TABLE OF CONTENTS

1.0 PROJECT BACKGROUND... 1
2.0 PROJECT SCOPE .. 2
3.0 SITE LOCATION & PROJECT DESCRIPTION.. 3
4.0 GEOLOGIC SETTING .. 4
5.0 SUBSURFACE FIELD PROGRAM... 5
 5.1 Test Pits... 5
 5.2 SPT Borings .. 6
 5.3 Laboratory Testing... 6
6.0 SUBSURFACE CONDITIONS ... 8
7.0 GEOTECHNICAL SUBSURFACE PARAMETERS .. 11
8.0 STRUCTURAL INSPECTION ... 13
 8.1 Existing Building Foundations.. 13
 8.2 Existing Equipment.. 14
 8.3 Site Observations... 15
 8.4 Elevation Requirements.. 16
 8.5 Recommendations for Building Elevation.. 16
9.0 CLOSURE ... 19
10.0 REPRESENTATIVE SITE PHOTOS .. 20

FIGURES

1. Site Location Map
2. As-Drilled Boring & Test Pit Location Plan
3. Bedrock Geology Location Map
4. Surficial Geology Location Map

APPENDICES

A. Soil Boring & Test Pit Logs
B. Soil Classification Tables
C. Geotechnical Laboratory Testing Results
D. FEMA NFIP Elevation Certificate
1.0 PROJECT BACKGROUND

The State of New Jersey Department of Community Affairs (DCA), Division of Disaster Recovery and Mitigation, anticipates receiving approval for grant funding through FEMA’s Flood Mitigation Assistance (FMA) appropriation. This funding is provided through FMA to states and local communities to reduce or eliminate flood risk due to repetitive flood damage to buildings insured by the National Flood Insurance Program (NFIP). The DCA intends to use the funding for the State’s Mitigation Assistance Program (MAP) to elevate residential properties located in a floodplain in the Township of Fairfield. The properties are to be elevated at least 3 feet above the base flood elevation (BFE). The DCA hosted a town hall meeting for homeowners in Fairfield, focused on homeowners with properties that experience Repetitive Losses or Severe Repetitive Losses.

In preparation of procuring a Design-Build firm to conduct the effort, the DCA has contracted Matrix New World Engineering, Land Surveying and Landscape Architecture, P.C. (Matrix) to conduct a geotechnical analysis, preliminary structural analysis, and elevation certificate for residences anticipated to be included in the program. It is understood that this document will serve as the basis for the development of a Request for Proposal (RFP) to procure Design-Build firms to do final structural design and perform the elevation of the properties.
2.0 PROJECT SCOPE

Matrix has completed a geotechnical and structural assessment and elevation certificate to evaluate the viability of elevating the residential building located at 93 Glenroy Road East in Fairfield, New Jersey (Site). Matrix provided geotechnical and structural engineering and land surveying services as a consultant to the DCA. The project location is shown on the attached Site Location Map (Figure 1).

The purpose of the engineering study was to compile comprehensive data regarding the existing building’s foundations and overall structural composition and condition at the Site. The information obtained will be further utilized to determine the feasibility and proposed design of raising the existing residence 3 feet above the base flood elevation (BFE) as determined by FEMA. A team of Matrix engineers and surveyors performed the evaluation, consisting of a geotechnical soil inspection, test pits to reveal the existing building foundations, an interior inspection of the building’s visible foundation walls and frame, and topographic surveying for the development of a flood elevation certificate. One test pit (TP-1) was completed to a depth of 48 inches below the ground surface (bgs) and 2 geotechnical borings (B-1 and B-2) were completed to a depth of 27 feet bgs (see Figure 2).

Matrix’s geotechnical characterization of the property is based on an engineering evaluation of the subsurface conditions as indicated by the field exploration data and geotechnical laboratory test results on representative soil samples.
3.0 SITE LOCATION & PROJECT DESCRIPTION

The project site is located at 93 Glenroy Road East in Fairfield, New Jersey. The property consists of a two-story timber-frame colonial-style house with an approximately 2,130 square foot footprint. The house is situated atop concrete masonry unit (CMU) foundation walls on assumed cast-in-place concrete foundations. The residence contains a basement area that encompasses the entire living area footprint, as well as an attached garage on the west side of the building. The timber frame of the structure is covered in brick façade throughout its front exterior on the garage and first floor, while the rest of the building is covered in vinyl or polymer shingle siding.

To assist with the geotechnical and structural evaluation, test pits and geotechnical borings were advanced in areas around the residence to obtain information regarding the soil’s structural properties and building’s existing foundation. The test pit and 2 borings were located to provide the most useful information about the subsurface conditions. Refer to Figure 2 of this report for a map of the test pit and boring locations.
4.0 GEOLOGIC SETTING

According to the USDA Soil Survey of Essex County, the site is entirely situated atop Horseneck-Urban land. The subsurface composition is typically sand and loamy sands from 8 to 60 inches bgs.

According to the 2014 Bedrock Geologic Map of New Jersey, the Site is underlain by the Sedimentary and Bedded Volcanic Rocks Towaco Formation. Specifically, the subsurface consists of micaceous, reddish-brown sandstone, siltstone, and silty mudstone in upward-fining sequences. The Bedrock Geologic Map is shown in Figure 3.

From the Surficial Geologic Map of Northern New Jersey, compiled by and edited by Byron D. Stone, Scott D. Stanford, and Ron W. White in 2002, the natural surface material (beyond fill) is suggested to be in the Alluvium deposit, which consists of poorly sorted Gravel and Sand overlain by laminated and thinly bedded Sand, Silt and Clay. The Surficial Geology map is shown in Figure 4.

The documented site conditions presented above are consistent with the findings from the subsurface investigation, in which Sand overlayed a layer of Clay, followed by a lower layer of Sand. Groundwater was encountered in the borings at approximately 8 to 10 feet bgs. Bedrock was not encountered during this subsurface program.
5.0 SUBSURFACE FIELD PROGRAM
The subsurface investigation was completed by generally accepted practices in the Geotechnical Engineering field and consisted of the advancement of 1 test pit and 2 Standard Penetration Test (SPT) borings using mud rotary drilling methods. Matrix retained Boring Brothers, Inc., located in Egg Harbor Township, NJ, to complete the subsurface field program.

A Matrix Geotechnical Engineer provided full-time drilling oversight, soil logging, and sample collection. Matrix prepared the field test pit and boring logs, which included sample depths, SPT-N blow counts, soil recovery, and soil descriptions based on the Burmister Soil Classification System followed by the Unified Soil Classification System (USCS) letter symbol. Test pit and soil boring logs are provided in Appendix A. Classification tables and charts used to determine the soil attributes are included in Appendix B.

Upon the completion of the field program, representative samples were subjected to geotechnical laboratory analyses. Laboratory results aided in soil classification and assessing the relevant engineering properties of the stratigraphic layers which were used in developing the revised geotechnical parameters outlined herein. Geotechnical laboratory reports are included in Appendix C.

5.1 Test Pits
On August 9, 2021, Boring Brothers completed a foundation survey which included a test pit to a depth of 48 inches below the ground surface. The test pit was dug using a Kubota KX057-5 excavator and shovel to prevent any damage to the existing building foundations. The exterior edge of the building’s foundation wall was exposed at the test pit location to analyze the conditions of the concrete foundation.

The Matrix Geotechnical Engineer also observed the subsurface soil conditions encountered within the test pits, noting the type and composition of the soils surrounding and beneath the existing footings. Test Pit TP-1 was conducted on the front wall of the building in the southwest corner. The test pit was backfilled with the original soils upon completion of the test pit log. No test pit samples were collected at the site for further analysis.
5.2 **SPT Borings**

On August 9, 2021, Boring Brothers advanced 2 geotechnical borings with a Mobile CME 55 track-mounted drill rig using mud rotary drilling techniques.

