Ambient Air Monitoring Network Plan 2017

This document, a description of the New Jersey Ambient Air Monitoring Network for 2017, is available for public comment. Please email comments by June 23, 2017 to bamweb@dep.nj.gov, or write to:

Chief, Bureau of Air Monitoring
New Jersey Department of Environmental Protection
Mail Code: 401-02E
PO Box 420
Trenton, NJ 08625-0420.

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION
Bureau of Air Monitoring
www.NJAQINOW.net

Table of Contents

<u>Section</u>	<u>Page Number</u>
EXECUTIVE SUMMARY	4
REGULATORY REQUIREMENTS	4
THE NEW JERSEY MONITORING NETWORK	5
CHANGES TO THE NETWORK	8
NEW JERSEY AIR MONITORING SITE DESCRIPTIONS	9
GLOSSARY OF ABBREVIATIONS AND TERMS	45
REFERENCES	48
APPENDIX A: VOLATILE ORGANIC COMPOUNDS	49
APPENDIX B: CARBONYLS	51
APPENDIX C: SPECIATED FINE PARTICLES	52
APPENDIX D: OZONE PRECURSORS	53
APPENDIX E: BTEX COMPOUNDS	55
APPENDIX F: JUSTIFICATION FOR PAMS WAIVER REQUEST	56

DISCLAIMER

Mention of trade names, manufacturers or commercial products in this document does not constitute New Jersey Department of Environmental Protection endorsement or recommendation for use.

EXECUTIVE SUMMARY

New Jersey's Ambient Air Monitoring Network Plan provides a complete description of the monitoring network, and summarizes any changes made in the previous year and any planned within the next year. The New Jersey Department of Environmental Protection (NJDEP) is required to submit a Network Plan to the U.S. Environmental Protection Agency (USEPA) each year.

Here is a list of network changes that occurred from March 2016 to March 31, 2017:

- 1. Shut down the New Brunswick site after moving the PM_{2.5} chemical speciation network sampler and mercury sampler to the Rutgers University site;
- Discontinued obsolete smoke shade monitoring at the Elizabeth, Elizabeth Lab, and Jersey City sites;
- 3. Shut down the East Orange site (CO, NOx, meteorology) because of duplicated efforts at nearby monitors;
- 4. Discontinued mercury monitoring at the Brigantine and Chester sites because of duplicative efforts and equipment problems.

Proposed Changes

New USEPA regulations were promulgated in 2015 requiring Photochemical Assessment Monitoring Stations (PAMS) to be located at National Core (NCore) monitoring sites by June 2019. NJDEP intends to ask USEPA for a waiver from that requirement, in order to allow the continued operation of the long-standing site at Rutgers University (established in 1996), instead of moving it to the Newark Firehouse NCore site. In addition, New Jersey is requesting to be an early adopter of new equipment to be required at PAMS sites, ahead of the June 2019 deadline, in order to receive early funding to replace aging equipment. Documentation for justifying the waiver can be found in Appendix F.

At the Rahway monitoring station, changes are proposed to the PM_{2.5} monitors in 2017. We would like to remove the filter-based manual sampler and the real-time sampler, and replace them with a new federal equivalent method PM_{2.5} continuous sampler, which will enable us to conserve resources and utilize more advanced technology.

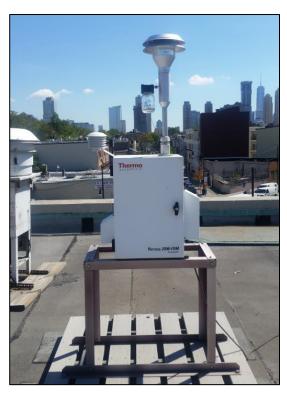
NJDEP was recently notified that the Gibbstown monitoring station, located at a municipal maintenance facility, will be undergoing reconstruction and will no longer meet $PM_{2.5}$ monitor siting criteria. We are proposing to relocate the $PM_{2.5}$ monitor to the Clarksboro monitoring station, about five miles away, as soon as possible.

REGULATORY REQUIREMENTS

The NJDEP is required by 40 CFR Part 58 to submit an Annual Monitoring Network Plan to the USEPA Region 2 Regional Administrator by July 1 of each year, and to have the Plan available for public inspection for at least 30 days prior to its submittal to the USEPA. The Plan describes State and Local Air Monitoring Stations (SLAMS), National Core (NCore) stations, Speciation Trends Network (STN) stations, State speciation stations, Special Purpose Monitor (SPM) stations, and Photochemical Assessment Monitoring Stations (PAMS).

This 2017 Network Plan contains all the information required by the regulations, descriptions of the air monitoring sites, large and small scale maps of the monitoring stations, a summary of the changes to the Air Monitoring Network that NJDEP expects to implement during the year, comments received following the 30-day public comment period, and the NJDEP's responses to

these comments. It is available for download from the Bureau of Air Monitoring's website, www.njaginow.net, or as a hard copy by calling 609-292-0138.


THE NEW JERSEY AIR MONITORING NETWORK

The NJDEP currently operates 33 air monitoring sites throughout the state. Table 1 lists all the monitoring sites along with the pollutants, categories of pollutants, or meteorological parameters that are measured at each site. Figure 1 shows the locations of the monitoring stations across New Jersey.

Data used for comparison to the National Ambient Air Quality Standards (NAAQS) must be measured by USEPA-approved real-time analyzers or USEPA-approved manual samplers. The real-time data is also used to generate a rating of air quality called the Air Quality Index (AQI), which is updated hourly on the Bureau of Air Monitoring's webpage.

Real-time sampling instruments automatically collect and analyze data continuously, and transmit the data to a centralized computer system once every minute. Several parameters, including carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), sulfur dioxide (SO₂), fine particulate matter (PM_{2.5}), and meteorological data are measured this way.

NJDEP also uses USEPA-approved manual PM samplers for comparison to the NAAQS. Three different types of airborne particles are collected on a filter over a 24-hour period: fine particles (particles smaller than 2.5 micrometers in diameter, or $PM_{2.5}$); inhalable particulate (particles smaller than 10 micrometers in diameter, or PM_{10}); and PM_{coarse} (particles between 2.5 micrometers in diameter and 10 micrometers in diameter). After the completion of the collection period, the samples are manually retrieved and sent to NJDEP's laboratory for gravimetric analysis.

NJDEP also monitors other pollutants, some of which are grouped together into categories by their method of sampling or analysis. These categories are listed in the headings of Table 1. Sites that monitor for ozone precursors (pollutants that affect ozone formation in the atmosphere) are part of the national Photochemical Assessment Monitoring Station (PAMS) program. Ozone precursors are frequently referred to as PAMS pollutants. Pollutants in the "PM_{2.5} Speciation" category include trace elements, heavy metals, and carbon compounds; they are analyzed using PM_{2.5} particles. "Toxics" include selected volatile organic compounds (VOCs) and carbonyls that are analyzed using whole air samples or adsorbent media. The PM_{2.5} speciation, VOC, and carbonyl samples are collected by NJDEP and sent to USEPA-approved contract laboratories for analysis. At several urban monitoring stations, NJDEP uses a BTEX analyzer to measure near real-time benzene, toluene, ethylbenzene, and xylenes, and an aethalometer to collect near realtime black carbon particle data. Finally, NJDEP

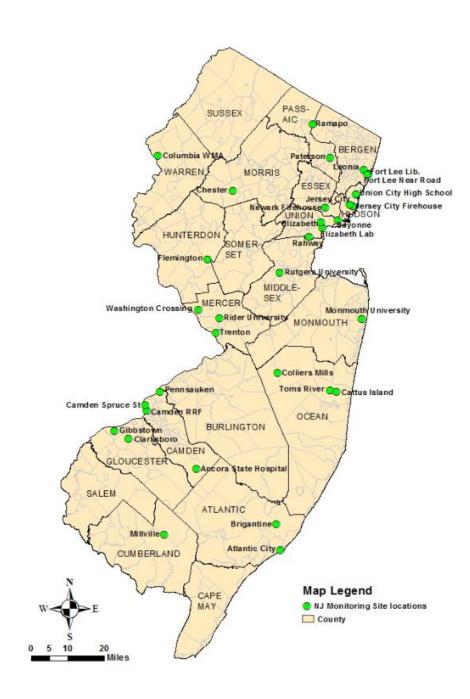

also measures acid deposition, mercury, and visibility (measured with a nephelometer).

TABLE 1: SUMMARY OF CURRENT NEW JERSEY AIR MONITORING SITES

	Monitoring Parameters	00	NO ₂	NOy	03	SO ₂	PM _{2.5}	Real-Time PM _{2.5}	PM ₁₀	PM coarse	PM _{2.5} -Speciation	O ₃ Precursors	Toxics	Urban Pollutants*	Acid Deposition	Mercury	Visibility	Barometric Pressure	Relative Humidity	Temperature	Wind Direction	Wind Speed	Rain	Solar Radiation
_	Ancora State Hospital				1																			
2	•						1																	
3	•		1		1	1								1				1	1	1	1	1	1	
4	Brigantine				1	1	1	1									1							
5	Camden RRF								1															
6	Camden Spruce St	1	1		1	1	1	1			1		1	1				1	1	1	1	1	1	
7	Cattus Island														1									
8	Chester		1		1	1	1				1		1											
9	Clarksboro				1																			
10	Colliers Mills				1																			
11	Columbia WMA		1		1	1	1	1										1	1	1	1	1	1	
12	Elizabeth	1				1																		
13	Elizabeth Lab	1	1			1	2	1			1		1	1		1		1	1	1	1	1	1	
14	Flemington				1			1										1	1	1	1	1	1	1
15	Fort Lee Library						1																	
16	Fort Lee Near Road	1	1					1						1				1	1	1	1	1	1	
17	Gibbstown						1																	
18	Jersey City	1	1			1																		
19	· · ·						2	1	2															
20	Leonia				1																			
21	Millville		1		1			1																
22	Monmouth University				1																			
23	Newark Firehouse	1	1	1	1	1	1	1	1	1	1			1				1	1	1	1	1	1	1
24	Paterson						1																	
25	Pennsauken						1																	
26	Rahway						1	1																
-	Ramapo				1																			
	Rider University				1			1										1	1	1	1	1		1
	Rutgers University		1		1		1	1			2	1	1			1		•			,	•		
	Toms River				<u> </u>		1	•			-	-	-			•								
31							1																	
	Union City High School						1																	\vdash
	Washington Crossing														1									
30	CURRENT TOTAL	6	10	1	16	9	19	12	4	1	6	1	4	5	2	2	1	8	8	8	8	8	7	3

^{*} Urban pollutants include black carbon and select volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes).

FIGURE 1: MAP OF CURRENT NEW JERSEY AIR MONITORING NETWORK

CHANGES TO THE NETWORK

Table 2: Network Changes, March 2016 - March 2017

Monitoring Site	Parameter(s)	Action	Date
Brigantine	Mercury	Discontinued	12/31/16
Chester	Mercury	Discontinued	12/31/16
East Orange	CO	Shut down	7/1/16
East Orange	NOx	Shut down	7/1/16
East Orange	Meteorological Data	Shut down	7/1/16
Elizabeth	Smoke Shade	Discontinued	12/31/16
Elizabeth Trailer	Smoke Shade	Discontinued	12/31/16
Jersey City	Smoke Shade	Discontinued	12/31/16
New Brunswick	Mercury	Relocated to Rutgers	10/1/16
New Brunswick	PM _{2.5} Speciation	Relocated to Rutgers	6/30/16
Rutgers University	Mercury	Startup	10/31/16
Rutgers University	PM _{2.5} Speciation	Startup	7/5/16

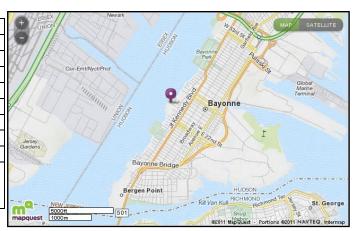
NEW JERSEY AIR MONITORING SITE DESCRIPTIONS

SITE INFORMATION

Site Name	Ancora State Hospital	Pump Branch 93 / Codar Brook MAP SATELLITE
Address	301 Spring Garden Road	
City, State, Zip	Hammonton, NJ 08037	Calatroph Pol
AQS Code	34 007 1001	1 2 2
NJ County	Camden	Clue Anchor Ry Braddock
MSA/CSA	Philadelphia-Camden-Wilmington CSA	Ancora
Latitude	39.684250	
Longitude	-74.861491	
Date Established	1/1/1966	2
Suitable for		E S
Comparison to	Not Applicable	
PM _{2.5} NAAQS?		6000ff 1000m 62011 MapQuest - Portions 82011 NAVTEO, Intermap

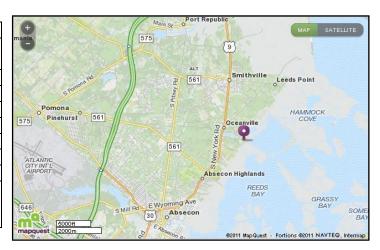
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O ₃)	44201	Thermo 49C	Ultraviolet	047	Continuous	Urban	Population Exposure

Site Purpose	To measure background concentrations for the southern part of New Jersey. May also measure maximum ozone concentrations downwind from the Philadelphia metropolitan area.
Plans for the next 18 months	No changes.
Other Comment	


Site Name	Atlantic City
Address	Atlantic Cape Community College, 1535
Address	Bacharach Boulevard
City, State, Zip	Atlantic City, NJ 08401
AQS Code	34 001 1006
NJ County	Atlantic
MSA/CSA	Atlantic City MSA
Latitude	39.363260
Longitude	-74.431000
Date Established	7/27/2001
Suitable for	
Comparison to	Yes
PM _{2.5} NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure

Site Purpose	To measure fine particle concentrations in the commercial area of Atlantic City.					
Plans for the next 18 months	No changes.					
	to changed.					
Other Comment						


Site Name	Bayonne
Address	Park Road at end of W. 25th St.
City, State, Zip	Bayonne, NJ 07002
AQS Code	34 017 0006
NJ County	Hudson
MSA/CSA	New York-Northeast New Jersey-Connecticut CSA
Latitude	40.670250
Longitude	-74.126081
Date Established	1/1/1983
Suitable for	
Comparison to	Not Applicable
PM _{2.5} NAAQS?	

