly more influence to the larger communities when contrasted to the unweighted approach, this method has the drawback of being a non-linear transformation which complicates its application to outcomes with certain distributional characteristics. For the logarithms themselves, the unweighted and weighted means are 2.4438 and 2.5540, respectively; interestingly, the anti-logs of these two means are 278 and 358, respectively, indicating the effectiveness of weighting by the logarithms in reducing the impact of the extremely large communities.

3. <u>SQUARE ROOT</u>. [Weight value=SqRt(Number of births)/(Sum of SqRts)]. A third weighting scheme was based on the square root of the municipalities' number of births. Newark's weight under the scheme was 53.91 times that of the municipality with the fewest births. The method gives considerably more influence to the extremely large communities, and correspondingly less emphasis to the areas with fewer births, than was evident for the scheme based on common logarithms. Like its logarithmic counterpart, the square root scheme has the potential drawback of being a non-linear transformation.

4. <u>FULLY-WEIGHTED</u>. [Weight value=number of births/total sum of births]. The fourth weighting scheme utilized the total number of births in a municipality over the three years included in the study. Not surprisingly, Newark's weight value was a staggering 2906.5 times that of the municipality with the fewest births. Thus, while this scheme may be "democratic" (in the sense of weighting communities by their contribution to the total number of births), a serious drawback is its potential for allowing larger communities to completely swamp the influences of those municipalities with fewer births.

E.3 INITIAL UNIVARIATE AND BIVARIATE PARAMETER ESTIMATES

In order to base the later regression analyses on stored results of sufficient statistics rather than requiring cumbersome recalculation with the entire set of records, MADO3C of the Madstat Statistics Programs (Fulcomer and Kriska, 1992) was employed to calculate univariate (means and standard deviations) and bivariate statistics (correlations) for all variables included in the final linked data file. Four sets of parameter estimates were prepared as input into the regression analyses, one for each of the weighting schemes described above.

E.4 MULTIVARIATE METHODS

Simple bivariate correlations provide some interesting relationships between estimated exposures to toxic wastes and adverse reproductive outcomes. However, it is generally accepted that controlling for other possible contributing factors improves the interpretation of such exposure-outcome associations. Removing the influences of extraneous variables can be

accomplished using regression techniques (Anderson, 1958; Cohen and Cohen, 1983; Kerlinger and Pedhazur, 1973). In the present study, multivariate multiple regression techniques found in MADSTAT (Fulcomer and Kriska, 1992) were used to explore possible toxic waste-outcome relationships, after the effects of the sociodemographic variables had been removed, through the use of partial and semipartial (or "part") correlations. [Note that a variety of packages, including SPSS, SAS, DBASE, were also used for some of the preliminary univariate analyses and particular care was taken to see that similar results were obtained across different packages.]

The MADSTAT regression algorithm was selected because of its ability to calculate and display results for several dependent variables in juxtaposition, so that parallel explanatory models could be evaluated across similar, potentially correlated, outcomes. That is, unlike an ordinary multiple regression analysis that would treat each outcome separately (including the use of stepwise variable-selection techniques to maximize the variance accounted for in a specific dependent variable), the approach focused on results for several outcomes simultaneously, each based on a common set of explanatory variables, to explore the partial correlations between exposures and outcomes. Moreover, this approach did not deal with the issue of forming composite outcomes as would be called for in such multivariate strategies such as canonical correlational analysis (e.g., to create "the most predictable criterion" as first suggested by Hotelling, 1935). In particular, because the data file used in this report is one of the first examples of linkages between AROs and exposure variables, each with multiple measures from several distinct

sources, we believed it would have been premature to begin weighting these outcomes (although this may well be a fruitful area for future investigations).

The twelve sociodemographic variables (six from the 1980 U.S. Census and six aggregated from information found on birth certificates) listed earlier in Section D (i.e., the multiple independent variables forced into the models before the exposure-outcome relationships were evaluated) were selected to account for traditional "confounders" reported in the literature on adverse reproductive outcomes (Fulcomer et al., 1981). The second chapter of the Phase I report (Fulcomer et al., 1992b) contains a description of how these twelve variables were selected.

III. RESULTS

This chapter presents the primary results of the multiple regression and partial regression analyses of the exposure-surrogate and adverse reproductive variables controlling for the sociodemographic variables. The next chapter interprets the more important findings that are listed here. With the set of twelve sociodemographic variables, three subsets of exposure variables, and two subsets of outcomes, there are six distinct groupings of information covered in the total of 51 variables included in the simple correlation matrices required for these analyses:

- (a) the twelve sociodemographic characteristics treated as independent variables;
- (b) the three subsets of data on environmental exposures, i.e.
 - toxic waste sites (4 variables),
 - industrial air emissions (8 variables), and
 - agricultural pesticide applications (6 variables); and
- (c) the two subsets derived from different sources of information on adverse reproductive outcomes to serve as dependent variables, i.e.,
 the 8 outcome rates based on vital records and
 - the 13 outcome rates derived from the Birth Defects Registry.

For univariate statistics, 51 is a manageable number of variables. However, once bivariate correlations must be considered for the regression analyses, the number of off-diagonal values for the pairs of variables becomes

enormous (2550 for each weighting scheme). Although separate correlation matrices were computed to evaluate the linear relationships within and between all groupings of variables in the multiple and partial regression analyses, only the subset of results most relevant to exposure-outcome associations are listed in this chapter. While intermediate univariate and bivariate are briefly mentioned here as a complete reference source for the reader, those results not directly addressing regression-related questions have either been described more fully in the report on the project's first phase (Fulcomer et al., 1992b) or appear in the appendices of this report.

Because the report is intended as an exploration of issues and methods for conducting correlational analyses of exposure-outcome data from geographic areas, values for each of the four weighting schemes (i.e., unweighted, common logarithms, square roots, and fully-weighted by the number of births) are listed here in juxtaposition. It is hoped that future studies will be able to address this consideration more parsimoniously.

A. DESCRIPTIVE STATISTICS FOR THE SOCIODEMOGRAPHIC (INDEPENDENT) VARIABLES

As a first step in approaching the multiple regression analysis, univariate descriptive statistics and the simple (i.e., unadjusted for any covariates) bivariate correlations were calculated among the twelve sociodemographic characteristics serving as the independent variables; the report for the project's first phase (Fulcomer et al., 1992b) lists these results in Appendices A and B, respectively. Given the ecologic nature of the study, the subsuantial magnitudes of these correlations are not surprising, including many of the relationships involving poor prenatal care. Some

regression results presented in conjunction with the univariate statistics illustrate that the correlation matrices involve considerable redundancy (e.g., 97% of the variance of mother's average age is explained by the regression of the other eleven sociodemographic variables obtained under the fully-weighted scheme).

B. DESCRIPTIVE STATISTICS FOR THE EXPOSURE VARIABLES

This section discusses three types of descriptive statistics for the three subsets of exposure variables. The first section reviews the tables of correlations within and between the three exposure subsets. Correlations between the twelve sociodemographic variables and the exposure variables are described in the second section. Finally, some regression statistics for the exposure variables are given in the third section.

B.1 CORRELATIONS WITHIN AND BETWEEN THE SUBSETS OF EXPOSURE VARIABLES

Simple bivariate correlations within the three subsets of environmental exposure variables are found in Appendices A, B, and C for the toxic waste sites, industrial air emissions, and agricultural pesticide applications, respectively. Similarly, the correlations between the variables in the toxic waste site subset and the industrial air emissions and agricultural pesticide applications appear in Appendices D and E, respectively, while the values between the air emissions and pesticide subsets are found in Appendix F.

<u>Correlations Among Toxic Waste Site Variables</u>. The simple correlational results for the toxic waste sites variables found in Appendices A, D, and E

were based on the 108 NPL and 1436 CERCLIS "facilities" in New Jersey (see Bove, 1992). Five of the NPL facilities have locations in two different communities and, therefore, were treated as 10 separate sites; this also increased the total number of CERCLIS sites to 1441. Removing the six municipalities with no births in any of the three years did not change the number of NPL sites included in the analyses, while only one of the CERCLIS sites was eliminated. The final set of 113 NPL sites included in the present study were located in 89 (15.86%) of the 561 geographic units considered here, with up to five NPL sites possible in a single unit. The 1440 CERCLIS sites included here are more widely-dispersed throughout the state with over 338 (60.25%) of the state's communities having at least one such facility; the maximum number of CERCLIS sites in any community is 109 (in Newark). Because NPL sites also appear on the CERCLIS list and because the two "density" variables depend on the two "presence" variables, the positive correlations in Appendix A are not surprising.

Correlations Among Industrial Air Emissions Variables. The correlational results for the industrial air emissions data found in Appendices B, D, and F were derived from reports provided by 857 facilities for the 1987 TRI database. Only the variables for the totals of both stack and fugitive emissions were included in the present analyses. For the 561 geographic units retained, Table 3 summarizes the number of different towns to which the reports referred (with per cents of 561 given in parentheses) and the number of pounds of emissions reported (the total from which the "density" variables were calculated along with the minimum and maximum nonzero values observed) for each of the industrial air emissions variables used here.

Industrial Air Emissions Variable	Number of Communities	Pounds of Total	Emissions Minimum	Reported Maximum
Air	211 (37.61%)	39,504,406	42	3,111,392
Teratogens	149 (26.56%)	22,715,186	90	2,858,104
Solvents	155 (27.63%)	30,907,907	21	2,965,783
Special*	36 (6.42%)	218,256	5	82,007
Inorganics	139 (24.78%)	2,595,516	5	386,817
Hydrocarbons	118 (21.03%)	11,669,935	57	2,635,155
Halogens	92 (16.40%)	5,015,649	5	904,675
Carcinogens	112 (19.96%)	4,521,117	68	911,782

Summary Of Information From The 1987 TRI Database

* Includes lead, arsenic, and vinyl chloride.

Given the overlapping groupings of chemicals in the set of air emissions variables, substantial intercorrelations among the variables were expected; this is especially evident in the correlations between the air-density variable and six of the remaining seven variables (all of which are also included in the air-density variable as well) and between the teratogendensity and solvent-density variables (which are nearly redundant). The lone exception is the grouping of special chemicals which, based on low levels of reported emissions, appears to be largely unrelated to the other seven variables.

<u>Correlations Among Agricultural Pesticide Applications Variables</u>. The correlations for the agricultural pesticide applications variables presented in Appendices C, E, and F came from survey results conducted by NJDEP's Pesticide Control Program (described by Bove, 1992). For the 561 communities retained for the present study, Table 4 summarizes the number of different towns in which such applications were reported (with percents of 561

given in parentheses) and the number of pounds applied (the total from which the "density" variables were calculated along with the minimum and maximum nonzero values observed) for each of the agricultural pesticide applications variables included here. [Note that fractional pound figures reflect the estimation of chemical composition.]

 TABLE 4

 Summary Of Information On Agricultural Pesticide Applications

Agricultural Pesticide	Number of	Pounds Applied							
Applications Variable	Communities	Total	Minimum	Maximum					
* • • • • • • • • • • • • • • • • • • •									
Pesticides	247 (44.03%)	1,591,348.30	.09	153,564.10					
Thalidomides	132 (23.53%)	88,807.58	.01	18,287.41					
Organophosphates	225 (40.11%)	177,368.47	.01	19,560.06					
Carbamates	215 (38.32%)	186,142.17	.03	23,797.18					
Herbicides	81 (14.44%)	12,253.72	. 39	985.90					
Halogens	170 (30.30%)	48,636.19	.05	10,812.80					

Except for the herbicide-density variables, the set of pesticide variables are highly correlated with one another. Correlations involving the herbicide variable are considerably lower, most likely reflecting both the low levels with which that type of application was reported as well as its use on different crops and for purposes other than pesticides.

<u>Correlations Between The Subsets Of Environmental Exposure Variables</u>. An inspection of the correlations in Appendix D shows that the two Superfund variables ("density" and "presence") are essentially unrelated to the industrial air emissions variables. In contrast, the two variables derived from the CERCLIS sites are probably more reflective of industrial activity and, therefore, it is not surprising that they are modestly correlated with

seven of the eight air emissions variables; the exception is the grouping of the special chemicals, which was also not associated with the other items within its*own subset.

The remaining appendices of simple correlations between subsets of exposure variables both involve the agricultural pesticide application variables. These two tables reveal the expected underlying linear independence between the pesticide variables and the other subsets of exposure items, with the between-subset correlations to the toxic waste site and industrial air emissions variables appearing in Appendices E and F, respectively.

B.2 CORRELATIONS BETWEEN THE SOCIODEMOGRAPHIC (INDEPENDENT) AND EXPOSURE VARIABLES

The simple bivariate correlations between the sociodemographic and the three subsets of exposure variables are listed in Appendices G, H, and I for the toxic waste sites, industrial air emissions, and agricultural pesticide applications, respectively. Although some researchers (most notably Najem et al., 1985) have reported findings based on such "apparent" (or unadjusted) relationships, these values are presented here only as intermediate descriptive statistics. These values are the predictor-criterion correlations used for the next section's multiple regression analyses treating the exposure variables as dependent variables. The much more important role of the exposure variables in <u>partial</u> correlations with the adverse reproductive outcomes will be discussed later in this chapter.

B.3 REGRESSIONS FOR THE SUBSETS OF EXPOSURE VARIABLES

The multiple regression analyses for explaining each of the exposure variables as a weighted linear combination of the twelve sociodemographic variables were calculated using the correlations mentioned in the last section. These analyses have been summarized here because they address the issue of removing influences of the sociodemographic variables (in this case from the exposure variables) before evaluating exposure-outcome partial correlations. Some summary regression statistics for each exposure variable are presented in Tables 5, 6, and 7 for the toxic waste site, industrial air emissions, and agricultural pesticide applications, respectively. For each exposure (i.e., dependent) variable, these tables provide some relevant statistics, including the adjusted, or "shrunken", R^2 as a per cent to estimate the population R^2 [= 1-(1- R^2)((N-1)/(N-p-1)), where p is the number of independent variables] originally due to Wherry (1931); and the F-ratio for R^2 .

An inspection of Tables 5 to 7 shows that there are some relationships between the sociodemographic and exposure variables that should be accounted for in the later analyses of the partial correlations between the exposures and the adverse reproductive outcomes. In Table 5, there are significant \mathbb{R}^2 values for the CERCLIS variables ("density" and "presence"), regardless of the type of weighting scheme considered. However, the large number of sites and births in Newark alone (109 and 17,439, respectively) clearly distorts the regression results for the scheme that accounts for the actual number of births in a community (i.e., the fully-weighted approach). The analysis forces extreme values (such as Newark in the case of sites and births) to fall very close to the best-fitting regression lines. Although six of the eight \mathbb{R}^2

Summary Regression Statistics	For Explaining Each	Toxic Waste Site Variab	le From The Twelve	Sociodemographic Variables

****	********	********	*********	***	********	********	******	*********	*****	
* VARIABLE *	TYPE	* NEAN	: INTERCEPT	*	STANDARD	: STANDARD	* MULTIPLE	: MULTIPLE	: ADJUSTED	F-RATIO *
* *	r OF	*	: VALUE	*	DEVIATION	: ERROR	* R	: R-SQUARE	: R-SQUARE	* FOR *
* *	WEIGHTING	*	:	*		:	*	: PER CENT	: PER CENT	* R-SQUARE *
************	*********	**********	*******	***	*******	*******	******	*******	*********	********
NPL-density	Unweighted	.0338	.3299		.1559	. 1554	.1666	2.7764	.6474	1.3041
	Log(10)	.0346	. 1833		.1501	. 1491	.1849	3.4187	1.3037	1.6165
	Square Root	t .0348	.0550		.1370	.1357	.2002	4.0084	1.9063	1.9069*
	Fully-wgtd.	0337	2198		.1098	.1084	.2164	4.6828	2.5956	2.2435**
CERCLIS-density	Unweighted	.4813	1.5843		.9045	.8355	.4062	16.5018	14.6734	9.0251**
	Log(10)	.5216	1055		.9213	.8290	.4558	20.7727	19.0378	11.9734**
	Square Root	t .6396	-3.0868		1.0162	.8240	.5971	35.6543	34.2452	25.3041**
	Fully-wgtd.	9963	-5.1656		1.3063	.7950	.7985	63.7545	62.9608	80.3261**
NPL-presence	Unweighted	.1586	-1.0339		.3657	.3592	.2357	5.5540	3.4858	2.6855**
	Log(10)	.1794	-1.2649		.3838	.3746	.2609	6.8083	4.7676	3.3362**
	Square Root	t .2259	-2.4627		.4182	.3976	.3398	11.5466	9.6096	5.9613**
	Fully-wgtd.	3195	-3.0154		.4663	.4087	.4981	24.8073	23.1608	15.0662**
CERCLIS-presence	Unweighted	.6025	1.1265		.4898	.4685	.3236	10.4728	8.5124	5.3420**
	Log(10)	.6451	.6460		.4787	.4575	.3254	10.5914	8.6336	5.4097**
	Square Root	t .7140	. 2895		.4519	.4288	.3448	11.8902	9.9608	6.1626**
	Fully-wgtd.	8131	.0402		.3898	.3638	.3844	14.7753	12.9091	7.9172**

* significant at p < .05.</pre>

** significant at p < .01.

Summary Regression Statistics For Explaining Each Industrial Air Emissions Variable From The Twelve Sociodemographic Variables

	* TYPE	* MEAN	: INTERCEPT	* STANDARD	: STANDARD	* MULTIPLE	: MULTIPLE	: ADJUSTED	* F-RATIO *
•	* OF	*	: VALUE	* DEVIATION	: ERROR	* R	: R-SQUARE	: R-SQUARE	* FOR 1
•	* WEIGHTING	*	:	*	:	*	: PER CENT	: PER CENT	* R-SQUARE *
******	**********	********	******	*********	*******	*********	*******	********	*******
Air-density	Unweighted	14382-9819	21551.7502	65980.3253	62491,6932	.3495	12,2174	10.2952	6.3558**
	Log(10)	16104.6049	-26359.3420	70483.8520	66501.2565	.3590	12.8890	10.9815	6.7569**
	Square Root	20132.6604	-205074,8499	78567.1717	73898.6703	.3664	13.4268	11.5310	7.0825**
	Fully-wgtd.	28173.5162	-371690.7936	84819.3594	79406.7495	.3773	14.2336	12.3555	7.5787**
Teratogen-	Unweighted	7518.5529	168490.8345	38032.9842	37910.9149	.1664	2.7700	-6409	1.3010
density	Log(10)	8111.4308	147206.2130	37733.1588	37565.0203	.1736	3.0130	.8892	1.4187
	Square Root	9730.6037	149558.5344	37033.6465	36570.3044	.2139	4.5762	2.4866	2.1900**
	Fully-wgtd.	13873.0305	141541.2654	36169.8246	34033.9764	.3655	13.3587	11.4614	7.0410**
Solvent-density	Unweighted	10405.3525	213536.8870	45658.1485	44881.1914	.2333	5.4450	3.3744	2.6297**
	Log(10)	11309.8974	194489.2776	45703.6736	44888.1914	.2367	5.6038	3.5367	2.7110**
	Square Root	13635.8167	209658.1406	45348.0246	44211.5629	.2643	6.9862	4.9494	3.4300**
	Fully-wgtd.	19551.6317	185421.3881	44872.2254	41264.3715	.4153	17.2462	15.4341	9.5171**
Special-density	Unweighted	27.2376	682.1004	300.9712	299.9417	.1677	2.8112	.6829	1.3209
	Log(10)	28.9735	829.8103	305.1521	304.0827	.1682	2.8275	.6997	1.3288
	Square Root	33.1658	1356.7745	300.2941	298.5725	.1806	3.2617	1.1434	1.5397
	Fully-wgtd.	44.2200	1101.3178	267.0574	263.1130	.2239	5.0121	2.9321	2.4097**
Inorganics-	Unweighted	814.0588	2464.2650	4501.2673	4420.7224	.2369	5.6136	3.5467	2.7160**
density	Log(10)	938.7179	-1606.7183	4805.0043	4694.7211	.2566	6.5833	4.5377	3.2182**
	Square Root	1243.4941	-18785.6812	5347.0976	5116.4483	.3225	10.4030	8.4410	5.3023**
	Fully-wgtd.	1900.6705	-47590.1752	6030.6270	5459.0309	.4451	19.8140	18.0581	11.2842**
Hydrocarbon-	Unweighted	3509 3009	79311.3012	20694.5184	20719.9296	. 1379	1.9024	.0000	.8856
density	Log(10)	3739.9539	67234.8749	20193.4986	20190.9836	.1472	2.1672	.0249	1.0116
	Square Root	4412.6704	60994.8973	19537.3640	19435.7566	.1777	3.1581	1.0374	1.4892
	Fully-wgtd.	6037.8827	29316.5810	18436.3873	17866.0423	.2847	8.1038	6.0915	4.0271**
Halogen-density	Unweighted	1210.8003	-9238.7977	6562.2881	6548.4743	.1598	2.5544	.4206	1.1971
	Log(10)	1386.2141	-15622.2712	6981.1822	6956.6425	.1682	2.8296	.7018	1.3298
	Square Root	1749.2284	-38619.4471	7522.8594	7463.2776	.1920	3.6868	1.5777	1.7481
	Fully-wgtd.	2332.0560	-50309.2742	7655.3884	7516.6614	.2379	5.6574	3.5915	2.7384**
Carcinogen-	Unweighted	1218.9104	-6386.8807	6756.8898	6729.3337	.1714	2.9394	.8140	1.3830
density	Log(10)	1405.7407	-11688.4243	7201.0993	7159.2523	.1810	3.2769	1.1589	1.5471
·	Square Root	1794.7854	-30189.5785	7774.3334	7691.4842	.2054	4.2174	2.1200	2.0108*
	Fully-watd.	2458.5246	-39596.4775	7956.4507	7748.0339	.2684	7.2024	5.1703	3.5444**

* significant at p < .05.</pre>

** significant at p < .01.</pre>

Summary Regression Statistics For Explaining Each Agricultural Pesticide Applications Variable From The Twelve Sociodemographic Variables

										" ~ #					
* VARIABLE *	TYPE	* NEAN	: INTERCEPT	***** * S	******** Tandard	***	STANDARD	* NULTIPLE	***		****	D.UISTED	**	*********	*
* *	OF	*	: VALUE	* D	EVIATION	:	ERROR	* R	:	R-SQUARE	: R	-SQUARE	*	FOR	
* *	WEIGHTING	; *	:	*		:		*	:	PER CENT	: P	ER CENT	*	R-SQUARE	*
*******	*********	*****	******	*****	******	***	******	******	k de d	******	****	******	***	*******	t ir
Pesticide-	Unweighted	238.4054	6662.8198	1	346.7525		1338.5878	.1824		3.3258		1.2088		1.5710	
density	Log(10)	218.9142	2 4843.8979	1	268.6180		1266.0790	.1592		2.5342		.3999		1.1874	
	Square Roo	t 180.9269	5460.7769	1	124.0915		1123.6647	.1489		2.2171		.0759		1.0355	
	Fully-wgtd	. 117.7977	4010.3484	i	854.7031		855.8404	.1372		1.8823		.0000		.8761	
Thalidomide-	Unweighted	10.9933	431.7314		60.2933		59.5290	.2147		4.6082		2.5193		2.2061**	,
density	Log(10)	10.3787	7 374.6061		57.7281		57.2411	.1946		3.7870		1.6801		1.7974*	
	Square Roo	t 8.9480	514.8076		53.2802		52.7975	.1977		3.9080		1.8038	_	1.8573*	
	Fully-wgtd	6.1063	435.0744		43.8236		43.5394	.1846		3.4078		1.2926		1.6111	
Organophosphates-	Unweighted	22.6345	5 363.2466		103.9250		103.6631	.1623		2.6355		.5035		1.2361	
density	Log(10)	21.7532	2 287.4147		101.7341		101.6776	.1500		2.2515		.1110		1.0519	
	Square Roo	t 19.0029	387.7477		93.8948		93.8615	.1487		2.2124		.0711		1.0332	
	Fully-wgtd	. 13.2760	366.5819		75.2257		75.1427	.1536		2.3587		.2206		1.1032	
Carbanate-	Unweighted	21.3379	125.0968		123.9790		124.2974	.1280		1.6395		.0000		,7612	
density	Log(10)	20. 7063	s 99.5913		122.3843		122.6948	.1283		1.6457		.0000		.7641	
	Square Roo	t 17.6649	9 155.3158		110.8742		111.1496	.1287		1.6560		.0000		.7690	
	Fully-wgtd	. 11.5208	3 174.8341		84.0807		84.2496	.1323		1.7494		.0000		.8131	
Kerbicide-	Unweighted	2.0918	-2.6372		23.7579		23.8114	.1305		1.7021		.0000		.7907	
density	Log(10)	1.7437	7 .5393		19.9656		20.0320	.1221		1.4911		.0000		.6912	
	Square Roo	t 1.2387	7 4.4598		14.4911		14.5552	.1130		1.2758		.0000		.5901	
	Fully-wgtd	6630	3.6294		7.5589		7.5895	.1162		1.3493		.0000		.6246	
Kalogens-density	Unweighted	11.4232	- 135.8366		160.0312		161.4351	.0647		.4183		.0000		. 1918	
	Log(10)	11.2128	- 145.5239		158.2091		159.5468	.0694		.4811		.0000		.2208	
	Square Roo	t 9.5658	- 176.0148		142.3569		143.5414	.0713		.5077		.0000		.2330	
	Fully-wgtd	6.1599	-94.9458		105.1217	,	106.0039	.0702		.4934		.0000		.2264	

significant at p < .05.