Split spoon (SS) samples were collected in accordance with *ASTM D-1586, Standard Method for Penetration Test and Split-Barrel Sampling of Soils*. A standard 2-inch outer diameter split spoon, two feet in length, was used to collect the soil samples. An automatic 140-pound hammer having a 30-inch drop was used to drive the split spoon sampler. As a part of boring observation, the SPT blow counts were recorded for the 0- to 6-inch interval, the 6- to 12-inch interval, the 12- to 18-inch interval and the 18- to 24-inch interval. The SPT N-values for design purposes are reported as the sum of the SPT N values observed for the above referenced 6- to 12-inch interval and the 12- to 18-inch interval that the split spoon sampler was driven.

The Matrix Geotechnical Engineer observed the split spoon samples and collected representative samples in sealed containers for further examination. All borings were continuously sampled to 12 feet bgs and at every subsequent 5-foot interval thereafter. The 2 borings were advanced to depths of 25.5 and 27 feet bgs. The borings were backfilled with soil cuttings and bentonite hole plug (if necessary) upon completion of the borehole.

5.3 **Laboratory Testing**

In addition to the field investigation, a laboratory testing program was conducted to determine additional pertinent engineering characteristics of representative samples of on-site soils. The laboratory testing program was performed in general accordance with applicable ASTM standard test methods and included physical/textural testing of representative samples of various strata.

Upon review of the boring logs, Matrix selected representative samples for laboratory testing. Laboratory testing of selected samples was completed by TerraSense, LLC, located in Totowa, New Jersey. The following table presents a summary of the testing program.

The results of the laboratory testing program were utilized to assist in developing geotechnical design parameters and recommendations, and are provided in Appendix C.
Table 5.3-1: Laboratory Testing Program

<table>
<thead>
<tr>
<th>Test</th>
<th>Testing Procedure</th>
<th>Quantity Performed</th>
<th>Sample Locations and Depth Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Content</td>
<td>ASTM D2216</td>
<td>5</td>
<td>B-1: 4-6’, 8-10’, 15-17’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B-2: 6-8’, 20-22’</td>
</tr>
<tr>
<td>Sieve Analysis</td>
<td>ASTM D422</td>
<td>1</td>
<td>B-2: 6-8’</td>
</tr>
<tr>
<td>Atterberg Limits</td>
<td>ASTM D4318</td>
<td>3</td>
<td>B-1: 15-17’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B-2: 20-22’</td>
</tr>
<tr>
<td>Percent Fines</td>
<td>ASTM D1140</td>
<td>1</td>
<td>B-1: 8-10’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B-2: 20-22’</td>
</tr>
<tr>
<td>Combined Sieve & Hydrometer</td>
<td>ASTM D422</td>
<td>1</td>
<td>B-1: 4-6’</td>
</tr>
</tbody>
</table>
6.0 SUBSURFACE CONDITIONS

The subsurface conditions beneath the site can be characterized by the following stratigraphy, proceeding from the surface materials downward, unless noted otherwise below. Classification tables and charts used to determine the soil attributes are included in Appendix B.

Test Pit
Test pit TP-1 was completed along the front basement wall, in the southwest corner of the building. Due to limited access, the concrete footing could not be reached during test pit excavation. The excavation was terminated along the length of the foundation wall at 48” bgs.

Surface Cover
The surface cover for boring B-1 and B-2 consisted of grass cover and topsoil, approximately 6 inches thick.

Stratum 1: Upper Granular (SM)
Beneath the surface cover in each boring, a soil layer was encountered consisting of mostly brown coarse-to-fine Sand with varying amounts of Silt and fine Gravel. This Sand layer extended from the bottom of the surface cover to 11.5 feet below the ground surface (bgs) in B-1 and approximately 13.5 feet bgs in B-2.

The SPT-N values in this layer ranged from 2 to 18 blows per foot (bpf), which is indicative of very loose to medium-dense Sand. The SPT N-values for Stratum 1 are summarized in the tables below.

<table>
<thead>
<tr>
<th>Soil Boring Location</th>
<th>USCS Group Symbol</th>
<th>Depth Below Ground Surface</th>
<th>SPT N-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>SM</td>
<td>4-6’</td>
<td>2</td>
</tr>
<tr>
<td>B-2</td>
<td>SM</td>
<td>0-8’</td>
<td>2-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Boring Location</th>
<th>USCS Group Symbol</th>
<th>Depth Below Ground Surface</th>
<th>SPT N-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>SM</td>
<td>0-4’</td>
<td>10-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-11.5’</td>
<td>17-18</td>
</tr>
<tr>
<td>B-2</td>
<td>SM</td>
<td>8-13.5’</td>
<td>13-18</td>
</tr>
</tbody>
</table>

Stratum 2: Clay (CH, CL)

Beneath the granular material of Stratum 1 in both borings, a soil layer was encountered consisting of grey to brown Silty Clay. This layer was encountered at 11.5 and approximately 13.5 feet bgs in borings B-1 and B-2, respectively. The layer extended to approximately 23 to 23.5 feet bgs in both borings. Deeper in the layer, the Clay material also contained varying amounts of fine Sand and Gravel.

The SPT N-values in this layer increased with depth, and typically ranged from 3 to 5 bpf, which is indicative of soft to medium-soft Clay. In boring B-1, an N-value of 18 bpf was recorded at the 20-22-foot soil sample, signifying very stiff cohesive material. The SPT N-values for Stratum 2 are summarized in the tables below.

<table>
<thead>
<tr>
<th>Soil Boring Location</th>
<th>USCS Group Symbol</th>
<th>Depth Below Ground Surface</th>
<th>SPT N-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>CH</td>
<td>11.5-18.5’</td>
<td>3</td>
</tr>
<tr>
<td>B-2</td>
<td>CH</td>
<td>13.5-18.5’</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 6.0-4: Medium-Soft Clay SPT N-Values for Stratum 2

<table>
<thead>
<tr>
<th>Soil Boring Location</th>
<th>USCS Group Symbol</th>
<th>Depth Below Ground Surface</th>
<th>SPT N-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>CL</td>
<td>18.5-23’</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 6.0-5: Very Stiff Clay SPT N-Values for Stratum 2

<table>
<thead>
<tr>
<th>Soil Boring Location</th>
<th>USCS Group Symbol</th>
<th>Depth Below Ground Surface</th>
<th>SPT N-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>CL</td>
<td>18.5-23.5’</td>
<td>18</td>
</tr>
</tbody>
</table>

Stratum 3: Lower Granular (GP, SC)

Beneath the Clay layer (Stratum 2) in both borings, a soil layer was encountered with varying composition. In boring B-1, this layer consisted of grey fine Gravel. In boring B-2, this layer consisted of red-brown coarse-to-fine Sand with some Clay and Silt and little coarse-to-fine Gravel. This Lower Granular layer was encountered at approximately 23.5 feet bgs in both borings, and each boring was terminated within this layer at 25.5 feet bgs (B-1) and 27 feet bgs (B-2).
The SPT-N value in this layer was recorded at 41 bpf in boring B-2, which is indicative of dense Sand. In boring B-1, split spoon refusal (no movement in 100 blows) was encountered at 25.5 feet bgs. The SPT N-values for Stratum 3 are summarized in the tables below.

Table 6.0-6: Dense to Very Dense SPT N-Values for Stratum 3

<table>
<thead>
<tr>
<th>Soil Boring Location</th>
<th>USCS Group Symbol</th>
<th>Depth Below Ground Surface</th>
<th>SPT N-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>GP</td>
<td>23.5-25.5’</td>
<td>100/0’</td>
</tr>
<tr>
<td>B-2</td>
<td>SC</td>
<td>23-27’</td>
<td>41</td>
</tr>
</tbody>
</table>

Groundwater

Groundwater levels could not be measured during drilling in either boring, due to the use of water and drilling mud to advance the borings. Based on soil saturation levels, the groundwater table was expected to lie approximately between 8 and 10 feet bgs during the drilling program. Saturated soils were encountered in B-1 at 8 feet bgs and in B-2 at 10 feet bgs. It should be noted that the groundwater levels will vary with temperature, precipitation, and other climatic factors.
7.0 GEOTECHNICAL SUBSURFACE PARAMETERS

The geotechnical design parameters in this report are derived from the field program and are based on accepted geotechnical standards and practices. At the time of the geotechnical assessment, loading conditions and the final proposed grading plans were not available. Therefore, certain assumptions were made for the recommendations provided in this report.