	AQS	Campling	Method of	AQS Method	AQS	400	AQS Manitaring
Parameter	Parameter Code	Sampling Instrument	Method of Analysis	Code	Sample Frequency	AQS Spatial Scale	Monitoring Objective
Nitric Oxide (NO)	42601	Thermo 42i	Chemiluminescence	074	Continuous	Urban	Population Exposure
Nitrogen Dioxide (NO ₂)	42602	Thermo 42i	Chemiluminescence	074	Continuous	Urban	Population Exposure
Oxides of Nitrogen (NO _x)	42603	Thermo 42i	Chemiluminescence	074	Continuous	Urban	Population Exposure
Ozone (O ₃)	44201	Thermo 49i	Ultraviolet	047	Continuous	Neighborhood	Population Exposure
Sulfur Dioxide (SO ₂)	42401	Thermo 43i	Pulsed fluorescence	060	Continuous	Neighborhood	Population Exposure
Black Carbon	84313	Teledyne API Model 633 Aethalometer	Optical absorption	861	Continuous	Neighborhood	Population Exposure
BTEX	Appendix E	Syntech Spectras GC 955 BTEX analyzer	Auto GC-PID	092	Continuous	Neighborhood	Population Exposure
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Precipitation	65102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	•

Site Purpose	To measure population exposure in the Hudson County area
Plans for the next	No observes
Plans for the next 18 months	ino changes.
Other Comment	
Other Comment	

Site Name	Brigantine			
Address	Edwin B. Forsythe National Wildlife Refuge			
Address	Visitor Center, 800 Great Creek Road,			
City, State, Zip	Galloway, NJ 08231			
AQS Code	34 001 0006			
NJ County	Atlantic			
MSA/CSA	Atlantic City MSA			
Latitude	39.464872			
Longitude	-74.448736			
Date Established	1/1/2007			
Suitable for				
Comparison to	Yes			
PM _{2.5} NAAQS?				

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O ₃)	44201	Teledyne T400	Ultraviolet	087	Continuous	Urban	Background
Sulfur Dioxide (SO ₂)	42401	Thermo 43iTLE	Pulsed fluorescence	560	Continuous	Urban	Background
Fine Particles (PM _{2.5})	Thermo 2025 Low-		Gravimetric	145	Every 3 days	Urban	Background
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Urban	Background
Real-time PM _{2.5}	88347	Nephelometer	Light-scattering	011	Continuous	Urban	Background

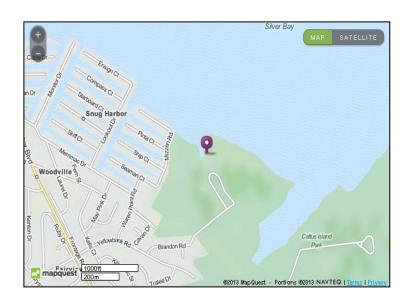
Site Purpose	Purpose To measure pollutant concentrations and visibility in Class I protected areas.						
Plans for the next 18 months	No changes.						
Other Comment	SO ₂ is measured by a "trace-level" analyzer. Also an IMPROVE station, part of NESCAUM visibility network. Real- time PM _{2.5} data by nephelometer data not submitted to EPA's AQS database. The US Fish & Wildlife Service collects a weekly acid deposition sample which is sent to the National Atmospheric Deposition Program (NADP) for analysis.						

Site Name	Camden RRF (Resource Recovery Facility)
Address	600 Morgan Street
City, State, Zip	Camden, NJ 08104
AQS Code	34 007 0009
NJ County	Camden
MSA/CSA	Philadelphia-Camden-Wilmington CSA
Latitude	39.912431
Longitude	-75.116864
Date Established	5/8/1994
Suitable for	
Comparison to	Not Applicable
PM _{2.5} NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Inhalable Particles (PM ₁₀)	81102	Thermo 2025 Low- volume sequential sampler	Gravimetric	127	Every 6 days	Middle	Source Oriented

Site Purpose	To measure the impact of mobile sources in heavily used roadways in southern Camden.
Plans for the next 18 months	No changes.
	3.1
Other Comment	

Site Name	Camden Spruce Street
Address	226-298 Spruce Street
City, State, Zip	Camden, NJ 08103
AQS Code	34 007 0002
NJ County	Camden
MSA/CSA	Philadelphia-Camden-Wilmington CSA
Latitude	39.934446
Longitude	-75.125291
Date Established	4/11/2012
Suitable for	
Comparison to	Yes
PM _{2.5} NAAQS?	


	AQS Parameter	Sampling		AQS Method	AQS Sample	AQS	AQS Monitoring
Parameter	Code	Instrument	Method of Analysis	Code	Frequency	Spatial Scale	Objective
Carbon Monoxide (CO)	42101	Thermo 48C	Nondispersive- infrared	054	Continuous	Neighborhood	Population Exposure
Nitric Oxide (NO)	42601	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Nitrogen Dioxide (NO ₂)	42602	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Oxides of Nitrogen (NO _x)	42603	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Ozone (O ₃)	44201	Thermo 49i	Ultraviolet	047	Continuous	Neighborhood	Population Exposure
Sulfur Dioxide (SO ₂)	42401	Thermo 43iTLE	Pulsed fluorescence	060	Continuous	Neighborhood	Population Exposure
Fine Particles (PM _{2.5})	88101	Thermo 2025i Low- volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure
PM _{2.5} Speciation	Appendix C	Met One	XRF, IC, TOA	Appendix C	Every 6 days	Neighborhood	Population Exposure
Volatile Organic Compounds	Appendix A	Canister	TO-15	Appendix A	Every 6 days	Neighborhood	Population Exposure
Carbonyls	Appendix B	DNPH cartridge	TO-11A	Appendix B	Every 6 days	Neighborhood	Population Exposure
Black Carbon	84313	Teledyne API Model 633 Aethalometer	Optical absorption	861	Continuous	Neighborhood	Population Exposure
BTEX	Appendix E	Syntech Spectras GC 955 BTEX analyzer	Auto GC-PID	092	Continuous	Neighborhood	Population Exposure
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	

PARAMETER SUMMARY (Camden Spruce Street, continued)

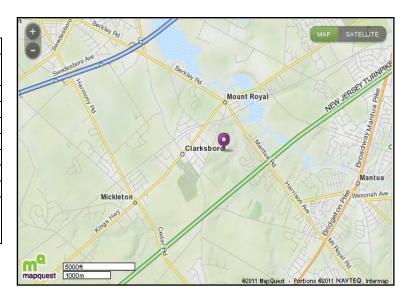
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Precipitation	65102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	

	Comprehensive air monitoring station in the Philadelphia-Camden metro area of southern New Jersey.
Plans for the next 18 months	No changes.
Other Comment	PM _{2.5} gravimetric sampler is collocated for precision.

Site Name	Cattus Island
Address	Cattus Island County Park, end of
Address	Bandon Road
Municipality	Toms River NJ 08753
AQS Code	None
NJ County	Ocean
MSA/CSA	New York-Northeast New Jersey-
WISA/CSA	Connecticut CSA
Latitude	39.989636
Longitude	-74.134132
Date Established	10/23/2012
Suitable for	
Comparison to	Not Applicable
PM2.5 NAAQS?	

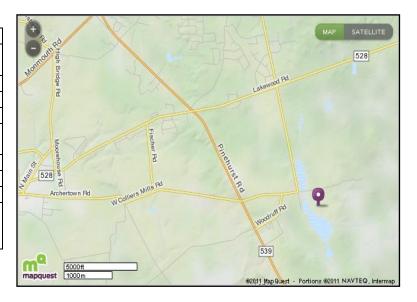
AQS				AQS		AQS	
Parameter	Parameter Code	Sampling Instrument	Method of Analysis	Method Code	AQS Sample Frequency	AQS Spatial Scale	Monitoring Objective
Acid Deposition		Wet Deposition Collector	Ion Chromatography		Weekly	Neighborhood	Population Exposure

Site Purpose	To measure population exposure and transported fine particle concentrations.
Plans for the next	No changes.
18 months	No orangeo.
Other Comment	Acid deposition samples are sent to the National Atmospheric Deposition Program (NADP) for analysis. Acid
	deposition data are not submitted by NJDEP or NADP to EPA's AQS database.


Site Name	Chester
Address	Department of Public Works Building # 1, 50 North Road
City, State, Zip	Chester, NJ 07930
AQS Code	34 027 3001
NJ County	Morris
MSA/CSA	New York-Northeast New Jersey-Connecticut CSA
Latitude	40.787628
Longitude	-74.676301
Date Established	1/1/1978
Suitable for	
Comparison to	Yes
PM25 NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Nitric Oxide (NO)	42601	Teledyne T200	Chemiluminescence	099	Continuous	Urban	Background
Nitrogen Dioxide (NO ₂)	42602	Teledyne T200	Chemiluminescence	099	Continuous	Urban	Background
Oxides of Nitrogen (NO _x)	42603	Teledyne T200	Chemiluminescence	099	Continuous	Urban	Background
Ozone (O ₃)	44201	Teledyne T400	Ultraviolet	087	Continuous	Urban	Population Exposure
Sulfur Dioxide (SO ₂)	42401	Thermo 43A	Pulsed fluorescence	060	Continuous	Urban	Background
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low-volume sequential sampler	Gravimetric	145	Every 3 days	Urban	Population Exposure
PM _{2.5} Speciation	Appendix C	Met One	XRF, IC, TOA	Appendix C	Every 6 days	Neighborhood	Population Exposure
Volatile Organic Compounds	Appendix A	Canister	TO-15	Appendix.A	Every 6 days	Neighborhood	Population Exposure
Carbonyls	Appendix B	DNPH cartridge	TO-11A	Appendix B	Every 6 days	Neighborhood	Population Exposure

Site Purpose	To measure background concentrations in northern New Jersey.
Plans for the next 18 months	No changes.
Other Comment	See Appendices A, B and C for more information on PM _{2.5} speciation, volatile organic compounds and carbonyls.


Site Name	Clarksboro
Address	Shady Lane Complex, 256 County House Road
City, State, Zip	Clarksboro, NJ 08020
AQS Code	34 015 0002
NJ County	Gloucester
MSA/CSA	Philadelphia-Camden-Wilmington CSA
Latitude	39.800339
Longitude	-75.212119
Date Established	1/1/1981
Suitable for	
Comparison to	Not Applicable
PM _{2.5} NAAQS?	• •

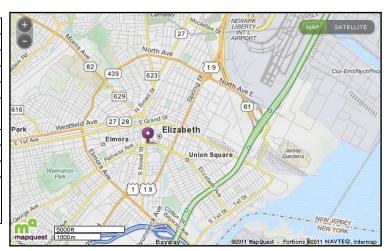
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O ₃)	44201	Thermo 49i	Ultraviolet	047	Continuous	Urban	Highest Concentration

Site Purpose	To measure highest concentrations of ozone downwind from Philadelphia metropolitan area.						
Plans for the next 18 months	Relocate PM _{2.5} monitor from Gibbstown.						
Other Comment							

Site Name	Colliers Mills
A daluaca	Colliers Mills Wildlife Management
Address	Area, Success Rd. near Hawkin Road
City, State, Zip	Jackson, NJ 08527
AQS Code	34 029 0006
NJ County	Ocean
MSA/CSA	New York-Northeast New Jersey-
W3A/C3A	Connecticut CSA
Latitude	40.064830
Longitude	-74.444050
Date Established	1/1/1985
Suitable for	
Comparison to	Not Applicable
PM _{2.5} NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O ₃)	44201	Teledyne T400	Ultraviolet	087	Continuous	Urban	Highest Concentration

Site Purpose	To measure highest concentrations for ozone downwind from the Philadelphia metropolitan area and central New Jersey.	
Plans for the next 18 months	No changes.	
Other Comment		


1	
Site Name	Columbia WMA
Address	Columbia Wildlife Management Area, 105 Delaware Avenue
City, State, Zip	Knowlton Township, NJ 07832
AQS Code	34 041 0007
NJ County	Warren
MSA/CSA	Allentown-Bethlehem-Easton-PA-NJ MSA
Latitude	40.924580
Longitude	-75.067815
Date Established	9/23/2010
Suitable for Comparison to PM _{2.5} NAAQS?	Yes

	AQS Parame			AQS	AQS		AQS
Parameter	ter Code	Sampling Instrument	Method of Analysis	Method Code	Sample Frequency	AQS Spatial Scale	Monitoring Objective
Nitric Oxide (NO)	42601	Thermo 42i	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Nitrogen Dioxide (NO ₂)	42602	Thermo 42i	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Oxides of Nitrogen (NO _x)	42603	Thermo 42i	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Ozone (O ₃)	44201	Thermo 49i	Ultraviolet	047	Continuous	Neighborhood	Population Exposure
Sulfur Dioxide (SO ₂)	42401	Teledyne T100U	Pulsed fluorescence	100	Continuous	Neighborhood	Highest Concentration
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low-volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Precipitation	65102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	

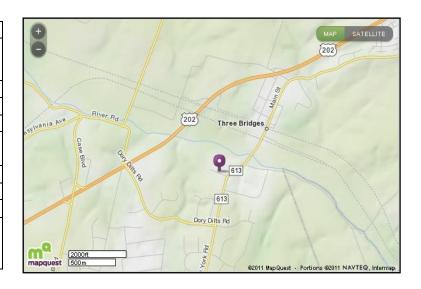
Site Purpose	To measure population exposure for NO ₂ , O ₃ and PM _{2.5} ; and highest concentrations for SO ₂ .					
Plans for the next	No changes.					
18 months	ino changes.					
Other Comment						

Site Name	Elizabeth	
Address	7 Broad Street	
City, State, Zip	Elizabeth, NJ 07201	
AQS Code	34 039 0003	
NJ County	Union	
MSA/CSA	New York-Northeast New Jersey-	
WISA/CSA	Connecticut CSA	
Latitude	40.662493	
Longitude	-74.214800	
Date Established	1/1/1970	
Suitable for		
Comparison to	Not Applicable	
PM _{2.5} NAAQS?		