** significant at p < .01.

.

the Superfund sites are significant, the proportions of variance explained in the density variable across the four weighting schemes are substantially lower than their counterparts on the CERCLIS list. Moreover, the R^2 's are substantially lower than those for explaining each sociodemographic variable (from the remaining 11 variables in that set) that are listed in Appendix A of the Phase I report (Fulcomer et al., 1992b). This suggests that there is considerable variance in the toxic waste site variables that is unrelated to the independent variables.

The summary regression statistics for the industrial air emissions variables listed in Table 6 also show the importance of accounting for some covariates before interpreting exposure-outcome relationships. Although there are considerable proportions of unexplained variance for the industrial air emissions, there are significant R^2 's for explaining three of the eight exposure variables (air-density, solvent-density, and inorganics-density) from the twelve independent variables, regardless of the type of weighting scheme employed. Each of the air emissions variables also has a significant R^2 under the fully-weighted scheme, while there are two other significant relationships found with weighting by the square root method. Within each variable, the R^2 's increase across the weighting schemes, again highlighting the distortions of regression results that are possible as the communities with more births are permitted to exert more influence in the formation of the initial correlations. Much like the situation with the CERCLIS sites. Newark by itself accounts for a large proportion (5.66%) of the total air emissions reported for the entire state.

In contrast to the toxic waste site and industrial air emissions exposure variables, the summary regression statistics found in Table 7 indicate that the agricultural pesticide applications variables remain largely unexplained by the twelve sociodemographic variables. Except for weak associations for the phthalimide-density variable with three of the four weighting schemes (the fully-weighted method is the only exception), there are no other significant results for the pesticide variables. Because there is little agricultural activity in the northern, industrialized areas of the state (e.g., Newark and Paterson both have <u>no</u> agricultural applications of pesticides), the overall independence between the pesticide variables and the sociodemographic variables is not surprising.

C. DESCRIPTIVE STATISTICS FOR THE OUTCOME (DEPENDENT) VARIABLES

This section briefly summarizes some important descriptive statistics for the two subsets of the adverse reproductive outcome dependent variables. [Several of these results are described more fully in the Phase I report (Fulcomer et al., 1992b).] Correlation matrices within and between the subsets are described in the first section below. The second section reviews the correlations between the sociodemographic (independent) and the birth outcome (dependent) variables. Initial (i.e., simple or "unadjusted") correlations between exposure and outcome variables are discussed in the third section.

C.1 CORRELATIONS WITHIN AND BETWEEN THE TWO SUBSETS OF OUTCOME VARIABLES

The simple bivariate correlations within and between the subsets of outcome variables derived from vital records and the BDR are described in the Phase I report, for which the appendix locations in that report are indicated in parentheses here. These correlations provide the initial values from which some of the later partial correlations are derived and, not surprisingly, are often significant and substantial.

<u>Correlations Within Vital Records Variables (Phase 1 Appendix C)</u>. All but 10 of the 112 correlations in Appendix C of that report are significant (93 at p<.01 and 9 at p<.05 alone).

<u>Correlations Within Birth Defects Registry Variables (Phase 1 Appendix</u> <u>D)</u>. While there is a lower proportion of significant values than for the set of vital records outcomes (despite the inflation of some of the pairings because variables appear both individually and as part of a total), 203 of the 312 are significant (174 of p<.01 and 29 at p<.05 alone).

<u>Correlations Between Vital Record And Birth Defects Registry Variables</u> (<u>Phase I Appendix E</u>). Although there is substantial overlap between the two subsets of variables (138 of the 416 correlations are significant, 104 at p<.01 and 34 at p<.05 alone), the correlations are generally lower than their within-subset counterparts.

C.2 CORRELATIONS BETWEEN THE SOCIODEMOGRAPHIC AND OUTCOME VARIABLES

The Phase I report also describes the simple correlations between the sociodemographic (independent) variables and the two subsets of adverse reproductive outcome (dependent) variables, which play important roles in the calculation of megression coefficients. Again, the appendix location in the Phase I report are given in parentheses.

<u>Correlations Between Sociodemographic And Vital Records Variables (Phase</u> <u>I Appendix F)</u>. Beyond pointing out the many significant values (300 at p<.01and 19 at p<.05 alone) and the substantial levels of many of the associations, it is also important to note that the directions of the significant relationships are all consistent with "risk factors."

<u>Correlations Between Sociodemogrpahic And Birth Defects Registry</u> <u>Variables (Phase I Appendix G)</u>. An inspection of these correlations reveals a much lower proportion of significant values (129 of the 624 values are significant, 72 at p<.01 and 57 at p<.05 alone) and generally lower magnitudes than those outcome variables based on vital records. Also, the <u>directions</u> of the relationships do not follow the same consistent pattern of positive correlations noted for the vital records outcomes.

C.3 CORRELATIONS BETWEEN THE OUTCOME AND EXPOSURE VARIABLES

This section presents the simple bivariate correlations between the dependent variables and the three subsets of exposure variables. These results are treated here only as an intermediate step in the calculation of

partial correlations and are shown in the appendices of this report. They should be interpreted cautiously. The partial correlations presented later will address the issue of exposure-outcome relationships <u>after</u> the predictive influences of the sociodemographic variables have been removed.

Correlations With Toxic Waste Site Variables. Appendices J and K of this report provide the correlations between the toxic waste site variables and the dependent variables based on vital records and birth defects registry information, respectively. The values in Appendix J involving vital records information give some early indications of potential exposure-outcome relationships, especially with respect to the CERCLIS-density variable. Of the 128 correlations (32 for each of 4 weighting schemes), 32 exceed the critical value for significance at p<.01 (i.e., $|\mathbf{r}_{XY}| \ge .115$), while eight of the remaining values are significant at p<.05 (i.e., $.088 \le |\mathbf{r}_{XY}| < .115$). In contrast, the correlations in Appendix K demonstrate the difficulty in establishing significant relationships with outcomes involving birth defects; of the 208 correlations, 10 are significant at p<.01, while another six are significant at the 5% level.

<u>Correlations With Industrial Air Emissions Variables</u>. Appendices L and M of this report list the correlations between the industrial air emissions variables and the two subsets of dependent variables. For the dependent variables based on vital records, the values in Appendix L suggest some potential exposure-outcome relationships, similar to the toxic waste variables; of the 256 correlations (64 for each of 4 weighting schemes), 39 exceed the critical value for significance at p<.01, while 26 of the remaining values are significant at p<.05. However, the much smaller proportion of

significant correlations for the birth defects variables found in Appendix M also parallels that for the toxic waste variables; of the 416 correlations (104 for each of 4 weighting schemes), just two are significant at p<.01, while another 10 of the pairings are significant at p<.05.

<u>Correlations With Agricultural Pesticide Applications Variables</u>. Appendices N and O of this report contain the correlations between the agricultural pesticide applications variables and the dependent variables based on vital records and birth defects registry information, respectively. For the values in Appendix N involving information based on vital records, only four of 192 correlations (48 for each of 4 weighting schemes) are significant (1 at p < .01 and an additional 3 at p<.05). Similarly, only one of the 312 correlations in Appendix O for the birth defects outcomes is significant at the 5% level.

D. REGRESSION STATISTICS FOR THE OUTCOME (DEPENDENT) VARIABLES

This section presents some results from the multiple regression analyses attempting to explain each of the outcome variables from a prediction equation based on the twelve sociodemographic variables. Although the tables that appear in this section were also listed in the report on the first phase (Fulcomer et al., 1992b), their inclusion here is especially relevant, since the development of the equations was the final computational step prior to the calculation of the exposure-outcome partial correlations described in the next section.

D.1 REGRESSION RESULTS FOR THE VITAL RECORDS VARIABLES

For the dependent variables derived from vital records, Table 8 shows that the regression equations explain significant proportions of variance. With one exception, all of the overall F-tests for the R^2 's are significant at the p<.01 level; the exception involves the application of the unweighted scheme to the rate of fetal deaths, which is significant at the 5% level. Beyond mere statistical significance, however, the proportions of variance explained give evidence of predictive strength that suggests applications to program planning and evaluation. For example, the adjusted R^2 percents range from 2.13% (for the unweighted scheme applied to the rate of fetal deaths) to an exceptionally high 86.68% (for the percent of preterm births under the fully-weighted scheme). In terms of the weighting schemes, the adjusted R^{2} 's for the unweighted scheme are lowest, followed by those based on common logarithms. square roots, and the actual number of births (i.e.. fully-weighted). It is also evident that the results for the square root transformations are appreciably greater than those for either the unweighted or log(10) schemes, but still are considerably less than those for the fully-weighted scheme.

D.2 REGRESSION RESULTS FOR THE BIRTH DEFECTS REGISTRY VARIABLES

In contrast to the dependent variables derived from vital records, Table 9 conveys much weaker regression results for those based on the BDR. First, the overall F-ratios for the R^{2} 's are not uniformly significant. Of the 52 values (4 weighting schemes for each of the 13 variables), 21 are significant (16 at the p<.01 level and an additional five at p<.05). Furthermore, even

Summary Regression Statistics For Explaining Each Vital Records Variable From The Sociodemographic (Independent) Variables

*******	******	**1	******		******	Helt	*******	***	*****	***	*******	**	*******	rder	********	inder 1	******	***	****	******	**
* VARI		*	TYPE	*	MEAN	:	INTERCEPT	*	STANDARD	:	STANDARD	*	MULTIPLE	:	MULTIPLE	:	ADJUST	ED	* F-	RATIO	
t	•••••••	*	OF	*		:	VALUE	*	DEVIATION	:	ERROR	*	R	:	R-SQUARE	:	R-SQUA	RE	*	FOR	*
*	1	*	WEIGHTING	; *		:		*		:		*		:	PER CENT	:	PER CE	NT	* R-	SQUARE	*
*******	*******	t	******		*****	r de de	*******	***	*****	r##	*******	ht	******	rini	******	Hiti	******	***	****	*****	hte
Preterm	n birth s	ι	Inweighted	I	8.1143		48.9888		3.5011		2.6924		.6491		42.1275		40.860	2	33	.2424**	k
perce	ent	l	.og(10)		8.2004		35.4795		3.2682		2.3447		.7045		49.6332		48.530	2	45	.0015**	ir 👘
		9	Square Roo	t	8.6243		37.9345		3.3543		1.9024		.8278		68.5236		67.834	3	9 9	.4154*1	ł
		1	ully-wgtd	I.	9.8792		21.4097		3.8870		1.4188		.9325		86.9623		86.676	8	304	.5994 **	ł
Small-f	for-	ι	Inweighted		10.1453		20.5737		3.0433		2.7763		.4309		18.5632		16.779	9	10	.4095**	k
gesta	ational	ι	.og(10)		10.2555		14.8874		2.7489		2.4534		.4695		22.0465		20.339	5	12	.9153**	*
age p	percent	5	Square Roo	t	10.5095		15.8276		2.4428		2.0478		.5589		31.2332		29.727	3	20	.7413**	k
		F	ully-wgtd		11.1511		5.4554		2.1896		1.5283		.7234		52.3282		51.284	2	50	.1271**	k
Vomela					10 70/3		47 (026		44 /704		10 9077		7700		44 0979		0 47/	0	F	(0)(+	
bicth	w woicht		nmeighteu	l	10.7042		13.4720		0 9959		10.09/3		.3329		17.9605		9.130	0 5	2	.0720"	
poto	weigni		log(10) Saunno Bee		10.0/30		20.3730		7.0000		7.2140		.3/24		13.0077		11.903			·-)223/**	
rate		3 5	ullu-usta		12 0000		31.1/09		0.4300		/ .3201		.7120		20.2132		24.79/	4 ~	10	·	
			ully-wylu	•	12.9099		30.9039		(.))2)		4.9155		.1031		20.3314		27.410	9	ల	.9202**	•
Low bir	thweight	L	Inveichted		55,9390		201.7679		25.8503		22,2059		.5272		27,7895		26.208	2	17	5743*1	ł
rate		L	.og(10)		56.8128		170.6982		24.1056		19,4861		.6005		36.0548		34,654	5	25	.7486*1	ł
		S	Square Roo	t	59:8551		205.6308		23.9894		15.8368		.7573		57.3532		56.419	3	61	.4144**	ł
		F	ully-wgtd	I .	68.7379		147.8255		27.2254		11.2055		.9134		83.4231		83.060	1	229	.8175**	lr -
Neonata	al death	ι	Inweighted	1	5.8728		31.1302		7.2140		7.0876		.2354		5.5426		3.474	2	2	.6797**	ł.
rate		L	.og(10)		5.9073		22.2913		6.3972		6.2427		.2610		6.8115		4.770	9	3	.3379*1	ł
		5	iquare Roo	t	6.0906		26.4334		5.3089		5.0336		.3468		12.0292		10.102	8	6	.2445*1	ł
		F	ully-wgtd	.	6.7102		23.8850		4.0735		3.4528		.5449		29.6955		28.156	0	19	.2889*1	ł
Post-nec	onatal	U	Inweighted		2.4211		-10.1002		5.1187		4.9490		.2920		8.5244		6.521	3	4	.2556*1	r
death	rate	L	.og(10)		2.4278		-3.2981		4.1843		4.0032		.3229		10.4295		8.468	1	5	.3174**	r
		S	iquare Roo	t	2.6201		1.5431		3.3843		3.1166		.4124		17.0099		15.192	6	9	.3600*1	ł
		F	ully-wgtd		3.1936		5.1492		2.6631		2.0421		.6516		42.4627		41.202	7	33	.7021*1	ł
Tetal i	nfort	1	les so i elstro d	,	9 30/4		21 0260				0 7774		7050		40 (400		0.45		-		
dooth			on(10)		0.2741		10.0044		0./049		0.3//1		.3230		10.0120		0.07	40	2	.4212"	
Geath	rate	L 6	og(IU)	_	0.3373		10.9000		(.0734		(.23)2 E 0740		.3008		13.4518		11.55	00	1	·**8/90.	r
		3	quare koo	ι.	0.7111		20.0050		0.7000		2.0010		.4/82		22.00/9		21.1/	89	15	.5591"	
		r	ally wg (d	•	7.7040		20,9930		2.2(0)		4.0205		.7010		47.1555		40.01	YÖ	44	.1108**	•
Fetal m	ortalitv	u	nweighted		6.9253		22,7398		7,9773		7,8918		,2057		4.2301		2 13	20	2	.0171*	
rate		Ĩ	.00(10)		6,0347		8,9757		7,0011		6,0073		.2170		4.7472		2 66	14	2	2760#1	*
		s	iquare Roo	t	7.0895		1.0189		5,7390		5,5512		.2905		8.4414		6.43	64	4	2103+1	
		F	ully-wgtd		7.6948		1.5630		4.3227		3.8105		.4895		23.9576		22.29	24	14	.3875*1	r

* significant at p < .05.</pre>

* significant at p < .01.

Summary Regression Statistics For Explaining Each Birth Defects Registry Variable From The Sociodemographic (Independent) Variables

:

******	********	*****	******	******	********	******	********	******	********
* VARIABLE	* TYPE *	MEAN	INTERCEPT	* STANDARD	: STANDARD	* MULTIPLE	: MULTIPLE	: ADJUSTED	* F-RATIO *
*	* OF *		VALUE	* DEVIATION :	ERROR	* R	: R-SQUARE	: R-SQUARE	* FOR *
*	* WEIGHTING *		•	• ;	:	*	: PER CENT	: PER CENT	* R-SQUARE *
*****	*****	******	******	******	*****	*****	*****	*******	*****
Down syndrome	Unweighted	1.4198	-13.5659	4.3478	4.3460	.1491	2.2244	.0834	1.0389
	Log(10)	1.3475	-5.9486	3.3598	3.3618	.1423	2.0247	.0000	.9437
	Square Root	1.2845	-1.1152	2.5351	2.5384	.1374	1.8877	.0000	.8786
	Fully-wgtd.	1.1862	3.1069	1.6153	1.6062	.1799	3.2374	1.1185	1.5279
Noural tuba	linusianted	1 0011	8 3407	3 01//	3 8730	2050	6 2020	2 10/2	2 0031#
defects		1 0050	0.3077	2 5252	3 5004	2016	4.2020	1 0626	1 93/1*
0010010	Sauara Poot	1 002/	16 7112	2 0002	2 8821	1028	7 0570	1 8507	1.8800*
	Eully-unto	2 0/78	11 7121	2 0/57	2 00%	2/61	6 05/7	3 0075	2 0/32**
	ruccy-wycu.	2.0470	11.7121	2.0431	2.0044	.2401	0.0347	3.7713	£.74JE""
Eye defects	Unweighted	.2121	9528	1.0125	1.0193	.0906	.8212	.0000	.3781
	Log(10)	.2162	8148	.9732	.9790	.0978	.9557	.0000	.4407
	Square Root	.2101	4525	.8539	.8579	.1111	1.2340	.0000	.5705
	Fully-wgtd.	.1963	.7381	.6362	.6359	.1497	2.2422	.1015	1.0474
Selected severe	Unweighted	1.3779	-6.9161	3.1674	3.1617	.1580	2.4955	.3604	1.1688
cardiac	Log(10)	1.3511	-5.2168	2.8293	2.8305	.1433	2.0541	.0000	.9577
defects	Square Root	1.3095	-2.6914	2.2953	2.3024	.1240	1.5364	.0000	.7126
	Fully-wgtd.	1.2872	3.0891	1.5705	1.5671	.1601	2.5636	.4300	1.2015
Oral clofts	linusiahtod	1 7/50	-/ /05/	2 9072	2 9077	1754	1 9700	0000	0654
	Log(10)	1.3430	-4.4730	2.0732	2.07//	1300	1.0392	.0000	.0330
	Log(IU)	1 7101	-4.1310	2.0210	2.02/3	1205	1./139	.0000	./903
	Square Koot	1.3101	-3.5220	2.1/07	2.1043	. 1200	1.4000	.0000	-0/44
	rully-wgta.	1.2399	2904	1.3320	1.3390	.1124	1.3312	.0000	-0101
Reduction	Unweighted	.4378	.6883	1.4981	1.5042	.1159	1.3444	.0000	.6223
deformities	Log(10)	.4438	.9969	1.4048	1.4101	.1185	1.4045	.0000	.6505
	Square Root	.4358	2.0165	1.2041	1.2089	.1170	1.3699	.0000	.6343
	Fully-wgtd.	.4204	1.7536	.8806	.8834	.1232	1.5167	.0000	.7033
Ch	Ileveichead	2 012/	67 4944	/ 7501	/ 7/47	4/37	2 0750		0/00
unromosomat	Unweighted	2.0124	- 17.1201	4./391	4./01/	. 1427	2.0359	.0000	.9490
anomalies	Log(10)	1	-8.8350	3.0270	3.6364	.1300	1.0907	.0000	./855
	Square Koot	1.9091	-4.1499	2.9955	5.0047	.1187	1.4099	.0000	.0231
	Fully-Wgtd.	1.8275	1.5649	2.0059	2.0039	. 1463	2.1415	.0000	.9994
Congenital	Unweighted	28.2671	53.1675	25.0865	24.5347	.2530	6.4010	4.3514	3.1230**
anomalies	Log(10)	27.7806	68.2228	21.9362	21.5775	.2306	5,3165	3.2432	2.5642**
	Square Root	27.2878	145.1566	18.2189	17.9741	.2181	4.7555	2.6698	2.2801**
	Fully-wgtd.	27.0898	175.9276	13.5644	13.2885	.2467	6.0842	4.0277	2.9585**

TABLE	9	(conti	inued)
-------	---	--------	--------

******	********	i de de de la	******	********	k deste sl	*******	***	******	**1	******	*****	***	********	******	***
* VARIABLE *	TYPE	*	MEAN	: INTERCEPT	*	STANDARD	:	STANDARD	*	MULTIPLE	: MULTIPLE	E :	ADJUSTED *	F-RATIO	*
* *	OF	*		: VALUE	*	DEVIATION	:	ERROR	*	R	: R-SQUAR	:	R-SQUARE *	FOR	*
* *	WEIGHTING	*		:	*		:		*		: PER CEN	r :	PER CENT *	R-SQUARI	E *
*******	**********	****	*******	*********	k a ki	********	k##	********	**1	********	******	***	********	*******	***
Major anomalies	Unweighted		21.8319	2.182	B	19.7944		19.1366		.2922	8.538	7	6.5359	4.2634	**
	Log(10)		21.4571	22.6620	5	17.7063		17.2166		.2735	7.481)	5.4550	3.69261	**
	Square Root	t	20.9822	72.573	5	14.8180		14.5105		.2482	6.162	5	4.1078	2.9991	**
	Fully-wgtd.	•	20.6488	96.449	5	10.9744		10.7530		.2460	6.051	5	3.9943	2.9416	**
Ninor anomalies	Unweighted		6.4351	50,989	5	10.2648		10, 1834		. 1921	3.688	4	1.5794	1.7489	
			6 3234	45 565	2	8.3033		8.3853		.1526	2.320	1	.1903	1.0890	
	Salare Root	•	6.3056	72 587	0	6.7436		6.6844		. 1963	3,854	1	1.7486	1.8305	*
	Fully-wgtd.	•	6.4408	79.478	1	4.9560		4.7627		.3103	9.628)	7.6490	4.8652	**
Central nervous	Unweighted		2.3125	7.407	1	4.1813		4.1468		.1936	3.749	3	1.6422	1.7791	*
system defects	Log(10)		2.3112	8.9093	3	3.7842		3.7544		.1919	3.682	4	1.5732	1.7459	
	Square Root	1	2.2870	14.816	4	3.1154		3.0927		.1888	3.566	2	1.4545	1.6888	
	Fully-wgtd.	•	2.3118	12.696	7	2.1840		2.1490		.2292	5.254	4	3.1796	2.5326	**
Keart defects	Unweighted		4.0757	9 522	5	6 1269		6.0975		.1755	3,079	R	.9575	1.4511	
			5.0704	11_880	2	5.7063		5-6820		.1725	2.976	>	.8516	1.4008	
	Sauere Root	•	5.1780	23 754	-	4.9666		4.0306		1886	3.558	- 7	1_4468	1.6851	
	Euliv-untd		5 3054	28 304	6	3 8410		3 7602		2605	6 784	;	4 7433	3 3237	**
	racty myta.	•	3.3734	20.374	•	5.0017		3.7072			0.704	•		3.3631	
Musculoskeletal	Unweighted		7.8740	-9.162	0	9.4364		9.2270	I	.2538	6.438	7	4.3902	3.1428	**
defects	Log(10)		7.7790	-3.538	9	8.3248		8.1751		.2373	5.630	3	3.5643	2.7248	**
	Square Root	t	7.8220	12.516	6	7.0767		6.9336	•	.2462	6.062	4	4.0053	2.9471	**
	Fully-wgtd.	•	8.1600	32.350	2	5.5455		5.2970		.3274	10.716	8	8.7617	5.4814	**

* significant at p < .05.</pre>

** significant at p < .01.</pre>

.

