

Engineers Planners Surveyors Landscape Architects Environmental Scientists

Shelbourne at Hunterdon 53 Frontage Road, Suite 110 Hampton, NJ 08827 T: 908.238.0900 F: 908.238.0901 www.maserconsulting.com

December 16, 2020

Keri Green, Borough Liaison New Jersey Highlands Council 100 North Road (Route 513) Chester, NJ 07930-2322

Re: Functional Value Assessment and Stream Corridor Plan Sub-Element of the Conservation Plan Element Borough of Lebanon Deliverable <u>MC Project No. LEB-012</u>

Dear Ms. Green:

The Borough of Lebanon has been diligently working to prepare a Functional Value Assessment and Stream Corridor Plan, a Sub-Element of the Conservation Plan Element.

On December 8, 2020 the Planning Board held a hearing and adopted the Functional Value Assessment and Stream Corridor Plan, a Sub-Element of the Conservation Plan Element, dated October 2020.

Enclosed herewith please find the following:

- 1. Functional Value Assessment and Stream Corridor Plan, a Sub-Element of the Conservation Plan Element, dated October 2020.
- 2. December 8, 2020 Planning Board Agenda.
- 3. Planning Board Resolution 2020-10.

If you have any questions or require clarifications regarding the enclosed documents, please do not hesitate to call my office.

Very truly yours,

MASER CONSULTING INC.

Dalue a. Seen

Darlene A. Green, P.P., AICP Borough Planner

Keri Green, Borough Liaison MC Project No. LEB-012 December 16, 2020 Page 2 of 2

DAG:hk Enclosures

cc: Karen Romano, RMC, CMR (via email <u>clerk@lebanonboro.com</u>)

 $r:\label{leb-012} correspondence\out\201216dag_green_deliverable.docx$

FUNCTIONAL VALUE ASSESSMENT

and

STREAM CORRIDOR PLAN

A SUB-ELEMENT OF THE CONSERVATION PLAN ELEMENT

FOR:

SOUTH BRANCH ROCKAWAY CREEK TRIBUTARY

BOROUGH OF LEBANON HUNTERDON COUNTY, NEW JERSEY

October 2020

ADOPTED BY THE PLANNING BOARD: December 8, 2020

PREPARED ON BEHALF OF:

New Jersey Highlands Water Protection and Planning Council 100 North Road (Route 513) Chester, NJ 07930

PREPARED FOR:

Borough of Lebanon 6 High Street Lebanon, NJ 08833

PREPARED BY:

Amy Greene Environmental 4 Walter E. Foran Blvd., Suite 209 Flemington, NJ 08822

AGE Project #4562

Table of Contents

SECTION 1: PROJECT OVERVIEW AND BACKGROUND2
1.1 PROJECT OVERVIEW
1.2 BACKGROUND INFORMATION2
1.2.1 Description of Study Area2
1.2.2 Flood History4
SECTION 2: FUNCTIONAL VALUE ASSESSMENT (FVAM)6
2.1 PHASE 1 WATERSHED ASSESSMENT6
2.1.1 Parameters
2.2 PHASE 1 RESULTS
2.2.1 Reach Conditions/Modifications
2.2.1.1 Reach Locations to be Assessed
2.2.1.2 Landownership7
2.2.1.3 Define Reference Stream Type7
2.2.1.4 Channel Modifications7
2.2.2 Corridor and Watershed Conditions/Modifications
2.2.2.1 Geology and Soils
2.2.2.2 Land Use / Land Cover
2.2.2.3 Floodplain Constrictions
2.2.3 PHASE 1 DATA COMPILATION10
2.2.3.1 Mapping
2.2.3.2 Impact Ratings
2.3 PHASE 2 REACH ASSESSMENT10
2.4 PHASE 2 RESULTS10
2.4.1 South Branch Rockaway Creek tributary-0110
2.4.2 South Branch Rockaway Creek tributary-0211
2.4.3 Channel Modifiers
2.4.3.1 Dams/Weirs
2.4.3.2 Bridges/Culverts
2.4.3.3 Stormwater Inputs
2.4.4 Channel Dimensions
2.4.5 Channel Features/Condition
2.4.6 Stream Banks

2.4.7 Riparian Area/Floodplain	19
2.4.7.1 Riparian Community-Plant Community Assessment	20
2.4.8 Public Use Opportunities	22
2.4.9 Additional Considerations	22
2.4.10 Functional Value Scoring/Rating	22
2.4.11 Data Summary	23
Watershed/Corridor	23
Channel Integrity	23
Habitat	23
Water Quality	23
Temperature Moderation	23
Public Use	24
SECTION 3: STREAM CORRIDOR PLAN	25
SECTION 4: REFERENCES	27
SECTION 5: GLOSSARY	

List of Tables

Table 1. Parameters Included in Impact Ratings	6
Table 2. Total Floristic Quality Index Thresholds	21
Table 3. DRAFT Native Mean C Thresholds	21
Table 4: Functional Value Scores and Condition Ratings	23

Table of Figures

FIGURE 1: USGS Topographic Map	.3
FIGURE 2: Flood Frequency Chart for SB Rockaway Creek at Whitehouse Station, NJ	.5
FIGURE 3: Reach Stressor Map1	17

List of Appendices

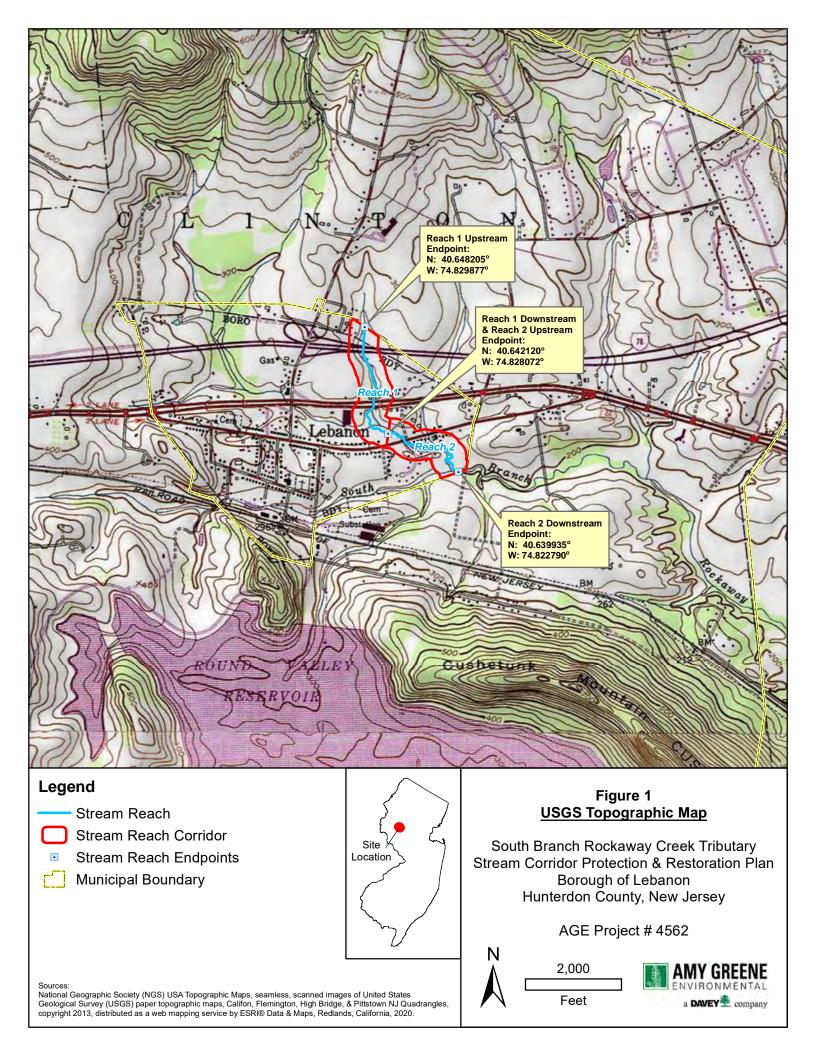
Appendix A Phase 1 Data Sheets
Appendix B Landowner List
Appendix C Figures
Appendix D Phase 2 Data Sheets
Appendix E Scoring Sheets
Appendix F Floristic Quality Assessment Data

SECTION 1: PROJECT OVERVIEW AND BACKGROUND 1.1 PROJECT OVERVIEW

Amy Greene Environmental, a Davey Company (AGE) was retained by the Borough of Lebanon to utilize the Functional Value Assessment Methodology (FVAM) to assess the integrity of a South Branch (SB) Rockaway Creek tributary as it flows through the Borough (**Figure 1**). The FVAM consists of two phases, Phase 1: Watershed Assessment and Phase 2: Reach Assessment. The FVAM was completed on two reaches of a South Branch Rockaway Creek tributary that traverses north-south across the northeast and southeast quadrants of the Borough. Results of the FVAM will establish the framework for identifying and developing stream corridor protection and restoration projects that will be summarized in the Stream Corridor Plan (**Section 3.0**) for these portions of the SB Rockaway Creek tributaries in the Borough of Lebanon.

The main objectives of the Phase 1 Assessment were to provide an overview of the general physical characteristics of the watershed, assess the impacts of parameters such as land use, channel modification, floodplain modification, erosion and debris-jam potential on each reach, and to determine which reaches may be in channel adjustment. The primary objective of the Phase 2 Assessment was to provide the Borough with information that can be used for watershed planning and restoration activities.

Data and information for the South Branch Rockaway Creek tributary watershed was obtained from publicly available data and mapping to identify larger natural conditions and human impacts that occur off-site and cannot be easily observed in the field. Existing data sources were accessed from the following data portals:


- NJ Highlands Council Geographic Information System (GIS) Data Downloads http://www.highlands.state.nj.us/njhighlands/actmaps/maps/gis_data.html
- NJ Department of Environmental Protection (DEP) GIS Data Downloads http://www.state.nj.us/dep/gis/ http://www.state.nj.us/dep/njgs/geodata/
- NJ Geographic Information Network https://njgin.state.nj.us/NJ_NJGINExplorer/index.jsp
- USDA Natural Resources Conservation Service http://datagateway.nrcs.usda.gov/GDGOrder.aspx

John Pabish of AGE conducted much of the Phase 1 Assessment of existing geographic data. Autumn Thomas and David Kunz of AGE conducted the Phase 2 Assessment on May 13, May 19, and May 27, 2020.

1.2 BACKGROUND INFORMATION

1.2.1 Description of Study Area

The study area covers portions of a first and second order tributary to SB Rockaway Creek, of which there are several that flow through the Borough of Lebanon. Traversing in a north-south fashion within the northeast and southeast quadrants of the municipality the study area starts just above Route 78, traverses between two farm fields, crosses under Route 22, traverses through Borough-owned land,

crosses under Main Street, travels through a residential neighborhood, and then through a vacant parcel before exiting the Borough at the southeast municipal boundary and joining the main stem of the SB Rockaway Creek. The study area was broken into two reaches: Reach-01 starts at the municipal line just east of Presidential Place Apartments and heads south to the north side of Main Street at Sloan Lane where it joins a secondary tributary to SB Rockaway Creek. Reach-02 continues from the junction north of Main Street south and east to just downstream of the Kullman Corporation Campus Drive bridge where it joins the main stem of the SB Rockaway Creek.

The study area is in northwestern New Jersey in Hunterdon County, due north of Round Valley Reservoir and northwest of Cushetunk Mountain. Lebanon Borough is surrounded by Clinton Township which falls within both the Highlands and Piedmont Physiographic regions of New Jersey. Lebanon Borough and the surrounding Clinton Township are in the NJDEP-designated, Upper Raritan Watershed Management Area (WMA 8) with over 60 miles of streams and tributaries that are classified as Category 2 freshwater waterways (FW-2). This requires water quality be maintained in order to continue meeting the State water quality standards.

The study area's mapped bedrock geology is entirely within the Passaic Formation which is a unit of the Newark Supergroup, and is an assemblage of Upper Triassic and Lower Jurassic sedimentary rocks which form outcrops intermittently along the East Coast. The Passaic is defined as a reddish-brown shale, siltstone and mudstone with a few green and brown shale interbeds and red and dark-gray interbedded argillites near the base. In New Jersey, there are conglomerate and sandstone beds within the formation.

The study area watershed is dominated by wetlands. The sub-dominant watershed land cover for the assessment reaches include forest, agriculture, commercial and residential development, and major roadways. Historic photos from the 1930s show that the study area was dominated by agricultural land. Since the 1930s, considerable development has occurred within the watershed. Most of the developed land present today was developed prior to 1997, based on review of aerial photographs.

1.2.2 Flood History

According to Karen Romano (email correspondence), Lebanon Borough Clerk, there were few recorded flood events that have impacted the Borough. One such flood includes Hurricane Bob (1979) in which the intersection of Cokesbury Road and US 22 flooded. Two other floods of record were during Hurricane Irene in 2011 and Hurricane Sandy in 2012 which both flooded residential properties at 2 & 4 Lynwood Drive, adjacent to Reach-02.

Long term data from the U.S. Geological Survey (USGS) gage on the SB Rockaway Creek at Whitehouse Station, NJ (gage # 01399670) was obtained online (USGS 2020). The SB Rockaway Creek gage was selected because it is in the northwestern region of New Jersey and within five miles of the study area. The drainage area at the Whitehouse Station gage is much larger (11.3 square miles) than the study area watershed; however, it provides useful information about when large flood events occurred. This gage has a continuous flow record from 1977 to the present. The long-term record shows that there have been four events where peak discharges were between the 10-year and 25-year recurrence interval. This occurred during water years 1984, 1997, 1999, and 2011. Streamflows exceeded the 25-year recurrence interval in water year 1999 (**Figure 2**).

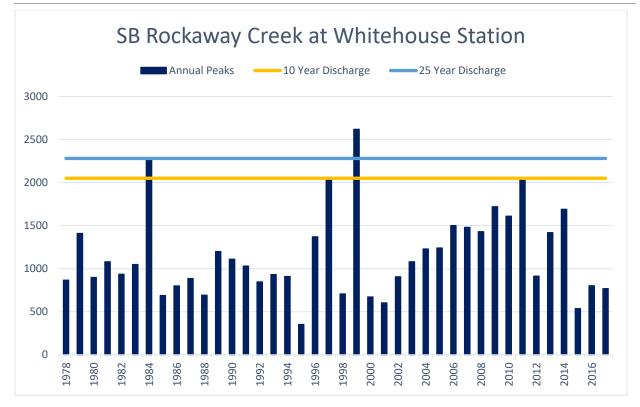


FIGURE 2: Flood Frequency Chart for SB Rockaway Creek at Whitehouse Station, NJ.

SECTION 2: FUNCTIONAL VALUE ASSESSMENT (FVAM) 2.1 PHASE 1 WATERSHED ASSESSMENT

The Phase 1 Watershed Assessment followed procedures specified in the Highlands Council *Stream Corridor Guidance* (Highlands *Guidance*), Part 1: Functional Value Assessment Methodology (FVAM) (New Jersey Highlands Water Protection and Planning Council (WPPC) 2014a). Phase 1 is largely a desktop review exercise utilizing existing geographic data. Data is gathered and clipped down to the Stream Reach including a 300-foot buffer on either side of the creek (known as the Stream Reach Corridor). All assessment data collected in Phase 1 were recorded on the Phase 1 data sheets located in **Appendix A**.

2.1.1 Parameters

During the Phase 1 Assessment, data was collected for each parameter in **Table 1**. The parameters were then rated according to the following menu options: N - NONE, I - INSIGNIFICANT, L - LOW impact, H - HIGH impact, or N/A – not applicable. A zero was scored for N/A options.

Table 1. Parameters Included in Impact Ratings		
Step Number	Parameter	
1.4	Channel Canopy Cover	
1.5	Dams/Weirs	
1.5.1	Impoundment Canopy Cover	
1.6	Bridges/Culverts	
1.7	Channel Straightening	
1.8	Channel Migration/Avulsion	
1.9	Water Quality Standard	
1.10	Surface Water Discharges	
1.11	AMNET Reference Sites	
1.12	303(d) List	
2.4	Valley Slopes	
2.5	Soils – Hydrologic Soil Group and Highly Erodible Land	
2.6	Land Use/Land Cover and Impervious Cover	
2.8	Width of Vegetated Buffer	
2.9	Floodplain Constrictions	
2.10	Riparian Wildlife Habitat	
2.11	Riparian Plant Community	
2.12	Public Uses	

2.2 PHASE 1 RESULTS

2.2.1 Reach Conditions/Modifications

2.2.1.1 Reach Locations to be Assessed

The SB Rockaway Creek tributary was divided into two reaches for the Phase I Assessment. Reach-01 starts at Latitude 40.648205 N, Longitude 74.829877 W just east of the Presidential Place Apartments at the Borough of Lebanon boundary and ends at Latitude 40.642120N, Longitude 74.828072W where it joins a second SB Rockaway Creek tributary north of Main Street near Sloan Lane. Reach-02 starts at the endpoint of Reach-01 and ends at Latitude 40.639935 N, Longitude 74.822790 W just downstream of the

Kullman Corporation Campus Drive bridge where it joins to the main stem of SB Rockaway Creek. **Figure 1** shows the location of the study reaches used in the Phase 1 and 2 Assessments.

2.2.1.2 Landownership

An online parcel database was consulted to compile a list of private properties within the reach corridor to be assessed. A list of blocks and lots of property ownership is attached in **Appendix B**. No private properties were crossed during the Phase 2 assessment until confirmation from Karen Romano, Borough Clerk, was received that notifications to private property owners had been completed.

2.2.1.3 Define Reference Stream Type

The Highlands *Guidance* defines Reference Stream Types as stream channel forms and processes that would exist in the absence of human-related changes to the channel, floodplain, and/or watershed. Stream and valley characteristics including valley confinement, slope, width, and sinuosity were determined through aerial photograph, Light Detection and Ranging (LiDAR), and topography data. Reference reach typing was based on several combined stream classification systems (Schumm 1977, Rosgen, D.L. 1994, Montgomery and Buffington, 1997) to summarize the physical parameters.

Each stream reach falls within the "C/E" stream type by Rosgen (1994; see key below). These streams have gentle slopes, very broad confinement ratios, and have Pool-Riffle channel bed morphology. The primary morphological features of the "C" stream types are the sinuous, low relief channel; the well-developed floodplains built by the river; and characteristic "point bars" within the active channel. The "E" stream types are slightly entrenched, exhibit very low channel width/depth ratios, and display very high channel sinuosities which result in the highest meander width ratio values of the other stream types. The bedform features of the "E" stream type are predominantly a consistent series of riffle/pool reaches, generating the highest number of pools per unit distance of channel, when compared to other riffle/pool stream types. While the "E" stream types are considered highly stable systems provided the floodplain and the low channel width/depth characteristics are maintained, they are very sensitive to disturbance and can be rapidly adjusted and converted to other stream types in relatively short time periods (EPA 2020). The dominant channel bed morphology determines which scoring sheets are to be used in the Phase 2 Assessment.

Key to Stream Type by Rosgen (1994)				
Valley Slope		Confinement	Reference Stream Type	
< 2.0 %	Moderate - Low	Minimally Confined/Broad/Very Broad	C/E Single Channel	
< 4.0 %	High – Low	Minimally Confined/Broad/Very Broad	D Braided Channel	
2.0 < 3.0 %	Moderate - High	Minimally Confined/Moderately Confined/Very Confined	B Single Channel	
3.0 < 4.0 %	High	Moderately Confined/Very Confined	B Single Channel	
4.0 < 6.5 %	Very High	Very Confined	A Single Channel	
>/= 6.5 %	Very High	Very Confined	A Single Channel	

2.2.1.4 Channel Modifications

Channel modifications may impact a stream reach by affecting the hydraulics and the sediment regime. Historic channel modifications were assessed in this Phase I study by evaluating bridge and culvert impacts, bank armoring, and straightening. The percentage by length of reach impacted by one or more of these channel modifications was estimated and is summarized on the datasheets in **Appendix A**.

Bridges and Culverts

As part of the Phase 1 Assessment, the number of bridges and culverts within the study reach were counted by identifying stream crossings on the topographic map and orthophotos. These stream crossings

were confirmed during the Phase 2 Assessment. The percentage of the reach impacted by stream crossing structures was estimated from orthophotos. Impact ratings for bridge and culverts were evaluated by recording the number of bridge or culvert crossings that occur in the project reach and calculating the number per mile. The impact from bridge and culverts on stream dimension, pattern, or profile was rated 'HIGH' for both reaches.

Channel Straightening

Orthophotos and topographic maps were also reviewed to identify channelized stream sections, which were then confirmed during the Phase 2 Assessments. The percentage of the reach length impacted by channel modification were noted. Categories considered as part of the Step 1.7 (Channel Straightening) included the following parameters:

- HIGH: 20% or more of reach may be straightened / realigned. Impacts are obvious: gross changes in channel characteristics such as pattern, width, substrate, and bank erosion.
- MODERATE: Impacts such as pattern, width, substrate type, bank erosion, pool features, and large wood distribution are local and readily apparent. Less than 20% but more than 5% of reach may be straightened/realigned.
- LOW: Impacts likely affect only a small area (<1%) of channel. Channel impacts are not readily apparent. Channel characteristics such as pattern, width, substrate type, bank erosion, pool features, and large wood distribution are largely unchanged. Less than 5% of reach may be straightened/realigned.
- No Data: Data sources were not available.
- Not Evaluated: Data sources were not evaluated.

Some channel straightening was noted on each stream reach studied. Reach-01 was given an impact rating of 'MODERATE' for channel straightening with 19% of the reach that may have been straightened, while Reach-02 had an impact rating of 'HIGH' noting that approximately 31% of the reach may have been straightened.

Channel Migration/Avulsion

Current and historic aerials were used to identify where channels have migrated, bifurcated, or avulsed¹ over a period of at least two decades. Current aerials from 2015 and historic aerials from 1995 were overlaid to compare the location of the river channel over time. The current and the historic aerials span a range of approximately 20 years. Each of the two reaches were rated 'LOW' having less than 20% of the reach exhibiting channel migration, braiding, or avulsions.

2.2.2 Corridor and Watershed Conditions/Modifications

2.2.2.1 Geology and Soils

The characteristics of the SB Rockaway Creek tributary watershed were determined using a combination of soils data, review of topographic maps, and review of current and historic aerial photography. The Phase 1 datasheets in **Appendix A** provide a summary of the basin characteristics such as grade control structures, geologic materials, valley side slopes, and soil characteristics.

No grade control structures such as ledge and dams were noted during the Phase 1 survey for either reach.

¹ An avulsion is a change in planform resulting from a meander cut-off.

The steepness of the valley side slopes was determined using a combination of a topographic map and the soils layer. The valley side slope steepness was 'LOW' for each reach.

In general, the dominant surficial geology of the watershed consists of alluvium and weathered shale, mudstone, and sandstone. These soils have high runoff potential and have very high erodibility.

2.2.2.2 Land Use / Land Cover

The land use and land cover within the watershed plays a key role in the functional value of receiving channel and riparian corridor. The percentage of urban and cropland development within the watershed are factors which change a watershed's response to precipitation. The most common effects of urban and cropland development on stream corridors are increased volume of storm water runoff, increased exposure to fertilizers and pesticides, and changes in habitat within the stream itself.

As outlined in the Highlands *Guidance*, impact ratings were assigned for watershed land cover/land use and stream corridor land cover/land use as follows:

HIGH: > 25% of corridor / watershed is crop and/or developed.

MODERATE: 10 – 25% of corridor / watershed is crop and/or developed.

LOW: 2 – 10% of corridor / watershed is crop and/or developed.

INSIGNIFICANT: < 2% of corridor / watershed is crop and/or developed.

No Data: Data sources were not available.

As shown on the datasheets in **Appendix A**, the dominant watershed land cover/land use within the SB Rockaway Creek tributary watershed is, urban and forest. The two reaches resulted in a watershed /land use impact rating of 'HIGH'.

Riparian buffers act to intercept sediment, nutrients, pesticides, and other materials in surface runoff and reduce nutrients and other pollutants in shallow subsurface water flow. They also serve to provide habitat and wildlife corridors. They can also be key in reducing erosion by providing stream bank stabilization. Stream reaches that lack a wide, high quality riparian buffer, are at significantly higher risk of lateral erosion. An impact rating of high is assigned when over 20% of the right or left bank has an undisturbed buffer width less than 100 feet. Both assessed reaches received a 'HIGH' impact rating for riparian buffer condition, with both having 50 percent or more of the reach with little or no buffer on one or more banks. This documents poor riparian buffer quality of much of the SB Rockaway Creek tributaries studied.

2.2.2.3 Floodplain Constrictions

In this step of the Phase I assessment, attention is paid to infrastructure and other development which restricts access to the floodplain within the 300-foot corridor on either side of the stream that may result in vertical or lateral confinement of flood flows. The parameters considered in this step include roads, railroads, impervious utility structures, impervious developed areas, and the hardened embankments. The linear distance of the study reach that is paralleled by infrastructure or developed areas within the stream corridor that likely occupy the floodplain is measured and given an impact rating of high if greater than 20% of the right or left floodplain is occupied by infrastructure. Reach-01 was rated 'INSIGNIFICANT' with less than 5% occupied by infrastructure, whereas Reach-02 was rated 'HIGH'.

2.2.3 PHASE 1 DATA COMPILATION

2.2.3.1 Mapping

Multiple corridor/watershed maps were generated to depict bedrock and surficial geology, soil types, land use/land cover, floodplain constrictions, riparian wildlife habitat, riparian plant community, and existing and potential public use locations. These maps are in **Appendix C** along with any supporting data.

2.2.3.2 Impact Ratings

The Phase 1 evaluates parameters to provide the initial characterization of the subject stream channel, corridor, and watershed. Any scores and/or impact ratings tabulated will be used in Phase 2.

2.3 PHASE 2 REACH ASSESSMENT

Phase 2 utilizes information gathered and maps created during Phase 1 to assist in field surveys. Field assessments were conducted in teams of two. Data sheets used to record field observations and final scoring sheets are provided in **Appendix D** and **E**, respectively.

The Phase 2 assessment followed procedures specified in the Highlands *Guidance* and includes six categories of investigation. These categories are as follows:

- 1. Channel Modifiers
- 2. Channel Dimensions
- 3. Channel Features/Condition
- 4. Stream Banks
- 5. Riparian Area/Floodplain
- 6. Public Use Opportunities

The parameters and protocols used for undertaking each of the above steps are outlined in the Highlands *Guidance*. The entire length of each Phase 2 reach was walked to document onsite conditions including bank erosion, grade control structures, bank armoring, debris jams, depositional features, stormwater inputs, head-cuts, and other important features.

2.4 PHASE 2 RESULTS

Phase 2 assessments of two reaches were performed by AGE during May 2020. The Phase 2 Assessment data sheets for each reach are provided in **Appendix D**.

2.4.1 South Branch Rockaway Creek tributary-01

The northern reach of the SB Rockaway Creek tributary studied by AGE scientists begins at the Lebanon Borough municipal line north of I-78 and east of Presidential Place Apartments and continues downstream to the first major tributary, also a SB Rockaway Creek tributary (Reach-02). The total reach length is just over 2,800 feet and drains a watershed area of 165 acres. AGE scientists observed three stormwater inputs during the assessment of this reach. Throughout this reach the riparian buffer averages over 100 feet wide on both sides of the stream.

The most important influence on the geomorphic and habitat condition of this reach is the encroachment of two major highways, agriculture, and commercial development in over 50% of the corridor. The headwaters of this reach north of the municipal boundary is heavily influenced by a large corporate

campus including parking and landscaping. The channel has retained its "C/E" stream type with a weak Pool-Riffle streambed (Photo 1).

Photo 1: Typical cross section across a riffle in Reach-01 looking north and upstream.

2.4.2 South Branch Rockaway Creek tributary-02

The southern reach of the SB Rockaway Creek tributary studied by AGE scientists begins at the junction with Reach-01, north of the Main Street bridge and east of Sloan Lane, and continues downstream to the first major tributary, the main stem of SB Rockaway Creek. The total reach length is just over 2,200 feet and drains a watershed area of 2,455 acres. AGE scientists observed three stormwater inputs during the assessment of this reach. Throughout this reach the riparian buffer averages 70 to 90 feet wide on the right and left banks of the stream.

The most important influence on the geomorphic and habitat condition of this reach is the encroachment of residential development in over 75% of the corridor. Downstream of the junction with SB Rockaway Creek main stem is heavily influenced by agricultural cropland. The channel has retained its "C/E" stream type with a weak Pool-Riffle streambed (Photo 2).

Photo 2. Typical cross section across a riffle in Reach-02 looking west and upstream.

2.4.3 Channel Modifiers

Channel modifiers alter a channel by changing the physical dimensions or materials of its bed or banks, and includes damming, riprapping (or other armoring), widening, deepening, straightening, relocating, lining, and significant removal of bottom or woody rooted vegetation.

2.4.3.1 Dams/Weirs

Dams/weirs are man-made structures that span the channel and raise the upstream water surface, creating a pond, which in turn affects the elevation of the streambed. Generally, dams are higher structures that create falling water over the spillway. Weirs are lower structures that are mostly submerged (NJ Highlands WPPC 2014a). Phase 1 did not identify any dams or weirs on either reach assessed, however during Phase 2 one weir (Photo 3) was observed at the US-22 crossing in Reach-01. It was clogged with trash, large woody debris (LWD), and coarse particulate organic matter (CPOM). Additionally, remnants of a dam or foundation (Photo 4) were observed in Reach-01 between the I-78 crossing and Corporate Drive. No dams/weirs were identified or observed in Reach-02. No beaver dams were observed in either reach assessed.

Photo 3: Weir located on upstream side of the US-22 crossing on Reach-01.

Photo 4: A historic dam observed across the stream bed in Reach-01 south of the I-78 crossing.