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Carbon Monoxide (CO)	42101	Thermo 48i	Nondispersive- infrared	054	Continuous	Micro	Highest Concentration
Sulfur Dioxide (SO ₂)	42401	Teledyne T100	Pulsed fluorescence	100	Continuous	Middle	Population Exposure

Site Purpose	To measure the highest concentrations in the central commercial area of Elizabeth.
Plans for the next 18 months	No changes.
18 months	-
Other Comment	

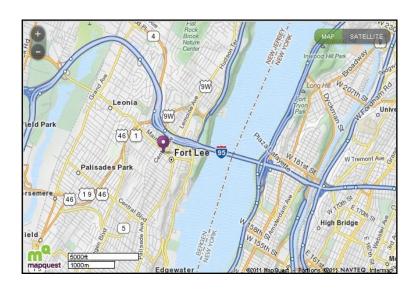
Site Name	Elizabeth Lab
Address	Interchange 13 Toll Plaza, NJ Turnpike
City, State, Zip	Elizabeth, NJ 07202
AQS Code	34 039 0004
NJ County	Union
MSA/CSA	New York-Northeast New Jersey-
WISA/CSA	Connecticut CSA
Latitude	40.641440
Longitude	-74.208365
Date Established	1/1/1972
Suitable for	
Comparison to	Yes
PM _{2.5} NAAQS?	


Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Carbon Monoxide (CO)	42101	Thermo 48i	Nondispersive- infrared	054	Continuous	Neighborhood	Highest Concentration
Nitric Oxide (NO)	42601	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Highest Concentration
Nitrogen Dioxide (NO ₂)	42602	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Highest Concentration
Oxides of Nitrogen (NO _x)	42603	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Highest Concentration
Sulfur Dioxide (SO ₂)	42401	Thermo 43i	Pulsed fluorescence	060	Continuous	Neighborhood	Highest Concentration
Fine Particles (PM _{2.5})	88101	Thermo 2025i Low- volume sequential sampler	Gravimetric	145	Daily	Neighborhood	Population Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure
PM _{2.5} Speciation	Appendix C	Met One	XRF, IC, TOA	Appendix C	Every 3 days	Neighborhood	Highest Concentration
Volatile Organic Compounds	Appendix A	Canister	TO-15	Appendix A	Every 6 days	Neighborhood	Population Exposure
Carbonyls	Appendix B	DNPH cartridge	TO-11A	Appendix B	Every 6 days	Neighborhood	Population Exposure
Mercury (Hg)		Tekran 2537x	CVAF Spectrometry		Hourly	Neighborhood	Population Exposure
Black Carbon	84313	Teledyne API Model 633 Aethalometer	Optical absorption	861	Continuous	Neighborhood	Population Exposure
BTEX	Appendix E	Syntech Spectras GC 955 BTEX analyzer	Auto-GC PID	092	Continuous	Neighborhood	Population Exposure
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	

PARAMETER SUMMARY (Elizabeth Lab, continued)

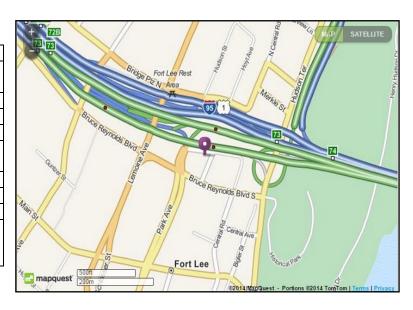
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Precipitation	65102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	

Site Purpose	The comprehensive air monitoring site in the northeast metropolitan region of New Jersey.
Plans for the next 18 months	No changes.
Other Comment	PM _{2.5} gravimetric sampler is collocated for precision.


Site Name	Flemington
Address	Raritan Township Municipal Utilities Authority, 365 Old York Road
City, State, Zip	Flemington, NJ 08822
AQS Code	34 019 0001
NJ County	Hunterdon
MSA/CSA	New York-Northeast New Jersey- Connecticut CSA
Latitude	40.515262
Longitude	-74.806671
Date Established	1/1/1980
Suitable for Comparison to PM _{2.5} NAAQS?	Not Applicable

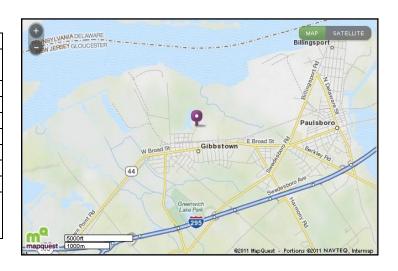
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O ₃)	44201	Teledyne T400	Ultraviolet	087	Continuous	Urban	Population Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Solar Radiation	63301	Qualimetrics	Pyrometer	011	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Precipitation	65102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	

Site Purpose	To measure ozone concentrations in the northwestern region of New Jersey.
Plans for the next 18 months	No changes
18 months	No changes.
Other Comment	
•	


Site Name	Fort Lee Library			
A al alua a a	320 Main Street, Fort Lee Public			
Address	Library			
City, State, Zip	Fort Lee, NJ 07024			
AQS Code	34 003 0003			
NJ County	Bergen			
MCA/CCA	New York-Northeast New Jersey-			
MSA/CSA	Connecticut CSA			
Latitude	40.852256			
Longitude	-73.973314			
Date Established	1/23/1986			
Suitable for				
Comparison to	Yes			
PM _{2.5} NAAQS?				

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure

Site Purpose	To measure the population exposure in the Fort Lee area.				
Plans for the next 18 months	No changes.				
Other Comment					


Site Name	Fort Lee Near Road
Address	2047 Central Avenue, adjacent to
Audress	George Washington Bridge Toll Plaza
City, State, Zip	Fort Lee, NJ 07024
AQS Code	34 003 0010
NJ County	Bergen
MSA/CSA	New York-Northeast New Jersey-
IVISA/CSA	Connecticut CSA
Latitude	40.853550
Longitude	-73.966180
Date Established	4/1/2014
Suitable for	
Comparison to	Not Applicable
PM _{2.5} NAAQS?	

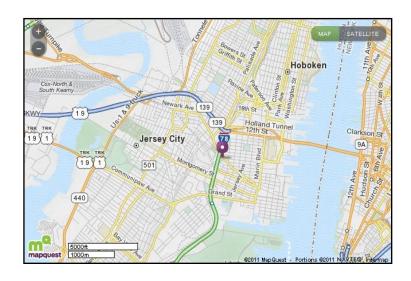
	AQS			AQS	AQS		AQS
Parameter	Parameter Code	Sampling Instrument	Method of Analysis	Method Code	Sample Frequency	AQS Spatial Scale	Monitoring Objective
Nitric Oxide (NO)	42601	Thermo 42i	Chemiluminescence	074	Continuous	Microscale	Near-Road Exposure
Nitrogen Dioxide (NO ₂)	42602	Thermo 42i	Chemiluminescence	074	Continuous	Microscale	Near-Road Exposure
Oxides of Nitrogen (NO _x)	42603	Thermo 42i	Chemiluminescence	074	Continuous	Microscale	Near-Road Exposure
Carbon Monoxide (CO)	42101	Thermo 48i	Nondispersive infrared	054	Continuous	Microscale	Near-Road Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Microscale	Near-Road Exposure
Black Carbon	84313	Teledyne API Model 633 Aethalometer	Optical absorption	861	Continuous	Neighborhood	Population Exposure
BTEX	Appendix E	Syntech Spectras GC 955 BTEX analyzer	Auto-GC PID	092	Continuous	Neighborhood	Population Exposure
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Precipitation	65102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	

	To measure near-road exposure for NO ₂ , CO and PM _{2.5} .
Plans for the next 18 months	No changes.
Other Comment	

Site Name	Gibbstown
Address	Municipal Maintenance Yard, 61 North
71001000	School Street
City, State, Zip	Gibbstown, NJ 08027
AQS Code	34 015 0004
NJ County	Gloucester
MSA/CSA	Philadelphia-Camden-Wilmington CSA
Latitude	39.830837
Longitude	-75.284682
Date Established	2/2/2007
Suitable for	
Comparison to	Yes
PM _{2.5} NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure

Site Purpose	To measure population exposure in the Gibbstown area.				
Plans for the next	Relocate monitor to Clarksboro because of changes at the site that will cause it to no longer meet siting criteria.				
18 months	The locate monitor to charksbord because of changes at the site that will cause it to no longer meet siting chiena.				
Other Comment					


Site Name	Jersey City			
Address	2828 John F. Kennedy Boulevard			
City, State, Zip	Jersey City, NJ 07306			
AQS Code	34 017 1002			
NJ County	Hudson			
MSA/CSA	New York-Northeast New Jersey-			
WISA/CSA	Connecticut CSA			
Latitude	40.731645			
Longitude	-74.066308			
Date Established	1/1/1970			
Suitable for				
Comparison to	Not Applicable			
PM _{2.5} NAAQS?				

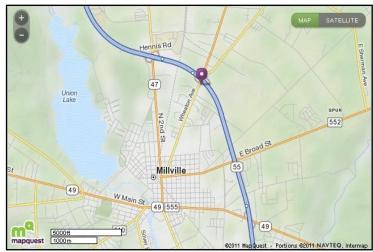
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Carbon Monoxide (CO)	42101	Thermo 48 <i>i</i> TLE	Nondispersive- infrared	054	Continuous	Micro	Highest Concentration
Sulfur Dioxide (SO ₂)	42401	Teledyne T100	Pulsed fluorescence	100	Continuous	Neighborhood	Highest Concentration
Nitric Oxide (NO)	42601	Teledyne T200	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Nitrogen Dioxide (NO ₂)	42602	Teledyne T200	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Oxides of Nitrogen (NO _x)	42603	Teledyne T200	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure

Site Purpose	To measure highest concentrations in the central commercial area of Jersey City.				
Plans for the next 18 months	No changes.				
10 1110111110					
Other Comment					

Site Name	Jersey City Firehouse		
Address	Jersey City Fire Department Engine 6,		
Address	355 Newark Avenue,		
City, State, Zip	Jersey City, NJ 07302		
AQS Code	34 017 1003		
NJ County	Hudson		
MSA/CSA	New York-Northeast New Jersey-		
IVISA/CSA	Connecticut CSA		
Latitude	40.725454		
Longitude	-74.052290		
Date Established	1/1/1967		
Suitable for			
Comparison to	Yes		
PM _{2.5} NAAQS?			

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low-volume sequential sampler	Gravimetric	145	Daily	Neighborhood	Population Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure
Inhalable Particles (PM ₁₀)	81102	Thermo 2000 Low-volume single sampler	Gravimetric	126	Every 6 days	Neighborhood	Highest Concentration

Site Purpose	To measure population exposure in the Jersey City area.					
Plans for the next	No changes.					
18 months	ivo Granges.					
Other Comment	Gravimetric PM _{2.5} and PM ₁₀ are collocated for precision measurements. Sample taken every 6 days. The AQS					
Guior Gommont	method code for the collocated PM _{2.5} monitor is 143.					


Site Name	Leonia				
Address	40 Fort Lee Road, Overpeck Park,				
City, State, Zip	Leonia, NJ 07605				
AQS Code	34 003 0006				
NJ County	Bergen				
MSA/CSA	New York-Northeast New Jersey-				
WISA/CSA	Connecticut CSA				
Latitude	40.870436				
Longitude	-73.991994				
Date Established	12/7/2007				
Suitable for					
Comparison to	Not Applicable				
PM25 NAAQS?					

Paramete	AQS Parameter er Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O	44201	Thermo 49C	Ultraviolet	047	Continuous	Neighborhood	Population Exposure

Site Purpose	To measure population exposure in the Leonia and Teaneck areas.					
Plans for the next 18 months	No changes.					
Other Comment						


Site Name	Millville
Address	Next to 4425 South Main Road
City, State, Zip	Millville, NJ 08332
AQS Code	34 011 0007
NJ County	Cumberland
MSA/CSA	Vineland-Millville-Bridgeton MSA
Latitude	39.422273
Longitude	-75.025204
Date Established	1/1/1983
Suitable for	
Comparison to	Not Applicable
PM _{2.5} NAAQS?	

D	AQS Parameter	Sampling		AQS Method	AQS Sample	AQS	AQS Monitoring
Parameter	Code	Instrument	Method of Analysis	Code	Frequency	Spatial Scale	Objective
Nitric Oxide (NO)	42601	Teledyne T200	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Nitrogen Dioxide (NO ₂)	42602	Teledyne T200	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Oxides of Nitrogen (NO _x)	42603	Teledyne T200	Chemiluminescence	099	Continuous	Neighborhood	Population Exposure
Ozone (O ₃)	44201	Thermo 49C	Ultraviolet	047	Continuous	Neighborhood	Population Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure

Site Purpose	To measure population exposure in the Vineland and Millville areas.					
Plans for the next	No changes.					
18 months	No changes.					
Other Comment						

Site Name	Monmouth University				
A al alice e e	Edison Science Bldg., 400 Cedar				
Address	Avenue				
City, State, Zip	West Long Branch, NJ 07764				
AQS Code	34 025 0005				
NJ County	Monmouth				
MCA/OCA	New York-Northeast New Jersey-				
MSA/CSA	Connecticut CSA				
Latitude	40.277647				
Longitude	-74.005100				
Date Established	5/13/1989				
Suitable for					
Comparison to	Not Applicable				
PM25 NAAQS?					

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O ₃)	44201	Thermo 49	Ultraviolet	047	Continuous	Neighborhood	Highest Concentration

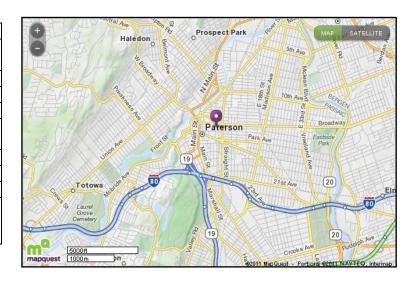
Site Purpose	To measure highest concentrations of ozone in the eastern Monmouth County area.					
Plans for the next	No changes.					
18 months	The distalligible.					
Other Comment						

Site Name	Newark Firehouse		
Address	Newark Fire Department Engine 10, 360 Clinton Avenue,		
City, State, Zip	Newark, NJ 07108		
AQS Code	34 013 0003		
NJ County	Essex		
MSA/CSA	New York-Northeast New Jersey- Connecticut CSA		
Latitude	40.720989		
Longitude	-74.192892		
Date Established	5/1/2009		
Suitable for			
Comparison to	Yes		
PM _{2.5} NAAQS?			