•

when significant, the adjusted per cents of variance accounted for are at modest levels, ranging up to a maximum of 8.76% for musculoskeletal defects under the fully-weighted scheme. Unlike the vital records variables, there is no discernible pattern for the subset from the BDR with respect to the four weighting schemes. Given the general absence of consistent findings from studies of birth defects at the individual-case level as noted earlier, it is hardly surprising that results for such outcomes at the social-area level would demonstrate a similar lack of strong findings.

E. PARTIAL REGRESSION RESULTS

The principal focus of this correlational study is on the significance and magnitude of exposure-outcome relationships after removing the predictive influences of the sociodemographic variables. Using well-known matrix algebraic formulations (Anderson, 1958), the computation of prediction equations from the multiple regression analyses permits the calculation of several partial correlation matrices among residual variables. For a typical residual variable, the value for a typical observation accounts for the influences of the independent variables by subtracting the predicted value from the observed value of a dependent variable. This section begins by presenting partial correlations within the subsets of outcome (dependent) variables as well as between the exposure and outcome variables before describing those between the exposure and outcome variables that are of particular interest.

E.1 PARTIAL CORRELATIONS FOR THE SUBSETS OF OUTCOME (DEPENDENT) VARIABLES

The partial correlations among the dependent variables are of interest because they deal with issues of overlap among outcome variables after the influences of the independent (sociodemographic) variables have been removed. Appendices P and Q of this report list them for the variables derived from vital records and the BDR, respectively. The partial correlations between these two subsets are given in Appendix R.

Partial Correlations Within Vital Records Variables. Despite the large proportions of variance explained by the regressions of the twelve sociodemographic variables on the vital records dependent variables, the partial correlations in Appendix P are still substantial and reflect the general persistence of overlap among those outcomes. Of the 112 off-diagonal correlations (28 for each of 4 weighting schemes), 50 are significant at the p<.01 level, while an additional 19 are significant at p<.05. Although more of the variable-pairs fail to attain statistical significance after partialling than was true for the simple correlations (43 vs. 10), the non-significant values are still concentrated among the correlations involving post-neonatal and fetal deaths.

In addition, it may be observed that <u>all</u> of the significant values in Appendix P are less than the corresponding simple correlation found in Appendix C of the Phase I report (Fulcomer et al., 1992b). Thus, while considerable overlap among the outcomes still remains, the regressions of the twelve sociodemographic variables do remove some redundant covariation. Second, in contrast to the simple correlations for which the fully-weighted scheme has the highest value for each the 28 variable-pairings, the full

weighting produces the largest partial correlation in only 7 of the pairs. This indicates that the twelve sociodemographic variables may account for some important components of "size-related" covariation. Finally, the residual values for prematurity and small-for-gestational-age are uncorrelated with one another, as would be expected after controlling for the sociodemographic variables, but still have significant predictive validity with respect to the rates of neonatal deaths.

Partial Correlations Within Birth Defects Registry Variables. Appendix Q of this report lists the partial correlations among the variables derived from the BDR after controlling for the twelve sociodemographic variables. Given the generally low proportions of variance explained in these outcomes by the regressions of the independent variables (see Table 8), the similarity of these values to the simple correlations found in Appendix D of the Phase I report is not surprising. Of the 312 off-diagonal partial correlations (78 for each of 4 weighting schemes), 206 are still significant (172 at the 1% level and an additional 34 at the 5% level).

Partial Correlations Between Vital Records and Birth Defects Registry Variables. The partial correlations between the eight vital records variables and the thirteen rates derived from the BDR are given in Appendix R of this report. Of the 416 correlations (8x13 - 104 for each of 4 weighting schemes), 110 are significant (71 at the p<.01 level and an additional 39 at p<.05). Although there are fewer significant correlations among variable-pairs after controlling for the twelve sociodemographic variables (i.e., 138 of the simple correlations in Appendix E of the Phase I report were significant), a substantial amount of overlap between the two subsets of outcomes still

remains. Because previous literature at the individual-level of analysis would lead us to expect some associations between these sets of outcomes, some of the correlations are of particular interest with respect to predictive validity of geographically-based data such as that used here, most notably those between the chromosomal anomalies (both the overall category and Down Syndrome which comprises the majority of reported chromosomal anomalies) and the rates of post-neonatal deaths as well as those between central nervous system defects, all congenital anomalies, and major congenital anomalies with the rates of neonatal deaths. Thus, even after controlling for several possible socioeconomic factors. selected birth defects contribute significantly to explaining rates of subsequent infant deaths at the municipality-level of analysis.

E.2 PARTIAL CORRELATIONS BETWEEN THE OUTCOME AND EXPOSURE VARIABLES

This section describes the exposure-outcome partial correlations between the two subsets of dependent variables and the three subsets of exposure variables. Because the significant relationships are presented here, the complete tables of partial correlations are listed in the appendices of this report. Note that the calculation of partial correlations means that all pairs of correlations have the influences of the twelve sociodemographic (sociodemographic) variables removed from <u>both</u> the exposure and outcome variables.

<u>Partial Correlations With Toxic Waste Site Variables</u>. Appendices S and T of this report provide the partial correlations between the four toxic waste site variables and the dependent variables based on vital records and BDR

			Correlations						
Outcome	Exposure	Weighting	Simple	Partial					
Preterm births	CERCLIS-densitv	Unweighted	.1489**	. 0235					
percent	(Sites per	Log(10)	.2102**	.0532					
•	square mile)	Square Root	.3607**	.0978*					
		Fully-weighted	.5743**	.1584**					
Low birthweight	CERCLIS-density	Unweighted	.1266**	0183					
rate	(Sites per	Log(10)	.1857**	0031					
	square mile)	Square Root	.3505**	.0348					
	-	Fully-weighted	. 5984**	.1132*					
Low birthweight	CERCLIS-presence	Unweighted	.0137	0957*					
rate	(At least one	Log(10)	.0335	1013*					
	site)	Square Root	.0965*	0952*					
		Fully-weighted	.1712**	0573					
Limb reduction	NPL-density	Unweighted	.1151**	.1054*					
deformities	(Sites per	Log(10)	.1260**	.1170**					
rate	square mile)	Square Root	.1307**	.1245**					
		Fully-weighted	.1202**	.1209**					
Limb reduction	CERCLIS-density	Unweighted	.1138**	.1111*					
deformities	(Sites per	Log(10)	.1138**	.1142*					
rate	square mile)	Square Root	.1027*	.1138*					
		Fully-weighted	.0944*	.1164**					
Musculoskeletal	NPL-density	Unweighted	.0321	.0276					
	(Sites per	Log(10)	.0505	.0419					
	square mile)	Square Root	.0702	.0610					
		Fully-weighted	.0942*	.0929*					

Significant Exposure-Outcome Partial Correlations Involving Toxic Waste Variables: New Jersey 1985 to 1987

* significant at p < .05, two-tailed. ** significant at p < .01, two-tailed.</pre>

.

information, respectively, while Table 10 summarizes the subset of significant relationships. Although 40 of the earlier simple correlations involving vital records variables found in Appendix J of this report were significant, only 6 of the partial correlations in Appendix S remain significant (1 at the 1% level and an additional 5 at the 5% level). <u>That is, controlling for the independent (sociodemographic) variables virtually eliminated associations between the exposure and outcome variables</u>. Although the significant correlations that remain were addressed by some previous findings in the literature that were reviewed in the first chapter, only the three relationships with CERCLIS-density (two with preterm births percent and one with low birthweight rate) are in the expected positive direction; that is, the three significant correlations involving CERCLIS-presence and low birthweight rate are <u>negative</u>.

Most of the partial correlations between the waste site and birth defects rates are also weak after accounting for the twelve independent (sociodemographic) variables. In particular, only nine of the 208 values in Appendix T are significant (4 at the 1% level and an additional 5 at the 5% level). Only 16 of the corresponding simple correlations in Appendix K of this report were also significant. However, after partialling, eight of the nine significant correlations that remain are concentrated within the pairings between the "dump-density" variables and the rates of reduction deformities. Furthermore, these significant partial correlations closely resemble their corresponding simple correlations, suggesting that controlling for the sociodemographic variables does not affect the rates of reduction deformities.

Significant Exposure-Outcome Partial Correlations Involving Industrial Air Emissions Variables: New Jersey 1985 to 1987

			Correl	lations			
Outcome	Exposure	Weighting	Simple	Partial			
Preterm births	Human teratogens	Unweighted	.1345**	.0830			
percent	(Special-den.	Log(10)	.1409**	.0881*			
•	in pounds per	Square Root	.1452**	.0827			
	square mile)	Fully-weighted	.1625**	.0842			
Preterm births	Inorganics-	Unweighted	.0712	0265			
percent	density	Log(10)	.0899*	0331			
-	(pounds per	Square Root	.1279**	0549			
	square mile)	Fully-weighted	.1678**	1302**			
Low birthweight	Inorganics-	Unweighted	.0749	0231			
rate	density	Log(10)	.0942*	0283			
	(pounds per	Square Root	.1389**	0424			
	square mile)	Fully-weighted	.1911**	1028*			
Low birthweight	Toxic emissions	Unweighted	.0624	0007			
rate	total (Air-	Log(10)	.0667	0135			
	density pounds	Square Root	.0836	0405			
	per sq. mile)	Fully-weighted	.1249**	0919*			
Total infant	Hydrocarbon-	Unweighted	.0778	.0719			
death rate	density	Log(10)	.0824	.0734			
	(pounds per	Square Root	.0929*	.0760			
	square mile)	Fully-weighted	.1313**	.0930*			

significant at p < .05, two-tailed. significant at p < .01, two-tailed. * **

~

Outcome	Exposure	Weighting	Correlations	
			Simple	Partial
Very low birthweight rate	Herbicide- density (pounds per square mile)	Unweighted Log(10) Square Root Fully-weighted	.1047* .0984* .0716 .0035	.0952* .0950* .0839 .0506
Low birthweight rate	Herbicide- density (pounds per square mile)	Unweighted Log(10) Square Root Fully-weighted	.1276** .1070* .0598 0152	.1541** .1432** .1199** .0715
Low birthweight rate	Phthalimide- density (pounds per square mile)	Unweighted Log(10) Square Root Fully-weighted	0427 0384 0378 0545	0970* 0886* 0801 0493

Significant Exposure-Outcome Partial Correlations Involving Agricultural Pesticide Applications Variables: New Jersey 1985 to 1987

*

significant at p < .05, two-tailed. significant at p < .01, two-tailed. **

Partial Correlations With Industrial Air Emissions Variables. Appendices U and V of this report give the partial correlations between the industrial air emissions variables and the two subsets of dependent variables, while Table 11 lists the subset of significant relationships. Although the 65 significant simple correlations in Appendix L of this report had been suggestive of important exposure-outcome relationships, only 5 of the 256 partial correlations in Appendix U remain significant (1 at the 1% level and an additional 4 at the 5% level); based on the review of findings in the first chapter, none of these associations would have been expected. Similarly, Appendix V reveals the complete absence of significant partial correlations between the air emissions variables and the information derived from the BDR.

Partial Correlations With Agricultural Pesticide Applications Variables. Appendices W and X of this report contain the partial correlations between the agricultural pesticide applications variables and the dependent variables based on vital records and BDR information, respectively, while Table 12 presents the subset of significant relationships. Earlier, Appendices N and O of this report had shown a general lack of significance among the corresponding simple correlations. An inspection of the partial correlations reveals the persistent lack of association after controlling for the twelve sociodemographic variables. Of the 192 partial correlations involving vital records variables given in Appendix W, only 7 are significant (3 at the 1% level and an additional 4 at the 5% level), all involving either low or very low birthweights and the application of herbicides, although these associations would not have been expected from any previous results available to us. None of the partial correlations in Appendix X between the pesticide exposures and the information from the Birth Defects Registry are significant.
IV. DISCUSSION

This chapter reviews and discusses the major results of this correlational study. The first section presents some issues of statistical analysis and interpretation for an ecologic study using several different sets of variables at the municipality level. Then, a summary of the exposureoutcome relationships appears in the second section, followed by a discussion of other results and issues in the third section.

A. ISSUES OF STATISTICAL ANALYSIS AND INTERPRETATION

This report employs a true "ecological" design in which both the exposure and outcome variables involve aggregated data and at least two major statistical issues arise from the use of geographic units (i.e., the county/ municipalities used here) in such a study. The first is the weighting of each unit's contribution to the estimation of the parameter(s) of interest when the units vary widely in the size of their populations. A second issue is the potential similarity of adjacent units or among communities in close proximity, sometimes referred to as "spatial autocorrelation" (Wartenberg, 1985).

Similarly, there are at least two major issues of interpretation that arise in the ecologic study of numerous variables estimating environmental exposures to toxic wastes and adverse reproductive outcomes. The first is the

so-called "multiple comparisons" problem when two or more results are evaluated in a non-independent fashion in the same study. The second is the potential occurrence of bias in ecologic studies.

A.1 WEIGHTING

The present study has incorporated four simple alternative approaches for weighting the municipality-level used in this based on simple transformations of the number of live births. Definitions and some other salient aspects of the four weighting schemes were presented earlier in the second chapter.

Although a suitable resolution to the issue of how to best accomplish such weighting is beyond the scope of this report, the complete set of results for all four methods used in this study is intended to draw attention to the need to account for wide variations in the number of births among geographic units. In general, the two extreme approaches to weighting fail to properly account for the amounts of sampling variability, with underestimation by the equally-weighted (i.e., unweighted) method and severe overestimation by the fully-weighted scheme. The two middle strategies do not suffer such obvious shortcomings, but perform well enough and have sufficient theoretical merits to be more satisfactory. Because of its similarity to weighting by the inverse of the standard deviation and its performance for the vital records variables, the square root transformation may provide a computationally attractive approach to this issue until the identification of a single optimal method (e.g., Pocock et al., 1981 and Breslow, 1984) can be better understood However, additional analyses the of successfully implemented. and

distribution of population size using methods of Tukey (e.g., see Mosteller and Tukey, 1977) may lead to weighting by logarithms being the most preferable methods for similar studies.

A.2 SPATIAL AUTOCORRELATION

In general, one would expect that communities in close proximity would be similar in social indicators, including patterns of disease outcomes even after various risk factors have been taken into account, when compared to geographic units that are widely separated. Thus, the underlying assumption of statistical independence among the analytic units included in the regression analyses may not be tenable. The usual consequence of positive spatial autocorrelations is to inflate the values of the coefficients of determination and the associated tests of statistical significance, in large part because of the tendency for ecologic studies to <u>understate</u> the lack of fit for a model (Cliff and Ord, 1981).

Because positive spatial autocorrelations were expected, the interpretation of statistically significant results has been approached with considerable caution. In particular, special care has been given to evaluating the magnitudes of the R^2 's, sometimes referred to as "effect sizes" (Hays, 1973; Cohen and Cohen, 1983).

A.3 MULTIPLE COMPARISONS

Given the large number of exposure-outcome partial correlations to be evaluated in this study (nearly 400 for each of four weighting schemes),

several significant associations would be expected "by chance", sometimes referred to as "multiple comparisons" (e.g., Winer, 1971). Under a null hypothesis of underlying independence among the members of an entire set of variables, the alpha-level (i.e., the level of significance selected in advance) would set a minimum lower bound for the number of significant correlations "expected by chance"; for the 400 or so values in the present study, such a minimum would be approximately four or 20 correlations per weighting scheme, depending on whether or not the alpha-level was set at the p<.01 or p<.05 levels, respectively. Therefore, additional caution in interpreting results is merited. <u>A priori</u> hypotheses utilizing evidence from previous environmental and occupational studies, as well as available toxicologic data, should be considered and attempts made to find support for the biological plausibility of new findings. Unfortunately, the rudimentary level of knowledge concerning the effects of exposures to environmental pollutants on reproduction and the lack of comparable ecologic studies made it unsuitable to state <u>a priori</u> hypotheses, including specifications of the direction and magnitude of relationships. In turn, this made much of the present study exploratory and led to the use of two-tailed tests of significance for the partial correlations. Therefore, in order that other researchers may benefit from any preliminary findings reported here, all exposure-relevant correlations evaluated in this study are listed (Thomas et al., 1985).

A.4 ECOLOGICAL BIAS

Ecological bias involves the tendency to severely overestimate the magnitude of associations when aggregated units such as counties or

municipalities are employed in an analysis (Piantadosi, et al., 1988). As a result, associations found at the aggregate or group level of analysis may not be replicated at the individual level (Morgenstern, 1982). Some of this bias may be the result of confounding by the geographic units themselves, such as variations in the rate of a disease across municipalities due to the differential distribution of extraneous risk factors (Greenland and Morgenstern, 1989).

Another source of ecological bias occurs when an environmental effect is modified by (or, "interacts with") the units of analysis. For example, in the present study the exposure-outcome effects may vary across municipalities depending on the values of some other individual-level effect modifiers influenced by differences in socioeconomic status. Unfortunately, the general lack of information on effect modifiers makes it difficult to address this source of bias.

Ecological bias will not occur if the background rate of a disease, as well as the effects of the exposures of interest, do not vary across the geographic units <u>and</u> if there is no confounding at the individual level (Greenland and Morgenstern, 1989). But, in the present study it is reasonable to assume that <u>some</u> ecological bias is present, thereby adding another reason to interpret the size of relationships with special caution.

<u>Exposure misclassification</u>. There is also a countervailing tendency for the magnitudes of exposure-outcome relationships to be "attenuated" (i.e., deflated) by unreliability and other measurement problems, often referred to as exposure misclassification, although these problems are quite difficult to

document. Because the environmental variables used in the present study were, at best, extremely crude surrogates of actual population exposures, it is expected that some of the exposure-outcome partial correlations would be adversely affected. In fact, given the ecologic nature of this study, particularly the process of assigning a single exposure measure to a municipality, exposure misclassification may well comprise the greatest barrier to observing underlying associations in this report.

B. REVIEW OF EXPOSURE-OUTCOME RELATIONSHIPS

Throughout this report we have emphasized the need to control for the influences of some background sociodemographic characteristics before any potential exposure-outcome relationships were evaluated. Unfortunately, variations in measuring exposures and outcomes across different studies make it extremely difficult to directly compare findings to results previously reported by other investigators. In particular, many previous studies in this area have been "semi-ecological"; that is, while the exposure surrogates often refer to geographic areas, the outcome data are derived directly from observations or interviews at the individual level.

B.1 PARTIAL CORRELATIONS WITH TOXIC WASTE SITE VARIABLES

Table 10 in the prior chapter has summarized the significant partial correlations between the four toxic waste site variables and the outcome variables derived from vital records and BDR information, respectively. Six of the 128 partial correlations involving the toxic waste site variables and vital records variables are significant. Three of these six relationships are

significant and positive (i.e., two involving preterm births percents and one involving low birthweight rate, each correlated with the density of all toxic waste sites). Although the partials are substantially lower than the corresponding simple correlations and are not consistent across the four weighting schemes, they are at least consistent with expectations based on previous studies at the individual level (Viana and Polan, 1984; NJDOH, 1989). The significant partial correlations for all but the fully-weighted scheme between the low birthweight rate and the presence of at least one CERCLIS site are negative and are not consistent with earlier findings from other studies.

In contrast, of the 208 partial correlations involving the toxic waste site variables and the BDR variables, the eight significant positive associations for the limb reduction deformities rate and the NPL- and CERCLISdensity variables (i.e., the correlations were significant for all four weighting schemes) represent a new finding that bears some resemblance to earlier findings based on other exposures (e.g., Schwartz and LoGerfo, 1988). The similarity of the simple and partial correlations indicate the independence between the limb reductions and the background variables and, along with the results for all four weighting schemes, suggests that elevations in this type of outcome may have some association with high exposure-density areas throughout the state, regardless of the number of However, while significant, the relationships are quite "weak" births. (generally accounting for slightly over 1% of the residual outcome variances) and, therefore, should be interpreted with considerable caution. In addition, since site density is one of the crudest of the exposure surrogates employed in this study and since no specific human exposure pathways have been identified, much work to establish biological plausibility would be required.

