

Monitoring

Angela Padeletti Science Programs Manager

How to Build for Success and to Address the Unexpected

Nature Based Solutions:

- 1. "Provide ecological uplift": Leaves room for many techniques
- 2. More than materials; ecology: What is "living component"
- 3. Measure of functionality over time: aim of a project over time

Practitioner Tasks

- A. Create proper conditions for ecological success
- B. Adaptively manage site-specific needs

Practitioners Manage

Physical Environment

Biological Community

Materials: Persistent Energy

Not all materials are appropriate everywhere but in-tandem materials can be helpful

Materials: Biological Interactions Can enhance or diminish material stability

Physical Environment

Biological: "Living " Component

Basis of success:

- Sedimentation
 - Facilitate vertical building
- 2. <u>Elevation of vegetation community</u>
 - Inundation time
 - Sustain elevation
- 3. Planting strategies
 - Positioning
 - Plant age
- 4. <u>Proper drainage</u>
 - Anoxia
 - Internal erosion
- 5. <u>Faunal Community</u>

Physical Environment: Sediment It may be available, but tough to trap

Physical Environment: Elevation

Plants can sustain elevation

- Plants become dense at mid-upper positions (MW-MHW)
- Dense plants trap more sediment
- Trapping sediment helps marsh grow vertically
- Plants at proper position help marsh build

Biological: Vegetation/Elevation Generally MW-MHW

Biological: Faunal Movement Safe passage

Areas of Interest for projects:

- Overall changes to shoreline appearance
- Changes in elevation of shoreline

- Changes in shellfish communities
- Changes in vegetation communities

Professional and Citizen Monitoring

Professional Monitoring

High accuracy

Citizen Monitoring

- Engage community
- Build relationships with community, local and state govt
- Sustain Monitoring after grants

Professional and Citizen Monitoring

Goal	Objective	Metric	Methods
Erosion control	Living shoreline appears visually similar to a natural shoreline	Appearance	1. Photo-doc at fixed points
Erosion control	Erosion control structure maintains its established position	Position of erosion control structures	 Photo-doc RTK-GPS survey
Erosion control	Vegetated edge moves waterward from baseline position	Position of contiguous vegetated shoreline and community boundaries	 Measured distance of boundaries along transects RTK-GPS survey
Erosion control	Vegetation community develops to be robust	Vegetation robustness	Integrate: vegetation height and vertical/ horizontal obstruction
Erosion control/ water quality uplift	Shellfish establish residence in the living shoreline	Shellfish population density	1. Observation across site

Blue=Citizen Science Methods
Red=Professional Methods

Professional Monitoring

- RTK monitoring for changes in shoreline movement and elevation
- Vegetated plots along three transects
 - Dominant Species Identification
 - Percent cover
 - Light Attenuation
 - Horizontal Vegetation obstruction
- Observational Data
 - Shellfish presence/absence
 - Fixed Photo Points
 - Debris presence/absence
 - Notes on other impacts
 (ice, blockage of drains and/or other structures)

- Measure distance of vegetated communities from the shoreline edge
- Vegetated plots along three transects
 - Dominant Species Identification
 - Percent cover
 - Vegetation Height
- Observational Data
 - Shellfish presence/absence
 - Fixed Photo Points
 - Debris presence/absence
 - Notes on other impacts
 (ice, blockage of drains and/or other structures)

- Measure distance of vegetated communities from the shoreline edge
- Vegetated plots along three transects
 - Dominant Species Identification
 - Percent cover
 - Vegetation Height
- Observational Data
 - Shellfish presence/absence
 - Fixed Photo Points
 - Debris presence/absence
 - Notes on other impacts
 (ice, blockage of drains and/or other structures)

- Measure distance of vegetated communities from the shoreline edge
- Vegetated plots along three transects
 - Dominant Species Identification
 - Percent cover
 - Vegetation Height
- Observational Data
 - Shellfish presence/absence
 - Fixed Photo Points
 - Debris presence/absence
 - Notes on other impacts
 (ice, blockage of drains and/or other structures)

- Citizen Science training was held in June 2017
- A manual was developed to guide the citizen scientists
- Easy to read maps and datasheets were developed
- In late fall 2017 professional scientists and citizen scientists conducted monitoring

Citizen Scientist Monitoring of Nature-based

Long-term Monitoring

	Metric	Methodology	Citation
Surface Dynamics	Surface Elevation Change	Deep rod surface elevation tables	Lynch et al. (2015)
	Surface Accretion	Feldspar Marker Horizons	Lynch et al. (2015)
	Surface Elevation	Real Time Kinematic (RTK) GPS transect (vegetation-based) or grid (platform/feature-based) surveys	USGS (2012); Raposa et al. (2016)
Vegetation Dynamics	Vegetation Height	Plot specific height measurements	Mendelsshon and Seneca (1979)
	Plant Community Structure	Species richness, estimated cover	Donnelly and Bertness (2001)
	Vegetative Productivity	Above and below ground biomass (hand sorting)	Cahoon et al. (2002); Morris et al. (2002); Cahoon (2015);
Soil Quality	Soil Nutrients	Nitrogen, Phosphorus (laboratory analyses, by depth)	Quirk et al. (2015a/b); Raper et al. (2016)
	Soil Carbon	Carbon, bulk density (laboratory analyses, by depth)	Quirk et al. (2015a/b); Raper et al. (2016)
Water Quality	Water Nutrients	NOx, NHx, SRP, Alkalinity (laboratory analyses); Turbidity	Nitogen: Deegan et al. (2012); Turbidity: Raposa et al. (2016)
	Water Quality	Temperature, Conductance (salinity), Dissolved Oxygen, Total Dissolved Solids, pH (in situ YSI readings)	Quirk et al. (2015a/b); Raper et al. (2016)
	Suspended Sediments	Total Suspended Solids (laboratory analysis)	Morris et al. (2002); Fagherazzi et al. (2012); Kirwan et al. (2015)

Connecting Long-term to projects

Are we seeing what we should?

Figure 23. Bar plot of mean total belowground biomass (live and dead fractions) for SETs 1 and 3 at each SSIM station. See Table 5 (page 30) for means and standard errors.

Project Monitoring

Structural Materials

Physical Environment

Biological Community

Let's Collaborate

Angela Padeletti Science Programs Manager (302) 655-4990, x103 apadeletti@DelawareEstuary.org

Partnership for the DELAWARE

Connecting people, science, and nature **ESTUARY** for a healthy Delaware River and Bay

Task 4. Monitoring

Quality Assurance Project Plan

Resource library on Monitoring and Assessment methods

White paper on wetland issues

Delaware Estuary Living Shoreline Manuscript

Marsh Futures - report on assessments in Lower and **Upper Townships**

Citizen science training, presentations and field work

Monitoring of MACWA sites –data and reporting on trends over 3+ years

Monitoring plans for 10 projects

Monitored 4 projects over 9 months