2.4.3.2 Bridges/Culverts

Generally speaking, bridges have foundations on either side of the channel and do not have bottoms; culverts are enclosed pipes or concrete boxes. Undersized crossing structures act like dams during high flows, causing unwanted flooding and sediment deposition upstream. Sediment deposition may alter channel morphology and, in severe cases, can lead to major channel adjustments that result in loss or damage of property. The Phase 1 assessment identified three bridges/culverts on Reach-01 (Photo 5) and two bridges/culverts on Reach-02 (Photo 6). During the Phase 2 assessment, one of the bridge/culvert crossing was identified as a weir as discussed above; however, an additional footbridge (Photo 7) was

observed south of the US-22 crossing, therefore the total number of bridges/culverts within Reach-01 remains at three. No additional bridges/culverts were observed on Reach-02 during the Phase 2 assessment.

Upstream and/or downstream scour pools and sediment deposition were observed at all these sites, indicating the impacts of the structures on the stream condition.

Photo 5. View south and downstream at an example of an undersized box culvert on Reach-01. Note CPOM deposited at top of culvert.

Photo 6: View south and downstream at an example of a bridge across Reach-02 at the Main Street crossing.

Photo 7: View north and upstream at a footbridge observed across Reach-01 connecting a mown path through open space to a shopping center.

2.4.3.3 Stormwater Inputs

Increased stormwater runoff is a significant stressor to streams. High rates and volume of stormwater entering channels through pipes, road and agricultural ditches, and roof leaders can cause severe erosion to bed and banks, causing channel degradation or widening and impairing in-stream habitat and aquatic communities (NJ Highlands WPPC 2014a). No surface water discharges were noted during the Phase 1 assessment, however, Phase 2 identified three stormwater pipes on each of Reach-01 and Reach-02. The majority were cement pipes averaging two feet in diameter (Photo 8).

Photo 8: Typical 2-foot diameter cement stormwater pipe observed in both reaches.

2.4.4 Channel Dimensions

This step involved measuring the dimensions of the channel and its sediments to identify existing stream type and determine whether it is consistent with its setting. Measurements were conducted on each reach during the Phase 2 assessment where (1) channel conditions reflect the dominant condition of the study reach and (2) where the thalweg is in the center of the channel or crossing-over from the right to left side of the channel. Representative cross sections for Reach-01 and Reach-02 are located on **Figure 3** and seen in Photos 1 and 2 above.

Measurements taken at these representative cross sections included:

- 1. Bankfull Width
- 2. Bankfull Maximum Depth
- 3. Bankfull Mean Depth
- 4. Lowest Bank Height
- 5. Floodprone Width
- 6. Floodplain Encroachment Height
- 7. Width-Depth Ratio
- 8. Entrenchment Ratio
- 9. Bank Height Ration
- 10. Floodplain Encroachment Ratio

The above gathered calculations and visual observations of the study reach can determine the existing stream type using Rosgen (1994) codes. In addition, combining the dominant particle size class and Rosgen stream type can determine the channel bed morphology per Montgomery and Buffington (1997). Phase 1 and Phase 2 assessments of the stream type and channel bed morphology did not have major differences, therefore, did not indicate impaired conditions.

2.4.5 Channel Features/Condition

This step involved recording and quantifying various features found along the identified study reaches including:

- 1. Bedrock Grade Controls
- 2. Head-cuts
- 3. Riffle or Step Condition
- 4. Pool Condition
- 5. Sediment Bars
- 6. Bed Substrate Composition
- 7. Vegetative Material

No bedrock outcrops were observed on either reach assessed. No head cuts were observed along Reach-01, however Reach-02 had two headcuts just north of the Main Street bridge, one of which is causing extensive bank erosion leading to the exposure of a sewer man-hole in the streambank (Photo 9). Several complete riffles were identified along both reaches indicating the channels have little aggradation or degradation. Pools greater than 1-foot deep were common and point and lateral sediment bars were the dominant forms along both reaches (Photo 10). Bed substrate composition measurements were taken at the representative cross sections. These measurements are used to characterize the stream's ability to carry different sized sediments. Lastly, numerous debris jams (Photo 11) of vegetative material in the form of large woody debris (LWD) and coarse particulate organic matter (CPOM) were observed along both reaches, which can be indicative of channel instability and excessive erosion.

Avulsions
Stormwater Inputs
Tributary
Headcut
Coarse Particulate Organic Matter
Coarse Particulate Organic Matter / Debris Jams
Coarse Particulate Organic Matter / Debris Jams / Tributary
Large Woody Debris
Large Woody Debris / Coarse Particulate Organic Matter
Large Woody Debris / Coarse Particulate Organic Matter
Large Woody Debris / Debris Jams
Bank Armoring
Bridges
Culverts
Weir
Floristic Inventory Plot Location
Representive Cross Section
Walls
Stream Centerline
Stream Corridor Reach #1

Stream Corridor Reach #2

Reach Stressor Points and Wall Locations from GPS data taken during Amy Greene Environmental field investigations on May 13, 19, and 27, 2020.

Stream Centerline from NJDEP Surface Water Quality Standards of New Jersey, NJ Department of Environmental Protection (NJDEP), Water Monitoring & Standards (WMS), Bureau of Freshwater and Biological Monitoring (BFBM), Trenton, NJ, December 2010.

This (map/publication/report) was developed using New Jersey Department of Environmental Protection Geographic Information System digital data, but this secondary product has not been verified by NJDEP and is not State-authorized.

New Jersey 2015 High Resolution Orthophotography, NAD83 NJ State Plane Feet, MrSID Tiles, State of New Jersey - Office of Information Technology (NJOIT), Office of Geographic Information Systems (OGIS), Trenton, NJ, February 2016.

> FIGURE 3 Reach Stressor Map

South Branch Rockaway Creek Tributary Stream Corridor Protection and Restoration Plan Borough of Lebanon Hunterdon County, New Jersey

AGE Project #4562

Feet

Photo 9: View south at bank erosion on right bank of Reach-02 exposing sewer manhole.

Photo 10: View east and downstream at example of a gravel point bar on Reach-02.

Photo 11: View south and downstream at example of a debris jam found along Reach-01 including LWD and CPOM.

2.4.6 Stream Banks

For this parameter in the Highlands *Guidance*, the stream bank includes the near bank area within 5-feet from the top of the bank. The following metrics include the primary factors that affect bank erosion rates:

- 1. Typical Bank Slope
- 2. Bank Materials
- 3. Bank Vegetation Coverage
- 4. Cross Channel Shading
- 5. Bank Erosion
- 6. Bank Armoring/Channel Straightening

The first three metrics were assessed at the representative cross sections of each reach while the last three were assessed throughout the entire reach. The bank slopes for both reaches were moderately sloped at 30-50%, 3:1 - 2:1 slopes. The banks are comprised of a silt/clay texture with assumed moderate erodibility based on the mixed particle size and cohesiveness. Areas of slumping banks were rarely (1-2 locations) noted in either reach, but undercut banks were observed in several locations along both Reach-01 and Reach-02, indicating more gradual erosion as opposed to active or episodic erosion. Bank vegetation coverage at the Reach-01 representative cross-section was 100% groundcover, 20% understory, and 10% canopy and cross channel shading was closed. Bank vegetation coverage at the Reach-02 representative cross-section was 80% groundcover and 50% understory and cross channel shading was open. Some bank armoring was observed in a short stretch of Reach-02 (Photo 12).

2.4.7 Riparian Area/Floodplain

This section of the Highlands *Guidance* documents the integrity of the riparian zone along the channel in the reaches studied. Riparian areas are an important component of healthy watersheds and ecological function. To measure this component, the following metrics were documented:

- 1. Buffer Width
- 2. Riparian Community Plant Community Assessment
- 3. Plant Stewardship Index

- 4. Adjacent Wetlands
- 5. Tributaries/Seeps/Springs
- 6. Floodplain Connectivity
- 7. Flood Chutes, Meander Cutoffs, Braiding, and Channel Avulsions

The buffer width 'most commonly found' for both the right and left sides along Reach-01 was 'WIDE' at 300 to 150 feet and 'NONE' along Reach-02. Comparatively, the results of Phase 1, Step 2.8 classified both reaches with a 'HIGH' impact rating which indicates > 20% of the reach length has undisturbed buffer widths less than 100 feet along the right or left bank.

Photo 12: Bank armoring observed along the left bank of Reach-02.

2.4.7.1 Riparian Community-Plant Community Assessment

Stream Corridor Evaluation

AGE botanist, David M. Kunz, performed an evaluation of the vegetation present along the full-length of the SB Rockaway Creek tributary reaches on May 13, 19, and 27, 2020. Vegetation occurring on both sides of the channel were identified and recorded. Evidence of anthropogenic disturbance was noted and was evident throughout the corridor by way of trash, scour from stormwater flows emanating from upstream and lateral impervious surfaces, and the presence of non-indigenous invasive plant species.

During the general evaluation, a comprehensive plant species inventory was compiled for Reach-01 and Reach-02 that included 87 individual species, of which 61 (70%) were native species and 26 (30%) were non-native species. Vegetation growing within the survey area of Reach-01 and Reach-02 were not distinguished as they were part of the same continuous riparian plant community.

The Plant Stewardship Index (PSI) was developed by Bowman's Hill Wildflower Preserve based on Swink and Wilhelm's (1994) Floristic Quality Assessment (FQA) Method and is the protocol specified for use in the FVAM to assess vegetative communities. However, since the FVAM was published, PSI analyses have been abandoned and superseded by the Universal Floristic Quality Assessment (FQA) Calculator (Jared Rosenbaum of Wild Ridge Plants, Personal Communication). To meet the requirements of the FVAM, AGE calculated PSI in addition to the Universal FQA. The *Universal FQA Calculator* was

accessed at https://universalfqa.org (Freyman et al. 2016). No guidance exists for interpreting PSI values and very limited information exists on how to interpret FQA calculations (e.g. Total Floristic Quality Index (FQI), Native FQI, Total Mean C, and Native Mean C, etc.). At the time of this report, only the Total FQI had an interpretive scale that had been accepted where the score was correlated to a categorical quality level (**Table 2**). An interpretive scale was available for Native Mean C (**Table 3**) but is still a working draft (Jared Rosenbaum, Personal Communication).

Table 2. Total Floristic Quality muck Thresholds			
Total FQI Score	I Score Translative Quality of Natural Area		
<u>> 30</u>	Exceptional		
\geq 20 and \leq 29.9	High		
\geq 10 and \leq 19.9	Moderate		
< 9.9	Low		

 Table 2. Total Floristic Quality Index Thresholds

Source: Jared Rosenbaum, personal communication.

Native Mean C Score	Translative Quality of Natural Area	
≥ 6.0	Exceptional	
\geq 5.0 and \leq 5.9	High	
\geq 3.0 and < 4.9	Moderate	
< 3	Low	

 Table 3. DRAFT Native Mean C Thresholds

Source: Jared Rosenbaum, personal communication.

For both reaches combined, the total FQI was calculated to be 28.0 and the PSI was calculated to be 15.3. Per **Table 2**, this FQI score suggests that SB Rockaway Creek tributary riparian plant community is of relatively 'High' floristic quality for the New Jersey Highlands region. However, total FQI is biased by sample area size and approaches higher quality calculations the more species observed, which generally increases as the sample area increases regardless of quality (Spyreas 2019). Thus, FQI values for the overall stream corridor evaluation are significantly higher than those calculated for the smaller plot sampling effort (discussed in the next section) and contrast with Native Mean C interpretations. FQI values are more useful in the context of this report when comparing samples of the same area size (e.g. fixed plot sizes) and Mean C values of the overall stream corridor evaluation provide a more stable and consistent assessment of floristic quality. Total Mean C measured 3.0 while Native Mean C measured 4.2. While no reference for interpretation of Total Mean C was available at the time of this report, per **Table 3**, the interpretation of Native Mean C scores suggests that the study area exhibits 'Moderate' floristic quality.

Vegetation Plot Sampling

In lieu of transect sampling, AGE employed the Level 3 Carolina Vegetation Survey (CVS) plot sampling methodology (Pete et al. 1998). Plot sampling is preferred because the sample unit is less likely to cross ecological community boundaries than a linear transect unit that is ten times as expansive. One vegetation plot was sampled in the riparian areas of both Reach-01 and Reach-02 of the survey area. The Level 3 - CVS plot sampling protocol involved placement of a 10 x 10-meter (100 square meters) plot. Plant species within the plot were inventoried and percent cover was estimated using the CVS cover abundance scale. The plot locations for Reach-01 and Reach-02 are found on **Figure 3**.

Reach-01 Plot

Within the plot sampled at Reach-01, Total FQI measured 15.4, suggesting the system was of 'Moderate' quality. Native mean C measured 3.5 at this plot, which also falls within the 'Moderate' quality range per **Table 3**.

Reach-02 Plot

Within the plot sampled at Reach-02, Total FQI measured 13.0 suggesting the system was of 'Moderate' quality. Native mean C measured 3.8 at this plot, which also falls within the 'Moderate' quality range per **Table 3**.

Floristic Quality Assessment Summary

In summary, the floristic quality of SB Rockaway Creek tributary riparian area is estimated to be of 'Moderate' quality according to the thresholds provided in **Table 2** and **Table 3**. While Total FQI of the overall stream corridor evaluation area ranked as 'High' quality, this evaluation method was likely biased by the larger area covered (i.e. 30-40 acres) in contrast to the smaller plots and with the Native Mean C calculation. All field data and Universal FQA Calculator results are provided in **Appendix F**.

2.4.8 Public Use Opportunities

The two reaches of the South Branch Rockaway Creek tributaries currently support little to no public use opportunities. Since the adjacent land ownership is mostly private, very little public use such as hiking, picnicking, wading/swimming, fishing, or hunting is appropriate along either studied reach. The width and depth of the reaches is insufficient for paddling or motor-boating activities.

2.4.9 Additional Considerations

A large corporate campus surrounds the headwaters immediately upstream of Reach-01 which can affect the study reach if poor landscaping practices occur within the campus. Since Reach-01 is immediately upstream of Reach-02, anything affecting Reach-01 will also affect Reach-02. Downstream land use of Reach-02 is predominantly agricultural which would have little effect on the studied reach.

2.4.10 Functional Value Scoring/Rating

The Functional Value Assessment Methodology Scoring forms for Reach-01 and Reach-02 are located in **Appendix E**. There are seven forms, each which assess and score the following for each studied reach:

- 1. Form 1: Reach ID Form
- 2. Form 2: Phase I Watershed
- 3. Form 3: Channel Integrity
- 4. Form 4: Habitat
- 5. Form 5: Water Quality
- 6. Form 6: Temperature Moderation
- 7. Form 7: Public Use

The forms used for both Reach-01 and Reach-02 were based on the Existing and/or Reference Stream Type established in the Phase 1 and Phase 2 assessments: primarily 'Pool-Riffle' streams and 'C/E channels'.

The scores and ratings which follow in **Table 4** correspond best to conditions observed in the Phase 1 and Phase 2 assessments. Where most observations occur around the same conditions, the numerical score becomes apparent but where there is a wide range of conditions across the parameters, careful judgment was used to weigh the observations and select the numerical score that best reflected the observed conditions.

Functional Value Assessment and Stream Corridor Plan South Branch Rockaway River Tributary

Table 4: Functional Value Scores and Condition Ratings				
Aggaggmont	Reach-01		Reach-02	
Assessment	Score	Rating	Score	Rating
Watershed	0.36	FAIR	0.36	FAIR
Channel Integrity	0.57	FAIR	0.57	FAIR
Channel Sensitivity*		HIGH		VERY HIGH
Habitat	0.56	FAIR	0.54	FAIR
Water Quality	0.45	FAIR	0.41	FAIR
Temperature Moderation	0.54	FAIR	0.46	FAIR
Public Use	0.33	POOR	0.32	POOR

*Channel Sensitivity is based on the Existing Rosgen Stream Type and Channel Integrity Rating and refers to the likelihood of the stream to undergo geomorphic adjustment following human disturbance.

2.4.11 Data Summary

According to the Highlands *Guidance*, the scores and ratings determined in **Table 4** serve as a baseline assessment of existing conditions against with future change can be measured.

Watershed/Corridor

Factors driving down the rating for Reach-01 and Reach-02 included a predominance of unconsolidated glacial till in the native soil, very high soil erodibility, high soil runoff, and high percentages of urban land use and impervious cover.

Channel Integrity

Channel conditions indicative of instability and potential rapid adjustments in Reach-01 and Reach-02 includes undersized bridge crossings, high floodplain encroachment ratios, stormwater headcuts and outfalls perched above the streambed, lack of bedrock grade controls, moderate sediment deposition upstream of bridges/culverts and bridges/culverts partially blocked by sediment, pools filled with sediment finer than the dominant particle sizes, many sediment bars which are composed of sediment finer than dominant particle sizes, moderate erosion at the base of both banks creating unstable overhangs, and the channel is askew to bridge/culvert openings.

Habitat

The conditions manifesting the 'FAIR' habitat ratings in Reach-01 and Reach-02 can be attributed to Fair Channel Integrity, very high Channel Sensitivity, NJ Stream Water Quality Standards, multiple bridges and/or culverts constricting the channels, low number of pools, low number of debris jams for the length of the reach, abundant non-native, invasive plant species, and minimal percentage of adjacent wetlands.

Water Quality

Related parameters contributing to the lower water quality conditions of Reach-01 and Reach-02 include Fair Channel Integrity, high to very high channel sensitivity, NJ Surface Water Quality Standards, few to many eroded banks that are undercut and steep, bank erosion may be contributing to in-stream sediment, minimal wetlands present, and infrequent tributaries/seeps/springs.

Temperature Moderation

The FAIR conditions of this category are manifested by the Fair Channel Integrity, high to very high Channel Sensitivity, contributing stormwater inputs which are predominantly urban, minimal wetland presence, and infrequent tributaries/seeps/springs. In addition, Reach-02 has a minimally shaded channel and a significant amount of riparian buffer in residential areas that does not intercept runoff.

Public Use

Both Reach-01 and Reach-02 scored 'POOR' in the Public Use Assessment. This can be attributed to by the Fair ratings achieved in Channel Integrity, Habitat, and Water Quality but also because many public uses are incompatible with the existing adjacent land ownership.

SECTION 3: STREAM CORRIDOR PLAN

It is the understanding that the FVAM was initiated in response to a proposed affordable housing development that may affect the SB Rockaway Creek tributary, identified as Reach-01 in this assessment. The development is proposed on Block 4, Lots 1.03 and 1.04, off of Corporate Drive in the Borough of Lebanon. Therefore, the results of this FVAM will serve as a baseline against which no net loss in functional value to the SB Rockaway Creek tributary will be measured. The baseline FVAM for Reach-01 and Reach-02 is 'FAIR' which indicate the tributaries are in a condition of 'In Adjustment – moderate loss of floodplain function; or moderate to major planform adjustments that could lead to channel avulsions' (FEA 2014). Future management projects considered should focus on mitigation of permanent stressors such as floodplain encroachment from urbanization.

Based on the results of the Phase 1 and Phase 2 FVAM along the limited study area on portions of the SB Rockaway Creek tributaries flowing through the north and south-eastern quadrants of the Borough of Lebanon, Amy Greene Environmental recommends the following for the Borough:

- 1. Following the implementation of the proposed affordable housing development, repeat the FVAM on Reach-01 during the growing season following construction and restoration activities to monitor any changes to the existing functional values identified, and trigger any remedial actions if necessary.
- 2. Expand the FVAM across the full length of Reach-02 (starting from the Lebanon Borough Boundary north of Route 78 and east of Spencer Lane, heading south and east through the Borough to the confluence with the main stem of SB Rockaway Creek, just east of Corporate Drive) to better understand the full scope of evolution stage and sensitivity of this tributary. Further, perform the FVAM across all tributaries within the Borough and/or watershed. An expanded study area such as this would create a database to allow for a more comprehensive approach to flood and erosion hazard planning across the Borough and/or adjacent townships, rather than the conventional approach of multiple "spot fixes" with limited knowledge of the stream system as a whole.
- 3. Conduct a bridge and culvert survey of private and public structures to gather specific information about the impacts of stream crossings and stormwater inputs throughout entire Borough and/or the SB Rockaway Creek watershed. Replace undersized and askew structures when opportunities and/or funding become available. Based on the limited scope of this assessment, these may include but aren't limited to the culverts at Route 78, at Corporate Drive south of Route 78, and at Route 22 along Reach-01; and the bridge at Main Street along Reach-02.
- 4. The predominant reference stream type for much of the two assessed reaches appears to be "C" (Refer to Section 2.2.1.3 for definitions). "C" type stream channels are highly dependent upon vegetation for stability. Therefore, the establishment and protection of vegetated buffers should be high priority in any restoration planning and design work. Riparian buffers provide many benefits including protecting and enhancing water quality, providing fish and wildlife habitat, providing streamside shading, and providing root structure to prevent bank erosion (EPA 2020; BCE 2006).
- 5. Reach-02 particularly has a high floodplain encroachment due to residential yards that are landscaped, mowed, and cleared of vegetation in the floodplain which has led to loss of habitat and geomorphic instability. Consider working with willing residents along this reach to create a 'riparian buffer protection agreement' or similar conservation arrangement. This is a tool to help private landowners and conservation organizations or governments work in

partnership to establish permanent riparian buffers along waterways by planting native trees, shrubs, and other perennial plants within the first 50 feet extending out from the waterway, which the USDA Forestry Service considers the most critical, and should be preserved as near as possible to an undisturbed, natural state (WeConservePA 2009). Actions to recreate a riparian buffer along this reach will deliver a number of benefits including providing shade, creating habitat and corridors for terrestrial species, and providing shelter and food for fish and other aquatic organisms.

6. The uppermost and middle portions of Reach-01 have been minimally impacted by land use as at least one bank is surrounded by relict wetlands. In the uppermost portion, the relict wetland is north of Interstate 78 and along the right bank of Reach-01. In the middle portion, a relict wetland is south of State Route 22 and along the left bank of Reach-01. Conservation and preservation of these wetlands will protect the quality of the tributary.

SECTION 4: REFERENCES

- Bear Creek Environmental (BCE). 2006. Phase 1 and 2 Stream Geomorphic Assessments, North Branch of Deerfield River Watershed. Middlesex, Vermont.
- Fitzgerald Environmental Associates (FEA), LLC. 2014. Lower Passumpsic River Tributaries River Corridor Plan. Colchester, Vermont.
- Freyman, W.A., L.A. Masters, and S. Packard. 2016. The Universal Floristic Quality Assessment (FQA) Calculator: an online tool for ecological assessment and monitoring. Methods in Ecology and Evolution 7(3): 380–383.
- New Jersey Highlands Water Protection and Planning Council (NJ Highlands WPPC). 2014a. Stream Corridor Guidance, Part 1: Functional Value Assessment Methodology. www.highlands.state.nj.us
- NJ Highlands WPPC. 2014b. Stream Corridor Guidance, Part 2: Part 2: Protection and Restoration Planning. www.highlands.state.nj.us
- Peet, R.K., T.R. Wentworth and P.S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63:262-274.
- Princeton Hydro, LLC. 2002. Clinton Township Natural Resource Inventory. http://www.clintontwpnj.com/modules/showdocument.aspx?documentid=124
- Spyreas, G. 2019. Floristic Quality Assessment: a critique, a defense, and a primer. https://doi.org/10.1002/ecs2.2825
- Swink, F. and G. Wilhelm. 1994. Floristic Quality Assessment. Pages 11-18 in Plants of the Chicago region. 4th ed. Indiana Academy of Science, Indianapolis.
- U.S. Environmental Protection Agency (EPA). 2020. Watershed Academy Web: Fundamentals of Rosgen Stream Classification System. https://cfpub.epa.gov/watertrain/moduleFrame.cfm?parent_object_id=1189
- U.S. Fish and Wildlife Service. No date. Floristic Quality Assessment. https://www.fws.gov/midwest/endangered/section7/s7process/plants/FQA.html#:~:text=Utilizing %20this%20method%2C%20a%20Floristic,indicates%20%E2%80%9CNatural%20Area%E2%80%9D%20quality.
- U.S. Geological Survey (USGS). 2020. USGS Current Conditions for the Nation, USGS 01399670 South B Rockaway Creek at Whitehouse Station NJ. https://waterdata.usgs.gov/usa/nwis/uv?01399670
- Vermont Agency of Natural Resources (VT ANR). 2004. Stream Geomorphic Assessment Protocol Handbook. www.watershedmanagement.vt.gov/rivers.htm
- VT ANR. 2005. Vermont Stream Geomorphic Assessment Phase 2 Handbook. Rapid Stream Assessment, Field Protocols. Waterbury, Vermont.
- WeConservePA. 2009. ConservationTools.org: Riparian Buffer Protection Agreement. https://conservationtools.org/guides/84-riparian-buffer-protection-agreement.
- Wilhelm, G. and L. Rerich. 2017. Flora of the Chicago Region. A Floristic and Ecological Synthesis. Indiana Academy of Science, Indianapolis. 1392 pp.

Personal Communications

Romano, Karen (Borough of Lebanon Clerk). July 9, 2020. Email communication.

Rosenbaum, Jared (Owner of Wild Ridge Plants and former PSI Coordinator at Bowman's Hill Wildflower Preserve). July 19, 2020. Personal communication.

SECTION 5: GLOSSARY

Aggradation: The process of sediment deposition on the channel bed on a reach scale that raises the elevation of the channel bed relative to the banks and floodplain.

Anthropogenic: Referring to environmental change caused or influenced by people, either directly or indirectly.

Avulsion: A process that results in relatively sudden abandonment of a river channel for a new course at a lower level in the floodplain.

Bankfull: The water level, or stage, at which a stream, river or lake is at the top of its banks and any further rise would result in water moving into the floodplain.

Braiding/Braided Channel: A stream reach composed of a complex of multiple, interconnected channels with bed features that form by dynamic erosion and deposition processes.

Channel Avulsion: The process, often occurring suddenly during flood events, in which a new channel is created and the original channel is abandoned.

Channel Canopy Cover: Shading from overhanging bank vegetation that limits direct insolation to the water surface and thereby serves to moderate water temperatures.

Channel Integrity: The quality of a stream channel defined by long-term dynamic stability of dimension, pattern and profile, and at which point, erosion and deposition of sediment are in relative balance.

Channel Migration: The process in which a channel shifts downstream or laterally and can result in greater reach sinuosity.

Channel Sensitivity: The likelihood that a stream will undergo geomorphic adjustment in response to a disturbance.

Channel Straightening: The realignment of a channel creating a straighter and thus steeper reach that is more prone to instability, often done intentionally to accommodate adjacent agriculture, development, roads or railroads.

Dams/Weirs: Structures that span the channel and are designed to raise the water surface elevation to create impoundments for water supply, flood control, recreational, industrial power supply or other uses.

Degradation: The process of erosion of the channel bed that lowers the elevation of the channel bed relative to the tops of banks and floodplain; also referred to as incision, down-cutting or entrenchment.

Entrenched: A river or stream that flows in a narrow trench or valley cut into a plain or relatively level upland.

Flood Chutes: Shallow flow paths on a floodplain that typically form a shorter, more direct path across meander tongues.

Geomorphic: Relating to the form of the landscape and other natural features of the earth's surface.

Geomorphic Change: Changes in channel slope, cross-section or alignment that occur through any of four processes: degradation, aggradation, widening and re-alignment.

Habitat: The space, and its associated biological and physical conditions, in which an organism or population inhabits. Optimal stream habitat is created under equilibrium conditions when sediment, woody material and water flow (depths and velocities) interact to create heterogeneous habitat units for cover, foraging and reproduction.

Head-cut: An erosional feature of some intermittent and perennial streams with an abrupt vertical drop in the streambed. This is also known as a knickpoint.

Headwater: First- through third-order streams (see Stream order); these are the small streams in the upper reaches of a watershed.

Highly Erodible Land (HEL): A soil erodibility factor, which represents both susceptibility of soil to erosion and the rate of runoff.

Hydrologic Soil Hydrologic Groups (HSG): Classes of soils that represent runoff characteristics. High runoff potential may contribute to reduced temperature moderation and degraded water quality and aquatic habitat.

Mainstem: The major reach of a river or stream formed by the smaller tributaries which flow into it.

Meander: One of a series of regular sinuous curves, bends, loops, turns, or windings in the channel of a river, stream, or other watercourse.

Meander Cutoff: The natural form of a cutting or cut in a river which occurs when a pronounced meander (hook) in a river is breached by a flow that connects the two closest parts of the hook to form a new channel, a full loop.

Planform: The contour of an object (such as an airplane) or mass as viewed from above.

Point Bar: A low, curved ridge of sand and gravel along the inner bank of a meandering stream. Point bars form through the slow accumulation of sediment deposited by the stream when its velocity drops along the inner bank.

Pool-Riffle Channel: A stream reach with undulating bed that defines a sequence of riffles, runs, pools, and bars.

Reference Conditions: The highest quality, or optimal condition, of a natural system that is expected to occur in the absence of human disturbance.

Relief: The difference in elevation between any two points.

Riffle: A rocky or shallow part of a stream or river with rough water.

Scour Pool: A deep depression in a stream bed created by the erosional forces of flowing water. These forces can be fully natural in origin or may arise from impact with man-made structures.

Sinuosity: The planform pattern of a river that describes the degree of meandering and is expressed as the ratio of channel length to valley length – straight channels equate to low sinuosity.

Stream Order: A measure of the relative size of a stream. Each increase in stream order is an order of magnitude increase in size. The smallest tributaries are referred to as first-order streams, while the largest river in the world is a twelfth-order waterway.

Thalweg: The deepest part of the channel where velocities are greatest and the majority of flow is concentrated.

Tributary: A stream that flows into, or "feeds," another stream.