Table 7.0-1 summarizes the recommended geotechnical design parameters for the various soil strata encountered at the Site. The values are based on review and interpretation of the subsurface field program and laboratory test data results.

Table 1806.2 of the 2018 International Building Code provides allowable coefficients of friction to be used in the evaluation of resistance to sliding.
Table 7.0-1: Geotechnical Design Parameters

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Unit Weight (pcf)</th>
<th>Friction Angle ((\phi))</th>
<th>Cohesive Strength, (c_u) (psf)</th>
<th>Earth Pressure Coefficient</th>
<th>Net Allowable Foundation Pressure* (psf)</th>
<th>Lateral Bearing (psf/ft. bgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Medium-Dense to Dense Granular Soil</td>
<td>(\gamma = 125)</td>
<td>(\gamma' = 63)</td>
<td>0</td>
<td>0.31</td>
<td>3.26</td>
<td>4,000</td>
</tr>
<tr>
<td>(SM, SC, GP) [SPT N > 10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Loose Granular Soil</td>
<td>(\gamma = 120)</td>
<td>(\gamma' = 58)</td>
<td>0</td>
<td>0.33</td>
<td>3.00</td>
<td>2,500</td>
</tr>
<tr>
<td>(SM, SC, GP) [SPT N (\leq) 10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Clay Material (CL)</td>
<td>(\gamma = 120)</td>
<td>(\gamma' = 58)</td>
<td>0</td>
<td>2,000</td>
<td>-</td>
<td>3,000*</td>
</tr>
<tr>
<td>Very Stiff - Hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[SPT N > 30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Clay Material (CL)</td>
<td>(\gamma = 100)</td>
<td>(\gamma' = 38)</td>
<td>-</td>
<td>1,000</td>
<td>-</td>
<td>1,500*</td>
</tr>
<tr>
<td>Medium-Soft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4 (\leq) SPT N (\leq) 8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Clay (CL, CL-ML)</td>
<td>(\gamma = 90)</td>
<td>(\gamma' = 28)</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>1,000*</td>
</tr>
<tr>
<td>Very Soft - Soft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[SPT N < 4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notations: \(\gamma\) = moist unit weight, \(\gamma'\) = buoyant unit weight, and \(c_u\) = average undrained shear strength.

+ Allowable foundation pressure is contingent upon either replacement of at least two feet of existing fill below the bottom of footing by a Controlled Fill, or upon confirmation that the field density of the existing fill material down to four feet below the bottom of footing meets 95% of the maximum dry density of the existing fill material observed in Modified Proctor Tests.

* These values are based on the 2018 International Building Code, New Jersey Edition, and adjusted for field conditions encountered. To increase the allowable foundation pressure above the values recommended in the table given above, further testing of soil will be required. In Cohesive soils, it should be noted that the shallow footing may fail under the settlement criteria before the footing pressure approaches the anticipated allowable bearing capacity. Allowable Foundation Pressure values assume the water table is below the influence depth of the foundation.

● Coefficient of earth pressure at rest may be computed using Jaky’s equation, \(K_o = 1 - \sin \phi'\).
8.0 STRUCTURAL INSPECTION

The following sections present the results of the structural inspection of the residential building at 93 Glenroy Road East in Fairfield, New Jersey. The conclusions presented herein are derived from Matrix’s geotechnical and structural investigation of the existing soils and building foundations and framing configurations, along with pertinent survey data as compiled by Matrix’s team of land surveyors.

Matrix conducted a subsurface investigation that included both a test pit and soil borings to obtain maximum pertinent information regarding the existing site conditions (refer to Section 6.0 of this report). The test pit performed at the site exposed the exterior portion of the building’s foundation wall, allowing for measurement of dimensions of the structure and assessment of the construction methods utilized. Two geotechnical borings were also conducted to gain further information regarding the existing soils beneath the site.

In addition to the geotechnical investigation, Matrix also conducted a structural site inspection to observe the existing foundation walls and framing of the building. Matrix’s structural engineer was granted access to the residence’s basement and garage to observe the building’s foundation structure. Substructure composition was recorded, including beam/girder type, building dimensions, and spacing of structural components. Structural defects, if any, were also noted during the inspection and have been included within Section 8.3.

8.1 Existing Building Foundations

The building at 93 Glenroy Road East is supported by concrete masonry unit (CMU) walls throughout its foundation. The structure is broken up into two separate foundation sections (basement and garage), each with a different finished floor elevation.

The basement area of the building encompasses the full living area of the structural footprint beneath the first and second floors, measuring approximately 32’-8” long x 48’-9” wide. The basement walls consist of 8”x8”x16” CMU blocks and extend 84 inches in height (measured from the floor surface). The rear and east walls of the basement widen by 4” approximately 60 inches above the floor surface, protruding inward into the basement area. The basement measures 8’-1” in height from the floor to the bottom of the first-floor floorboards. The floor of the basement consists of poured concrete with a painted finish. An approximately 1” wide x 3” deep gap was observed between the floor slab and walls of the basement throughout the perimeter of the area. The foundation walls of the basement support the timber subfloor
above, which consists of nominal 2x10 timber floor joists, spaced 16” on center. The floor joists vary in span direction, as the rear half, southwest corner, and southeast corner joists run north to south (front to rear), while the rest of the joists run east to west. The floor joists are connected to the sides of timber girders, which consist of (4) nominal 2x12 timber members. A total of 5 girders were observed supporting the first floor, and three of these girders were further supported along their length by 4” diameter steel post columns. The longest clear span of a girder, located in the southeast corner of the house, was measured at 15’-4” long.

A test pit excavation was performed at the southwest corner of the basement to determine the type and size of the building’s wall footings. However, due to site constraints, the foundation wall footings could not be reached to determine the structural dimensions. Based on conventional foundation construction, Matrix assumed a 16” wide concrete spread footing as a minimum value for analysis, but expects the building footings to be within 16” to 24” wide. Prior to raising the house, Matrix recommends that the contractor confirm the foundation size and bearing adequacy with multiple test pits around the building perimeter.

The garage area, adjacent to and west of the basement, is located at ground level (approximately 65” above basement floor) with brick stairs leading up to the first floor in the northwest corner of the garage. The CMU foundation walls continue around the perimeter of the garage to support the timber building frame, and extend 18” to 19.5” above the garage floor surface (top of wall consistent in elevation throughout building footprint). The garage is about 10’-8” in height measured from the concrete slab floor surface, and the first floor of the house is approximately 33” above the garage floor.

8.2 Existing Equipment

Various pieces of equipment and machinery were observed within the basement at the time of the inspection. The northwest corner of the basement contained a boiler unit and hot water heater, both raised atop CMU blocks (11” and 8” above the floor surface, respectively). Also in this corner, a sump pit was observed within the ground and a central vacuum cleaner was elevated 39” above the floor surface. The southeast corner of the basement contained a gas meter (54” above the floor), electrical panel (60” above the floor), and a water meter (27.5” above the floor). Also, along the front wall near the southwest corner, a security system panel was observed approximately 66.5” above the floor surface. Various metal and PVC conduits, as well as electrical cables, were also observed running along the timber members of the first-floor joists and girders.
No equipment was observed in the garage area of the building.

Outside the building, in the northwest corner (rear yard), a single air conditioner unit was observed situated atop a concrete slab platform (elevated approximately 6” above the adjacent concrete ground surface). A generator was also observed at the ground level along the east wall of the house.

8.3 Site Observations
The basement/garage walls and visible first-floor floor joists were in good condition at the time of the inspection. No notable damages or abnormalities were observed.

