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Executive Summary

The New Jersey Department of Environmental Protection has a need for
development of algal indicators of stream and river eutrophication. This study evaluates
the use of diatoms as indicators of nutrient conditions in the New Jersey streams and
rivers of the Inner Coastal Plain. The results presented here are part of an ongoing study,
initiated in July 2000. Y ears 1 through 3 were limited to development of algal indicators
in northern and central New Jersey (Piedmont, Highlands and the Ridge and Valley
physiographic provinces) (Ponader and Charles 2004). The fourth year of the study
extended the development of indicators to the Inner Coastal Plain. Data from 28 sites
studied during year 4 were used to develop and test additional indicator metrics to be
used in the Inner Coastal Plain of southern New Jersey. All sites were sampled in 2003
for water chemistry, diatoms and algal biomass using artificial substrates (diatometers).
M easurements of algal biomass, algal species composition, physical stream conditions
and water chemistry were used to develop models and metrics for quantifying algal

biomass and inferring nutrient concentrations from diatoms.

The following summarizes findings of the research presented in this report:

The relationships between algal biomass measures (Chl a) and nutrient concentrations
were not significant and weak, based on Spearman’ s rank-order correlations that
included data from all the sites. However, variations in contents of Chl a can be
explained through a combination of conductivity, NH3-N, %o0pen canopy cover and
TN.

A total of 294 diatom taxa were found in the samples. Sample assemblages showed
high species diversity and generally low average relative abundance of species. The
most common species had moderate TP and TN WA-optima.

Multivariate analysis of species and environmental variables showed that pH, total
phosphorus (TP) and basin size explain significant differences in diatom assemblage
composition. This finding provides statistical justification for developing diatom
based models and indices for these variables. No other nutrient variable than TP
explained a significant amount of variation in diatom species composition.



The nutrient inference model and index development for the Inner Coastal Plain was
only possible for TP, and showed moderate performance when tested using cross
validation. The model for inferring TP (rapparenty= 0.97; RMSEP (jack) = 0.31 log g
TP) developed using the complete 2003 dataset (n=25), showed low predictive ability
with a jackknifed r?=0.34. This finding stands in contrast to the results of previous
study years (Piedmont, Highlands and Valley & Ridge), where TP and TN inference
model development has been successful, using a large dataset (n=91). The decrease in
model performance between apparent and tested r? in the Inner Coastal Plain dataset
can be explained mainly by an uneven distribution of samples along the nutrient
gradient, due the low number of samples (n=25). Therefore, we expect significant
improvement of the TP model performance, when filling the data gaps using a larger
dataset (Inner and Outer Coastal Plain datasets combined) during data analysis.

Development of algal indicators of nutrient conditions in the Inner Coastal Plain is
difficult, due to the overriding influence of pH and conductivity. Our results show

that in the Inner Coastal Plain al three methods applied @) biomass metrics, b)
inference model development and c) diversity metrics, showed limited applicability as
measures of nutrient conditions.

Other factors might be responsible for low model and metric performance in the Inner
Coastal Plain rivers, compared with the northern and central part of the state We will
further investigate if the use of artificial substrate instead of natural substrate may
have an influence on concentrations of algal biomass, diatom species composition and
model performances. To answer this question more in detail we will compare
inference model results based on samples that were collected from natural and
artificial substrates during fieldwork in 2004 (study year 5- Outer Coastal Plain). We
anticipate that the analysis of the combined Inner and Outer Coastal Plain datasets
will provide more insight into these questions.
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1. I ntroduction

The New Jersey Department of Environmental Protection has a need for
development of algal indicators of stream and river eutrophication. These indicators will
be used to assess relationships between extant water quality criteria (e.g., phosphorus and
nitrogen concentrations) and overt signs of eutrophication. They will be applied in a
regulatory context as secondary criteria for identifying nutrient impairment. These
indicators should be based on an understanding of algal dynamicsin New Jersey streams,
and be able to distinguish between situations where nutrient concentrations are high due
to natural environmental conditions and those that result from anthropogenic influences.
Protocols are needed that describe procedures for sample collection and processing,
analysis and presentation of data, and interpretation of results. For a detailed review of
the problematic and study rationale and approach, please consult the year 3 fina report
(Ponader and Charles 2004) and the draft manuscript submitted for publication (Ponader
et a., inreview).

This study was initiated in July 2000. Years 1 and 2 of this project were limited to
development of algae indicators in the Piedmont physiographic province in New Jersey.
During the third year the study was expanded to include sites in the Highlands and the
Ridge and Valley physiographic provinces. Data from sites studied during all three years
were used to develop and test indicator metrics for the northern part of the State (Ponader
et a., in review). The fourth year of the study extended the development of indicators to
the Inner Coastal Plain. Data from sites studied during year 4 were used to develop and
test additional indicator metrics to be used in the Coastal Plain of southern New Jersey
and are presented here.

The fourth year uses the same genera approach and specific methods as used in
the first three years (Charles et a. 2000, PCER 2000). Nevertheless, because of the
different geomorphology of the rivers (sand and clay river bottoms) in the Inner Coastal
Plain, significant changes and adjustments in the sampling design and the methods for
collection of agal samples were necessary. A new sampling protocol was developed for
the use of artificia substrate (Ponader et al. 2003). Main differences in the sampling
methods used this year are: @) the use of artificial substrate (diatometers) for collection of

both diatom species composition and algal biomass, b) the establishment of only two



reaches instead of three per site (due to high cost of diatometers), ¢) the measurement of
water color as a general indicator of DOC levels, and d) the sampling of water chemistry

twice: once at diatometer deployment and once at removal.

2. Study area and sites

This study was conducted in southern New Jersey, in the Inner Coastal Plain
ecoregion (Fig. 1). The Inner Coastal Plain is characterized by a generaly flat to
undulating topography, with unconsolidated sedimentary deposits consisting of
cretaceous sand, silt and gravel (Tedrow 1986). Land-use in the Inner Coastal Plain is
mainly agricultural and urban. The predominant forest type in the inner coastal Plain is a
mix of oak, beech and red maple (Tedrow 1986).

During the late summer of 2003 we sampled 28 AMNET sites, 24 in the Inner
Coastal Plain and 4 in the Piedmont (resampling sites) (Fig. 1). Table 1 presents site
information including site name and location. The most important physical

characteristics, water chemistry and other site information are summarized in Table 2.

3. M ethods

3.1. Sitesdection

3.1.1. Preselection of sites

We worked with NJ DEP staff, mainly Tom Belton, to carefully select a
set of study sites. Because a goal was to develop indicators of anthropogenic nutrient
increases, it was important to select a suite of sites with relatively similar natural
environmental conditions (e.g., geology, geomorphology), but with awide range of
nutrient concentrations. The sites were restricted to the Inner Coastal Plain physiographic
province in southern New Jersey and have a limited range of hydrology, morphology and

substrate type. We based our selection of sites on chemistry data available from the NJ



and USGS monitoring networks. All sites were part of the State’s Ambient Surface Water
Monitoring Network (AMNET) (NJDEP 2000). We selected sites with arange of known
biological impairments ranging from unimpaired to severely-impaired, based on AMNET
macroinvertebrate data collected between 1992 and 1999. We generally used the same
selection criteria asin the previous years (Ponader and Charles 2001). An additional
criteria used during year four was to avoid sites that were located within the tidal zone of
the Delaware basin, for the following reasons. the taxonomic composition of the algae
flora could potentially be influenced by a) high salinity, as well as b) by up-/downstream
transport of algal specimens associated with tidal water level changes. For all sites,
chemistry data were available through the NJ monitoring network program (SW sites, SS
stations, or EWQ stations) or through the USGS. In addition Inner Coastal Plain sites, we
resampled 4 stations that were sampled in 2000, 2001 and 2002 in the Piedmont province.
This gave us a four-year record we could use to compare variability at individual sites
among years.

3.1.2. Field reconnaissance

For severa reasons, we rejected many potential candidate sites during field
reconnaissance. To compensate, we added EWQ stations to increase the numbers of sites
sampled. The main reasons for rejecting sites in the Inner Coastal Plain were the
following. First, many sites were located in urban/recreational areas, where we expected
disturbance or vandalism, a frequent problem with the use of diatometers. Another factor
was that dams upstream from the sampling station often impacted the flow regime of the
river at the site. Finally, some sites were rather deep (channel-like) or not accessible for
fieldwork. Especially during the first week of September (1-5 September, 2004), the
deployment of diatometers became more difficult or impossible at many rivers, because
of high water levels due to local rainstorm events.

In the end, twenty-eight sites were sampled. Twenty-four of these were diatometer
siteslocated in the Inner Coastal Plain. Four sites in the Piedmont were sampled for the

fourth consecutive year; natural rock substrates were sampled.



3.2.  Sampling period

Algae samples were collected by D. Winter, E. Hagan and K. Ponader from
August 20th through October 8th, 2003. Samples were in late summer, when the
influence of nutrient related water quality on algal assemblage composition is greatest.

Water chemistry of samples collected during this time is a'so most directly comparable
with sample data from other studies. Diatometers were deployed from 20 August through
11 September and were exposed for a period of between 14 to 18 days. They were
removed in consecutive order from September 5 through 26. All diatometers except for
the two deployed at site AN694 were collected before Hurricane I sabel, which affected
the sampling area during September 18 and 19, 2003. The four resampling sitesin the
Piedmont were sampled on October 8, 2003. Water |levels were generally higher during
the summer of 2003, as compared to previous years. Nevertheless, despite increased
rainfall and the generally higher water levels, no flood events occurred in the sampling
area during the exposure time of the diatometers.