	AQS Parameter	Compline		AQS Method	AQS	AQS	AQS Manitaring
Parameter	Code	Sampling Instrument	Method of Analysis	Code	Sample Frequency	Spatial Scale	Monitoring Objective
Carbon Monoxide (CO)	42101	Thermo 48iTLE	Nondispersive- infrared	554	Continuous	Neighborhood	Population Exposure
Nitric Oxide (NO)	42601	Thermo 42 <i>i</i> -Y	Chemiluminescence	674	Continuous	Neighborhood	Population Exposure
NO _y -NO Difference	42612	Thermo 42 <i>i</i> -Y	Chemiluminescence	674	Continuous	Neighborhood	Population Exposure
Total Reactive Oxides of Nitrogen (NO _y)	42600	Thermo 42 <i>i</i> -Y	Chemiluminescence	674	Continuous	Neighborhood	Population Exposure
Nitric Oxide (NO)	42601	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Nitrogen Dioxide (NO ₂)	42602	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Oxides of Nitrogen (NO _x)	42603	Thermo 42i	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Ozone (O ₃)	44201	Thermo 49i	Ultraviolet	047	Continuous	Neighborhood	Population Exposure
Sulfur Dioxide (SO ₂)	42401	Thermo 43iTLE	Pulsed fluorescence	560	Continuous	Neighborhood	Highest Concentration
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low-volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure
Lead (Pb)	85129	Thermo 2025 Low-volume sequential sampler	XRF with PM ₁₀	811	Every 6 days	Neighborhood	Population Exposure
Real-time PM _{2.5}	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure

PARAMETER SUMMARY (Newark Firehouse, continued)

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
PM coarse	86101	Thermo 2025 Sequential Sampler Pair	Paired Gravimetric Difference	176	Every 3 days	Neighborhood	Population Exposure
Inhalable Particles (PM ₁₀)	81102	Thermo 2025 Sequential Sampler	Gravimetric	127	Every 3 days	Neighborhood	Population Exposure
PM _{2.5} Speciation	Appendix C	Met One	XRF, IC, TOA	Appendix C	Every 3 days	Neighborhood	Population Exposure
BTEX	Appendix E	Syntech Spectras GC 955 BTEX analyzer	Auto-GC PID	092	Continuous	Neighborhood	Population Exposure
Black Carbon	84313	Teledyne API Model 633 Aethalometer	Optical absorption	861	Continuous	Neighborhood	Population Exposure
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Solar Radiation	63301	Qualimetrics	Pyrometer	011	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Precipitation	65102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Resultant Wind Direction	61104	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Resultant Wind Speed	61103	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	


Site Purpose Plans for the next 18 months New Jersey's NCore site

No changes.

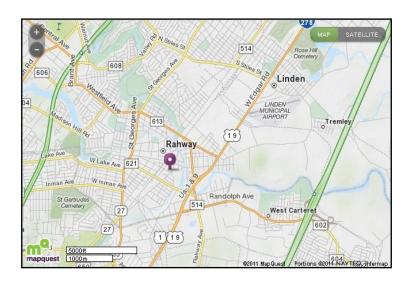
Other Comment

CO and SO_2 data are measured by "trace-level" analyzers. See Appendix C for more information on $PM_{2.5}$ speciation.

Site Name	Name Paterson				
Address	Paterson City Board of Health, 176				
Address	Broadway				
City, State, Zip	Paterson, NJ 07505				
AQS Code	34 031 0005				
NJ County	Passaic				
MSA/CSA	New York-Northeast New Jersey-				
WISA/CSA	Connecticut CSA				
Latitude	40.918381				
Longitude	-74.168092				
Date Established	1/1/1978				
Suitable for					
Comparison to	Yes				
PM _{2.5} NAAQS?					

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure

Site Purpose	To measure population exposure in the Paterson area.						
Plans for the next 18 months	No changes.						
Other Comment							


Site Name	Pennsauken			
Address	Morris-Delair Water Treatment Plant, 8998 Zimmerman Avenue			
City, State, Zip	Pennsauken, NJ 08110			
AQS Code	34 007 1007			
NJ County	Camden			
MSA/CSA	Philadelphia-Camden-Wilmington CSA			
Latitude	39.989036			
Longitude	-75.050008			
Date Established	9/1/1983			
Suitable for				
Comparison to	Yes			
PM _{2.5} NAAQS?				

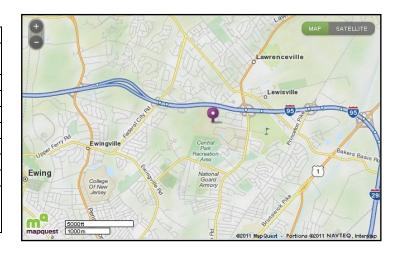
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure

Site Purpose	To measure population exposure in the Pennsauken area.					
Plans for the next 18 months	No changes					
18 months	The changes.					
Other Comment						

Site Name	Rahway		
Address	Rahway Fire Department		
	Headquarters, 1300 Main Street		
City, State, Zip	Rahway, NJ 07065		
AQS Code	34 039 2003		
NJ County	Union		
MCA/CCA	New York-Northeast New Jersey-		
MSA/CSA	Connecticut CSA		
Latitude	40.603943		
Longitude	-74.276174		
Date Established	12/11/1999		
Suitable for			
Comparison to	Yes		
PM _{2.5} NAAQS?			

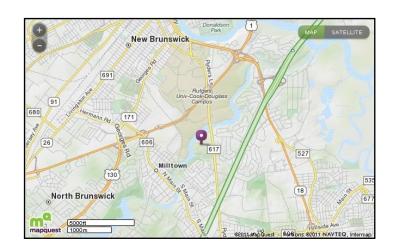
Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Daily	Neighborhood	Population Exposure
Real-time PM _{2.5}	88502	Thermo 1400 TEOM	Gravimetric, Acceptable PM _{2.5}	703	Continuous	Neighborhood	Population Exposure

Site Purpose	To measure population exposure in the Rahway area.					
Plans for the next 18 months	Replace TEOM with a new federal equivalent method real-time sampler. Remove filter-based PM _{2.5} sampler.					
Other Comment	Real-time PM _{2.5} TEOM sampler is operating without the FDMS at 50° Celsius.					


Site Name	Ramapo		
Address	Ramapo Mountain State Forest		
Address	Access Road off Skyline Drive		
City, State, Zip	Wanaque, NJ 07465		
AQS Code	34 031 5001		
NJ County	Passaic		
MSA/CSA	New York-Northeast New Jersey-		
WISA/CSA	Connecticut CSA		
Latitude	41.058617		
Longitude	-74.255544		
Date Established	6/5/1998		
Suitable for			
Comparison to	Not Applicable		
PM _{2.5} NAAQS?			

	AQS				AQS	AQS	AQS	
	Parameter	Sampling	Method of	AQS Method	Sample	Spatial	Monitoring	
Parameter	Code	Instrument	Analysis	Code	Frequency	Scale	Objective	
Ozone (O ₃)	44201	Thermo 49i	Ultraviolet	047	Continuous	Urban	Background	l

Site Purpose	To measure background, transport and upwind concentrations of ozone.					
Plans for the next 18 months	No changes.					
Other Comment						


Site Name	Rider University		
Address	2083 Lawrenceville Road, Athletic Fields		
City, State, Zip	Lawrenceville, NJ 08648		
AQS Code	34 021 0005		
NJ County	Mercer		
MSA/CSA	Trenton-Ewing MSA		
Latitude	40.283092		
Longitude	-74.742644		
Date Established	6/1/1981		
Suitable for			
Comparison to	Not Applicable		
PM _{2.5} NAAQS?			

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Ozone (O ₃)	44201	Thermo 49C	Ultraviolet	047	Continuous	Neighborhood	Population Exposure
Barometric Pressure	64101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Relative Humidity	62201	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Solar Radiation	63301	Qualimetrics	Pyrometer	011	Continuous	Neighborhood	
Temperature	62101	Vaisala WXT	Capacitive sensor	060	Continuous	Neighborhood	
Wind Direction	61102	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Wind Speed	61101	Vaisala WXT	Ultrasonic sensor	060	Continuous	Neighborhood	
Real-time PM2.5	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure

Site Purpose	To measure population exposure.			
Plans for the next 18 months	No changes.			
Other Comment				

Site Name	Rutgers University				
Address	Horticultural Farm #3, 67 Ryders Lane				
City, State, Zip	East Brunswick, NJ 08901				
AQS Code	34 023 0011				
NJ County	Middlesex				
MSA/CSA	New York-Northeast New Jersey-				
MISA/CSA	Connecticut CSA				
Latitude	40.462182				
Longitude	-74.429439				
Date Established	10/1/1994				
Suitable for					
Comparison to	Not Applicable				
PM _{2.5} NAAQS?					

PARAMETER SUMMARY

_	AQS Parameter	Sampling	Method of	AQS Method	AQS Sample	AQS	AQS Monitoring
Parameter	Code	Instrument	Analysis	Code	Frequency	Spatial Scale	Objective
Nitric Oxide (NO)	42601	Thermo 42	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Nitrogen Dioxide (NO ₂)	42602	Thermo 42	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Oxides of Nitrogen (NO _x)	42603	Thermo 42	Chemiluminescence	074	Continuous	Neighborhood	Population Exposure
Ozone (O ₃)	44201	Teledyne T400	Ultraviolet	087	Continuous	Neighborhood	Population Exposure
Ozone Precursors (PAMS)	Appendix D	Perkin Elmer	Auto GC-FID	Appendix D	Hourly	Urban	Background
Real-time PM2.5	88101	Thermo 5014i	Beta Particle attenuation	183	Continuous	Neighborhood	Population Exposure
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low-volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure
Volatile Organic Compounds	Appendix A	Canister	TO-15	Appendix A	Every 6 days	Neighborhood	Population Exposure
Carbonyls	Appendix B	DNPH cartridge	TO-11A	Appendix B	Every 6 days	Neighborhood	Population Exposure
PM2.5 Speciation	Appendix C	Met One	XRF, IC, TOA	Appendix C	Every 3 days	Neighborhood	Population Exposure
Mercury (Hg)		Tekran 2537x	CVAF Spectrometry		Hourly	Neighborhood	Population Exposure

Site Purpose Plans for the next 18 months To measure population exposure and ozone precursors – downwind for Philadelphia metropolitan area and upwind for New York metropolitan area.

No changes.

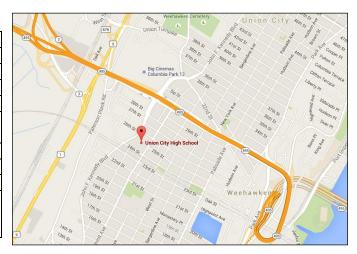
Other Comment

Upper air and lower air meteorological measurements are collected at this site by Rutgers University; see Appendix D for more information on ozone precursors, also known as PAMS. See Appendices A and B for more information on volatile organic compounds and carbonyls.

Site Name	Toms River			
Address	Hooper Avenue Elementary School,			
Addiess	1517 Hooper Avenue			
City, State, Zip	Toms River, NJ 08753			
AQS Code	34 029 2002			
NJ County	Ocean			
MSA/CSA	New York-Northeast New Jersey-			
IVIOA/COA	Connecticut CSA			
Latitude	39.994908			
Longitude	-74.170447			
Date Established	2/11/1999			
Suitable for				
Comparison to	Yes			
PM _{2.5} NAAQS?				

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective	
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Daily	Neighborhood	Population Exposure	

Site Purpose	To measure population exposure in the Toms River area.
Plans for the next 18 months	No changes.
Other Comment	


Site Name	Trenton
Address	Trenton Public Library, 120 Academy Street
City, State, Zip	Trenton, NJ 08608
AQS Code	34 021 0008
NJ County	Mercer
MSA/CSA	Trenton-Ewing MSA
Latitude	40.222411
Longitude	-74.763167
Date Established	9/1/1982
Suitable for	
Comparison to	Yes
PM _{2.5} NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective	
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Daily	Neighborhood	Population Exposure	

Site Purpose	To measure population exposure in the downtown commercial district of Trenton.
Plans for the next 18 months	No changes.
18 months	TWO Gridinges.
Other Comment	

Site Name	Union City High School
Address	2500 John F. Kennedy Blvd.
City, State, Zip	Union City, NJ 07087
AQS Code	34 017 0008
NJ County	Hudson
MSA/CSA	New York-Northeast New Jersey-
WISA/CSA	Connecticut CSA
Latitude	40.770908
Longitude	-74.036218
Date Established	1/1/2016
Suitable for	
Comparison to	Yes
PM _{2.5} NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Obiective	
Fine Particles (PM _{2.5})	88101	Thermo 2025 Low- volume sequential sampler	Gravimetric	145	Every 3 days	Neighborhood	Population Exposure	

Site Purpose	To measure population exposure in the Union City and Hudson County areas.
Plans for the next	No changes
18 months	No changes.
Other Comment	

Site Name	Washington Crossing
Address	1240 Bear Tavern Road, Washington Crossing State Park
City, State, Zip	Titusville, NJ 08560
AQS Code	
NJ County	Mercer
MSA/CSA	Trenton-Ewing MSA
Latitude	40.315359
Longitude	-74.853613
Date Established	1/1/1989
Suitable for	
Comparison to	Yes
PM _{2.5} NAAQS?	

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code	AQS Sample Frequency	AQS Spatial Scale	AQS Monitoring Objective
Acid Deposition	on	Wet Deposition Collector	lon Chromatography		Weekly	Neighborhood	Population Exposure

Site Purpose	To measure population exposure and transported fine particle concentrations.
Plans for the next 18 months	No changes.
Other Comment	The weekly acid deposition samples are sent to the National Atmospheric Deposition Program (NADP) for analysis. The event acid deposition samples are analyzed by the Bureau of Air Monitoring. The weekly and event acid deposition data are not submitted by NJDEP or NADP to EPA's AQS database.