Despite the extremely crude nature of the exposure surrogates, these results for the toxic waste site variables provide some encouraging evidence that the methods employed in this study may be sufficiently sensitive to detect some elevations in outcomes. However, this initial optimism regarding current method is balanced by the realization that the partial the correlations, even when significant, are relatively small and that three of the values are in the opposite direction to that expected. Nonetheless, much like the efforts in the project's first phase to enhance the reporting of the adverse reproductive outcomes with only modest investments of resources (Fulcomer et al., 1992b), improving the quality of exposure measurements would increase reliability and tend to make future studies more sensitive, including the case-control and cross-sectional studies of individual-level data in this project's fourth phase (Bove et al., 1992a and 1992b). Given the relatively low proportions of variance in these variables explained by the sociodemographic variables, prioritization of efforts in this area following the suggestions listed in the Phase II report (Bove, 1992) should lead to substantial progress and be well within the financial resources available to NJDEP. Although the acquisition of even better measures would be an expensive undertaking, it would address the tendency of attenuated findings (or "bias towards the null") to result from exposure misclassifications.

The limb reduction finding is currently being explored further for some other, non-exposure explanation to the elevations among the approximately 136 cases affected in the three-year period before embarking on an extensive casecontrol study. This new finding is particularly interesting because of its consistency across all four weighting schemes and because of the specific teratogen-malformation relationship with thalidomide. Extraction of records

for these and subsequent cases from the BDR and the maternity hospitals has been completed.

2. 11

B.2 PARTIAL CORRELATIONS WITH INDUSTRIAL AIR EMISSIONS VARIABLES

In the last chapter, Table 11 summarized the significant partial correlations between the eight industrial air emissions and the outcome variables derived from vital records and BDR information, respectively. Two of the significant relationships (between special-density and preterm births percent and between hydrocarbon-density and total infant death rate) are <u>positive</u> and the other three significant partial correlations are <u>negative</u> and occur only under the fully-weighted scheme, strongly suggesting underlying independence (i.e., possibly results due to multiple comparisons). Given the disproportionate number of births <u>and</u> air emissions in some communities in northern New Jersey (e.g., Newark with 5.33% of the total births and 5.66% of the total air emissions in the state), the fully-weighted scheme may be subject to statistical artifacts with respect to the air emissions variables as employed in this study. In addition, each partial correlation in Table W is lower than its corresponding simple correlation.

Unfortunately, as pointed out in this report as well as in that for the project's second phase (Bove, 1992), the primitive nature of the available air emissions data for estimating population exposures may contribute to the failure to detect a higher level of positive associations for these variables through the serious problem of exposure misclassification. In particular, values assigned to the geographic units from which the emissions are reported are of unknown reliability as indicators of actual exposures of individuals,

especially since only 211 of the municipalities reported any industrial emissions. Potential exposure misclassification may be especially severe in the northern portion of the state, where the population densities are the highest in the nation but where some municipalities with no reported emissions are in close proximity, often downwind, to sources of large pollutant emissions. Although their development and implementation may be expensive, computer simulation techniques to develop more refined exposure estimates may merit consideration for inclusion in future studies.

B.3 PARTIAL CORRELATIONS WITH AGRICULTURAL PESTICIDE APPLICATIONS VARIABLES

Table 12 given in the results chapter has summarized the significant partial correlations between the six agricultural pesticide variables and the outcome variables derived from vital records and BDR information, respectively. The two significant correlations between low birthweight rates and phthalimide-density are <u>negative</u>. In contrast, the significant positive correlations between herbicide-density and very low birthweight rates (for the unweighted and logarithmic schemes) and between herbicide-density and low birthweight rates (for all but the fully-weighted scheme) may merit consideration in future investigations.

Unfortunately, the pesticide variables are also crude exposure surrogates and likely to be unreliable indicators of actual exposures. For example, agricultural activity in New Jersey is concentrated in the less-densely populated southern portion of the state and 314 of the municipalities report no agricultural pesticide applications at all. However, many municipalities

in the state, including several in northern New Jersey with no agricultural applications, are affected by commercial and residential pesticide applications which are not covered in the Pesticide Survey. Again, future studies may benefit from computer simulation techniques and improved quality and breadth of exposure information collected, although the cost of such enhancements should be carefully considered before extensive new efforts are undertaken.

C. SOME ADDITIONAL OBSERVATIONS

Building on earlier work of the project's first and second phases to improve the quality of outcome and environmental data, respectively (Fulcomer et al., 1992b and Bove, 1992), this study has applied well-known and widelyavailable analytic procedures to some newly-emerging data on environmental exposure-surrogates and adverse reproductive outcomes in New Jersey's municipalities. Some of the study's other features, notably the use of four different weighting schemes to account for wide variations in the number of births among geographic areas, were included to draw attention to some important issues to be considered in future studies.

However, the results obtained in this third phase have led to only a few environmentally-related findings that may merit further consideration and investigation, despite other work throughout the project. More importantly, as pointed out earlier, the necessity to employ crude exposure surrogates and the use of large geographic areas may have contributed to the failure to detect more statistically significant elevations in this ecologic study. Such reliability problems with the exposure data, especially with substances for

which some potentially harmful effects have been noted in the literature, is quite problematic in that, in light of the associated "bias towards to the null", the failure to detect "positive" results is unlikely to reassure the public that the true, but unknown, partial correlations between exposures and outcomes are precisely zero.

Reliability and stability problems among the outcome variables may have also made it more difficult to detect positive associations. Although there is general temporal stability in the rates of the birthweight and other outcomes with higher prevalences, some of the rarer outcomes such as specific birth defects may be considerably less reliable and, thus, may have also contributed to the attenuation of some results. Clearly, the temporal stability of all outcomes, including specific birth defects, needs to be addressed in future studies. [Ecologic designs such as the present study are well-suited to this purpose.] Furthermore, in contrast to fully-funded systems in Metropolitan Atlanta (Edmonds, 1981), California (CBDMP, 1988), and Iowa (Hanson et al., 1989), the somewhat passive nature of New Jersey's Birth Defects Registry may affect the ascertainment of some defects. Thus, while all occurrences of some more serious and obvious defects may be registered in certain locations (Fulcomer et al., 1988), some less-involved conditions, perhaps not so readily apparent at birth, may not be reported on a timely basis to be incorporated into a monitoring database.

Reliability issues with the exposures and outcomes notwithstanding, the regression results for the outcomes involving the vital records variables are noteworthy. In particular, all 32 of these proportions of variance explained in Table 4 are significant (31 at the 1% level and 1 at the 5% level) and

substantial, ranging from 2.13% (for the unweighted scheme applied to the rate of fetal deaths) to an exceptionally high 86.68% (for the percent of preterm births under the fully-weighted scheme). Even for the unweighted scheme which tends to be the least explanatory of the four weighting strategies, the regression results provide considerable encouragement for the use of these outcomes for program planning and evaluation, particularly in designing interventions to encourage early prenatal care to improve birthweight and other, related pregnancy outcomes. The forthcoming availability of the 1990 census results and efforts to improve the quality of New Jersey's vital records (Fulcomer et al., 1992b) should enhance future efforts to employ these outcomes.

Despite some appropriate enthusiasm for using the predictive results to monitor existing programs as well as locate new interventions, it is imperative to reiterate the caution of "overfitting" that may result from the use of aggregated geographic units in the analyses (Fulcomer et al., 1981). Moreover, the "ecologic fallacy" (i.e., inferring from social-area results to the level of individuals) should generally be avoided, but most certainly in environmental studies in geographic areas in which individuals who are "exposed" may be different than those individuals who are affected by health outcomes. If available for <u>both</u> environmental and outcome data, the use of geographically-based data for areas smaller than municipalities (e.g., for census tracts or blocks) might help address this problem, although such an approach might also be unduly expensive.

In contrast to the outcome variables derived from vital records, the regression results for the variables from the Birth Defects Registry found in

Table 5 are much weaker. Undoubtedly, some of this weakness in the failure to detect positive associations reflects reliability problems in these outcomes, especially with respect to temporal stability. However, the lack of findings accurately portray some general difficulties inherent in more may understanding the underlying causes of birth defects. Certainly, the lack of a consistent body of research findings, even those derived from much more from correlation studies, detailed case-control designs rather than illustrates the problems in researching those risk factors associated with birth defects. Thus, despite a few new findings, the present study appears to mirror the current lack of definitive results. It is hoped, however, that our methods and findings will be helpful to future efforts to understand environmental causes of adverse reproductive outcomes.

V. SUMMARY

This report has described in detail the activities undertaken in the third phase of a cooperative agreement between the New Jersey Department of Health (NJDOH) and the U.S. Centers for Disease Control (CDC). The overall goal of the project was to develop and apply appropriate methodology to assess relationships between adverse reproductive outcomes (AROs) and population exposures to environmental pollutants, particularly toxic waste site contamination. Rather than a rigorous exploration of specific hypotheses about exposure-outcome relationships, the work on the the third phase comprised a demonstration of the potential uses and limitations in employing data on environmental exposure surrogates and health outcomes, aggregated at the

municipality level of analysis, to investigate possible associations as an early step in identifying preventable hazards.

This report has linked surveillance data from the 327,015 live births and 3,548 fetal deaths (stillbirths) that occurred to New Jersey residents from 1985 through 1987, derived from the project's first phase (Fulcomer et al., 1992b), with some data on environmental pollution that resulted from its second phase (Bove, 1992). By combining information from this large group of births with that on potential exposures and on other sociodemographic attributes available on geographic areas, it was hoped that such timely correlational analyses might provide early, inexpensive alternatives to case-control studies to explore recently emerging questions of possible exposure-outcome relationships. Because other states may already be collecting such data as part of routine environmental and outcome surveillance programs, this report, as well as those for the project's first and second phases, may be of special interest to others considering replication of the methods and results presented here.

The first chapter described selected results from some previous studies of environmental pollution and AROs, derived mostly from studies at the individual level because there have been few population-based studies of exposures <u>and</u> outcomes reported for geographic areas. Although our review indicated a lack of uniformity of reported findings, several suggestive relationships provided a rationale for pursuing correlational analyses of linked data as a first step in better understanding associations between exposures and outcome.

Methods and data employed in the analyses were described in the second chapter. After first describing simple (i.e., unadjusted) correlations, the analytic methods used here relied heavily on multiple and partial regression techniques to control for selected background variables before evaluating potential associations between environmental exposures and adverse reproductive outcomes. Considerable emphasis was given to the problem of how to "weight" the data to account for differences among the municipalities with respect to the number of births, which ranged from 6 to 17,439 in the three years covered by this study.

The third chapter presented some results of multiple regression and partial regression analyses of the exposures and outcomes controlling for the In addition, complete sets of many sociodemographic characteristics. (i.e., unadjusted) intermediate statistical results such as simple correlations are described. There are six distinct groupings of information covered in the total of 51 variables included in the analyses, including the twelve sociodemographic characteristics treated as independent variables, three subsets of data on environmental exposures (toxic waste sites, industrial air emissions, and agricultural pesticide applications), and two subsets of data on AROs derived from different reporting sources (vital records and the Birth Defects Registry).

Results are discussed in the fourth chapter, which begins by addressing some important analytic and interpretational issues. Among the four issues addressed are the widely-acknowledged possibility of bias in such ecologic studies, the related limitations and cautions in making causal inferences about individuals from results aggregated at the municipality level (i.e., the

"ecologic fallacy"), spatial autocorrelations, and multiple comparisons. In general, controlling for the sociodemographic variables virtually eliminated significant partial correlations between the exposure and outcome variables, so that only a few findings may merit further consideration and investigation. Only six of the 128 partial correlations involving toxic waste site variables and the outcomes derived from vital records were significant, and only three of those associations were positive and consistent with previous results. Similarly, most of the partial correlations between the toxic waste site and birth defects rates were also weak after accounting for the twelve sociodemographic variables. However, after partialling, eight of the nine significant correlations that remain (out of a total of 208) were concentrated within the pairings involving the rates of limb reductions. Very few significant partial correlations were found between the outcomes and the industrial air emission variables (five of 256 for the outcomes derived from vital records and none for the rates of birth defects) or the agricultural pesticide applications variables (seven of 192 for outcomes derived from vital records and none for the rates of birth defects).

Although there are some reliability and stability issues to be dealt with in future work with AROs, the regression results for the outcomes involving the vital records variables are noteworthy, ranging from 2.13% to an exceptionally high 86.68%. In contrast, the regression results for the variables from the Birth Defects Registry were much weaker. The necessity of employing crude exposure surrogates and the use of large geographic areas may have contributed to the failure to detect more statistically significant elevations in birth defects in this ecologic study. Clearly, future work, including the studies dealing with individual cases undertaken as part of the

project's fourth phase (Bove et al., 1992a and 1992b), would benefit greatly if the quality of relevant environmental databases were improved.

.

.

.

VI. REFERENCES

Anderson, T.W. (1958). <u>An Introduction to Multivariate Statistical Analysis</u>. New York: Wiley.

Baker, D.B., Greenland, S., Mendlein, J., & Harmon, P. (1988). A health study of two communities near the Stringfellow Waste Disposal Site. <u>Archives of</u> <u>Environmental Health, 43</u>, 325-334.

Bove, F.J. (1992). <u>Population-Based Surveillance and Etiological Research of</u> <u>Adverse Reproductive Outcomes-Report on Phase II: The Evaluation and</u> <u>Development of Databases on Potential Environmental Exposures</u>. State of New Jersey Department of Health, Division of Occupational and Environmental Health, Trenton, NJ.

Bove, F.J., Fulcomer, M.C., Klotz J.B., Esmart, J., Dufficy, E.M., & Zagraniski, R.T. (1992a). <u>Population-Based Surveillance and Etiological</u> <u>Research of Adverse Reproductive Outcomes-Report on Phase IV-A: Public</u> <u>Drinking Water Contamination and Birthweight. Fetal Deaths. and Birth Defects:</u> <u>A Cross-Sectional Study</u>. State of New Jersey Department of Health, Division of Occupational and Environmental Health, Trenton, NJ.

Bove, F.J., Fulcomer, M.C., Klotz J.B., Esmart, J., Dufficy, E.M., Zagraniski, R.T., and Savrin, J.E. (1992b). <u>Population-Based Surveillance and Etiological Research of Adverse Reproductive Outcomes-Report on Phase IV-B:</u> <u>Case-Control Study of Public Drinking Water Systems and Selected Birth Defects</u> <u>and Low Birthweight.</u> State of New Jersey Department of Health, Division of Occupational and Environmental Health, Trenton, NJ.

Budnick, L.D., Sokal, D.C., Falk, H., Logue, J.N., and & Fox, J.M. (1984). Cancer and birth defects near the Drake Superfund site, Pennsylvania. <u>Archives of Environmental Health, 39, 409-413.</u>

Breslow, N.E. (1984). Extra-Poisson variation in log-linear models. <u>Applied</u> <u>Statistics. 33</u>, 38-44.

Budnick, L.D., Sokal, D.C., & Falk, H. (1984). Cancer and birth defects near the Drake Superfund Site. <u>Archives of Environmental Health. 39</u>, 409-413.

California Birth Defects Monitoring Program. (1988). <u>Birth Defects in</u> <u>California, January 1, 1983 - December 31, 1984: A Report of the California</u> <u>Birth Defects Monitoring Program</u>. California Department of Health Services, California Birth Defects Monitoring Program, Berkeley, CA.

Centers for Disease Control. (1988). <u>Congenital Malformations Surveillance</u> <u>Report: January 1982 - December 1985. Issued March. 1988</u>. Atlanta, GA.

Cliff, A.D., & Ord, J.K. (1981). <u>Spatial Processes: Models and Applications</u>. London: Pion.

Cohen, J., & Cohen, P. (1983). <u>Applied Multiple Regression/Correlation</u> <u>Analysis for the Behavioral Sciences</u>. Second edition. Hillsdale, NJ: Lawrence Erlbaum Associates. Cook, D.G., & Pocock, S.J. (1983). Multiple regression in geographical mortality studies, with allowance for spatially correlated errors. <u>Biometrics, 39</u>, 361-371.

Dixon, W.J., Brown, M.B., Engelman, L., Hill, M.A., & Jennrich, R.I., editors. (1988). <u>BMDP Statistical Software Manual</u>. Berkeley, CA.: University of California Press.

Dorsch, M.M., Scragg, R.K.R., McMichael, A.J., Baghurst, P.A., & Dyer, K.F. (1984). Congenital malformations and maternal drinking water supply in rural South Australia: a case-control study. <u>American Journal of Epidemiology. 119</u>, 473-486.

Edmonds, L.D., Anderson, C.E., Flynt, J.W.Jr., & James, L.M. (1978). Congenital central nervous system malformations and vinyl chloride monomer exposure: a community study. <u>Teratology</u>, <u>17</u>, 137-142.

Edmonds, L.D., Layde, P.M., James, L.M., Flynt, J.W., Erickson, J.D., & Oakley, G.P. Jr. (1981). Congenital malformation surveillance: Two American systems. International Journal of Epidemiology. 10, 247-252.

Edmonds, L.D., Panny, S., Meaney, F.J., & Fulcomer, M.C. (1988). A recommended set of core data items for collection by state birth defects surveillance programs. Paper presented before the American Public Health Association, Boston, MA.

Flynt, J.W., Norris, C.K., Zaro, S., Kitchen, S.B., Kotler, M., & Ziegler, A. (1987). <u>State Surveillance of Birth Defects and Other Adverse Reproductive</u> <u>Outcomes - Final Report</u>. U.S. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation, Washington, DC.

Fulcomer, M.C., Pellegrini, S.G., & Lefebvre, L.C. (1981). Demographic and health-related predictors of the incidence of sudden infant death. <u>Journal of Evaluation and Program Planning. 4</u>, 43-56.

Fulcomer, M.C., Halpin, G.J., Knapp, M.M., & Kern, B.P. (1986). <u>New Jersey</u> <u>Birth Defects Registry: Preliminary Report of Birth Defects Among Infants Born</u> <u>in 1985</u>. Special Child Health Services, State of New Jersey Department of Health, Division of Local and Community Health Services, Trenton, NJ.

Fulcomer, M.C., Halpin, G.J., & Bove, F. (1987). <u>Population-Based Surveillance</u> <u>and Etiological Research of Adverse Reproductive Outcomes: Final Research</u> <u>Protocol. March. 1987</u>. Special Child Health Services, State of New Jersey Department of Health, Division of Local and Community Health Services, Trenton, NJ.

Fulcomer, M.C., Ziskin, L.Z., France, D.M., & Bove, F. (1988). <u>Report on the Study of Vernon Township, NJ: Study of the Occurrence of Chromosomal Anomalies in Vernon Township Between January 1. 1975 and June 30, 1987</u>. State of New Jersey Department of Health, Division of Community Health Services, Trenton, NJ.

Fulcomer, M.C., & Kriska, S.D. (1989). <u>MADMANager Utility Programs Users'</u> <u>Guide: Version B-03</u>. Columbus: Restat Systems, Inc. Fulcomer, M.C., Esmart, J., Dufficy, E.M., Bove, F.J., & Klotz, J.B. (1992a). <u>Population-Based Surveillance and Etiological Research of Adverse Reproductive</u> <u>Outenomas:NTechnical Documentation</u>. State of New Jersey Department of Health,

Fulcomer, M.C., Bove, F.J., Klotz, J.B., Esmart, J., & Dufficy, E.M. (1992b). <u>Population-Based Surveillance and Etiological Research of Adverse Reproductive</u> <u>Outcomes: Report on Phase I - Assembling Information on Adverse Reproductive</u> <u>Outcomes</u>. State of New Jersey Department of Health, Trenton, NJ.

Fulcomer, M.C., & Kriska, S.D. (1992). <u>MADSTAT Statistical Programs Users'</u> <u>Guide: Version D-01</u>. Columbus: Restat Systems, Inc. (In Press).

Gordon, J.E., & Shy, C.M. (1981). Agricultural chemical use and congenital cleft lip and/or palate. <u>Archives of Environmental Health.</u> 36, 213-221.

Greenland, S., & Morgenstern, H. (1989). Ecological bias, confounding, and effect modification. <u>International Journal of Epidemiology</u>, 18, 269-274.

Grether, J.K., Harris, J.A., Neutra, R., & Kizer, K.W. (1987). Exposure to aerial malathion application and the occurrence of congenital anomalies and low birthweight. <u>American Journal of Public Health. 77</u>, 1009-1010.

Hanson, J.W., Isacson, P., & McKeen, K. (1989). <u>Birth Defects in Iowa:</u> <u>Surveillance Report, 1983 - 1986</u>. State Health Registry of Iowa, Birth Defects Program, Iowa City, IA.

Hays, W.L. (1973). <u>Statistics for the Social Sciences</u>. New York: Holt, Rinehart and Winston.

Held, J.L., Opperman, A.J., & Laznow, J. (1988). Maturing of New Jersey's Air Toxic Program. Proceeding of the 81st Annual Meeting of APCA.

Hemminki, K., Lindbohm, M.L., & Taskinen, H. (1986) Transplacental Toxicity of Environmental Chemicals: Environmental Causes and Correlates of Spontaneous Abortions, Malformations, and Childhood Cancer. In Milunsky, A., Friedman, E. & Gluck, L. (editors), <u>Advances in Perinatal Medicine, Volume 5</u>, pp. 43-91. New York: Plenum.

Hertzman, C., Hayes, M., Singer, J., & Highland, J. (1987). Upper Ottawa Street Landfill Site health study. <u>Environmental Health Perspectives, 75</u>, 173-195.

Hotelling, H. (1935). The most predictable criterion. <u>Journal of Educational</u> <u>Psychology</u>, <u>26</u>, 139-142.

Infante, P.F. (1976). Oncogenic and mutagenic risks in communities with polyvinyl chloride production facilities. <u>Annals of the New York Academy of Sciences, 271</u>, 49-57.

International Clearinghouse of Birth Defects Monitoring Systems (1980). <u>Annual Report</u>. Atlanta, GA. Jelovsek, F.R., Mattison, D.R., & Chen, J.J. (1989). Prediction of risk for human developmental toxicity: how important are animal studies for hazard identification. <u>Obstetrics and Gynecology</u>, 74, 624-636.

Kerlinger, F.N., & Pedhazur, E.J. (1973). <u>Multiple Regression in Behavioral</u> <u>Research</u>. New York: Holt, Rinehart and Winston.

Klaassen, C.D., Amdur, M.O. & Doull, J., editors (1986) <u>Casarett and Doull's</u> <u>Toxicology</u>. Third edition. New York: Macmillan.

Lagakos, S.W., Wessen, B.J., & Zelen, M. (1986). An analysis of contaminated well water and health effects in Woburn, MA. <u>Journal of the American Statistical Association, 81</u>, 583-596.

Louis, J.B., Robson, M.G., & Hamilton, G.C. (1989). New Jersey Pesticide Use Survey. Presented at a conference sponsored by the Virginia Water Resources Research Center, Richmond, VA.

Morgenstern, H. (1982). Uses of ecologic analysis in epidemiologic research. <u>American Journal of Public Health</u>, 72, 1336-1344.

Mosteller, F., & Tukey, J.W. (1977). <u>Data Analysis and Regression: A Second</u> <u>Course in Statistics</u>. Reading, MA: Addison-Wesley.