Watershed: An area of land that drains into a common reservoir such as a stream, river, lake, or ocean; also referred to as a drainage basin or catchment area.

Water Year: The U.S. Geological Survey term "water year" is defined as the 12-month period beginning on October 1, for any given year through September 30, of the following year. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1999 is called the "1999" water year.

Widening: The process of erosion of both banks that increases the width of the channel.

Weir: A low dam built across a river to raise the level of water upstream or regulate its flow.

Appendix A Phase 1 Data Sheets

Impact R	atings		
V	Very High		US = Upstream
н	High		DS = Downstream
М	Moderate		# = Numerical Value
L	Low		IR = Impact Rating
I/N	Insignificant / None		T = Text Value
Step			S = Score
1.1 Define St	tudy Reach		
1.1.1	Stream Name	South Branch Rockaway Cre	ek tributary
1.1.2	Reach ID	South Branch Rockaway Cre	ek tributary - 01
1.1.3	Endpoint Descriptions	US: just east of Presidential Place Apartments	DS: northside Main St @ Sloan Ln
1.1.4	Endpoint Coordinates	US: N: 40.648205 / W: 74.829877	DS: N: 40.642120 / W: 74.828072
1.1.5	NHD Reach Code(s)	02030105016411, 02030105016412, 02030	0105016413, 02030105016414, 020301050 ⁻
1.1.6	HUC 14	02030105050100	
		Borough of Lebanon	

Town(s) Borough of Lebanon			
Huntardan	Borough of Lebanon	Town(s)	
County Function	Hunterdon	County	
USGS Quadrangle Califon NJ	Califon NJ	USGS Quadrangle	
Excluded Areas n/a	n/a	Excluded Areas	

1.2 Landownership

1.1.7

1.1.8

Private Properties

see attached list

3	Define Ref	erence Stream Type		
	1.3.1	Reach Length (ft)	#:	28
	1.3.2	Endpoint Elevations (ft)	US:	2
	1.3.3	Reach Slope	#:	1
	1.3.4	Valley Length (ft)	#:	2
	1.3.5	Valley Slope	#:	1
	1.3.6	Sinuosity	#:	L
	1.3.7	Channel Width (ft)	#:	3
	1.3.8	Valley Width (ft)	#:	8
	1.3.9	Confinement Ratio	#:	2
	1.3.10.1	Rosgen Stream Type	T:	С
	1.3.10.2	Channel Bed Morphology	T:	Ρ

_{#:} 2849	
us: 251	_{DS:} 216
_{#:} 1.23 %	
_{#:} 2597	
_{#:} 1.35%	
_{#:} Low	
#: 3.6	
_{#:} 84.9	
_{#:} 23.6	T: very broad
r: C / E Single Channel	
r: Pool-Riffle	

1.3

1.4 Channel Canopy Cover

1.5 Dams / Weirs

- 1.5.1 Impoundment Canopy Cover
- 1.6 Bridges / Culverts
- 1.7 Channel Straightening
- 1.8 Channel Migration / Avulsion
- 1.9 Water Quality Standard
- 1.10 Surface Water Discharges
- 1.11 AMNET Reference Sites
- 1.12 303(d) List
- 2.1 Delineate Corridor Area (acres)
- 2.2 Delineate Watershed Area (acres)
- 2.3 Geology
- Bedrock
- Surficial
- 2.4 Valley Slopes
- 2.5 Soils
- Hydrologic Group

HEL

		Impact Ratings:	
#: 1	IR:	I (Insignifiant)	H/L/I
#: O	IR:	N (none)	H/M/L/N
_{#∶} n/a	IR:	n/a	H/L/I
#: 3	IR:	H (high)	H/L/N
#: 19 %	IR:	M (moderate)	H/L/I
#: 20 %	IR:	L (low)	H/L/N
#: FW2-TP-C1	IR:	H (high)	H/L/N
#: O	IR:	L (low)	H/L/N
#: O	S:	N (none)	H/N
#: not listed	S:		H/L

#:	34.33	
#:	165	

Passaic Formation (36.3 ac / 99.5%) and Passaic Formation Limestone-clast Conglomerate facies (0.2 ac / 0.5%) Alluvium (7.5 ac / 20.5%) and Weathered Shale, Mudstone, & Sandstone (29 ac / 79.5%)

_{IR:} L (low)

H/L/I

#: 6.32 acres / 17.26 %

	Area (acres)	Percent	
	Corridor/Watershed	Corridor/Watershed	
A			
В	0.0 / 3195.6	0.0 % / 40.4 %	
с	31.2 / 3999.8	85.5 % / 50.6 %	
D	5.3 / 566.7	14.5 % / 7.2 %	
A/D			
B/D	0.0 / 116.8	0.0 % / 1.5 %	
C/D			
Corridor		_{IR:} H (high)	V/H/M/L
Watershed		ır: H (high)	V/H/M/L
Highly Erodible	9.1 / 1895.3	24.9 % / 24.0 %	
Potentially Highly Erodible	15.6 / 5391.8	42.8 % / 68.2 %	
Not Highly Erodible	11.8 / 623.0	32.3 % / 7.8%	
Corridor		_{IR:} H (high)	V/H/M/L
Watershed		IR: V (very high)	V/H/M/L

2.6 Land Use / Land Cover

	Area (acres) Corridor/Watershed	Percent Corridor/Watershed	
Urban	15.15 / 3057.87	41.5 % / 38.7 %	
Agriculture	4.23 / 1305.24	11.6 % / 16.5 %	
Wetlands	6.25 / 293.55	17.1 % / 3.7 %	
Forest	10.64 / 3180.39	29.2 % / 40.2 %	
Corridor		_{IR:} H (high)	H/M/L/I
Watershed		_{IR:} H (high)	H/M/L/I

Impervious Cover

	Area (acres)	Percent	
	Corridor/Watershed	Corridor/Watershed	
%IC	9.79 / 1082.55	26.8 % / 13.7 %	
Corridor		_{IR:} H (high)	H/M/L/I
Watershed		IR: M (moderate)	H/M/L/I

Watershed

6310.8 lbs/year

H (high)

43,115.8 lbs/year

3,311,190.7 lbs/year

H/L/I

Corridor

1637

31.42 lbs/year

225.73 lbs/year

16,089.94 lbs/year

#:

ΤР

ΤN

TSS

2.7 Pollutant Loading

2.8 Width of Vegetated Buffer (ft)

2.9 Floodplain Constrictions

2.10 Wildlife Habitat - Landscape 3.0

Vernal Pools

Stream Rank

Species Patch Rank

_{#:} 60.7 ft (2.13 %)	IR:	l (insigr	nificant)	H/L/I
		7		
1				
Area (acres): 0.0		Percent:	0.0 %	
Area (acres): 4.30		Percent:	11.8 %	
Area (acres): 6.76		Percent:	18.5 %	
Area (acres): 2.62		Percent:	7.2 %	
Area (acres): 9.66		Percent:	26.5 %	
Area (acres): 13.16		Percent:	36.0 %	
	S:	H (h	igh)	H/M/L
	S:	M (m	oderate)	H/M/L
	S:	H (h	igh)	H/M/L/N
	Area (acres): 0.0 Area (acres): 4.30 Area (acres): 6.76 Area (acres): 2.62 Area (acres): 9.66	Area (acres): 0.0 Area (acres): 4.30 Area (acres): 6.76 Area (acres): 2.62 Area (acres): 9.66 Area (acres): 13.16 S: S:	Area (acres): 0.0 Percent: Area (acres): 4.30 Percent: Area (acres): 6.76 Percent: Area (acres): 2.62 Percent: Area (acres): 9.66 Percent: Area (acres): 13.16 Percent: s: H (h s: M (m	Area (acres): 0.0 Percent: 0.0 % Area (acres): 4.30 Percent: 11.8 % Area (acres): 6.76 Percent: 18.5 % Area (acres): 2.62 Percent: 7.2 % Area (acres): 9.66 Percent: 26.5 % Area (acres): 13.16 Percent: 36.0 % s: H (high) s: M (moderate) LL (high) S: M (moderate) LL (high)

IR:

2.11 Riparian Plant Community - PSI

2.12 Public Uses

Impact Ra	lings		
V	Very High		US = Upstream
н			DS = Downstream
М			# = Numerical Value
			IR = Impact Rating
<u> </u>	Insignificant / None		T = Text Value
			S = Score
Define Stu	udy Reach	Γ	
1.1.1	Stream Name		
1.1.2	Reach ID	South Branch Rockaway Cree	ek tributary - 02
1.1.3	Endpoint Descriptions	US: northside of Main St at Sloan Ln	DS: just downstream of Kullman Corp Campus Dr bridge
1.1.4	Endpoint Coordinates	US: N: 40.642120 / W: 74.828072	DS: N: 40.639935 / W: 74.822790
1.1.5	NHD Reach Code(s)	02030105014870 & 02030105016417	
1.1.6	HUC 14	02030105050100	
	Town(s)	Borough of Lebanon	
1.1.7	County	Hunterdon	
	USGS Quadrangle	Califon NJ	
1.1.8	Excluded Areas	n/a	
Landowne	ership		
	Private Properties	see attached list	
Define Re	ference Stream Type		
1.3.1	Reach Length (ft)	#: 2248	
1.3.2	Endpoint Elevations (ft)	_{US:} 216	_{DS:} 205
1.3.3	Reach Slope	#: 0.48 %	
1.3.4	Valley Length (ft)	_{#:} 1759	
1.3.5	Valley Slope	_{#:} 1.99 %	
1.3.6	Sinuosity	#: Moderate	
1.3.7	Channel Width (ft)	_{#:} 14.1	
1.3.8	Valley Width (ft)	#: 372.2	
	V H M L I/N Define Str 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 Landowne Define Re 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7	VVery High High MHHigh MMModerate L Low I/NInsignificant / NoneDefine Study Reach1.1.1Stream Name1.1.2Reach ID1.1.3Endpoint Descriptions1.1.4Endpoint Coordinates1.1.5NHD Reach Code(s)1.1.6HUC 14 Town(s)1.1.7County USGS Quadrangle1.1.8Excluded AreasLandownership Private PropertiesDefine Reference Stream Type1.3.1Reach Length (ft)1.3.2Endpoint Elevations (ft)1.3.3Reach Slope1.3.4Valley Length (ft)1.3.5Valley Slope1.3.6Sinuosity1.3.7Channel Width (ft)	V Very High H High M Moderate L Low I/N Insignificant / None Define Study Reach 1.1.1 Stream Name South Branch Rockaway Creet 1.1.2 Reach ID South Branch Rockaway Creet 1.1.3 Endpoint Descriptions US: northside of Main St at Sloan Ln 1.1.4 Endpoint Coordinates US: N: 40.642120 / W: 74.828072 1.1.5 NHD Reach Code(s) 02030105014870 & 02030105016417 1.1.6 HUC 14 02030105050100 Borough of Lebanon 1.1.7 County USGS Quadrangle 1.1.8 Excluded Areas n/a Landownership Private Properties See attached list 1.3.1 Reach Length (ft) #: 2248 1.3.2 Endpoint Elevations (ft) US: 216 1.3.3 Reach Slope #: 0.48 % 1.3.4

very broad

т:

- 1.3.8 Valley Width (ft)1.3.9 Confinement Ratio
- 1.3.10.1 Rosgen Stream Type
- 1.3.10.2 Channel Bed Morphology

C / E Single Channel

26.4

Pool-Riffle

#:

т:

т:

1.4 Channel Canopy Cover

1.5 Dams / Weirs

- 1.5.1 Impoundment Canopy Cover
- 1.6 Bridges / Culverts
- 1.7 Channel Straightening
- 1.8 Channel Migration / Avulsion
- 1.9 Water Quality Standard
- 1.10 Surface Water Discharges
- 1.11 AMNET Reference Sites
- 1.12 303(d) List
- 2.1 Delineate Corridor Area (acres)
- 2.2 Delineate Watershed Area (acres)
- 2.3 Geology
- Bedrock Surficial
- 2.4 Valley Slopes
- 2.5 Soils
- 2.5 50115
- Hydrologic Group

HEL

		Impact Ratings:	
#: 3	IR:	I (Insignificant)	H/L/I
#: O	IR:	N (none)	H/M/L/N
_{#:} n/a	IR:	n/a	H/L/I
#: 2	IR:	H (high)	H/L/N
#: 31 %	IR:	H (high)	H/L/I
#: 10 %	IR:	L (low)	H/L/N
#: FW2-TP-C1	IR:	H (high)	H/L/N
#: O	IR:	L (low)	H/L/N
#: O	S:	N (none)	H/N
#: not listed	S:		H/L

#:	26.79	
#:	2,455	

 Passaic Formation (26.8 ac / 100%)

 Alluvium (15.2 ac / 56.7%) and Weathered Shale, Mudstone, & Sandstone (11.6 ac / 43.3%)

 #:
 1.91 acres / 7.09 %

 IR:
 L (low)

 H/L/I

	Area (acres)	Percent	1
	Corridor/Watershed	Corridor/Watershed	
A	contact, watershed	controlywatershea	
В	0.0 / 3195.6	0.0 % / 40.4 %	
с	26.8 / 3999.8	100.0 % / 50.6 %	
D	0.0 / 566.7	0.0 % / 7.2 %	
A/D			
B/D	0.0 / 116.8	0.0 % / 1.5 %	
C/D			
Corridor		IR: H (high)	V/H/M/L
Watershed		ır: H (high)	V/H/M/L
Highly Erodible	0.0 / 1895.3	0.0 % / 24.0 %	
Potentially Highly Erodible	11.3 / 5391.8	42.2 % / 68.2 %	
Not Highly Erodible	15.5 / 623.0	57.8 % / 7.8 %	
Corridor		IR: M (moderate)	V/H/M/L
Watershed		_{IR:} V (very high)	V/H/M/L

2.6 Land Use / Land Cover

	Area (acres) Corridor/Watershed	Percent Corridor/Watershed	
Urban	13.51 / 3057.87	50.4 % / 38.7 %	
Agriculture	2.20 / 1305.24	8.2 % / 16.5 %	
Wetlands	3.31 / 293.55	12.4 % / 3.7 %	
Forest	7.77 / 3180.39	29.0 % / 40.2 %	
Corridor		_{IR:} H (high)	H/M/L/I
Watershed		_{IR:} H (high)	H/M/L/I

Impervious Cover

	Area (acres)	Percent	
	Corridor/Watershed	Corridor/Watershed	
%IC	5.26 / 1082.55	19.6 % / 13.7 %	
Corridor		IR: M (moderate)	H/M/L/I
Watershed		IR: M (moderate)	H/M/L/I

2.7 Pollutant Loading

2.8 Width of Vegetated Buffer (ft)

2.9 Floodplain Constrictions

2.10 Wildlife Habitat - Landscape 3.0

Vernal Pools

Stream Rank

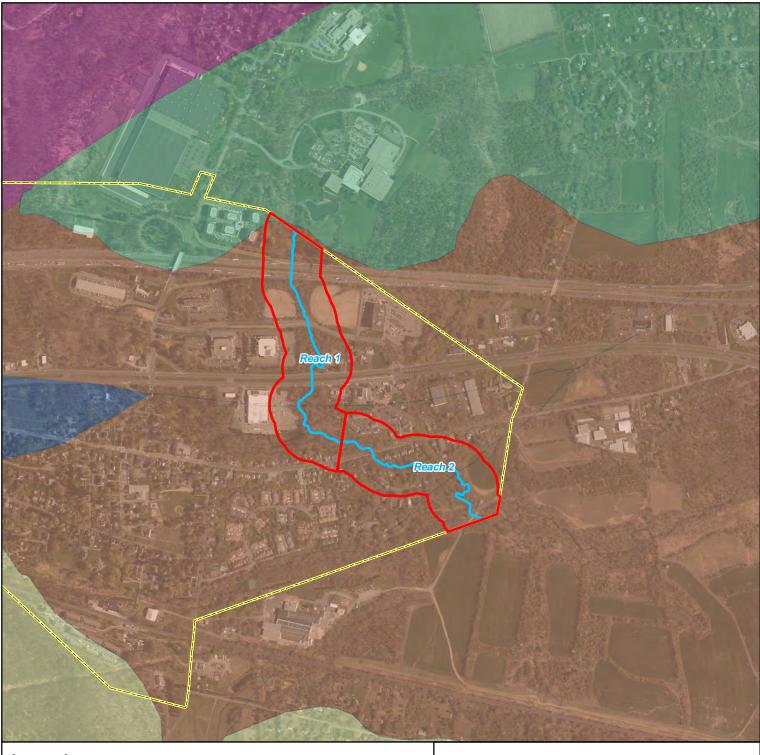
Species Patch Rank

	Corridor	Watershed	
ΤР	18.06 lbs/year	6310.8 lbs/year	
ΤN	133.88 lbs/year	43,115.8 lbs/year	
TSS	7354.12 lbs/year	3,311,190.7 lbs/year	
	#: 1780	_{IR:} H (high)	H/L/I
	#: 738.5 ft (32.8 %)	_{IR:} H (high)	H/L/I

#:	none						
#:	Rank 1						
	5	Area (acres):	0.00		Percent:	0.0 %	
	4	Area (acres):	0.64		Percent:	2.4 %	
	3	Area (acres):	12.64		Percent:	47.2 %	
	2	Area (acres):	0.00		Percent:	0.0 %	
	1	Area (acres):	10.84		Percent:	40.4 %	
	0	Area (acres):	2.68		Percent:	10.0 %	
				S:	H (h	igh)	H/M/L
				S:	M (n	noderate)	H/M/L
				S:	H (h	igh)	H/M/L/N

2.11 Riparian Plant Community - PSI

2.12 Public Uses


Appendix B Landowner List

Parcels that intersect with 300ft Stream Reach Corridor				
Municipal Code	BLOCK	LOT		
1018	1	2		
1018	1	3		
1018	12	10		
1018	12	11		
1018	12	12		
1018	12	18		
1018	12	8		
1018	12	8.01		
1018	12	9		
1018	13	1		
1018	13	13		
1018	13	2		
1018	13	3		
1018	13	4		
1018	13	5		
1018	13	6		
1018	13	7		
1018	13	7.01		
1018	13	8		
1018	13.02	10		
1018	13.02	11		
1018	13.02	12		
1018	13.02	22		
1018	13.02	25		
1018	13.02	26		
1018	13.02	33		
1018	13.02	34		
1018	13.02	35		
1018	13.02	36		
1018	13.02	37		
1018	13.02	38		
1018	13.02	39		
1018	13.02	40		
1018	13.02	41		
1018	13.02	42		
1018	13.02	43		
1018	13.02	44		
1018	13.02	45		
1018	13.02	46		
1018	13.02	47		
1018	13.02	48		
1018	13.02	49		
1018	13.02	50		
1018	13.02	52		
1018	13.02	9		

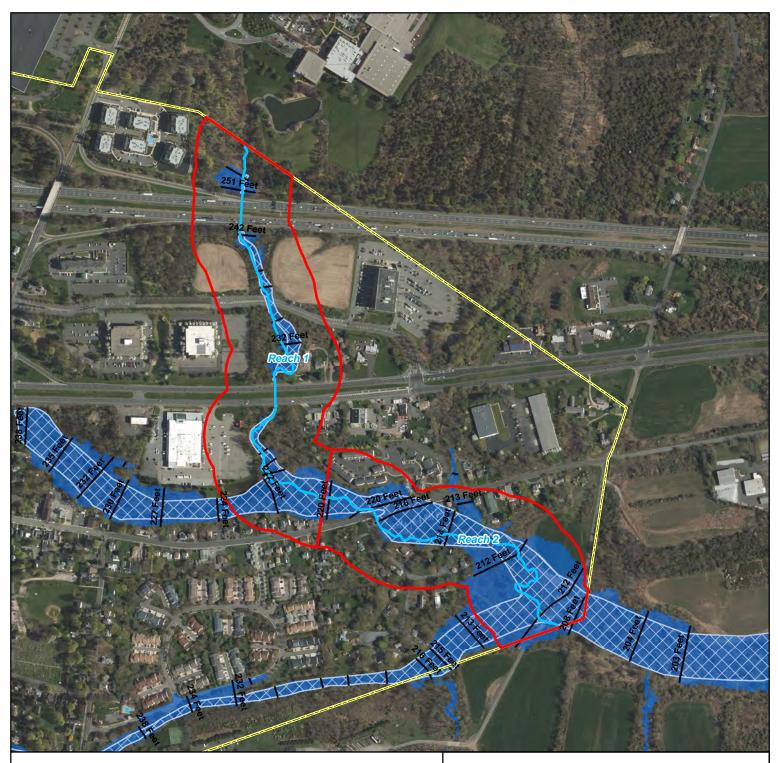
1018	2	14
1018	2	4.03
1018	2	5
1018	2	6
1018	2	6.01
1018	2	8
1018	2	9
1018	4	1.02
1018	4	1.03
1018	4	1.04
1018	4	7
1018	4	8
1018	5	1
1018	5	10
1018	5	11
1018	5	11.01
1018	5	12
1018	5	13
1018	5	13
1018	5	14
1018	5	16
1018	5	10
1018	5	17
1018	5	18
1018	5	2
1018	5	20
1018	5	20
1018	5	21
1018	5	22
1018	5 5	23 24
1018	5	24
	-	
1018	5	25
1018	5	27
1018	5	28
1018	5	29
1018	5	3
1018	5	35
1018	5	35.01
1018	5	35.01
1018	5	35.01
1018	5	35.01
1018	5	35.01
1018	5	35.01
1018	5	35.01
1018	5	35.01
1018	5	35.01
1018	5	35.01

1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	35.01	
1018	5	4	
1018	5	5	
1018	5	6	
1018	5	7	
1018	5	8	
1018	5	9	
1018	6	11	
1018	6	18	
1018	6	26	
1018	6	27	
1018	6	28	

Appendix C Figures

Legend Stream Reach Stream Reach Corridor Municipal Boundary Passaic Formation Jurassic Diabase Passaic Formation Limestone-clast Conglomerate facies Passaic Formation Quatzite-clast Conglomerate facies Quartz-Oligoclase Gneiss Sources: Bedrock and Surficial Geology for New Jersey 1:100,000 Scale, New Jersey Department of Environmental Protection (NJDEP), New Jersey Geological Survey (NJGS), Trenton, NJ, June 1999. Municipal Boundaries for the State of New Jersey 1:100,000 Scale, New Jersey Department of Environmental Protection (NJDEP), New Jersey Geological Survey (NJGS), Trenton, NJ, June 1999. Municipal Boundaries for the State of New Jersey, New Jersey State Plane NAD83, NJ Office of Information Technology (NJOT), Office of Geographic Information Systems (OGIS), vector digital data, Trenton, NJ, July 2016. New Jersey 2015 High Resolution Officipotography, NAD83 NJ State Plane Feet, MrSID Tiles, State of New Jersey 2015

Office of Information Technology, Office of Geographic Information Systems (OGIS), Trenton, NJ, February 2016.


Bedrock Geology Map

South Branch Rockaway Creek Tributary Stream Corridor Protection & Restoration Plan Borough of Lebanon Hunterdon County, New Jersey

AGE Project # 4562

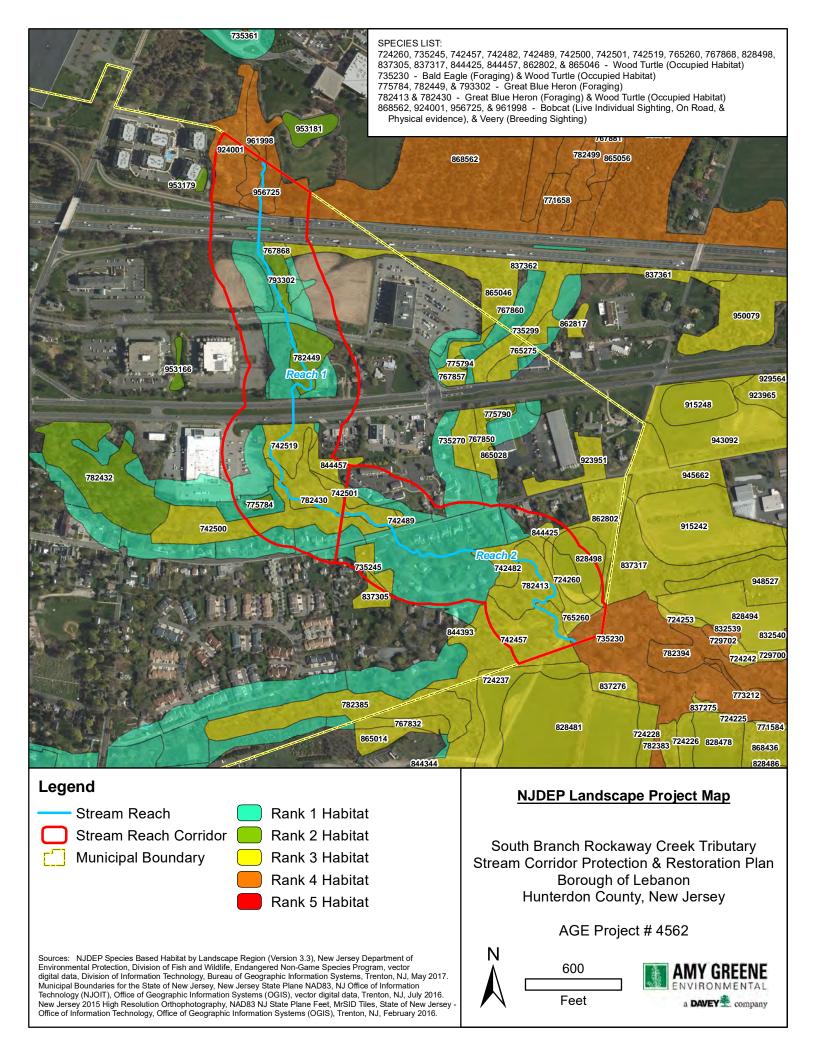
Legend

- Stream Reach
- Stream Reach Corridor
- **Municipal Boundary**
- 100-year FEMA Floodplain
- Floodway
 - **Base Flood Elevation**

Sources

Sources: Federal Emergency Management Agency County Flood Hazard Layer, a compilation of all Digital Flood Insurance Rate Map databases for Hunterdon County, NJ, distributed by FEMA Map Service Center, Washington DC, May 2012. Municipal Boundaries for the State of New Jersey, New Jersey State Plane NAD83, NJ Office of Information Technology (NJOIT), Office of Geographic Information Systems (OGIS), vector digital data, Trenton, NJ, July 2016. New Jersey 2015 High Resolution Orthophotography, NAD83 NJ State Plane Feet, MrSID Tiles, State of New Jersey -Office of Information Technology, Office of Geographic Information Systems (OGIS), Trenton, NJ, February 2016.

Effective FEMA Flood Map


South Branch Rockaway Creek Tributary Stream Corridor Protection & Restoration Plan Borough of Lebanon Hunterdon County, New Jersey

AGE Project # 4562

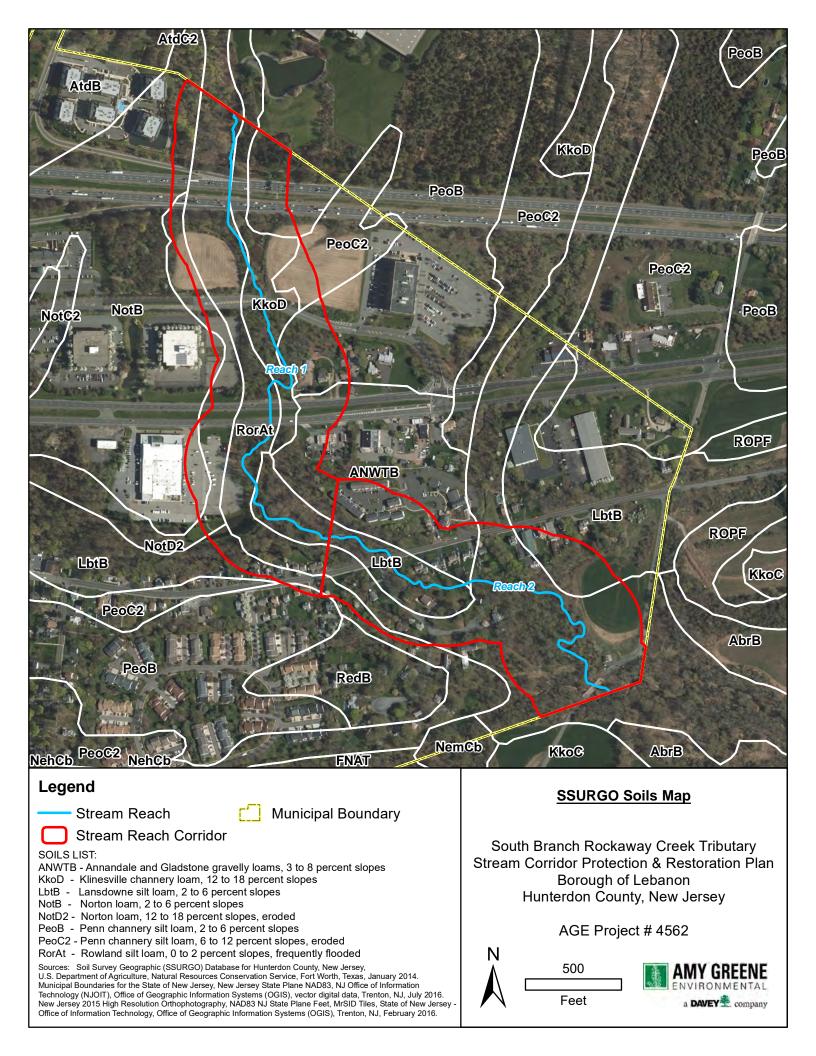
Ν

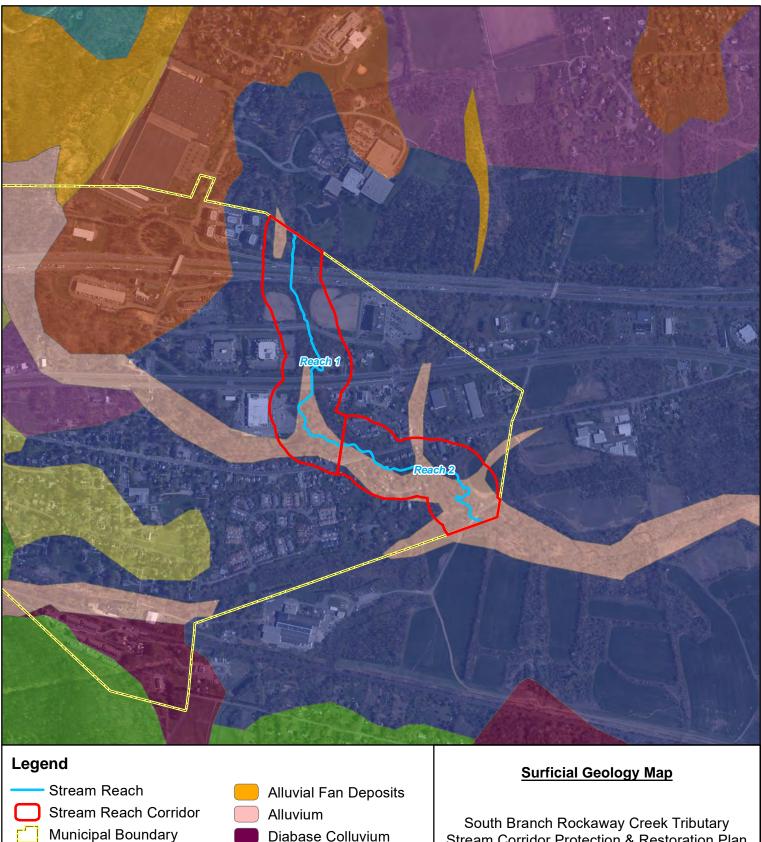
Legend

Sources:

- Stream Reach
- Stream Reach Corridor
- Municipal Boundary
- Municipal Open Space
- State Open Space

Parks and Open Space Map


South Branch Rockaway Creek Tributary Stream Corridor Protection & Restoration Plan Borough of Lebanon Hunterdon County, New Jersey


AGE Project # 4562

State, Local and Nonprofit Open Space of New Jersey, Edition 20190917, NJ Department of Environmental Protection (NJDEP), NJDEP Green Acres Program, New Jersey Office of GIS, Trenton, NJ, September 2019. Municipal Boundaries for the State of New Jersey, New Jersey State Plane NAD83, NJ Office of Information Technology (NJOIT), Office of Geographic Information Systems (OGIS), vector digital data, Trenton, NJ, July 2016. New Jersey 2015 High Resolution Orthophotography, NAD83 NJ State Plane Feet, MrSID Tiles, State of New Jersey -Office of Information Technology, Office of Geographic Information Systems (OGIS), Trenton, NJ, February 2016.

