Inflammatory cytokines IL-1β and TNF-α regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms

Soyoung Choi and Wilma J Friedman
Department of Biological Sciences, Rutgers University, Newark, NJ 07102, U.S.A.

Cite this article as: Choi S and Friedman WJ (2009) Inflammatory cytokines IL-1\(\beta\) and TNF-\(\alpha\) regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms. ASN NEURO 1(2):art:e00010.doi:10.1042/AN20090009

ABSTRACT

The p75NTR (where NTR is neurotrophin receptor) can mediate many distinct cellular functions, including cell survival and apoptosis, axonal growth and cell proliferation, depending on the cellular context. This multifunctional receptor is widely expressed in the CNS (central nervous system) during development, but its expression is restricted in the adult brain. However, p75NTR is induced by a variety of pathophysiological insults, including seizures, lesions and degenerative disease. We have demonstrated previously that p75NTR is induced by seizures in neurons, where it induces apoptosis, and in astrocytes, where it may regulate proliferation. In the present study, we have investigated whether the inflammatory cytokines IL (interleukin)-1\(\beta\) and TNF-\(\alpha\) (tumour necrosis factor-\(\alpha\)), that are commonly elevated in these pathological conditions, mediate the regulation of p75NTR in neurons and astrocytes. We have further analysed the signal transduction pathways by which these cytokines induce p75NTR expression in the different cell types, specifically investigating the roles of the NF-\(\kappa\)B (nuclear factor \(\kappa\)B) and p38 MAPK (mitogen-activated protein kinase) pathways. We have demonstrated that both cytokines regulate p75NTR expression; however, the mechanisms governing this regulation are cytokine- and cell-type specific. The distinct mechanisms of cytokine-mediated p75NTR regulation that we demonstrate in the present study may facilitate therapeutic intervention in regulation of this receptor in a cell-selective manner.

Key words: neurotrophin receptor, nuclear factor \(\kappa\)B (NF-\(\kappa\)B), p38 mitogen-activated protein kinase (p38 MAPK).

INTRODUCTION

The p75NTR (where NTR is neurotrophin receptor) is known to play multiple roles in regulating neuronal survival, death and axonal growth (Greene and Rubenstein, 1981; Rabizadeh et al., 1993; Frade et al., 1996; Maggirwar et al., 1998; Friedman, 2000). p75NTR is more widely expressed during development than in adults (Yan and Johnson, 1988; Friedman, 2000). However, this receptor is re-expressed in several pathological conditions such as traumatic brain injury, seizure, ischaemia, oxidative stress and axonal injury (Kokaia et al., 1998; Roux et al., 1999; Casha et al., 2001; Ramos et al., 2007). The role of p75NTR in these pathological conditions has been proposed to be involved in neurodegeneration. For example, pilocarpine-induced seizures induces p75NTR up-regulation in the hippocampus (Roux et al., 1999) and mediates neuronal apoptosis by activating the caspase 9,6,3 cascade (Troy et al., 2002). These studies suggest that there is a tight correlation between p75NTR expression after injury and neurodegeneration. Although there are many studies demonstrating that p75NTR is up-regulated in pathological conditions, the mechanisms regulating p75NTR expression after injury are not well defined.

IL-1\(\beta\) (interleukin-1\(\beta\)) and TNF-\(\alpha\) (tumour necrosis factor-\(\alpha\)) are essential pro-inflammatory cytokines released from several cell types, including astrocytes and microglia, after brain injury (Giulian et al., 1986). IL-1\(\beta\) and TNF-\(\alpha\) have several physiological functions in neuroinflammation. In particular, IL-1\(\beta\) is known to induce production of other cytokines and growth factors (Benveniste, 1992; Merrill and Benveniste, 1996), change blood flow (Monroy et al., 2001; Maher et al., 2003) and affect neuroendocrine responses and...
the activity of the HPA (hypothalamic–pituitary–adrenal) axis (Berkenbosch et al., 1987; Sapolsky et al., 1987). In addition, both IL-1β and TNF-α have direct influences on neurodegeneration (Zhao et al., 2001; Thornton et al., 2006), and inhibition of endogenous IL-1/β or TNF-α protects against neuronal injury that occurs after cerebral ischaemia (Relton and Rothwell, 1992; Meistrail et al., 1997). In addition to effects on neurodegeneration, IL-1β also affects remyelination by oligodendrocytes after injury (Mason et al., 2001). These cytokines are highly expressed in Alzheimer's disease (Griffin et al., 1989; Fillit et al., 1991; Wang et al., 1997), Parkinson's disease (Mogi et al., 1994, 1996) and spinal cord injury (Wang et al., 1997; Xu et al., 1998), conditions in which Parkinson's disease (Mogi et al., 1994, 1996) and spinal cord injury (Wang et al., 1997; Xu et al., 1998), conditions in which IL-1 injury (Wang et al., 1997; Xu et al., 1998), conditions in which IL-1