3.3. Sample/data collection

All algae samples were collected using techniques consistent with those used in
the USGS NAWQA program (Moulton et al. 2002) and documented in PCER protocols
(Charles et al. 2000 and Ponader et al. 2003). Water chemistry was measured twice in the

field: once at the time of diatometer deployment and another time when the diatometers

were removed. Conductivity, pH and temperature were measured using a OKATON
deluxe pH/conductivity meter (model no. WD-35630-60). Samples were taken for
laboratory analysis of soluble reactive phosphorus, total phosphorus, nitrate, ammonia,
total nitrogen, chloride, total akalinity, total hardness and conductivity (Velinsky 2000).
Results of these analyses will supplement those collected by the NJ DEP. They may
better represent corditions near the time that algae samples were collected, and will

provide information of the nature and magnitude of variation in water chemistry.

3.4. Algal sample preparation and analysis
A total of 52 diatom samples were treated in the lab at the ANSP. Diatoms were
permanently mounted on microscope slides. Per dide, 600 valves were identified to




lowest taxonomic level and counted. Because of the high content of clay in therivers
from which the diatom material was collected, the treatment of the material collected
using diatometers and the analysis of the diatom assemblages under the microscope was
considerably more time consuming than in previous years. High concentrations of clay in
the magjority of samples lead to increased debris on the microscope dlides, which made
diatom identification more difficult. Attempts to decrease clay contents in the samples, by
diluting the concentration of the material used also decreased the density of diatom
frustules, sometimes below acceptable limits (Charles et al. 2002). Therefore in many
cases dilution of the samples led to very sparse diatom concentrations, which in turn
increased the analysis time. For these reasons, the diatom sample from only one section
(section 1 or 2, depending on the quality of the dlide) at each site was analyzed. In total
29 diatom samples were analyzed. 48 samples were analyzed for algal biomass using
standard protocols (Velinsky and DeAlteris 2000; Kiry et al. 1999). Fifty-two samples
were measured for conductivity, alkalinity, hardness, chloride (CI), dissolved nitrate +
nitrite (NO3 + NO3, here referred to as NOs-N), total Kjeldahl nitrogen (TKN), dissolved
ammonia (NHs-N), orthophosphate (O-P) and total phosphorus (TP) in the Patrick
Center’s Geochemistry Section using a Technicon AutoAnalyzer following USGS
methods (Fishmann 1993).

3.5. Numerical Analysis

3.5.1. Algal biomass

3.5.1.1. Spearman’srank-order correlation (correlations between nutrients and algal
biomass)

Because many of the data used in the correlation analysis were not measured on a
continuous scale, we chose to run a Spearman’s rank-order correlation using the program
Sigma Stat 2.03. Included were data records associated with each of the 47 diatometer
biomass samples collected in the Inner Coastal Plain during 2003. These data are from 24
diatometer sites with 2 sections each, except for site 169,where only one section could be
sampled because of the depth of the river (e.g. 47 data records in total). The data anayzed



in this analysis were: Chl a, measured water chemistry parameters including nutrient
measurements (TP, O-P, NH3z-N, NOs-N, TKN , TN), physical site characteristics and
percent open canopy cover and substrate type. In total, 25 variables were used in the

anaysis.

3.5.1.2. Forward stepwise regression (analysis of principal factorsinfluencing algal
biomass).

To hdp determine the principal factors influencing algal biomass, we examined
correlations among algal biomass, nutrients, geomorphology and light conditions,
running a Forward Stepwise regression with Sigma Stat 2.03. To reduce skewed
distributions, all physical and chemical variables (except pH) were 10g10 transformed.
All data expressed in percentages (land-use, substrate and %open canopy cover) were
square-root transformed. The substrate categories were analyzed both separately and
combined into different categories. We created two substrate categories, one including all
bigger substrate (gravel only) and another combining all smaller and soft substrate (sand,

st and clay).

3.5.2. Diatom species composition

3.5.2.1. Dataset and data transformations

The complete dataset used in the analyses using diatom species composition
contained 25 samplesincluding a 1 within-site replicate sample. This sample was a gravel
sample taken instead of a diatometer sample. At this site, the diatometer sample from the
same site (section 1) and this gravel (section 2) were both included to identify differences
between the two substrates/sections. Because of the nature of the diatom assemblages
(high diversity and high evenness) most diatom species were included in the analysis,
even at low relative abundances. Species were included in the analysis if their maximum
relative abundance was = 0.3%. All relative abundance data were square-root
transformed. The water chemistry and physical parameters included in exploratory
ordinations (PCA and DCA) were pH, conductivity, total alkalinity, total hardness,
chloride, TP, O-P, TN, NOs-N, NHs-N, chl a, basin size, land-use (% forested, %



agriculture, % urban), % open canopy cover, flow estimate (slow, medium, fast), stream
width, section length and percent substrate type. The following variables were averages
of measurements for the dates diatometers were deployed and removed: pH, conductivity,
total alkalinity, total hardness, chloride, TP, TN, TKN, NO3-N, NH3-N, flow estimate. A
category of small grain size (SDSTCL) grouped the percentages of the three substrate
types: % sand, silt, and clay. Environmenta variables were transformed to reduce skewed
distributions: all water chemistry and physical variables, except pH, were 1og10-
transformed; all data expressed in percentages (land- use, substrate and open canopy
cover) were square root transformed.

3.5.2.2. Ordination analysis

Ordinations were produced using Canoco for Windows (version 4.5,
Microcomputer Power, Ithaca) (ter Braak and Smilauer 2002). Principal components
analysis (PCA) was performed to detect major gradients and principal patterns of
variation within the environmental variables (ter Braak and Prentice 1988). The
environmental variables were centered and standardized. In the same PCA, “ouitliers’ or
“rogues’ were defined as samples with extreme sampl e scores on any of the first 4 axes
of the PCA of the environmental data (Birks et al. 1990). Extreme sample scores were
defined as scores falling above the 95% confidence interval of all sample score means
(Winter and Duthie 2000). Detrended correspondence analysis (DCA) with detrending by
segments and down-weighting of rare taxa was used to examine patterns in the diatom
data, and to determine the maximum amount of variation within the species composition
data (ter Braak 1995). We used the gradient length of the main DCA ordination axes to
determine whether linear or unimodal techniques were to be applied for modeling the
relationship between diatoms and environmental variables (ter Braak and Prentice 1988).
Furthermore, DCA was used to determine outliers, e.g., samples that showed extreme
sample scores on any of thefirst 4 axes of the DCA of the species data (Birks et a. 1990).
Outliers were screened using the same criteria as applied in PCA. All samples determined
asoutliers by PCA and DCA were excluded from all subsequent ordinations and from the
development of calibration models. A series of correspondence analyses (CA) and

canonical correspondence anayses (CCAS) with down-weighting of rare taxawas



performed, in order to determine the variables that independently explained a significant
amount of variation in diatom species composition (ter Braak 1995). First, a CA wasrun
with passive environmental variables to determine the strength of the correlations among
al 24 environmental variables and all 131 species, as well as to identify variables that
were intercorrelated, based on weighted correlations and variance inflation factors
(VIFs). Variables with VIFs >5 indicated strong co- linearity among environmental
variables and were removed from all subsequent analyses. The data from the remaining
13 variables and all sites were included in a CCA analysis with forward selection in order
to identify the minima number of variables that explained the largest amount of variation
in the diatom species data. Unrestricted Monte Carlo permutation tests (999
permutations) were used to assess the statistical significance of each forward selected
variable (p < 0.05). Asalast step, to assess the strength of the relationship between
diatom species composition and the forward selected variables, we ran CCAs constrained
to 1 variable at atime. A high ratio between the first (constrained) eigenvalue and the
second (unconstrained) eigenvalue (e.g., ?1/?, >0.5) indicated strong influence of these
variables on diatom species composition, and justified development of inference models
(Bigler and Hall 2002, Winter and Duthie 2000).

3.5.2.3. Species optima and tolerances and inference models

Weighted averaging (WA) regression and calibration techniques were used to
calculate diatom species optima and tolerances as well as to develop and test diatom
inference models for TP. These were run using the program C?, version 1.3 (Juggins
2003). Severa models were developed, based on WA inverse and classical deshrinking
(Birks et al. 1990) and on weighted-averaging partial least square regressions (WA-PLS)
(ter Braak and Juggins 1993). Model error estimation was performed by bootstrapping
with 1000 cycles and leave-one-out cross validation (jackknifing) (Birks 1995). We
selected the best inference model based on a combination of the following characteristics:
a) the highest prediction accuracy e.g. the lowest root mean square error of prediction
(RMSEP) based on cross-vaidation; b) the highest coefficient of determination (r?)
between observed and inferred values and c) the minimum number of WA-PLS

components (Birks 1995).



3.5.2.4. Diatom I ndex development

We created diatom TP indices based on values inferred for each diatom sample using
the 2-component WA-PLS model. Index values are calculated by multiplying the inferred
nutrient values (logip) obtained for each sample by a constant that converts them to a
scale from 0-100 (TP Index = 33.33 X inferred logip TP). The 0-100 scales correspond to
logip TP from 1 to 1000 pg/ L. Theranges for al 3 parametersinclude al valuesin our
dataset. The indices are meant to provide a continuous measure of biological response to
TP and TN. In addition to being indicators of response of species composition, the
indices also serve as general indicators of trophic state conditions.

