Engineering Guidelines for Living Shorelines Projects (2022 Update)

What is a Living Shoreline?

New Jersey's Coastal Zone Management Rules define a living shoreline as a "shoreline management practice that addresses the loss of vegetated shorelines, beaches, and habitat in the littoral zone by providing for the protection, restoration or enhancement of these habitats" (N.J.A.C. 7:7-1.5). While originally applied only to marsh sill projects, the term "living shoreline" has evolved to take on a broader meaning which encompasses a wide variety of projects that incorporate ecological principles into engineering design.

Why Develop Guidance?

This guidance was developed to provide project designers, regulators, property owners, and others with a consistent framework to ensure that living shorelines projects built within the State of New Jersey are designed, permitted, and constructed in a consistent manner using the best available information. This includes increasing awareness of state initiatives designed to encourage implementation of strategies which lead to increased coastal resilience such as the Climate Change Resilience Strategy, Sea Level Rise Guidance, and Coastal General Permit 24 (N.J.A.C. 7:7-6.24).

HNOLOGY

Davidson Laboratory Castle Point on Hudson Hoboken, NJ 07030

Figure 1. Example of living shoreline design implementation.

Design Approach

The approach taken in developing the guidelines was to identify the set of factors which most frequently play a critical role in the success or failure of a living shorelines project, and then to outline a methodology for taking these factors into consideration when designing a project. The integration of living components into coastal stabilization projects means that parameters which affect the natural components of a project must be considered in addition to the traditional engineering parameters. In alignment with the International Guidelines on Natural and Nature -Based Features for Flood Risk Management (IGNNBF), living shorelines are traditionally completed in phases. During the Scoping Phase, a general understanding of the site and a clear understanding of the intended outcomes is developed. During the Planning Phase, more detailed information about the site conditions is collected and one or more conceptual designs are generated. During the Implementation Phase, additional information is collected as required to generate final designs and construction specifications. Finally, during the Operations Phase, monitoring is performed to inform maintenance and adaptive management actions. Typical living shorelines design parameters are presented in the left sidebar on the next page of this document.

Scoping 🗖		Implementation	Operations	
At the scoping stage,	Living shorelines projects can take many	The final project design	The IGNNBF stresses the	
generally only a limited	different forms. Site complexity combined with	should be based on a	importance of monitoring for both	
amount of information is	unique project specific objectives and	higher-level analysis of	the purpose of assessment and	
needed to assess the	constraints drive constant innovation;	the factors considered	adaptive management.	
possibility of applying a	however, some approaches can be considered	critical to the performance		
nature-based technique at a	"traditional".	of the specific alternative	Assessment is deemed critical for	
site.		selected such as through	both documenting the benefits of	
	Some of the more traditional approaches and	field data collection and/	living shorelines and improving future	
At this stage it is critically	the conditions under which they have been	or numerical modeling.	design.	
important that the project	found to be appropriate are shown in Table 1	Parameters considered		
objectives, as well as any	on the back page; ranges for these parameters	critical to the success of	Current best practice calls for	
potential limitations be	are defined in Table 2 .	each approach are bolded	incorporating adaptive	
identified and communicated.		in Table 1.	management into the design and	
	Typically, a preliminary site visit and a		permitting of living shorelines.	
The project designer is	desktop analysis are enough to obtain	It should be noted that	Specifically, adaptive management	
encouraged to contact the	reasonable estimates of many of the site	each project is different;	manages risk related to	
New Jersey Department of	parameters. Site characterization data	thus, the critical	uncertainties related to climate	
Environmental Protection	collected during the Planning Phase is	parameters requiring	change and future interactions	
(NJDEP) Office of Policy and	generally sufficient to generate conceptual	deeper analysis will vary	between various aspects of the	
Coastal Management to	designs consisting of a proposed layout (plan	from project to project.	hydrodynamic, morphologic,	
identify any potential	and cross-section) and estimates on the		ecologic, economic, and social	
regulatory issues.	quantity and type of materials to be used.		landscapes.	