Najem, G.R., Louria, D.B., Lavenhar, M.A. & Feuerman, M. (1985). Clusters of cancer mortality in New Jersey municipalities; with special reference to chemical toxic waste disposal sites and per capita income. <u>International</u> Journal of Epidemiology, 14, 528-537.

National Academy of Sciences, Institute of Medicine. (1973). <u>Infant Death: An</u> <u>Analysis by Maternal Risk and Health Care</u>. Washington, DC.

National Governors' Association. (1987). <u>Birth Defects Monitoring Programs: A</u> <u>Survey of State Activities</u>. National Governors' Association, Center for Policy Research, Division of Natural Resources, Washington, DC.

National Institute for Occupational Safety and Health. (1987). Organic Solvent Neurotoxicity: Current Intelligence Bulletin 48. Washington, DC.

New Jersey Department of Environmental Protection. (1987). <u>Final Report</u> - <u>Results of Testing for Hazardous Contaminants in Public Water Supplies Under</u> <u>Assembly Bill A-280</u>. State of New Jersey Department of Environmental Protection, Office of Science and Research, Bureau of Safe Drinking Water, Trenton, NJ.

New Jersey Department of Health. (1989). <u>A Report on the Health Study of</u> <u>Residents Living Near the Lipari Landfill</u>. State of New Jersey Department of Health, Division of Occupational and Environmental Health, Trenton, NJ.

Nordstrom, S., Beckman, L., & Nordenson, I. (1978a). Occupational and environmental risks in and around a smelter in northern Sweden: I. variations in birth weight. <u>Hereditas</u>, <u>88</u>, 43-46.

Nordstrom, S., Beckman, L., & Nordenson, I. (1978b). Occupational and environmental risks in and around a smelter in northern Sweden: III. frequencies of spontaneous abortion. <u>Hereditas</u>, <u>88</u>, 51-54.

Nordstrom, S., Beckman, L., & Nordenson, I. (1979). Occupational and environmental risks in and around a smelter in northern Sweden: VI. congenital malformations. <u>Hereditas</u>, <u>90</u>, 297-302.

Ozonoff, D., Colten, M.E., & Cupples, A. (1987). Health problems reported by residents of a neighborhood contaminated by a hazardous waste facility. <u>American Journal of Industrial Medicine, 11</u>, 581-597.

Phillips, A.M., & Silbergeld, E.K. (1985). Health effects studies of exposure from hazardous waste sites - where are we today? <u>American Journal of Industrial Medicine</u>, <u>8</u>, 1-7.

Piantadosi, S., Byar, D.P. & Green, S.B. (1988). The ecological fallacy. <u>American Journal of Epidemiology</u>, <u>127</u>, 893-904.

Pocock, S.J., Cook, D.G., & Beresford, S.A.A. (1981). Regression of area mortality rates on explanatory variables: what weighting is appropriate? <u>Applied Statistics, 30</u>, 286-295.

Pocock, S.J., Cook, D.G., & Shaper, A.G. (1982). Analysing geographic variation in cardiovascular mortality: methods and results. <u>Journal of the</u> <u>Royal Statistical Society (Series A), 145</u>, 313-341.

Rohardt, S., Keck, D., Schooley, J., Dahl, R., & Herb, J. (1986). <u>Development of a Geographic Database for the Department of Environmental</u> <u>Protection: Preliminary Assessment of Divisional Requirements for Geographic</u> <u>Information</u>. New Jersey Department of Environmental Protection, Office of Science and Research, Trenton, NJ.

Rosenman, K.D., Rizzo, J.E., Conomos, M.G., & Halpin, G.J. (1989). Central nervous system malformations in relation to two polyvinyl chloride production facilities. <u>Archives of Environmental Health, 44</u>, 279-282.

SAS Institute, Inc. (1985). <u>SAS User's Guide: Basics, Version 5 Edition</u>. Cary, NC: SAS Institute, Inc.

Schwartz, D.A., & LoGerfo, J.P. (1988). Congenital limb reduction defects in the agricultural setting. <u>American Journal of Public Health, 78</u>, 654-657.

Sharp, D.S., Eskenazi, B., Harrison, R., Callas, P., & Smith, A. H. (1986). Delayed health hazards of pesticide exposure. <u>Annual Review of Public Health</u>, <u>7.</u> 441-471.

Shepard, T.H. (1986). <u>Catalog of Teratogenic Agents</u>. Fifth edition. Baltimore: The Johns Hopkins University Press.

SPSS, Inc. (1988). <u>SPSS/PC+ V2.0: Base Manual for the IBM PC/XT/AT and PS/2</u>. Chicago: SPSS, Inc.

Thomas, D.C., Siemiatrycki, J., Dward, R., Robins, J., Goldberg, M., & Armstrong, B.G. (1985). The problem of multiple inference in studies designed to generate hypotheses. <u>American Journal of Epidemiology. 122</u>, 1080-1095.

\$

U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. (1989). Locating and Estimating Air Emissions from Sources of Substance. 1984-1987. Research Triangle Park, NC.

U.S. Environmental Protection Agency (1989). <u>Fifth Annual Report on</u> <u>Carcinogens: Summary</u>. Washington, DC.

Upton, A.C., Kneip, T., & Toniolo, P. (1989). Public health aspects of toxic chemical disposal sites. <u>Annual Review of Public Health, 10</u>, 1-25.

Vianna, N.J., & Polan, A.K. (1984). Incidence of low birth weight among Love Canal residents. <u>Science, 226</u>, 1217-1219.

Wartenberg, D. (1985). Multivariate spatial correlation: a method for exploratory geographical analysis. <u>Geographical Analysis</u>, <u>17</u>, 263-283.

Watterson, A. (1988). <u>Pesticide Users' Health and Safety Handbook</u>. New York: Van Nostrand Reinhold.

Wherry, R.J. (1931). A new formula for predicting the shrinkage of the multiple correlation coefficient. <u>Annals of Mathematical Statistics, 2</u>, 440-457.

White, F.M.M., Cohen, F.G., Sherman, G., & McCurdy, R. (1988). Chemicals, birth defects and stillbirths in New Brunswick: associations with agricultural activity. <u>Canadian Medical Association Journal. 138</u>, 117-124.

Winer, B.J. (1971). <u>Statistical Principles in Experimental Design</u>. Second edition. New York: McGraw-Hill.

Zierler, S., Theodore, M., Cohen, A., & Rothman, K.J. (1988). Chemical quality of maternal drinking water and congenital heart disease. International Journal of Epidemiology, 17, 589-594.

APPENDICES

APPENDIX A

Correlations Within The Subset Of Toxic Waste Site Variables

VARIABLE	WEIGHTING	NPL- Density	CERCLIS- Density	NPL- Presence	CERCLIS- Presence
NPL-density	Unweighted	1.0000	.4244	.4997	.1763
,	Log(10)	1.0000	.3946	.4934	.1711
	Square Root	1.0000	.3245	.4698	.1606
	Fully-wgtd.	1.0000	.2168	.4472	.1469
CERCLIS-density	Unweighted	.4244	1.0000	.2114	.4326
,	Log(10)	• .3946	1.0000	.2042	.4201
	Square Root	. 3245	1,0000	.2336	.3984
	Fully-wgtd.	.2168	1.0000	· .3573	.3656
NPL-presence	Unweighted	.4997	.2114	1.0000	.3527
-	Log(10)	.4934	.2042	1.0000	.3468
	Square Root	.4698	.2336	1.0000	.3419
	Fully-wgtd.	.4472	.3573	1.0000	.3285
CERCLIS-presence	Unweighted	.1763	· . 4326	.3527	1.0000
•	Log(10)	.1711	.4201	.3468	1.0000
	Square Root	.1606	.3984	.3419	1.0000
	Fully-wgtd.	.1469	.3656	.3285	1.0000

APPENDIX B

Correlations Within The Subset of Industrial Air Emissions Variables

		Air-	Terat	Solvent-	Special-	Inorgs	Hydroc	Halogen-	Carcin.
VARJABLE	WEIGHTING	Density	Density	Density	Density	Density	Density	Density	Density
•••••	*********			•••••	•••••	•••••	•••••		
Air-density	Unweighted	1.0000	.6690	.7167	.0231	.2263	.5303	.3038	.3242
	Log(10)	1.0000	.6267	.6750	.0249	.2319	.4963	.2804	.3015
	Square Root	1.0000	.5596	.6065	.0319	.2410	.4493	.2486	.2731
	Fully-wgtd.	1.0000	.5133	.5575	.0577	.2512	.4286	.2275	.2623
Teratogen-	Unweighted	.6690	1.0000	.9405	.0167	.2031	.8103	.4127	.4307
density	Log(10)	.6267	1.0000	.9372	.0194	.2288	.8024	.4055	.4258
	Square Root	.5596	1.0000	.9356	.0307	.2801	.7974	.3988	.4270
	Fully-wgtd.	.5133	1.0000	.9381	.0720	.3319	.8006	.3847	.4308
Solvent-density	Unveighted	.7167	.9405	1.0000	.0265	.2018	.7325	.3970	.4154
		.6750	.9372	1,0000	.0309	.2261	.7270	.3910	.4115
	Square Root	-6065	.9356	1.0000	-0459	.2773	.7340	.3920	.4217
	Fully-wate.	.5575	.9381	1.0000	.0954	.3326	.7662	.3980	-4522
	facty ngtar								
Special-density	Unweighted	.0231	.0167	.0265	1.0000	• .0377	.0077	.0819	.0657
	Log(10)	.0249	.0194	.0309	1.0000	.0431	.0115	.0794	.0630
	Square Root	.0319	.0307	.0459	1.0000	.0653	.0236	.0748	.0608
	Fully-wgtd.	.0577	.0720	.0954	1.0000	.1210	.0596	.0753	.0705
Inorganics-	Unweighted	.2263	.2031	.2018	.0377	1.0000	.2376	.1709	.2858
density	Log(10)	.2319	.2288 .	.2261	.0431	1.0000	.2580	.1860	.2964
	Square Root	.2410	.2801	.2773	.0653	1.0000	.2868	.2187	.3151
	Fully-wgtd.	.2512	.3319	.3326	.1210	1.0000	.3016	.2576	.3330
Kydencarbon-	Unweighted	- 5303	.8103	.7325	-0077	.2376	1.0000	.2371	.2667
density		.4963	.8024	.7270	.0115	.2580	1.0000	.2256	.2587
density	Souare Root	.4493	.7974	.7340	.0236	2868	1.0000	.2121	.2526
	Fully-wgtd.	.4286	.8006	.7662	.0596	.3016	1.0000	.2091	.2666
	11 mun fahanal	7079	(107	2070	0810	1700	2771	1 0000	0120
Halogen-density	Unweighted	.3030	.4121	.3770	.0017	1940	2254	1.0000	.9120
		.2004	.4033	. 37 10	.0774	- 1000	.2250	1.0000	.7175
	Square Koot	.2400	• JACO	.3920	.0740	.2107	2001	1.0000	.9294
	Fully-wgtd.	.2213	.5847	. 3980	.0755	.20/0	.2091	1.0000	.7435
Carcinogen-	Unweighted	.3242	.4307	.4154	.0657	.2858	.2667	.9120	1.0000
density	Log(10)	.3015	.4258	.4115	.0630	.2964	.2587	.9173	1.0000
·	Square Root	.2731	.4270	.4217	.0608	.3151	.2526	.9294	1.0000
	Fully-wgtd.	.2623	.4308	.4522	.0705	.3330	.2666	.9435	1.0000

÷.

÷

APPENDIX C

Correlations Within The Subset of Agricultural Pesticide Applications Variables

VARIABLE	WEIGHTING	Pest Density	Phthal Density	Organo Density	Carbam Density	Herb Density	Halo Density

Pesticide-density	Unweighted	1.0000	.6838	.9155	.7799	.2779	.7456
-	Log(10)	1.0000	.6632	.9210	.8129	.2815	.7817
	Square Root	1.0000	.6603	.9264	.8255	.2880	.7979
	Fully-wgtd.	1.0000	.6762	.9304	.8128	. 3233	.7875
Phthalimide-	Unweighted	.6838	1.0000	.6574	.4284	.0622	.3107
density	Log(10)	.6632	1.0000	.6430	.4379	.0788	. 3222
-	Square Root	.6603	1.0000	.6408	.4372	.1054	.3238
	Fully-wgtd.	.6762	1.0000	.6495	.4295	.1650	.3143
Organophosphates-	Unweighted	.9155	.6574	1.0000	.8231	.0988	.7564
density	Log(10)	.9210	. 6430	1.0000	.8330	.1197	.7649
	Square Root	.9264	. 6408	1.0000	.8296	.1532	.7540
	Fully-wgtd.	.9304	.6495	1.0000	.8119	.2273	.7163
Carbamate-	Unweighted	.7799	.4284	.8231	1.0000	.1130	. 8988
density	Log(10)	.8129	.4379	.8330	1.0000	.1347	.9001
	Square Root	.8255	.4372	.8296	1.0000	.1719	.8967
	Fully-wgtd.	.8128	.4295	.8119	1.0000	.2580	.8817
Herbicide-density	Unweighted	. 2779	.0622	.0988	.1130	1.0000	.1036
	Log(10)	.2815	.0788	.1197	.1347	1.0000	.1227
	Square Root	.2880	.1054	.1532	.1719	1.0000	.1544
	Fully-wgtd.	. 3233	.1650	.2273	.2580	1.0000	. 2248
Halogens-density	Unweighted	.7456	.3107	.7564	. 8988	.1036	1.0000
	$Log(1\overline{0})$.7817	. 3222	.7649	.9001	.1227	1.0000
	Square Root	.7979	. 3238	.7540	.8967	.1544	1.0000
	Fully-wgtd.	.7875	.3143	.7163	.8817	. 2248	1.0000

APPENDIX D

•

Correlations Between The Subsets Of Toxic Waste Site And Industrial Air Emissions Variables

		NPL-	CERCLIS-	NPL-	CERCLIS-
VARIABLE	WEIGHTING	Density	Density	Presence	Presence
Air-density	Unweighted	0134	.2419	0193	.1370
	Log(10)	0160	.2540	0249	.1310
	Square Root	0223	.2739	0295	.1303
	Fully-wgtd.	0347	.2847	0221	.1372
Teratogen-	Unweighted	0100	.1842	0103	.1495
density	Log(10)	0117	.1928	0137	.1481
	Square Root	0179	.2150	0173	.1556
	Fully-wgtd:	0367	.2524	0176	.1752
Solvent-density	Unweighted	0151	.1872	0117	.1420
-	Log(10)	0167	.1976	0125	.1397
	Square Root	0207	.2366	0022	.1498
	Fully-wgtd.	0309	.3275	.0415	.1786
Special-density	Unweighted	.0047	.0377	.0367	.0727
	Log(10)	.0024	.0458	.0180	.0698
	Square Root	0025	.0721	0013	.0695
	Fully-wgtd.	0110	.1303	0001	.0792
Inorganics-	Unweighted	.0183	.1958	.0195	.0875
density	Log(10)	.0113	.1995	.0019	.0860
-	Square Root	0070	.1986	0302	.0967
	Fully-wgtd.	0403	.1772	0707	.1172
Hydrocarbon-	Unweighted	.0062	.1299	.0087	.1222
density	Log(10)	.0059	.1353	.0042	.1205
-	Square Root	.0005	.1533	0028	.1261
	Fully-wgtd.	0134	.2044	.0076	.1426
Halogen-density	Unweighted	0219	.1300	.0012	.1315
	Log(10)	0241	.1371	0002	.1298
	Square Root	0272	.1494	.0034	.1321
	Fully-wgtd.	0294	.1573	.0176	.1341
Carcinogen-	Unweighted	.0293	.1737	.0379	.1187
density	Log(10)	.0287	.1825	.0354	.1181
-	Square Root	.0229	.1969	.0357	.1233
	Fully-wgtd.	.0119	.2177	.0523	.1311

APPENDIX E

Correlations Between The Subsets Of Toxic Waste Site And Agricultural Pesticide Applications Variables

VARIABLE	WEIGHTING	NPL- Density	CERCLIS- Density	NPL- Presence	CERCLIS- Presence
Destisia dession	Marra i alata d	0006	0161	0004	0497
resticide-density	Unweighted	0096	.0101	.0004	.0427
	Log(IU)	0050	.0122	.0040	.0464
	Square Root	.0043	0085	.0062	.0442
	Fully-wgta.	.0207	0440	0002	.0298
Phthalimide-	Unweighted	0204	0560	0202	.0057
density	Log(10)	0179	0573	0189	.0123
	Square Root	0113	0626	0199	.0152
	Fully-wgtd.	.0006	0741	0247	.0120
Organophosphates-	Unweighted	0003	0035	.0226	.0686
density	Log(10)	.0057	0083	.0255	.0628
	Square Root	.0185	0267	.0248	.0461
	Fully-wgtd.	.0409	0603	.0127	.0189
Carbamate-	Unweighted	0034	.0051	.0058	.0715
density	Log(10)	.0001	.0003	.0046	.0622
5	Square Root	.0094	0146	.0013	.0453
	Fully-wgtd.	.0289	0433	0054	.0199
Herbicide-density	Unweighted	0139	0307	0160	0267
5	Log(10)	0128	0304	0133	0219
	Square Root	0091	0321	0091	0165
	Fully-wgtd.	.0014	0437	0028	0103
Halogens-densitv	Unweighted	0085	.0217	0154	.0461
5	Log(10)	0078	.0182	0158	.0412
	Square Root	0048	.0075	0154	.0318
	Fully-wgtd.	.0022	0115	0146	.0182

APPENDIX F

Correlations Between The Subsets Of Industrial Air Emissions And Agricultural Pesticide Applications Variables

		Pest	Phthal	Organo	Carbam	Herb	Halo
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density
•••••			••••••				
Air-density	Unweighted	0320	0281	0399	0339	0173	0123
	Log(10)	0320	0281	0408	0350	0178	0125
	Square Root	0329	0291	0433	0371	0193	0123
	Fully-wgtd.	0362	0325	0491	0416	0253	0119
Teratogen-	Unweighted	0319	0314	0393	0314	0159	0108
density	Log(10)	0333	0331	0416	0335	0169	0111
	Square Root	0372	0372	0475	0386	0198	0111
	Fully-wgtd.	0452	0454	0591	0486	0289	0109
Solvent-density	Unweighted	0334	0278	0427	0357	0178	0124
,	Log(10)	0343	0281	0449	0380	0188	0127
	Square Root	0376	0307	0507	0434	0218	0128
	Fully-wgtd.	0458	0390	0634	0543	0319	0130
Special-density	Unweighted	.0000	.0283	.0094	.0109	0079	0015
	Log(10)	.0001	.0343	.0072	.0093	0082	0023
	Square Root	0008	.0400	.0033	.0072	0092	0035
	Fully-wgtd.	0051	.0401	0049	.0027	0139	0059
Inorganics-	Unweighted	0236	0313	0185	0242	0150	0091
density	Log(10)	0252	0335	0216	0267	0161	0102
•	Square Root	0299	0377	0300	0319	0190	0124
	Fully-wgtd.	0378	0430	0436	0396	0267	0158
Kydrocarbon-	Unweighted	0261	0245	0332	0271	0134	0074
density	Log(10)	0271	0253	0351	0289	0140	0070
	Square Root	0297	0278	0398	0330	0157	0056
	Fully-wgtd.	0357	0335	0496	0410	0214	0023
Heloren-density	Unweighted	- 0242	0216	0298	0263	0142	0110
natogen density	Log(10)	0251	0228	0317	0283	0151	0117
	Square Root	0272	0260	0356	0320	0175	0125
	Fully-wgtd.	0297	0304	0401	0368	0236	0127
Consingen-	Invoighted	- 0214	- 0110	- 0281	- 0243	- 0135	- 0000
done i tv		. 0200	- 0118	- 0200	- 0244	- 0143	0104
	Coylin) Sausre Daat	0222	0135	0340	0303	0164	0113
	Fully-watd.	0267	0174	0393	- 0359	0223	0114

.

APPENDIX G

.

Correlations Between The Sociodemographic and Toxic Waste Site Variables

VARIABLE	WEIGHTING	NPL- Density	CERCLIS- Density	NPL- Presence	CERCLIS- Presence
			- به و مربع		
	Ilmono i abtod	- 0168	- 2019	0346	1805
Mother's age	Unweighteu	- 0280	- 2345	0438	1934
	Log(IU)	- 0254	- 3446	0697	2337
	Square Root	- 0013	- 5216	1150	2736
	Fully-wgcu.			•	
Mathema > 25	Unweighted	- 0120	1563	0430	1712
* Mothers > 33		0362	1867	0545	1857
	Square Root	0470	2459	0737	2156
	Fully-wgtd.	0339	3541	0980	2591
	1421) "6001	• • • • •			
* Mothers < H S	Unweighted	0072	. 2094	.0286	.1386
6 Mochers < n.b.	Log(10)	0027	.2649	.0339	.1544
	Square Root	0092	.4214	.0640	.1970
	Fully-wgtd.	0234	.6235	.1330	.2441
Per capita income	Unweighted	0325	1578	0712	2011
ter capita income	Log(10)	0420	1902	0826	2134
	Square Root	0402	2892	1105	2459
	Fully-wgtd.	0177	4864	1650	2891
	.	0741	2008	- 0425	- 0778
Mostly rural	Unweighted	0/41	2008	- 0425	- 0731
	Log(10)	0840	20/1	0440	- 0798
	Square Root	0848	2137	0581	- 0818
	Fully-wgtd.	0789	21//	0501	
Population densidy	Unweighted	.0596	.2569	0785	0141
ropulation density	Log(10)	.0543	.2764	0883	0185
	Square Root	.0338	.3379	0834	- , 0039
	Fully-wgtd.	.0053	.4184	0449	.0112
	• -		0447	0554	1266
<pre>% Crowded housing</pre>	Unweighted	.0338	.2667	.0554	. 1500
	Log(10)	.0412	. 3286	.0009	. 1310
	Square Root	.0328	.4939	.1192	. 1007
	Fully-wgtd.	.0211	.6975	. 22/9	. 2200
& Old housing	Unweighted	.1132	.2518	1454	1001
9 010 noubling	Log(10)	.1234	.2891	1509	0887
	Square Root	.1190	.3657	1545	0641
	Fully-wgtd.	.0929	.4782	1091	0037
		- 0267	2130	. 0114	0967
* Female-headed	Unweighted	0207	.2133	- 0023	.1099
poverty	rog(IO)	024/	.2737	0474	1496
	Square KOOT	0243	.4441 650/	1429	1933
	rutty-wgca.	0200	.0394		

APPENDIX G (continued)

Correlations Between the Sociodemographic and Toxic Waste Site Variables

VARIABLE	WEIGHTING	NPL- WEIGHTING Density		NPL- Presence	CERCLIS- Presence	
						
<pre>% Primiparous</pre>	Unweighted	.0536	.1674	.0077	.0826	
-	Log(10)	.0743	.1717	.0109	.0786	
	Square Root	.0915	.1338	.0146	.0520	
	Fully-wgtd.	.1086	.0499	.0395	0016	
% White	Unweighted	0191	1743	-,0403	1636	
	Log(10)	0207	2044	0448	1640	
	Square Root	0163	3202	0707	1692	
	Fully-wgtd.	0117	4985	1285	1517	
<pre>% Inadequate</pre>	Unweighted	0208	.0445	.0415	.0638	
prenatal care	'Log(10)	0125	.0868	.0498	.0951	
-	Square Root	0110	.1969	.0571	.1501	
	Fully-wgtd.	0253	.3376	.0424	. 2099	

.