Weathered Conglomerate

- Weathered Diabase
- Pre-Illinoian Glaciofluvial Deposits

Weathered Shale, Mudstone, & Sandstone

Sources: Bedrock and Surficial Geology for New Jersey 1:100,000 Scale, New Jersey Department of Environmental Protection (NJDEP), New Jersey Geological Survey (NJGS), Trenton, NJ, June 1999. Municipal Boundaries for the State of New Jersey, New Jersey State Plane NADB3, NJ Office of Information Technology (NJOIT). Office of Geographic Information Systems (OGIS), vector digital data, Trenton, NJ, July 2016. New Jersey 2015 High Resolution Orthophotography, NAD83 NJ State Plane Feet, MrSID Tiles, State of New Jersey - Office of Information Technology, Office of Geographic Information Systems (OGIS), Trenton, NJ, February 2016.

Pre-Illinoian Till

Weathered Gneiss

South Branch Rockaway Creek Tributary Stream Corridor Protection & Restoration Plan Borough of Lebanon Hunterdon County, New Jersey

AGE Project # 4562

Appendix D Phase 2 Data Sheets

Autumn Thomas Dave Kunz dy, high 78F ow Conditions: ecipitation: 1-7 days pod Event: 06/18/201
Dave Kunz dy, high 78F ow Conditions: ecipitation: <u>1-7 days</u>
dy, high 78F ow Conditions: ecipitation: <u>1-7 days</u>
ow Conditions: ecipitation: <u>1-7 days</u>
ecipitation: 1-7 days
ecipitation: 1-7 days
ood Event: <u>06/18/201</u>

5 **Channel Dimensions** Bankfull Width 10 ft 5.1 Bankfull Max Depth $1.1~{
m ft}$ 5.2 Bankfull Mean Depth $0.9 ext{ ft}$ 5.3 Lowest Bank Height 1.4 ft 5.4 26 ft Floodprone Width 5.5 3.7 ft Floodplain Encroachment Height 5.6 Width-Depth Ratio Low - A/B Channels (11)5.7 Minimally entrenched (2.6) **Entrenchment Ratio** 5.8 Bank Height Ratio Minor Incision, Potentially Unstable 5.9 Floodplain Encroachment Ratio High Encroachment, Highly Unstable 5.10 Sinuosity Low 5.11 Existing Stream Type C/E Single Channel 5.12 Rosgen Stream Type E Single Channnel Dominant Particle Size 4 (gravel) Channel Bed Morphology C4 Pool-Riffle

Highlands Functional Value Assessment Methodology

Phase 2 Reach Assessment - Data Sheet

6 Channel Features / Condition

6.1 Bedrock Grade Controls	0	
Tally:		
Height:		
Length:		
6.2 Head-cuts		
Tally:	0	
Notes:		
6.3 Riffle / Step Condition		
Tally:	23	
Form:	Moderately formed	
Complete:	18 Complete, 3 Incomplete	
Stablility:	Stable	
6.4 Pool Condition		
< 1 FT:	9	
> 1 FT:	10	
< Wbf:	12	
= Wbf:	-	
Notes:	10 were filled w/sediment finer than domination	ant particle size. 2 were absent of cover, 3 had cover as LWD,
6.5 Sediment Bars	5 had cover as debris jam, and 9 had cover	as overhanging banks.
Point:	7	
Lateral:	10	
Lateral: Diagonal:	1	
Diagonal:	1	
Diagonal: Mid-Channel:	1	
Diagonal:	1 5 5	
Diagonal: Mid-Channel: Islands: Deltas:	1 5 5	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition	1 5 5 1	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size	1 5 5 1 30mm	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size Embeddedness	1 5 5 1 30mm 46%	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size Embeddedness Average Largest Particle	1 5 5 1 30mm 46% 346mm	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size Embeddedness	1 5 5 1 30mm 46% 346mm	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material	1 5 5 1 30mm 46% 346mm	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material CPOM:	1 5 5 1 30mm 46% 346mm 21% 42 present/abundant, 16 absent	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material CPOM: LWD < Wbf:	1 5 5 1 30mm 46% 346mm 21% 42 present/abundant, 16 absent 8	
Diagonal: Mid-Channel: Islands: Deltas: 6.6 Bed Substrate Composition Riffle Particle Size Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material CPOM:	1 5 5 1 30mm 46% 346mm 21% 42 present/abundant, 16 absent 8 18	

Reach ID: So

outh Branch Rockaway Creek tributary - 01			
Highlands Functional Value Assessment Methodology			
Phase 2 Reach Assessment - Data Sheet			
7 Stream Banks	At x-section		
7.1 Typical Bank Slope	30-50%, 3:1 - 2:1		
7.2 Bank Materials	Silt/clay		
Interpretation	Moderate erodibility		
7.3 Bank Vegetation Coverage	At x-section		
Canopy:	10%		
Understory:	20%		
Groundcover:	100%		
Canopy			
Non-native invasives:	8%		
Coniferous Trees:	0%		
Deciduous Trees:	17%		
Understory			
Non-native invasives:	8%		
Shrubs:	12%		
Saplings:	4%		
Groundcover			
Non-native invasives:	8%		
Grasses:	4%		
Forbs:	79%		

10103	•
7.4 Cross Channel Shading	Closed @ x-section
7.5 Bank Erosion	Throughout Reach
Length	~95' on LB, ~65' on RB
7.6 Bank Armoring / Channelization	Throughout Reach
Length	. 0
Туре	: N/a

Highlands Functional Value Assessment Methodology

Phase 2 Reach Assessment - Data Sheet

8 Riparian Area / Floodplain	Right Bank
8.1 Buffer Width	
Class:	Wide (300-150')
8.2 Riparian Community - PSI	
Level 1 Score:	Low (53%)
Plant Survey	
Total Species #:	35
Native Species #:	26
Total Mean Coefficient:	2.6
PSI:	13.3
8.3 Adjacent Wetlands	Minimal, >25% of reach
8.4 Tributaries / Seeps / Springs	Infrequent
8.5 Floodplain Connectivity	Extensive
Flood Chutes, Meander Cutoffs, 8.6 Braiding and Channel Avulsions	Absent
9 Public Use Opportunities	

9 Public Use Opportunities

	Public	Uses	
Landownership	Compatible with Put	olic Use: (Y/N) No	
	Appropriate for Reach (Y/N)	Currently Supported (Y/N)	Potential to be supported in the future (Y/N)
Walking / Hiking	Yes	No	Yes
Picnicking	No	No	No
Wading / Swimming	No	No	No
Fishing	No	No	No
Hunting	No	No	No
Paddling	No	No	No
Motor-boating	No	No	No
Other	No	No	No
Sum:	1	0	1
% Currently Supported:	0		
% Potentially Supporting:	12		

10 Additional Considerations

Large corporate campus upstream Upstream / Downstream Reach / Sub-Reach Division Reach-01 is a tributary to Reach-02. See Datasheets for Reach-02, South Branch Rockaway Creek tributary.

Highlands Functiona	al Value Assessme	ent Methodology	Date:	05/27/2020
Phase 2 Reach Asses			Assessor	s: Autumn Thomas
				Dave Kunz
Step 4.0 Channel Modifiers			Weather 64F, clo	: udy, high 78F
4.1 Dams / Weir	rs		Current	-low Conditions:
	Tally:	0	Base	
	Height:		Recent P	recipitation: <u>1-7 days</u>
	WSEL Change:			
Lei	ngth of Impoundment:		Recent F	lood Event: <u>06/18/201</u>
W	idth of Impoundment:			
	Width of DS Channel:			
	Active Withdrawal:			
4.2 Beaver Dam	s			
	Tally:	0		
Len	gth of Reach Affected:			
	Notes:			
4.3 Bridges / Cu	lverts			
	Tally:	2		
Si	gns of Constriction US:			
	Scour DS:	scour pool, mid-channel sediment deposition		
	Width of Crossing:	1) 5ft, 2) 3ft.		
	Width of DS Channel:	1) 25ft, 2) 25ft.		
4.4 Stormwater	Inputs			
	Туре:	stormwater; PVC (1) & cement pipes (2)		
	Pipe Diameter:	1) 18inch, 2) 4 inch, 3) 2ft.		

5

Highlands Functional Value Assessment Methodology Phase 2 Reach Assessment - Data Sheet

Channel Dimensions Bankfull Width 17 ft 5.1 Bankfull Max Depth $0.3 ext{ ft}$ 5.2 0.2 ft 5.3 Bankfull Mean Depth Lowest Bank Height 0.6 ft 5.4 22 ft Floodprone Width 5.5 3 ft Floodplain Encroachment Height 5.6 High - C/B Channels (85) Width-Depth Ratio 5.7 Highly Entrenched (1.3) 5.8 **Entrenchment Ratio** Bank Height Ratio High Incision, Highly Unstable 5.9 Floodplain Encroachment Ratio High Encroachment, Highly Unstable 5.10 Sinuosity Low 5.11 Existing Stream Type C/E Single Channel 5.12 F Single Channnel Rosgen Stream Type Dominant Particle Size 4 (gravel) Channel Bed Morphology C4 Pool-Riffle

Highlands Functional Value Assessment Methodology

Phase 2 Reach Assessment - Data Sheet

6 Channel Features / Condition

6.1 Bedrock Grade Controls		
Tally:	0	
Height:		
Length:		
6.2 Head-cuts		
Tally:	2	
	Exposed sewer manhole north of M	lain Street bridge crossing.
6.3 Riffle / Step Condition		
Tally:	15	
Form:	Moderately formed	
Complete:	11 Complete, 4 Incomplete	
Stablility:	Stable	
6.4 Pool Condition		
< 1 FT:	0	
> 1 FT:	18	
< Wbf:	16	
= Wbf:	2	
Notes:	12 had sediment finer than dominant particl	e size. 1 was absent of cover, 7 had cover as overhanging
6.5 Sediment Bars	vegetation, 7 had cover as LWD, 7 had cov	er as debris jams, and 9 had cover as overhanging banks.
Point:	4	
Lateral:	14	
Diagonal:	3	
Mid-Channel:	4	
Islands:	3	
Deltas:	0	
6.6 Bed Substrate Composition		
Riffle Particle Size	44 mm	
Riffle Particle Size Embeddedness	36%	
Embeddedness Average Largest Particle	36% 173 mm	
Embeddedness	36% 173 mm	
Embeddedness Average Largest Particle	36% 173 mm 36%	
Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material CPOM:	36% 173 mm 36% 10 present, 10 abundant, 7 absent	
Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material CPOM: LWD < Wbf:	36% 173 mm 36% 10 present, 10 abundant, 7 absent 7	
Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material CPOM: LWD < Wbf: LWD > Wbf:	36% 173 mm 36% 10 present, 10 abundant, 7 absent 7 11	
Embeddedness Average Largest Particle Riffle Stability Index 6.7 Vegetative Material CPOM: LWD < Wbf:	36% 173 mm 36% 10 present, 10 abundant, 7 absent 7 111 6	

Reach ID: South Branch Rockaway Creek tributary - 01

Highlands Functional Value Assessment Methodology Phase 2 Reach Assessment - Data Sheet 7 Stream Banks

At x-section

Sel cum Bunks	
7.1 Typical Bank Slope	30-50%, 3:1 - 2:1
7.2 Bank Materials	Silt/clay
Interpretation	Moderate erodibility
7.3 Bank Vegetation Coverage	At x-section
Canopy:	0%
Understory:	50%
Groundcover:	80%
Canopy	
Non-native invasives:	
Coniferous Trees:	
Deciduous Trees:	
Understory	
Non-native invasives:	40%
Shrubs:	90%
Saplings:	10%
Groundcover	
Non-native invasives:	12.5%
Grasses:	87.5%
Forbs:	12.5%
7.4 Cross Channel Shading	Open @ x-section
7.5 Bank Erosion	Throughout Reach
Length:	~113' on LB, ~114' on RB
7.6 Bank Armoring / Channelization	Throughout Reach
Length:	~20' on LB
Туре:	rocks

Highlands Functional Value Assessment Methodology

Phase 2 Reach Assessment - Data Sheet

8 Riparian Area / Floodplain	Right Bank
8.1 Buffer Width	
Class:	Intermediate (75-150')
8.2 Riparian Community - PSI	
Level 1 Score:	Low (68%)
Plant Survey	
Total Species #:	32
Native Species #:	20
Total Mean Coefficient:	2.3
PSI:	10.3
8.3 Adjacent Wetlands	Minimal, >25% of reach
8.4 Tributaries / Seeps / Springs	Infrequent
8.5 Floodplain Connectivity	Extensive
Flood Chutes, Meander Cutoffs, 8.6 Braiding and Channel Avulsions	Present
9 Public Use Opportunities	

9 Public Use Opportunities

Public Uses				
Landownership	Compatible with Pub	lic Use: (Y/N) No		
	Appropriate for Reach (Y/N)	Potential to be supported in the future (Y/N)		
Walking / Hiking	No	No	No	
Picnicking	No	No	No	
Wading / Swimming	No	No	No	
Fishing	No	No	No	
Hunting	No	No	No	
Paddling	No	No	No	
Motor-boating	No	No	No	
Other	No	No	No	
Sum:	0	0	0	
% Currently Supported:	0			
% Potentially Supporting:	0			

10 Additional Considerations

Reach-01 is a tributary to Reach-02. See Datasheets for Reach-01, SB Rockaway Ck Upstream / Downstream tributary. Downstream land use is dominated by agricultural fields. Over 50% of reach is through residential yards. Reach / Sub-Reach Division

Appendix E Scoring Sheets

Functional Value Assessment Methodology: Reach ID Form			FORM 1-ID
Stream Name: South Branch Rockaway Creek tributary	Reach ID:	South Branch Rockaway C	reek tributary-01
Location: East of Presidential Place apartments at towns	ship line Date:	05/27/2020	
south to north side of Main St @ Sloan St	Town:	Lebanon Borough	
Observers: Autumn Thomas, Dave Kunz	Elevation:	216-250 ft.	
		Upstream Endpoint	Downstream Endpoint
Organization/Agency: Lebanon Borough/NJ Highlands Council	Latitude (N/S):	40.648205N	40.642120N
USGS Map Name: Califon NJ	Longitude (E/W):	74.829877W	74.828072W
Weather: 64F, cloudy, high 78F	Drainage Area:	165 acres	
Rain Storm w/in 7 days: $ m _{Yes}$	Segment Length:	2,849 feet	

Phase 1 Watershed Assessment Scoring Sheet

Stream Name: South Branch Rockaway Creek tributary

		Condition Category				
Watershed / Corridor Paran	neter	O	ptimal	Good	Fair	Poor
Geology		influence.	stabilizing	 Bedrock has some stabilizing influence. Unconsolidated glacial till is present. 	 ^๗ Bedrock has minimal influence. ^๗ Unconsolidated glacial till is common. 	 Bedrock has little or no stabilizing influence. Unconsolidated glacial till predominates.
	Score:		18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
Valley Slopes		-	cant Steep act Rating.	☑ Low Steep Slope Impact Rating.	 High Steep Slope Impact Rating. 	 High Steep Slope Impact Rating.
	Score:	20 19	18 17 16	15 14 <mark> 13</mark> 12 11	10 9 8 7 6	5 4 3 2 1
Soil Runoff		Low Soil Impact Ra		 Moderate Soil Runoff Impact Rating. 		 Very High Soil Runoff Impact Rating.
	Score:	20 19	18 17 16	15 14 13 12 11	10 9 <mark>8</mark> 7 6	5 4 3 2 1
Soil Erodibility		Low Soil Impact Ra	l Erodibility ting.	 Moderate Soil Erodibility Impact Rating. 	 High Soil Erodibility Impact Rating. 	⊠ Very High Soil Erodibility Impact Rating.
	Score:	· · ·	18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
		/ Land Cov	cant Land Use ver Impact	 Low Land Use / Land Cover Impact Rating. 	 Moderate Land Use / Land Cover Impact 	
Land Use /		Rating.		Low Impervious	Rating.	High Impervious
Land Cover		 Insignific Imperviou Impact Ra 	is Cover	Cover Impact Rating.	✓ Moderate Impervious Cover Impact Rating.	Cover Impact Rating.
	Score:	20 19		15 14 13 12 11		5 4 3 2 1

Watershed

Score:	0.36			
(Average the scores above; divide by 20)				
Condition:	FAIR			

Score	Condition
0.85 - 1.0	Optimal
0.65 - 0.84	Good
0.35 - 0.64	Fair
0.00 - 0.34	Poor

Channel Integrity Assessment for Pool-Riffle Reaches

Reach ID: South Branch Rockaway Creek tributary-01

Stream Name: South Branch Rockaway Creek tributaryReach ID: SFor Reaches in Minimally Confined to Broad Valleys (Valley Confinement Ratio \geq 4)Primarily pool-riffle streams; C/E channels; some B channels.

	Condition Category			
Related Parameter	Optimal	Good	Fair	Poor
Phase 1 Watershed	Optimal Score.	🗆 Good Score.	🗹 Fair Score.	Poor Score.
(From FORM 2-WA)				
Score:	20 19 18 17 16	15 14 13 12 11	10 9 <mark> 8</mark> 7 6	5 4 3 2 1
General Instability	I	L	1	
Dams / Weirs	 Dams / weirs are absent. No evidence of historic dams. 	 A weir present that creates limited impounded water that is not wider or deeper than the normal channel. Little evidence of a historic dam. 	 Dam / weirs present. Impoundment is wider than the typical channel and contains some sediment. Evidence of historic dam that may have created an elevated floodplain. 	 Dam(s) create deep and wide impoundment that traps sediment. Impoundment is >2x normal channel width and depth and contains fine sediment. Clear evidence of historic dam that has left an elevated floodplain.
Beaver Dams	 Signs of instability are directly related to Beaver Dams. 	 Signs of instability are related to Beaver Dams. 	 Signs of instability are NOT related to Beaver Dams. 	✓ Signs of instability are NOT related to Beaver Dams.
Bridges / Culverts	 Few or no bridges / culvert crossings [< 2 / mile]. Typical crossing width > channel width. 	 ✓ Some bridges / culvert crossings [2 - 3 / mile]. □ Typical crossing width > channel width. 	 □ Bridges / culvert crossings are common [ave. 4 - 6 / mile]. ☑ Typical crossing width <u><</u> channel width. 	 Many bridges / culvert crossings [> 6 / mile]. Typical crossing width < channel width.
Stormwater Inputs	No stormwater inputs observed.		 Some stormwater inputs [10 - 25 / mile]. 	 Many stormwater inputs 25 / mile].
Floodplain Encroachment Ratio	 No Floodplain Encroachment concentrating downstream flows. 1.0 < Floodplain Encroachment Ratio < 1.2 	 Minor Floodplain Encroachment concentrating downstream flows. 1.2 Floodplain Encroachment Ratio < 1.4 	 Moderate Floodplain Encroachment concentrating downstream flows. 1.4 Floodplain Encroachment Ratio < 2.0 	 ☑ Major Floodplain Encroachment concentrating downstream flows. ☑ Floodplain Encroachment Ratio > 2.0
Bank Erosion		 Eroded banks extend 10% < 25% of reach. 	 Eroded banks extend 25% < 50% of reach. 	 Eroded banks extend <u>></u> 50% of reach.
Bank Armoring / Channel Straightening	☑ No evidence of bank armoring / channel straightening.	 Bank armoring extends 10% < 25% of reach. Channel straightening < 10% of reach. 	 Bank armoring extends 25% < 50% of reach. Channel straightening < 25% of reach. 	 □ Bank armoring extends ≥ 50% of reach. □ Channel straightening ≥ 25% of reach.
General Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

Channel Integrity Assessment for Pool-Riffle Reaches

Stream Name: South Branch Rockaway Creek tributary

Reach ID: South Branch Rockaway Creek tributary-01

Degradation	Optimal	Good	Fair	Poor
Bridges / Culverts	 No bed and bank erosion associated with bridges/culverts. Bridge foundations are not exposed; culverts are not perched. 	 Adjacent bed and bank erosion are minor and confined to immediately upstream or downstream of crossings. Bridge foundations are not exposed; culverts are not perched. 	 Adjacent bed and bank erosion is moderate and typical. Some bridge foundations are exposed; some culverts are perched. 	 Adjacent bed and bank erosion is severe and extensive. Most bridge foundations are exposed or undermined; most culverts are perched.
Stormwater Inputs		Stormwater outfalls do not appear to be perched above the streambed.	 ✓ Stormwater outfalls are perched above the streambed. ✓ Some stormwater ditches have headcuts. 	 Stormwater outfalls are perched above the streambed. Headwalls have been undermined and are collapsing into the channel. Stormwater ditches bave beadcuts
Bank Height Ratio	 □ 1.0 ≤ Bank Height Ratio < 1.1 and □ Entrenchment Ratio > 2.0 	 □ 1.1 ≤ Bank Height Ratio < 1.3 and □ Entrenchment Ratio > 2.0 	 ✓ 1.3 < Bank Height Ratio < 1.5 and ✓ Entrenchment Ratio > 2.0 	 □ Bank Height Ratio ≥ 1.5 or □ Entrenchment Ratio <_ 2.0
Dominant Particle Size Class	 Stream substrate is compact and resistant to erosion. Dominant particle size class is cobble, boulder or bedrock. 	 Stream substrate is compact and resistant to erosion. Dominant particle size class is cobble, boulder or backers! 	 Stream substrate is not compact and prone to erosion. Dominant particle size class is fine gravel or sand. 	 Stream substrate is not compact and prone to erosion. Dominant particle size class is fine gravel or sand.
Bedrock Grade Controls	 Bedrock grade controls are present, preventing further channel degradation. 	bedrock. Bedrock grade controls are present, preventing further channel degradation.	 Bedrock grade controls are absent, allowing channel degradation. 	☑ Bedrock grade controls are absent, allowing channel degradation.
Headcuts	 No headcuts. Substrates are compact and stable. No signs of historic incision. 	✓ No headcuts. □ Signs of historic incision: sharp changes of slope / steep riffles. 	tributaries. □ Signs of recent incision:	 Multiple headcuts in the main channel and tributaries. Signs of active incision: substrates are loose and actively eroding at headcuts.
Bank Slope	 Bank slopes are typically low. 		 Banks are typically steep or vertical. 	
Bank Materials	 No subsoil layers exposed in the banks. 	Few banks with exposed subsoil layers.		 Former streambed materials clearly exposed in banks.
Meander Cutoffs, Channel Avulsions	✓ No evidence of historic or recent meander cutoffs or channel avulsions.	 Some evidence of historic, not recent, meander cutoffs or channel avulsions. 	 Evidence of recent meander cutoffs or channel avulsions. 	 Evidence of recent and/or impending meander cutoffs or channel avulsions.
Degradation Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

FORM 3-CH2

Channel Integrity Assessment for Pool-Riffle Reaches

Stream Name: South Branch Rockaway Creek tributary

Reach ID: South Branch Rockaway Creek tributary-01

Aggradation	Optimal	Good	Fair	Poor
Bridges / Culverts	 No sediment deposition upstream of crossings. No sediment deposition downstream of crossings. Bridge / Culvert openings are not blocked by sediment. 	deposition upstream of crossings. □ Some sediment	 Moderate sediment deposition upstream of crossings. Moderate sediment deposition downstream of crossings. Bridge / Culvert openings are partially blocked by sediment. 	 Significant sediment deposition upstream of crossings. Significant sediment deposition downstream of crossings. Bridge / Culvert openings are buried in sediment.
Stormwater Inputs	□ No stormwater inputs observed.	✓ Minor sediment deposition at stormwater outfalls.	 Moderate sediment deposition at stormwater outfalls. Multiple stormwater outfalls are partially buried in sediment. Multiple stormwater ditches are partially filled with sediment finer than 	 Extensive sediment deposition at stormwater outfalls. Stormwater outfalls are partially buried in sediment. Stormwater ditches are partially filled with sediment finer than bed.
Channel Dimensions	Low Width-Depth Ratio [™] ≤ 20 for C or B channels □ ≤ 10 for E channels	Low to Moderate Width- Depth Ratio □ >20 ≤ 30 for C or B channels □ >10 ≤ 12 for E channels	Moderate to High Width- Depth Ratio □ >30 ≤ 40 for C or B channels □ >12 ≤ 20 for E channels	High Width-Depth Ratio □ > 40 for C or B channels □ > 20 for E channels
Pool-Riffle Condition	 All Pool-Riffles are well formed, complete and stable. < 10% pools are < 2 FT deep. No pools are filled with sediment. 	 ✓ Pool-Riffles are moderately well formed, complete and stable. 10% < 25% pools are: < 2 FT deep. filled with sediment finer than dominant particle size. 	 □ Pool-Riffles are not clearly formed creating plane bed features. 25% < 50% pools are: ✓ < 2 FT deep. □ filled with sediment finer than dominant particle size. 	 □ Pool-Riffles are not clearly formed creating plane bed features. > 50% pools are: □ < 2 FT deep. ∅ filled with sediment finer than dominant particle size.

