LACEYTOWNSHIP

Feasibility Study for New Power Generation Facility
Objectives of Study

• To assess the feasibility of locating a power generation facility on the Subject Site, known as Block 1001, Lot 4.06, Lacey Township
Site Description

• Total site area is approximately 528.7 acres

• Existing development includes 19 buildings of varying sizes, roadways, parking areas and previously disturbed land areas within the interior of the site

• Bounded by the Garden State Parkway right-of-way to the west, Oyster Creek Nuclear Generating Station to the east, and vacant land to the north and south
Environmental Constraints

- Floodplains (FEMA Zone “A” and “AE”)
- Wetlands and wetlands buffer areas
- Threatened and Endangered Species Habitat
- Riparian Zones along stream segments
Development of Constraints & NJDEP Environmental Permits

• Existing Utility Easements
 • JCP&L, Atlantic City Electric, Lacey Municipal Utilities Authority and the Oyster Creek Power Generating Station

• Permits
 • CAFRA Individual Permit
 • Freshwater Wetlands Permit
 • Flood Hazard Area Permit
 • Stormwater Management Approval
CAFRA Industrial Node

• Existing permitted Impervious coverage: Approximately 22 acres

• Potential impervious coverage limitation with Industrial Node: 184 acres

• Requires State Plan Policy Map and NJDEP Map Amendments
CAFRA Industrial Node

- Plan Endorsement
 - Cost: $200,000-$350,000
 - Timeframe for Approval: 3-5 years

- Other Potential Option: Work with County and State for Map Amendment without going through Plan Endorsement
 - Salem County did this for PSEG Site on Artificial Island
Zoning

• Existing Zoning Designation: M-100 Industrial Zone
 • Electric generating stations are a permitted use

• Alternative Option: Redevelopment
 • May create opportunities for funding and make the site more attractive for development.
 • Area in Need of Redevelopment Study and Plan.
Findings and Key Issues

• Site is suitable for a power generation facility

• CAFRA Individual Permit impervious coverage limitation
 • Designation as Industrial Node

• Obtaining industrial water sewer
Questions an Investor would Ask?

• What market(s) do I want to serve?:
 • Geographic
 • Products (Energy, Capacity, Ancillary Service or Emission Allowances or Emission Credits)
• Generator type (base, load following, peaker)
• Is there a potential plant site offering:
 • Access to high voltage transmission?
 • Water for cooling?
• Access to fuel (e.g. high pressure gas)?
• How much capacity do I want/need?
• What should the design be?
• What type of fuel will I burn?
• What will it cost to design, permit, build and operate?
• What can I expect to earn from this investment?
Generator Companies Products and Services

A generator a/k/a “merchant generator” sells a range of products and services to power marketers, local distribution utilities and aggregators, who re-sell to retail customers. These products and services include:

- Energy
- Capacity
- Ancillary Services
- Emissions Allowances and Congestion Credits
Types of Generating Plants

- **Base Load Units**
 - Operate whenever they are available
 - Derive revenue from “Energy” and “Capacity” sales
 - Variable operating costs are low due to:
 - Highly efficient operation
 - Low cost fuels
 - In the northeast US, historically have been nuclear and coal
 - Operate above 80% of the time

- **Load Following (or Mid Merit) Units**
 - Operate between 20% and 80% of the time
 - Derive revenue from “Energy”, Capacity” and “Ancillary Services”
 - Operating cost are higher due to lower efficiency and/or higher cost fuels such as oil, natural gas and in some cases coal

- **Peaking Units**
 - Run the least amount of the time (<20%)
 - Utilize higher priced fuels
 - Costs per kWh produced tend to be much higher than base load units
 - Majority of revenues are from capacity and ancillary service sales
 - Characteristics of these units enable them to capture energy revenue during period of high energy prices
Replacement Generating Plant – Fuel Types Considered

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>Low Operating Cost
More Job Creation
Suitable for Base Load Operation</td>
<td>High Capital Cost
Extensive and Lengthy Permitting Process
Lengthy Engineering & Construction Period
Extensive Water Requirements for Cooling
Spent Fuel Disposal Challenges
Safety Concerns in Densely Populated Areas
Public Sentiment is overwhelmingly Negative</td>
</tr>
<tr>
<td>Coal</td>
<td>Historically Low Operating Cost
Suitable for Base Load Operation</td>
<td>High Capital Cost
Air Emissions need expensive mitigation
Lengthy Permitting Process
Messy Logistics of Coal Transport in, and Ash Transport out of site
Public Sentiment is overwhelmingly Negative</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Relatively Lower Capital Cost
Environmental Issues Favorable versus Nuke and Coal
Mid Level Operating Costs
Land Requirements
Base Load/Load Following Operation</td>
<td>Low Job Creation</td>
</tr>
<tr>
<td>Oil</td>
<td>Non-domestic fuel, volatile pricing
No means of getting it to site in bulk
Dirtier than natural gas
Load Following or Peaking Operation</td>
<td></td>
</tr>
<tr>
<td>Biomass/Trash</td>
<td>Renewable</td>
<td>High Capital Cost
Truck traffic into and out of plant
Material Handling and Storage
Ash disposal
Emissions</td>
</tr>
<tr>
<td>Solar</td>
<td>Renewable
No air emissions</td>
<td>High Capital Cost
Limited Operating Hours
Extensive Land Requirements
Peaking Operation Only</td>
</tr>
<tr>
<td>Wind</td>
<td>Renewable
No air emissions</td>
<td>High Capital Cost
Unreliable Wind Resource
Public Sentiment is Generally Negative</td>
</tr>
</tbody>
</table>
Simple Schematic for a Natural Gas Combined Cycle Generating Station

Two Generators – One a Combustion Turbine that is fueled by Gas, One a Steam Turbine that is driven by High Pressure Steam
Generating Plant Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Oyster Creek</th>
<th>New Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size in MW</td>
<td>625</td>
<td>650 – 850</td>
</tr>
<tr>
<td>Fuel</td>
<td>Nuclear</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>Cycle</td>
<td>Boiling Water Reactor</td>
<td>Combined Cycle (combustion and steam turbines)</td>
</tr>
<tr>
<td>Type</td>
<td>Base Load</td>
<td>Base Load / Load Following</td>
</tr>
<tr>
<td>Revenue Sources</td>
<td>Capacity and Energy</td>
<td>Capacity, Energy and Ancillary Services</td>
</tr>
<tr>
<td>Load Factor</td>
<td>90 – 95%</td>
<td>80%</td>
</tr>
<tr>
<td>Permanent Jobs</td>
<td>700</td>
<td>25 - 30</td>
</tr>
<tr>
<td>Local Tax or PILOT</td>
<td>$2.2 million</td>
<td>$2.0 - $3.0 million</td>
</tr>
<tr>
<td>Gross Receipts and Franchise Tax / Energy Tax & TEFA</td>
<td>$11 million</td>
<td>$11 million</td>
</tr>
</tbody>
</table>
QUESTIONS?