MATERIAL AND METHODS

Materials

IL-1β was generously provided by Dr Ronald Hart (Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, U.S.A.). TNF-α was purchased from R&D systems. SB203580 and SN-50 were obtained from Cell Signaling Technology. All other materials were obtained from Sigma.

Neuronal cultures

Neuronal cultures were prepared as described previously (Srinivasan et al., 2004). Rat hippocampi were dissected from embryonic day 21, dissociated, plated on to poly-D-lysine (0.1 mg/ml)-coated flasks, and maintained in Eagle's MEM with Earle's salts, 2 mM l-glutamine, 15% heat-inactivated fetal bovine serum, 6 mg/ml glucose, penicillin (0.5 units/ml), and streptomycin (0.5 μg/ml). After 7–9 days incubation in 5% CO₂ at 37°C, cells were shaken at 450 rev./min for 10 min to remove microglia and neurons, followed by a fresh medium change. Cells were shaken at 225 rev./min overnight to eliminate additional non-astrocytic cells. Cells were replated with fresh medium containing 0.1 mM cytosine arabinoside and maintained for 3 days. Trypsinized and replated cells were kept in 5% CO₂ at 37°C for 4 days before treatment (McCarty and de Vellis, 1980).

Astrocyte cultures

Astrocyte cultures were prepared as described previously (Srinivasan et al., 2004). Rat hippocampi were dissected from embryonic day 21, dissociated, plated on to poly-D-lysine (0.1 mg/ml)-coated flasks, and maintained in Eagle's MEM with Earle's salts, 2 mM l-glutamine, 15% heat-inactivated fetal bovine serum, 6 mg/ml glucose, penicillin (0.5 units/ml), and streptomycin (0.5 μg/ml). After 7–9 days incubation in 5% CO₂ at 37°C, cells were shaken at 450 rev./min for 10 min to remove microglia and neurons, followed by a fresh medium change. Cells were shaken at 225 rev./min overnight to eliminate additional non-astrocytic cells. Cells were replated with fresh medium containing 0.1 mM cytosine arabinoside and maintained for 3 days. Trypsinized and replated cells were kept in 5% CO₂ at 37°C for 4 days before treatment (McCarty and de Vellis, 1980).

Immunoprecipitation and Western blot analysis

Cells were lysed in RIPA buffer [50 mM Tris/HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 1% Nonidet P40, 0.5% deoxycholic acid and 0.5% SDS] supplemented with a protease inhibitor mixture (Roche Products), 1 mM sodium vanadate and 5 mM sodium fluoride. Proteins were quantified using the Bradford assay (Bio-Rad) and equal amounts of protein were run on a 10% polyacrylamide gel and transferred on to a nitrocellulose membrane. Membranes were blocked in 5% (w/v) non-fat dried skimmed milk in TBST [TBS (Tris-buffered saline; 10 mM Tris and 150 mM NaCl, pH 7.4) containing 0.05% Tween 20] and then probed with antibodies against p75NTR (Upstate Biotechnology), actin (Sigma), p–p38 [phosphorylated-p38 MAPK (mitogen-activated protein kinase)], p-IκB {phosphorylated-IκB [inhibitor of NF-κB (nuclear factor κB)]; Cell Signaling Technology}, p-p38 and p-IκB blots were stripped and reprobed with anti-p38 and anti-IκB (Cell Signaling Technology) antibodies respectively. Bands were visualized by X-ray film exposure using ECL (enhanced chemiluminescence; Pierce). For IκB ubiquitination studies, cells were treated with IL-1β or TNF-α for the indicated periods, then lysed in buffer [50 mM Tris/HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 5 mM NaF, 1 mM Na3VO4, 1% Triton X-100 and protease inhibitors], and centrifuged (20817g for 15 min at 4°C). Supernatants were incubated with anti-IκB antibody overnight at 4°C and then incubated with Protein A–agarose at 4°C for 2 h. Immunoprecipitates were washed three times with lysis buffer and analysed by Western blot for ubiquitin (Santa Cruz Biotechnology). Blots were scanned and quantified using
Biotinylation of cell-surface proteins