FORM 3-CH2

Channel Integrity Assessment for Pool-Riffle Reaches Stream Name: South Branch Rockaway Creek tributary

FORM 3-CH2

0,	Assessment for Foor-			FURIN S-CHZ
Stream Name: South Br	anch Rockaway Creek tributary		Reach ID: South Branch Roc	kaway Creek tributary-01
	Few or no lateral,	Some lateral, diagonal,	Multiple lateral,	🗹 Many lateral, diagonal,
Sediment Bars	diagonal, mid-channel	mid-channel bars.	diagonal, mid-channel	mid-channel bars, or
	bars.	Lateral bars and deltas	bars, or deltas.	deltas.
	Lateral bars and deltas	in typical positions.	Sediment bars	Sediment bars
	in typical positions.	Sediment bars	composed of sediment	composed of sediment
	Sediment bars less than	composed of sediment	different than dominant	finer than dominant
	bankfull height.	similar to dominant	substrate.	substrate.
		substrate.	Sediment bars are	Sediment bars above
		Sediment bars at or	greater than bankfull	bankfull elevation and/or
		below bankfull height.		multiple channel widths in
			a channel width.	length.
				Sediment bars split flow
				in multiple paths.
	Coarse gravels, cobbles,	□ Coarse gravels, cobbles,	Coarse gravels, cobbles,	Coarse gravels, cobbles,
	boulders are not	boulders are not	boulders are embedded in	boulders are heavily
Embeddedness	embedded in finer	embedded in finer	finer sediments.	embedded in finer
	sediments.	sediments.	□ 50% <u><</u> Embeddedness <	sediments.
	Embeddedness < 25%.		75%.	Embeddedness <u>></u> 75%.
	No channel braiding.	50%. ☑ No channel braiding.	Channel braiding	Channel braiding
Braiding		la no channel braiding.	present.	extensive throughout
				reach.
Aggradation Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

Channel Integrity Assessment for Pool-Riffle Reaches Stream Name: South Branch Rockaway Creek tributary

FORM 3-CH2 Reach ID: South Branch Rockaway Creek tributary-01

Widening	Optimal	Good	Fair	Poor
Stormwater Inputs	□ No stormwater inputs observed.	 Stormwater outfalls are extending out from the banks. 	 Stormwater outfalls are extending out from the banks. Headwalls have been undermined and are collapsing into the channel. 	
Width-Depth Ratio	Low Width-Depth Ratio ✓ 20 for C or B channels □ < 10 for E channels 	Low to Moderate Width Depth Ratio □ >20 ≤ 30 for C or B channels □ >10 ≤ 12 for E channels	Moderate to High Width-Depth Ratio □ >30 <u><</u> 40 for C or B channels □ >12 <u><</u> 20 for E channels	Moderate to High Width-Depth Ratio □ > 40 for C or B channels □ > 20 for E channels
Sediment Bars	 Few or no lateral, diagonal, mid-channel bars. Lateral bars and deltas in typical positions. Sediment bars below bankfull height. 	 Some lateral, diagonal, mid-channel bars. Lateral bars and deltas in typical positions. Sediment bars composed of sediment similar to dominant substrate. Sediment bars at or below bankfull height. 	 Multiple lateral, diagonal, mid-channel bars, or deltas. Sediment bars composed of sediment different than dominant substrate. Sediment bars are greater than bankfull height and/or longer than a channel width. 	 Many lateral, diagonal, mid-channel bars, or deltas. Sediment bars composed of sediment finer than dominant substrate. Sediment bars above bankfull elevation and/or multiple channel widths in length. Sediment bars split flow in multiple paths.
Bank Materials	 Bank materials have low or very low erodibility. Bank materials are cohesive. 	 Bank materials have low or moderate erodibility. Bank materials are cohesive. 	 Bank materials have moderate or high erodibility. Bank materials are non-cohesive. 	 Bank materials have high erodibility. Bank materials are non-cohesive.
Bank Erosion	 No erosion on opposing banks; overhanging banks are stable. Occasional leaning trees and no recently exposed roots. 	 Minimal erosion at the base of opposing banks; overhanging banks are stable. Some leaning trees and few recently exposed roots. 	 Moderate erosion at the base of both banks creating unstable overhangs. Many leaning trees, recently exposed roots and/or fracture lines. 	 Continuous, extensive erosion at the base of both banks creating unstable overhangs. Continuous leaning trees, recently exposed roots and/or fracture lines.

FORM 3-CH2

Stream Name: South E	Branch Rockaway Creek tributary	Reach ID: South Branch Rockaway Creek tributary-01										
Re-alignment	Optimal	Good	Fair Poo									
Bridges / Culverts	 Channel is aligned with bridge / culvert openings. 	 Channel is aligned with bridge / culvert openings. 										
Sinuosity	No change in sinuosity.	□ No change in										
Bank Erosion	 Typical bank erosion on outside meander bends. Overhangs are stable. No slumping. Few leaning trees, no recently exposed roots. No fracture lines. 	 ✓ Typical bank erosion on outside meander bends. ✓ Overhangs are stable. Little slumping. ✓ Few leaning trees, recently exposed roots. No fracture lines. 	 Moderate to high bank erosion on many outside meander bends creating unstable overhangs. Multiple leaning trees, recently exposed roots and/or fracture lines. 	 Extensive, severe bank erosion on outside meander bends creating unstable overhangs and/or slumping. Numerous leaning trees, recently exposed roots and/or fracture 								
Flood chutes, Meander Cutoffs, Braiding, Channel Avulsions	 □ Limited potential for channel avulsions. ☑ No evidence of historic or recent channel avulsions. 	 ✓ Limited potential for channel avulsions. □ 10% < 25% of reach exhibits historic or recent channel avulsions. 	 Flood chutes, meander cutoffs, and braiding potentially leading to channel avulsions. 25% < 50% of reach exhibits historic or recent channel 	 □ Flood chutes, meander cutoffs, braiding causing channel avulsions. □ ≥ 50% of reach exhibits historic or recent channel avulsions. 								
Re-alignment Score	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1								

Watershed Score:	8
General Instability	
Score:	11
Degradation Score:	10
Aggradation Score:	13
Widening Score:	13
Re-alignment Score:	14
_	
Channel Integrity	
Score:	0.57
(Average the scores	s above; divide by 20)

Channel Integrity

Condition:

Score	Condition
0.85 - 1.0	Optimal
0.65 - 0.84	Good
0.35 - 0.64	Fair
0.00 - 0.34	Poor

Channel Sensitivity: VERY HIGH (Refer to Item 11.1.4 from Phase 2)

FAIR

Reach ID: South Branch Rockaway Creek tributary-01

Stream Name: South Branch Rockaway Creek tributaryReach ID: SFor Reaches in Minimally Confined to Broad Valleys (Valley Confinement Ratio ≥ 4)Primarily pool-riffle streams; C/E channels; some B channels.

	Condition Category									
Related Parameter	Optimal	Good	Fair	Poor						
Channel Integrity (From FORM 3-CHx)	 Optimal Channel Integrity Low Channel Sensitivity 	 Good Channel Integrity Moderate Channel Sensitivity 	 ☑ Fair Channel Integrity □ High Channel Sensitivity 	 □ Poor Channel Integrity ✓ Very High Channel Sensitivity 						
Score:		15 14 13 12 11	10 9 8 7 6	5 4 3 2 1						
Available Data										
NJ Stream Water Quality Standards	 Freshwater 1 - Trout Production / Trout Maintenance (FW1- TP/TM) 	 Freshwater 1 - Non- Trout (FW1-NT) 	☑ Freshwater 2 - Trout Production / Trout Maintenance (FW2- TP/TM)	Freshwater 2 - Non- Trout (FW2-NT)						
Score:	20 19 18 17 16	15 14 13 12 11	<mark>10</mark> 9 8 7 6	5 4 3 2 1						
Channel Modifiers										
Dams / Weirs	 Dams / weirs are absent. No evidence of historic dams. 	 A weir present that creates limited impounded water that is not wider or deeper than the normal channel. Little evidence of a historic dam. 	 Dam / weirs present that create impoundment that is wider than the normal channel and retains some sediment. Evidence of historic dam. 	 Dam(s) create deep and wide impoundment that traps sediment. Clear evidence of historic dam. 						
Beaver Dams	Beaver dam(s) are present.	Beaver dam(s) are present.								
Bridges / Culverts	 Few or no bridges / culvert crossings [< 2 / mile]. No bridges / culverts appear to block aquatic organism passage by channel constriction/increased velocity, shallow flow, or perch. 	 ✓ Some bridges / culvert crossings [2 - 4 / mile]. □ No bridges / culverts appear to block aquatic organism passage by channel constriction/increased velocity, shallow flow, or perch. 	mile]. ☑ Multiple bridges /	 Many bridges / Culvert crossings [> 6 / mile]. Multiple bridges / culverts appear to block aquatic organism passage by channel constriction/increased velocity, shallow flow, or perch. 						
Score:		15 14 <mark>13</mark> 12 11	10 9 8 7 6	5 4 3 2 1						

Pool Condition □ 4 0 pools / mile. □ 4 0 ≥ pools / mile ≤ 20 □ 20 > pools / mile < 10 □ ≤ 100 pools / mile. Pool Condition □ 50% pools apan □ 50 > 25% pools apan □ 50 > 25% pools apan □ 25 > 10% pools apan □ 25 > 10% pools apan □ 210% pools apan □ 200% □ 210% pools apan □ 200 pools / 210% pools apan □	In-Stream Features														
< 20%.	Pool Condition	 	0% pools are > 2 . . eep. □ 50 > 25% pools are > □ 25 > 10% pools are > 0% pools span 2 FT deep. 2 FT deep. nel width. ☑ 50 > 25% pools span □ 25 > 10% pools span						$a > 2$. $a \le 10\%$ pools at $a > 50 > 25\%$ pools are > $a \ge 25 > 10\%$ pools are > FT deep. $a = 2$ FT deep. $a \ge 25 > 10\%$ pools are > $a \le 10\%$ pools at $a = 50 > 25\%$ pools span $a \ge 25 > 10\%$ pools span $a \le 10\%$ pools span $a \ge 50 > 25\%$ pools span $a \ge 25 > 10\%$ pools span $a \le 10\%$ pools span						
□ > 100 LWD / mile. □ 100 ≥ LWD / mile > □ 50 ≥ LWD / mile > □ 3 ≥ Debris Jams / mile = □ 4 ≥ 3 ≤ LWD / mile > Vegetative Material □ CPOM abundant in margin and center. □ 5 ≥ Debris Jams / mile = □ CPOM abundant in margins, present in center. □ CPOM absent in center. □ CPOM absent in center. □ CPOM absent in margin, absent in center. □ CPOM absent in center. Score: 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Banks □ > 30 stable, undercut banks / mile. □ 30 ≥ stable, undercut banks / mile > 15. □ 55 ≥ coverage > 50% □ 50% ≤ coverage in in tree, shrub and herb layers. □ 90 ≥ coverage > 75% □ 75 ≥ coverage > 50% □ 50% ≤ coverage in in tree, shrub and herb layers. □ Non-native invasives are absent. □ Non-native invasives are absent. □ Non-native invasives are abundant. □ Cross-channel canopy □ Open cross-channel canopy □ Pone cross-channel canopy		< 20%. □ margin embeddedness < 40%. ☑ Riffle Stability Index <u><</u>	embeddedness < 40%. □ 40 <u><</u> margin embeddedness < 60%.	embeddedness < 75%. □ 60 <u><</u> margin embeddedness < 80%.	≥ 75%. □ margin embeddedness <u>></u> 80%. □ Riffle Stability Index <u>></u>										
wile. 5 Debris Jams / mile. 5 Debris Jams / margin, absent in center. Debris Jams absent. CPOM abundant in margin, absent in center. Debris Jams / Bank Jope 20 19 18 17 16 Socre: 20 19 18 7 16 Socre: Socre: 20 19 18 7 16 15 14 13 21 1	Score:	· · · · · · ·													
Banks □ > 30 stable, undercut banks / mile. □ 30 ≥ stable, undercut banks / mile > 15. □ 15 ≥ stable, undercut banks / mile > 5. □ 50% ≤ coverage in tree, shrub and herb layers. Bank Vegetation □ 90 ≥ coverage > 75% in tree, shrub and herb layers. □ 90 ≥ coverage > 75% in tree, shrub and herb layers. □ 75 ≥ coverage > 50% in tree, shrub and herb layers. □ 50% ≤ coverage in tree, shrub and herb layers. Cross Channel Shading □ Closed cross-channel canopy. □ Closed cross-channel canopy. □ Cross-channel canopy is mostly closed. □ Cross-channel canopy is mostly closed. □ Froded banks extend 10% < 25% of reach.	Vegetative Material	 ✓ > 5 Debris Jams / mile. □ CPOM abundant in margin and center. 	50. □ 5 ≥ Debris Jams / mile > 3. ☑ CPOM abundant in margins, present in center.	 □ 3 ≥ Debris Jams / mile > 1. □ CPOM present in margin, absent in 	Debris Jams absent.										
Bank Slope □ > 30 stable, undercut banks / mile. □ 30 ≥ stable, undercut banks / mile > 15. □ 15 ≥ stable, undercut banks / mile > 5. □ < 5 stable, undercut banks / mile.	Score:	20 19 18 17 16	<mark>15</mark> 14 13 12 11	10 9 8 7 6	5 4 3 2 1										
Bank Slope banks / mile. banks / mile > 15. banks / mile > 5. banks / mile. Bank Vegetation © 90% coverage in tree, shrub and herb layers. © 90 ≥ coverage > 75% in tree, shrub and herb layers. © 75 ≥ coverage > 50% in tree, shrub and herb layers. © 50% ≤ coverage in tree, shrub and herb layers. © Non-native invasives are absent. © Non-native invasives are minimal. © Non-native invasives are abundant. © Non-native invasives are dominant. Cross Channel Shading © Closed cross-channel canopy is mostly closed. © Cross-channel canopy is mostly closed. © Cross-channel canopy. © Open cross-channel canopy. Bank Erosion © Eroded banks extend 210% of reach. © Eroded banks extend 10% < 25% of reach.	Banks	•		•											
Bank Vegetationtree, shrub and herb layers. Non-native invasives are absent.in tree, shrub and herb layers. Non-native invasives are minimal.in tree, shrub and herb layers. Non-native invasives are abundant.tree, shrub and herb layers. Non-native invasives are dominant.Cross Channel Shading□ Closed cross-channel canopy.□ Cross-channel canopy is mostly closed.□ Cross-channel canopy is mostly open.□ Open cross-channel canopy.Bank Erosion□ Eroded banks extend < 10% of reach.	Bank Slope														
Cross channel Shadingcanopy.is mostly closed.is mostly open.canopy.Bank Prosion	Bank Vegetation	tree, shrub and herb layers. □ Non-native invasives	in tree, shrub and herb layers. D Non-native invasives	in tree, shrub and herb layers. Mon-native invasives	tree, shrub and herb layers. D Non-native invasives										
Bank Erosion< 10% of reach. $10\% < 25\%$ of reach. $\geq 50\%$ of reach. $\geq 50\%$ of reach.Bank Armoring / Channel Straightening \square No evidence of bank armoring / channel straightening. \square Bank armoring extends $10\% < 25\%$ of reach. \square Bank armoring extends $25\% < 50\%$ of reach.Buffer Width \square Buffer width > 300 FT. \square Buffer width is $300 - 50$ FT. \square Buffer width is < 50 FT. \square No buffer. FT.RB Score: $\square 0 9$ $\square 1 6$ $\square 1 3$ $\square 1 1$															
Bank Armoning / Channel Straighteningarmoring / channel straightening.extends 10% < 25% of reach.extends 25% < 50% of reach.extends \geq 50% of reach.Buffer Width $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Bank Erosion														
Buffer Width 50 FT. FT. RB Score: 10 9 8 7 6 5 4 3 2 1	Channel	armoring / channel	extends 10% < 25% of	extends 25% < 50% of											
			50 FT.	FT.											
		· _ · _		· · ·	·										

Stream Name: South Branch Rockaway Creek tributary

Reach ID: South Branch Rockaway Creek tributary-01

Riparian Area							
Riparian Wildlife Habitat (Phase I)	High Score; Reach corridor contains patches rank 3 or higher	 Low Score; Reach corridor contains patches rank 1. 	 Reach corridor contains patches rank 0. 				
Riparian Plant Community	□ Native Mean C <u>></u> 4.5	 [✓] 3.5 <u><</u> Native Mean C > 4.5 	□ 2.5 <u><</u> Native Mean C > 3.4	 Low Phase 1 Plant Community Score. 0 < Native Mean C > 2.4 			
Adjacent Wetlands	 Wetlands are extensive, extend over 75% of reach. 	ive, extend over approximately 50% of minimal, approximately					
Floodplain Connectivity	 Floodplain connectivity is extensive throughout study reach with numerous signs of flooding. Little or no encroachment on the 	 Floodplain connectivity is present throughout the study reach with some signs of flooding. floodplain encroachment is minimal. 	 Floodplain connectivity is minimal. Floodplain connectivity is partially limited by encroachment. 	 No Floodplain connectivity. Floodplain connectivity is severely limited by encroachment. 			
Score	20 19 18 17 16	<mark>15</mark> 14 13 12 11	10 9 8 7 6	5 4 3 2 1			

Habitat Score:	0.56
(Average the score	s above; divide by 20)
Habitat Condition:	FAIR

Score	Condition
0.85 - 1.0	Optimal
0.65 - 0.84	Good
0.35 - 0.64	Fair
0.00 - 0.34	Poor

FORM 4-HA2

Water Quality Assessment

Stream Name: South Branch Rockaway Creek tributaryReach ID: South Branch Rockaway Creek tributary-01For assessing Functional Values: NonPoint Source Pollution and Water Quality

10 | 9

LB Score:

	Condition Category																			
Related Parameters	Op	ptir	nal		Good	ł			Fa	ir		Poor								
Phase 1 Watershed	🗆 Optimal	Sco	ore	Good So	ore		🗹 Fair	Scor	re			Poor Score								
(From FORM 2-WA)	🗆 Optimal	Cha	annel	Good Cl	nann	el	🗹 Fair	Cha	nn	el In	itegrity	🗆 Po	or Cl	hanr	nel	Inte	gri	ity		
Channel Integrity	Integrity			Integrity			🗹 High	h Cha	anr	nel		🗆 Ve	ry Hi	igh (Cha	nne	el			
(From FORM 3-CHx)	Low Cha	nne	el	🗆 Modera	te Cł	nannel	Sensiti	ivity	,			Sens	itivit	y						
	Sensitivity			Sensitivity				-						-						
Score:	20 19	18	17 16	15 14	13	12 11	10	9	8	8	7 6	5	4	3		2	1			
Existing Data																				
	Freshwat	ter	1 - Trout	🗆 Freshwa	ater 1	L - Non-	🗹 Fres	hwa	ater	r 2 -	Trout	🗆 Fre	eshw	ater	2	- Nc	n-			
NJ Surface Water	Production	٦/T	Гrout	Trout (FW	'1-NT	.)	Produ	ctior	n /	Tro	ut	Trou	t (FV	V2-N	IT)					
Quality Standards	Maintenan	nce	(FW1-				Mainte	enar	nce	e (FV	V2-									
	тр/тм)									-										
NJPDES Surface	🗆 No Disch	narg	ges	🖆 No Disc	harge	es	🗆 One	Disc	cha	irge		□ M	ultipl	e Di	scł	narg	es			
Water Discharges				ļ														_		
AMNET Reference Sites	One sites	S		🗆 One site			⊠ No s	ites				□ Nc	o site	S						
Section 303(d) List	🖄 Not liste	d o	r Fully	🗆 Insuffici	ent		🗆 Not	Sup	ро	rting	g for	□ No	-	-		g fo	r			
	Supporting	3		informatio			one us	se				multiple uses					_			
Score:	20 19	18	17 16	15 14	<mark>13</mark>	12 11	10 9 8 7 6				5 4 3 2 1									
Flow Modifiers																				
	🗆 Dams / v	vei	rs are	🖻 A dam /	Dam(s) / weir(s) are					Dam(s) / weir(s)										
	absent.		present that creates			preser	present that create					create deep impounded								
				limited im	pour	nded	some impounded water					water that dominates								
Dams / Weirs				water tha			that is	-				the r	each	n. is i	mu	ch ۷	vid	ler		
						al channel						than								
				and does not extend over 20% of the reach.			extends over 20% of the reach.					sunli		pose		.0 u	ii ci			
												_	-							
		nwa	ater inputs	Few stormwater			Some stormwater					Many stormwater								
	observed.			inputs.			inputs. ☑ Stormwater outfalls					inputs.								
				Stormw	ater	outfalls						🗆 Sto				utfa	lls			
Stormwater Inputs				contribute			contril		e ur	bar	/crop	cont	ribut	e hi	gh					
				urban/cro	p rur	noff.	runoff	•				quar	ntitie	s of	url	ban,	/cro	эр		
												runo	off re	lativ	e t	o st	udy	<i>y</i>		
										reac	h.									
Score:	20 19	18	17 16	15 14	13	12 11	10	9	8	8	7 6	5	4	3		2	1	\dashv		
Banks	· · · · ·																			
	🗆 Banks ar	e n	ot eroded	🗹 Few bar	nks ai	re eroded.	🗆 Man	iy ba	ank	s ar	e		ost h	ank	s ai	re				
	and are sta			□ Most ba			erode	•				erod				-				
			-	and erosid			⊠ Som		ank	sar	e			anko	; ai	P				
Denk Freeisr				natural.	μ	peurs	under					unde								
Bank Erosion							⊠ Banl				-	□ Ba				-	م حم	.		
							contril				-	to be						5		
									-		ucalli					-	1-			
									sediment.						stream sediment.					
RB Score:	10	<u>v </u>	9	8	7	6	L	5	4		3			2	1					

8 |

7 | 6

5

3

4 |

2

1

Water Quality Assessment

D:		A
RIC	barian	Area
	barian	

Riparian Area												
	🗹 Buffer widt	h > 300 FT.	🗆 Buffer w	idth i	is 300 -	🗆 Buffer 🛛	width	is < 50	🗆 No buffer			
	🗆 Buffer is wo	oded; and	50 FT.			FT.			Surface runoff reacher			
	appears suffic	cient to	🗹 Buffer a	ppear	rs	🗆 Buffer d	does r	not	channel dire	ectly.		
Buffer Width	intercept, infi	ltrate and	sufficient t	o inte	ercept,	intercept	runo	f in all				
	filter surface	runoff.	infiltrate a	nd fil	ter	locations						
			surface ru	noff.								
RB Score:	10	9	8	7	6	5	4	3	2	1		
LB Score:	10	9	8	7	6	5	4	3	2	1		
	Wetlands a	re	Wetland	ls are	present	🖻 Wetlan	ds are	e minimal,	Wetlands	are altered		
	extensive, ext	xtensive, extend over		approximately 50% of		approximately 25% of			or absent.			
Wetlands, Tributaries	75% of reach		reach.		reach.			Tributaries / Seeps /				
/ Seeps / Springs	Tributaries	Tributaries / Seeps /		Tributaries / Seeps /		🗹 Tributaries / Seeps /			Springs are	altered or		
,	Springs are n	Springs are occasional.		Springs are infrequent.			absent.					
	🖻 Floodplain		🗆 Floodpla	in		🗆 Floodpl	ain		□ Signs of fl	oodplain		
	connectivity i	s extensive	connectivi	ty is p	present	connectiv	ity is	minimal	connectivity	are absent.		
	throughout st	tudy reach	throughou	it the	study	througho	ut stu	dy reach	Floodplair	า		
Floodplain	with numero	us signs of	reach with	som	e signs of	with few	signs	of	connectivity	is severely		
Connectivity	flooding.		flooding.			flooding.			limited by			
,	🗆 Little or no		🗹 Floodpla	in		Floodplain			encroachment.			
	encroachmer	it on the	encroachn	nent i	is	connectiv	ity is	partially				
	floodplain.		minimal.		limited by							
Score:	20 19 18	8 17 16	15 14	13	12 <mark>11</mark>	10 9	8	7 6	5 4	3 2 1		

Water Quality Score:	0.45	Score	Condition
(Average the scores above;	divide by 20)	0.85 - 1.0	Optimal
Water Quality Condition:	FAIR	0.65 - 0.84	Good
		0.35 - 0.64	Fair
		0.00 - 0.34	Poor

Temperature Moderation Assessment

	Condition Category										
Related Parameters	O	otimal		Good	1			Fair		P	oor
	🗆 Optimal	Good Cl	nann	el	🗹 Fair	Cha	nnel	Integrity	Poor Chai	nnel	
Channel Integrity	Integrity	Integrity			🗹 Hig	h Cha	nne		Integrity		
(From FORM 3-CHx)	🗆 Low Cha	nnel	🗆 Modera	te Cł	nannel	Sensit	tivity			Very High Channel	
	Sensitivity		Sensitivity							Sensitivity	
Score:	20 19	18 17 16	15 14	13	12 11	10	9	8	7 6	5 4	3 2 1
Existing Data			1							-	
NJPDES Surface	🗹 No Disch	narges	🗆 No Disc	harge	es	🗆 One	e Disc	charg	e	🗆 Multiple I	Discharges
Water Discharges											
C 1: 202/1\1:1	🗹 Not liste	-	🗆 Insuffici						ng for	Not Supp	-
Section 303(d) List	Supporting	3	informatio	on		one u				one use due	
Score:	20 19	18 17 16	15 14	12	12 11	<u>Temp</u> 10	<u>eratı</u> 9	ire 8	7 6	Temperatui 5 4	r <u>e</u> 3 2 1
	20 15	10 17 10	13 14	15	12 11	10		0	, 10	<u> </u>	5 2 1
Flow Modifiers											
	Dams / v	weirs are	🖻 A dam /						r(s) are	□ Dam(s) / י	
	absent.		present th			prese				create deep	-
			limited im	•			•			water that o	
Dams / Weirs			water tha						er than	the reach, is	
			than the r	-	-					wider than	
			channel a					er 2	0% of the	channel and	-
			extend ov	er 20	0% of the	reach	•			to direct su	nlight.
	No storr	nwater inputs		rmw	ater	🗆 Son	ne ste	ormv	vater	Many sto	rmwater
	observed.	·	inputs.			input	5.			inputs.	
			□ Stormw	ater	outfalls	⊠ Sto	rmwa	ater o	outfalls	□ Stormwat	er outfalls
Stormwater Inputs			contribute	e littl	e or no	contri	ibute	urba	an/crop	contribute l	nigh
			urban/crc	p rui	noff.	runof				quantities c	-
				-						urban/crop	runoff
										relative to s	
Score:	20 19	18 17 16	15 14	13	12 11	10	9	8	7 6	5 4	3 2 1
Banks	20 13	10 17 10	10 11		== ==	10		0	, 0		<u> </u>
	⊻ > 90% c	worage in		loro -		- 75 -		orac	$\sim E^{00/}$	- E0% < co	orage in
Bank Vegetation		0	□ 90 <u>></u> cov						e > 50%	□ 50% <u><</u> cov	
Dalik Vegetation	tree, snrui lavers.	o and herb	in tree, sh	ruda	and nerb			rub a	nd herb	tree, shrub	and herb
	□ Channel	is fully	lavers. ☑ Channe	l is m	nostly	lavers		is m	nimally	lavers.	s not
	shaded.		shaded.			shade				shaded.	
	- For char	nels wider	□ For cha	nels	wider			nels	wider	□ For chanr	els wider
Cross Channel Shading	than 50 F1		than 50 F			than !				than 50 FT,	
		, nnel margins	banks/cha		marging	chanr		-	-	channel ma	
	are fully sl	_	are mostly		-	partly		-		not shaded.	-
						partiy					
RB Score:	1	<u> </u>	8	7	6		5	4	3	2	1
LB Score:	1	0 <mark>9</mark>	8	7	6		5	4	3	2	1

Temperature Moderation Assessment Stream Name: South Branch Rockaway Creek tributary

Riparian Area

Riparian Area																	
	🖻 Buffer widt	h > 300 FT.	🗆 Buffer 🗤	width	is 300) -	🗆 Buffe	r wi	dth	is < 5	0	🗆 No	buff	er.			
	🗆 Buffer is w	ooded; and	50 FT.				FT.					Surface runoff					
	appears suffi	appears sufficient to		appea	ars		🗆 Buffei	r do	es n	ot		reaches channel					
Buffer Width	intercept and	l infiltrate	sufficient	to in	tercep	ot	intercep	ot ru	inof	f in a	II	direc	tly.				
	surface runo	f.	and infilt	rate s	urface	į	location	ıs.									
	r		runoff.														
RB Score:	10	9	8	7	6		5	5	4	3				2	1		
LB Score:	10	9	8	7	6		5	5	4	3				2	1		
	Wetlands a	re	🗆 Wetlan	ds ar	e pres	ent	🗹 Wetla	inds	are			🗆 We	etlan	ds a	ire a	lter	ed
	extensive, ex	tend over	approxim	approximately 50% of		minimal, approximately			or ab	sent							
Wetlands, Tributaries	75% of reach		reach.				25% of 1	25% of reach.			🗆 Tril	buta	ries	/ Se	eps	5/	
/ Seeps / Springs	Tributaries	Tributaries / Seeps /		ries /	Seeps	5/	Instant Seeps / InstantSeeps / Instant Seeps / Instant Seeps / Instant Seep			Sprin	gs ai	re a	ltere	ed o	or		
,	Springs are numerous.		Springs a	re oco	casion	al.	Springs	are	infr	eque	nt.	absei	nt.				
Score:	20 19 18	8 17 16	15 14	13	12	11	10	9	8	7	6	5	4	3	2	2	1

Temperature Moderation Score:	0.54	Score	Condition
(Average the scores above; divide	e by 20)	0.85 - 1.0	Optimal
Temp Moderation Condition:	FAIR	0.65 - 0.84	Good
		0.35 - 0.64	Fair
		0.00 - 0.34	Poor

Public Use Assessment

Related Parameters	Optimal	Good	Fair	Poor		
	Optimal Channel	Good Channel	🗹 Fair Channel Integrity	Poor Channel Integrity		
Channel Integrity	Integrity	Integrity	🗹 High Channel	Very High Channel		
(From FORM 3-CHx)	Low Channel	Moderate Channel	Sensitivity	Sensitivity		
	Sensitivity	Sensitivity				
Habitat	Habitat condition is	Habitat condition is	Mabitat condition is	Habitat condition is		
(From FORM 4-HAx)	optimal.	good.	fair.	poor.		
Water Quality	Water quality	Water quality	🖻 Water quality	Water quality		
(Form FORM 5-WQ)	condition is optimal.	condition is good.	condition is fair.	condition is poor.		
Score:	20 19 18 17 16	15 14 13 12 11	<mark>10</mark> 98776	5 4 3 2 1		
Public Use Parameter						
	Land ownership is	Land ownership is	I Land ownership may	Land ownership is		
	compatible with public	compatible with public	be compatible with	incompatible with public		
	use.	use.	public use.	use.		
Existing Public Use	> 75% of appropriate	□ < 50 - 75% of	🗆 25 - 50% of	✓ < 25% of appropriate		
	public uses are currently	appropriate public uses	appropriate public uses	public uses are currently		
	supported.	are currently supported.	are currently supported.	supported.		
Score:	20 19 18 17 16	15 14 13 12 11		5 4 3 2 1		
5016.		13 + 14 + 15 + 12 + 11 0 < 50 - 75% of currently		$ \leq 25\% $ of currently non-		
	supported uses have	non-supported uses	non-supported uses	supported uses have		
			1			
Potential Public Use	potential.	have potential.	have potential.	potential.		
	All appropriate public					
	uses are supported.					
Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		

Public Use Score:	0.33	Score	Condition
(Average the scores above;	divide by 20)	0.85 - 1.0	Optimal
Public Use Condition:	POOR	0.65 - 0.84	Good
		0.35 - 0.64	Fair
		0.00 - 0.34	Poor

Functional Value Assessment Methodology: Reach ID Form	1	FORM 1-ID
Stream Name: South Branch Rockaway Creek tributary	Reach ID: South Branch Rockaway	Creek tributary-02
Location: North side of Main St @ Sloan St to just dow	wnstream Date: 05/27/2020	
of Kullman Corp Campus Dr bridge.	Town: Lebanon Borough	
Observers: Autumn Thomas, Dave Kunz	Elevation: 205-216 ft.	
	Upstream Endpoint	Downstream Endpoint
Organization/Agency: Lebanon Borough/NJ Highlands Council	Latitude (N/S): 40.642120N	40.6439935N
USGS Map Name: Califon NJ	Longitude (E/W): 74.828072W	74.822790W
Weather: 64F, cloudy, high 78F	Drainage Area: 2,455 acres	
Rain Storm w/in 7 days: $ m _{Yes}$	Segment Length: 2,248 feet	

Phase 1 Watershed Assessment Scoring Sheet

Stream Name: South Branch Rockaway Creek tributary

	[Condition Category											
Watershed / Corridor Paramet	ter	0	ptimal		Good			Fair					Poor	
Geology	Bedrock has significant stabilizing influence.		stabilizing influence.			 				no s	 Bedrock has little or no stabilizing influence. Unconsolidated 			
Geology		Unconse glacial till absort		al or	glacial til	l is prese	ent.	glacia	l till is	s com	imon.	-	al till lominate	S.
Sc	ore:		18 17	16	15 14	13 1	2 11	10	9	8	7 6	5	4 3	2 1
Valley Slopes	ey Slopes Slope Impact Rating.		✓ Low Stell Impact R)e	 High Steep Slope Impact Rating. 					 High Steep Slope Impact Rating. 			
Sc	ore:	20 19	18 17	16	15 14	<mark> 13</mark> 1	2 11	10	9	8	7 6	5	4 3	2 1
Soil Runoff		Low Soil Impact Ra			 Moderate Soil Runoff Impact Rating. 						 Very High Soil Runoff Impact Rating. 			
Sc	ore:	20 19	18 17	16	15 14	13 1	2 11	10	9	8	7 6	5	4 3	2 1
Soil Erodibility		□ Low Soil Impact Ra		ity	 Moder Erodibilit Rating. 		t	 High Soil Erodibility Impact Rating. 				ery High S libility Im ng.		
Sc	ore:	•	18 17	16		13 1		10	9	8	7 6	5	4 <mark>3</mark>	
	 Insignificant Land Use / Land Cover Impact 		Low La Cover Im	pact Rat	ting.	 Moderate Land Use / Land Cover Impact 				Cove	er Impac	•		
Land Use /		Rating.		Low Impervious		Rating.				High Impervious				
Land Cover		🗆 Insignifi			Cover Im	pact Rat	Rating. 🖉 Moderate		🖉 Moderate		Cove	er Impac	t Rating.	
		Imperviou Impact Ra				Impervious Cover Impact Rating.								
Sc	ore:	20 19		16	15 14	13 1	2 11	10	9	8	7 6	5	4 3	2 1

Watershed

Score:	0.36
(Average the score	s above; divide by 20)
Condition:	FAIR

Score	Condition
0.85 - 1.0	Optimal
0.65 - 0.84	Good
0.35 - 0.64	Fair
0.00 - 0.34	Poor

Reach ID: South Branch Rockaway Creek tributary-02

Stream Name: South Branch Rockaway Creek tributaryReach ID: SFor Reaches in Minimally Confined to Broad Valleys (Valley Confinement Ratio \geq 4)Primarily pool-riffle streams; C/E channels; some B channels.