The second floor of the house was seen to overhang the first floor by approximately 1 foot in the front of the building only. Above the front entrance, the roof overhangs the rest of the house by about 6 feet. Two columns support this roof overhang at the southwest and southeast corners of the front entrance porch. These columns are encased in a decorative wood covering, so the type and size of the columns could not be determined at the time of the inspection.

A stove/oven was observed in the basement at the time of the inspection, situated along the center of the rear wall at floor level. Though a gas line appeared to be connected to the appliance, it was unclear if the stove was in working order.

A CMU block exhaust chimney was observed behind the boiler and hot water heater in the basement, and extends up along the second-floor west wall of the house.

The exposed portions of the foundation walls along the exterior of the building are covered in a stucco coating. This coating exhibited minor to moderate cracking throughout, and the coating was missing in some areas of the wall.

The rear and east walls of the house are surrounded by a concrete walkway and patio around the building perimeter. Also, in the rear yard and adjacent to the southwest corner of the building, an elevated brick patio has been constructed with its floor surface level with the first floor of the house. Measuring approximately 9’-9” long x 16’-4” wide, the patio also contains brick stairs to connect the structure to the adjacent concrete slabs that make up the rear ground-level patio at the site.
8.4 Elevation Requirements
The FEMA 100-year flood elevation at 93 Glenroy Road East is El. +174 (NAVD88). As per the New Jersey Department of Community Affairs (DCA), and in accordance with the New Jersey Flood Hazard Area Control Act, the lowest floor of newly elevated buildings must be at least 3 feet above the base flood elevation. Therefore, the new first floor elevation must be at El. +177 or higher to meet the requirements set forth in the program.

The current first-floor elevation at the Site is at El. +173.23, with the adjacent garage floor at El. +170.49. To achieve the elevation requirements, the existing building would need to be raised approximately 3.7 feet. Matrix recommends raising the building at least 4.7 feet to allow for the creation of a ground-level beneath the newly raised building.

8.5 Recommendations for Building Elevation
Matrix recommends that the existing foundation system of the residential building at 93 Glenroy Road East be kept and extended to achieve the required design flood elevation. The presence of both basement and crawl space foundation walls is expected to provide sufficient support for the additional height of the newly raised building. Based on loading estimation and analysis for the existing building, Matrix estimates that the anticipated additional dead load of the required new courses of CMU would remain under an allowable bearing capacity as low as 1,000 psf (design capacity of soft Clay encountered at the Site) for the shallow concrete strip footings at the Site.

In accordance with NFIP requirements, it is required that the existing basement and crawl space be filled in to match the lowest adjacent exterior grade following raising. The newly raised house will have approximately 7.4 feet of space beneath (down to existing finished grade), which is enough vertical height for a ground-level floor. This additional space beneath the raised building can be used for storage at the resident’s discretion.

The most feasible method of elevation for the building consists of jacking up the entire residential structure from below using steel beams and jack posts. The building will then sit atop temporary cribbing while the existing CMU basement and garage walls are heightened with additional courses of masonry block units. Additional vertical reinforcement would need to be installed in ungrouted masonry cells to properly transfer loads through the new heightened wall to the existing wall, and horizontal ladder reinforcement should be installed at a minimum of every other course. Also, the existing steel post columns intermittently supporting
the building’s girders must be removed and replaced by new steel, concrete or masonry block columns. These new columns will need to include a spread footing beneath to sufficiently support the building loads.

The garage door located in the front of the house will need to be removed prior to raising, and the opening replaced with a new timber-framed wall to match the rest of the building. The garage door will then be replaced at the ground level once the house is elevated. The existing brick exhaust chimney will also require extending during raising of the house to keep the top of the chimney above the roof level.

The rear brick patio is anticipated to require raising to match the proposed ingress/egress heights of the main structure. This would require reconstruction of the brick patio to raise the walls of the structure to the new first floor elevation. If additional brick is deemed infeasible, the existing stationary brick patio can be removed and replaced with an elevated timber deck, or the brick patio can be left in place and a new timber deck of equivalent square footage built around and above it to create a new exterior deck level with the first-floor elevation.

Raising of the building should be undertaken with special attention to preserve the existing brick façade covering the timber frame. If the façade is kept in place during raising, the process is liable to lead to some cracking in the existing façade. Alternatively, the brick can be removed prior to raising, then replaced with a similar or more flexible finish after completion of the elevation process. The materials and labor involved in exterior façade restoration of the house are not within the scope of this project.

Within the new foundation walls, permanent openings are required to allow floodwater to enter the ground level and equalize the hydrostatic pressure during a flood event. As per the 2018 International Residential Code, New Jersey Edition, the total net area of non-engineered openings must comprise at least 1 square inch for every square foot of enclosed space within the building’s ground floor. This equates to approximately 14.8 square feet of total flood openings in the building’s new foundation walls. Additionally, a minimum of two openings must be provided for each enclosed area of the new ground floor. These openings must be located no higher than one foot above the adjacent finished exterior grade along the building perimeter. Matrix recommends the use of engineered openings in lieu of non-engineered openings to maximize efficiency and minimize the quantity of openings required.

Additionally, any service equipment, whether outside or in the basement, such as air conditioning, heat pump compressors, gas meters, electric meters, and hot water heaters, must be elevated 3 feet above the
BFE. For interior elements, this may include relocation to an upper floor and thus less usable living space. For this residence, the hot water heater, boiler, gas meter, water meter, electrical panel, central vacuum cleaner, and security panel in the basement would require elevating 3 feet above the BFE. The exterior air conditioner unit and generator will also need to be elevated 3 feet above the BFE on new, elevated platforms.
9.0 CLOSURE

This report has been prepared to assist the State of New Jersey Department of Community Affairs with the structural and geotechnical evaluation of the residential building at 93 Glenroy Road East in Fairfield, New Jersey. The conclusions and recommendations provided within this report were prepared based on our understanding of the project and through the application of generally accepted engineering practices. No warranties, expressed or implied, are made. Matrix should be notified of any changes to the existing building foundation system or if subsurface conditions differing from those described herein are encountered, so the impact on the geotechnical and/or structural recommendations can be evaluated.
10.0 REPRESENTATIVE SITE PHOTOS

Structural Inspection Photos

Photo 1. 93 Glenroy Road East (Front of Building)

Photo 2. 93 Glenroy Road East (Front of Attached Garage)
Photo 3. 93 Glenroy Road East (Rear of Building, West Side)

Photo 4. 93 Glenroy Road East (Rear of Building)
Photo 5. Basement CMU Walls and First Floor Subfloor (Looking Southeast)

Photo 6. Timber Girder with Steel Post Column (Typical)
Photo 7. First Floor Timber Floor Joists (Typical)

Photo 8. Boiler & Hot Water Heater in Basement (Looking North)
Photo 9. Gas Meter & Electrical Panel in Basement (Looking South)

Photo 10. Garage Walls with Stairs to First Floor of Building (Looking East)
Photo 11. Rear Brick Patio

Photo 12. Roof Overhang with Column Supports on Front Porch
Test Pit Photos

Photo 13. Test Pit TP-1 Location (Front of Building – Basement, Southwest Corner)

Photo 14. Test Pit TP-1 Foundation Wall Conditions
FIGURES
1. THIS FIGURE IS BASED ON IMAGERY PROVIDED BY MICROSOFT BING.

2. BORING LOCATIONS WERE IDENTIFIED IN THE FIELD BY MATRIX PERSONNEL BY TAPING AND LINE OF SIGHT MEASUREMENTS.

3. THE BORINGS WERE PERFORMED BY BORING BROTHERS, INC. ON AUGUST 09, 2021 UNDER THE DIRECTION OF A MATRIX REPRESENTATIVE.