Cells were treated with IL-1β or TNF-α for 8 h and washed with pre-chilled PBS once, and with PBS++ (PBS containing 1 mM MgCl₂ and 2.5 mM CaCl₂) twice. Cell-surface proteins were biotinylated with sulfo-NHS-SS-Biotin (Pierce) at 4°C for 1 h, quenched with glycine, and washed with PBS++ twice. Biotinylated cells were lysed in buffer containing 50 mM Tris, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P40, 0.5% deoxycholate, protease inhibitor mixture, 1 mM sodium vanadate and 5 mM sodium fluoride, and lysates were incubated with streptavidin-agarose (Pierce) overnight at 4°C. After centrifugation (4500 g for 3 min at 4°C), supernatants were saved and pellets were washed with lysis buffer three times. Pellets and supernatants were analysed by Western blot for p75NTR and actin.

Immunostaining

To visualize nuclear translocation of NF-κB, cells were plated on plastic Lab-Tek slide wells and treated with IL-1β or TNF-α for 5 min after IL-1β treatment, with a subsequent loss of IκB protein (Figure 2B). Interestingly, IL-1β also activated p38 MAPK in hippocampal neurons (Srinivasan et al., 2004). However, in astrocytes there was robust increase in p-IκB 5 min after IL-1β treatment, with a subsequent decrease in IκB protein (Figure 2B). Interestingly, IL-1β also activated p38 MAPK in hippocampal neurons.

Quantitative real-time RT (reverse transcriptase)–PCR

Primary hippocampal neurons or astrocytes were treated with IL-1β or TNF-α for 2, 4 or 8 h, and mRNA was isolated using TRizol® reagent (Invitrogen). cDNA was generated using SuperScript™ II RT with random hexamers (Invitrogen), and with pre-chilled PBS once, and with PBS++ which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

RESULTS

To investigate whether pro-inflammatory cytokines such as IL-1β and TNF-α induce p75NTR in different cell types, cultured hippocampal neurons and astrocytes were treated with IL-1β or TNF-α for 1, 4, 8, 12 or 24 h. Levels of p75NTR protein were evaluated by Western blot analysis, and mRNA was determined by quantitative PCR. The expression of p75NTR was increased by IL-1β and TNF-α in both neurons and astrocytes relative to actin (Figure 1). Elevated p75NTR mRNA expression peaked after 4 h of treatment, and the protein increase was maximal after 8 h of treatment with cytokines.

Mechanisms of IL-1β regulation of p75NTR

In our previous studies, we have demonstrated that IL-1β activates distinct signalling pathways in neurons and astrocytes. IL-1β activates the classical NF-κB pathway in astrocytes but not in neurons, whereas p38 MAPK [but not JNK (c-Jun N-terminal kinase) or ERK (extracellular-signal-regulated kinase) MAPK] is activated by IL-1β in hippocampal neurons (Srinivasan et al., 2004). Therefore, we investigated the underlying signalling mechanisms governing IL-1β regulation of p75NTR in both cell types.

We first confirmed the activation of specific signalling pathways in the different cell types. IL-1β induced robust transient phosphorylation of p38 MAPK in hippocampal neurons (Figure 2A). Activation of NF-κB signalling was monitored by phosphorylation and degradation of IκB, which is necessary for nuclear translocation of NF-κB. In neurons, no IκB phosphorylation was detected (results not shown), consistent with our previous study showing that IL-1β does not activate NF-κB in hippocampal neurons (Srinivasan et al., 2004). However, in astrocytes there was robust increase in IκB treatment, with a subsequent decrease in IκB protein (Figure 2B). Interestingly, IL-1β also activated p38 MAPK in astrocytes, p-p38 MAPK increased within 5 min after IL-1β treatment, and peaked at 10 min in astrocytes (Figure 2C). Thus IL-1β activates both NF-κB and p38 MAPK in hippocampal neurons.