APPENDIX H

Correlations Between The Sociodemographic and Industrial Air Emissions Variables

		Air-	Terat	Solvent-	Special-	Inorgs	Hydroc	Halogen-	Carcin.
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density	Density	Density
							•••••		
Mother's age	Unweighted	0852	0700	0819	0956	1449	0713	0402	0568
	Log(10)	0866	0721	0850	1035	1573	0724	0407	0574
	Square Root	0989	0941	1118	1217	1939	0811	0440	0611
	Fully-wgtd.	1329	1702	2029	1600	2462	1189	0481	0735
% Mothers > 35	Unweighted	0728	0795	0926	0482	1020	0731	0701	0822
	Log(10)	0712	0846	0984	0568	1123	0791	0747	0878
	Square Root	0711	1015	1183	0727	1344	0932	0815	0963
	Fully-wgtd.	0881	1564	1842	1075	1760	1316	0898	1124
% Mothers < H.S.	Unweighted	.1357	.0223	.0458	. 1039	.1539	.0195	.0431	.0574
	Log(10)	.1508	.0267	.0509	.1024	.1728	.0208	.0444	.0574
	Square Root	.1768	.0572	.0848	.1102	.2209	.0327	.0461	.0579
	Fully-wgtd.	.2042	. 1384	.1810	.1484	.2783	.0768	.0463	.0680
Per capita income	Unweighted	0923	0636	0689	0606	0905	0562	0451	0524
	Log(10)	0997	0652	0712	0646	1023	0542	0453	0539
	Square Root	1224	0820	0932	0795	1385	0562	0463	0588
	Fully-wgtd.	1705	1532	1825	1260	2060	0892	0467	0735
Mostly rural	Unweighted	0870	0491	0776	0074	1009	0310	0917	0924
	Log(10)	0880	0554	0824	0144	0995	0409	0917	0927
	Square Root	0927	0741	0985	0263	0998	0617	0944	0957
	Fully-wgtd.	0981	1034	1244	0441	0979	0895	0943	0969
Population densidy	Unweighted	.3231	.0539	.1742	0167	.0966	.0233	.0846	.0942
	Log(10)	.3333	.0618	.1759	0124	.1053	.0290	.0838	.0917
	Square Root	.3378	.0907	.1819	.0050	.1381	.0445	.0803	.0864
	Fully-wgtd.	.3277	. 1538	.2126	.0464	.1798	.0752	.0671	.0783
% Crowded housing	Unweighted	.2081	.0483	.0901	.0675	.1250	.0267	.0541	.0688
	Log(10)	.2268	.0587	.0987	.0767	.1507	.0322	.0571	.0700
	Square Root	.2501	. 1073	.1468	. 1023	.2162	.0599	.0630	.0748
	Fully-wgtd.	.2760	.2228	.2790	. 1624	.2828	. 1367	.0728	.0989
% Old housing	Unweighted	.1061	.0704	.0760	0105	.1312	.0343	.0628	.0908
	Log(10)	. 1227	.0870	.0931	0101	.1476	.0436	.0778	. 1061
	Square Root	.1532	. 1251	.1335	.0034	.1843	.0628	.1059	.1327
	Fully-wgtd.	.1958	.2000	.2141	.0515	.2379	.1051	.1388	. 1653
	-								
% Female-headed	Unweighted	.1516	.0247	.0393	.0810	.1950	.0212	.0097	.0217
poverty	Log(10)	.1682	.0313	.0467	.0895	-2148	.0218	.0139	.0257
	Square Root	.1978	.0759	.0988	. 1074	.2655	.0420	.0290	.0442
	Fully-wgtd.	.2354	. 1878	.2373	. 1526	.3221	.1129	.0525	.0881

.

APPENDIX H (continued)

.

Correlations Between The Sociodemographic and Industrial Air Emissions Variables

		Air-	Terat	Solvent-	Special-	Inorgs	Hydroc	Halogen-	Carcin.
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density	Density	Density
•••••		*******							
% Primiparous	Unweighted	.0609	.0607	.0927	.0229	.0357	.0798	.0575	.0597
	Log(10)	.0623	.0736	.1086	.0312	.0328	.0967	.0701	.0701
	Square Root	.0603	.1017	.1382	.0399	.0151	. 1293	.0908	.0871
	Fully-wgtd.	.0740	. 1637	.2041	.0476	0266	. 1941	.1260	. 1220
% White	Unweighted	0664	0171	0178	0802	1014	0306	0175	0228
	Log(10)	0753	0259	0269	0827	1091	0402	0193	0231
	Square Root	0931	0562	0642	0904	1328	0606	0265	0298
	Fully-wgtd.	1179	1173	1518	1184	1569	1011	0349	0498
% Inadequate	Unweighted	0102	0391	0411	.0389	.1062	0114	0307	0214
prenatal care	Log(10)	.0053	0281	0286	.0509	.1338	0058	0235	0144
	Square Root	.0383	.0115	.0121	.0763	.2049	.0103	0123	0050
	Fully-wgtd.	.0807	.1011	.0949	.1243	.3101	.0402	0088	0042

APPENDIX I

÷

Correlations Between The Sociodemographic and Agricultural Pesticide Applications Variables

VARIABLE	WEIGHTING	Pest Density	Phthal Density	Organo Density	Carbam Density	Herb Density	Halo Density
Mother's age	Unweighted	0996	1119	0878	0835	.0061	0208
	Log(10)	0835	0986	0733	0759	.0072	0183
	Square Root	0558	0728	0464	0527	.0142	0092
	Fully-wgtd.	0075	0204	.0035	0034	.0362	.0109
<pre>% Mothers > 35</pre>	Unweighted	0651	0569	0550	0687	.0053	0271
	Log(10)	0634	0560	0528	0678	.0071	0264
	Square Root	0535	0487	0431	0579	.0126	0210
	Fully-wgtd.	0289	0266	0181	0303	.0288	0063
<pre>% Mothers < H.S.</pre>	Unweighted	.0561	.0627	.0535	.0691	0015	.0126
	Log(10)	.0424	.0514	.0393	.0573	0056	.0086
	Square Root	.0120	.0207	.0066	.0239	- 0175	- 0029
	Fully-wgtd.	0317	0285	0430	0276	0440	0218
Per capita income	Unweighted	0657	0573	0714	0475	0116	- 0035
-	Log(10)	0566	0494	0610	- 0425	- 0090	- 0007
	Square Root	0389	0351	0403	- 0269	0002	0063
	Fully-wgtd.	0020	0010	.0034	.0109	.0263	.0219
Mostly rural	Unweighted	.0733	.0527	.0575	.0470	.0965	- 0123
-	Log(10)	.0611	.0416	0489	0480	0974	- 0106
	Square Root	.0496	.0329	0429	0503	0990	- 0068
	Fully-wgtd.	.0372	.0269	.0390	.0524	.1045	0014
Population densidy	Unweighted	0698	- 0794	- 0813	- 0580	- 0420	- 0064
	Log(10)	- 0709	- 0818	- 0838	- 0614	- 0423	0004
	Square Root	- 0768	- 0879	- 0025	- 0701	0447	0100
	Fully-wgtd.	0889	0992	1095	0869	0490	0174
* Crowded housing	Unweighted	0105	0012	0240	0077	00(1	01.07
	$L_{00}(10)$	0067	.0012	.0240	.0277	UU01	.0107
	Square Root	- 0155	.0009	.0146	.0180	0115	.0064
	Fully-wgtd.	0521	0499	0655	0113	0245 0503	0065 0257
k Old housing	Unweighted	0224	0167	0006	0070	0000	0105
o ora nousring		.0224	.0107	.0096	00/2	.0396	.0135
	Square Boot	.0123	.0040	.0040	0058	.0266	.0144
	Fully wated	0001	0146	0055	0094	.0042	.0128
	ruity-wgta.	0221	0433	0282	0275	0371	.0048
B Female-headed	Unweighted	0118	0133	.0007	.0008	.0093	0066
poverty	LOG(IU)	0133	0127	0044	0034	.0007	0093
	Square Koot	0275	0266	0262	0203	0163	0164
	rully-wgtd.	0533	0564	0625	0514	0446	0288
APPENDIX I (continued)

Correlations Between The Sociodemographic and Agricultural Pesticide Applications Variables

.

VARIABLE	WEIGHTING	Pest Density	Phthal Density	Organo Density	Carbam Density	Herb Density	Halo Density
<pre>% Primiparous</pre>	Unweighted	.0258	.0249	.0200	.0079	0439	.0444
•	Log(10)	.0224	.0167	.0132	.0057	0423	. 0480
	Square Root	.0148	.0057	0009	0026	0368	.0467
	Fully-wgtd.	.0035	0024	0201	0149	0229	.0391
% White	Unweighted	0073	0162	0073	0222	.0177	0067
	Log(10)	.0000	0112	.0051	0078	.0199	0012
	Square Root	.0216	.0116	.0338	.0215	.0267	.0111
	Fully-wgtd.	.0519	.0479	.0714	.0595	.0443	.0281
% Inadequate	Unweighted	.0560	.0607	.0531	.0653	.0032	.0083
prenatal care	Log(10)	.0484	.0527	.0468	.0632	.0042	.0077
	Square Root	.0288	.0310	.0291	.0470	0001	.0022
	Fully-wgtd.	0071	0090	0065	.0100	0169	-,0111

•

.

APPENDIX J

Correlations Between The Subsets Of Toxic Waste Site And Vital Records Variables

VARIABLE	WEIGHTING	NPL- Density	CERCLIS- Density	NPL-	CERCLIS-
	*********			116361166	rtesence
Preterm births	Unweighted	0005	.1489**	.0219	.0618
percent	Log(10)	.0205	.2102**	.0338	.0879
-	Square Root	.0274	.3607**	.0652	.1409**
	Fully-wgtd.	.0168	.5743**	.1348**	.1900**
Small-for-	Unweighted	.0208	.1023*	.0194	.0643
gestational	Log(10)	.0257	.1376**	.0253	.0751
age percent	Square Root	.0276	.2611**	.0667	.1380**
• •	Fully-wgtd.	.0225	.4978**	.1520**	.2508**
Very low	Unweighted	0547	.0603	0451	0206
birthweight	Log(10)	0535	.0958*	0359	0011
rate	Square Root	0506	.2050**	0020	.0430
	Fully-wgtd.	0420	.4470**	.0830	.1092*
Low birthweight	Unweighted	0307	.1266**	0132	.0137
rate	Log(10)	0157	.1857**	0017	.0335
	Square Root	0040	.3505**	.0411	.0965*
	Fully-wgtd.	0007	.5984**	.1305**	.1712**
Neonatal death	Unweighted	.0159	.0281	0056	0268
rate	Log(10)	.0271	.0530	.0036	0160
	Square Root	.0376	.1244**	.0275	.0190
	Fully-wgtd.	.0415	.3053**	.0864	.0908*
Post-neonatal	Unweighted	0009	.0451	.0281	0017
death rate	Log(10)	.0041	.0812	.0328	.0179
	Square Root	.0036	.1745**	.0463	.0505
	Fully-wgtd.	0029	.4127**	.1159**	.1113*
Total infant	Unweighted	.0125	.0495	.0119	0230
death rate	Log(10)	.0247	.0883*	.0209	0036
	Square Root	.0323	.1905**	.0462	.0414
	Fully-wgtd.	.0290	.4203**	.1186**	.1196**
Fetal mortality	Unweighted	0171	.0247	.0045	.0311
rate	Log(10)	0083	.0491	.0122	.0282
	Square Root	.0062	.1177**	.0275	.0482
	Fully-wgtd.	.0262	.2771**	.0574	.0907*

* `significant at p < .05, two-tailed.

** significant at $p \in [.01]$, two-tailed.

APPENDIX K

Correlations Between The Subsets Of Toxic Waste Site And Birth Defects Registry Variables

		NPL-	CERCLIS-	NPL-	CERCLIS-
VARIABLE	WEIGHTING	Density	Density	Presence	Presence
Down syndrome	Unweighted	-,0092	0317	0002	0294
5	Log(10)	0058	0361	.0044	0251
	Square Root	0037	0596	.0045	- 0335
	Fully-wgtd.	0051	1344**	0152	0520
Neural tube	Unweighted	.0069	0072	0217	- 0667
defects	Log(10)	0135	.0031	- 0170	- 0652
	Square Root	0223	0382	- 0023	- 0/30
	Fully-word	0291	1305**	· 0273	0437
	Turry wgcu.		. 1305	.0275	.0107
Eye defects	Unweighted	0114	.0009	0311	0002
	Log(10)	0117	0008	0334	0053
	Square Root	0127	.0001	0348	0080
	Fully-wgtd.	0200	.0115	0359	0004
Selected severe	Unweighted	0186	· - . 0053	0099	- 0580
cardiac	Log(10)	0141	.0083	- 0060	- 0526
defects	Square Root	0037	0394	0103	- 0349
	Fully-wgtd.	.0214	.1132	.0615	.0074
Oral clefts	Unweighted	- 0194	0239	- 0164	. 0385
order ordereds	Log(10)	- 0176	0255	0104	0363
	Square Poot	- 0152	.0200	0112	0301
	Square Rooc	0152	.0220	.0017	0228
-4	rully-wglu.	0155	.0125	.0240	.0042
Reduction	Unweighted	.1151**	.1138*	.0391	0009
deformities	Log(10)	.1260**	.1138*	.0388	- 0087
	Square Root	.1307**	.1027*	.0353	0219
	Fully-wgtd.	.1202**	.0944*	.0322	0477
Chromosomal	Unweighted	.0044	0172	.0105	- 0289
anomalies	Log(10)	.0134	0198	0194	- 0312
	Square Root	0231	- 0392	0290	- 0/39
	Fully-wgtd.	.0337	1020*	.0249	0612
Congenital	Unweighted	0385	0570	- 0348	- 0668
anomalies	Log(10)	0469	0739	- 0257	- 0488
anomatics	Square Root	0501	0800*	- 0031	0400
	Fully-watd	0732	1107*	0031	0217
	rarry-wgcu.	.0752	. 112 / "	.0384	.0105
Major anomalies	Unweighted	.0121	.0465	0324	0583
	Log(10)	.0303	.0668	0191	0384
	Square Root	.0525	.0834	.0047	0076
	Fully-wetd.	,0769	.0962*	.0333	03/8

APPENDIX K (continued)

VADTART F	UFTCHTTNC	NPL- Density	CERCLIS-	NPL-	CERCLIS-
VARIADLE					
Minor anomalies	Unweighted	.0709	.0497	0226	0508
	Log(10)	.0588	.0523	0271	0465
	Square Root	.0443	.0574	0188	0419
	Fully-wgtd.	.0301	.0954*	.0313	0387
Central nervous	Unweighted	.0115	0107	0056	0570
system defects	Log(10)	.0191	0004	0024	0571
	Square Root	.0296	.0353	.0066	0406
	Fully-wgtd.	:0397	.1266**	.0244	.0105
Heart defects	Unweighted	0169	.0495	0071	.0235
	Log(10)	0131	.0594	0003	.0270
	Square Root	÷.0075	.0831	.0254	.0458
	Fully-wgtd.	.0000	.1400**	.0811	.0731
Musculoskeletal	Unweighted	.0321	.0567	0311	0181
defects	Log(10)	.0505	.0810	0194	.0048
	Square Root	.0702	.1098*	.0022	.0324
	Fully-wgtd.	.0942*	.1505**	.0347	.0630

Correlations Between The Subsets Of Toxic Waste Site And Birth Defects Registry Variables

* significant at p < .05, two-tailed.</pre>

APPENDIX L

Correlations Between The Subsets of Industrial Air Emissions And Vital Records Variables

		Air-	Terat	Solvent-	Special-	Inorgs	Hydroc	Halogen-	Carcin.
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density	Density	Density
							•••••	•••••	
Destant binche	tinus i she ad	0772	- 0222	- 0089	.1345**	.0712	0134	-0012	.0140
Preterm Dirths	Unweighted	.0332	- 0112	0037	. 1400**	.0800*	.0011	-0028	.0160
percent	Log(10)	.0322	0112	0/67	1/52**	1270**	0339	0076	.0207
	Square Koot	.0079	10207	1/2/**	1425**	1678**	0871	0132	.0355
	Fully-Wgta.	. 1623***	• 1022-	. 1464		1010	10071	10152	
Small-for-	Unweighted	.1014*	.1092*	.1177**	.0643	.0534	.0941*	.0526	.0511
gestational	Log(10)	.1018*	.1086*	.1188**	.0675	.0711	.0910*	.0525	.0497
age percent	Square Root	.1104*	· .1184**	.1336**	.0804	.1279**	.0887*	.0568	.0547
	Fully-wgtd.	.1415**	.1767**	.2036**	.1228**	.2302**	.1128*	.0592	.0695
Very Low	Unveighted	0081	0053	•.0157	0022	.0190	0044	0229	0201
hirthweight	Log(10)	.0028	.0060	0039	.0093	.0314	.0103	0213	0189
rate	Square Root	.0304	.0424	.0385	.0377	.0591	.0466	0149	0108
1400	Fully-wgtd.	.0897*	.1424**	.1646**	.1011*	.1037*	.1269**	0004	.0196
	• • • • • • • • • • • • • •	0/0/	0475	0571	0615	0749	0706	0272	0270
Low birthweight	Unweighted	.0624	.0000	.0271	.0013	.0747	.0700	020%	0200
rate	Log(10)	.0667	.0074	.0003	.0/23 \	4700++	.0/07	0147	0207
	Square Root	.0836	.0871	.0901*	.UYO2"	. 1309**	.0902*	.0103	.0204
	Fully-wgtd.	.1249**	.1653**	.1966**	.1432**	•1411	.1547**	.0234	.0440
Neonatal death	Unweighted	.0164	.0171	.0137	0116	.0464	.0475	0271	0179
rate	Log(10)	.0215	.0221	.0195	0060	.0544	.0535	0261	0162
	Square Root	.0363	.0422	.0431	.0088	.0697	.0706	0222	0095
	Fully-wgtd.	.0757	.1061*	.1255**	.0494	.0976*	.1212**	0150	.0135
Post-neonatai	Unweighted	.0363	-0551	.0524	0221	.0461	.0662	0182	0113
death sate	Log(10)	.0433	.0656	.0658	0230	.0615	.0696	0176	0098
	Square Root	.0508	.0802	.0881*	0132	.0926	.0695	0164	0068
	Fully-wgtd.	.0737	.1193**	. 1536**	0367	. 1569**	.0897*	0137	.0090
Tabal infort	Unusiahtad	03/8	0/.47	0419	0225	.0651	.0778	- 0329	0213
local infant	Unweighted	.0346	05/1	0520	- 0175	.0787	.0824	•.0313	0188
death rate		.0415	075/	0802	0003	1040*	.0929*	0264	0112
	Square Koot	.0556	47//**	14/0**	0534	1/40	1212**	- 0176	0141
	Fully-Wgta.	.0905~	. 1344***	. 1047	.0.00	. 1402		.0110	10141
Fetal mortality	Unweighted	.0153	.0253	.0232	0131	.0028	.0613	.0112	.0120
rate	Log(10)	.0131	.0232	.0213	0063	.0113	.0566	.0173	.0189
	Square Root	.0195	.0344	.0344	.0143	.0491	.0532	.0301	.0343
	Fully-wgtd.	.0582	.1031*	.1156**	.0742	.1484**	.0778	.0570	.0709

* significant at p < .05, two-tailed.</pre>

** significant at p < .01, two-tailed.

·

APPENDIX M

Correlations Between The Subsets of Industrial Air Emissions And Birth Defects Registry Variables

VARIABLE	WEIGHTING	Air- Density	Terat Density	Solvent- Density	Special- Density	lnorgs Density	Hydroc.• Density	Halogen- Density	Carcin. Density
•••••		*******		*******	*******	••••	•••••		•••••
	Ununiahtod	- 0257	- 0276	- 023/	- 0184	0070	- 0709	- 02/7	07//
Down syndrome		- 0207	- 0700	- 0234	- 0215	.0070	•.0308	•.0263	0366
		- 0/03	- 0353	- 0200	- 0215	0124	- 0/58	0297	0438
	Square Root	- 07/9	- 0421	- 0470	- 07/9	.0120	0438	0342	0521
	rully-wgla.	0/47	0021		0340	.0333	0//6	•.0432	0092
Neural tube	Unweighted	0089	0169	0059	0279	.0194	0169	0099	0028
defects	Log(10)	0087	0145	0041	0283	.0200	0119	0079	0005
	Square Root	0052	0040	.0047	0236	.0235	.0028	0023	.0061
	Fully-wgtd.	.0087	.0295	.0390	.0010	.0409	.0388	.0087	.0240
Eye detects	Unweighted	0264	0241	•.0257	0139	0180	0264	.0210	.0236
	Log(10)	0288	0260	•.0286	0138	0176	0287	.0223	.0247
	Square Root	0318	0293	•.0331	0113	0092	0311	.0233	.0262
	Fully-wgtd.	0361	0385	0393	0024	.0185	0310	.0237	.0295
Selected severe	Unweighted	.0076	0011	.0104	.0590	.0089	0319	0014	0018
cardiac	Log(10)	.0095	.0027	.0128	.0424 .	.0102	0293	.0022	.0005
defects	Square Root	-0163	.0140	.0231	.0179	.0103	0190	.0111	.0088
	Fully-wgtd.	.0424	.0490	.0678	0034	.0114	.0167	.0358	.0385
Oral clefts	Unweighted	.0189	.0282	.0302	0186	.0351	.0057	0190	0211
	Log(10)	.0194	.0363	.0354	0189	.0391	.0157	0213	0232
	Square Root	.0180	.0476	.0427	0157	.0528	.0373	0240	0239
	Fully-wgtd.	.0146	.0513	.0473	0015	.0888*	.0712	0218	0149
Poduction	Unusidated	0137	- 0035	0130	- 010/	- 0/17	. 0249	0190	0/25
defermities	Log(10)	.015/	- 0018	0177	- 0204	0417	- 0266	0169	0425
derormitties	Saurro Boot	0710	0018	0220	0208	- 0541	0205	0242	0481
	Square Root	.0210	.0011	.0227	- 0210	0501	0214	0558	0572
	Fully-Wgld.	.0299	.0055	.0300	0219	0/02	0039	0547	06//
Chromosomal	Unweighted	0136	0103	0004	0241	0028	0326	0248	0251
anomalies	Log(10)	0179	0084	.0015	0277	0027	0347	0264	0287
	Square Root	0320	0084	0031	0314	0015	0354	0286	0337
	Fully-wgtd.	0684	0255	0346	0389	.0130	0475	0383	0479
Conconitol	Unusinhtad	0700	0/07	0//8	017/	0005	0740		
congenitat	Unweighted	.0300	.0493	.0440	0170	.0095	.0340	.0005	0042
anomaties		.0516	.0556	.0490	0239	.0123	.0364	.0027	0020
	Square Koot	.0310	.0552	.0557	0305	.0135	.0389	.0067	.0039
	Fully-wgta.	.0398	.0671	.0760	0268	.0148	.0545	.0210	.0264
Major anomalies	Unweighted	.0248	.0433	.0404	0049	.0154	.0216	.0080	.0062
	Log(10)	.0257	.0475	.0450	0120	.0187	.0236	.0115	.0092
	Square Root	.0250	.0524	.0511	0207	.0245	.0287	.0159	.0145
	Fully-wgtd.	.0345	.0725	.0762	.0215	.0437	.0503	.0266	.0322

APPENDIX M (continued)

•

Correlations Between The Subsets of Industrial Air Emissions And Birth Defects Registry Variables

.