4. ALL ELEVATIONS SHOWN ON THIS PLAN REFER TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).

NOTES:

LEGEND

B-# AS-DRILLED BORING LOCATION
TP-# TEST PIT LOCATION

SCALE: 1" = 40'
APPENDIX A

SOIL BORING & TEST PIT LOGS
BORING LOG

BORING NO.: B-1

PROJECT NO.: 20-1052 **PROJECT:** NJDCA Geotechnical Engineer for Mitigation Assistance Program **DATE:** 8/09/21

PROJECT LOCATION: Fairfield, NJ **BORING LOCATION:** 93 Glenroy Road East, West Side in Front of House

DRILLING EQUIPMENT: CME 55 **ANGLE:** -90.0 **DIR.:** ------ **ELEV.:** **DATUM:** NAVD88

DRILLING CONTRACTOR: Boring Brothers, Inc. **DRILLER:** D. Osuch **INSPECTOR:** A. Radiola

CASING and HAMMER

<table>
<thead>
<tr>
<th>Type</th>
<th>I.D.</th>
<th>Weight</th>
<th>Drop</th>
<th>Type</th>
<th>I.D.</th>
<th>Weight</th>
<th>Drop</th>
<th>Date</th>
<th>Time</th>
<th>Depth</th>
<th>Casing Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>FJ Steel</td>
<td>4”</td>
<td>AUTO</td>
<td></td>
<td>SS</td>
<td>1 3/8”</td>
<td>SS</td>
<td></td>
<td>8/09/21</td>
<td>8.0</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE and HAMMER

GROUNDWATER LEVELS

<table>
<thead>
<tr>
<th>Date</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>5</td>
</tr>
</tbody>
</table>

Description Of Material

- **S-1:** Red-Brown fine SAND and Silt, trace fine Gravel, dense, dry (SM)
- **S-2:** Red-Brown fine SAND and Silt, trace fine Gravel, trace Vegetation, dense, dry (SM)
- **S-3:** Grey-Green fine SAND and Clayey Silt, trace fine Gravel, moist (SM)
 - WC: 19.5%, Gravel: 0.3%, Sand: 64.2%, Fines: 35.5%, <2 µm: 9%
- **S-4:** Brown mf SAND, little Silt, trace fine Gravel, moist (SM)
 - Pass No 200
- **S-5:** Brown cmf SAND, some Silt, trace fine Gravel, wet (SM)
 - WC: 14.7%, Fines: 27%
- **S-6A (Top 18”):** Same as Above, wet (SM)
 - Atterberg Limits
- **S-6B (Bottom 6”):** Grey Silty CLAY, dry (CH)
 - **S-7:** Grey Silty CLAY, wet (CH)
 - WC: 40.0%, LL: 52, PL: 23, PI: 29
 - **S-8:** Brown CLAY & Silt and fine Sand, little fine Gravel, wet (CL)
 - **S-9:** Grey fine GRAVEL, wet (GP)

Bottom of Borehole @ 25.5 ft.
Boring Log

Boring No.: B-2
Project No.: 20-1052
Project Name: NJDCA Geotechnical Engineer for Mitigation Assistance Program
Location: Fairfield, NJ
Date: 8/09/21

Drilling Contractor: Boring Brothers, Inc.
Driller: D. Osuch
Inspector: A. Radiola

<table>
<thead>
<tr>
<th>Depth Feet (Elev.)</th>
<th>CASING Type</th>
<th>SAMPLE No.</th>
<th>Blows/6" (REC %)</th>
<th>Graphic Symbol</th>
<th>Description of Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>FJ Steel</td>
<td>4" SS</td>
<td>1 3/8"</td>
<td>SS</td>
<td>6" Grass/Topsoil</td>
</tr>
<tr>
<td>10</td>
<td>SS S-2</td>
<td>2-2-2 (61%)</td>
<td></td>
<td></td>
<td>S-1: Brown fine SAND, some Silt, trace fine Gravel, moist (SM)</td>
</tr>
<tr>
<td>15</td>
<td>SS S-3</td>
<td>2-1-1-1 (29%)</td>
<td></td>
<td></td>
<td>S-2: Red-Brown fine SAND, some Silt, trace fine Gravel, moist (SM)</td>
</tr>
<tr>
<td>15</td>
<td>SS S-3</td>
<td>1-1-1-1 (25%)</td>
<td></td>
<td></td>
<td>S-3: Grey/Green fine SAND and Clayey Silt, trace fine Gravel, mottled, moist (SM)</td>
</tr>
</tbody>
</table>
| 15 | SS S-4 | 3-3-6-8 (96%)| | | S-4: Grey/Green mf* SAND, some Silt, mottled, moist (SM)
| | | | | | WC: 17.8%, Gravel: 0.5%, Sand: 71.0%, Fines: 28.5% |
| 20 | SS S-5 | 6-7-6-7 (88%)| | | S-5: Brown mf* SAND, some Silt, little fine Gravel, moist (SM) |
| 25 | SS S-6 | 6-9-9-11 (100%)| | | S-6: Brown cmf SAND, little Silt, trace fine Gravel, wet (SM) |
| 25 | SS S-7 | 1-2-2-3 (79%)| | | S-7: Grey Silty CLAY, wet (CH) |
| 25 | SS S-8 | 3-3-2-5 (96%)| | | S-8: Red-Brown CLAY & Silt and fine Sand, trace fine Gravel, wet (CL)
| | | | | | WC: 18.7%, Fines: 60%, LL: 25, PL: 14, PI: 11 |
| 25 | SS S-9 | 29-20-21-23 (54%)| | | S-9: Red-Brown cmf SAND, some Clay & Silt, little of Gravel, wet (SC) |
| | | | | | Bottom of Borehole @ 27 ft. |

Casing Depth: 20 ft

Drill Equipment: CME 55

Angle: -90.0

Direction: ---

Datum: NAVD88

Elev: ---

Location: 93 Glenroy Road East, East Side in Front of House

Inspector: A. Radiola

Driller: D. Osuch

Drilling Contractor: Boring Brothers, Inc.
TEST PIT LOG

TEST PIT NO.: TP-1
PROJECT NO.: 20-1052
PROJECT: NJDCA Geotechnical Engineer - Mitigation Assistance Program
DATE: 8/9/2021

PROJECT LOCATION: Fairfield, NJ
TIME STARTED: 7:30:00 AM
ELEV.:
DATUM: NAVD88
TIME FINISHED: 9:45:00 AM
GROUNDWATER LEVEL:
CONTRACTOR: Boring Brothers, Inc.
OPERATOR: Eladio Cruz
INSPECTOR: D. Brosseau
PROJECT LOCATION: 93 Glenroy Road East (Front of Building - Basement)
CONTRACTOR: Boring Brothers, Inc.
EQUIPMENT: Kubota KX057-5
PROJECT: NJDCA Geotechnical Engineer - Mitigation Assistance Program
OPERATOR: Eladio Cruz
INSPECTOR: D. Brosseau
ELEV.:

<table>
<thead>
<tr>
<th>Depth Inches (Elev)</th>
<th>Layer</th>
<th>Graphic Symbol</th>
<th>Description Of Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td></td>
<td></td>
<td>Topsoil, Mulch Cover</td>
</tr>
<tr>
<td>5-48</td>
<td></td>
<td></td>
<td>Brown fine SAND and Silt, little fine Gravel</td>
</tr>
</tbody>
</table>

Excavation terminated at 48" bgs due to limited access. Wall footing not encountered. Bottom of Test pit @ 48 in. Test Pit Backfilled.
LOG NOTATION

Sample Classifications
SS = Split Spoon
NR = No Recovery
NX = Rock Core
SH = Shelby Tube
REC = Soil Recovery
RQD = Rock Quality Designation

Sand Classifications
\(c\) = Coarse
\(m\) = Medium
\(f\) = Fine
* = Predominant Grain Size

Soil Properties
WC = Water Content
PL = Plastic Limit
LL = Liquid Limit
PI = Plasticity Index
OC = Organic Content
LOG GRAPHICAL LEGEND