		Condition Category								
Related Parameter	Optimal	Good	Fair	Poor						
Phase 1 Watershed	Optimal Score.	🗆 Good Score.	🗹 Fair Score.	Poor Score.						
(From FORM 2-WA)										
Score:	20 19 18 17 16	15 14 13 12 11	10 9 <mark> 8</mark> 7 6	5 4 3 2 1						
General Instability			Dens (under annount							
Dams / Weirs	n Dams / weirs are absent. n No evidence of historic dams.	 A weir present that creates limited impounded water that is not wider or deeper than the normal channel. Little evidence of a historic dam. 	 Dam / weirs present. Impoundment is wider than the typical channel and contains some sediment. Evidence of historic dam that may have created an elevated floodplain. 	 Dam(s) create deep and wide impoundment that traps sediment. Impoundment is >2x normal channel width and depth and contains fine sediment. Clear evidence of historic dam that has left an elevated floodplain. 						
Beaver Dams	 Signs of instability are directly related to Beaver Dams. 	 Signs of instability are related to Beaver Dams. 	 Signs of instability are NOT related to Beaver Dams. 	✓ Signs of instability are NOT related to Beaver Dams.						
Bridges / Culverts	 Few or no bridges / culvert crossings [< 2 / mile]. Typical crossing width > channel width. 	 ✓ Some bridges / culvert crossings [2 - 3 / mile]. □ Typical crossing width > channel width. 	 □ Bridges / culvert crossings are common [ave. 4 - 6 / mile]. ☑ Typical crossing width <u><</u> channel width. 	 Many bridges / culvert crossings [> 6 / mile]. Typical crossing width < channel width. 						
Stormwater Inputs	No stormwater inputs observed.		 Some stormwater inputs [10 - 25 / mile]. 	 Many stormwater inputs 25 / mile]. 						
Floodplain Encroachment Ratio	 No Floodplain Encroachment concentrating downstream flows. 1.0 < Floodplain Encroachment Ratio < 1.2 	 Minor Floodplain Encroachment concentrating downstream flows. 1.2 Floodplain Encroachment Ratio < 1.4 	 Moderate Floodplain Encroachment concentrating downstream flows. 1.4 Floodplain Encroachment Ratio < 2.0 	 ☑ Major Floodplain Encroachment concentrating downstream flows. ☑ Floodplain Encroachment Ratio > 2.0 						
Bank Erosion	 Eroded banks extend < 10% of reach. 	 ✓ Eroded banks extend 10% < 25% of reach. 	 Eroded banks extend 25% < 50% of reach. 	 Eroded banks extend <u>></u> 50% of reach. 						
Bank Armoring / Channel Straightening	 No evidence of bank armoring / channel straightening. 	 ☑ Bank armoring extends 10% < 25% of reach. ☑ Channel straightening < 10% of reach. 	 Bank armoring extends 25% < 50% of reach. Channel straightening < 25% of reach. 	 □ Bank armoring extends ≥ 50% of reach. □ Channel straightening ≥ 25% of reach. 						
General Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1						

Stream Name: South Branch Rockaway Creek tributary

Reach ID: South Branch Rockaway Creek tributary-02

Degradation	Optimal	Good	Fair	Poor
U	□ No bed and bank	✓ Adjacent bed and bank	□ Adjacent bed and bank	Adjacent bed and bank
	erosion associated with	erosion are minor and	erosion is moderate and	erosion is severe and
	bridges/culverts.	confined to immediately	typical.	extensive.
	□ Bridge foundations are		rypical. ☑ Some bridge	Most bridge foundation:
	-	upstream or downstream	-	•
Bridges / Culverts	not exposed; culverts are	of crossings.	foundations are exposed;	are exposed or
blidges / cuiverts	not perched.	Bridge foundations are	some culverts are	undermined; most
		not exposed; culverts are	perched.	culverts are perched.
		not perched.		
		Stormwater outfalls do	✓ Stormwater outfalls are	Stormwater outfalls are
		not appear to be perched	perched above the	perched above the
		above the streambed.	streambed.	' streambed.
			✓ Some stormwater	Headwalls have been
Stormwater Inputs			ditches have headcuts.	undermined and are
				collapsing into the
				channel.
				□ Stormwater ditches
				have headcuts
	□ 1.0 <u><</u> Bank Height Ratio	□ 1.1 <u><</u> Bank Height Ratio	□ 1.3 <u><</u> Bank Height Ratio	✓ Bank Height Ratio ≥ 1.5
Bank Height Ratio	< 1.1 and	< 1.3 and	< 1.5 and	or
-	Entrenchment Ratio >	Entrenchment Ratio >	Entrenchment Ratio >	✓ Entrenchment Ratio <
	2.0	2.0	2.0	2.0
	Stream substrate is	Stream substrate is	Stream substrate is not	Stream substrate is not
Deminent Dentiele Cice	compact and resistant to	compact and resistant to	compact and prone to	compact and prone to
Dominant Particle Size	erosion.	erosion.	erosion.	erosion.
Class	Dominant particle size	Dominant particle size	✓ Dominant particle size	Dominant particle size
	class is cobble, boulder or	class is cobble, boulder or	class is fine gravel or sand.	class is fine gravel or sand.
	bedrock. Bedrock grade controls	bedrock. Bedrock grade controls	Bedrock grade controls	✓ Bedrock grade controls
	are present, preventing	are present, preventing	are absent, allowing	are absent, allowing
Bedrock Grade Controls	further channel	further channel	channel degradation.	channel degradation.
	degradation.	degradation.		
	No headcuts.	No headcuts.	✓ Headcut seen in the	Multiple headcuts in the
	✓ Substrates are compact	□ Signs of historic incision:		main channel and
	and stable.	sharp changes of slope /	tributaries.	tributaries.
Headcuts	✓ No signs of historic	steep riffles.	□ Signs of recent incision:	Signs of active incision:
	incision.		sharp changes in slope /	substrates are loose and
			steep riffles.	actively eroding at
				headcuts.
Bank Slope	□ Bank slopes are typically	✓ Bank slopes are typically moderate	 Banks are typically steep or vertical. 	
	low. No subsoil layers 	moderate.	Subsoil layers clearly	vertical. □ Former streambed
Bank Materials	exposed in the banks.	subsoil layers.	exposed in banks.	materials clearly exposed
	caposed in the burns.			in banks.
	No evidence of historic	✓ Some evidence of	Evidence of recent	Evidence of recent
Meander Cutoffs,	or recent meander cutoffs		meander cutoffs or	and/or impending
Channel Avulsions	or channel avulsions.	meander cutoffs or	channel avulsions.	meander cutoffs or
		channel avulsions.		channel avulsions.
Degradation Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

FORM 3-CH2

Stream Name: South Branch Rockaway Creek tributary

Reach ID: South Branch Rockaway Creek tributary-02

Aggradation Optimal Good		Fair	Poor	
Bridges / Culverts	 No sediment deposition upstream of crossings. No sediment deposition downstream of crossings. Bridge / Culvert openings are not blocked by sediment. 	deposition upstream of crossings. ≰ Some sediment	 Moderate sediment deposition upstream of crossings. Moderate sediment deposition downstream of crossings. Bridge / Culvert openings are partially blocked by sediment. 	 Significant sediment deposition upstream of crossings. Significant sediment deposition downstream of crossings. Bridge / Culvert openings are buried in sediment.
Stormwater Inputs	No stormwater inputs observed.	✓ Minor sediment deposition at stormwater outfalls.	 Moderate sediment deposition at stormwater outfalls. Multiple stormwater outfalls are partially buried in sediment. Multiple stormwater ditches are partially filled with sediment finer than 	 Extensive sediment deposition at stormwater outfalls. Stormwater outfalls are partially buried in sediment. Stormwater ditches are partially filled with sediment finer than bed.
Channel Dimensions	Low Width-Depth Ratio □ ≤ 20 for C or B channels □ ≤ 10 for E channels	Low to Moderate Width- Depth Ratio □ >20 ≤ 30 for C or B channels □ >10 ≤ 12 for E channels	Moderate to High Width- Depth Ratio □ >30 ≤ 40 for C or B channels □ >12 ≤ 20 for E channels	High Width-Depth Ratio n ≥ 40 for C or B channels □ > 20 for E channels
Pool-Riffle Condition	 All Pool-Riffles are well formed, complete and stable. < 10% pools are < 2 FT deep. No pools are filled with sediment. 	 ☑ Pool-Riffles are moderately well formed, complete and stable. 10% < 25% pools are: □ < 2 FT deep. □ filled with sediment finer than dominant particle size. 	 Pool-Riffles are not clearly formed creating plane bed features. 25% < 50% pools are: < 2 FT deep. filled with sediment finer than dominant particle size. 	 □ Pool-Riffles are not clearly formed creating plane bed features. > 50% pools are: ✓ 2 FT deep. ✓ filled with sediment finer than dominant particle size.

FORM 3-CH2

Channel Integrity Assessment for Pool-Riffle Reaches Stream Name: South Branch Rockaway Creek tributary

FORM 3-CH2

0,	Assessment for Fool-				
Stream Name: South B	ranch Rockaway Creek tributary	Reach ID: South Branch Rockaway Creek tributary-02			
	Few or no lateral,	Some lateral, diagonal,	Multiple lateral,	🗹 Many lateral, diagonal,	
	diagonal, mid-channel	mid-channel bars.	diagonal, mid-channel	mid-channel bars, or	
	bars.	✓ Lateral bars and deltas	bars, or deltas.	deltas.	
	Lateral bars and deltas	in typical positions.	Sediment bars	Sediment bars	
	in typical positions.	Sediment bars	composed of sediment	composed of sediment	
	□ Sediment bars less than	composed of sediment	different than dominant	finer than dominant	
	bankfull height.	similar to dominant	substrate.	substrate.	
Sediment Bars		substrate.	Sediment bars are	Sediment bars above	
		Sediment bars at or	greater than bankfull	bankfull elevation and/or	
		below bankfull height.	height and/or longer than	multiple channel widths in	
			a channel width.	length.	
				Sediment bars split flow	
				in multiple paths.	
	□ Coarse gravels, cobbles,	□ Coarse gravels, cobbles,	✓ Coarse gravels, cobbles,	Coarse gravels, cobbles,	
	boulders are not	boulders are not	boulders are embedded in	boulders are heavily	
Embeddedness	embedded in finer	embedded in finer	finer sediments.	embedded in finer	
Embeddedness	sediments.	sediments.	□ 50% <u><</u> Embeddedness <	sediments.	
	Embeddedness < 25%.		75%.	Embeddedness > 75%.	
		50%.			
	No channel braiding.	✓ No channel braiding.	Channel braiding	Channel braiding	
Braiding			present.	extensive throughout	
				reach.	
Aggradation Score:	20 19 18 17 16	15 14 13 <mark>12</mark> 11	10 9 8 7 6	5 4 3 2 1	

Channel Integrity Assessment for Pool-Riffle Reaches Stream Name: South Branch Rockaway Creek tributary

FORM 3-CH2 Reach ID: South Branch Rockaway Creek tributary-02

Widening	Optimal	Good	Fair	Poor	
Stormwater Inputs	No stormwater inputs observed.	do not appear to extend out from the banks.	 Stormwater outfalls are extending out from the banks. 	 Stormwater outfalls are extending out from the banks. Headwalls have been undermined and are collapsing into the channel. 	
Low Width-Depth Ratio□ < 20 for C or B		Low to Moderate Width Depth Ratio □ >20 ≤ 30 for C or B channels □ >10 ≤ 12 for E channels	Moderate to High Width-Depth Ratio >30 <u><</u> 40 for C or B channels >12 <u><</u> 20 for E channels	Moderate to High Width-Depth Ratio	
Sediment Bars	 Few or no lateral, diagonal, mid-channel bars. Lateral bars and deltas in typical positions. Sediment bars below bankfull height. 	 Some lateral, diagonal, mid-channel bars. Lateral bars and deltas in typical positions. Sediment bars composed of sediment similar to dominant substrate. Sediment bars at or below bankfull height. 	 Multiple lateral, diagonal, mid-channel bars, or deltas. Sediment bars composed of sediment different than dominant substrate. Sediment bars are greater than bankfull height and/or longer than a channel width. 	 Many lateral, diagonal, mid-channel bars, or deltas. Sediment bars composed of sediment finer than dominant substrate. Sediment bars above bankfull elevation and/or multiple channel widths in length. Sediment bars split flow in multiple paths. 	
Bank Materials	 Bank materials have low or very low erodibility. Bank materials are cohesive. 	 [™] Bank materials have low or moderate erodibility. [™] Bank materials are cohesive. 	 Bank materials have moderate or high erodibility. Bank materials are non-cohesive. 	 Bank materials have high erodibility. Bank materials are non-cohesive. 	
Bank Erosion	 No erosion on opposing banks; overhanging banks are stable. Occasional leaning trees and no recently exposed roots. 	 Minimal erosion at the base of opposing banks; overhanging banks are stable. Some leaning trees and few recently exposed roots. 	 Moderate erosion at the base of both banks creating unstable overhangs. Many leaning trees, recently exposed roots and/or fracture lines. 	 Continuous, extensive erosion at the base of both banks creating unstable overhangs. Continuous leaning trees, recently exposed roots and/or fracture lines. 	

FORM 3-CH2

Stream Name: South Branch Rockaway Creek tributary			Reach ID: South Branch Rockaway Creek tributary-02		
Re-alignment	Optimal	Good	Fair	Poor	
Bridges / Culverts	 Channel is aligned with bridge / culvert openings. 	 Channel is aligned with bridge / culvert openings. 		 Channel makes tight meander at bridge / culvert openings. 	
Sinuosity	No change in sinuosity.	May accompany minor change in sinuosity.	 May accompany moderate change in sinuosity. 	 May accompany major change in sinuosity. 	
Bank Erosion	 Typical bank erosion on outside meander bends. Overhangs are stable. No slumping. Few leaning trees, no recently exposed roots. No fracture lines. 	 ✓ Typical bank erosion on outside meander bends. ✓ Overhangs are stable. Little slumping. ✓ Few leaning trees, recently exposed roots. No fracture lines. 	 Moderate to high bank erosion on many outside meander bends creating unstable overhangs. Multiple leaning trees, recently exposed roots and/or fracture lines. 	 Extensive, severe bank erosion on outside meander bends creating unstable overhangs and/or slumping. Numerous leaning trees, recently exposed roots and/or fracture 	
Flood chutes, Meander Cutoffs, Braiding, Channel Avulsions	 Limited potential for channel avulsions. No evidence of historic or recent channel avulsions. 	for ^{III} Limited potential for channel avulsions. In Flood chut meander cut braiding potentials historic or leading to channel avulsions. In 25% < 50% exhibits historics. In 25% exhibits histo		 □ Flood chutes, meander cutoffs, braiding causing channel avulsions. □ ≥ 50% of reach exhibits historic or recent channel avulsions. 	
Re-alignment Score	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	

Watershed Score:	8	
General Instability		
Score:	12	
Degradation Score:	10	
Aggradation Score:	12	
Widening Score:	12	
Re-alignment Score:	14	
Channel Integrity		
Score:	0.57	
(Average the scores above; divide by 20)		

Channel Integrity

Condition:

Score	Condition
0.85 - 1.0	Optimal
0.65 - 0.84	Good
0.35 - 0.64	Fair
0.00 - 0.34	Poor

Channel Sensitivity:	VERY HIGH
	(Refer to Item 11.1.4 from Phase 2)

FAIR

Reach ID: South Branch Rockaway Creek tributary-02

Stream Name: South Branch Rockaway Creek tributaryReach ID: SFor Reaches in Minimally Confined to Broad Valleys (Valley Confinement Ratio \geq 4)Primarily pool-riffle streams; C/E channels; some B channels.

	Condition Category				
Related Parameter	Optimal	Good	Fair	Poor	
Channel Integrity (From FORM 3-CHx)	 Optimal Channel Integrity Low Channel Sensitivity 	 Good Channel Integrity Moderate Channel Sensitivity 	 ✓ Fair Channel Integrity □ High Channel Sensitivity 	 □ Poor Channel Integrity ^I Very High Channel Sensitivity 	
Score:		15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	
Available Data			· · · · · · ·		
NJ Stream Water Quality Standards	 Freshwater 1 - Trout Production / Trout Maintenance (FW1- TP/TM) 	□ Freshwater 1 - Non- Trout (FW1-NT)		Freshwater 2 - Non- Trout (FW2-NT)	
Score:	20 19 18 17 16	15 14 13 12 11	<mark>10</mark> 9 8 7 6	5 4 3 2 1	
Channel Modifiers					
Dams / Weirs	 ☑ Dams / weirs are absent. ☑ No evidence of historic dams. 	 A weir present that creates limited impounded water that is not wider or deeper than the normal channel. Little evidence of a historic dam. 	 Dam / weirs present that create impoundment that is wider than the normal channel and retains some sediment. Evidence of historic dam. 	 Dam(s) create deep and wide impoundment that traps sediment. Clear evidence of historic dam. 	
Beaver Dams	Beaver dam(s) are present.	 Beaver dam(s) are present. 			
Bridges / Culverts	 Few or no bridges / culvert crossings [< 2 / mile]. No bridges / culverts appear to block aquatic organism passage by channel constriction/increased velocity, shallow flow, or perch. 	 Some bridges / culvert crossings [2 - 4 / mile]. No bridges / culverts appear to block aquatic organism passage by channel constriction/increased velocity, shallow flow, or perch. 	 Many bridges / culvert crossings [4 - 6 / mile]. Multiple bridges / culverts appear to block aquatic organism passage by channel constriction/increased velocity, shallow flow, or perch. 	 Many bridges / culvert crossings [> 6 / mile]. Multiple bridges / culverts appear to block aquatic organism passage by channel constriction/increased velocity, shallow flow, or perch. 	
Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1	

In-Stream Features									
Pool Condition	 □ > 40 pools / ☆ > 50% pools FT deep. □ > 50% pools channel width. 	are > 2 span	□ 40 <u>></u> pools / n □ 50 > 25% poo 2 FT deep. □ 50 > 25% poo		ols are > ols span	 □ 20 > pools / mile < 10 . □ 25 > 10% pools are > 2 FT deep. [™] 25 > 10% pools span 		 ✓ ≤ 30 pools □ ≤ 10% pool FT deep. □ ≤ 10% pool channel wid 	ols are > 2 ols span
Bed Substrate Composition	< 20%. margin embeddednes	fle embeddedness)%. argin eddedness < 40%. ffle Stability Index <u><</u>		embeddedness < 40%. □ 40 <u><</u> margin embeddedness < 60%.		□ 60 <u><</u> ma	le dness < 75%. rgin dness < 80%.	 □ riffle emb ≥ 75%. □ margin embeddedn □ Riffle Stab 90%. 	
Score:	· · ·	<u></u>	15 14			10 9	8 7 6	· · ·	3 2 1
Vegetative Material	 □ > 100 LWD / ☑ > 5 Debris Ja mile. □ CPOM abund margin and cell 	ms / dant in	e. □ 100 <u>></u> LWD / 50. □ 5 <u>></u> Debris t in > 3.		ms / mile dant in	 ✓ 50 ≥ LWD / mile > 25. □ 3 ≥ Debris Jams / mile > 1. □ CPOM present in margin, absent in center. 		□ <u><</u> 25 LWD □ Debris Jar □ CPOM abs	ns absent.
Score: 20 19 18 17 16		17 16	15 14 13 12 11		10 9	8 7 6	5 4 3	3 2 1	
Banks									
Bank Slope	a > 30 stable, undercut banks / mile.				□ 15 <u>></u> stable, undercut banks / mile > 5.	□ < 5 stable, undercut banks / mile.			
Bank Vegetation	 ✓ > 90% coverage in tree, shrub and herb layers. □ Non-native invasives are absent. 		 □ 90 ≥ coverage > 75% in tree, shrub and herb layers. □ Non-native invasives are minimal. 		in tree, sh layers.	verage > 50% rub and herb tive invasives lant.	□ 50% <u><</u> cov tree, shrub a layers. □ Non-nativ are dominar	and herb e invasives	
Cross Channel Shading	 Closed cross canopy. 	-channel	□ Cross-cl is mostly			 Cross-channel canopy is mostly open. 		✓ Open cros canopy.	s-channel
Bank Erosion	□ Eroded banks extend< 10% of reach.		✓ Eroded banks extend10% < 25% of reach.		 Eroded banks extend 25% < 50% of reach. 		□ Eroded ba <u>></u> 50% of rea		
Bank Armoring / Channel Straightening	No evidence of bank armoring / channel straightening.				 Bank and extends 2. reach. 	moring 5% < 50% of	□ Bank armo extends <u>></u> 50	-	
Buffer Width			. ₪ Buffer width is 300 - 50 FT.		□ Buffer width is < 50 FT.		□ No buffer		
RB Score:		9	8	<u> 7 </u>	6	5	4 3	2	1
LB Score:	10	9	8	<mark>7</mark>	6	5	4 3	2	1

Stream Name: South Branch Rockaway Creek tributary

Reach ID: South Branch Rockaway Creek tributary-02

Riparian Area				
Riparian Wildlife Habitat (Phase I)	 High Score; Reach corridor contains patches rank 3 or bigher 	 Moderate Score; Reach corridor contains patches rank 1 or 2. 	 Low Score; Reach corridor contains patches rank 1. 	 Reach corridor contains patches rank 0.
Riparian Plant Community	□ Native Mean C <u>></u> 4.5	☑ 3.5 <u><</u> Native Mean C > 4.5	□ 2.5 <u><</u> Native Mean C > 3.4	 □ Low Phase 1 Plant Community Score. □ 0 ≤ Native Mean C > 2.4
Adjacent Wetlands	 Wetlands are extensive, extend over 75% of reach. 	 Wetlands are present, approximately 50% of reach. 	 ☑ Wetlands are minimal, approximately 25% of reach. 	 Wetlands are altered or absent.
Floodplain Connectivity	 Floodplain connectivity is extensive throughout study reach with numerous signs of flooding. Little or no encroachment on the 	 Floodplain connectivity is present throughout the study reach with some signs of flooding. floodplain encroachment is minimal. 	 Floodplain connectivity is minimal. Floodplain connectivity is partially limited by encroachment. 	 No Floodplain connectivity. Floodplain connectivity is severely limited by encroachment.
Score	: 20 19 18 17 <mark>16</mark>	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

Habitat Score:	0.54		
(Average the scores above; divide by 20)			
Habitat Condition:	FAIR		

Score	Condition
0.85 - 1.0	Optimal
0.65 - 0.84	Good
0.35 - 0.64	Fair
0.00 - 0.34	Poor

Water Quality Assessment

Stream Name: South Branch Rockaway Creek tributaryReach ID: South Branch Rockaway Creek tributary-02For assessing Functional Values: NonPoint Source Pollution and Water Quality

10 | 9

LB Score:

		Condition Category										
Related Parameters	Optimal	Good	Fair	Poor								
Phase 1 Watershed	Optimal Score	Good Score	🗹 Fair Score	Poor Score								
(From FORM 2-WA)												
	Optimal Channel	Good Channel	🗹 Fair Channel Integrity	Poor Channel Integrity								
Channel Integrity	Integrity	Integrity	High Channel	🗹 Very High Channel								
(From FORM 3-CHx)	Low Channel	Moderate Channel	Sensitivity	Sensitivity								
	Sensitivity	Sensitivity										
Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1								
Existing Data			-									
	Freshwater 1 - Trout	Freshwater 1 - Non-	🗹 Freshwater 2 - Trout	Freshwater 2 - Non-								
NJ Surface Water	Production / Trout	Trout (FW1-NT)	Production / Trout	Trout (FW2-NT)								
Quality Standards	Maintenance (FW1-		Maintenance (FW2-									
	тр/тм)		тр/тм)									
NJPDES Surface	No Discharges	Mo Discharges	One Discharge	Multiple Discharges								
Water Discharges AMNET Reference												
	One sites	One site	🖆 No sites	No sites								
Sites												
Section 303(d) List	☑ Not listed or Fully	□ Insufficient	□ Not Supporting for	Not supporting for								
Score:	Supporting 20 19 18 17 16	information	one use 10 9 8 7 6	multiple uses 5 4 3 2 1								
	20 19 18 17 16	15 14 <mark>13</mark> 12 11		5 4 3 2 1								
Flow Modifiers		I										
	🗹 Dams / weirs are	□ A dam / weir is	Dam(s) / weir(s) are	Dam(s) / weir(s)								
	absent.	present that creates limited impounded	present that create	create deep impounded								
		some impounded water	water that dominates									
Dams / Weirs		water that is not wider	that is not wider than	the reach, is much wider								
		than the normal channel		than the normal channel								
		and does not extend	extends over 20% of the									
		over 20% of the reach.	reach.	sunlight.								
	□ No stormwater inputs	Few stormwater	Some stormwater	Many stormwater								
	observed.	inputs.	inputs.	inputs.								
		□ Stormwater outfalls	✓ Stormwater outfalls	Stormwater outfalls								
Stormwater Inputs		contribute little or no	contribute urban/crop	contribute high								
Stormwater inputs		urban/crop runoff.	runoff.	quantities of urban/crop								
				runoff relative to study								
				reach.								
Score:	20 19 18 17 16	15 14 <mark>13</mark> 12 11	10 9 8 7 6	5 4 3 2 1								
				J 4 3 2 1								
Banks												
	□ Banks are not eroded	□ Few banks are eroded.		Most banks are								
	and are stable.	□ Most banks are stable	eroded.	eroded.								
		and erosion appears	✓ Some banks are	Most banks are								
Bank Erosion		natural.	undercut or steep.	undercut or steep.								
			Bank erosion may be	Bank erosion appears								
			contributing in-stream	to be contributing in-								
			sediment.	stream sediment.								
RB Score:	10 9	8 7 6	5 <mark>4</mark> 3	2 1								

