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Abstract

Algal blooms (AB) in potable water supplies are becoming an increasingly prevalent and serious water quality problem
around the world.   AB events can cause taste and odor problems, damage the environment, and some algal classes like
cyanobacteria (blue-green algae) may release toxins that can cause human illness or even death.  There is a need to
develop models that can accurately forecast algal bloom events on the basis of predictive physical, meteorological,
chemical, and biological information. Such forecasting models can provide valuable lead time for water treatment sys-
tems to implement measures to minimize the consequences of the AB event, if not actually prevent it.  Given the multitude,
interplay, and complexity of the various controlling environmental factors, modeling and forecasting AB is a daunting
challenge.  This research focused on the feasibility of using artificial neural network (ANN) technology as an accurate, real-
time modeling and forecasting tool.  Previously-collected data from a NJ water utility served as the test case.  AB forecast-
ing periods included one-week and two-weeks prior to the event. Despite a less than ideal number of historical AB events,
the high predictive accuracy achieved in this study indicates that with sufficient data, both in terms of the number of
historical AB events and availability of important predictor data, ANNs can serve as reliable, accurate, real-time AB forecast-
ing tools.
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Introduction
There is consensus among scientists that the incidence
of algal blooms (AB) world-wide is increasing (Smith et al,
2006).  The detrimental effects of AB on the environment
and water supplies are well documented but controversy
remains over the important factors and mechanisms re-
sponsible for their occurrence as well as the most effec-
tive means for modeling and forecasting this phenom-
ena.  Given the multitude of factors – physical, meteoro-
logical, chemical, and biological – that can contribute to
AB events, developing a robust model that represents site-
specific conditions responsible for AB, especially for the
purpose of providing accurate prediction capability, can be
a daunting challenge.

In this project, artificial neural network (ANN) technology, a
form of artificial intelligence, was investigated as a pos-
sible AB event forecasting tool. ANN technologies offer the
advantage of “learning” system behavior from historical
data and hence are not necessarily constrained by simpli-
fying model assumptions inherent to mechanistic or physi-
cal-based models.  To effectively learn and generalize sys-
tem behavior, ANNs require a sufficient amount of histori-
cal “cause and effect” data that covers the expected range
of conditions at a given site.  One of the critical issues of
this study, then, was a rudimentary assessment of the
existing data and analysis as to what sampling strategies

might improve forecasting capability.

Previous work in the literature documents the development
and testing of ANN models for forecasting algal blooms in
river and lake systems (Recknagel et al, 1997; Maier et al,
1998; Olden, 2000).  However, the data sets were relatively
large, collected over time periods approaching a decade,
and with parameters that were measured relatively frequently.
In this study, the number of available historical events was
more limited, which is representative of most water supply
systems.  After examination of data from one water treatment
plant (WTP) showed an insufficient amount for robust model
development, a second WTP was selected for this project.
Three classes of algae, cyanobacteria, chrsyophytes, and
chlorophytes were included as the forecast parameters of
interest.

Different ANN models were developed and tested.  Most mod-
els predicted discrete algal count numbers while some pre-
dicted a “bin” or pre-selected classification range within which
final algal counts would fall.  The use of different modeling
approaches and time discretization schemes improved sys-
tem understanding.  It also permitted a systematic analysis
of available modeling and data collection options for per-
forming real-time forecasting, under real-time conditions and
with limited data sets.
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Artificial Neural Networks

ANN architecture (Figure 1) is based upon Kolmogorov’s
theorem (Hecht-Nielsen, 1987; Sprecher, 1965) which as-
serts that any continuous function (in this case algal counts
and the causative inputs) can be represented exactly by a
three-layer, feed-forward neural network with n elements in
the input layer, 2n+1 elements in the hidden layer, and m
elements in the output layer, where n and m are arbitrary
positive integers.   The presence of common arcs in its
architecture allows ANN to identify important inter-relation-
ships that may exist between output variables.  ANN tech-
nology is a compelling alternative to physical and statisti-
cal-based modeling approaches such as linear models.
ANN “learns” system behavior by processing representa-
tive data through its architecture.  ANN is different from physi-
cal-based models because it does not rely upon the gov-
erning physical laws.  Information regarding physical pa-
rameters is not required for ANN development and opera-
tion nor simplifying statistical assumptions.

In this study, 50% of the available data was used for “train-
ing,” that is to “learn” cause and effect relationships if present.
Another 25% of the data was used to “verify” the model, to
guard against over-training or over-fitting the data.  Follow-
ing training, the remaining 25% of the data was used to
validate or assess how well the model learned to general-
ize system behavior.  During training, data patterns are pro-
cessed through the ANN and “connection weights” are
adaptively adjusted until a minimum acceptable error be-
tween the ANN-predicted output and the actual output is
achieved.  At this point, the ANN has “learned” to predict the
system behavior of interest (in this case algal counts) in
response to the values of the various input parameters.