	WEIGHTING	Air- Density	Terat Density	Solvent- Density	Special- Density	Inorgs Density	Hydroc Density	Halogen- Density	Carcin. Density
**************			•••••	******	••••••		•••••		******
Nicor anomalies	Unweighted	.0256	.0369	.0315	0336	0064	.0414	0142	0223
HINGE BROMBERGS	1.00(10)	.0288	.0398	.0348	0371	0073	.0455	0171	0246
	Square Root	.0287	.0339	.0329	0367	0175	.0420	0170	0215
	Fully-wgtd.	.0326	.0231	.0393	0257	0566	.0378	0016	.0008
Control nervous	Unveighted	0226	0294	0212	0310	.0193	0274	0218	0141
ovetem defects		0239	0291	0217	0320	.0188	0243	0219	0140
System dereuto	Square Root	0233	0231	0174	0290	.0199	0136	0206	0116
	Fully-wgtd.	0147	.0013	.0092	0096	.0330	.0150	0169	0006
Heart defects	Unweighted	.0560	.0918*	.0876	.0184	.0347	.0082	.0485	.0421
		.0513	.0955*	.0899*	.0106	.0360	.0078	.0532	.0450
	Square Root	.0433	.1004*	.0952*	.0053	.0436	.0094	.0644	.0550
	Fully-wgtd.	.0495	.1240**	.1302**	.0209	.0702	.0312	.0882*	.0829
Musculoskeletal	Unweighted	.0453	.0613	.0498	0108	0149	.0834	.0129	.0025
defecte	1.00(10)	.0505	.0649	.0555	0159	0130	.0845	.0169	.0065
0010010	Square Root	,0587	.0700	.0668	0193	0053	.0850	.0259	.0180
	Fully-wgtd.	.0799	.0942*	.1043*	0086	.0054	.1010*	.0490	.0487

* significant at p < .05, two-tailed.</pre>

APPENDIX N

Correlations Between The Subsets of Agricultural Pesticide Applications And Vital Records Variables

VARIABLE	WEIGHTING	Pest Density	Phthal Density	Organo Density	Carbam Density	Herb Density	Halo Density

Preterm births	Unweighted	.0336	.0440	.0125	.0094	.0317	0089
percent	Log(10)	.0207	.0404	.0037	.0072	.0248	0110
	Square Root	0045	.0214	0176	0084	.0054	0176
	Fully-wgtd.	0420	0223	0549	0438	0308	0312
Small-for-	Unweighted	0086	.0139	.0055	0078	.0122	.0006
gestational	Log(10)	0115	.0178	.0011	0108	.0052	0020
age percent	Square Root	0214	.0140	0122	0174	0091	0073
	Fully-wgtd.	0469	0131	0464	0373	0422	0199
Very low	Unweighted	0356	0367	0498	0514	.1047*	0402
birthweight	Log(10)	0378	0307	0497	0555	.0984*	0458
rate	Square Root	0467	0314	0570	0653	.0716	0522
	Fully-wgtd.	0654	0504	0785	0868	.0035	0580
Low birthweight	Unweighted	.0094	0427	0191	0178	.1276**	0141
rate	Log(10)	.0037	0384	0217	0220	.1070*	0174
	Square Root	0136	0378	0336	0338	.0598	0233
	Fully-wgtd.	0446	0545	0614	0594	0152	0336
Neonatal death	Unweighted	0486	0438	0492	0261	0276	0346
rate	Log(10) [,]	0463	0396	0490	0296	0261	0387
	Square Root	0471	0369	0533	0388	0259	0446
	Fully-wgtd.	0563	0431	0691	0624	0351	0534
Post-neonatal	Unweighted	0139	0204	0149	0170	0315	- 0188
death rate	Log(10)	0090	0150	0092	0201	0357	- 0225
	Square Root	0037	0095	0038	0289	0421	0282
	Fully-wgtd.	0049	0173	0101	0529	0599	0387
Total infant	Unweighted	0481	0479	0492	0315	0411	- 0394
death rate	Log(10)	0434	0411	0457	0355	0411	0444
	Square Root	0399	0347	0450	0462	0426	- 0505
	Fully-wgtd.	0435	0397	0553	0708	0543	0575
Fetal mortality	Unweighted	.0344	0162	.0272	.0611	.0778	.0309
rate	Log(10)	.0331	0169	.0247	.0550	.0740	.0341
	Square Root	.0255	0246	.0186	.0471	.0627	.0357
	Fully-wgtd.	.0013	0499	0037	.0234	.0286	.0276

* significant at p < .05, two-tailed.

APPENDIX O

Correlations Between The Subsets of Agricultural Pesticide Applications And Birth Defects Registry Variables

VARIABLE	WEIGHTING	Pest Density	Phthal Density	Organo Density	Carbam Density	Herb Density	Halo Density
Down syndrome	Unweighted	0315	0345	0287	0375	0231	0195
3	Log(10)	0293	0340	0260	0419	0265	0229
	Square Root	0183	0256	0155	0433	0294	0255
	Fully-wgtd.	.0101	0024	.0113	0389	0340	0271
Neural tube	Unweighted	0049	0074	.0039	0034	0256	0157
defects	Log(10)	.0034	.0025	.0122	.0003	0240	0164
	Square Root	.0158	.0194	.0258	.0088	0205	0158
	Fully-wgtd.	.0343	.0426	.0461	.0236	0142	0131
Eye defects	Unweighted	.0140	.0005	.0363	.0273	0003	0026
5	Log(10)	.0226	.0033	.0449	.0310	.0012	0031
	Square Root	.0398	.0081	.0616	.0392	.0026	0033
	Fully-wgtd.	.0707	.0145	.0891*	.0527	.0011	0034
Selected severe	Unweighted	0239	0239	0163	0262	0198	0176
cardiac	Log(10)	0171	0168	0088	0255	0179	0178
defects	Square Root	0034	0033	.0064	0214	0140	0160
	Fully-wgtd.	.0219	.0176	.0329	0123	0063	0106
Oral clefts	Unweighted	0283	0127	0197	0351	0134	0188
	Log(10)	0242	0094	0135	0339	0118	0195
	Square Root	0163	0067	0006	0276	0084	0184
	Fully-wgtd.	.0004	0038	.0251	0104	.0011	0138
Reduction	Unweighted	.0089	.0337	.0140	0131	0231	0062
deformities	Log(10)	.0033	.0156	.0013	0187	0241	0090
	Square Root	0075	0087	0155	0258	0258	0123
	Fully-wgtd.	0244	0377	0361	0356	0321	0160
Chromosomal	Unweighted	0404	0438	0335	0351	0283	0239
anomalies	Log(10)	0377	0439	0285	0354	0308	0272
	Square Root	0247	0360	0125	0289	0307	0285
	Fully-wgtd.	.0075	0139	.0248	0087	0254	0260
Congenital	Unweighced	0250	.0232	.0109	0212	0523	0055
anomalies	Log(10)	0072	.0384	.0268	0145	0492	0035
	Square Root	.0185	.0537	.0490	0018	0413	.0003
	Fully-wgtd.	.0555	.0684	.0812	.0186	0263	.0063
aior anomalies	Unweighted	0292	.0077	.0048	0248	0493	0109
	Log(10)	0119	.0213	.0194	0177	0449	0092
	Square Root	.0140	.0384	.0427	0027	0361	0049
	Fully-wgtd.	.0540	.0598	.0801	.0240	0193	.0037

APPENDIX 0 (continued)

Correlations Between The Subsets of Agricultural Pesticide Applications And Birth Defects Registry Variables

VARIABLE	WEIGHTING	Pest Density	Phthal Density	Organo Density	Carbam Density	Herb Density	Halo Density
Minor anomalies	Unweighted	0049	.0419	.0175	0040	0328	.0076
	Log(10)	.0065	.0555	.0291	0007	0338	.0103
	Square Root	.0191	.0607	.0387	.0009	0324	.0116
	Fully-wgtd.	.0323	.0547	.0449	0024	0293	.0091
Central nervous	Unweighted	0018	.0181	.0223	.0007	0281	0155
system defects	$Log(10)^{1}$.0065	.0234	.0294	.0040	0263	0167
-	Square Root	.0196	.0331	.0425	.0125	0223	0167
	Fully-wgtd.	.0409	.0476	.0643	.0279	0151	0151
Heart defects	Unweighted	0236	.0461	.0123	0297	0410	0308
	Log(10)	0136	.0566	.0205	0288	0390	0317
	Square Root	.0041	.0695	.0367	0216	0342	0292
	Fully-wgtd.	.0316	.0820	.0608	0058	0243	0201
Musculoskeletal	Unweighted	0340	0239	0145	0266	0425	0191
defects	Log(10)	0285	0265	0120	0261	0415	0202
	Square Root	0241	0335	0119	0257	0389	0207
	Fully-wgtd.	0198	0443	0124	0270	0372	0201

* significant at p < .05, two-tailed.

ł

х

APPENDIX P

Partial Correlations Within The Subset Of Vital Records Variables

		S.G.A.	Very low	Low	Neonatal	Post-n.	Tot.Inf.	Fetal
VARIABLE	WEIGHTING	percent	B.W.rate	8.W.rate	Dth.rate	Dth.rate	Dth.rate	M. rate
	•••••					•••••	*******	•••••
Preterm births	Unweighted	.0492	.1688**	.3666**	.0978*	.0344	.1030*	.0067
percent	Log(10)	.0381	.1736**	.3510**	.1097*	.0233	.1076*	.0097
	Square Root	.0087	.1680**	.3336**	.1145*	.0283	.1139*	.0160
	Fully-wgtd.	.0080	.1520**	.3380**	.1269**	.0531	.1360**	.0171
Small-for-	Unweichted		.1586**	.3830**	.1982**	.0101	.1736**	0282
gestational age	Log(10)		.1509**	.3816**	.1650**	.0057	.1455**	0335
percent	Square Root		.1124*	.3598**	.1156**	.0018	.1007*	0457
pe	Fully-wgtd.		.0336	.3423**	.0292	0018	.0242	•.0998*
Manuel au	the contract		•	5064**	5686**	- 0380	. 4411**	-0587
Very low	Unweighted			. 3004***	5373**	- 0012	4477	.0638
Dirthweight				.4000	5089**	0368	4588**	0612
rate	Square Root			.4000**		0061*	.450**	0595
	Fully-Wgta.			•4377	.4013**	.0701	14420	.0373
Low birthweight	Unweighted				.3714**	0839	.2646**	.0381
rate	Log(10)				.3556**	0639	.2715**	.0314
	Square Root				.3182**	0475	.2493**	.0244
	Fully-wgtd.				. 2469**	0195	.2021**	.0047
Neonatal death	Unweighted					0649	.8077**	.1267**
rote						0530	.8335**	.1144*
Idic	Square Root					0332	.8454**	.1002*
	Fully-word.					.0052	.8614**	.0875
	fatty ngter							
Post-neonatal	Unweighted						.5359**	.0037
death rate	Log(10)						.5076**	.0107
	Square Root		•				.5058**	.0080
	Fully-wgtd.						.5123**	.0066
Total infant	Unweighted							.1094*
death rate								.1046*
	Square Root							.0908*
	Fully-watd.							.0784
	.arry waran							
Fetal mortality	Unweighted							
rate	Log(10)							
	Square Root							

.

Fully-wgtd.

* significant at p < .05, two-tailed.</pre>

** - conficant at p < .01, two-tailed.

.

APPENDIX Q

•

Partial Correlations Within The Subset Of Birth Defects Registry Variables

VARIABLE	WEIGHTING	NTDs	Eyes	Cardiacs	Clefts	Reductn.	Chromo.	Con. An.	Major D.	Minor D.	CNS	Heart D.	Musculo.
				•••••									
Down syndrome	Unweighted	.0244	0059	0107	.0095	0002	.9339**	.1806**	.2297**	.0034	.0422	.0675	0520
	Log(10)	.0346	.0052	.0057	.0343	.0093	.9090**	.1982**	.2347**	.0283	.0573	.1006*	0239
	Square Root	.0443	.0269	.0334	.0716	.0264	.8894**	.2369**	.2660**	.0595	.0698	.1431**	.0222
	Fully-wgtd.	.0612	.0720	.0961*	. 1407**	.0530	.8650**	.3081**	.3329**	.1082*	.0906*	.2279**	.0939*
Neural tube	Unweighted		.0218	.2190**	0239	.0216	.0378	.3887**	.4124**	. 1614**	.9441**	.3030**	.1769**
defects	Log(10)		.0280	.2112**	0115	.0290	.0471	.3983**	.4127**	.1777**	.9419**	.2804**	. 1999**
	Square Root		.0427	.2070**	.0149	.0432	.0556	.3917**	.4046**	.1751**	.9403**	.2588**	.2098**
	Fully-wgtd.		.0700	.2027**	.0611	.0674	.0733	.3631**	.3802**	.1546**	.9387**	.2318**	. 1918**
Eye defects	Unweighted			.0595	0179	0021	.0383	.0994*	.0997*	.0521	.0801	.0786	.0313
	Log(10)			.0590	0144	.0002	.0580	.1118*	.1105*	.0607	.0840	.0798	.0387
	Square Root			.0554	0016	.0061	.0850	. 1293**	.1262**	.0737	.0924*	.0802	.0545
	Fully-wgtd.			.0460	.0282	.0111	. 1266**	.1511**	.1445**	.0954*	. 1068*	.0740	.0800
Selected severe	Unweighted				.1113*	0073	.0064	.3529**	.3938**	.1101*	.2165**	.6099**	.0904*
cardiac	Log(10)				.0973*	0012	.0246	.3563**	.3868**	.1228**	.2124**	.5965**	.1121*
defects	Square Root				.0966*	.0098	.0499	.3569**	.3805**	.1337**	.2147**	.5830**	.1368**
	Fully-wgtd.				.1130*	.0300	.0993*	.3560**	.3754**	.1458**	.2230**	.5670**	. 1645**
Fral clefts	Unweighted					.1115*	.0562	.2418**	.3090**	.0020	0369	.1460**	.1022*
	Log(10)					.1102*	.0855	.2629**	.3177**	.0243	.0245	.1532**	. 1333**
	Square Root					.1049*	.1233**	.2937**	.3358**	.0609	.0032	.1795**	. 1696**
	Fully-wgtd.					.0874	.1907**	.3489**	.3716**	.1344**	.0540	.2341**	.2183**
eduction	Unweighted						.0023	.1914**	.2070**	.0721	.1053*	.0951*	.2731**
deformities	Log(10)						.0128	.1962**	.2126**	.0683	.1014*	.0933*	.2892**
	Square Root						.0314	.1956**	.2164**	.0561	.1000*	.0915*	.2931**
	Fully-wgtd.						.0601	.1946**	.2221**	.0416	.1032*	.0927*	.2832**
:hromosomal	Unweighted							.2082**	.2648**	.0040	.0559	.1079*	0394
anomalies	Log(10)							.2331**	.2783**	.0284	.0698	.1441**	0032
	Square Root							.2825**	.3210**	.0627	.0811	.1891**	.0563
	Fully-wgtd.							.3708**	.4049**	.1202**	.1020*	.2719**	.1515**
ongenital	Unweighted								.9206**	.6793**	.4266**	.5670**	.6825**
anomalies	Log(10)								.9310**	.6618**	.4404**	.6007**	.6841**
	Square Root								.9373**	.6542**	.4385**	.6308**	.7028**
	Fully-wgtd.								.9431**	.6608**	.4192**	.6723**	.7355**
ajor anomalies	Unweighted									.3388**	.4450**	.6199**	.6129**
	Log(10)									.3424**	.4494**	.6388**	.6282**
	Square Root									.3497**	.4473**	.6614**	.6535**
	Fully-wgtd.									.3737**	.4356**	.6962**	.6929**

APPENDIX Q (continued)

Partial Correlations Within The Subset Of Birth Defects Registry Variables

VARIABLE	WEIGHTING	NTDS	Eyes	Cardiacs	Clefts	Reductn	. Chromo.	. Con.	An. Major	D. Minor	D.	CNS	Heart D.	Musculo.
Minor anomalies	Unweighted											.1915**	.2010**	.4925**
	Log(10)											.2105**	.2341**	.4707**
	Square Root	Check of										.2081**	.2606**	.4710**
	Fully-wgtd.											.1860**	.3039**	.4877**
Central nervous	Unweighted												.3201**	.2205**
system defects	Log(10)												.3012**	.2432**
	Square Root	PED-21											.2865**	.2509**
	Fully-wgtd.												.2736**	.2333**
Heart defects	Unweighted													.2100**
	Log(10)													.2498**
	Square Root	10010												.2944**
	Fully-wgtd.													.3464**
Musculoskeletal	Unweighted													
defects	Log(10)													
	Square Root													
	Fully-wgtd.													
100														
* significant	at p < .05,	two-tai	led.											
** significant	at n < 01	tuo-tai	led											
orginitioune	ut p + 101,	cho cui	icu.											
													di olici	
						7								

APPENDIX R

!

Partial Correlations Between The Subsets Of Vital Records And Birth Defects Registry Variables

		Preterm	S.G.A.	Very low	Low	Neonatal	Post-n.	Tot.Inf.	Fetal
VARIABLE	WEIGHTING	percent	percent	B.W.rate	B.W.rate	Dth.rate	Dth.rate	Dth.rate	M. rate
Down syndrome	Unweighted	.0652	.0130	.0269	0127	.0506	.5572**	.3720**	0182
	Log(10)	.0601	.0156	.0696	.0247	.0775	.4101**	.2938**	0074
	Square Root	.0526	.0195	.0961*	.0471	.0968*	.3001**	.2439**	0025
	Fully-wgtd.	.0251	.0272	.1105*	.0624	.1194**	. 1454**	.1763**	.0047
Neural tube	Unweighted	.0362	.0257	.1037*	. 1294**	.1248**	0302	.0877	.0408
defects	Log(10)	.0510	.0209	.1003*	. 1367**	.1240**	0295	.0907*	.0250
	Square Root	.0584	.0169	.0898*	. 1360**	.1189**	0281	.0876	.0076
	Fully-wgtd.	.0795	.0313	.0660	.1300**	.0985*	0188	.0750	0101
Eye defects	Unweighted	0586	0127	0064	0485	.0046	0386	0189	. 1399**
	Log(10)	0597	0184	0038	0545	.0088	0362	0125	.1487**
	Square Root	0570	0202	.0003	0592	.0164	0278	0007	.1552**
	Fully-wgtd.	0612	0204	.0045	0698	.0274	0058	.0205	.1582**
Selected severe	Unweighted	0289	0095	.0984*	0272	.1762**	0371	. 1271**	. 1051*
cardiac	Log(10)	0316	0203	.0906*	0277	.1516**	0300	.1142*	.1021*
defects	Square Root	0334	0251	.0764	0183	.1180**	0175	.0925*	. 1044*
	Fully-wgtd.	0475	0263	.0547	.0026	.0593	.0104	.0562	.1179**
Oral clefts	Unweighted	.0176	.0119	0401	.0473	0163	.0274	.0024	0632
	Log(10)	.0247	0020	0266	.0424	0184	.0427	.0078	0519
	Square Root	.0332	0172	0051	.0383	0137	.0536	.0169	0185
	Fully-wgtd.	.0384	0609	.0254	.0210	0038	.0728	.0337	.0631
Reduction	linuoiahtad	. 0318	- 0207	- 0272	- 0/83	- 0/9/	0260	- 0271	- 0115
deformities		.0518	- 0376	- 02/0	- 0/10	- 0/5/	.0247	- 0172	- 0030
deronanchea	Square Poot	.0552	- 0372	- 0190	- 0282	0454	.0377	0004	0030
	Fully-untri	1285**	- 0230	- 0055	0010	- 0213	.0399	.0000	.0113
	fully nglu.	. (20)	0237	0055	.0004	0213	. U7 14**	.0201	.0324
Chromosomal	Unweighted	.0706	.0095	.0212	0301	.0392	.5216**	.3413**	0094
anomalies	Log(10)	.0674	.0060	.0589	0004	.0617	.3823**	.2647**	.0020
	Square Root	.0687	.0039	.0837	.0210	.0831	.2877**	.2255**	.0100
	Fully-wgtd.	.0620	0032	.1014*	.0403	.1181*	.1666**	.1860**	.0232
Congenital	Unweighted	.0524	.0553	.0634	0547	.1261**	.0749	.1509**	.0542
anomalies	Log(10)	.0723	.0047	.0878	0231	.1306**	.0554	.1434**	.0713
	Square Root	.0790	0378	.1088*	0012	.1364**	.0490	.1440**	.0924*
	Fully-wgtd.	.0791	1001*	.1347**	.0170	.1477**	.0570	.1559**	. 1485**
Major anomalies	Unweighted	.0543	.0418	.0765	0277	.1399**	.0995*	.1772**	.0495
	Log(10)	.0778	.0043	.1025*	0009	.1458**	.0691	.1641**	.0640
	Square Root	.0900*	0294	.1262**	.0195	.1556**	.0568	.1647**	.0868
	Fully-wgtd.	.0893*	0817	.1572**	.0351	.1696**	.0565	.1743**	.1446*

APPENDIX R (continued)

Partial Correlations Between The Subsets Of Vital Records And Birth Defects Registry Variables

		Preterm	S.G.A.	Very low	LOW	Neonatal	Post-n.	Tot.Inf.	Fetal
VARIABLE	WEIGHTING	percent	percent	B.W.rate	B.W.rate	Dth.rate	Dth.rate	Dth.rate	M. rate
****					****		• • • • • • • • • •		
Ninor anomalies	Unweighted	.0243	.0548	.0089	0799	.0408	0067	.0306	.0376
	Log(10)	.0261	.0032	.0154	0577	.0367	.0007	.0320	.0521
	Square Root	.0171	0380	.0186	0456	.0290	.0087	.0297	.0600
	Fully-wgtd.	.0190	0950	.0208	0317	.0295	.0316	.0413	.0879
Central nervous	Unweighted	.0322	.0403	.1145*	. 1344**	.1389**	0133	.1097*	.0663
system defects	Log(10)	.0509	.0360	.1161**	.1442**	.1399**	0080	.1162**	.0520
	Square Root	.0632	.0327	.1104*	.1454**	.1365**	0042	.1156**	.0340
	Fully-wgtd.	.0848	.0431	.0903*	.1359**	.1186**	.0042	.1040*	.0122
Heart defects	Unweighted	0054	0043	.1131*	0025	.1169**	0260	.0835	.0801
	Log(10)	.0003	0202	.1168**	0023	.1051*	0153	.0822	.0739
	Square Root	.0003	0342	.1186**	.0071	.0916*	0021	.0780	.0739
	Fully-wgtd.	0135	0519	.1227**	.0275	.0741	.0211	.0743	.0857
Musculoskeletal	Unweighted	.0111	.0387	.0123	0361	.0901*	0073	.0720	.0056
defects	Log(10)	.0280	0061	.0250	0104	.0889*	.0070	.0806	.0313
	Square Root	.0384	0431	.0407	.0018	.0935*	.0160	.0892*	.0683
	Fully-wgtd.	.0421	1023*	.0712	0087	.1052*	.0344	.1078*	. 1521*

* significant at p < .05, two-tailed.</pre>

** significant at p < .01, two-tailed.</pre>

.