8 |

7 | 6

5 | <mark>4</mark> | 3

2 |

1

Water Quality Assessment

D:	· · · • · · · ·	Area
RID	arian	Area
INPO	ariari	

Riparian Area											
	🗆 Buffer width	n > 300 FT.	🖻 Buffer w	vidth i	is 300 -	🗆 Buffer v	vidth	is < 50	No buffer		
	🗆 Buffer is wo	oded; and	50 FT.			FT.			Surface runoff reacher		
	appears suffic	ient to	Buffer a	ppear	rs	🗹 Buffer does not			channel directly.		
Buffer Width	intercept, infil	ltrate and	sufficient	to inte	ercept,	intercept	runof	f in all			
	filter surface r	unoff.	infiltrate a	and fil	ter	locations.					
			surface runoff.								
RB Score:	10	9	8	7	6	5	4	3	2	1	
LB Score:	10	9	8	7	6	5	4	3	2	1	
	Wetlands ar	re	Wetland	ds are	present	🖻 Wetlan	ds are	e minimal,	Wetlands	are altered	
	extensive, extend over		approxima	ately 5	50% of	approxim	ately	25% of	or absent.		
Wetlands, Tributaries	75% of reach.				reach.			🗆 Tributarie	es / Seeps /		
/ Seeps / Springs	🗆 Tributaries /	/ Seeps /	🗆 Tributar	ies / S	Seeps /	🗹 Tributa	ries /	Seeps /	Springs are	altered or	
	Springs are nu	imerous.	Springs ar	e occa	asional.	Springs are infrequent.			absent.		
	🖻 Floodplain		Floodpla	ain		🗆 Floodpl	ain		Signs of fl	oodplain	
	connectivity is	s extensive	connectivi	ity is p	oresent	connectiv	ity is	minimal	connectivity	y are absent.	
	throughout st	udy reach	throughou	ut the	study	througho	ut stu	dy reach	Floodplain	n	
Floodplain	with numerou	is signs of	reach with	n som	e signs of	with few s	signs	of	connectivity	y is severely	
Connectivity	flooding.		flooding.			flooding.			limited by		
	🗆 Little or no		🗹 Floodpla	ain		🗆 Floodpl			encroachm	ent.	
	encroachment on the encroachment is		is	connectivity is partially							
	floodplain.		minimal.			limited by	'				
Score:	20 19 18	17 16	15 14	13	12 <mark>11</mark>	10 9	8	7 6	5 4	3 2 1	

Water Quality Score:	0.41	Score	Condition
(Average the scores above; divide	(Average the scores above; divide by 20)		Optimal
Water Quality Condition:	FAIR	0.65 - 0.84	Good
		0.35 - 0.64	Fair
		0.00 - 0.34	Poor

Temperature Moderation Assessment

Related Parameters	Opt	imal		Good	1			Fair		Po	or	
	Optimal C	hannel	🗆 Good C	hann	el	🗹 Fair	. Cha	nnel	Integrity	Poor Channel		
Channel Integrity	Integrity		Integrity			🗆 Hig	h Ch	anne	I	Integrity		
(From FORM 3-CHx)	🗆 Low Chan	nel	🗆 Modera	te Cl	nannel	Sensit	tivity	,		🗹 Very High Channel		
	Sensitivity		Sensitivity							Sensitivity		
Score:	20 19 1	.8 17 16	15 14	13	12 11	10	9	8	7 6	5 4 5	3 2 1	
Existing Data	T					-				•		
NJPDES Surface	🖻 No Discha	rges	🗆 No Disc	harg	es	One Discharge				□ Multiple [Discharges	
Water Discharges												
	🗹 Not listed	or Fully	□ Insuffic				-	-	ng for	Not Support	-	
Section 303(d) List	Supporting		informati	on		one u				one use due		
Score:	20 19	8 17 16	15 14	112	12 11	Temp 10	<u>erat</u> 9	ure 8	7 6	Temperatur	e 3 2 1	
	20 19 .	0 1 1 10	15 14	15	12 11	10	9	0		5 4 .	5 2 1	
Flow Modifiers			T			1				I		
	🖻 Dams / w	eirs are	🗆 A dam /						r(s) are	🗆 Dam(s) / \		
	absent.		present tl			prese					impounded	
			limited in	•			some impounded water			r water that dominates		
Dams / Weirs			water tha	t is n	ot wider	der that is not wider than				the reach, is much		
			than the i	norm	al	the no	orma	al cha	nnel but	wider than t	he normal	
			channel a	nd d	oes not	exten	ds o	ver 2	0% of the	channel and	is exposed	
			extend ov	er 20	0% of the	reach	•			to direct su	nlight.	
	D No storm	water inputs	r Few sto	rmw	ater	🗆 Son	ne st	orm	water	Many stor	mwater	
	observed.		inputs.			inputs.				inputs.		
	o boot i cui		□ Stormw	ater	outfalls	✓ Stormwater outfalls			outfalls	□ Stormwater outfalls		
Stormwator Inputs			contribut						an/crop	contribute high		
Stormwater Inputs			urban/cro			runof				quantities o	-	
				pra						urban/crop		
										relative to s		
											-	
Score:	20 19 1	.8 17 16	15 14	13	12 11	10	9	8	7 6	5 4 3	3 2 1	
Banks	T					-				•		
	⊠ > 90% co\	0	⊡ 90 <u>></u> co				_		e > 50%	□ 50% <u><</u> cov		
Bank Vegetation	tree, shrub	and herb	in tree, sh	rub	and herb	in tre	e, sh	rub a	nd herb	tree, shrub	and herb	
	lavers.	<u> </u>	lavers.			lavers		•		lavers.		
	Channel is	s tully	Channe	l is m	ostly			is m	inimally	Channel is	s not	
	shaded.		shaded.	,		shade				shaded.		
Cross Channel Shadin	For chann	els wider	🗆 For cha		wider				wider	□ For channels wider		
Cross Channel Shading than 50 FT, than 50 FT,				than !			-	than 50 FT,				
	banks/chan	-	banks/cha		•	chanr		-	ns are	channel ma	-	
	are fully sha	ded.	are mostl	y sha	ded.	partly	' sha	ded.		not shaded.		
RB Score:	10	9	8	7	6		5	4	3	2	1	
LB Score:	10	9	8	7	6		5	4	3	2	1	

Temperature Moderation Assessment Stream Name: South Branch Rockaway Creek tributary

Riparian Area

Riparian Area														
	🗆 Buffer wid	th > 300 FT.	🗹 Buffer v	vidth is 30) -	🗆 Buffer	width	is < 5	0	🗆 No b	ouffer			
	🗆 Buffer is w	ooded; and	50 FT.			FT.	FT.			Surface runoff				
	appears suffi	cient to	🗆 Buffer a	ppears		🗹 Buffer	does i	not		reache	es cha	nne		
Buffer Width	intercept and	d infiltrate	sufficient	to interce	ot	intercept	runo	ff in a	II	direct	ly.			
	surface runo	ff.	and infiltrate surface			locations								
			runoff.											
RB Score:	10	9	8	76		5	4	3			2	1		
LB Score:	10	9	8	7 6		5	4	3				11		
	Wetlands a	are	🗆 Wetlan	ds are pres	ent	✓ Wetlands are				🗆 Wet	lands	are	alte	red
	extensive, ex	tend over	approxim	ately 50%	of	minimal,	appro	xima	tely	or abs	ent.			
Wetlands, Tributaries	75% of reach).	reach.			25% of re	ach.		-	🗆 Trib	utarie	s / S	Seep	os /
/ Seeps / Springs	Tributaries	/ Seeps /	🗆 Tributai	ries / Seep	5/	🗹 Tributa	ries /	Seep	s /	Spring	s are	alte	red	or
/ Seeps / Spinigs	Springs are n	umerous.	Springs are occasional.		Springs a	Springs are infrequent.			absen	t.				
Score:	20 19 18	8 17 16	15 14	13 12	11	10 9	8	7	6	5	4 1 3	3	2	1

Temperature Moderation Score:	0.46	Score	Condition
(Average the scores above; divide	e by 20)	0.85 - 1.0	Optimal
Temp Moderation Condition:	FAIR	0.65 - 0.84	Good
		0.35 - 0.64	Fair
		0.00 - 0.34	Poor

Public Use Assessment

		Conditior	n Category			
Related Parameters	Optimal	Good	Fair	Poor		
	Optimal Channel	Good Channel	I Fair Channel Integrity	Poor Channel Integrity		
Channel Integrity	Integrity	Integrity	High Channel	🗹 Very High Channel		
(From FORM 3-CHx)	Low Channel	Moderate Channel	Sensitivity	Sensitivity		
	Sensitivity	Sensitivity				
Habitat	Habitat condition is	Habitat condition is		Habitat condition is		
(From FORM 4-HAx)	optimal.	good.	fair.	poor.		
Water Quality	Water quality	Water quality	🖻 Water quality	Water quality		
(Form FORM 5-WQ)	condition is optimal.	condition is good.	condition is fair.	condition is poor.		
Score:	20 19 18 17 16	15 14 13 12 11	10 <mark>9</mark> 8 7 6	5 4 3 2 1		
Public Use Parameter						
	Land ownership is	Land ownership is	Land ownership may	Land ownership is		
	compatible with public	compatible with public	be compatible with	incompatible with public		
	use.	use.	public use.	use.		
Existing Public Use	□ > 75% of appropriate	□ < 50 - 75% of	🗆 25 - 50% of			
	public uses are currently	appropriate public uses	appropriate public uses	public uses are currently		
	supported.	are currently supported.	are currently supported.	supported.		
Score:	20 19 18 17 16	15 14 13 12 11		5 4 3 2 1		
		$\Box < 50 - 75\%$ of currently		$rac{2}{2}$ < 25% of currently non-		
	supported uses have	non-supported uses	non-supported uses	supported uses have		
			have potential.	potential.		
Potential Public Use	□ All appropriate public	have potential.				
	uses are supported.					
Score:	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1		

Public Use Score:	0.32	Score	Condition
(Average the scores above;	verage the scores above; divide by 20)		Optimal
Public Use Condition:	POOR	0.65 - 0.84	Good
		0.35 - 0.64	Fair
		0.00 - 0.34	Poor

Appendix F Universal FQA Reports

Inventory Assessment

Edit This Inventory

Download Report

Done

4562 - Overall Species Inventory

» Date & Location:

2020-05-13 4562 - Overall Sp Inv Lebanon Borough Hunterdon, New Jersey, United States

» FQA Database:

Region: **New Jersey** Year Published: **2019** Description:

Walz, Kathleen S., Linda Kelly, Karl Anderson, Keith Bowman, Barbara Andreas, Richard Andrus, Scott Schuette, William Schumacher, Sean Robinson, Terry O'Brien, Eric Karlin and Jason Hafstad. 2018. Universal Floristic Quality Assessment Index for Vascular Plants and Mosses of New Jersey: Coefficient of Conservancy (CoC) Values for Species and Genera (Updated November 2019). New Jersey Department of Environmental Protection, New Jersey Forest Service, Office of Natural Lands Management, Trenton, NJ, 08625. Submitted to United States Environmental Protection Agency, Region 2, for State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809.

» Details:

Practitioner: **David Kunz** Latitude: Longitude: Weather Notes: Duration Notes: Community Type Notes: Other Notes: This assessment is **private** (viewable only by you).

» Conservatism-Based Metrics:

Total Mean C: **3** Native Mean C: **4.2** Total FQI: **28** Native FQI: **32.8** Adjusted FQI: **35.2** % C value 0: **29.9%** % C value 1-3: **24.1%** % C value 4-6: **39.1%** % C value 7-10: **6.9%** Native Tree Mean C: **0** Native Shrub Mean C: **0** Native Herbaceous Mean C: **0**

» Species Richness:

Total Species: **87** Native Species: **61 (70.1%)** Non-native Species: **26 (29.9%)**

» Species Wetness:

Mean Wetness: **n/a** Native Mean Wetness: **n/a**

» Physiognomy Metrics:

Tree: **n/a** Shrub: **n/a** Vine: **n/a** Forb: **n/a** Grass: **n/a** Sedge: **n/a** Rush: **n/a** Fern: **n/a** Bryophyte: **n/a**

» Duration Metrics:

Annual: **n/a** Perennial: **n/a** Biennial: **n/a**

Native Annual: **n/a** Native Perennial: **n/a** Native Biennial: **n/a**

» Species:

Scientific Name	Family	Acronym	Native?	С	W	Physiognomy	Duration	Common Name
Acer negundo	Aceraceae	ACNE2	native	2	n/a	n/a	n/a	box-elder
Acer platanoides	Aceraceae	ACPL	non- native	0	n/a	n/a	n/a	norway maple
Acer saccharinum	Aceraceae	ACSA2	native	5	n/a	n/a	n/a	silver maple
Agrimonia gryposepala	Rosaceae	AGGR2	native	4	n/a	n/a	n/a	tall hairy agrimony
Agrimonia parviflora	Rosaceae	AGPA6	native	3	n/a	n/a	n/a	harvestlice
Alliaria petiolata	Brassicaceae	ALPE4	non- native	0	n/a	n/a	n/a	garlic- mustard
Alnus serrulata	Betulaceae	ALSE2	native	4	n/a	n/a	n/a	smooth alder
Arisaema triphyllum	Araceae	ARTR	native	5	n/a	n/a	n/a	jack-in-the- pulpit
Artemisia vulgaris	Asteraceae	ARVU	non- native	0	n/a	n/a	n/a	common mugwort
Barbarea vulgaris	Brassicaceae	BAVU	non- native	0	n/a	n/a	n/a	common wintercress
Cardamine impatiens	Brassicaceae	CAIM	non- native	0	n/a	n/a	n/a	narrowleaf bitter cress
Carex amphibola; carex amphibola var. amphibola; carex grisea var. amphibola	Cyperaceae	CAAM8	native	9	n/a	n/a	n/a	eastern narrow-leaf sedge
Carex blanda	Cyperaceae	CABL	native	5	n/a	n/a	n/a	woodland sedge
Carex crinita	Cyperaceae	CACR6	native	5	n/a	n/a	n/a	fringed sedge
Carex gracillima	Cyperaceae	CAGR2	native	7	n/a	n/a	n/a	graceful sedge
Carex rosea	Cyperaceae	CARO22	native	4	n/a	n/a	n/a	rose sedge
Carex stricta	Cyperaceae	CAST8	native	5	n/a	n/a	n/a	tussock sedge

Carex vulpinoidea	Cyperaceae	CAVU2	native	3	n/a	n/a	n/a	fox sedge
Carya glabra	Juglandaceae	CAGL8	native	6	n/a	n/a	n/a	pignut hickory
Celastrus orbiculatus	Celastraceae	CEOR7	non- native	0	n/a	n/a	n/a	oriental bittersweet
Celtis occidentalis	Ulmaceae	CEOC	native	5	n/a	n/a	n/a	hackberry
Cicuta maculata	Apiaceae	CIMA2	native	5	n/a	n/a	n/a	spotted water hemlock
Circaea lutetiana	Onagraceae	CILU	native	3	n/a	n/a	n/a	broad-leaf enchanters- nightshade
Cornus amomum	Cornaceae	COAM2	native	5	n/a	n/a	n/a	silky dogwood
Cryptotaenia canadensis	Apiaceae	CRCA9	native	5	n/a	n/a	n/a	honewort
Dryopteris cristata	Dryopteridaceae	DRCR4	native	8	n/a	n/a	n/a	crested shield fern
Equisetum arvense	Equisetaceae	EQAR	native	2	n/a	n/a	n/a	field horsetail
Erigeron philadelphicus	Asteraceae	ERPH	native	2	n/a	n/a	n/a	philadelphia fleabane
Euthamia graminifolia	Asteraceae	EUGR5	native	2	n/a	n/a	n/a	flat-top goldentop
Festuca sp.	Poaceae	FESTU	non- native	0	n/a	n/a	n/a	fescue
Fraxinus americana	Oleaceae	FRAM2	native	5	n/a	n/a	n/a	white ash
Fraxinus pennsylvanica	Oleaceae	FRPE	native	5	n/a	n/a	n/a	green ash
Geum canadense	Rosaceae	GECA7	native	5	n/a	n/a	n/a	white avens
Glechoma hederacea	Lamiaceae	GLHE2	non- native	0	n/a	n/a	n/a	gill-over- the-ground
Glyceria striata	Poaceae	GLST	native	4	n/a	n/a	n/a	fowl manna grass

Hesperis matronalis	Brassicaceae	HEMA3	non- native	0	n/a	n/a	n/a	dames- rocket
Humulus japonicus	Cannabaceae	ALUH	non- native	0	n/a	n/a	n/a	japanese hops
Impatiens capensis	Balsaminaceae	IMCA	native	3	n/a	n/a	n/a	jewelweed
Juglans nigra	Juglandaceae	JUNI	native	3	n/a	n/a	n/a	black walnut
Juncus effusus	Juncaceae	JUEF	native	2	n/a	n/a	n/a	common rush
Juniperus virginiana	Cupressaceae	JUVI	native	2	n/a	n/a	n/a	eastern red- cedar
Ligustrum vulgare	Oleaceae	LIVU	non- native	0	n/a	n/a	n/a	common privet
Lindera benzoin	Lauraceae	LIBE3	native	5	n/a	n/a	n/a	spicebush
Liriodendron tulipifera	Magnoliaceae	LITU	native	5	n/a	n/a	n/a	tuliptree
Lonicera japonica	Caprifoliaceae	LOJA	non- native	0	n/a	n/a	n/a	japanese honeysuckle
Lonicera morrowii	Caprifoliaceae	LOMO2	non- native	0	n/a	n/a	n/a	morrows honeysuckle
Lycopus virginicus	Lamiaceae	LYVI4	native	4	n/a	n/a	n/a	virginia water horehound
Lysimachia nummularia	Primulaceae	LYNU	non- native	0	n/a	n/a	n/a	creeping jenny
Malus toringo	Rosaceae	MATO6	non- native	0	n/a	n/a	n/a	toringo crabapple
Myosotis scorpioides	Boraginaceae	MYSC	non- native	0	n/a	n/a	n/a	garden forget-me- not
Nasturtium officinale; rorippa nasturtium- aquaticum	Brassicaceae	NAOF	non- native	0	n/a	n/a	n/a	watercress
Nyssa sylvatica	Cornaceae	NYSY	native	4	n/a	n/a	n/a	sourgum

Onoclea sensibilis	Dryopteridaceae	ONSE	native	3	n/a	n/a	n/a	sensitive fern
Phalaris arundinacea	Poaceae	PHAR3	native	1	n/a	n/a	n/a	reed canary- grass
Phragmites australis	Poaceae	PHAU7	non- native	0	n/a	n/a	n/a	common reed
Polygonum cuspidatum; fallopia japonica; reynoutria japonica	Polygonaceae	POCU6	non- native	0	n/a	n/a	n/a	japanese knotweed
Polygonum persicaria	Polygonaceae	POPE3	non- native	0	n/a	n/a	n/a	ladys-thumb
Polygonum sagittatum	Polygonaceae	POSA5	native	3	n/a	n/a	n/a	arrow- leaved tearthumb
Polystichum acrostichoides	Dryopteridaceae	POAC4	native	5	n/a	n/a	n/a	christmas fern
Prunus serotina	Rosaceae	PRSE2	native	2	n/a	n/a	n/a	wild black cherry
Quercus palustris	Fagaceae	QUPA2	native	4	n/a	n/a	n/a	pin oak
Ranunculus abortivus	Ranunculaceae	RAAB	native	2	n/a	n/a	n/a	kidney-leaf buttercup
Ranunculus recurvatus	Ranunculaceae	RARE2	native	5	n/a	n/a	n/a	blisterwort
Ranunculus repens	Ranunculaceae	RARE3	non- native	0	n/a	n/a	n/a	creeping buttercup
Ranunculus sceleratus	Ranunculaceae	RASC3	native	5	n/a	n/a	n/a	cursed buttercup
Robinia pseudoacacia	Fabaceae	ROPS	non- native	0	n/a	n/a	n/a	black locust
Rosa multiflora	Rosaceae	ROMU	non- native	0	n/a	n/a	n/a	multiflora rose
Rosa palustris	Rosaceae	ROPA	native	6	n/a	n/a	n/a	swamp rose
Rubus occidentalis	Rosaceae	RUOC	native	3	n/a	n/a	n/a	black-cap raspberry

NativeNativ									
Sambucus nigra sambucus canadensis; sambucus canadensis; sambucus canadensis; sambucus canadensis; sambucus canadensis; Sambucus canadensis; Sambucus canadensis; Sambucus canadensis; Solidago giganteaCyperaceaeSANIC4 SOCIP nativenative rn/an/an/a n/aameri black elderiSolidago giganteaAsteraceaeSOGInative3n/an/an/agiant goldSolidago giganteaAsteraceaeSOGInative3n/an/an/agiant goldStellaria mediaCaryophyllaceaeSTME2non- native0n/an/an/acomm chickiSymplocarpus foetidusAraceaeSYFOnative5n/an/an/anewy fernToxicodendron radicansAnacardiaceaeTORA2native1n/an/an/anewy fernToxicodendron radicansAnacardiaceaeTVLAnative3n/an/an/anewy fernToxicodendron radicansAnacardiaceaeTVLAnative3n/an/an/anewy fernToxicodendron radicansAnacardiaceaeVIAnative3n/an/an/an/anewy fernToxicodendron radicansCaprifoliaceaeVIAnative3n/an/an/an/an/aTypha latifoliaTyphaceaeVIAnative5n/an/an/an/an/aViburnum dentatum pruni	Rumex obtusifolius	Polygonaceae	RUOB		0	n/a	n/a	n/a	bitter dock
subsp. canadensis: sambucus canadensis:CyperaceaeSCIRPnative7n/an/an/ablack elderSolidago giganteaAsteraceaeSOGInative3n/an/an/agiant goldeStellaria mediaCaryophyllaceaeSTME2non- native0n/an/an/acomm chickSymplocarpus feetidusAraceaeSYFOnative5n/an/an/acbmev chickSymplocarpus feetidusAraceaeTHNOnative4n/an/anew remToxicodendron radicansAnacardiaceaeTORA2native1n/an/an/aperiodTypha latifoliaTyphaceaeTYLAnative3n/an/an/aperiodVeronica anagallis- cuputificiturCaprifoliaceaeVEAN2native5n/an/an/asecthViburnum forunifoliumCaprifoliaceaeVIPRnative5n/an/an/asecthViburnumsp.CaprifoliaceaeVIBURnative7n/an/an/asecthViola cucullataViolaceaeVIBURnative7n/an/an/asecthViola scororiaViolaceaeVISOnative7n/an/an/asecthViola scororiaViolaceaeVISOnative7n/an/an/asecthViola scororiaViolaceaeVISOnative <td>Salix nigra</td> <td>Salicaceae</td> <td>SANI</td> <td>native</td> <td>4</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>black willow</td>	Salix nigra	Salicaceae	SANI	native	4	n/a	n/a	n/a	black willow
Solidago giganteaAsteraceaeSOGInative3n/an/an/agoldeStellaria mediaCaryophyllaceaeSTME2non- native0n/an/an/acomm chickoSymplocarpus foetidusAraceaeSYFOnative5n/an/an/acbickoSymplocarpus foetidusAraceaeSYFOnative5n/an/an/achickoSymplocarpus foetidusThelypteridaceaeTHNOnative4n/an/an/anewy fernToxicodendron radicansAnacardiaceaeTORA2native1n/an/an/apoisoTypha latifollaTyphaceaeTYLAnative3n/an/an/anetterUrtica sp.UrticaceaeURTIC nativenon- native0n/an/an/anetterViburnum dentatum prunifoliumCaprifoliaceaeVIDEnative5n/an/an/asouthViburnum sp.CaprifoliaceaeVIBUR Native7n/an/an/aviburnViolacucullataViolaceaeVIBUR Native7n/an/an/aviburViolaceullataViolaceaeVIBUR Native7n/an/an/aviburViburnum sp.CaprifoliaceaeVIBUR Native7n/an/an/aviburViola cucullataViolaceaeVISO Native3n/an/an/a	subsp. canadensis;	Caprifoliaceae	SANIC4	native	4	n/a	n/a	n/a	american black elderberry
Stellaria media Caryophyllaceae STME2 non- native 0 n/a n/a n/a common chicks Symplocarpus Araceae SYFO native 5 n/a n/a n/a skunk cabba Thelypteris Thelypteridaceae THNO native 4 n/a n/a n/a new y noveboracensis Toxicodendron Anacardiaceae TORA2 native 1 n/a n/a n/a period Typha latifolla Typhaceae TYLA native 3 n/a n/a n/a cattai Urtica sp. Urticaceae URTIC non- native 0 n/a n/a n/a n/a golde Veronica anagallis- veronica comosa Scrophulariaceae VIDE native 5 n/a n/a n/a speed Viburnum dentatum Caprifoliaceae VIDR native 5 n/a n/a n/a ibuen Viburnum sp. Caprifoliaceae VIBUR native 7 n/a n/a n/a vibuen Viol	Scirpus sp.	Cyperaceae	SCIRP	native	7	n/a	n/a	n/a	bulrush
NumbernativechickSymplocarpus foetidusAraceaeSYFOnative5n/an/an/askunk cabbaThelypteris noveboracensisThelypteridaceaeTHNOnative4n/an/an/anew y fernToxicodendron radicansAnacardiaceaeTORA2native1n/an/an/apoisoTypha latifoliaTyphaceaeTYLAnative3n/an/an/abroad cattaiUrtica sp.UrticaceaeURTICnon- native0n/an/an/anettleVeronica anagallis- aquatica; veronica comosaScrophulariaceaeVEAN2native5n/an/an/aseedViburnum dentatumCaprifoliaceaeVIDEnative5n/an/an/ablack-Viburnum sp.CaprifoliaceaeVIBURnative7n/an/an/ablack-Viola cucullataViolaceaeVISOnative6n/an/an/ablue mViola sororiaViolaceaeVISOnative3n/an/an/acomm	Solidago gigantea	Asteraceae	SOGI	native	3	n/a	n/a	n/a	giant goldenrod
foetiduscabbaThelypteris noveboracensisThelypteridaceaeTHNOnative4n/an/an/anew y fernToxicodendron radicansAnacardiaceaeTORA2native1n/an/an/apoisoTypha latifoliaTyphaceaeTYLAnative3n/an/an/abroad 	Stellaria media	Caryophyllaceae	STME2		0	n/a	n/a	n/a	common chickweed
noveboracensis fermination Toxicodendron radicans Anacardiaceae TORA2 native 1 n/a n/a n/a poisor Typha latifolia Typhaceae TYLA native 3 n/a n/a n/a broad cattai Urtica sp. Urticaceae URTIC non- native 0 n/a n/a n/a nettle Veronica anagallis- aquatica; veronica catenata; veronica catenata; veronica Scrophulariaceae VEAN2 native 7 n/a n/a n/a speed Viburnum dentatum Caprifoliaceae VIDE native 5 n/a n/a n/a n/a lackadita Viburnum sp. Caprifoliaceae VIBUR native 7 n/a n/a n/a lackadita Viburnum sp. Caprifoliaceae VIBUR native 7 n/a n/a n/a lackadita Viola cucullata Violaceae VISO native 6 n/a n/a n/a loue moisole		Araceae	SYFO	native	5	n/a	n/a	n/a	skunk cabbage
radicansTypha latifoliaTyphaceaeTYLAnative3n/an/an/acattaiUrtica sp.UrticaceaeURTICnon- native0n/an/an/anettleVeronica anagallis- aquatica: veronica catenata; veronica comosaScrophulariaceaeVEAN2native7n/an/an/aseedViburnum dentatumCaprifoliaceaeVIDEnative5n/an/an/asouth arrowViburnum sp.CaprifoliaceaeVIPRnative7n/an/an/aviburnViola cucullataViolaceaeVICUnative6n/an/an/ablue n violetViola sororiaViolaceaeVISOnative3n/an/an/ablue n 		Thelypteridaceae	THNO	native	4	n/a	n/a	n/a	new york fern
InternationInternatio		Anacardiaceae	TORA2	native	1	n/a	n/a	n/a	poison ivy
nativeVeronica anagallis- aquatica; veronica catenata; veronica comosaScrophulariaceaeVEAN2native7n/an/an/aspeedViburnum dentatum 	Typha latifolia	Typhaceae	TYLA	native	3	n/a	n/a	n/a	broadleaf cattail
aquatica; veronica catenata; veronica comosaspeedViburnum dentatumCaprifoliaceaeVIDEnative5n/an/an/asouth arrowViburnum 	Urtica sp.	Urticaceae	URTIC		0	n/a	n/a	n/a	nettle
ArrowViburnum prunifoliumCaprifoliaceaeVIPRnative5n/an/an/ablack-Viburnum sp.CaprifoliaceaeVIBURnative7n/an/an/aviburnViola cucullataViolaceaeVICUnative6n/an/an/ablue nViola sororiaViolaceaeVISOnative3n/an/an/acomm blue v	aquatica; veronica catenata; veronica	Scrophulariaceae	VEAN2	native	7	n/a	n/a	n/a	water speedwell
prunifoliumViburnum sp.CaprifoliaceaeVIBURnative7n/an/aviburnViola cucullataViolaceaeVICUnative6n/an/an/ablue nViola sororiaViolaceaeVISOnative3n/an/an/acomm blue v	Viburnum dentatum	Caprifoliaceae	VIDE	native	5	n/a	n/a	n/a	southern arrowwood
Viola cucullata Violaceae VICU native 6 n/a n/a blue n Viola sororia Violaceae VISO native 3 n/a n/a comm		Caprifoliaceae	VIPR	native	5	n/a	n/a	n/a	black-haw
violet Viola sororia Violaceae VISO native 3 n/a n/a n/a comm blue v	Viburnum sp.	Caprifoliaceae	VIBUR	native	7	n/a	n/a	n/a	viburnum
blue v	Viola cucullata	Violaceae	VICU	native	6	n/a	n/a	n/a	blue marsh violet
Vitis labrusca Vitaceae VILA8 native 5 n/a n/a n/a fox gr	Viola sororia	Violaceae	VISO	native	3	n/a	n/a	n/a	common blue violet
	Vitis labrusca	Vitaceae	VILA8	native	5	n/a	n/a	n/a	fox grape

universalFQA.org (http://universalFQA.org) | About this site (/about)

Transect/Plot Assessment

Edit This Transect/Plot

Download Report Done

4562 - Reach 1, Plot 1

» Date & Location:

2020-05-27 4562 - Sp Inv Lebanon Borough Hunterdon, New Jersey, United States

» FQA Database:

Region: **New Jersey** Year Published: **2019** Description: Walz, Kathleen S., Linda K Eric Karlin and Jason Haft

Walz, Kathleen S., Linda Kelly, Karl Anderson, Keith Bowman, Barbara Andreas, Richard Andrus, Scott Schuette, William Schumacher, Sean Robinson, Terry O'Brien, Eric Karlin and Jason Hafstad. 2018. Universal Floristic Quality Assessment Index for Vascular Plants and Mosses of New Jersey: Coefficient of Conservancy (CoC) Values for Species and Genera (Updated November 2019). New Jersey Department of Environmental Protection, New Jersey Forest Service, Office of Natural Lands Management, Trenton, NJ, 08625. Submitted to United States Environmental Protection Agency, Region 2, for State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809.