We divided the 0-100 scale into trophic state categories ranging from 1 (low) to 4
(very high) with respect to the range of values in the calibration dataset. The category
boundaries are those suggested by Wetzel (2001) for trophic classification of temperate
streams, based on the biomass- nutrient relationships established in Dodds et al. (1998).
The 4 TP categories established were 1) less than 0.025, 2) 0.025-0.075, 3) 0.075-0.1, and
4) above 0.1 mg / L TP. These correspond to the following logip TP values: 1) less than
1.4,2)1.4-1.9, 3) 1.9-2.0, and 4) above 2.0, and to the index scores of 1) 0-47, 2) 47-63,
3) 63-67, and 4) above 67. The lower boundary (0.1 mg/ L TP) is aso the nutrient
criteria used by New Jersey. The technique used for developing indicators is the same as

presented in Ponader et a. in review.

3.5.2.5. Diatom Diversity metrics

Diatom diversity indices and other simple metrics were calculated using the full
dataset (n=25) diatom samples from both years, following Barbour et a. (1999). We used
the program Phyco-AIDE version 2 (PCER 2003) to calculate the number of diatom taxa
in the sample (# Taxa), the ShannonWeiner diversity index (S-W Index), the percent of
total diatom valves made up of taxa that occurred in >10% abundance (Percent
Dominants), the percent of total diatom valves made up of taxathat occurred in >10%
abundance (Percent Dominants), the percent abundance of the taxon Achnanthidium
minutissimum (%Ach_min), the Centrales /Pennales ratio (C/P), and finally, the Siltation
Index (% Siltation Index), which is the sum of the percent abundances of Amphiprora,



Anemautus, Biremis, Craticula, Cylindrotheca, Decussata, Entomonei's, Fallacia,
Fistulifera, Geisderia, Gyrosigma, Hantzschia, Haslea, Hippodonta, Lyrella, Navicula,
Nitzschia, Parlibellus, Placoneis, Plagiotropis, Pleurosigma, Proshkinia,
Psammodictyon, Sellaphora, Senopterobia, Surirella, and Tryblionella. These are genera
of predominantly motile taxa that are able to maintain their positions on the substrate
surface in depositional environments (Bahls 1993). We evaluated the use of these indices
in conjunction with different chemical and physical site characteristics and types of

landuse, running a Spearman’ s rank-order correlation using Sigma Stat 2.03.

4. Results

4.1  Environmental gradients
PCA detected two major gradients in the environmental data (Fig. 2). The first

PCA axis (eigenvalue ?1= 0.53) reflected a physical gradient strongly influenced by
sediment type (% gravel and % sand, silt and clay substrates) and basin size. The second
axis (eigenvalue ?,= 0.24) revealed a land-use and chemical gradient driven mainly by %
urban and agricultural land-use, pH and all inorganic nutrients measured. The first two
PCA axes explained 77.7% of the cumulative percentage of variance in the environmental
variables. In constrast to sites in the Northern Piedmont ecoregions, which were sampled
in previous years of this study (Ponader and Charles 2004), high levels of inorganic
nutrients in the Inner Coastal Plain seem to be correlated mainly with % agricultural land-
use, whereas high loadings of conductivity and chloride are correlated more strongly with
%urban land-use (Fig. 2). The nutrient gradient included in the dataset was large (TP:
0.02-0.56 mg/L and TN 0.46-4.82 mg/L). The pH gradient ranged from 5.9 to 7.2. Also,
the PCA showed a great heterogeneity in combinations of environmental characteristics

among the sites, expressed in the scattered distribution in the biplot (Fig.2).

10



4.2 Algal Biomass

4.2.1. Relationships between algal biomass measures and nutrient conditions

(Spearman’srank-order correlation)

Relationships among all environmental variables and Chl a contents obtained
from diatometers for the full dataset (n=47) was explored using a Spearman’ s rank order
correlation matrix, two tailed test. The results are presented in Table 3. The following
correlations were found to be significant at the 0.05 level. Chl a was significantly
correlated with % open canopy cover (r=0.30), with conductivity (r=0.29), and with total
hardness (r=0.32). Although these variables were significantly correlated with Chl a, the
strength of the correlations were weak. No other variable, and especially no nutrient

variable, showed significant correlation with measured levels of Chl a.

4.2.2. Analysisof principal factorsinfluencing algal biomass (forward stepwise

I egression)

We analyzed measures of algal biomass (Chl a) and its relationship with nutrients
(TP, O-P, NH3-N, NO3-N, TKN, TN) and other chemical and physical characteristics
using forward stepwise regression (Appendix 1). Because many variables were strongly
correlated, only conductivity, pH, Basin size, % SDSTCL, %open canopy cover, flow,
TP, TN and NH3-N were included in the analysis. The results show that the dependent
variable Chl a can be predicted from a linear combination of the independent variables
conductivity, NH3-N, % open canopy cover and TN. The correlations are significant at
the 0.001 level for conductivity and NH3-N and at the 0.05 level for %0pen canopy cover
and TN.

4.3. Diatom species composition and species distribution

A total of 294 diatom species were identified. Sample assemblages showed high
species diversity (mean S-W index of 3.2, mean # species per sample (species richness)=
62) and high evenness, due to generally low abundances (mean % abundance of most
dominant species= 20 %). The 10 most abundant species, determined by high abundances
and high numbers of occurrences (Hills N2), are commonly found in eutrophic waters
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and had moderate TP and TN WA-optima (Table 4). These taxa were Gomphonema
parvulum (Kitzing) Kitzing, Sellaphora pupula (Kitzing) Meresckowsky, Eunotia
bilunaris (Ehrenberg) Mills, Nitzschia palea (Ktzing) W. Smith, Navicula germainii
Wallace, Navicula minima (Grunow), Achnanthidium minutissimum (K tzing) Czarnecki,
Nitzschia palea var. debilis (Kitzing) Grunow, Navicula tenelloides Hustedt and
Navicula rhynchocephala Kiitzing. After applying our selection criteria (= 0.3%
abundance in = 1 sample), 253 taxa were included in the analyses. In the DCA of diatom
data, the eigenvalues of the first two axes were ?;=0.24 and ?,= 0.18, accounting for
18.8% of the variance in the species data (Fig. 3). As the gradient length of the first two
DCA axes of 2.9 and 2.3 standard deviation (SD) units were above 2 SD, we chose to use
techniques based on assumptions of unimodal species distribution (ter Braak 1995, ter
Braak and Prentice 1988) for further model development.

44. Development of nutrient inference models based on diatom species

composition

4.4.1. Datascreening

Three samples were identified as outliers, based on PCA and DCA, and were
removed from CA, CCA analysis and inference model development. Outliers detected by
PCA are samples with extreme values of environmental variables, whereas samples
detected by DCA are samples with unusual species composition.

Two samples were determined to be outliers because of their high sample score
means on the PCA axes. samples 9 and 10 (site 151 and 166) (Fig. 2). Site 166 had the
highest % gravel substrate (45%) and the lowest % agricultural landuse (5.57%). Site 151
(North Branch Rancocas) had the biggest basin size, high % sand silt and clay (100%)
and the lowest measured amount of hardness (21.9 mg/l), conductivity (70.4 mg/l) and
NO3-N (0.159 mg/l) in the dataset. 5 samples were identified as outliers because of their
high sample score means on the DCA axes. sample 6, 9, 14, 19 and 23 (sites 133, 151,
440, 488, 673 (section 2)). Sites 133 and 440 had nutrient concentrations in the lower
range and site 488 had high- nutrient concentrations. Because it was important that sitesin
the calibration dataset have a wide nutrient gradient, we decided to exclude only the
sample from site 673 (section 2) out of the 5 samples detected as outliers by DCA.



Despite the fact that this site represented the high end of the phosphorus gradient, we
decided to exclude this sample, because it was a gravel sample and had a duplicate from
section 1. Thisresult is interesting in that the diatom species composition is significantly
different in this sample taken from natural substrate (gravel) versus the sample taken
from a diatometer at the same site. The fact that one sample is taken in section 1 and the
other in section 2, might lead to the assumption that other factors than substrate might
explain the difference in the diatom species assemblages. Figure 3 shows that the only
difference responsible for the distance between the two sample pointsis % gravel. Due to
its low pH and conductivity conditions, site 151 (Sample no. 9) had a diatom flora,
distinctively different fromthe others, dominated by Eunotia ssp. and Fragilaria spp. and
was excluded. In the end, samples 9 (site 151) and 10 (site 166) and sample 23 (site
673_2) were deleted from the dataset to be included in further anaysis (Fig 3).

Removing the three outlier samples reduced the dataset from 25 samples to 22.

4.4.2. Relationships between diatom assemblages and environmental variables
We used CA to determine the environmental variables explaining most of the
variation in diatom species composition, and especially the importance of nutrients as
compared with other environmental characteristics. Prior to running ordinations we used
a Pearson correlation matrix including all 24 variables measured and all 22 sites to detect
variables that were highly correlated (Table 5). Consequently, we excluded the twelve
variables average river width, % gravel, % forested land-use, %urban land use, color,
conductivity, hardness, akalinity, O-P, NO3-N, TKN and NH3-N. Because TN, TKN
and NOs-N, aswell as TP and O-P, were highly correlated, only 1 of the 2-3 variables,
respectively, could be selected. Because TP and TN are more important with respect to
management purposes, we chose to eliminate the variables O-P and NOs-N and TKN. In
a CA including all remaining 12 environmental variables as passive variables and diatom
data for 22 sites, 21.0% of the total variance of the diatom data was explained by CA axis
1(?1 =0.26) and CA axis 2 (?, = 0.19). The species-environment correlations were high
for both axis 1 (r = 0.60) and axis 2 (r = 0.92), accounting for 20.1% of the variance in
the species-environment relationships. This indicates a strong correlation between the 12

environmental variables and the 253 species included in the CA. Low weighted
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correlations and low variance inflation factors (VIFs <5.5) indicated no strong co-
linearity among environmental variables. CCA with forward selection including only
these 12 variables in total, identified 3 environmental variables that significantly (p <
0.05) explained variance in diatom species composition. These were TP, pH and basin
size (Fig. 4). The 3 variables together explained 30.7% of the total variance in the diatom
data. Species-environment correlations of CCA axes were high for axis 1 (r = 0.95) and
for axis 2 (r = 0.92) and accounted for 73.1% of the variance in the species-environment
relationships. The correlations between pH and the first ordination axis were strong (r = -
0.86) less strong for TP (r =-0.36), and the least strong for basin size (r =-0.15). TP was
correlated strongest with the second axis (r = 0.54), followed by basin size (r =-0.43) and
pH (r =-0.41).