There are a variety of ANN model design features and op-
tions.  To design an appropriate model, a number of factors
must be considered, including the functional form of the
transfer functions, the number of hidden layers and nodes
in the architecture, the most appropriate set of input vari-
ables, and the algorithm(s) used to minimize the objective
function (i.e. training error).  This process is typically con-
ducted in an iterative manner within the context of profes-
sional judgment and modeling experience.  For example,

selection of an appropriate set of input parameters during
initial ANN development requires a basic understanding of
the governing system dynamics (e.g., factors known to in-
fluence AB).  However, a “sensitivity analysis,” in conjunc-
tion with trial and error, can help the modeler converge to
the most appropriate and feasible set of predictor variables.
The sensitivity analysis, which quantifies the relative impor-
tance of each input variable for accurately predicting each
output variable, can be used in lieu of common statistical
methods.

ANNs require sufficient data that spans the range of ex-
pected system conditions to achieve robust learning.  Based
upon the number of input and output parameters, heuristic
equations were used to estimate the minimum number of
training data events required for robust model development.
Calculated estimates of the number of training events nec-
essary for robust training in this study ranged from 200 to
500, depending upon the ANN model used.   Because of the
number and complexity of environmental factors and their
interactions which control AB dynamics, and given the ex-
pected “noise” in the data, the number of required training
data sets is probably closer to 500.  Unfortunately, the num-
ber of data sets available in this study was well below 200.
Therefore, multiple modeling iterations were performed to
validate results.

Study Area and Data
Figure 2 represents the WTP modeled in this project.  Two
rivers and a reservoir supply water to the WTP.  River A flows
into River B upstream of the WTP’s intake canal.  River B
water is gravity fed to the WTP intake by way of the canal.
Station 101 water samples are River B water.  River A water
can be pumped directly to the plant intake location (Station
100) via Pumping Station 2 (PS 2).  Station 612 samples are
River A water.  Reservoir A water is only available to the WTP
on a limited basis during the summer to augment needed
supply.  When not in use, Reservoir A is recharged with
River A water via Pumping Station 1 (PS 1).    When needed,
Reservoir A water can also be delivered directly to Station
100.  Thus, Station 100 water represents the final blend of
the respective supply waters (River A, River B, and/or Res-
ervoir A) that form the WTP’s intake.  During most of the data
collection period of this study, Station 100 intake water was

Figure 2.  Water Treatment Plant Raw Water Configuration

  Figure 1. Architecture for a simple multi-perceptron ANN
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a blend of River A (100 – 60%) and River B (0 – 40%) water.
On rare occasions, it was a blend of River B and Reservoir
A water.

Rivers A and B have historically exhibited variable and unique
water quality characteristics that impart different treatment
challenges.  River B is considered to be of lower water
quality because of more numerous upstream contaminant
sources.  However, River A has a higher incidence of AB
events.

Previously collected (1999-2004) water quality data from
Stations 100, 101, and 612 were used.  Temporally corre-
sponding meteorological data from nearby weather stations
was also collected.  Data that was used included: total al-
gae, chrysophytes, chlorophytes, cyanophytes, water tem-
perature, pH, turbidity, alkalinity, hardness, conductivity, color,
odor, dissolved oxygen level, biochemical oxygen demand
level, chloride, sulfate, total phosphorous/ortho-phosphate,
ammonia, nitrite/nitrate, total suspended solids, total amor-
phous material, UV-254 absorbance, total organic carbon,
precipitation, length of day, wind speed and direction, heat-
ing degree days, cloud cover, streamflow, and extraction
volume from each water source.  The non-algae param-
eters were considered important or potentially important for
predicting algal population counts.    Sampling dates and
frequencies differed by both station and parameter.  Thus,
prediction events (data sets) between stations often do not
correspond in time.  For regulatory reasons Station 100 is
sampled at the highest frequency and as many as 270 his-
torical events were available from this station.  Station 101,
located on the less-frequently used river source, was
sampled less often with between 32 and 108 events avail-
able (depending on ANN model used) while Station 612
contained data from 40 up to 172 events.   Stations 100, 101
and 612 were each modeled individually (rather than pooled
into a single “location”) as each source has different water
quality characteristics.

Modeling Methodology
Because reliable weather forecasts do not extend beyond
one- to two-week time horizons, ANN models were devel-
oped for one-week and two-week ahead forecasting peri-
ods.  These periods are long enough to allow a WTP suffi-
cient time to plan and implement countermeasures for pre-
dicted AB events.  Two model input structures were used.
The first, referred to as “original”, consisted of input values
measured at the beginning of the prediction periods.  The
second, referred to as “revised”, used input values mea-
sured at the end of the prediction period, coinciding with the
final or predicted algal count.   Under the original approach,
under real-time forecasting conditions the input values
would be known a-priori.  The revised approach would have
to forecast or assume input values corresponding to the
future prediction day.