GLOSSARY OF ABBREVIATIONS AND TERMS

ABBREVIATIONS

AQI – Air Quality Index, a national air quality rating system based on the National Ambient Air Quality Standards

AQS - Air Quality Subsystem, USEPA's database for air quality data nationwide

CBSA – Core-Based Statistical Area

CSA – Combined Statistical Area, defined by U.S. Office of Management and Budget as a geographic area having 2 or more Metropolitan Statistical Areas

CFR – Code of Federal Regulations

CO – Carbon monoxide

CVAF Spectrometry - Cold Vapor Atomic Fluorescence Spectrometry, method for analyzing mercury

DNPH cartridge – Di-Nitro-Phenyl-Hydrazine, an adsorbent for trapping carbonyls in air

DVMT – Daily Vehicle Miles Traveled

auto GC-FID – automated gas Chromatograph Flame Ionization Detection

Hg – Mercury

IC – Ion Chromatography, a method for analyzing for ionic compounds from fine particles

IMPROVE – Interagency Monitoring of Protected Visual Environments

MSA – Metropolitan Statistical Area, 1 or more counties having a population greater than 50,000

NAAQS - National Ambient Air Quality Standard

NCore - National Core, a monitoring site having a group of parameters specified by USEPA

NJDEP - New Jersey Department of Environmental Protection

NNEM – Nonroad Emissions Equipment Model

NO - Nitric oxide

NO₂ - Nitrogen dioxide

NO_x – Oxides of nitrogen

NO_v – Total reactive oxides of nitrogen

O₃ - Ozone

PAMS - Photochemical Assessment Monitoring Station, sites which measure ozone precursors

Pb - Lead

PM_{2.5} – Fine particles, 2.5 micrometers in aerodynamic diameter or smaller

PM₁₀ – Inhalable particles, 10 micrometer in aerodynamic diameter or smaller

PM_{10-2.5} - Coarse particles, between 10 and 2.5 micrometers in aerodynamic diameter

PM_{2.5}-Speciation – a group of elements, ionic compounds and carbon compounds that are analyzed from fine particles

PWEI – Population-weighted emissions index

R&P 1400 – the instrument manufactured by Rupprecht and Pattashnik to measure real-time PM_{2.5}

R&P 2025 – the instrument manufactured by Rupprecht and Pattashnik to measure PM_{2.5}; data from this instrument can be used for comparison to the NAAQS

RRF - Resource Recovery Facility; trash incineration facility

SLAMS – State and Local Air Monitoring Station; designation for monitoring site or sampler from which data can be used for comparison to the National Ambient Air Quality Standards

SO₂ – Sulfur dioxide

SPM – Special Purpose Monitor; designation for monitoring site or sampler from which data are not used for comparison to the National Ambient Air Quality Standards

STN – Speciation Trends Network

TEOM-FDMS – Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System; the analytical method used by an R&P 1400 to measure real-time PM_{2.5}

THERMO 42 – the instrument manufactured by Thermo Environmental Corp. to measure nitrogen dioxide, nitric oxide and oxides of nitrogen

THERMO 43A – the instrument manufactured by Thermo Environmental Corp. to measure sulfur dioxide **THERMO 48** – the instrument manufactured by Thermo Environmental Corp. to measure carbon monoxide

THERMO 49 – the instrument manufactured by Thermo Environmental Corp. to measure ozone

TLE – Trace Level Enhanced: type of analyzer which measures very low concentrations

TO-11A – a standard method approved by USEPA to analyze carbonyls

TO-15 – a standard method approved by USEPA to analyze volatile organic compounds

TOA – Thermal Optic Analysis, a method for analyzing carbon compounds from fine particles

TSP – Total suspended particles; all particles that are captured by a high-volume sampler

USEPA - United States Environmental Protection Agency

VOC - Volatile organic compound, a carbon-based chemical that is gaseous

XRF – X-ray fluorescence, a method for analyzing elements from fine particles

TERMS

Acid deposition – acid rain, the phenomenon by which air pollutants raise the acidity of rain and snow **Ambient air** – air in areas that are accessible to the general public

Anemometer – an instrument used for measuring wind speed

Atomic absorption – the method used for analyzing for lead from TSP

Background – a monitoring site in an area which is not affected by air pollution sources

Canister – a stainless steel container used for collecting an air sample to be analyzed for VOCs

Capacitive sensor – an instrument used for measuring relative humidity

Carbonyls – a group of aldehydes, or a carbon chain with an oxygen molecule at one end

Chemiluminescence – the method used for analyzing for NO, NO₂ and NO_x

Coarse particles – also $PM_{10-2.5}$; particles between 10 and 2.5 micrometers in aerodynamic diameter **Collocated** – two samplers operating side-by-side in order to collect data used for precision statistics **Continuous** – an instrument that collects data instantaneously, without stopping, throughout the year, and transmits the data to a central data acquisition system every minute

Design value - a statistic that describes the air quality status of a given location relative to the level of the NAAQS

Fine particles – also PM_{2.5}; particles 2.5 micrometers in aerodynamic diameter or smaller

Gravimetric – weighing a filter in a controlled environment by a highly accurate balance

High-volume sampler – an instrument used to collect Total Suspended Particles

Highest concentration – a monitoring instrument or site which is designated to measure the maximum concentration of a pollutant in a given area

Inhalable particles – also PM₁₀; particles 10 micrometers in aerodynamic diameter or smaller

Ion chromatography – also IC, a method used for analyzing for ionic compounds

Manual – an instrument that collects an air sample over a 24-hour filter on a filter, adsorbent cartridge or canister which is then manually retrieved for subsequent analysis

Met One – a manufacturer of PM_{2.5} speciation samplers

Micro-scale – the spatial scale of a monitoring site, from 10–100 meters around the monitor

Middle-scale – the spatial scale of a monitoring site, from 100–1000 meters around the monitor

Neighborhood-scale – the spatial scale of a monitoring site, from 1-10 km around the monitor

Nephelometer – an instrument that measures fine particles through light scattering

Nondispersive-infrared – the method used for analyzing for carbon monoxide

Ozone precursors – a group of 55 volatile organic compounds that affect ozone formation and destruction in the atmosphere; also called PAMS pollutants

PerkinElmer – the manufacturer of an automated GC-FID

Population exposure – a monitoring instrument or site that is designated to measure the concentrations of a pollutant in a highly populated area

Pressure transducer – an instrument used for measuring barometric pressure

Pulsed fluorescence – the method used for analyzing for sulfur dioxide

Pyrometer – the method used for measuring solar radiation

Qualimetrics – the manufacturer of meteorological instruments

Real-time PM_{2.5} – PM_{2.5} concentrations that are measured continuously

Regional scale – the spatial scale of a monitoring site, from 100-1000 km around the monitor

SierraAnderson – the manufacturer of PM₁₀ samplers

Smoke shade – an index of TSP by the measurement of light diminishment due to particles

Solar radiation – the intensity of energy from sunlight

Tape sampler – an instrument that measures TSP by collecting particles on a roll of filter paper which is automatically forwarded hourly

Thermistor – an instrument that measures temperature

Ultraviolet - the method used for analyzing ozone

Urban Scale - the spatial scale of a monitoring site, from 10-100 km around the monitor

Wallace Fisher – the manufacturer of smoke shade analyzers

REFERENCES

IMPROVE – Interagency Monitoring of Protected Visual Environments. http://vista.cira.colostate.edu/Improve/. Accessed 1/13/2017.

New Jersey Department of Environmental Protection. *Draft Emission Inventory* 2011. www.nj.gov/dep/baqp/inventory.html. Accessed 1/13/2017.

U.S. Environmental Protection Agency (USEPA). *Ambient Air Monitoring Network Assessment Guidance*. February 2007. EPA-454/D-07-001. www.epa.gov/ttnamti1/files/ambient/pm25/datamang/network-assessment-guidance.pdf.

U.S. Department of Commerce, U.S. Census Bureau. *NEW JERSEY – Core Based Statistical Areas (CBSAs) and Counties*. February 2013. www2.census.gov/geo/maps/metroarea/stcbsa_pg/Feb2013/cbsa2013_NJ.pdf. Accessed 1/13/2017.

USEPA. "Designing a Network Assessment for an Ambient Air Monitoring Program." 2010. www.epa.gov/ttnamti1/files/ambient/pm25/datamang/Network-Assessment-Planning-and-Checklist.doc. Accessed 1/13/2017.

USEPA. *Guidance for Network Design and Optimum Site Exposure for PM*_{2.5} *and PM*₁₀. December 1997. EPA-454R-99-022. www.epa.gov/ttn/amtic/files/ambient/pm25/network/r-99-022.pdf

USEPA. Lead Monitoring. www.epa.gov/ttn/amtic/pb-monitoring.html. Accessed 1/13/2017.

USEPA. "CO Monitoring Network – Background and Review, Watkins and Thompson, December 16, 2010, memo." www3.epa.gov/ttn/naaqs/standards/co/data/20101216COMonitoringNetwork.pdf. Accessed 1/13/2017.

USEPA. *Technical Assistance Document for Sampling and Analysis of Ozone Precursors*. September 1998. EPA/600-R-98/161. www.epa.gov/ttn/amtic/files/ambient/pams/newtad.pdf.

"National Ambient Air Quality Standards for Particulate Matter, Final Rule, 40 CFR Part 50," 71 Federal Register 200 (October 17, 2006), pp. 61144-61233. www.epa.gov/ttn/amtic/files/ambient/pm25/pt5006.pdf.

"Revisions to Ambient Air Monitoring Regulations; Final Rule, 40 CFR Parts 53 and 58," 71 Federal Register 200 (October 17, 2006), pp. 61236-61328. www3.epa.gov/ttnamti1/files/ambient/pm25/pt535806.pdf.

APPENDIX A: VOLATILE ORGANIC COMPOUNDS

	Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code
1	1,1,1-Trichloroethane	43814	Canister	TO-15	101
2	1,1,2,2-Tetrachloroethane	43818	Canister	TO-15	101
3	1,1,2-Trichloroethane	43820	Canister	TO-15	101
4	1,1-Dichloroethane	43813	Canister	TO-15	101
5	1,1-Dichloroethene	43826	Canister	TO-15	101
6	1,2,4-Trichlorobenzene	45810	Canister	TO-15	101
7	1,2,4-Trimethylbenzene	45208	Canister	TO-15	101
8	1,2-Dibromoethane	43843	Canister	TO-15	101
9	1,2-Dichloroethane	43815	Canister	TO-15	101
10	1,2-Dichloropropane	43829	Canister	TO-15	101
11	1,3,5-Trimethylbenzene	45207	Canister	TO-15	101
12	1,3-Butadiene	43218	Canister	TO-15	101
13	Acetonitrile	43702	Canister	TO-15	101
14	Acetylene	43206	Canister	TO-15	101
15	Acrolein	43505	Canister	TO-15	101
16	Acrylonitrile	43704	Canister	TO-15	101
17	Benzene	45201	Canister	TO-15	101
18	Bromochloromethane	43836	Canister	TO-15	101
19	Bromodichloromethane	43828	Canister	TO-15	101
20	Bromoform	43806	Canister	TO-15	101
21	Bromomethane	43819	Canister	TO-15	101
22	Carbon Disulfide	42153	Canister	TO-15	101
23	Carbon Tetrachloride	43804	Canister	TO-15	101
24	Chlorobenzene	45801	Canister	TO-15	101
25	Chloroethane	43812	Canister	TO-15	101
26	Chloroform	43803	Canister	TO-15	101
27	Chloromethane	43801	Canister	TO-15	101
28	Chloroprene	43835	Canister	TO-15	101
29	cis-1,2-Dichloroethylene	43839	Canister	TO-15	101
30	cis-1,3-Dichloropropene	43831	Canister	TO-15	101
31	Dibromochloromethane	43832	Canister	TO-15	101
32	Dichlorodifluoromethane	43823	Canister	TO-15	101
33	Dichloromethane	43802	Canister	TO-15	101
34	Dichlorotetrafluoroethane	43208	Canister	TO-15	101
35	Ethyl Acrylate	43438	Canister	TO-15	101
36	Ethyl tert-Butyl Ether	43396	Canister	TO-15	101
37	Ethylbenzene	45203	Canister	TO-15	101
38	Hexachloro-1,3-Butadiene	43844	Canister	TO-15	101
39	m,p-Xylene	45109	Canister	TO-15	101
40	m-Dichlorobenzene	45806	Canister	TO-15	101

APPENDIX A: VOLATILE ORGANIC COMPOUNDS (Continued)

	Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code
41	Methyl Isobutyl Ketone	43560	Canister	TO-15	101
42	Methyl Methacrylate	43441	Canister	TO-15	101
43	Methyl tert-Butyl Ether	43372	Canister	TO-15	101
44	n-Octane	43233	Canister	TO-15	101
45	o-Dichlorobenzene	45805	Canister	TO-15	101
46	o-Xylene	45204	Canister	TO-15	101
47	p-Dichlorobenzene	45807	Canister	TO-15	101
48	Propylene	43205	Canister	TO-15	101
49	Styrene	45220	Canister	TO-15	101
50	tert-Amyl Methyl Ether	43373	Canister	TO-15	101
51	Tetrachloroethylene	43817	Canister	TO-15	101
52	Toluene	45202	Canister	TO-15	101
53	trans-1,2-Dichloroethylene	43838	Canister	TO-15	101
54	trans-1,3-Dichloropropene	43830	Canister	TO-15	101
55	Trichloroethylene	43824	Canister	TO-15	101
56	Trichlorofluoromethane	43811	Canister	TO-15	101
57	Trichlorotrifluoroethane	43821	Canister	TO-15	101
58	Vinyl Chloride	43860	Canister	TO-15	101

APPENDIX B: CARBONYLS

	Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code
1	2-Butanone	43552	DNPH Cartridge	TO-11A	202
2	2,5-Dimethylbenzaldehyde	45503	DNPH Cartridge	TO-11A	202
3	Acetaldehyde	43503	DNPH Cartridge	TO-11A	202
4	Acetone	43551	DNPH Cartridge	TO-11A	202
5	Benzaldehyde	45501	DNPH Cartridge	TO-11A	202
6	Butyraldehyde	43329	DNPH Cartridge	TO-11A	202
7	Crotonaldehyde	43528	DNPH Cartridge	TO-11A	202
8	Formaldehyde	43502	DNPH Cartridge	TO-11A	202
9	Hexaldehyde	43517	DNPH Cartridge	TO-11A	202
10	Isovaleraldehyde	43513	DNPH Cartridge	TO-11A	202
11	Propionaldehyde	43504	DNPH Cartridge	TO-11A	202
12	Tolualdehydes	45504	DNPH Cartridge	TO-11A	202
13	Valeraldehyde	43518	DNPH Cartridge	TO-11A	202