CCAs constrained to 1 variable at atime were run on the remaining 3 variables to
assess the strength of their relationship with diatom species composition, and to
determine which variables had a strong enough relationship with diatom assemblages to
justify development of inference models. Of the 3 variables, pH had the highest ?1/?,
ratio (0.61), capturing 7.3% of the variation in the species data (Table 6). TP had a ?1/?,
ratio of 0.51, capturing 6.0% of the variation in species data. The strength of the
correlation between pH and the first CCA axis indicates that pH is the strongest factor
influencing diatom species composition in the Inner Coastal Plain dataset. To verify the
independent relationship between the variables pH and TP, a CCA was run constrained to
TP with pH as covariables. When pH was entered as a covariable the ratio ?1/?, changed
only dightly from 0.510 to 0.508 (Table 6). This confirmed that TP had a significant and
independent influence on the diatom assemblages and that development of inference
models for this variable was justified, despite the strong pH gradient. The variable TN did
not have a significant influence to justify the development of an inference model. We did
two test runsto see if TKN or NO3-N would have significant influence on diatom species
composition, by including them instead of TN as variables in the CCA with forward
selection. The CCA with forward selection showed that neither TN, TKN or NO3-N had
a significant influence, therefore development of an inference model for any measured
form of nitrogen was not possible. Nonetheless, even if TP significantly and

independently influenced diatom species composition, the strong pH (e.g. reflecting
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alkalinity and hardness) gradient should be kept in mind when analyzing this dataset for
nutrient response.

4.4.3. Species WA-optima and tolerances

TP and TN WA species optima were calculated using the reduced dataset (n=22).
Species apparent WA TP optima for all species ranged from 24 to 560 pg L, Weighted-
average TN optima ranged from 457 to 14671ug L. Because the calculated optima are
reliable only for abundant species, optima are presented for the species with effective
numbers of occurrences (Hill’s N2) > 10 (Table 4). The TP and TN species optima
obtained were higher in the Inner Coastal Plain, but generally comparable to those
caculated for northern New Jersey (Ponader and Charles 2004, Ponader et ., in review).
Species with high TP optima were Luticola mutica (Kutz.) Mann, Surirella angusta
Kitzing, Sellaphora seminulum (Grun.) Mann, Tryblionella debilis Arnott, Hippodonta
capitata (Ehrenberg) Lange-Bertalot, Metzeltin et Witkowski, Placoneis clementis
(Grun) Cox, Caloneis bacillum (Grunow) Cleve, Nitzschia capitellata Hustedt,
Fragilaria vaucheriae (Kutzing) Petersen, Sellaphora pupula (Kutzing) Meresckowsky
and Planothidium lanceolatum (Brébisson ex Kitzing) L.-B. Species with low TP optima
were Eunotia exigua (Brébisson ex Kitzing) Rabenhorst, Neidium al pinum Hustedt,
Encyonema minutum (Hilse) Mann, Achnanthidium minutissimum (K ttzing) Czarnecki,.
Navicula rostellata Kitzing, Frustulia vulgaris (Thwaites) DeT., Gomphonema gracile
Ehr. emend. V. H., Navicula rhynchocephala K itzing, Navicula longicephala Hustedt,
Navicula tenelloides Hustedt.

4.4.4. Weighted averaging - nutrient inference models

Models to infer TP (logio Hg/L) were developed and tested using WA and WA-
PLS. The models were run on the full (n=25) and the reduced (n=22) calibration dataset,
including 253 taxa. Table 7 shows performance measures for all inference models
developed. The best TP model was a two-component WA-PLS model using the full
dataset (n=25), showing the highest r?j.c« (0.34) and the lowest RM SEak (0.31). For all
modeling techniques, the full dataset always gave better results as compared to when
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outliers were removed. In the reduced and the full model dataset, the TP gradient was
23.5-559.5 pg/L.

When comparing all TP models developed using different techniques, the
difference between apparent and bootstrapped or jackknifed r? was generally high (Table
7, Fig. 5) indicating that the models showed weak performance when tested. We
investigated, if model performance could be improved using different data
transformations or by creating data subsets. For that reason, we created and tested
additional WA-PLS models using the full (n=25) dataset on which we performed the
following changes: a) we removed both samples from site 673 (highest TP site), in order
to eliminate the large data gap at the higher end of the TP gradient; b) we used the
untransformed diatom data set (% relative abundance), as well as c) the full diatom
dataset containing all 294 species to verify whether the previously applied data
transformation (square root) and elimination of rare species (< 0.3 %) might have
decreased the species response; d) because of the strong pH gradient, we split the dataset
into two subsets based on pH; the first contained all siteswith pH > 6.1, and €) the second
included all sites with pH values <6.8. The results showed, that none of the performed
dataset transformations did significantly improve the model performance (Table 7),
suggesting that other factors must be considered when investigating the causes for the
decrease in apparent versus bootstrapped or jackknifed r?.

The graph of the observed versus inferred values (Fig. 5), as well as the residuals
plot (Fig. 6) for the best TP model, using WA-PLS (n=25) shows that the model
overestimates values <80 pg/L (1.9 1og10 TP) and underestimates TP values >150 ug/L
(2.18 10g10 TP) when tested using leave-one-out cross validation. This trend commonly
occurs with models devel oped on samples with an uneven distribution along the TP
gradient (Soininen and Niemela 2002, Reavie et a. 1995), and also occurred during the
analysis of the NJ Piedmont, Highlands and Ridge and Valley (study year 1-3) dataset
(Ponader and Charles 2004, Ponader et al. 2004). It is often referred to as “ edge-effect”
(Hall and Smol 1999), and causes the WA estimates of species optima to be biased.
However, compared to the models developed in northern New Jersey, this effect is much
stronger in the Inner Coastal Plain dataset. Examination of the residuals plot (Fig. 5) and
the observed versus inferred TP graph (Fig. 6) show the following patterns in the
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distribution of TP aong the phosphorus gradient. First, despite the rather wide range of
TP included in the model, sites with low and high TP are underrepresented. Second, the
dataset shows two important gaps, one between the levels of 1.9-2.1 1og10 TP (80-
125ug/L TP) and a larger gap between 2.3-2.75 1og10 TP (200-560ug/L TP). In
summary, the Inner Coastal Plain TP model is built mainly on sites with moderate
phosphorus concentrations, and generally shows an uneven distribution of sites along the
TP gradient. This explains the decrease of the model performance at both ends of the TP
gradient, when tested using cross-validation techniques. More detailed explanations for
differences between the performances of the TP models obtained for the Inner Coastal
Plain dataset versus the northern New Jersey dataset are provided in the discussion
(chapter 5).

4.45. Diatom TP index

Because they are rescaled values of inferred nutrient concentrations, the TP diatom
index corresponds directly with those concentrations (Fig. 5). All measures of the
performance of inference models are also relevant to the relationships between the
indices and measured nutrient concentrations.

To provide a measure of the error, we evaluated how accurately index values,
calculated using bootstrapped inferred nutrient concentrations, could be assigned to the
nutrient categories. The Diatom TP Index correctly assigned 44% of the samples, but
placed 66% of the samples into neighboring categories. The TP categories 2 and 4 had
the highest proportion of samples correctly assigned, whereas categories 1 and 3 had the
highest proportion of samples assigned to a neighboring category. The index showed |east
accuracy placing samplesin the TP categories 1 (< 0.025mg/ L) and 3 (0.075-0.1 mg /

L), which are the categories with the lowest number of samples.

45 Diversity metrics

Six different diatom diversity metrics were calculated using the full dataset
(n=25). A Spearman’ s rank-order correlation was run to evaluate how strongly these
metrics were correlated with different environmental variables. The main goa of this

analysis was to identify metrics that can be used to assess nutrient impairment in NJ Inner
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Coastal Plain rivers. The results are summarized in Table 8. Considering the indirect
relationship between the metrics and the variables they were correlated with, we consider
that any correlations with anr greater than 0.5 are strong, that correlations between r =
0.2 and 0.5 are moderate and that any correlations below an r of 0.2 are weak. The
following indices showed significant (at 0.01 level) and strong correlations. Percent
Dominant Diatom Taxa was strongly negatively correlated with pH and conductivity.
Similarly the Siltation Index was strongly correlated with pH, conductivity and hardness
aswell as TP. # of Diatom Taxa showed strong correlation with chl a. Correlations at the
(0.05 level) were generally moderate to strong, but showed that out of all diversity
indices, only % Achnanthidum minutissimun and the Shannon-Wiener Index were
moderately correlated with direct or indirect measures of nutrients such as TN and %
Urban and Chl a. Except for the Siltation Index, no other significant and strong
relationship was found with measures of nutrients. Strong correlation of several indices
with pH, akalinity, and hardness suggested that in the Inner Coastal Plain these diversity

metrics are better indicators of pH conditions than of nutrient conditions.