Both the original and revised approaches were assessed
using two distinct data sets.  The first events consisted of a
smaller number of temporally coincident data events, but
which included a higher number of input parameters.  The
second set, by excluding several less-frequently-sampled

water quality parameters (total phosphorous/ortho-phos-
phate, nitrite/nitrate, sulfate, and total organic carbon for all
stations and biological oxygen demand for Stations 101
and 612), consisted of a larger number of data set events
but with fewer parameters per set.  The dual approach pro-
vided insights into algal population dynamics and also ad-
dressed the issue of dependence of ANN model perfor-
mance on the quantity of data

The classification “bin” models, which consisted of Radial
Basis Function (RBF) nets, used the original set of input
parameters but excluded the source water extraction vol-
ume parameter.  This was done to assess whether ANN
learning and predictions were biased by correlations be-
tween changing intake water quality and resulting WTP op-
erational decisions (i.e., changing the source of supply wa-
ter).  Four pre-selected bins or classification ranges for al-
gal counts were used as model outputs:  0 to 10, 11 to 50,
51 to 200, and > 200 organisms per milliliter.

Results and Discussion
Several hundred ANN models were developed and as-
sessed during this study.  Despite the low number of his-
torical data events available for training, many of the ANN
models performed well during validation, often achieving
relatively high correlation coefficients and accurately pre-
dicting sudden and significant changes in algal popula-
tions.  The models developed with both one-week and two-
week ahead prediction periods often accurately predicted
formation and dissipation of AB events, as well as the rela-
tive increase and decrease in cell counts.  This indicates
that there are natural time lags between system conditions
and algal population responses.  That is, the trajectory of
algal counts over one and two-week forecast periods can
be accurately forecasted on the basis of real-time mea-
surements.  Statistical analyses of the data also reflect the
fact that water conditions, as influenced by external factors
like weather, do not change significantly in the short-term
(e.g., weekly or bi-weekly) in most cases.  Thus, evolving
algal populations are generally not prone to abrupt devia-
tions from trajectory paths.

On the basis of validation correlation coefficients, the ANN
models that used inputs measured at the beginning of the
prediction period slightly outperformed the models that used
inputs measured at the conclusion of the prediction peri-
ods, but the difference was not significant (r = 0.72 vs. 0.69).

The models that forecasted algal count values (instead of
bin classifications) achieved the highest performance in
most cases when the less-frequently measured water quality
parameters were excluded as input variables.  That is, the
models that excluded the phosphate, nitrate, sulfate, TOC
and BOD parameters produced a higher average correla-
tion coefficient than did the models that included these vari-
ables (0.77 versus 0.63).  This may have been due to the
larger number of historical events that were available for
training, after excluding these variables, rather than the rela-
tive lack of influence of these parameters on algal popula-
tions.  However, it may be that the excluded parameters, at
least some of which are considered by most scientists to



models that included the less-frequently-sampled inputs
(phosphate, nitrate, etc.) slightly outperformed those that
did not, with correct classification percentages of 96 and 92
percent, respectively.  However, the models that excluded
these parameters had approximately three times the num-
ber of available data and hence had more events which
bordered two adjacent classification bins.  All incorrect clas-
sifications for all models occurred within an adjacent bin
(e.g., a measured count of 8 which placed the count in the 0-
10 bin, while the predicted bin was 11-50).  Given the inher-
ent imprecision of algal counts (Maier et al, 1998) this per-
formance is impressive.

The Station 101 and 612 models, which excluded the water
extraction volumes as input parameters, performed well.
The excluded parameters were likely correlative at these
stations.  At Station 100 (the WTP intake), equivalent mod-
els showed diminishment after excluding these parameters.
Source water mixing occurs at Station 100 and hence the
excluded parameters would be considered more causal at
this location.

Linear models (LMs) were also developed to predict algal

be critical for algal growth, usually existed within a range of
concentrations that neither limited nor promoted AB events
in this particular system.The latter possibility was weakly
supported by sensitivity analysis results and time-series
plotting of input parameters vs. algal counts.

Figures 3, 4, and 5 provide a visual assessment of model
performance for three cases, where the validation data show
the initial algal count corresponding to the prediction event.
The term “initial” in the figures designates the initial count
measured at the beginning of the prediction period, “final”
designates the final algal count measured at the conclu-
sion of the prediction period (i.e., that which is being pre-
dicted), and “ANN” designates the final count predicted by
the ANN model.