Asphalt
Concrete
Fill
Topsoil
Well graded Gravel (GW)
Poorly graded Gravel (GP)
Clayey Gravel (GC)
Silty Gravel (GM)
Well graded Gravel with Clay (GW-GC)
Well graded Gravel with Silt (GW-GM)
Poorly graded Gravel with Clay (GP-GC)
Poorly graded Gravel with Silt (GP-GM)
Well graded Sand (SW)
Poorly graded Sand (SP)
Clayey Sand (SC)
Silty Sand (SM)
Well graded Sand with Clay (SW-SC)
Well graded Sand with Silt (SW-SM)
Poorly graded Sand with Clay (SP-SC)
Poorly graded Sand with Silt (SP-SM)
Lean Clay (CL)
Silty Clay (CL-ML)
Silt (ML)
Organic Silt or Clay (Low Plasticity) (OL)
Fat Clay (CH)
Elastic Silt (MH)
Organic Silt or Clay (High Plasticity) (OH)
Peat (PT)
Decomposed Bedrock
Bedrock
APPENDIX B

SOIL CLASSIFICATION TABLES
<table>
<thead>
<tr>
<th>Major Divisions</th>
<th>Group Symbols</th>
<th>Typical Names</th>
<th>Field Identification Procedures (Excluding particles larger than 3 in. and basing fractions on estimated weights)</th>
<th>Information Required for Describing Soils</th>
<th>Laboratory Classification Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse-grained Soils More than half of material is larger than No. 200 sieve size</td>
<td>C1</td>
<td>GW</td>
<td>Well graded gravel, gravel-sand mixture, little or no fines.</td>
<td>Wide range in grain size and substantial amounts of all intermediate particle sizes.</td>
<td>For undisturbed soils add information on structure, degree of compaction, examination, moisture condition, and drainage characteristics.</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>GP</td>
<td>Poorly graded gravel or gravel-sand mixture, little or no fines.</td>
<td>Predominantly one size or a range of sizes with some intermediate sizes missing.</td>
<td>Give typical name: indicate approximate percentages of sand and gravel, maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbol in parentheses.</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>GM</td>
<td>Silty gravel, gravel and silt mixtures.</td>
<td>Nonplastic fines or fines with low plasticity. (For identification procedures see ML below).</td>
<td>Give typical name; indicate approximate percentages of sand and gravel, maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbol in parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GC</td>
<td>Clayey gravel, gravel and clay mixtures.</td>
<td>Plastic fines. (For identification procedures see CL below).</td>
<td>Give typical name; indicate approximate percentages of sand and gravel, maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbol in parentheses.</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>SW</td>
<td>Well graded sands, gravelly sands, little or no fines.</td>
<td>Wide range in grain size and substantial amounts of all intermediate particle sizes.</td>
<td>For undisturbed soils add information on structure, degree of compaction, examination, moisture condition, and drainage characteristics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP</td>
<td>Poorly graded sands or gravelly sands, little or no fines.</td>
<td>Predominantly one size or a range of sizes with some intermediate sizes missing.</td>
<td>Give typical name; indicate approximate percentages of sand and gravel, maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbol in parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM</td>
<td>Silty sands, sand-silt mixtures.</td>
<td>Plastic fines. (For identification procedures see CL below).</td>
<td>Give typical name; indicate approximate percentages of sand and gravel, maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbol in parentheses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC</td>
<td>Clayey sands, sand-clay mixtures.</td>
<td>Plastic fines. (For identification procedures see CL below).</td>
<td>Give typical name; indicate approximate percentages of sand and gravel, maximum size, angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive information; and symbol in parentheses.</td>
</tr>
<tr>
<td>Fine-grained Soils</td>
<td></td>
<td></td>
<td>Identification Procedure on Fraction Smaller than No. 40 Sieve Size.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ML</td>
<td>Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.</td>
<td>None to slight</td>
<td>Quick to slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL</td>
<td>Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.</td>
<td>Medium to high</td>
<td>None to very slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OL</td>
<td>Organic silts and organic silty clays of low plasticity.</td>
<td>Slight to medium</td>
<td>Slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MH</td>
<td>Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic clays.</td>
<td>Slight to medium</td>
<td>Slow to none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH</td>
<td>Inorganic clays of high plasticity, fat clays.</td>
<td>High to very high</td>
<td>None to very slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OH</td>
<td>Organic clays of medium to high plasticity, organic silts.</td>
<td>Medium to high</td>
<td>None to very slow</td>
</tr>
</tbody>
</table>

LIQUID LIMIT PLASTICITY CHART

For laboratory classification of fine-grained soils.

1. Boundary classifications: Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GM-GC, well-graded gravel-sand mixture with clay binder.
2. All sieve sizes on this chart are U.S. Standard.
3. Adopted by Corps of Engineers and Bureau of Reclamation, January 1952.
BURMISTER SOIL IDENTIFICATION METHOD

1. SOIL MATERIAL
 Composition, Gradation, and Plasticity Characteristics
 a) Soil Components and Soil Fractions

<table>
<thead>
<tr>
<th>Size</th>
<th>3"</th>
<th>1"</th>
<th>3/8"</th>
<th>No. 10</th>
<th>No. 30</th>
<th>No. 60</th>
<th>No. 200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 mm</td>
<td>0.076 mm</td>
<td>0.02 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granular Component Fractions</td>
<td>GRAVEL</td>
<td>SAND</td>
<td>SILT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coarse</td>
<td>medium</td>
<td>fine</td>
<td>coarse</td>
<td>medium</td>
<td>fine</td>
<td>coarse</td>
<td>fine</td>
</tr>
</tbody>
</table>

 Clay Soil Components

 b) Identifying Terms for Granular Soils
 Composition and Proportion Terms for Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Proportion Terms</th>
<th>Defining Range of Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Components- GRAVEL, SAND, SILT (all Uppercase)</td>
<td></td>
<td>50% or more</td>
</tr>
<tr>
<td>Minor Components-</td>
<td>Gravel and Sand</td>
<td>35 to 50%</td>
</tr>
<tr>
<td></td>
<td>Silt little</td>
<td>10 to 20%</td>
</tr>
<tr>
<td></td>
<td>trace</td>
<td>1 to 10%</td>
</tr>
</tbody>
</table>

 Gradation Terms for Granular Soils
 coarse to fine | all fractions more than 10% Plasticity Basis, as
 coarse to medium fine less than 10% |
 medium to fine coarse less than 10% Organic SILT, H. PI |
 medium coarse and fine less than 10% Organic SILT, L. PI |
 fine coarse and medium less than 10% |
 PLUS or MINUS signs used to indicate upper or lower limits.

 c) Identifying Terms for CLAY SOILS. Plasticity Basis for Combined Silt and Clay Components, Expressing the Relative Dominance of Clay

<table>
<thead>
<tr>
<th>Overall Plasticity</th>
<th>Plasticity Index</th>
<th>Principal Component</th>
<th>Minor Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Plastic</td>
<td>0</td>
<td>SILT</td>
<td>Silt</td>
</tr>
<tr>
<td>Slight</td>
<td>1 to 5</td>
<td>Clayey SILT</td>
<td>Clayey Silt</td>
</tr>
<tr>
<td>Low</td>
<td>5 to 10</td>
<td>SILT & CLAY</td>
<td>Silt & Clay</td>
</tr>
<tr>
<td>Medium</td>
<td>10 to 20</td>
<td>CLAY & SILT</td>
<td>Clay & Silt</td>
</tr>
<tr>
<td>High</td>
<td>20 to 40</td>
<td>Silty CLAY</td>
<td>CLAY</td>
</tr>
<tr>
<td>Very High</td>
<td>more than 40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Example: Soil 60% coarse to fine Sand, 25% medium to fine Gravel, 15% Clayey Silt and color-brown.
 Identification: Br. coarse to fine SAND, some medium to fine Gravel, little Clayey Silt.