5. Discussion and Conclusion

51 Evaluation of Inner Coastal Plain models/metrics

5.1.1 Biomass metrics, principal factorsinfluencing algal biomass

Algal biomass was measured by analyzing the contents of Chl a contained in the
composite biomass samples collected from diatometer dides. Spearman’s rank-order
correlation between nutrient variables and the biomass data (Chl a contents) were
obtained for the full dataset (n=47). Significant correlations were found between Chl a
and % open canopy cover, conductivity, and total hardness but not between biomass and
nutrients. However, variations in contents of Chl a can be explained through a
combination of conductivity, NH3-N, %open caropy cover and TN, as shown through
forward stepwise regression. % Open canopy cover is the factor that was significantly
correlated with biomass in both datasets, the Inner Coastal Plain and the Piedmont
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datasets (Ponader and Charles 2004). In the Piedmont, variations of biomass were
explained through a combination of light, nutrient concentrations and larger sized
substrate. Because biomass in the Inner Coastal Plain was measured from algae on
artificial substrata (diatometers), and most rivers had predominantly fine-grained
substrate (sand silt and clay), substrate could not have had an influence on among-sample
difference in biomass. The results from the Inner Coastal Plain data show that assessing
nutrient conditions through measuring Chl a from diatometer slides was difficult, due to
overriding factors like light conditions (%open canopy cover) and conductivity. Also,
high contents of clay particles in the water causing increased turbidity (Hill 1996), might
have influenced algal biomass production and may limit the use of this method in the
Inner Coastal Plain. In addition, the time of deployment of the diatometers could have
had an influence on biomass concentrations. The diatometers were collected after 14-18
days, to reduce the risk of scouring of diatom mats from the dides. On the other hand,
because of relatively low %percent open canopy cover at the sites sampled (mean percent
canopy cover at al Inner Coastal Plain sites = 13 %), development of algal biomass
might have been reduced due to high shading. We will investigate this question further
during the year 5 study year in the Outer Coastal Plain: during fieldwork in 2004, the
diatometers were collected after an increased deployment time of 21-24 days. In addition,
biomass samples were taken from diatometer dlides as well as from natural substrate
(sand, silt, clay) using a new field method (Ponader and Winter 2004). More detailed
recommendations for the collection of biomass measures (Chl a) in the NJ Coastal Plain
and the use of natural substrate versus diatometers, exposure times etc. will be given at
the end of study year 5. Current results from the Inner Coastal Plain suggest that biomass

measures obtained from diatometer slides do not reflect nutrient conditions well.

5.1.2 Inference model performance: Comparison of results between the Inner
Coastal Plain data set and Piedmont, Highlands and Valley & Ridge data set.
The diatom-based TP inference models developed for the full dataset performed
moderately and could not be improved by removing outliers, or when different
transformations were applied to the dataset (Table 7). Compared to those devel oped for
streams in northern and central NJ (Ponader and Charles 2004, Ponader et a. in review)
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the TP models presented here (n=25 and n=22) show lower apparent and bootstrapped or
jackknifed r? and higher apparent and bootstrapped or jackknifed RMSE (Table 7).
Differencesin model performances between the Inner Coastal Plain study and the
previous studies may be explained by several factors.

First, due to lower sample size (n= 25) the dataset shows significant data gaps,
despite the fact that a wide range of concentrations along the nutrient gradients was
captured. The Inner Coastal Plain dataset included a TP range of 24-560 pg L™ (n= 25)
and the range in TN was 457-14671 pg L™ (n= 25). Two gaps exist in the TP range, one
from 80-125ug/L TP and alarger gap from 200-560ug/L TP. TN generally shows even
distribution at the lower end of the gradient, but the data is sparse at the higher end
leading to avery large gap from 4829-14971ug/L TN. Uneven distribution of samples
along the nutrient gradient generally leads to lower model performance (Reavie et al.
1995, Soininen and Niemela 2002). In comparison, the northern and central NJ dataset
showed more even distribution of samples along the gradient (TP : 6-732 pg L™ TN:
170-8547 pg L™ (n=101), leading to increased model performance.

Second, in contrast to the central and northern NJ dataset, the Inner Coastal Plain
dataset showed that pH and the correlated variables alkalinity and hardness and
conductivity were the most important variables influencing diatom species composition.
Development of nutrient models is known to be difficult for datasets where pH isa
variable strongly influencing diatom species composition (Reavie and Smol, 2001). Asin
previous years, sitesin this study were selected based on knowledge of their chemistry to
avoid wide ranges of pH, alkalinity and conductivity. The pH gradient included in the
Inner Coastal Plain study was relatively short 5.9-7.2, but on average the rivers were
more acidic (pH 6.5), less alkaline (27 mg/L) and had lower values of conductivity (198
pS cm/L) than in the central and northern NJ dataset (mean: pH 7.6; alkalinity 70 mg/L,
conductivity: 327 mg/L). The northern and central NJ Dataset showed a pH range of 6.5-
9 (n=101) and 6.9-9 (n=91), and excluded acidic sites. Therefore, although the diatom
florain the Inner Coastal Plain istypical of eutrophic waters, it also is influenced by the
generally lower pH of the rivers. In contrast, because in central and northern NJ the rivers
have a generally circumneutral pH, but a strong gradient in nutrient loadings, the diatom

Species composition was influenced to a higher degree by nutrients.
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Third, it is possible that the amount of clay in the water column of most of the
Inner Coastal Plain rivers sampled might play arole in the availability of nutrients.
Because of their cation exchange capacity, clay particles can bind and precipitate
nutrients (Wetzel 2001), which in turn can makes nutrients less available for uptake by
algal communities. Another negative impact of high amounts of clay in the water column
could be less availability of light, one of the most important factors influencing algal
growth (Hill 1996). More detailed analysis of this relationship would be needed, but
surpasses the scope of this study, as not enough data are available to verify the impact of
suspended clay particlesin the water.

Finally, there are no published records of inference models, which were
developed using diatom data from diatometer slides. It is possible that the diatom species
composition was influenced by the use of artificial substrate. For example, insufficient
exposure time, would mean that the algal assemblage would be biased towards early
‘immigrator’ species and therefore may have had an impact on the success of nutrient
model development. To verify this, and we took diatom samples from both, artificial and
additional natural substrate and increased the exposure time of the diatometers, during the
5th project year (Outer Coastal Plain). We will investigate and summarize potential
differences in the model performances between nutrient models devel oped using
diatometers and natural silt/sand substrate in the year 5 final report.

Many other factors might be responsible for low model performances of the Inner
Coastal Plain models compared to those developed in previous study years. These include
the influence of temporal variability in nutrient concentrations in streams (Cattaneo and
Prairie 1994, Pan et a. 1997). So far, only afew TP and TN diatom inference models
have been developed for riversin the eastern US, and future studies are necessary to help
understand the influence of these factors on diatom species composition in relationship
with nutrients.

The Inner Coastal Plain TP inference model has moderate predictive power and
showed relatively high uncertainty (e.g. inferred nutrient concentrations) when tested
using bootstrapping, and especially when compared to nutrient models developed from
central and northern NJ (Ponader and Charles 2004, Ponader et al. 2004). Consequently,
the diatom TP index aso showed lower performance, and assigned the magority of the
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samples to the neighboring categories. Despite the wide rangesin TP and TN captured in
our models, model performance would need to be improved by adding samples to the
dataset. It would be especially important to fill the existing data gaps in the nutrient
gradient. We will merge the Inner Coastal Plain dataset with the Outer Coastal Plain
dataset to increase the size of the dataset and to fill the existing data gaps. The
development of nutrient inference models should give more reliable results, when using a

bigger dataset with more even distribution of the samples along the nutrient gradient.

5.1.3 Diatom Diversity metrics

The usefulness of the six diversity metrics was evaluated by comparing their
correlations with nutrient impairment measures. Out of all diversity indices only %
Achnanthidum minutissimum and the Shannon Wiener Index were moderately correlated
with direct or indirect measures of nutrients such as TN and % Urban and Chl a. Strong
correlation of several indices with pH, akalinity and hardness, suggested that in the Inner
Coastal Plain these diversity metrics are better indicators of pH conditions than of
nutrient conditions. Therefore, it is possible to use these diatom indicators to monitor
river impairment, but the results must be interpreted with caution, especially with respect
to pH conditions. Nevertheless, the formulas for the indices are smple and calculation is
easy. We therefore recommend using simple metrics as complementary to inference

models and biomass metrics.

5.2 Recommendations for use of algal indicatorsin the Inner Coastal Plain

Our results show that @) biomass, b) inference model development and c) diversity
metrics, showed limited applicability as measures of nutrient conditions in the Inner
Coastal Plain. The chemical characteristics of the Inner Coastal Plain rivers, such as high
nutrient loadings combined with generally lower pH and conductivity make it difficult
model the effect of nutrients on algae communities. In addition, uneven distribution of the
samples along the nutrient gradient makes development of reliable diatom inference TP
models difficult. Finally, we are currently investigating if artificial substrate (diatometers)

may have influenced algal biomass and species composition.