The Station 101 and 612 (River’s B and A water) models that
predicted algal concentration ranges (i.e., classification
nets or “bins”) rather than actual counts also achieved high
forecasting performance.  Three of the eight models that
included all of the input parameters achieved 100 percent
classification accuracy.  The worst-performing net correctly
classified 83 percent of the events.  For this approach, the
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Figure 3.  Time-series plots of measured Chlorophyte counts and ANN One-week Ahead predicted values for (a)
complete and (b) validation data sets at Station 101 (Revised Model excluding five water quality inputs)

Figure 4. Time-series plots of measured Chlrophyte counts and ANN One-week Ahead predicted values for (a)
complete and (b) validation data sets at Station 101 (Original Model excluding five water quality inputs
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counts at each station using the same data so that their
performance could be compared to ANN model perfor-
mance.  The LMs did not perform as well as the ANN mod-
els, achieving significantly lower correlation coefficients and
higher mean absolute errors.  Of twelve prediction scenarios,
the ANN models provided a lower mean absolute error
(MAE) eleven times, were often significantly lower.  As shown
by Figure 6a, for the two-week ahead prediction of
cyanobacteria counts at Station 612, the LM seriously un-
der-predicted the three highest count events (comes close
to fourth highest count).  The LM predicted just 388, 320 and
434 for algal bloom counts of 800, 932 and 1152 counts,
respectively.  For relatively lower count events, the LM gen-
erally over-predicted, as shown by Figure 6b. By contrast,
the ANN model accurately predicted six of the eight bloom
events, and for the entire data record produced just two
relatively minor false-positive events, while reproducing
lower algal count events.  Similarly, for the other prediction
cases using the same modeling approach, LMs had the
tendency to under-predict most of the high count events.

It should be noted however that the LMs were not optimized.
That is, data distributions were not analyzed and data trans-
formations such as log transformations or rankings were
not attempted in LM development.  However, this under-
scores yet another advantage of ANNs; because of their
universal non-linear modeling capability, they are not lim-
ited by the form of the data distributions.

Figure 5. Time-series plots of measured Cyanobacteria counts and ANN Two-week Ahead predicted values for (a)
complete and (b) validation data sets at Station 612 (Original Model excluding five water quality inputs)

Figure 6a. Comparison of Original ANN and LM perfor-
mance for two week-ahead predictions of cyanobacteria

at Station 612 without the five chemical variables

Conclusions
• Despite a very limited number of available data

events, the ANN models performed well in most
cases during validation, accurately predicting large
changes in algal cell populations.  The degree of
accuracy was surprising, given the complexity and
non-linear behavior of algal populations, inherent
data “noise”, and the relatively small number of
historical events available for model training.

• The ANN models that forecasted algal count val-
ues (instead of classification ranges) achieved the
highest performance when the less-frequently
measured water quality variables (phosphate, ni-
trate, sulfate, TOC and BOD) were excluded as
input variables.  This may be due to a data quantity
issue rather than a lack of causative effect of these
parameters on algal cell growth, but it could also
be that, at the concentrations at this WTP, these
parameters were not “limiting” algal growth.

• Like the cell count models, the Radial Basis Func-
tion classification net models classified the counts
into the correct concentration ranges with very high
accuracy, averaging 94 percent.

• Linear models did not perform as well as the ANN
models, however the LM models were not opti-
mized.
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Figure 6b.  Enlargement of the lower count events shown
in Figure 6a.
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• While not definitive, the results strongly indicate
that the ANN models learned some underlying re-
lationship between select physical, meteorologi-
cal, chemical, and biological parameters, and al-
gal cell concentrations at this WTP.  This is sup-
ported by: 1) relatively high model accuracy and
overall consistency between training and valida-
tion results; 2) consistency in performance for dif-
ferent types of models (single value outputs and
classification) and input structures (original and
revised); 3)  consistency between modeling results
and physical intuition/system understanding; and
4) comparatively poor performance of linear mod-
els.

 Recommendations
There are several ways in which the ANN AB forecasting
models can be improved for this system in the future, and
include:

1. Systematic elimination of input parameters to fur-
ther distinguish between critical and non-critical
ANN inputs.

2. Modeling and prediction of specific algal species
(rather than algal classes) and/or algae-produced
chemicals (e.g., odorant compounds) that are of
particular concern to water utilities.

3. Increased monitoring of certain “limiting” nutrients
such as nitrite/nitrate and total phosphorous/ortho-
phosphate to further define their importance in AB
events.

4. Inclusion of other potentially important input pa-
rameters, for example monitoring concentrations
of certain biological organisms such as protozoa
or viruses that feed on or lyse algae.

5. Use of time lags for select input parameters, such
as streamflows and algal counts, which have been
shown in a previous study (Maier et al, 1998) to
significantly increase model performance.

6. A possible hybrid of the two modeling approaches,
where some combination of existing/historical and
future conditions is used as inputs.

7. Following development of robust models, a per-
turbation sensitivity analyses that quantifies how
different changes in input values affect algal popu-
lation changes.
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