 References:
Field Classification of Soil Using the USCS

Apparent Density of Coarse-Grained Soils

<table>
<thead>
<tr>
<th>SPT N-Value (corrected)</th>
<th>Apparent Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>Very loose</td>
</tr>
<tr>
<td>5 - 10</td>
<td>Loose</td>
</tr>
<tr>
<td>11 - 30</td>
<td>Medium Dense</td>
</tr>
<tr>
<td>31 - 50</td>
<td>Dense</td>
</tr>
<tr>
<td>> 50</td>
<td>Very Dense</td>
</tr>
</tbody>
</table>

Consistency of Fine-Grained Soils

<table>
<thead>
<tr>
<th>SPT N-Value (uncorrected)</th>
<th>Consistency</th>
<th>Compressive Strength (ksf)</th>
<th>Results of Manual Manipulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2</td>
<td>Very Soft</td>
<td>< 0.5</td>
<td>Specimen (height = twice the diameter) sags under its own weight; extrudes between fingers when squeezed</td>
</tr>
<tr>
<td>3 - 4</td>
<td>Soft</td>
<td>> 0.5 - 1.0</td>
<td>Specimen can be pinched in to between the thumb and forefinger; remolded by light finger pressure</td>
</tr>
<tr>
<td>5 - 8</td>
<td>Medium stiff</td>
<td>> 1.0 - 2.0</td>
<td>Can be imprinted easily with fingers; remolded by strong finger pressure</td>
</tr>
<tr>
<td>9 - 15</td>
<td>Stiff</td>
<td>> 2.0 - 4.0</td>
<td>Can be imprinted with considerable pressure from fingers or indented by thumbnail</td>
</tr>
<tr>
<td>16 - 30</td>
<td>Very stiff</td>
<td>> 4.0 - 8.0</td>
<td>Can be barely imprinted by pressure from the fingers or indented by thumbnail</td>
</tr>
<tr>
<td>> 30</td>
<td>Hard</td>
<td>> 8.0</td>
<td>Cannot be imprinted by fingers or difficult to indent by thumbnail</td>
</tr>
</tbody>
</table>
APPENDIX C

GEOTECHNICAL LABORATORY TESTING RESULTS
Matrix New World Engineering, P.C. #20-1052-017
NJDCA MAP - 93 Glenroy Road East
LABORATORY TESTING DATA SUMMARY

<table>
<thead>
<tr>
<th>BORING NO.</th>
<th>SAMPLE NO.</th>
<th>DEPTH (ft)</th>
<th>WATER CONTENT (%)</th>
<th>LIQUID LIMIT (-)</th>
<th>PLASTIC LIMIT (-)</th>
<th>PLAS INDEX (-)</th>
<th>USCS SYMB. (1)</th>
<th>SIEVE MINUS NO. 200 (%)</th>
<th>HYDRO. % MINUS 2 µm (%)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>S-3</td>
<td>4-6</td>
<td>19.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SM</td>
<td>35.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>S-5</td>
<td>8-10</td>
<td>14.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SM</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>S-7</td>
<td>15-17</td>
<td>40.0</td>
<td>52</td>
<td>23</td>
<td>29</td>
<td>CH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>S-4</td>
<td>6-8</td>
<td>17.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SM</td>
<td>28.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>S-8</td>
<td>20-22</td>
<td>18.7</td>
<td>25</td>
<td>14</td>
<td>11</td>
<td>CL</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: (1) USCS symbol based on visual observation and Sieve and Atterberg limits reported.
COBBLES	GRAVEL	SAND	SILT or CLAY
COARSE	FINE	COARSE	MEDIUM

Particle Size Distribution

- **Open Symbols:** Sieve analysis by ASTM D6913
- **Filled Symbols:** Hydrometer analysis by ASTM D7928 corrected for complete sample

#### Sieve Size/ID #	Percent Finer Data
6" | 100.0 |
4" | 100.0 |
3" | 100.0 |
1 1/2" | 100.0 |
1" | 100.0 |
3/4" | 100.0 |
1/2" | 100.0 |
3/8" | 100.0 |
#4 | 99.7 |
#10 | 99.5 |
#20 | 97.8 |
#40 | 93.1 |
#60 | 84.4 |
#100 | 69.3 |
#140 | 52.3 |
#200 | 35.5 |
5µm | 14 |
2µm | 9 |
1µm | 7 |

Per Cent Passing by Weight

- **DATE:** 08/24/21

TerraSense

#2004953A

93 Glenroy Road East

NJDCA MAP

Matrix New World Engineering, P.C.

#20-1052-017

TerraSense Analysis File: GrainSizeV6Rev1a15

ASTM D6913 & ASTM D7928

TerraSense Analysis File: Siev1a.xlsx 9/1/2021
APPENDIX D

FEMA NFIP ELEVATION CERTIFICATE
Copy all pages of this Elevation Certificate and all attachments for (1) community official, (2) insurance agent/company, and (3) building owner.

SECTION A – PROPERTY INFORMATION

A1. Building Owner’s Name

A2. Building Street Address (including Apt., Unit, Suite, and/or Bldg. No.) or P.O. Route and Box No.
93 Glenroy Road East

City

State

ZIP Code

Policy Number:

Company NAIC Number:

A3. Property Description (Lot and Block Numbers, Tax Parcel Number, Legal Description, etc.)
Block 401, Lot 10

A4. Building Use (e.g., Residential, Non-Residential, Addition, Accessory, etc.)
Residential

A5. Latitude/Longitude: Lat. N40°53’34” Long. W74°17’07”
Horizontal Datum: Yes NAD 1927 ☒ NAD 1983

A6. Attach at least 2 photographs of the building if the Certificate is being used to obtain flood insurance.

A7. Building Diagram Number

A8. For a building with a crawlspace or enclosure(s):
 a) Square footage of crawlspace or enclosure(s) 1469.00 sq ft
 b) Number of permanent flood openings in the crawlspace or enclosure(s) within 1.0 foot above adjacent grade 5
 c) Total net area of flood openings in A8.b N/A sq in
 d) Engineered flood openings? ☐ Yes ☒ No

A9. For a building with an attached garage:
 a) Square footage of attached garage 468.00 sq ft
 b) Number of permanent flood openings in the attached garage within 1.0 foot above adjacent grade 0
 c) Total net area of flood openings in A9.b N/A sq in
 d) Engineered flood openings? ☐ Yes ☒ No

SECTION B – FLOOD INSURANCE RATE MAP (FIRM) INFORMATION

B1. NFIP Community Name & Community Number
Fairfield, Township of

B2. County Name
Essex

B3. State
New Jersey

B4. Map/Panel Number
34013C0018

B5. Suffix
G

B6. FIRM Index Date
04-03-2020

B7. FIRM Panel Effective/Revised Date
04-03-2020

B8. Flood Zone(s)
AE

B9. Base Flood Elevation(s)
(Zone AO, use Base Flood Depth)
174’ (NAVD88’)

B10. Indicate the source of the Base Flood Elevation (BFE) data or base flood depth entered in Item B9:
☐ FIS Profile ☒ FIRM ☐ Community Determined ☐ Other/Source:

B11. Indicate elevation datum used for BFE in Item B9:
☐ NGVD 1929 ☒ NAVD 1988 ☐ Other/Source:

B12. Is the building located in a Coastal Barrier Resources System (CBRS) area or Otherwise Protected Area (OPA)? ☐ Yes ☒ No
Designation Date: ☐ CBRS ☐ OPA
ELEVATION CERTIFICATE

FOR INSURANCE COMPANY USE

Policy Number:

Building Street Address (including Apt., Suite, and/or Bldg. No.) or P.O. Route and Box No.
93 Glenroy Road

City
Town of Fairfield
State
New Jersey
ZIP Code
07004-1112

Company NAIC Number

SECTION C – BUILDING ELEVATION INFORMATION (SURVEY REQUIRED)

C1. Building elevations are based on: ☑ Construction Drawings* ☑ Building Under Construction* ☑ Finished Construction

*A new Elevation Certificate will be required when construction of the building is complete.

Indicate elevation datum used for the elevations in items a) through h) below.

☐ NGVD 1929 ☑ NAVD 1988 ☐ Other/Source:

Datum used for building elevations must be the same as that used for the BFE.