We expect significant improvement of the TP model performance, when using a
larger dataset (Inner and Outer Coastal Plain datasets combined) during data analysis of
the current study year 5. Also, increased diatometer exposure time as well as additional
biomass and diatom samples taken from natural substrate during year 5 (Outer Coastal
Pain) should help understanding the main factors that influence diatom species
composition in the Coastal Plain. We will continue to further improve and adapt
indicators of nutrient conditions to the specific nature of the rivers of the Coastal Plain

physiographic province during year 5.
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Table 1. List of sites sampled in 2003 - Inner Coastal Plain

Date |NJ SitelD Water body L ocation Impairmentl | Impairment2
sampled
Inner Coastal Plain diatometer sites
9/16/03 ANO0109 |Assunpink Ck Rt 535 Old Trenton Rd Non-Impaired  |Moderate
9/5/03 ANO0121 |Crosswicks Ck Rt 537 Moderate Moderate
9/16/03 ANO0124 [Lahaway Ck New Egypt-Allentown Rd [Moderate Moderate
(Holms Mill Rd.)
9/9/03 ANO0129 |Doctors Ck Breza Rd Moderate Moderate
9/5/03 ANO0132 |Blacks Ck Chesterfield-Georgetown  [Moderate Moderate
Rd
9/9/03 ANO0133 |BaconsRun White Pine Rd Nr Kuser Moderate Moderate
Pond
9/16/03 ANO0136 |Crafts Ck Island Rd Moderate Severe
9/5/03 ANO0139 |Annaricken Bk Island Rd Moderate Moderate
9/5/03 ANO0151 |North Br Rancocas Ck [Birmingham Rd. Moderate Severe
9/4/03 ANO0166 [Barton Run Tuckerton Rd & Christopher|Severe Moderate
Mill Rd
9/5/03 ANO0169 [Southwest Br Rt 70 Moderate Moderate
Rancocas Ck
9/16/03  |AN0384 (Bear Bk Cranbury Rd. (Rt. 615) Moderate Non-impaired
9/10/03 ANO0439 |Manalapan Brook Federa Rd Moderate Moderate
9/10/03 ANO0440 |Manalapan Brook Old Forge Rd M oderate Moderate
9/15/03 ANO0448 |Matchaponix Brook |Rt 527 Moderate Moderate
9/10/03 ANO0451 |Matchaponix Brook [TexasRd Severe Moderate
9/15/03 ANO0466 |Hop Brook Willow Brook Rd Moderate Moderate
9/10/03 ANO0470 |Big Brook CrossRd Moderate Moderate
9/9/03 ANO488 |UNT to Manasquan |[Strickland Rd Moderate Moderate
River (Killtime BK)
9/9/03 ANO0489 |Manasguan River Rt. 9 Moderate Moderate
9/15/03 AN0490 |Manasguan River West Farms Rd Moderate Moderate
9/4/03 ANO0673 |Edwards Run Pitman-Jefferson Rd Severe -
9/11/03 ANO0683 |Raccoon Ck Tomlin Station Rd (USGS |Moderate -
gage)
9/29/03 AN0694 |Major Run Pointers-Sharptown Rd Severe -
Piedmont resampling sites (rock substrate)
10/8/03 ANO0115 [Miry Run Rt 533 (Quakerbridge Rd) |Moderate Moderate
10/8/03 ANO0234  |Whippany River Ridgedale Ave W of [-287 |Severe Non-impaired
10/8/03 ANO0374 [N Br Raritan River Rt. 202 Non-Impaired  [Non-impaired
10/8/03 ANO0405 |Pike Run Rt 533 Moderate Severe
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Table 2. Values of selected environmental variables for each sample collected during 2003. AvgW: average stream width, Open: %

open canopy cover, GR: % gravel, SDSTCL: % sand silt and clay, URB: %urban land-use, AG: %agriculture land- use, FOR: %forest
land-use, BASIN: basin size, Cond: Conductivity, Water color, Flow (estimate: 1=slow, 2=moderate, 3=fast), Alk: total alkalinity, CI:
chloride, Hardn: Total hardness, NO3-N: dissolved nitrate, NH3-N: dissolved ammonia, TKN: total Kjeldahl nitrogen, TN: Tota

Nitrogen, O-P: orthophosphate, TP: total phosphorus, Chl a: Chlorophyll a.
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AN109 1 8.0 11 30 70 14 12 50 69 6.39 145 5.0 175 252 219 4483 038 005 051 090 175 585 0.32
AN109 (1 (2 80 10 20 80 14 12 50 69 639 145 50 2 252 219 4483 038 005 051 090 175 585 0.33
AN121 (2 (1 80 30 0O 100 17 24 28 107 651 138 315 25 297 167 5500 038 011 079 117 195 130 290
AN121 2 80 23 0O 100 17 24 28 107 651 138 315 25 297 167 5500 038 011 079 117 195 130 287
AN124 1 100 9 0O 100 12 39 28 55 646 111 225 25 142 164 3130 028 005 059 087 195 236 022
AN124 (3 (2 100 21 0O 100 12 39 28 55 646 111 225 25 142 164 3130 028 005 059 087 195 236 0.83
AN129 (4 (1 70 16 30 70 19 11 57 62 682 175 75 1 334 263 5733 057 052 088 145 110 428 185
AN129 2 7.0 8 20 80 19 11 57 62 682 175 7.5 125 334 263 57.33 057 052 088 145 110 428 143
AN132 | 5 1 200 10 40 60 9 18 61 23 6.70 154 225 2 398 169 5850 076 011 070 146 305 161 138
AN132 2 200 19 15 85 9 18 61 23 6.70 154 225 2 398 169 5850 076 011 070 146 305 161 0.87
AN133 1 2.5 7 60 40 12 7 61 11 6.14 224 75 2 3.4 383 608 04 013 033 077 1.0 235 0.60
AN133 | 6 2 2.5 2 10 90 12 7 61 11 6.14 224 75 175 34 383 608 04 013 033 077 1.0 235 158
AN136 | 7 1 35 13 0 100 11 7 58 12 6.01 127 200 225 122 130 3680 084 007 08 169 275 195 025
AN136 2 35 18 0O 100 11 7 58 12 601 127 200 25 122 130 3680 084 007 08 169 275 195 0.32
AN139 (8 (1 30 21 10 90 10 8 69 8 590 170 150 2 6.8 210 5810 098 010 056 153 190 154 232
AN139 2 30 4 20 80 10 8 69 8 590 170 150 2 6.8 210 5810 098 010 056 153 190 154 158
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AN151 2 175 11 0O 100 13 52 10 375 607 70 275 25 74 132 2190 016 035 087 103 135 810 123
AN166 (10 (1 35 8 45 55 39 20 6 31 641 129 175 2 242 194 4100 020 011 067 088 180 755 058
AN166 2 35 6 0 100 39 20 6 31 641 129 175 15 242 194 41.00 020 011 067 08 180 755 021
AN169 (11 |1 120 4 0 100 40 27 7 127 648 119 200 15 174 215 2750 022 008 05 078 190 635 071




AN384
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147
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52.0

054
0.71
277
264
2.08
1.68
0.91
0.78
0.44
118
0.70
0.85
0.55
0.42
0.86
172
2.57
217
143
5.07
0.95
158
1.58
1.69
5.80
101

19.8
324
24.2
80.3




Table 3. Spearman’ srank-order correlationbetween Chl a and chemical and physical site
characteristics (n=47).

AvgW: average stream width, Open: % open canopy cover, GR: % gravel, SD: % sand,
ST: % silt; CL: %clay, SDSTCL% sand silt and clay, URB: %urban land-use, AG:
Y%agriculture land- use, FOR: %forest land-use, BASIN: basin size, Cond: Conductivity,
Water color, Flow (estimate: 1=slow, 2=moderate, 3=fast), Alk: total alkainity, CI:
chloride, Hardn: Total hardness, NO3-N: dissolved nitrate, NH3-N: dissolved ammonia,
TKN: total Kjeldahl nitrogen, TN: Total Nitrogen, O-P: orthophosphate, TP: total
phosphorus, Chl a: Chlorophyll a.

r = correlation coefficient
p- value: ** correlation significant at the 0.01 level (2-tailed test)
* correlation significant at the 0.05 level (2-tailed test)

Chl a
r p-value
AvgW -0.10 050
%0pen 0.31 0.03*
GR 0.19 021
SDSTCL -0.16  0.30
BASIN -0.02 089
Temp -0.19 021
pH 0.25 0.09
Cond 0.29 0.05*
Color 0.16 0.27
Flow -0.20 018
Alk 0.14 0.35
Cl- 0.20 0.18
Hardn 0.32 0.03*
NO3-N 0.14 0.36
NH3-N 0.17 0.26
TKN 0.02 091
TN 0.09 054
o-P -0.05 074
TP -0.07 064
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Table 4. Species apparent optima and tolerances estimated by WA .Only species with

effective numbers of occurrence (Hill's N2) > 10 are shown. Species are sorted by

increasing TP optima.