We next examined which signalling pathway was responsible for the IL-1β-mediated p75NTR up-regulation in the different cell types. Neurons or astrocytes were pretreated either with a p38 MAPK inhibitor SB203580 (10 μM) or an NF-κB inhibitor SN-50 (10 μM) for 30 min. IL-1β was then applied to the cells for 8 h, and p75NTR levels were analysed by Western blot. In hippocampal neurons, the p38 MAPK inhibitor prevented the IL-1β-mediated p75NTR up-regulation (Figures 3A and 3B). As expected, the NF-κB inhibitor SN-50 did not prevent the p75NTR expression in neurons. In astrocytes, both the p38 MAPK inhibitor and the NF-κB inhibitor completely prevented the IL-1β induction of p75NTR expression (Figures 3C and 3D), indicating that p75NTR induction in astrocytes requires both the p38 MAPK and NF-κB pathways. Confirmation that the inhibitors blocked the relevant signalling pathways is shown in Supplementary Figure S1 (at http://www.asnneuro.org/an/001/an001e010add.htm).
Figure 1 IL-1β and TNF-α induce p75NTR in neurons and astrocytes

(A–D) Cultured hippocampal neurons were treated with either (A) IL-1β (10 ng/ml) or (B) TNF-α (10 ng/ml) for 4, 8, 12 or 24 h, and were then lysed and analysed by Western blot for p75NTR and actin. (C) and (D) Quantification of blots from three experiments as in (A) and (B) respectively. Densitometric values were normalized to actin and are expressed relative to the untreated cells (time 0).

(E–H) Cultured hippocampal astrocytes were treated with either (E) IL-1β (10 ng/ml) or (F) TNF-α (10 ng/ml) for 1, 4, 8, 12 or 24 h, and were then lysed and analysed by Western blot for p75NTR and actin. (G) and (H) Quantification of blots from three experiments as in (E) and (F) respectively. Densitometric values were normalized to actin and are expressed relative to the untreated cells (time 0).

(I and J) Quantitative real-time PCR analysis of p75NTR mRNA in hippocampal neurons (I) or astrocytes (J) treated with IL-1β or TNF-α expressed relative to untreated control cultures. The significance was determined by ANOVA with Tukey’s post-hoc analysis.

* indicates values significantly different from control at P<0.05.
Inflammatory cytokines regulate p75NTR

Mechanisms of TNF-α regulation of p75NTR

Both IL-1β and TNF-α elicited increased p75NTR expression in hippocampal neurons; however, the signalling mechanisms activated by these cytokines were distinct. In contrast with the effects of IL-1β, TNF-α elicited a modest transient phosphorylation of IκB (Figures 4A and 4C), but failed to induce activation of p38 MAPK (Figures 4B and 4D). Moreover, p65 staining in nuclei was visible with TNF-α, but not with IL-1β-tREATED neurons, confirming activation of the NF-κB pathway by TNF-α in neurons.

In astrocytes, TNF-α treatment induced phosphorylation of IκB, which peaked at 10 min (Figure 4F) and decreased afterwards. IκB protein was degraded after phosphorylation (Figure 4F). TNF-α also activated the p38 MAPK pathway in astrocytes, inducing robust phosphorylation that peaked at 10–20 min after treatment (Figure 4G). Thus TNF-α, like IL-1β, induced activation of both the NF-κB and p38 MAPK pathways in hippocampal astrocytes.

Interestingly, although TNF-α induced phosphorylation of IκB in both hippocampal neurons and astrocytes, loss of IκB protein was only observed in astrocytes (Figure 4F), not in neurons (Figure 4A). Once IκB is phosphorylated, it goes through polyubiquitination and proteosome-dependent degradation (Karin and Ben-Neriah, 2000). Therefore we investigated whether the ubiquitination of IκB occurred in neurons. Astrocytes and neurons were treated with TNF-α for the indicated times and the cell lysates were immunoprecipitated with anti-IκB antibody, and Western blot analysis was used to detect ubiquitination. There was increased ubiquitinated IκB in the TNF-α-treated astrocytes; however, no ubiquitination was detected in neurons treated with TNF-α (Figure 4H), consistent with the lack of IκB degradation.