APPENDIX C: SPECIATED FINE PARTICLES

Parameter			AQS Parameter			AQS Method
2 Ammonium	_	Parameter	Code	Sampling Instrument	Method of Analysis	Code
Antimony						
4 Arsenic 88103 Met One SASS Teflon Energy Dispersive XRF 811 5 Barium 88107 Met One SASS Teflon Energy Dispersive XRF 811 6 Bromine 88109 Met One SASS Teflon Energy Dispersive XRF 811 7 Cadmium 88110 Met One SASS Teflon Energy Dispersive XRF 811 8 Calcium 88111 Met One SASS Teflon Energy Dispersive XRF 811 10 Cesium 88117 Met One SASS Teflon Energy Dispersive XRF 811 10 Cesium 88118 Met One SASS Teflon Energy Dispersive XRF 811 11 Chromium 88112 Met One SASS Teflon Energy Dispersive XRF 811 13 Cobalt 88113 Met One SASS Teflon Energy Dispersive XRF 811 14 Copper 88114 Met One SASS Teflon Energy Dispersive XRF 811 15 EleCarbTor 88380 URG 3000N WPall Quartz filter and Cyc EC1+EC2+EC3-Qr (R822+88330+88334-8838) 838 16 EleCarbTot 88357 Met One SASS Teflon Energy Dispersive XRF 811						
5 Barium 88107 Met One SASS Teflon Energy Dispersive XRF 811 6 Bromine 88109 Met One SASS Teflon Energy Dispersive XRF 811 7 Cadmium 88110 Met One SASS Teflon Energy Dispersive XRF 811 8 Calcium 88111 Met One SASS Teflon Energy Dispersive XRF 811 9 Cerium 88118 Met One SASS Teflon Energy Dispersive XRF 811 10 Cesium 88115 Met One SASS Teflon Energy Dispersive XRF 811 11 Chromium 88112 Met One SASS Teflon Energy Dispersive XRF 811 12 Chromium 88114 Met One SASS Teflon Energy Dispersive XRF 811 14 Copper 88114 Met One SASS Teflon Energy Dispersive XRF 811 15 EleCarbTot 88380 URG 3000N wPall Quartz filter and Cyc EC1+EC2+EC3-QP 8384 6 EleCarbTot 88357 Wer One SASS Teflon Energy Dispersive XRF 811		•				
6 Bromine 88109 Met One SASS Teffon Energy Dispersive XRF 811 7 Cadmium 88110 Met One SASS Teffon Energy Dispersive XRF 811 8 Calcium 88111 Met One SASS Teffon Energy Dispersive XRF 811 9 Cerium 88118 Met One SASS Teffon Energy Dispersive XRF 811 10 Cesium 88115 Met One SASS Teffon Energy Dispersive XRF 811 11 Chlorine 88115 Met One SASS Teffon Energy Dispersive XRF 811 12 Chromium 88112 Met One SASS Teffon Energy Dispersive XRF 811 13 Cobalt 88113 Met One SASS Teffon Energy Dispersive XRF 811 15 EleCarbTor 88380 URG 3000N wPall Quartz filter and Cyc (CP(TOR))=(88383+88384-8838 838 16 EleCarbTot 88357 URG 3000N wPall Quartz filter and Cyc EC1+EC2+EC3-OP ass38-8838-88381-88331-8838 838 17 Indium 88131 Met One SASS Teffon Energy Dispersi						
7 Cadmium 88110 Met One SASS Teffon Energy Dispersive XRF 811 8 Calcium 88111 Met One SASS Teffon Energy Dispersive XRF 811 9 Cerium 881118 Met One SASS Teffon Energy Dispersive XRF 811 10 Cesium 88118 Met One SASS Teffon Energy Dispersive XRF 811 11 Chlorine 88115 Met One SASS Teffon Energy Dispersive XRF 811 12 Chromium 88112 Met One SASS Teffon Energy Dispersive XRF 811 13 Cobalt 88113 Met One SASS Teffon Energy Dispersive XRF 811 14 Copper 88114 Met One SASS Teffon Energy Dispersive XRF 811 15 EleCarbTor 88380 URG 3000N w/Pall Quartz filter and Cyc (OP(TOR))=(88383+88384+883) 16 EleCarbTot 88357 URG 3000N w/Pall Quartz filter and Cyc (88329+88330+88331-8838 838 17 Indium 88131 Met One SASS Teffon Energy Dispersive XRF 811 18 Iron 88126 Met One SASS Teffon Energy Dispersive XRF 811 19 Lead 88128 Met One SASS Teffon Energy Dispersive XRF 811 20 Magnesium 88140 Met One SASS Teffon Energy Dispersive XRF 811 21 Manganese 88132 Met One SASS Teffon Energy Dispersive XRF 811 22 Nickel 88136 Met One SASS Teffon Energy Dispersive XRF 811 23 Nitrate 88306 Met One SASS Teffon Energy Dispersive XRF 811 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc (88374+88375+88376 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter (2014-024-024-04-04) (88374+88375-88376 838 (88374-88376 838 (88374-88376 8836 (88374-88376 838 (88374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (83374-88376 838 (
8 Calcium 88111 Met One SASS Teffon Energy Dispersive XRF 811 9 Cerium 88117 Met One SASS Teffon Energy Dispersive XRF 811 10 Cesium 88118 Met One SASS Teffon Energy Dispersive XRF 811 11 Chlorime 88115 Met One SASS Teffon Energy Dispersive XRF 811 12 Chromium 88112 Met One SASS Teffon Energy Dispersive XRF 811 14 Copper 88114 Met One SASS Teffon Energy Dispersive XRF 811 15 EleCarbTor 88380 URG 3000N wPall Quartz filter and Cyc (OPTORI)=(88383+88384+883) 838 16 EleCarbTot 88357 URG 3000N wPall Quartz filter and Cyc (EC1+EC2+EC3-C9-P (88329+8830)+88331-8838) 838 17 Indium 88131 Met One SASS Teffon Energy Dispersive XRF 811 18 Iron 88126 Met One SASS Teffon Energy Dispersive XRF 811 20 Magnesium 88140 Met One SASS Teffon Energy Dispersi						
9 Cerium 88117 Met One SASS Teffon Energy Dispersive XRF 811 10 Cesium 88118 Met One SASS Teffon Energy Dispersive XRF 811 11 Chlorine 88115 Met One SASS Teffon Energy Dispersive XRF 811 12 Chromium 88112 Met One SASS Teffon Energy Dispersive XRF 811 13 Cobalt 88113 Met One SASS Teffon Energy Dispersive XRF 811 14 Copper 88114 Met One SASS Teffon Energy Dispersive XRF 811 15 EleCarbTor 88380 URG 3000N w/Pall Quartz filter and Cyc EC1+EC2+EC3-O(OP(TOR))=(88383+88384-883 838 16 EleCarbTot 88357 URG 3000N w/Pall Quartz filter and Cyc (88329+88330+88331-8838 838 17 Indium 88131 Met One SASS Teffon Energy Dispersive XRF 811 18 Iron 88126 Met One SASS Teffon Energy Dispersive XRF 811 19 Lead 88128 Met One SASS Teffon Energy Dispersive XRF <td></td> <td></td> <td></td> <td></td> <td>• • •</td> <td></td>					• • •	
10 Cesium		Calcium		Met One SASS Teflon	Energy Dispersive XRF	
11		Cerium			Energy Dispersive XRF	
12 Chromium 88112 Met One SASS Teffon Energy Dispersive XRF 811 13 Cobalt 88113 Met One SASS Teffon Energy Dispersive XRF 811 14 Copper 88114 Met One SASS Teffon Energy Dispersive XRF 811 15 EleCarbTor 88380 URG 3000N wPall Quartz filter and Cyc EC1+EC2+EC3-OP (0P(TOR))=(88383+88384+883) 838 16 EleCarbTot 88357 URG 3000N wPall Quartz filter and Cyc EC1+EC2+EC3-OP (88329+88330+88331-8838) 838 17 Indium 88131 Met One SASS Teffon Energy Dispersive XRF 811 18 Iron 88126 Met One SASS Teffon Energy Dispersive XRF 811 19 Lead 88128 Met One SASS Teffon Energy Dispersive XRF 811 20 Magnesium 88140 Met One SASS Teffon Energy Dispersive XRF 811 21 Manganesie 88132 Met One SASS Teffon Energy Dispersive XRF 811 22 Nickel 88136 Met One SASS Nylon Io	10	Cesium	88118	Met One SASS Teflon	Energy Dispersive XRF	811
13 Cobalt 88113	11	Chlorine	88115	Met One SASS Teflon	Energy Dispersive XRF	811
14	12	Chromium	88112	Met One SASS Teflon	Energy Dispersive XRF	811
The Figure The	13	Cobalt	88113	Met One SASS Teflon	Energy Dispersive XRF	811
Section Sect	14	Copper	88114	Met One SASS Teflon	Energy Dispersive XRF	811
16 EleCarbTot	15	CloCorbTor	00200	URG 3000N w/Pall Quartz filter	EC1+EC2+EC3-	020
Indium	15	Elecarptor	00300		(OP(TOR))=(88383+88384+883	030
Selection	16	Cla Carlo Tat	00257	URG 3000N w/Pall Quartz filter	EC1+EC2+EC3-OP	020
18 Iron 88126 Met One SASS Teflon Energy Dispersive XRF 811 19 Lead 88128 Met One SASS Teflon Energy Dispersive XRF 811 20 Magnesium 88140 Met One SASS Teflon Energy Dispersive XRF 811 21 Manganese 88132 Met One SASS Teflon Energy Dispersive XRF 811 22 Nickel 88136 Met One SASS Teflon Energy Dispersive XRF 811 23 Nitrate 88306 Met One SASS Teflon Increasing Dispersive XRF 811 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc CVC+OC2+OC3+OC4+(OP(TO R))=(88374+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+88375+8838 838 25 OrgCarbTot 88355 Met One SASS Teflon Energy Dispersive XRF 811 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium IC 88303 Met One SASS Teflon Energy Dispersive XRF 811 28 <t< td=""><td>10</td><td>EleCarbiot</td><td>88357</td><td>and Cyc</td><td>(88329+88330+88331-8838</td><td>838</td></t<>	10	EleCarbiot	88357	and Cyc	(88329+88330+88331-8838	838
19 Lead 88128 Met One SASS Teflon Energy Dispersive XRF 811 20 Magnesium 88140 Met One SASS Teflon Energy Dispersive XRF 811 21 Manganese 88132 Met One SASS Teflon Energy Dispersive XRF 811 22 Nickel 88136 Met One SASS Teflon Energy Dispersive XRF 811 23 Nitrate 88306 Met One SASS Nylon Ion Chromatography 812 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc COC1+OC2+OC3+OC4+(OP(TO R))=(88374+88375+88376+ 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88116 Met One SASS Teflon Ene	17	Indium	88131	Met One SASS Teflon	Energy Dispersive XRF	811
19 Lead 88128 Met One SASS Teflon Energy Dispersive XRF 811 20 Magnesium 88140 Met One SASS Teflon Energy Dispersive XRF 811 21 Manganese 88132 Met One SASS Teflon Energy Dispersive XRF 811 22 Nickel 88136 Met One SASS Teflon Energy Dispersive XRF 811 23 Nitrate 88306 Met One SASS Nylon Ion Chromatography 812 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc COC1+OC2+OC3+OC4+(OP(TO R))=(88374+88375+88376+ 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Nylon Ion Chromatography 812 29 Rubidium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88154 Met One SASS Teflon Energy Disp	18	Iron	88126	Met One SASS Teflon	Energy Dispersive XRF	811
20 Magnesium 88140 Met One SASS Teflon Energy Dispersive XRF 811 21 Manganese 88132 Met One SASS Teflon Energy Dispersive XRF 811 22 Nickel 88136 Met One SASS Teflon Energy Dispersive XRF 811 23 Nitrate 88306 Met One SASS Nylon Ion Chromatography 812 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+(OP(TO R))=(88374+88375+88376+ 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88154 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon <td>19</td> <td>Lead</td> <td>88128</td> <td>Met One SASS Teflon</td> <td></td> <td>811</td>	19	Lead	88128	Met One SASS Teflon		811
21 Manganese 88132 Met One SASS Teflon Energy Dispersive XRF 811 22 Nickel 88136 Met One SASS Teflon Energy Dispersive XRF 811 23 Nitrate 88306 Met One SASS Nylon Ion Chromatography 812 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc COL1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc COL1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88176 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon	20	Magnesium	88140	Met One SASS Teflon		811
22 Nickel 88136 Met One SASS Teflon Energy Dispersive XRF 811 23 Nitrate 88306 Met One SASS Nylon Ion Chromatography 812 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+(OP(TO R))=(88374+88375) 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Nylon Ion Chromatography 812 29 Rubidium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88154 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon						811
23 Nitrate 88306 Met One SASS Nylon Ion Chromatography 812 24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+(OP(TO R))=(88374+88375) 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Nylon Ion Chromatography 812 29 Rubidium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88165 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon Energy Dispersive XRF 811 33 Sodium IC 88302 Met One SASS Teflon		•	88136			811
24 OrgCarbTor 88370 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+(OP(TO R))=(88374+88375 838 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88176 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon Energy Dispersive XRF 811 33 Sodium IC 88302 Met One SASS Teflon Energy Dispersive XRF 811 34 Sodium IC 88302 Met One SASS Teflon Energy Dispersive XRF 811 35 Strontium 88168 Met One SASS Teflon<	23	Nitrate	88306	Met One SASS Nylon	0, 1	812
24 OrgCarbTot 88370 and Cyc R))=(88374+88375 338 25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Nylon Ion Chromatography 812 29 Rubidium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88154 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon Energy Dispersive XRF 811 33 Sodium IC 88302 Met One SASS Nylon Ion Chromatography 812 35 Strontium 88168 Met One SASS Teflon Energy Dispersive XRF 811 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
25 OrgCarbTot 88355 URG 3000N w/Pall Quartz filter and Cyc OC1+OC2+OC3+OC4+OP (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Nylon Ion Chromatography 812 29 Rubidium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88154 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon Energy Dispersive XRF 811 33 Sodium IC 88302 Met One SASS Nylon Ion Chromatography 812 35 Strontium 88168 Met One SASS Nylon Ion Chromatography 812 37 Sulfate 88403 Met One SASS Teflon Energy Dispersive XRF <	24	OrgCarbTor	88370			838
25 OrgCarb 1 of Use Sass 88355 and Cyc (88374+88375+88376+ 838 26 Phosphorus 88152 Met One SASS Teflon Energy Dispersive XRF 811 27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Nylon Ion Chromatography 812 29 Rubidium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88154 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon Energy Dispersive XRF 811 33 Sodium IC 88302 Met One SASS Nylon Ion Chromatography 812 35 Strontium 88168 Met One SASS Teflon Energy Dispersive XRF 811 36 Sulfate 88403 Met One SASS Teflon Energy Dispersive XRF 811	0.5	0 0 17 1	00055			000
26Phosphorus88152Met One SASS TeflonEnergy Dispersive XRF81127Potassium88180Met One SASS TeflonEnergy Dispersive XRF81128Potassium IC88303Met One SASS NylonIon Chromatography81229Rubidium88176Met One SASS TeflonEnergy Dispersive XRF81130Selenium88154Met One SASS TeflonEnergy Dispersive XRF81131Silicon88165Met One SASS TeflonEnergy Dispersive XRF81132Silver88166Met One SASS TeflonEnergy Dispersive XRF81133Sodium88184Met One SASS TeflonEnergy Dispersive XRF81134Sodium IC88302Met One SASS NylonIon Chromatography81235Strontium88168Met One SASS TeflonEnergy Dispersive XRF81136Sulfate88403Met One SASS TeflonEnergy Dispersive XRF81137Sulfur88169Met One SASS TeflonEnergy Dispersive XRF81138Tin88160Met One SASS TeflonEnergy Dispersive XRF81139Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811	25	OrgCarbTot	88355		(88374+88375+88376+	838
27 Potassium 88180 Met One SASS Teflon Energy Dispersive XRF 811 28 Potassium IC 88303 Met One SASS Nylon Ion Chromatography 812 29 Rubidium 88176 Met One SASS Teflon Energy Dispersive XRF 811 30 Selenium 88154 Met One SASS Teflon Energy Dispersive XRF 811 31 Silicon 88165 Met One SASS Teflon Energy Dispersive XRF 811 32 Silver 88166 Met One SASS Teflon Energy Dispersive XRF 811 33 Sodium 88184 Met One SASS Teflon Energy Dispersive XRF 811 34 Sodium IC 88302 Met One SASS Nylon Ion Chromatography 812 35 Strontium 88168 Met One SASS Teflon Energy Dispersive XRF 811 36 Sulfut 88169 Met One SASS Teflon Energy Dispersive XRF 811 37 Sulfur 88160 Met One SASS Teflon Energy Dispersive XRF 811 <t< td=""><td>26</td><td>Phosphorus</td><td>88152</td><td></td><td>,</td><td>811</td></t<>	26	Phosphorus	88152		,	811
28Potassium IC88303Met One SASS NylonIon Chromatography81229Rubidium88176Met One SASS TeflonEnergy Dispersive XRF81130Selenium88154Met One SASS TeflonEnergy Dispersive XRF81131Silicon88165Met One SASS TeflonEnergy Dispersive XRF81132Silver88166Met One SASS TeflonEnergy Dispersive XRF81133Sodium88184Met One SASS TeflonEnergy Dispersive XRF81134Sodium IC88302Met One SASS NylonIon Chromatography81235Strontium88168Met One SASS TeflonEnergy Dispersive XRF81136Sulfate88403Met One SASS NylonIon Chromatography81237Sulfur88169Met One SASS TeflonEnergy Dispersive XRF81138Tin88160Met One SASS TeflonEnergy Dispersive XRF81139Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811		•	88180	Met One SASS Teflon		811
29Rubidium88176Met One SASS TeflonEnergy Dispersive XRF81130Selenium88154Met One SASS TeflonEnergy Dispersive XRF81131Silicon88165Met One SASS TeflonEnergy Dispersive XRF81132Silver88166Met One SASS TeflonEnergy Dispersive XRF81133Sodium88184Met One SASS TeflonEnergy Dispersive XRF81134Sodium IC88302Met One SASS NylonIon Chromatography81235Strontium88168Met One SASS TeflonEnergy Dispersive XRF81136Sulfate88403Met One SASS NylonIon Chromatography81237Sulfur88169Met One SASS TeflonEnergy Dispersive XRF81138Tin88160Met One SASS TeflonEnergy Dispersive XRF81139Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811		Potassium IC			-	
30Selenium88154Met One SASS TeflonEnergy Dispersive XRF81131Silicon88165Met One SASS TeflonEnergy Dispersive XRF81132Silver88166Met One SASS TeflonEnergy Dispersive XRF81133Sodium88184Met One SASS TeflonEnergy Dispersive XRF81134Sodium IC88302Met One SASS NylonIon Chromatography81235Strontium88168Met One SASS TeflonEnergy Dispersive XRF81136Sulfate88403Met One SASS NylonIon Chromatography81237Sulfur88169Met One SASS TeflonEnergy Dispersive XRF81138Tin88160Met One SASS TeflonEnergy Dispersive XRF81139Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811	29				*	811
31Silicon88165Met One SASS TeflonEnergy Dispersive XRF81132Silver88166Met One SASS TeflonEnergy Dispersive XRF81133Sodium88184Met One SASS TeflonEnergy Dispersive XRF81134Sodium IC88302Met One SASS NylonIon Chromatography81235Strontium88168Met One SASS TeflonEnergy Dispersive XRF81136Sulfate88403Met One SASS NylonIon Chromatography81237Sulfur88169Met One SASS TeflonEnergy Dispersive XRF81138Tin88160Met One SASS TeflonEnergy Dispersive XRF81139Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811					9. 1	811
32 Silver 88166 Met One SASS Teflon Energy Dispersive XRF 811 33 Sodium 88184 Met One SASS Teflon Energy Dispersive XRF 811 34 Sodium IC 88302 Met One SASS Nylon Ion Chromatography 812 35 Strontium 88168 Met One SASS Teflon Energy Dispersive XRF 811 36 Sulfate 88403 Met One SASS Nylon Ion Chromatography 812 37 Sulfur 88169 Met One SASS Teflon Energy Dispersive XRF 811 38 Tin 88160 Met One SASS Teflon Energy Dispersive XRF 811 39 Titanium 88161 Met One SASS Teflon Energy Dispersive XRF 811 40 Vanadium 88164 Met One SASS Teflon Energy Dispersive XRF 811 41 Zinc 88167 Met One SASS Teflon Energy Dispersive XRF 811						
33 Sodium 88184 Met One SASS Teflon Energy Dispersive XRF 811 34 Sodium IC 88302 Met One SASS Nylon Ion Chromatography 812 35 Strontium 88168 Met One SASS Teflon Energy Dispersive XRF 811 36 Sulfate 88403 Met One SASS Nylon Ion Chromatography 812 37 Sulfur 88169 Met One SASS Teflon Energy Dispersive XRF 811 38 Tin 88160 Met One SASS Teflon Energy Dispersive XRF 811 39 Titanium 88161 Met One SASS Teflon Energy Dispersive XRF 811 40 Vanadium 88164 Met One SASS Teflon Energy Dispersive XRF 811 41 Zinc 88167 Met One SASS Teflon Energy Dispersive XRF 811						
34 Sodium IC 88302 Met One SASS Nylon Ion Chromatography 812 35 Strontium 88168 Met One SASS Teflon Energy Dispersive XRF 811 36 Sulfate 88403 Met One SASS Nylon Ion Chromatography 812 37 Sulfur 88169 Met One SASS Teflon Energy Dispersive XRF 811 38 Tin 88160 Met One SASS Teflon Energy Dispersive XRF 811 39 Titanium 88161 Met One SASS Teflon Energy Dispersive XRF 811 40 Vanadium 88164 Met One SASS Teflon Energy Dispersive XRF 811 41 Zinc 88167 Met One SASS Teflon Energy Dispersive XRF 811						
35 Strontium 88168 Met One SASS Teflon Energy Dispersive XRF 811 36 Sulfate 88403 Met One SASS Nylon Ion Chromatography 812 37 Sulfur 88169 Met One SASS Teflon Energy Dispersive XRF 811 38 Tin 88160 Met One SASS Teflon Energy Dispersive XRF 811 39 Titanium 88161 Met One SASS Teflon Energy Dispersive XRF 811 40 Vanadium 88164 Met One SASS Teflon Energy Dispersive XRF 811 41 Zinc 88167 Met One SASS Teflon Energy Dispersive XRF 811						
36Sulfate88403Met One SASS NylonIon Chromatography81237Sulfur88169Met One SASS TeflonEnergy Dispersive XRF81138Tin88160Met One SASS TeflonEnergy Dispersive XRF81139Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811					*	
37 Sulfur 88169 Met One SASS Teflon Energy Dispersive XRF 811 38 Tin 88160 Met One SASS Teflon Energy Dispersive XRF 811 39 Titanium 88161 Met One SASS Teflon Energy Dispersive XRF 811 40 Vanadium 88164 Met One SASS Teflon Energy Dispersive XRF 811 41 Zinc 88167 Met One SASS Teflon Energy Dispersive XRF 811						
38Tin88160Met One SASS TeflonEnergy Dispersive XRF81139Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811						
39Titanium88161Met One SASS TeflonEnergy Dispersive XRF81140Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811					<u> </u>	
40Vanadium88164Met One SASS TeflonEnergy Dispersive XRF81141Zinc88167Met One SASS TeflonEnergy Dispersive XRF811						
41 Zinc 88167 Met One SASS Teflon Energy Dispersive XRF 811					-	