Taxon Name N2 TPug/L TN ug/L
Opt Tol Opt Tol
56 Eunotiaexigua (Bréb. Kiitz.) Rabenhorst 10 54.40 210 1235 293
150 | Neidium alpinum Hustedt 10 58.57 178 1441 315
240 | Encyonema minutum (Hilse) Mann 11 65.35 194 1132 213
1 Achnanthidium minutissimum (Ktz.) Czar. 16 68.31 202 1155 252
147 | Navicularostellata Kiitzing 12 68.91 222 1314 235
86 Frustuliavulgaris (Thwaites) DeT. 14 69.30 205 1327 225
93 Gomphonema gracile Ehr. emend. V. H. 13  70.63 231 1052 172
118 | Navicula rhynchocephala K itzing 15 72.87 209 1144 229
130 | Naviculalongicephaa Hustedt 13 74.87 214 1436 249
125 | Naviculatenelloides Hustedt 15 75.26 206 1099 235
209 | Stauroneis smithii Grunow 10 7843 234 1410 225
73 Eunotiabilunaris (Her.) Mills 17 80.88 225 1160 196
228 | Synedraulna(Nitz.) Ehr. 15 81.88 196 1194 223
183 | Nitzschiatubicola Grun. in Cl. et Grun. 12 82.15 207 1674 240
108 | Meridion circulare (Grev.) Ag. 10 82.38 201 1166 203
135 | Naviculagermainii Wallace 17 85.04 244 1244  2.09
177 | Nitzschiapaleavar. debilis (Kitzing) Grun. 15 85.13 234 1312 224
113 | NaviculacryptocephalaKtzing 15 85.69 219 1298 212
A Gomphonema parvulum (Kitz.) Kitz. 20 86.13 242 1185 208
81 Fragilaria capucinavar. gracilis (Oest.) Hustdt. 14 87.42 221 1125 201
116 | Navicula minima Grunow 16 89.03 213 1301 218
160 | Nitzschiapalea (Kiitz.) Smith 17 90.58 230 1219 203
251 | Planothidium frequentissimum ( L.-B.) L.-B. 13 9337 240 1135 182
195 | Pinnularia microstauron (Ehr.) Cl. 15 94.21 225 1437 254
176 | Nitzschiasociabilis Hustedt 13 95.83 204 1472 245
249 | Planothidium lanceolatum (Bréb. Kiitz.) L.-B. 10 96.08 234 1204 174
254 | Sellaphorapupula (Kitz.) Meresckowsky 18 96.13 221 1240 210
78 Fragilaria vaucheriae (K(itz.) Petersen 13 97.19 217 1172 221
155 | Nitzschiacapitellata Hustedt 12 98.59 211 1270 224
25 Caoneis bacillum (Grun.) Cleve 13 99.58 239 1351 187
276 | Placoneis clementis (Grun) Cox 11 100.21 220 1835 303
292 | Hippodonta capitata (Ehr.) L-B., Metz. et Witk. 12 10097 264 1180 168
260 | Tryblionelladebilis Arnott 10 104.12 240 1261 155
255 | Sellaphoraseminulum (Grun.) Mann 14 11239 262 1219 193
217 | SurirellaangustaKiitzing 1 113.30 226 1128 164
246 | Luticolamutica (Kitz.) Mann 10 11544 222 1274 258




Table 5. Pearson correlation between all chemical and physical site characteristics (n=47).

AvgW: average stream width, Open: % open canopy cover, GR: % gravel, SD: % sand, ST: % silt; CL: %clay, SDSTCL% sand silt
and clay, URB: %urban land-use, AG: %agriculture land-use, FOR: %forest land-use, BASIN: basin size, Cond: Conductivity, Water
color, Flow (estimate: 1=slow, 2=moderate, 3=fast), Alk: total alkalinity, CI: chloride, Hardn: Total hardness, NO3-N: dissolved
nitrate, NH3-N: dissolved ammonia, TKN: total Kjeldahl nitrogen, TN: Total Nitrogen, O-P: orthophosphate, TP: total phosphorus,
Chl a Chlorophyll a.

Avg Open %GR SdS  Urb For Ag Basn Tem pH Cond Colo Flow Alk Cl Hard NO3 NH3 TKN TN o-P TP
W Cl % % % p r n -N -N

Open -007 1.00

%GR -013 -022 1.00

SdsCl | 013 022 -100 1.00

Ub% | -014 -013 -019 019 1.00

For% 0.61 -001 -030 030 -016 1.00

Ag% | -027 009 039 -039 -074 -048 100

Basin 061 -011 -039 039 -004 080 -048 1.00

Temp 026 008 024 -024 -017 013 -001 0.08 1.00

pH -015 024 027 -02r 024 -016 001 -028 -021 1.00

Cond | -037 012 -006 006 046 -048 -002 -034 -050 058 1.00

Color 039 032 001 -001 -05 058 0.05 037 038 -026 -061 1.00

Flow 030 006 -026 026 -030 043 -009 030 -007 -034 -033 036 1.00

Alk -017 028 040 -040 002 -024 025 -032 -029 083 043 -008 -021 1.00

c -034 -005 -024 024 066 -036 -030 -020 -039 035 083 -071 -041 004 1.00

Hardn | -032 025 001 -001 028 -041 011 -034 -048 071 091 -046 -022 0.68 058 1.00

NO3N | 006 0.06 -013 013 018 -010 -0.09 005 -013 011 063 -021 003 001 046 047 100

NH3N | 013 005 025 -025 -045 017 0.36 031 030 011 -017 021 -023 020 -031 -005 0.03 100

TKN -013 003 041 -041 -057 002 054 -000 001 011 -007 038 004 041 -041 006 017 056 1.00

TN 004 006 -006 006 008 -010 0.00 005 -012 013 060 -014 004 008 037 046 099 012 033 1.00
O-P -030 -030 039 -039 -028 -009 044 -017 -015 022 001 -003 008 034 -024 011 -002 025 067 0.09 100
TP -025 -016 038 -038 -044 000 050 -019 -008 012 -008 019 021 026 -037 002 001 019 073 012 094 1.00




Table 6. Results of CCA's constrained to TP, pH and basin size. All analyses included
the three variables only (TP, pH and basin size) that significantly (p < 0.05) explained the
variance in diatom species composition in the reduced (n = 23) dataset. To verify
independent relationship between the TP and pH and basin size respectively, a CCA was
run constrained to TP with pH and basin size as covariables at atime, to werify if the ratio
?1/?2 would decrease . ?1: eigenvalue axis 1, ?»

variable covariable  ?, ?, ?.7?, permutation test % variance
(999 permutations)  explained by axis 1
TP none 0.126 0.247 0.510 0.048 6.0
pH 0.125 0.246 0.508 0.001 6.4
Basinsize  0.135 0.245 0.551 0.046 6.7
pH none 0.155 0.253 0.613 0.001 7.3
Basinsize | none 0.117 0.253 0.462 0.046 55




Table 7. Performance of weighted-averaging (WA) and weighted-averaging partial least

(WA-PLS) squares regression and calibration models developed for the full (n=25) and

the reduced (n=22) sample dataset. All TP units are in log10 ug L. WA-inv.desh.: WA-

inverse deshrinking, WA-class.desh.: WA-classical deshrinking. The r* and RMSE in
parentheses were derived from bootstrapping (woot) and jackknifing (jack). N = Number of

samples included in model. Numbers in bold indicate the model with the highest
performance (rzj ack) and the lowest error (RM SEack). For comparison the performance of
the best WA-PLS (2 component) TP model developed using the northern Piedmont
dataset (n=91) was r* = 0.87, 1% (pooy= 0.72, RMSE: 0.15; RMSEP poon= 0.23, Mean
bias(boot): -0.010, max bias (boot)= 0.45.

2

2

n method vari r RMSE r RMSE Mean Max | Mean | Max

ale | (Pooot) | (RMSEP | (Pja) | (RMSEP | bias bias | bias | bias
boot) jack) boot boot jack jack

n= WA- 0.87 0.14 0.87 0.14

%5 | inv.desh. | P | ©19 | (036 | 027 | (033 | 0003 | 071 | 0.005 | 063

n= WA- 0.87 0.15 0.87 0.15

25 | class.desh. | '* | 021) | ©36) | (028 | (032 | %002 | 069 | 00051 060

n= WA - 0.89 0.12 0.89 0.12

2 | inv.desh. | P | ©09 | (036 | 014 | (034 | 0006 | 08 | 0009 & 08

n= WA - 0.89 0.13 0.89 0.13

2 | cass.desh. | ¥ | ©10 | (036 | 013 | (033 | 0005 | 087 | 0010 | 086

n= WA-PLS 0.97 0.06 0.97 0.06

25 2 components ™ (0.27) (0.35) (0.34) (0.31) 0.012 1 069 0.017 1 061

n= WA-PLS 0.99 0.03 0.99 0.03

22 | 3components | '° | ©21) | 034 | ©27 | ©3n | 0009 | 081 | 0013 | 076

Attemptsto improve model performance using WA-PL S bootstrapping (see chapter 4.4.4)

a) site 673 samples (highest TP site) taken out

n= WA-PLS 0.97 0.06

23 | 2components | T | (©24) | (028) 00091 039

b) all species > 0.3 % (% realtive abundances- no data transformation)

n= WA-PLS 0.86 011

25 | 2components TP (0.14) (0.31) 0007 | 038

c) all species (square root data transformation)

n= WA-PLS 0.98 0.06

25 | 2components TP (0.25) (0.35) 0015 [ 071

d) all species> 0.3 % (square root data transformation), all samples < pH 6.8

n= WA-PLS 0.97 0.07

20 | 2components TP (0.33) (0.35) 0001 | 064

e) all species > 0.3 % (square root data transformation), all samples> pH 6.1

n= WA-PLS 0.98 0.05

20 | 2components TP (0.33) (0.34) 0027 | 039




Table 8. Spearman’ srank-order correlation between diversity metrics and chemical and
physical site characteristics (n=25).

Diversity metrics: C/P: the ratio Centrales/Pennal es, # Taxa: number of diatom taxa in the sample, Percent
Dominants: percent of total diatom valves made up of taxathat occurred in >10% abundance, S-W Index:
Shannon-Weiner diversity index, %Ach_min: the percent total abundance of the taxon Achnanthidium
minutissimum, % Siltation Index: Siltation Index (see chapter 3.5.2.5 for explanation).