•

٠

APPENDIX S

Partial Correlations Between The Subsets Of Toxic Waste Site And Vital Records Variables

		NPL-	CERCLIS-	NPL-	CERCLIS-
VARIABLE	WEIGHTING	Density	Density	Presence	Presence
Preterm births	Unweighted	0181	.0235	.0099	0599
percent	Log(10)	.0134	.0532	.0118	0573
F	Square Root	.0408	.0978*	.0192	0537
	Fully-wgtd.	.0686	.1584**	.0333	0255
Small-for-	Unweighted	.0093	0246	.0041	0098
gestational	Log(10)	.0072	0268	0009	0184
age percent	Square Root	.0109	0032	.0117	.0034
•	Fully-wgtd.	.0241	.0608	.0310	.0702
Very low	Unweighted	0643	.0203	0364	0540
birthweight	Log(10)	0688	.0196	0309	0549
rate	Square Root	0722	.0244	0151	0525
	Fully-wgtd.	0744	.0286	0004	0488
Low birthweight	Unweighted	0599	0183	0259	0957*
rate	Log(10)	0469	0031	0225	1013*
	Square Root	0328	.0348	0087	0952*
	Fully-wgtd.	0161	.1132**	.0030	0573
Neonatal death	Unweighted	.0040	0193	.0067	0576
rate	Log(10)	.0139	0128	.0152	0542
	Square Root	.0242	0036	.0351	0449
	Fully-wgtd.	.0375	.0029	.0587	0267
Post-neonatal	Unweighted	0010	.0157	.0242	0300
death rate	Log(10)	0005	.0270	.0274	0248
	Square Root	.0003	.0395	.0319	0246
	Fully-wgtd.	.0042	.0555	.0547	0319
Total infant	Unweighted	.0028	0071	.0200	0664
death rate	Log(10)	.0117	.0039	.0283	0605
	Square Root	.0210	.0181	.0475	0519
	Fully-wgtd.	.0344	.0309	.0784	0391
Fetal mortality	Unweighted	0129	.0067	.0226	.0277
rate	Log(10)	0063	.0160	.0298	.0200
	Square Root	.0037	.0173	.0372	.0173
	Fully-wgtd.	.0206	0135	.0244	.0019

* significant at p < .05, two-tailed.</pre>

APPENDIX T

Partial Correlations Between The Subsets Of Toxic Waste Site And Birth Defects Registry Variables

VARIABLE	WEIGHTING	NPL- Density	CERCLIS- Density	NPL- Presence	CERCLIS-
Down syndrome	Unweighted	0182	0339	.0075	0020
3	Log(10)	0192	0438	.0110	0022
	Square Root	0146	0549	.0140	0119
	Fully-wgtd.	0002	0740	.0217	0185
Neural tube	Unweighted	0076	0653	0119	0654
defects	Log(10)	0034	0624	0082	0682
	Square Root	.0067	0456	.0042	0598
	Fully-wgtd.	.0279	0048	.0235	0310
Eye defects	Unweighted	0125	0127	0338	0083
	Log(10)	0147	0196	0353	0131
	Square Root	0161	0301	0352	0168
	Fully-wgtd.	0180	0383	0290	0169
Selected severe	Unweighted	0134	0202	0012	0557
cardiac	Log(10)	0129	0100	.0026	0503
defects	Square Root	0082	.0165	.0159	0349
	Fully-wgtd.	.0097	.0671	.0414	0110
Oral clefts	Unweighted	0211	.0091	0072	0308
	Log(10)	0240	.0059	0060	0347
	Square Root	0252	.0037	.0016	0290
~	Fully-wgtd.	0225	.0129	.0250	0155
Reduction	Unweighted	.1054*	.1111*	.0335	0112
deformities	Log(10)	.1170**	.1142*	.0313	0209
	Square Root	.1245**	.1138*	.0271	0369
	Fully-wgtd.	.1209**	.1164**	.0244	0660
Chromosomal	Unweighted	0042	0198	.0172	0057
anomalies	Log(10)	.0010	0259	.0255	0127
	Square Root	.0135	0312	.0367	0278
	Fully-wgtd.	.0371	0391	.0556	0395
Congenital	Unweighted	.0288	.0210	0144	0463
anomalies	Log(10)	.0314	.0237	0125	0480
	Square Root	.0414	.0327	.0057	0427
	Fully-wgtd.	.0650	.0510	.0441	0310
Major anomalies	Unweighted	.0024	.0055	0128	0433
	Log(10)	.0155	.0142	0059	0383
	Square Root	.0355	.0253	.0123	0265
	Fully-wgtd.	.0703	.0390	.0433	0097

APPENDIX T (continued)

VARTABLE	WEIGHTING	NPL- Density	CERCLIS-	NPL- Presence	CERCLIS-
Minor anomalies	Unweighted	.0648	.0403	0106	0302
	Log(10)	.0489	.0320	0201	0448
	Square Root	.0341	.0332	0113	0573
	Fully-wgtd.	.0227	.0542	.0251	0645
Central nervous	Unweighted	0025	0602	.0099	0465
system defects	Log(10)	.0039	0557	.0127	0504
	Square Root	.0165	0354	.0209	0458
	Fully-wgtd.	.0409	.0114	.0293	0270
Heart defects	Unweighted	0219	.0153	0118	.0081
	Log(10)	0247	.0180	0108	.0060
	Square Root	0272	.0248	.0001	.0083
	Fully-wgtd.	0281	.0278	.0119	.0007
Musculoskeletal	Unweighted	.0276	.0196	0278	0222
defects	Log(10)	.0419	.0286	0226	0197
	Square Root	.0610	.0332	0072	0139
	Fully-wgtd.	.0929*	.0328	.0282	0007

Partial Correlations Between The Subsets Of Toxic Waste Site And Birth Defects Registry Variables

* significant at p < .05, two-tailed.

APPENDIX U

Partial Correlations Between The Subsets of Industrial Air Emissions And Vital Records Variables

		Air-	Terat	Solvent-	Special-	Inorgs	Hydroc	Halogen-	Carcin.
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density	Density	Density
								••••••	
Pretern births	Unweighted	0341	0558	0496	.0830	0265	0577	0029	.0044
percent	Log(10)	0326	0516	0428	.0881**	0331	0459	0137	0051
	Square Root	0334	0529	0421	.0827	0549	0298	0239	0145
	Fully-wgtd.	0690	0580	0509	.0842	1302	0042	0630	0531
Small-for-	Unweighted	.0412	.0859	.0819	.0191	0286	.0750	.0223	.0125
gestational	Log(10)	.0330	.0831	.0804	.0154	0258	.0687	.0165	.0049
age percent	Square Root	.0138	.0720	.0692	.0061	0077	.0525	.0151	.0023
	Fully-wgtd.	0272	.0511	.0394	0036	.0019	.0242	0019	0144
Very low	Unweighted	0190	0116	0150	0227	0193	0124	0276	0299
birthweight	Log(10)	0211	0093	0131	0207	0243	0061	0325	0360
rate	Square Root	0221	.0054	.0014	0137	0402	.0157	0405	0442
	Fully-wgtd.	0221	.0529	.0439	0015	0943	.0651	0651	0658
Low birthweight	Unweighted	0007	.0462	.0350	.0021	0231	.0519	.0143	.0048
rate	Log(10)	0135	.0430	.0316	.0039	0283	.0555	0017	0116
	Square Root	0405	.0329	.0213	.0040	0424	.0558	0240	0334
	Fully-wgtd.	0919*	.0311	.0135	.0110	1028*	.0615	0723	0790
Neonatal death	Unweighted	.0037	.0023	.0044	0324	.0147	.0349	0314	0264
rate	Log(10)	.0056	.0054	.0083	0290	.0123	.0395	0340	0292
	Square Root	.0106	.0119	.0160	0281	.0029	.0491	0394	0333
	Fully-wgtd.	.0227	.0357	.0422	0288	0185	.0769	0602	0444
Post-neonatal	Unweighted	.0253	.0612	.0583	0382	.0205	.0717	0292	0254
death rate	Log(10)	. 0236	.0671	.0679	0443	.0215	.0711	0316	0273
	Square Root	.0113	.0682	.0775	0531	.0152	.0629	0366	0312
	Fully-wgtd.	0219	.0583	.0802	0660	0004	.0534	0576	0501
Total infant	Unweighted	.0181	.0382	.0382	0500	.0245	.0719	0438	0373
death rate	Log(10)	.0179	.0418	.0447	0495	.0225	.0734	0469	0403
	Square Root	.0153	.0467	.0552	0526	.0106	.0760	0536	0455
	Fully-wgtd.	.0084	.0601	.0769	0583	0162	.0930*	0810	0637
Fetal mortality	Unweighted	.0148	.0224	.0227	0303	0176	.0554	.0153	.0123
rate	Log(10)	.0060	.0199	.0190	0237	0188	.0506	.0171	.0149
	Square Root	0093	.0175	.0148	0137	0140	.0387	.0194	.0197
	Fully-wgtd.	0223	.0191	.0164	.0011	.0083	.0185	.0262	.0323

1

* significant at p < .05, two-tailed.</pre>

APPENDIX V

Partial Correlations Between The Subsets of Industrial Air Emissions And Birth Defects Registry Variables

		Air-	Terat	Solvent-	Special-	Inorgs	Hydroc	Halogen-	Carcin.
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density	Density	Density
****************	• • • • • • • • • • • • • • • • • • • •			•••••				•••••	
Down syndrome	Unweighted	0246	0212	0185	0040	.0064	0236	0269	0392
	Log(10)	0318	0282	0242	0082	.0065	0325	0311	0469
	Square Root	0428	0364	0308	0149	.0079	0432	0334	0518
	Fully-wgtd.	0646	0487	0427	0172	.0411	0576	0272	0480
Neural tube	Unweighted	0319	0309	0216	0335	0172	0262	0150	0127
defects	Log(10)	0296	0319	0214	0385	0217	0231	0132	0111
	Square Root	0251	0335	0238	0445	0304	0142	0097	0078
	Fully-wgtd.	0231	0238	0171	0380	0405	.0131	0070	0026
Eye defects	Unweighted	0331	0296	0296	0212	0239	0298	.0162	.0176
	Log(10)	0339	0320	0319	0205	0256	0320	.0172	-0181
	Square Root	0349	0354	0366	0173	- 0205	0332	.0175	.0181
	Fully-wgtd.	0352	0403	0417	0072	.0106	0284	.0175	.0198
Selected severe	Unweighted	.0033	0025	-0108	.0590	0121	- 03/0	- 0006	- 0027
cardiac	Log(10)	.0055		.0114	.0421	- 0113	- 0328	0013	- 002/
defects	Square Root	.0109	.0023	.0139	.0153	- 0141	- 0263	.0015	- 00024
	Fully-wgtd.	.0275	.0112	.0273	0196	0151	0110	.0169	.0108
Oral clefts	Unweighted	.0126	.0272	. 0288	- 0168	0185	0036	- 0182	- 0227
		0130	0323	.0200	- 0199	.0105	.0050	0102	0227
	Square Root	0162	0384	.0317	- 0192	.0200	.0119	0240	0285
	Eul Iv-wata	.0142	.0300	.034/	*.0102	.0303	.0311	0515	0355
	ructy-wytu.	.0122	.0401	.0309	0071	.0755	-0658	0308	0256
Reduction	Unweighted	.0082	0089	.0072	0187	0400	0322	0226	0465
deformities	Log(10)	.0111	0071	.0114	0225	0471	0323	0272	0514
	Square Root	.0169	0051	.0172	0281	0586	0275	0368	0586
	Fully-wgtd.	.0270	.0012	.0282	0316	0757	0091	0543	0701
Chromosomal	Unweighted	0125	0048	.0038	0120	0012	0266	0288	0305
anomalies	Log(10)	0183	0067	.0021	0167	0027	0320	0310	0342
	Square Root	0290	0066	.0006	0225	0016	0324	0304	0352
	Fully-wgtd.	0463	0034	0013	0243	.0255	0267	0237	0293
Congenital	Unweighted	.0285	.0455	.0450	0216	0294	.0200	8400	- 0037
anomalies	Log(10)	-0256	.0411	.0411	0358	- 0328	.0261	.0025	- 0081
	Square Root	.0248	.0275	.0286	0550	0362	0188	0026	- 0060
	Fully-wgtd.	.0331	.0223	.0303	0635	0218	.0236	.0131	.0091
Major anomalies	Unweighted	.0221	.0389	.0422	0000	(1282	0152	0150	0075
	Log(10)	.0210	.0356	.0393	0230	1700	0129	0120	C007
	Square Root	.0208	.0259	.0295	0430	- 0772	0120	01120	.0043
	Fully-watd.	.0293	.0263	.0772	0571	- 0147	0220	.0110	.0031
	.,							.0102	.0124

Partial Correlations Between The Subsets of Industrial Air Emissions And Birth Defects Registry Variable	Partial	Correlations	Between T	he Subsets o	f Industrial	Air Emissions	And Birth	Defects Registry	Var iables
--	---------	--------------	-----------	--------------	--------------	---------------	-----------	------------------	-------------------

		Air-	Terat	Solvent-	Special-	Inorgs	Hydroc	Halogen-	Carcin.
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density	Density	Density
*************		*******		*******	•••••				
Minor anomalies	Unweighted	.0271	.0365	.0293	0334	0178	.0433	0120	0228
	Log(10)	.0229	.0326	.0252	0431	0211	.0408	0199	0298
	Square Root	.0216	.0179	.0128	0524	0253	.0284	0181	0254
	Fully-wgtd.	-0264	.0028	.0096	0482	0278	.0162	0003	0025
Central nervous	Unweighted	0427	0406	0332	0338	0121	0346	0230	0200
system defects	Log(10)	0425	0433	0350	0390	0176	0329	0233	0204
	Square Root	0416	0489	0414	0463	0286	0272	0242	0214
	Fully-wgtd.	0449	0480	0424	0444	0402	0072	0299	0237
Heart defects	Unweighted	.0469	.0798	.0771	.0111	.0080	0024	.0399	.0312
	Log(10)	.0424	.0811	.0771	.0005	.0078	0048	.0436	.0325
	Square Root	.0316	.0742	.0695	0144	.0107	0123	.0535	.0393
	Fully-wgtd.	.0223	.0620	.0626	0226	.0301	0204	.0713	.0573
Musculoskeletal	Unweighted	.0524	.0661	.0606	0231	0579	.0814	.0217	.0070
defects	Log(10)	.0516	.0612	.0578	0369	0632	.0759	.0180	.0035
	Square Root	.0533	.0520	.0520	0512	0675	.0667	.0200	.0081
	Fully-wgtd.	.0698	.0566	.0636	0564	0599	.0695	.0397	.0332

* significant at p < .05, two-tailed.</pre>

APPENDIX W

Partial Correlations Between The Subsets of Agricultural Pesticide Applications And Vital Records Variables

		Pest	Phthal	Organo	Carbam	Herb	Halo
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density
**************		•••••	•••••		•••••		
Preterm births	Unweighted	0142	0210	0355	0318	.0554	0179
percent	Log(10)	0101	0023	0276	0281	.0514	0204
	Square Root	0166	.0030	0248	0215	.0449	0193
	Fully-wgtd.	0102	.0317	0044	0056	.0335	0170
Small-for-	Unweighted	0415	0251	0256	0380	.0295	0104
gestational	Log(10)	0418	0171	0282	0420	.0251	0155
age percent	Square Root	0440	0122	0315	0390	.0185	0171
	Fully-wgtd.	0418	.0037	0311	0270	.0023	0172
Very low	Unweighted	0572	0568	0672	0726	.0952*	0439
birthweight	Log(10)	0580	0508	0659	0764	.0950*	0509
rate	Square Root	0600	0446	0644	0804	.0839	0572
	Fully-wgtd.	0601	0381	0600	0845	- 0506	0618
Low birthweight	Unweighted	0241	0970*	0581	0475	. 1541**	0211
rate	Log(10)	0226	0886*	0535	0513	.1432**	0263
	Square Root	0252	0801	0471	0507	.1199**	0283
	Fully-wgtd.	0172	0493	0237	0388	.0715	0274
Neonatal death	Unweighted	0744	0715	0714	0389	0412	0350
rate	Log(10)	0676	0625	0676	0429	0374	0407
	Square Root	0651	0576	0680	0508	0311	0468
	Fully-wgtd.	0616	0477	0680	0611	0206	0533
Post-neonatal	Unweighted	0259	0315	0238	0378	0370	0234
death rate	Log(10)	0183	0251	0155	0382	0392	0255
	Square Root	0042	0128	0011	0381	0409	0270
	Fully-wgtd.	.0251	.0079	.0275	0375	0421	0280
Total infant	Unweighted	0782	0791	0745	0552	0567	0434
death rate	Log(10)	0684	0678	0669	0581	0540	0492
	Square Root	0584	0564	0592	0642	0487	0549
	Fully-wgtd.	0401	0369	0444	0715	0390	0600
Fetal mortality	Unweighted	.0139	0406	.0133	.0456	.0700	.0277
rate	Log(10)	.0187	0342	.0155	.0408	.0680	.0303
	Square Root	.0201	0328	.0176	.0391	.0640	.0334
	Fully-wgtd.	.0179	0395	.0212	.0404	.0535	.0362

* significant at p < .05, two-tailed.</pre>

APPENDIX X

.

. .

Partial Correlations Between The Subsets of Agricultural Pesticide Applications And Birth Defects Registry Variables

		Pest	Phthal	Organo	Carbam	Herb	Hal o. -
VARIABLE	WEIGHTING	Density	Density	Density	Density	Density	Density
******		•••••					
Down syndrome	Unweighted	0300	0305	0272	0370	0260	0215
	Log(10)	0267	0290	0246	0394	0266	0248
	Square Root	0154	0209	0152	0406	0288	0265
	Fully-wgtd.	.0112	0018	.0071	0408	0374	0271
Neural tube	Unweighted	0094	0141	0023	0026	0258	0191
defects	Log(10)	0034	0064	.0035	0018	0250	0203
	Square Root	.0050	.0052	.0136	.0024	0221	0190
	Fully-wgtd.	.0263	.0330	.0373	.0173	0125	0136
					0005	0057	0050
Eye defects	Unweighted	.0059	0067	.0281	.0205	0055	0050
	Log(10)	.0136	0050	.0359	.0233	0044	0059
	Square Root	.0303	0014	.0523	.0304	0031	0062
	Fully-wgtd.	.0611	.0034	.0792	.0429	0025	0061
Selected severe	Unweighted	0242	0219	0177	0263	0250	0196
cardiac	Log(10)	0182	0148	0111	0267	0228	0202
defects	Square Root	0064	0023	.0023	0246	0188	0189
	Fully-wgtd.	.0161	.0131	.0271	0165	0092	0125
Oral clefts	Unweighted	0319	0132	0234	0365	0191	0210
	Log(10)	0284	0099	0185	0371	0158	0228
	Square Root	0208	0072	0065	0323	0099	0223
	Fully-wgtd.	0052	0079	.0179	0155	.0029	0166
Reduction	Unweighted	.0070	.0331	.0105	0107	0210	0071
deformities	Log(10)	.0009	.0136	0027	0167	0220	0100
	Square Root	0106	0136	0198	0237	0248	0123
	Fully-wgtd.	0263	0418	0382	0313	0332	0139
Chromosomal	Unweighted	0396	0406	0324	0354	0303	0270
anomalies	Log(10)	0365	0407	0281	0343	0306	0303
	Square Root	0235	0332	0133	0278	0303	0308
	Fully-wgtd.	.0054	0167	.0186	0123	0293	0275
Concenital	Unweighted	0356	.0124	.0007	0214	0602	0084
anomalies	Log(10)	0191	.0260	.0138	0184	0544	0076
	Square Root	.0034	.0343	.0337	0090	0428	0027
	Fully-wgtd.	.0444	.0498	.0717	.0155	0206	.0076
Major a no malies	Unweighted	0442	0049	0107	0273	0632	0147
	Log(10)	0275	.0077	.0021	0242	0552	0146
	Square Root	0037	.0198	.0231	0135	0421	0100
	Fully-wgtd.	.0385	.0411	.0635	.0136	0190	.0012

APPENDIX X (continued)

Partial Correlations Between The Subsets of Agricultural Pesticide Applications And Birth Defects Registry Variables

VARIABLE	WEIGHTING	Pest Density	Phthal Density	Organo Density	Carbam Density	Herb Density	Halo Density
Minor anomalies	Unweighted	0028	.0391	.0218	0001	0262	.0074
	Log(10)	.0072	.0511	.0314	.0022	0267	.0102
	Square Root	.0173	.0493	.0403	.0052	0236	.0145
	Fully-wgtd.	.0369	.0460	.0567	.0125	0146	.0186
Central nervous	Unweighted	0065	.0132	.0167	.0029	0326	0177
system defects	Log(10)	0002	.0165	.0216	.0031	0313	0194
	Square Root	.0096	.0211	.0316	.0071	0274	0190
	Fully-wgtd.	.0340	.0394	.0572	.0225	0161	0152
Heart defects	Unweighted	0246	.0465	.0092	0305	0371	0342
	Log(10)	0176	.0538	.0144	0317	0344	0358
	Square Root	0045	.0599	.0270	0268	0286	0326
	Fully-wgtd.	.0257	.0728	.0571	0066	0150	0196
Musculoskeletal defects	Unweighted	0473	0382	0291	0336	0477	0254
	Log(10)	0432	0420	0277	0362	0457	0269
	Square Root	0363	0480	0228	0343	0398	0250
	Fully-wgtd.	0226	0520	0095	0244	0300	0180

6

* significant at p < .05, two-tailed.</pre>

** significant at p < .01, two-tailed.</pre>

.

:

.

-

,