APPENDIX D: OZONE PRECURSORS

		AQS Parameter			AQS Method
	Parameter	Code	Sampling Instrument	Method of Analysis	Code
1	Sum of PAMS	43000	PerkinElmer	Auto-GC-FID	078
2	Total NMOC	43102	PerkinElmer	Auto-GC-FID	078
3	Ethane	43202	PerkinElmer	Auto-GC-FID	078
4	Ethylene	43203	PerkinElmer	Auto-GC-FID	078
5	Propane	43204	PerkinElmer	Auto-GC-FID	078
6	Propylene	43205	PerkinElmer	Auto-GC-FID	078
7	Acetylene	43206 43212	PerkinElmer PerkinElmer	Auto-GC-FID	078 078
9	n-Butane			Auto-GC-FID	078
10	Isobutane	43214 43216	PerkinElmer	Auto-GC-FID	078
11	trans-2-Butene cis-2-Butene	43217	PerkinElmer PerkinElmer	Auto-GC-FID Auto-GC-FID	078
12	n-Pentane	43217	PerkinElmer	Auto-GC-FID Auto-GC-FID	078
13	Isopentane	43221	PerkinElmer	Auto-GC-FID	078
14	1-Pentene	43221	PerkinElmer	Auto-GC-FID Auto-GC-FID	078
15	trans-2-Pentene	43224	PerkinElmer	Auto-GC-FID	078
16	cis-2-Pentene	43227	PerkinElmer	Auto-GC-FID	078
17	2-Methyl-2-Butene	43228	PerkinElmer	Auto-GC-FID	078
18	3-Methylpentane	43230	PerkinElmer	Auto-GC-FID	078
19	n-Hexane	43231	PerkinElmer	Auto-GC-FID	078
20	n-Heptane	43232	PerkinElmer	Auto-GC-FID	078
21	n-Octane	43233	PerkinElmer	Auto-GC-FID	078
22	4-Methyl-1-Pentene	43234	PerkinElmer	Auto-GC-FID	078
23	n-Nonane	43235	PerkinElmer	Auto-GC-FID	078
24	n-Decane	43238	PerkinElmer	Auto-GC-FID	078
25	Cyclopentane	43242	PerkinElmer	Auto-GC-FID	078
26	Isoprene	43243	PerkinElmer	Auto-GC-FID	078
27	2,2-Dimethylbutane	43244	PerkinElmer	Auto-GC-FID	078
28	1-Hexene	43245	PerkinElmer	Auto-GC-FID	078
29	2-Methyl-1-Pentene	43246	PerkinElmer	Auto-GC-FID	078
30	2,4-Dimethylpentane	43247	PerkinElmer	Auto-GC-FID	078
31	Cyclohexane	43248	PerkinElmer	Auto-GC-FID	078
32	3-Methylhexane	43249	PerkinElmer	Auto-GC-FID	078
33	2,2,4-Trimethylpentane	43250	PerkinElmer	Auto-GC-FID	078
34	2,3,4-Trimethylpentane	43000	PerkinElmer	Auto-GC-FID	078
35	3-Methylheptane	43102	PerkinElmer	Auto-GC-FID	078
36	Methylcyclohexane	43203	PerkinElmer	Auto-GC-FID	078
37	Methylcyclopentane	43204	PerkinElmer	Auto-GC-FID	078
38	2-Methylhexane	43205	PerkinElmer	Auto-GC-FID	078
39	1-Butene	43206	PerkinElmer	Auto-GC-FID	078
40	3-Methyl-1-Butene	43212	PerkinElmer	Auto-GC-FID	078
41	Cyclopentene	43214	PerkinElmer	Auto-GC-FID	078
42	2,3-Dimethylbutane	43216	PerkinElmer	Auto-GC-FID	078
43	2-Methylpentane	43217	PerkinElmer	Auto-GC-FID	078
44	trans-2-Hexene	43220	PerkinElmer	Auto-GC-FID	078

APPENDIX D: OZONE PRECURSORS (Continued)