Check the measurement used.

a) Top of bottom floor (including basement, crawlspace, or enclosure floor) ☑ 165.1 feet ☑ meters
b) Top of the next higher floor ☑ 173.2 feet ☐ meters
c) Bottom of the lowest horizontal structural member (V Zones only) ☑ N/A ☐ feet ☐ meters
d) Attached garage (top of slab) ☑ 170.5 feet ☐ meters
e) Lowest elevation of machinery or equipment servicing the building (Describe type of equipment and location in Comments) ☑ 165.7 feet ☐ meters
f) Lowest adjacent (finished) grade next to building (LAG) ☑ 169.9 feet ☐ meters
g) Highest adjacent (finished) grade next to building (HAG) ☑ 170.9 feet ☐ meters
h) Lowest adjacent grade at lowest elevation of deck or stairs, including structural support ☑ 169.8 feet ☐ meters

SECTION D – SURVEYOR, ENGINEER, OR ARCHITECT CERTIFICATION

This certification is to be signed and sealed by a land surveyor, engineer, or architect authorized by law to certify elevation information.

I certify that the information on this Certificate represents my best efforts to interpret the data available. I understand that any false statement may be punishable by fine or imprisonment under 18 U.S. Code, Section 1001.

Were latitude and longitude in Section A provided by a licensed land surveyor? ☑ Yes ☐ No ☐ Check here if attachments.

Certifier’s Name
Frank J. Barlowski

License Number
24GS03973500

Title
Professional Land Surveyor

Company Name
Matrix New World Engineering, Land Surveying and Architecture, P.C.

Address
442 State Route 35, Second Floor

City
Eatontown

State
New Jersey

ZIP Code
07724

Signature

Date

Telephone

Ext.

Comments (including type of equipment and location, per C2(e), if applicable)
C2(e): Base of hot water heater was at Elev=165.7'(NAVD88)

Copy all pages of this Elevation Certificate and all attachments for (1) community official, (2) insurance agent/company, and (3) building owner.
SECTION E – BUILDING ELEVATION INFORMATION (SURVEY NOT REQUIRED)

FOR ZONE AO AND ZONE A (WITHOUT BFE)

For Zones AO and A (without BFE), complete Items E1–E5. If the Certificate is intended to support a LOMA or LOMR-F request, complete Sections A, B, and C. For Items E1–E4, use natural grade, if available. Check the measurement used. In Puerto Rico only, enter meters.

E1. Provide elevation information for the following and check the appropriate boxes to show whether the elevation is above or below the highest adjacent grade (HAG) and the lowest adjacent grade (LAG).
 a) Top of bottom floor (including basement, crawlspace, or enclosure) is ______________ feet ______________ meters above or below the HAG.
 b) Top of bottom floor (including basement, crawlspace, or enclosure) is ______________ feet ______________ meters above or below the LAG.

E2. For Building Diagrams 6–9 with permanent flood openings provided in Section A Items 8 and/or 9 (see pages 1–2 of Instructions), the next higher floor (elevation C2.b in the diagrams) of the building is ______________ feet ______________ meters above or below the HAG.

E3. Attached garage (top of slab) is ______________ feet ______________ meters above or below the HAG.

E4. Top of platform of machinery and/or equipment servicing the building is ______________ feet ______________ meters above or below the HAG.

E5. Zone AO only: If no flood depth number is available, is the top of the bottom floor elevated in accordance with the community’s floodplain management ordinance? ☐ Yes ☐ No ☐ Unknown. The local official must certify this information in Section G.

SECTION F – PROPERTY OWNER (OR OWNER’S REPRESENTATIVE) CERTIFICATION

The property owner or owner’s authorized representative who completes Sections A, B, and E for Zone A (without a FEMA-issued or community-issued BFE) or Zone AO must sign here. The statements in Sections A, B, and E are correct to the best of my knowledge.

Property Owner or Owner's Authorized Representative’s Name

Address

City

State

ZIP Code

Signature

Date

Telephone

Comments

☐ Check here if attachments.
ELEVATION CERTIFICATE

IMPORTANT: In these spaces, copy the corresponding information from Section A.

<table>
<thead>
<tr>
<th>ZIP Code</th>
<th>State</th>
<th>Company NAIC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>07004-1112</td>
<td>New Jersey</td>
<td>Policy Number:</td>
</tr>
</tbody>
</table>

FOR INSURANCE COMPANY USE

<table>
<thead>
<tr>
<th>Building Street Address (including Apt., Unit, Suite, and/or Bldg. No.) or P.O. Route and Box No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 Glenroy Road</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Policy Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town of Fairfield</td>
<td>New Jersey</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company NAIC Number</td>
</tr>
</tbody>
</table>

SECTION G – COMMUNITY INFORMATION (OPTIONAL)

The local official who is authorized by law or ordinance to administer the community's floodplain management ordinance can complete Sections A, B, C (or E), and G of this Elevation Certificate. Complete the applicable item(s) and sign below. Check the measurement used in Items G8–G10. In Puerto Rico only, enter meters.

G1. ☐ The information in Section C was taken from other documentation that has been signed and sealed by a licensed surveyor, engineer, or architect who is authorized by law to certify elevation information. (Indicate the source and date of the elevation data in the Comments area below.)

G2. ☐ A community official completed Section E for a building located in Zone A (without a FEMA-issued or community-issued BFE) or Zone AO.

G3. ☐ The following information (Items G4–G10) is provided for community floodplain management purposes.

<table>
<thead>
<tr>
<th>G4. Permit Number</th>
<th>G5. Date Permit Issued</th>
<th>G6. Date Certificate of Compliance/Occupancy Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G7. This permit has been issued for:</th>
<th>☐ New Construction</th>
<th>☐ Substantial Improvement</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>G8. Elevation of as-built lowest floor (including basement) of the building:</th>
<th>☐ feet ☐ meters Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>G9. BFE or (in Zone AO) depth of flooding at the building site:</td>
<td>☐ feet ☐ meters Datum</td>
</tr>
<tr>
<td>G10. Community's design flood elevation:</td>
<td>☐ feet ☐ meters Datum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Official's Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Name</td>
<td>Telephone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

Comments (including type of equipment and location, per C2(e), if applicable)

☐ Check here if attachments.
BUILDING PHOTOGRAPHS

See Instructions for Item A6.

IMPORTANT: In these spaces, copy the corresponding information from Section A.

Building Street Address (including Apt., Unit, Suite, and/or Bldg. No.) or P.O. Route and Box No.	Policy Number:		
City	State	ZIP Code	Company NAIC Number
93 Glenroy Road	New Jersey	07004-1112	

If using the Elevation Certificate to obtain NFIP flood insurance, affix at least 2 building photographs below according to the instructions for Item A6. Identify all photographs with date taken; “Front View” and “Rear View”; and, if required, “Right Side View” and “Left Side View.” When applicable, photographs must show the foundation with representative examples of the flood openings or vents, as indicated in Section A8. If submitting more photographs than will fit on this page, use the Continuation Page.

![Photo One](image1.jpg)

Photo One Caption

Front View

Clear Photo One

![Photo Two](image2.jpg)

Photo Two Caption

Rear View

Clear Photo Two
ELEVATION CERTIFICATE

BUILDING PHOTOGRAPHS

Continuation Page

Building Street Address (including Apt., Unit, Suite, and/or Bldg. No.) or P.O. Route and Box No.
93 Glenroy Road

City
Town of Fairfield

State
New Jersey

ZIP Code
07004-1112

Policy Number:

Company NAIC Number

FOR INSURANCE COMPANY USE

IMPORTANT: In these spaces, copy the corresponding information from Section A.

If submitting more photographs than will fit on the preceding page, affix the additional photographs below. Identify all photographs with: date taken; "Front View" and "Rear View"; and, if required, "Right Side View" and "Left Side View." When applicable, photographs must show the foundation with representative examples of the flood openings or vents, as indicated in Section A8.

Photo Three

Photo Four

Photo Three Caption Right Side View

Photo Four Caption Left Side View

Clear Photo Three

Clear Photo Four