TNF-α induced phosphorylation of IκB and nuclear translocation of NF-κB in hippocampal neurons, suggesting that the increase in p75NTR expression induced by this cytokine might be mediated by NF-κB. Treatment of the neurons with the NF-κB inhibitor SN50, but not the p38 MAPK inhibitor SB203580, prevented the TNF-α-evoked increase in p75NTR (Figures 5A and 5B), demonstrating that TNF-α regulates p75NTR expression via NF-κB signalling, whereas IL-1β regulates p75NTR via p38 MAPK signalling in hippocampal neurons (Figure 3).

Similar to the effects in neurons, the p38 MAPK inhibitor did not prevent the TNF-α-mediated p75NTR up-regulation in astrocytes (Figures 5C and 5D), whereas NF-κB inhibition blocked TNF-α-mediated p75NTR expression (Figures 5C and 5D). Confirmation that the inhibitors blocked their respective signalling pathways is shown in Supplementary Figure S1. Thus, in astrocytes, IL-1β requires both the p38 MAPK and NF-κB pathways to regulate p75NTR expression; however, TNF-α regulates p75NTR only through the NF-κB pathway. Moreover, TNF-α signalling via the NF-κB pathway to regulate p75NTR in both hippocampal neurons and astrocytes, whereas IL-1β signalling via the p38 MAPK pathway in both cell types and via NF-κB only in astrocytes.

Cell-surface expression of p75NTR

p75NTR is a cell-surface receptor that can bind a variety of different ligands to mediate distinct cellular functions. To assess whether the elevated p75NTR was localized to the cell surface, biotinylation assays were performed on cytokine-treated neurons and astrocytes. Nearly all of the detectable p75NTR was present at the cell surface after 8 h of treatment with IL-1β or TNF-α in neurons (Figure 6A) and little p75NTR was detected in the intracellular fraction. Similar to neurons, IL-1β- and TNF-α-treated astrocytes had elevated p75NTR at the cell surface, but not in cytosolic compartment (Figure 6B), suggesting that p75NTR induced by cytokines is present at the cell surface in both neurons and astrocytes. Specificity of the biotin pulldown is shown in Supplementary Figure S2 (at http://www.asnneuro.org/an/001/an001e010add.htm).
DISCUSSION

p75NTR is induced in CNS neurons after many types of injury (Kokaia et al., 1998; Roux et al., 1999; Casha et al., 2001; Ramos et al., 2007), and can mediate many different cellular responses, including neuronal apoptosis or survival, and regulation of axonal growth (Rabizadeh et al., 1993; Frade et al., 1996; Maggirwar et al., 1998; Friedman, 2000). However, the signals that regulate *p75NTR* induction in neurons are not well characterized. Since many different types of pathophysiological conditions induce expression of *p75 NTR*, it is likely that inflammatory events common to these conditions may regulate this receptor. A previous study has demonstrated that hypo-osmotic stress can regulate *p75NTR* by increasing cellular levels of Sp1 in primary cortical neurons (Ramos et al., 2007). In the present study, we investigated whether the pro-inflammatory cytokines IL-1β and TNF-α induce *p75NTR* expression in both hippocampal neurons and astrocytes. We have demonstrated in the present study that the pro-inflammatory cytokines IL-1β and TNF-α induce *p75NTR* expression in both hippocampal neurons and astrocytes. However, the underlying signalling pathways leading to *p75NTR* induction was cytokine- and cell-type-specific. Whereas IL-1β induced *p75NTR* via p38 MAPK in neurons, and via both p38 MAPK and NF-κB in astrocytes, TNF-α induced *p75NTR* via NF-κB in neurons and astrocytes. Thus inflammatory cytokines play a key role in regulating *p75NTR* expression, and the cellular specificity may provide a possible therapeutic target for CNS diseases.

Mechanisms of IL-1β regulation of p75NTR

The release of IL-1β after injury elicits diverse effects including the production of other cytokines and growth factors, thereby promoting inflammatory activity. We have shown in the present study that IL-1β induced *p75NTR* expression in primary hippocampal neurons and astrocytes.
Inflammatory cytokines regulate p75NTR.

A

<table>
<thead>
<tr>
<th>TNFα</th>
<th>0 min</th>
<th>5 min</th>
<th>10 min</th>
<th>20 min</th>
<th>30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-IκB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IκB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>TNFα</th>
<th>0 min</th>
<th>5 min</th>
<th>10 min</th>
<th>20 min</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-p38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

![Relative Density Graph](image)

D

![Relative Density Graph](image)

E

CTRL, IL-1β, TNFα: Immunofluorescence images showing nuclear localization of p65.