» Details:

Practitioner: **David Kunz** Latitude: 40.646014 Longitude: -74.579675 Community Code: Community Name: Community Type Notes: Degraded Floodplain Woodland Weather Notes: Duration Notes: Environmental Description: Other Notes: This assessment is **private** (viewable only by you).

» Transect/Plot Design:

Transect or Plot: **Plot** Plot Size (m²): 100 Quadrat/Subplot Size (m²): Transect Length (m): Sampling Design Description: Cover Method: Carolina Vegetation Survey

» Conservatism-Based Metrics:

Total Mean C: **2.6** Cover-weighted Mean C: **2.3** Native Mean C: **3.5** Total FQI: **15.4** Native FQI: **17.8** Cover-weighted FQI: **13.6** Cover-weighted Native FQI: **17.8** Adjusted FQI: **30.2** % C value 0: **25.7%** % C value 1-3: **37.1%** % C value 4-6: **37.1%** % C value 7-10: **0%**

» Species Richness:

Total Species: 35 Native Species: 26 (74.3%) Non-native Species: 9 (25.7%)

» Species Wetness:

Mean Wetness: **n/a** Native Mean Wetness: **n/a**

» Duration Metrics:

Annual: **n/a** Perennial: **n/a** Biennial: **n/a**

Native Annual: **n/a** Native Perennial: **n/a** Native Biennial: **n/a**

» Physiognomic Relative Importance Values:

Physiognomy	Frequency	Coverage	Relative Frequency (%)	Relative Coverage (%)	Relative Importance Value
Native tree	n/a	n/a			n/a
Native forb	n/a	n/a			n/a
Non-native forb	n/a	n/a			n/a
Non-native vine	n/a	n/a			n/a
Native vine	n/a	n/a			n/a
Non-native tree	n/a	n/a			n/a
Native shrub	n/a	n/a			n/a
Non-native shrub	n/a	n/a			n/a
Native grass	n/a	n/a			n/a
Non-native grass	n/a	n/a			n/a
Non-native fern	n/a	n/a			n/a
Native bryophyte	n/a	n/a			n/a
Non-native bryophyte	n/a	n/a			n/a
Native fern	n/a	n/a			n/a
Non-native rush	n/a	n/a			n/a
Native sedge	n/a	n/a			n/a
Non-native sedge	n/a	n/a			n/a
Native rush	n/a	n/a			n/a

Species	Family	Acronym	Nativity	с	w	Physiognomy	Duration	Frequency	Coverage	Relative Frequency (%)	Relative Coverage (%)	Relative Importance Value
Elaeagnus umbellata	Elaeagnaceae	ELUM	non- native	0	n/a	n/a	n/a	1	38	2.9	21.8	12.4
Impatiens capensis	Balsaminaceae	IMCA	native	3	n/a	n/a	n/a	1	18	2.9	10.3	6.6
Solidago altissima; solidago canadensis var. scabra	Asteraceae	SOAL6	native	2	n/a	n/a	n/a	1	18	2.9	10.3	6.6
Cornus amomum	Cornaceae	COAM2	native	5	n/a	n/a	n/a	1	18	2.9	10.3	6.6
Quercus palustris	Fagaceae	QUPA2	native	4	n/a	n/a	n/a	1	8	2.9	4.6	3.8
Onoclea sensibilis	Dryopteridaceae	ONSE	native	3	n/a	n/a	n/a	1	8	2.9	4.6	3.8
Phragmites australis	Poaceae	PHAU7	non- native	0	n/a	n/a	n/a	1	8	2.9	4.6	3.8
Fraxinus americana	Oleaceae	FRAM2	native	5	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Parthenocissus quinquefolia	Vitaceae	PAQU2	native	2	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Solidago gigantea	Asteraceae	SOGI	native	3	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Rubus allegheniensis	Rosaceae	RUAL	native	3	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Lindera benzoin	Lauraceae	LIBE3	native	5	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Viburnum prunifolium	Caprifoliaceae	VIPR	native	5	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Lonicera japonica	Caprifoliaceae	LOJA	non- native	0	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Festuca sp.	Poaceae	FESTU	non- native	0	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Arisaema triphyllum	Araceae	ARTR	native	5	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Cardamine impatiens	Brassicaceae	CAIM	non- native	0	n/a	n/a	n/a	1	4	2.9	2.3	2.6
Glyceria striata	Poaceae	GLST	native	4	n/a	n/a	n/a	1	2	2.9	1.1	2
Circaea Iutetiana	Onagraceae	CILU	native	3	n/a	n/a	n/a	1	2	2.9	1.1	2
Eupatorium perfoliatum	Asteraceae	EUPE3	native	4	n/a	n/a	n/a	1	1	2.9	0.6	1.8

» Species Relative Importance Values:

Thelypteris palustris	Thelypteridaceae	THPA	native	4	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Carex stipata	Cyperaceae	CAST5	native	2	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Carex lurida	Cyperaceae	CALU5	native	4	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Euthamia graminifolia	Asteraceae	EUGR5	native	2	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Hesperis matronalis	Brassicaceae	HEMA3	non- native	0	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Acer negundo	Aceraceae	ACNE2	native	2	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Galium aparine	Rubiaceae	GAAP2	native	2	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Carex crinita	Cyperaceae	CACR6	native	5	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Toxicodendron radicans	Anacardiaceae	TORA2	native	1	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Geum canadense	Rosaceae	GECA7	native	5	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Celastrus orbiculatus	Celastraceae	CEOR7	non- native	0	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Duchesnea indica	Rosaceae	DUIN	non- native	0	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Barbarea vulgaris	Brassicaceae	BAVU	non- native	0	n/a	n/a	n/a	1	1	2.9	0.6	1.8
Clematis virginiana	Ranunculaceae	CLVI5	native	5	n/a	n/a	n/a	1	0	2.9	0	1.5
Equisetum arvense	Equisetaceae	EQAR	native	2	n/a	n/a	n/a	1	0	2.9	0	1.5

» Quadrat/Subplot Level Metrics:

Quadrat/Subplot	Species Richness	Native Species Richness	Total Mean C	Native Mean C	Total FQI	Native FQI	Cover- weighted FQI	Cover- weighted Native FQI	Adjusted FQI	Mean Wetness	Mean Native Wetness	Latitude	Longitude
FullTransectPlot	35	26	2.6	3.5	15.4	17.8	13.6	17.8	30.2	n/a	n/a	n/a	n/a
Average	35	26	2.6	3.5	15.4	17.8	13.6	17.8	30.2	0	0	n/a	n/a
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	n/a	n/a

» Quadrat/Subplot FullTransectPlot Species:

Scientific Name	Family	Acronym	% Cover	Cover Range (Midpt)	Nativity	с	w	Physiognomy	Duration	Common Name
Acer negundo	Aceraceae	ACNE2	1	3: 1-2% (1.5)	native	2	n/a	n/a	n/a	box-elder
Arisaema triphyllum	Araceae	ARTR	4	4: 2-5% (3.5)	native	5	n/a	n/a	n/a	jack-in-the- pulpit
Barbarea vulgaris	Brassicaceae	BAVU	1	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	common wintercress

Cardamine impatiens	Brassicaceae	CAIM	4	4: 2-5% (3.5)	non- native	0	n/a	n/a	n/a	narrowleaf bitter cress
Carex crinita	Cyperaceae	CACR6	1	3: 1-2% (1.5)	native	5	n/a	n/a	n/a	fringed sedge
Carex lurida	Cyperaceae	CALU5	1	3: 1-2% (1.5)	native	4	n/a	n/a	n/a	sallow sedge
Carex stipata	Cyperaceae	CAST5	1	3: 1-2% (1.5)	native	2	n/a	n/a	n/a	awl-fruited sedge
Celastrus orbiculatus	Celastraceae	CEOR7	1	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	oriental bittersweet
Circaea lutetiana	Onagraceae	CILU	2	3: 1-2% (1.5)	native	3	n/a	n/a	n/a	broad-leaf enchanters- nightshade
Clematis virginiana	Ranunculaceae	CLVI5	0	2: 0.1-1% (0.55)	native	5	n/a	n/a	n/a	virgins- bower
Cornus amomum	Cornaceae	COAM2	18	6: 10-25% (17.5)	native	5	n/a	n/a	n/a	silky dogwood
Duchesnea indica	Rosaceae	DUIN	1	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	indian strawberry
Elaeagnus umbellata	Elaeagnaceae	ELUM	38	7: 25-50% (37.5)	non- native	0	n/a	n/a	n/a	autumn- olive
Equisetum arvense	Equisetaceae	EQAR	0	2: 0.1-1% (0.55)	native	2	n/a	n/a	n/a	field horsetail
Eupatorium perfoliatum	Asteraceae	EUPE3	1	3: 1-2% (1.5)	native	4	n/a	n/a	n/a	boneset
Euthamia graminifolia	Asteraceae	EUGR5	1	3: 1-2% (1.5)	native	2	n/a	n/a	n/a	flat-top goldentop
Festuca sp.	Poaceae	FESTU	4	4: 2-5% (3.5)	non- native	0	n/a	n/a	n/a	fescue
Fraxinus americana	Oleaceae	FRAM2	4	4: 2-5% (3.5)	native	5	n/a	n/a	n/a	white ash
Galium aparine	Rubiaceae	GAAP2	1	3: 1-2% (1.5)	native	2	n/a	n/a	n/a	stickywilly
Geum canadense	Rosaceae	GECA7	1	3: 1-2% (1.5)	native	5	n/a	n/a	n/a	white avens
Glyceria striata	Poaceae	GLST	2	3: 1-2% (1.5)	native	4	n/a	n/a	n/a	fowl manna grass
Hesperis matronalis	Brassicaceae	HEMA3	1	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	dames- rocket
Impatiens capensis	Balsaminaceae	IMCA	18	6: 10-25% (17.5)	native	3	n/a	n/a	n/a	jewelweed
Lindera benzoin	Lauraceae	LIBE3	4	4: 2-5% (3.5)	native	5	n/a	n/a	n/a	spicebush
Lonicera japonica	Caprifoliaceae	LOJA	4	4: 2-5% (3.5)	non- native	0	n/a	n/a	n/a	japanese honeysuckle
Onoclea sensibilis	Dryopteridaceae	ONSE	8	5: 5-10% (7.5)	native	3	n/a	n/a	n/a	sensitive fern
Parthenocissus quinquefolia	Vitaceae	PAQU2	4	4: 2-5% (3.5)	native	2	n/a	n/a	n/a	virginia- creeper
Phragmites australis	Poaceae	PHAU7	8	5: 5-10% (7.5)	non- native	0	n/a	n/a	n/a	common reed

Quercus palustris	Fagaceae	QUPA2	8	5: 5-10% (7.5)	native	4	n/a	n/a	n/a	pin oak
Rubus allegheniensis	Rosaceae	RUAL	4	4: 2-5% (3.5)	native	3	n/a	n/a	n/a	allegheny blackberry
Solidago altissima; solidago canadensis var. scabra	Asteraceae	SOAL6	18	6: 10-25% (17.5)	native	2	n/a	n/a	n/a	canada goldenrod
Solidago gigantea	Asteraceae	SOGI	4	4: 2-5% (3.5)	native	3	n/a	n/a	n/a	giant goldenrod
Thelypteris palustris	Thelypteridaceae	THPA	1	3: 1-2% (1.5)	native	4	n/a	n/a	n/a	eastern marsh fern
Toxicodendron radicans	Anacardiaceae	TORA2	1	3: 1-2% (1.5)	native	1	n/a	n/a	n/a	poison ivy
Viburnum prunifolium	Caprifoliaceae	VIPR	4	4: 2-5% (3.5)	native	5	n/a	n/a	n/a	black-haw

universalFQA.org (http://universalFQA.org) | About this site (/about)

Transect/Plot Assessment

Edit This Transect/Plot

Download Report Done

4562 - Reach 2, Plot 2

» Date & Location:

2020-05-27 4562 - Sp Inv Lebanon Borough Hunterdon, New Jersey, United States

» FQA Database:

Region: **New Jersey** Year Published: **2019** Description: Walz Kathleen S Linda

Walz, Kathleen S., Linda Kelly, Karl Anderson, Keith Bowman, Barbara Andreas, Richard Andrus, Scott Schuette, William Schumacher, Sean Robinson, Terry O'Brien, Eric Karlin and Jason Hafstad. 2018. Universal Floristic Quality Assessment Index for Vascular Plants and Mosses of New Jersey: Coefficient of Conservancy (CoC) Values for Species and Genera (Updated November 2019). New Jersey Department of Environmental Protection, New Jersey Forest Service, Office of Natural Lands Management, Trenton, NJ, 08625. Submitted to United States Environmental Protection Agency, Region 2, for State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809.

» Details:

Practitioner: **David Kunz** Latitude: 40.641378 Longitude: -74.824516 Community Code: Community Name: Community Type Notes: Degraded Floodplain Woodland Weather Notes: Duration Notes: Environmental Description: Other Notes: This assessment is **private** (viewable only by you).

» Transect/Plot Design:

Transect or Plot: **Plot** Plot Size (m²): 100 Quadrat/Subplot Size (m²): Transect Length (m): Sampling Design Description: Cover Method: Carolina Vegetation Survey

» Conservatism-Based Metrics:

Total Mean C: 2.3 Cover-weighted Mean C: 1.7 Native Mean C: 3.8 Total FQI: 13 Native FQI: 17 Cover-weighted FQI: 9.6 Cover-weighted Native FQI: 17.4 Adjusted FQI: 30 % C value 0: 37.5% % C value 1-3: 28.1% % C value 4-6: 31.3% % C value 7-10: 3.1%

» Species Richness:

Total Species: **32** Native Species: **20 (62.5%)** Non-native Species: **12 (37.5%)**

» Species Wetness:

Mean Wetness: **n/a** Native Mean Wetness: **n/a**

» Duration Metrics:

Annual: **n/a** Perennial: **n/a** Biennial: **n/a**

Native Annual: **n/a** Native Perennial: **n/a** Native Biennial: **n/a**

» Physiognomic Relative Importance Values:

Physiognomy	Frequency	Coverage	Relative Frequency (%)	Relative Coverage (%)	Relative Importance Value
Native tree	n/a	n/a			n/a
Native forb	n/a	n/a			n/a
Non-native forb	n/a	n/a			n/a
Non-native vine	n/a	n/a			n/a
Native vine	n/a	n/a			n/a
Non-native tree	n/a	n/a			n/a
Native shrub	n/a	n/a			n/a
Non-native shrub	n/a	n/a			n/a
Native grass	n/a	n/a			n/a
Non-native grass	n/a	n/a			n/a
Non-native fern	n/a	n/a			n/a
Native bryophyte	n/a	n/a			n/a
Non-native bryophyte	n/a	n/a			n/a
Native fern	n/a	n/a			n/a
Non-native rush	n/a	n/a			n/a
Native sedge	n/a	n/a			n/a

Non-native sedge	n/a	n/a	n/a
Native rush	n/a	n/a	n/a

» Species Relative Importance Values:

Species	Family	Acronym	Nativity	с	w	Physiognomy	Duration	Frequency	Coverage	Relative Frequency (%)	Relative Coverage (%)	Relative Importance Value
Rosa multiflora	Rosaceae	ROMU	non- native	0	n/a	n/a	n/a	1	63	3.1	22	12.6
Impatiens capensis	Balsaminaceae	IMCA	native	3	n/a	n/a	n/a	1	63	3.1	22	12.6
Robinia pseudoacacia	Fabaceae	ROPS	non- native	0	n/a	n/a	n/a	1	38	3.1	13.3	8.2
Glechoma hederacea	Lamiaceae	GLHE2	non- native	0	n/a	n/a	n/a	1	18	3.1	6.3	4.7
Lindera benzoin	Lauraceae	LIBE3	native	5	n/a	n/a	n/a	1	18	3.1	6.3	4.7
Polygonum cuspidatum; fallopia japonica; reynoutria japonica	Polygonaceae	POCU6	non- native	0	n/a	n/a	n/a	1	18	3.1	6.3	4.7
Laportea canadensis	Urticaceae	LACA3	native	6	n/a	n/a	n/a	1	18	3.1	6.3	4.7
Alliaria petiolata	Brassicaceae	ALPE4	non- native	0	n/a	n/a	n/a	1	18	3.1	6.3	4.7
Cryptotaenia canadensis	Apiaceae	CRCA9	native	5	n/a	n/a	n/a	1	8	3.1	2.8	3
Acer negundo	Aceraceae	ACNE2	native	2	n/a	n/a	n/a	1	4	3.1	1.4	2.3
Festuca sp.	Poaceae	FESTU	non- native	0	n/a	n/a	n/a	1	2	3.1	0.7	1.9
Lonicera japonica	Caprifoliaceae	LOJA	non- native	0	n/a	n/a	n/a	1	2	3.1	0.7	1.9
Parthenocissus quinquefolia	Vitaceae	PAQU2	native	2	n/a	n/a	n/a	1	2	3.1	0.7	1.9
Lysimachia nummularia	Primulaceae	LYNU	non- native	0	n/a	n/a	n/a	1	2	3.1	0.7	1.9
Vitis labrusca	Vitaceae	VILA8	native	5	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Toxicodendron radicans	Anacardiaceae	TORA2	native	1	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Duchesnea indica	Rosaceae	DUIN	non- native	0	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Carex rosea	Cyperaceae	CARO22	native	4	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Geum canadense	Rosaceae	GECA7	native	5	n/a	n/a	n/a	1	1	3.1	0.3	1.7

Symplocarpus foetidus	Araceae	SYFO	native	5	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Circaea Iutetiana	Onagraceae	CILU	native	3	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Hesperis matronalis	Brassicaceae	HEMA3	non- native	0	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Glyceria striata	Poaceae	GLST	native	4	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Rubus occidentalis	Rosaceae	RUOC	native	3	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Carex amphibola; carex amphibola var. amphibola; carex grisea var. amphibola	Cyperaceae	CAAM8	native	9	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Rubus phoenicolasius	Rosaceae	RUPH	non- native	0	n/a	n/a	n/a	1	1	3.1	0.3	1.7
Geranium maculatum	Geraniaceae	GEMA	native	5	n/a	n/a	n/a	1	0	3.1	0	1.6
Polygonum virginianum	Polygonaceae	POVI2	native	4	n/a	n/a	n/a	1	0	3.1	0	1.6
Hypericum punctatum	Clusiaceae	HYPU	native	1	n/a	n/a	n/a	1	0	3.1	0	1.6
Ligustrum vulgare	Oleaceae	LIVU	non- native	0	n/a	n/a	n/a	1	0	3.1	0	1.6
Phalaris arundinacea	Poaceae	PHAR3	native	1	n/a	n/a	n/a	1	0	3.1	0	1.6
Ranunculus	Ranunculaceae	RAAB	native	2	n/a	n/a	n/a	1	0	3.1	0	1.6

» Quadrat/Subplot Level Metrics:

Quadrat/Subplot	Species Richness	Native Species Richness	Total Mean C	Native Mean C	Total FQI	Native FQI	Cover- weighted FQI	Cover- weighted Native	Adjusted FQI	Mean Wetness	Mean Native Wetness	Latitude	Longitude
								FQI					
FullTransectPlot	32	20	2.3	3.8	13	17	9.6	17.4	30	n/a	n/a	n/a	n/a
Average	32	20	2.3	3.8	13	17	9.6	17.4	30	0	0	n/a	n/a
Standard Deviation	0	0	0	0	0	0	0	0	0	0	0	n/a	n/a

» Quadrat/Subplot FullTransectPlot Species:

Acer negundo	Aceraceae	ACNE2	4	4: 2-5% (3.5)	native	2	n/a	n/a	n/a	box-elder
Alliaria petiolata	Brassicaceae	ALPE4	18	6: 10-25% (17.5)	non- native	0	n/a	n/a	n/a	garlic- mustard
Carex amphibola; carex amphibola var. amphibola; carex grisea var. amphibola	Cyperaceae	CAAM8	1	3: 1-2% (1.5)	native	9	n/a	n/a	n/a	eastern narrow-leaf sedge
Carex rosea	Cyperaceae	CARO22	1	3: 1-2% (1.5)	native	4	n/a	n/a	n/a	rose sedge
Circaea lutetiana	Onagraceae	CILU	1	3: 1-2% (1.5)	native	3	n/a	n/a	n/a	broad-leaf enchanters- nightshade
Cryptotaenia canadensis	Apiaceae	CRCA9	8	5: 5-10% (7.5)	native	5	n/a	n/a	n/a	honewort
Duchesnea indica	Rosaceae	DUIN	1	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	indian strawberry
Festuca sp.	Poaceae	FESTU	2	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	fescue
Geranium maculatum	Geraniaceae	GEMA	0	2:0.1-1% (0.55)	native	5	n/a	n/a	n/a	wood geranium
Geum canadense	Rosaceae	GECA7	1	3: 1-2% (1.5)	native	5	n/a	n/a	n/a	white avens
Glechoma hederacea	Lamiaceae	GLHE2	18	6: 10-25% (17.5)	non- native	0	n/a	n/a	n/a	gill-over- the-ground
Glyceria striata	Poaceae	GLST	1	3: 1-2% (1.5)	native	4	n/a	n/a	n/a	fowl manna grass
Hesperis matronalis	Brassicaceae	HEMA3	1	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	dames- rocket
Hypericum punctatum	Clusiaceae	HYPU	0	2: 0.1-1% (0.55)	native	1	n/a	n/a	n/a	spotted st. johns-wort
Impatiens capensis	Balsaminaceae	IMCA	63	8: 50-75% (62.5)	native	3	n/a	n/a	n/a	jewelweed
Laportea canadensis	Urticaceae	LACA3	18	6: 10-25% (17.5)	native	6	n/a	n/a	n/a	wood-nettle
Ligustrum vulgare	Oleaceae	LIVU	0	2: 0.1-1% (0.55)	non- native	0	n/a	n/a	n/a	common privet
Lindera benzoin	Lauraceae	LIBE3	18	6: 10-25% (17.5)	native	5	n/a	n/a	n/a	spicebush
Lonicera japonica	Caprifoliaceae	LOJA	2	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	japanese honeysuckle
Lysimachia nummularia	Primulaceae	LYNU	2	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	creeping jenny
Parthenocissus quinquefolia	Vitaceae	PAQU2	2	3: 1-2% (1.5)	native	2	n/a	n/a	n/a	virginia- creeper
Phalaris arundinacea	Poaceae	PHAR3	0	2:0.1-1%	native	1	n/a	n/a	n/a	reed canary-

Polygonum cuspidatum; fallopia japonica; reynoutria japonica	Polygonaceae	POCU6	18	6: 10-25% (17.5)	non- native	0	n/a	n/a	n/a	japanese knotweed
Polygonum virginianum	Polygonaceae	POVI2	0	2:0.1-1% (0.55)	native	4	n/a	n/a	n/a	jumpseed
Ranunculus abortivus	Ranunculaceae	RAAB	0	2: 0.1-1% (0.55)	native	2	n/a	n/a	n/a	kidney-leaf buttercup
Robinia pseudoacacia	Fabaceae	ROPS	38	7: 25-50% (37.5)	non- native	0	n/a	n/a	n/a	black locust
Rosa multiflora	Rosaceae	ROMU	63	8: 50-75% (62.5)	non- native	0	n/a	n/a	n/a	multiflora rose
Rubus occidentalis	Rosaceae	RUOC	1	3: 1-2% (1.5)	native	3	n/a	n/a	n/a	black-cap raspberry
Rubus phoenicolasius	Rosaceae	RUPH	1	3: 1-2% (1.5)	non- native	0	n/a	n/a	n/a	wineberry
Symplocarpus foetidus	Araceae	SYFO	1	3: 1-2% (1.5)	native	5	n/a	n/a	n/a	skunk cabbage
Toxicodendron radicans	Anacardiaceae	TORA2	1	3: 1-2% (1.5)	native	1	n/a	n/a	n/a	poison ivy
Vitis labrusca	Vitaceae	VILA8	1	3: 1-2% (1.5)	native	5	n/a	n/a	n/a	fox grape

universalFQA.org (http://universalFQA.org) | About this site (/about)

LEBANON BOROUGH PLANNING BOARD BOARD OF ADJUSTMENT

Tuesday, December 8, 2020 7 pm

- 1. Open Meeting
- 2. Open Public Meetings Act This Meeting has been convened in compliance with the Open Public Meetings Act. Three local newspapers were notified, and a notice has been posted at Borough Hall.
- 3. Pledge of Allegiance:
- 4. Moment of Silence
- 5. Roll Call:
- 6. Minutes Approval: November 2020
- 7. Expenditure Approval
- 8. Master Plan Hearing, Functional Value Assessment and Stream Corridor Plan. Sub-element of Conservation Plan Element
- 9. Resolution Functional Value Assessment and Stream Corridor Plan.
- 10. Public Hearing on Proposed Non- Condemnation Area in need of Redevelopment study for:

Block 4, Lot 1.01 (100 Corporate Drive); Block 4, Lot 1.02 (200 Corporate Drive); Block 4, Lot 1.03 (400 Corporate Drive); Block 4, Lot 1.04 (500 Corporate Drive); Block 4, Lot 1.05 (600 Corporate Drive); Block 4, Lot 2 (19 Cokesbury Road); Block 4, Lot 5 (11 Cokesbury Road); Block 4, Lot 7 (1266 Highway 22); Block 4, Lot 8 (1262-1264 Highway 22); and,

Block 4, Lot 9 (1258-1264 Highway 22), and Block 4, Lot 9 (1258-1260 Highway 22).

- 11. Resolution Public Hearing on Proposed Non- Condemnation Area in need of Redevelopment Study
- 12. Pellegrino Block 7 Lot 16 Variance for Accessor Structure
- 13. Discussion: Waving the Variance process for outdoor tents for Restaurants
- 12. Miscellaneous:
- 13. Public Comment:
- 14. Adjournment:

RESOLUTION ADOPTING THE 2020 FUNCTIONAL VALUE ASSESSMENT AND STREAM CORRIDOR PLAN SUB-ELEMENT OF THE CONSERVATION PLAN ELEMENT OF THE BOROUGH OF LEBANON MASTER PLAN

RESOLUTION 2020-10

WHEREAS, upon notice duly provided pursuant to <u>N.J.S.A.</u> 40:55D-13, the Lebanon Borough Planning Board (the "Board") held a public hearing on December 8, 2020 on the adoption of a proposed sub-element of the Conservation Plan Element of the Borough of Lebanon Master Plan, specifically, the 2020 Functional Value Assessment and Stream Corridor Plan Sub-Element of the Conservation Plan Element of the Borough of Lebanon Master Plan; and

WHEREAS, upon the conclusion of the public hearing, the Board determined that the 2020 Functional Value Assessment and Stream Corridor Plan Sub-Element of the Conservation Plan Element was consistent with the goals and objectives of the Conservation Plan Element as well as the other elements of the Master Plan, is consistent with the New Jersey State Highlands Council Regional Master Plan, and will guide the use of lands in the municipality in a manner which protects public health and safety and promotes the general welfare in accordance with N.J.S.A. 40:55D-28;

NOW THEREFORE BE IT RESOLVED, by motion duly made and seconded by the Board on December 8, 2020 that the Board hereby adopts the 2020 Functional Value Assessment and Stream Corridor Plan as a Sub-Element of the Conservation Plan Element of the Borough of Lebanon Master Plan.

BE IT FURTHER RESOLVED that a copy of this resolution, and the 2020 Functional Value Assessment and Stream Corridor Plan Sub-Element of the Conservation Plan Element of the Borough of Lebanon Master Plan shall be submitted by the Planning Board Secretary to: the Mayor and Borough Council via the Lebanon Clerk; the municipal clerks of each and every adjoining municipality; and the Hunterdon County Planning Board; and the New Jersey State Highlands Council not more than 30 days after the date of the adoption of this resolution.

* * *

The above resolution was adopted on December 8, 2020 by the following vote of Board members:

Member	Yes	No	<u>Abstain</u>	<u>Absent</u>
SAHARIC	X			
UCURIN	Х			
HOPKINS	Х			
ABELES	X			
LAPCYNSKI				Χ
HAUCK	X			
WISON				X
SKENE	X			
PITTINGER	X			
BERGER	Х			

1 0 ALEX SAHARIC, Chairperson

ATTEST: KAREN ROMANO, Secretary DATE ADOPTED: December 8, 2020