		AQS Parameter			AQS Method
	Parameter	Code	Sampling Instrument	Method of Analysis	Code
45	cis-2-Hexene	43221	PerkinElmer	Auto-GC-FID	078
46	2,3-Dimethylpentane	43224	PerkinElmer	Auto-GC-FID	078
47	c-Undecane	43226	PerkinElmer	Auto-GC-FID	078
48	2-Methylheptane	43227	PerkinElmer	Auto-GC-FID	078
49	Isomers of Ethyltoluene	43228	PerkinElmer	Auto-GC-FID	078
50	m/p Xylene	43230	PerkinElmer	Auto-GC-FID	078
51	m/p Ethyltoluene	43231	PerkinElmer	Auto-GC-FID	078
52	Benzene	43232	PerkinElmer	Auto-GC-FID	078
53	Toluene	43233	PerkinElmer	Auto-GC-FID	078
54	Ethylbenzene	43234	PerkinElmer	Auto-GC-FID	078
55	o-Xylene	43235	PerkinElmer	Auto-GC-FID	078
56	1,3,5-Trimethylbenzene	43238	PerkinElmer	Auto-GC-FID	078
57	1,2,4-Trimethylbenzene	43242	PerkinElmer	Auto-GC-FID	078
58	n-Propylbenzene	43243	PerkinElmer	Auto-GC-FID	078
59	Isopropylbenzene	43244	PerkinElmer	Auto-GC-FID	078
60	o-Ethyltoluene	43245	PerkinElmer	Auto-GC-FID	078
61	m-Ethyltoluene	43246	PerkinElmer	Auto-GC-FID	078
62	p-Ethyltoluene	43247	PerkinElmer	Auto-GC-FID	078
63	m-Diethylbenzene	45218	PerkinElmer	Auto-GC-FID	078
64	p-Diethylbenzene	45219	PerkinElmer	Auto-GC-FID	078
65	Styrene	45220	PerkinElmer	Auto-GC-FID	078
66	1,2,3-Trimethylbenzene	45225	PerkinElmer	Auto-GC-FID	078

APPENDIX E: BTEX COMPOUNDS

Parameter	AQS Parameter Code	Sampling Instrument	Method of Analysis	AQS Method Code
Benzene	45201	Syntech Spectras BTEX analyzer GC 955	Gas Chromatography	092
Toluene	45202	Syntech Spectras BTEX analyzer GC 955	Gas Chromatography	092
Ethylbenzene	45203	Syntech Spectras BTEX analyzer GC 955	Gas Chromatography	092
m,p-Xylene	45109	Syntech Spectras BTEX analyzer GC 955	Gas Chromatography	092
o-Xylene	45204	Syntech Spectras BTEX analyzer GC 955	Gas Chromatography	092

APPENDIX F DOCUMENTATION TO JUSTIFY THE REQUEST FOR A WAIVER FROM REQUIREMENT TO MEASURE PAMS PARAMETERS AT NCORE STATION

In October 2015, the U.S Environmental Protection Agency (EPA) revised 40 CFR 50 to promulgate the 70 ppb 8-hour average ozone (O₃) National Ambient Air Quality Standard (NAAQS), and updated 40 CFR 58 to require the measurement of a revised group of Photochemical Assessment Monitoring Station (PAMS) parameters at National Core (NCore) stations. The changes to the PAMS monitoring requirements included a waiver provision that allows the measurement of PAMS parameters at alternative sites. Appendix D of 40 CFR 58, and the PAMS Required Monitoring Quality Assurance Implementation Plan identify the following reasons for requesting a waiver: 1) In order to avoid measuring PAMS parameters at a historically low O₃ concentration site; 2) to provide data that is suitable for regional scale modeling; and 3) to continue tracking trends in O₃ precursor concentrations.

The New Jersey Department of Environmental Protection (NJDEP) is requesting a waiver from the requirement to measure PAMS parameters at New Jersey's NCore station at Newark Firehouse, and is proposing to measure the revised PAMS parameters at an alternate site, the existing PAMS site at Rutgers University. The reasons for this proposal are: 1) Ozone concentrations since 2009 have been consistently higher at Rutgers University than Newark Firehouse; 2) Modeling for regional O₃ concentrations that are rigorous enough for State Implementation Plan (SIP) development has also shown that current and future O₃ concentrations at Rutgers will continue to be higher than O₃ concentrations at Newark Firehouse; and 3) PAMS parameters have been collected at Rutgers University since 1996, and it would be appropriate to continue there in order to evaluate long-term trends. The following sections provide the data to support this proposal.

O₃ CONCENTRATIONS AT RUTGERS AND NEWARK FIREHOUSE

Table 1 lists the addresses, Air Quality Subsystem (AQS) site codes and coordinates for these two stations. Figure 1 provides the locations of all the O₃ monitoring stations in New Jersey including Rutgers University and Newark Firehouse. Newark Firehouse is the NCore station for New Jersey. Rutgers University is the Type 1 (upwind) PAMS site for the New York metropolitan area, and the Type 4 (downwind) PAMS site for the Philadelphia metropolitan area.

Table 1. Site Information

	NEWARK FIREHOUSE	RUTGERS UNIVERSITY	
AQS Code	34 013 0003	34 023 0011	
Address	360 Clinton Avenue, Newark Fire	Ryders Lane, Horticultural Farm	
Address	Department Engine 10	#3, New Brunswick, NJ 08901	
Metro Area	New York-Northeast New Jersey-	New York-Northeast New Jersey-	
Wello Alea	Connecticut CSA	Connecticut CSA	
Latitude	40.720989	40.462182	
Longitude	-74.192892	-74.429439	
Land Use Type	Urban-commercial-residential	Suburban-residential-agricultural	
Year Established	5/1/2009	10/1/1994	
Comment	NCore site	Existing PAMS site	

Figure 1. Map of Ozone Monitoring Stations in New Jersey

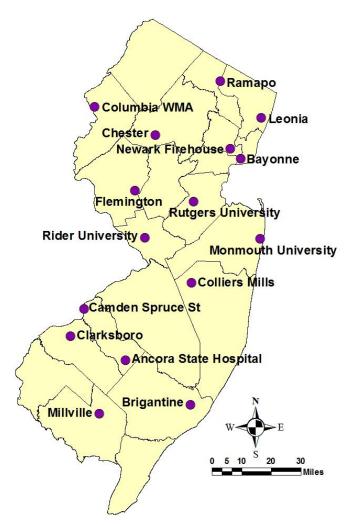


Table 2 lists the 4^{th} highest 8-hour average O_3 concentrations at Rutgers University and Newark Firehouse from 2009 to 2016, and Figure 3 is a chart showing this trend. Figure 4 shows the daily maximum 8-hour average O3 concentrations at Rutgers University from 2012 to 2016, along with a dashed line indicating the 99^{th} percentile value for this 5-year period. Figure 5 shows the corresponding chart for the Newark Firehouse station. The 99^{th} percentile of the daily maximum 8-hour average O3 concentrations from 2012 to 2016 at Newark Firehouse is 75 ppb, and 81 ppb for Rutgers University.

Table 2. 4th Highest Daily Maximum 8-Hour O₃ Concentrations at Newark Firehouse and Rutgers University, 2009-2016 (parts per billion)

Location	2009	2010	2011	2012	2013	2014	2015	2016
Newark Firehouse	64	85	81	80	69	70	72	70
Rutgers University	67	86	87	82	70	71	77	76
NJ Average	70	82	80	80	69	68	73	72

Figure 3

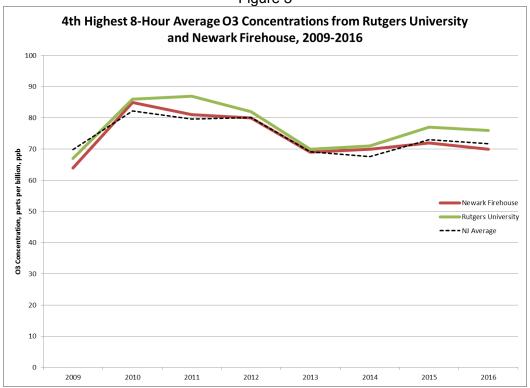


Figure 4

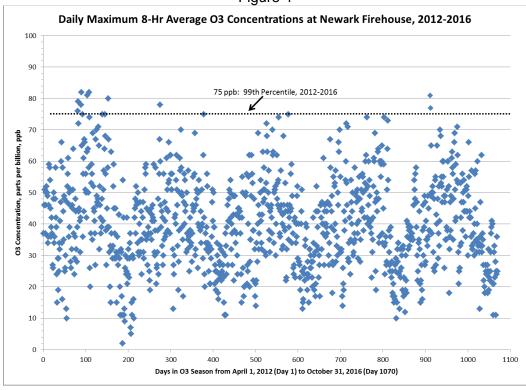


Figure 5 Daily Maximum 8-Hr Average O3 Concentrations at Rutgers Univ., 2012-2016 100 90 81 ppb: 99th Percentile, 2012-2016 parts per billion, ppb 03 Concentration, 20 10 100 200 300 400 500 600 700 800 900 1000 1100 Days in O3 Season from April 1, 2012 (Day 1) to October 31, 2016 (Day 1070)

The preliminary O_3 design value for the 3-year period 2014-2016 is 70 ppb for Newark Firehouse and 74 ppb for Rutgers University. This statistic along with the others summarized in Table 3 below show that the O_3 levels at Rutgers University are consistently higher than the concentrations at Newark Firehouse.

Table 3. Summary of O₃ Statistics at Newark Firehouse and Rutgers University, parts per billion

	Highest Daily Max	4th High Daily Max		99th %-ile of Daily
	8-Hr Avg O₃ Conc.	8-Hr Avg O ₃ Conc.	Design Value	Max 8-Hr Avg O₃
STATION	2016	2016	2014-2016	Conc. 2012-2016
Newark Firehouse	81	70	70	75
Rutgers University	86	76	74	81

RUTGERS UNIVERSITY DATA USED FOR REGIONAL MODELING

NJDEP utilized the ozone data from all of New Jersey's ozone monitors to conduct preliminary SIP modeling needed for the draft NJ Attainment Demonstration SIP proposal for the 75 ppb ozone NAAQS that will be submitted in 2017. The modeling, which was conducted using EPA's regional air quality CMAQ model, included data from Connecticut, Delaware, Maryland, Pennsylvania and New York ozone monitors. The 40 stations in these states with the highest modeled concentrations for 2017 are shown in Table 4. In this table, the New Jersey station are ranked, and Rutgers University is projected to have the 4th highest modeled design value, and Newark Firehouse is projected to have the 5th highest modeled design value.

Table 4. List of Stations in the Connecticut, Delaware, Maryland, New Jersey, New York and Pennsylvania with the Highest Modeled Ozone Concentrations

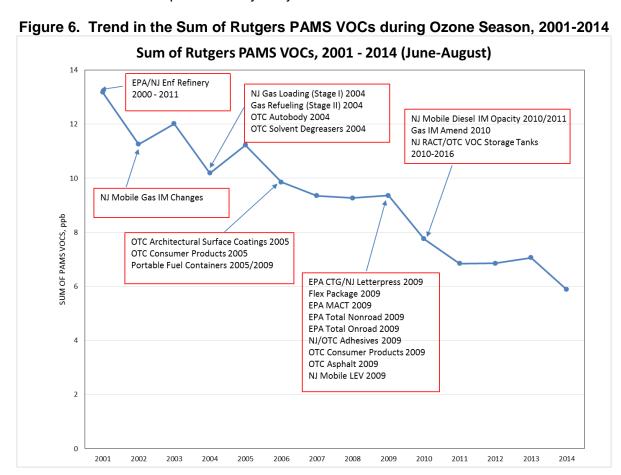

	Cimisy	Ivania with the Highest Modeled Ozone Conce	Modeled Future Design Value (ppb)	Future DV Rank in
AQS Code	State	Site	2017	NJ
090019003	СТ	Sherwood Island State Park-Westport	83	
240251001	MD	Edgewood	81	
360850067	NY	SUSAN WAGNER HS	78	
361030002	NY	BABYLON	77	
090099002	СТ	Hammonasset State Park-Madison	77	
090013007	СТ	Lighthouse-Stratford	77	
090010017	CT	Greenwich Point Park-Greenwich	77	
360810124	NY	QUEENS COLLEGE 2	74	
340150002	NJ	Clarksboro	74	
240053001	MD	Essex	74	
090011123	СТ	Western Conn State Univ-Danbury	74	
421010024	PA	North East Airport (NEA)	73	
420031005	PA	Harrison	73	
361030009	NY	HOLTSVILLE	73	
240150003	MD	Fair Hill Natural Resource Management Ar	73	
240090011	MD	Calvert	73	
090110124	СТ	Fort Griswold Park-Groton	73	
340290006	NJ	Colliers Mills	72	1
340071001	NJ	Ancora State Hospital	72	2
361030004	NY	RIVERHEAD	71	
340250005	NJ	Monmouth University	71	3
340230011	NJ	Rutgers University	71	4
240030014	MD	Davidsonville	71	
421011002	PA	BAXTER (BAX)	70	
420170012	PA	A420170012LAT/LONG POINT IS OF SAMPLING	70	
240338003	MD	PG Equestrian Center	70	
240259001	MD	Aldino	70	
090070007	СТ	Central Valley Hospital-Middletown	70	
340130003	NJ	Newark - Firehouse	69	5
240339991	MD	Beltsville	69	
240170010	MD	Southern Maryland	69	
240051007	MD	Padonia	69	
110010043	DC	MCMILLAN PAMS	69	
340210005	NJ	Rider University	68	6
340190001	NJ	Flemington	68	7
240330030	MD	HU-Beltsville	68	

Table 4 (continued)

AQS Code	State	Site	Modeled Future Design Value (ppb) 2017	Future DV Rank in NJ
240290002	MD	Millington	68	
100031013	DE	BELLEVUE STATE PARK, FIELD IN SE PORTION	67	
100031010	DE	OPEN FIELD	67	
420710012	PA	Lancaster DW	66	

TRENDS IN OZONE PRECURSOR CONCENTRATIONS

The Rutgers University PAMS site, which began monitoring in 1996, was designated as a PAMS Type 1 upwind site for the New York metropolitan area, and as a Type 4 downwind site for the Philadelphia metropolitan urban area. An upper air weather monitoring station is also located at the Rutgers University site. Figure 6 provides a trend of the sum of the PAMS VOCs measured during the ozone season (June – August) from 2001-2014. Included in the chart are relevant NJ and federal rules and control measures that were implemented by the year indicated.

CONCLUSION

The request by the NJDEP to make the required PAMS measurements at an alternate site, Rutgers University, instead of the NCore site at Newark Firehouse, meets three waiver requirements outlined in Appendix D of 40 CFR 58, and the PAMS Required Monitoring Quality Assurance Implementation Plan. The ozone concentrations measured at Rutgers University have historically been higher than those measured at Newark Firehouse. The ozone data from Rutgers University is robust and appropriate for regional ozone modeling and has been used for State Implementation Plans. Since PAMS parameters have been measured since 1996, there is a 20-year history of PAMS data at Rutgers, and this provides valuable trend information that should be continued.