F

<table>
<thead>
<tr>
<th>TNFα</th>
<th>0 min</th>
<th>5 min</th>
<th>10 min</th>
<th>20 min</th>
<th>30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-IκB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IκB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>TNFα</th>
<th>0 min</th>
<th>5 min</th>
<th>10 min</th>
<th>20 min</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-p38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H

Astrocytes and Neurons: Western Blot showing IκB and Ubiquitin (Ub) levels.
The increased p75NTR expression was transient and returned to baseline by 24 h, which may be due to the actions of IL-1Ra, the naturally occurring IL-1β receptor antagonist (Hannum et al., 1990), providing negative feedback. Many signalling pathways can be activated by IL-1β in different cell types, including the classic NF-κB pathway, as well as the JNK, ERK and p38 MAPK pathways (O’Neill, 2002; Dunne and O’Neill, 2003). We have previously established that hippocampal neurons utilize a different signalling pathway compared with astrocytes (Srinivasan et al., 2004). Although IL-1β activated NF-κB in astrocytes, it failed to do so in hippocampal neurons, activating only p38 MAPK signalling (Srinivasan et al., 2004). Our present study shows that IL-1β activation of p38 MAPK was necessary for p75NTR induction by this cytokine in the hippocampal neurons.

In contrast with neurons, IL-1β activated both the p38 MAPK pathway and the NF-κB pathway in astrocytes. Pharmacological inhibitors were used to determine which of these pathways regulated the induction of p75NTR expression in astrocytes. Interestingly, inhibition of either pathway prevented the increase in p75NTR expression, indicating that both p38 MAPK signalling and the NF-κB pathways are required for p75NTR induction by IL-1β.

Mechanisms of TNF-α regulation of p75NTR

TNF-α is another major pro-inflammatory cytokine that is produced in the brain after injury (Taupin et al., 1993; Fan et al., 1996) and frequently acts synergistically with IL-1β. In contrast with the actions of IL-1β, TNF-α activated the NF-κB pathway in hippocampal neurons, indicated by phosphorylation of IκB and nuclear translocation of NF-κB, demonstrating that these two inflammatory cytokines signal via distinct pathways. Inhibition of NF-κB nuclear translocation with SN-50 prevented TNF-α-mediated p75NTR induction in the hippocampal neurons, confirming that the distinct pathways activated by the two different cytokines both lead to induction of p75NTR.
Interestingly, although TNF-α treatment of hippocampal neurons lead to IκB phosphorylation, there was no subsequent ubiquitination and degradation of the protein as normally seen in astrocytes and other cell types (Verstrepen et al., 2008). An alternative pathway for activation of NF-κB has been demonstrated as a MEKK3 (MAPK/ERK kinase kinase 3)-dependent pathway in which IκB is phosphorylated and dissociated from NF-κB, but is not degraded (Yao et al., 2007). Since that is what we have observed in response to TNF-α treatment of neurons, this pathway is likely to be the one involved. In astrocytes, TNF-α activated both the NF-κB and p38 MAPK pathways, similar to the effects of IL-1β. However, blocking NF-κB nuclear translocation with SN-50 prevented TNF-α-mediated induction of p75NTR, whereas the p38 inhibitor had no effect, indicating that the NF-κB pathway mediates p75NTR induction by TNF-α in both neurons and astrocytes. This is in contrast with the regulation of p75NTR by IL-1β in astrocytes, which required signalling via both the NF-κB and p38 MAPK pathways. Thus these two key inflammatory cytokines have a common target in regulation of the p75NTR, but the mechanisms by which they regulate expression of this receptor are distinct both in hippocampal neurons and astrocytes (Figure 7).

Since p75NTR is a cell-surface receptor that binds a variety of ligands to mediate different cellular effects, it was important to determine whether the inflammatory cytokines not only increased expression of this receptor in the neurons and astrocytes, but whether the elevated receptor was on the cell surface where it may be activated by ligand. Biotinylation experiments determined that the increased p75NTR expression was nearly completely present on the cell surface, confirming that the receptor would be accessible for ligand binding.
REFERENCES

Inflammatory cytokines regulate p75NTR

Received 2 February 2009; accepted 22 April 2009
Published as Immediate Publication 22 April 2009, doi 10.1042/AN20090009

© 2009 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.