Design Parameters

System

Erosion History Sea Level Rise **Tidal Range**

Hydrodynamic

Wind Waves Wakes Currents Ice Storm Water Level

Terrestrial

Upland Slope Shoreline Slope Width **Nearshore Slope** Offshore Depth Soil Bearing Capacity

Ecological

Water Quality Sunlight Exposure Soil Type

Additional Considerations

Permits/Regulatory **End Effects** Constructability Native/Invasive Species **Debris Impact Project Monitoring Adaptive Management Beneficial Reuse**

	Marsh Sill	Breakwater	Living Reef				
System Parameters							
Erosion History	Low-Med Med-High		Low-Med				
Sea Level Rise	Low-Mod	Mod-High*	Low-Mod				
Tidal Range	Low-High*	Low-High	Low-Mod				
Hydrodynamic Parameters							
Wind Waves	Low-Mod Mod-High*		Low-Mod				
Wakes	Low-Mod	Mod-High*	Low-Mod				
Currents	Low-Mod	Low-High*	Low-Mod				
Ice	Low	Low-High*	Low				
Storm Water Level	Low	Mod-High	Low				
Terrestrial Parameters							
Upland Slope	Mild-Mod*	Mild-Mod* Mod-Steep*					
Shoreline Slope	Mild-Mod	Mild-Steep	Mild-Mod				
Width	Mod-High	Mod-High	Mod-High				
Nearshore Slope	Mild-Mod	Mild-Mod	Mild-Mod				
Offshore Depth	Shallow-Mod	Mod-Deep	Shallow-Mod				
Soil Bearing	Mod-High	High	Low-Mod*				
Ecological Parameters							
Water Quality	Poor-Good	Poor-Good Good					
Soil Type	Any	Any	Any				
Sunlight Exposure	Mod-High	Low-High	Mod-High				

Table 1. Appropriate conditions for three common living shoreline approaches.

Table 1 Notes:

Change in conditions rom 2016 guidelines document

*New Parameter

	Criterion				
Parameter	Low/Mild	Moderate	High/Steep		
	System P	arameters			
Erosion History	<2 ft/yr	2 ft/yr to 6 ft/yr*	>6 ft/yr*		
Sea Level Rise	<0.2 in/yr	0.2 in/yr to 0.4 in/yr	>0.4 in/yr		
Tidal Range	< 1.5 ft	1.5 ft to 4 ft	> 4 ft		
	Hydrodynam	ic Parameters			
Waves	< 1 ft	1 ft to 3 ft	> 3 ft		
Wakes	< 1 ft	1 ft to 3 ft	> 3 ft	Table 2 Notes:	
Currents	< 1.25 kts	1.25 kts to 4.75 kts	>4.75 kts		
Ice	< 2 in	2 in to 6 in	> 6 in	*Change in range from	
Storm Water Level	<25 yr	25yr to 50yr	>50 yr	2016 guidelines	
	Terrestrial Parameters				
Upland Slope	<1 on 30	1 on 30 to 1 on 10	>1 on 10	***	
Shoreline Slope	<1 on 15	1 on 15 to 1 on 5	> 1 on 5	**New Parameter	
Width	<30 ft	30 ft to 60 ft	>60 ft		
Nearshore Slope	<1 on 30	1 on 30 to 1 on 10	>1 on 10		
Offshore Depth	< 2 ft	2 ft to 5 ft	> 5 ft		
Soil Bearing Capacity	< 500 psf	500 psf - 1500 psf	> 1500 psf		
	Ecological	Parameters			
Water Quality	-	-	-		
Soil Type	-	-	-		
Sunlight Exposure	<2 hrs/day	2 to 6 hrs/day*	>6 hrs/day*		

Added since 2016

Changed from "storm surge" in 2016 Framework**

Updates from 2016 Guidelines

· This updated version of the New Jersey Living Shorelines Engineering Guidelines adopts the simplified IGNNBF terminology (design phases) to be more in line with the broader community.

- · A Scoping Phase is added before the Planning Phase's alternative analysis and conceptual design work.
- · Adaptive management is added as a key design parameter of the Operations Phase.
- An appendix has been added to address gaps related to climate change/sea level rise, design, regulations, and assessment.
- · Changes have been made to design parameters (see above sidebar), conditions where approaches are applicable (see Table 1 notes), and the ranges of criterion (see Table 2 notes).
- · Joint-planted revetments and reef balls have been removed as suggested living shoreline design alternatives.

Produced by:

Jon K. Miller, Ph.D., Laura Kerr, Amy Bredes and Katherine Gannon of Stevens Institute of Technology

For more information contact: Jon Miller (jmiller@stevens.edu) Phone: 201-216-8591 Social: @StevensCoastal

This work is made possible with financial assistance from the New Jersey Department of Environmental Protection and the U.S. Department of Housing and Urban Development through the National Disaster Resilience Competition.

September 2022