Chemical and physical variables: AvgW: average stream width, Open: % open canopy cover, GR: %
gravel, SD: % sand, ST: % silt; CL: %clay, SDSTCL% sand silt and clay, URB: %urban land-use, AG:
%agriculture land-use, FOR: %forest land-use, BASIN: basin size, Cond: Conductivity, Water color, Flow
(estimate: 1=slow, 2=moderate, 3=fast), Alk: total akalinity, CI": chloride, Hardn: Total hardness, NO3-N:
dissolved nitrate, NH3-N: dissolved ammonia, TKN: total Kjeldahl nitrogen, TN: Total Nitrogen, O-P:
orthophosphate, TP: total phosphorus, Chl a: Chlorophyll a.

r = correlation coefficient
p- value: ** correlation significant at the 0.01 level (2-tailed test)
* correlation significant at the 0.05 level (2-tailed test)

C/IP #Taxa Percent % Ach_min S'W Index % Siltation Index
Dominants
r p- r p- r p- r p- r p- r p-
value value value value value value

AvgW 024 024 | 040 0.05* 0.04 0.86 0.16 0.45 0.23 0.26 -0.29 0.15

%0pen 013 054 [-016 044 -0.07  0.75 0.11 0.60 0.12 0.58 0.30 0.14

%GR -0.07 0.72 | 0.06 0.79 -0.28 0.18 0.05 0.82 0.09 0.67 031 0.14
%SD 035 009 | 0.02 091 -0.04 085 -0.09 065 011 0.59 0.14 0.49
%ST 024 024 (034 0.09 -0.14 051 0.36 0.08 0.19 0.36 -0.11 0.61
%CL -0.23 027 |[-0.05 082 0.38 0.06 -0.07 0.73 -0.22 030 -0.50 0.01*

%STCL | -0.15 047 |-0.01 098 0.35 0.09 0.02 0.92 -0.20 034 -0.50 0.01*

SDSTCL | 007 072 |-0.06 0.79 0.28 0.18 -0.05 0.82 -0.09  0.67 -0.31 0.14

% URB 036 0.08 [ 0.20 0.34 -0.23  0.27 0.48 0.01* 0.27 0.20 -0.04 0.83

% FOR 031 013 | 0.02 0.92 -0.04 0.86 -0.17 041 0.07 0.73 -0.10 0.64

% AG -0.46  0.02* [ -0.35 0.09 0.19 0.35 -0.32 012 -0.32 012 031 0.13

BASIN 047  0.02* | 0.30 0.15 0.04 0.83 0.22 0.29 021 0.31 -0.45 0.02*

Temp -0.09 0.65 | 0.50 0.01* -0.29 0.16 0.07 0.73 0.33 0.10 -0.25 0.23
pH 017 041 | 0.02 0.93 -0.57  0.00** | 0.17 0.41 0.44 0.03* | 0.78 0.00**
Cond 016 043 |[-0.35 009 -0.10 064 0.21 0.30 0.01 0.96 0.46 0.02*
Color 005 083 |[-0.08 069 0.04 0.85 -0.47  0.02* -0.14 052 -0.11 0.60
Flow -0.49 0.01* | 0.10 0.64 0.37 0.07 -0.20 035 -0.23 026 -0.31 0.13
Alk 018 039 | 0.20 0.34 -0.56  0.00** | 0.06 0.77 0.44 0.03* | 0.69 0.00**
CI 018 038 |[-0.33 010 0.02 0.93 0.27 0.19 -0.05 079 0.16 0.45

Hardn 005 082 [-024 025 -0.17 040 0.01 0.95 0.09 0.66 0.66 0.00**

NO3 N -0.13 055 [-0.23 028 0.10 0.62 -0.30 014 -0.18 040 0.30 0.14

NH3-N 010 063 |[-0.01 096 -0.01 0.97 -0.37  0.07 -0.10 064 0.00 0.99

TKN 001 096 [ 0.08 0.72 -0.05 0.83 -0.38  0.06 -0.05 081 0.03 0.88
TN -0.07 075 |[-0.07 073 0.08 0.70 -0.44  0.03* -0.15 048 0.13 0.52
Oo-P -0.20 033 | 0.04 0.86 -0.39 0.05 -0.35 0.09 0.18 0.40 0.53 0.01**
TP -0.19 037 [-0.04 086 -0.19 035 -0.25 0.23 0.04 0.86 0.35 0.08

Chl_a 003 088 |-0.67 0.000* | 0.28 0.18 -0.10 0.63 -0.40 005* | 0.17 041




Piedmont

Figure 1. Site locations sampled during project year 4 in the Inner Coastal Plain
(diatometer sites) and Piedmont (resampling sites) physiographic provinces of NJ. Site
numbers correspond to New Jersey AMNET site location ID’s. See Table 1 for site
names and locations.
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Figure 2. Principal components analysis (PCA) biplot showing 30 environmental
variables (arrows) and 25 sites (circles). Horizontal axis = PCA axis 1; vertical axis =
PCA axis 2. Abbreviations used for environmental variables and site numbers can be
found in Table 2. The length of each arrow expresses the ‘strength’ of the influence of the
variable on site distribution. Each axis is determined by a combination of variables. The
three most important variables for the first axis are %gravel, %sand, silt and clay and
basin size and for the second axis are %urban land-use, % agricultural land-use and pH.
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Figure 3. Detrended correspondence analysis (DCA) biplot showing samples and passive
environmental variables. Horizontal axis = DCA axis 1; vertical axis= DCA axis 2.
Abbreviations used for environmental variables and site numbers can be found in Table
2.
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Figure 4. Canoncial Correspondence Analysis (CCA) biplot showing diatom taxa (filled
circles) and the 3 variables with significant influence on diatom species composition
(arrows). Horizontal axis = CCA axis 1; vertical axis= CCA axis 2.
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Figure5. Plot of the best WA-PLS inference model (n=25; 2 components) showing
diatom-inferred log 10 TP values versus observed log 10 TP vaues. The diagond line is
al:1line. The Diatom TP Index score is shown for comparison.
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Figure 6. Plots of WA-PLS inference model showing residuals versus observed log 10
TP vaues. The solid line shows a LOESS scatter plot smoother (span = 0.45).
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Figure 7. Plots of inferred bootstrapped versus observed TP and TN and the assignment
of the Diatom TP Index scores to the corresponding nutrient categories. Shaded
rectangles correspond to the water chemistry categories established for TP. TP categories
are: 1 (<0.025), 2 (0.025--0.075), 3 (0.075--0.1), 4 (> 0.1) mg/ L TP.



Appendix 1: Results of Forward stepwise regression for the dependent variable
Chl a and AFDM. Abbreviations used for variables are the same as listed under
Table 2.

Forward Stepwise Regression: Dependent Variable Chl a

F-to-Enter: 4.000 P =0.051
F-to-Remove: 3.900 P =0.054

Step O:
Standard Error of Estimate = 0.390
Analysisof Variance:

Group DF SS MS F P
Residual 416 6.992 0.152

Variablesin Model

Group Coef.  Std. Coeff. Std. Error F-to-Remove P
Constant 3.027 0.0569
Variables not in Model

Group F-to-Enter P

TP 0.000986 0.975

TN 0.380 0.541

NH3-N 1.905 0.174

pH 3.536 0.066

BASIN 0.562 0.457

SDSTCL 0.818 0.370

Flow 2.293 0.137

Cond 5.491 0.023

Open (%) 3.882 0.055

Step 1: Cond Entered
R =0.330 Rsgr =0.109  Adj Rsgr = 0.089
Standard Error of Estimate = 0.372

Analysisof Variance:

Group DF SS MS F P

Regression 1 0.760 0.760 5.491 0.024

Residual 45 6.232 0.138

Variablesin Model

Group Cof. Std. Coeff. Std. Error F-to-Remove P
Constant 1.282 0.747

Cond 0.769 0.330 0.328 5.491 0.024

Variables not in Model

Group F-to-Enter P

TP 0.286 0.595
TN 0.0200 0.888
NH3-N 5.867 0.020
pH 0.434 0.514
BASIN 0.00131 0.971
SDSTCL 0.503 0.482
Flow 0.426 0.517

Open (%)- 3.429 0.071



Step 2: NH3-N Entered
R =0.462 Rsgr =0.214  Adj Rsgr =0.178
Standard Error of Estimate = 0.354

Analysis of Variance:

Group DF SS MS F P
Regression 2 1494 0.747 5.976 0.005
Residual 44 5499 0.125

Variablesin Model

Group Cosf. Std. Coeff. Std. Error
Constant 0.0561 0.871

NH3-N 0.336 0.342 0.139
Cond 1.023 0.439 0.329
Variables not in Model

Group F-to-Enter P

TP 0.00560 0.941

TN 4.144 0.048

pH 0.301 0.586

BASIN 0.0387 0.845

SDSTCL 0.101 0.752

Flow 0.000104 0.992

Open (%) 5.705 0.021

Step 3: Open (%)- Entered
R =0.553 Rsgr =0.306  Adj Rsgr = 0.257
Standard Error of Estimate = 0.336

Analysis of Variance:

Group DF SS MS F P
Regression 3 2138 0.713 6.312 0.001
Residual 43 4855 0.113

Variablesin Model

Group Cosf. Std. Coeff. Std. Error
Constant -0.432 0.853

NH3-N 0.381 0.388 0.133
Cond 0.994 0.427 0.313
Open (%) 0.134 0.308 0.0563
Variables not in Model

Group F-to-Enter P

TP 0.155 0.696

TN 5.235 0.027

pH 0.0000808 0.993

BASIN 0.0990 0.755

SDSTCL 0.922 0.342

Flow 0.0895 0.766

F-to-Remove

5.867
9.679

F-to-Remove

8.208
10.113
5.705

P

0.020
0.003

P

0.006
0.003
0.021



Step 4: TN Entered
Rsgr =0.383
Standard Error of Estimate = 0.321

R =0.619

Analysis of Variance:

Group DF SS
Regression 4 2.676
Residual 42 4.317
Variablesin Model

Group Cosf.
Constant- 0.488

TN 0.447

NH3-N 0.595

Cond 1.439

Open (%) 0.140
Variables not in Model

Group F-to-Enter

TP 0.226

pH 0.292

BASN 0.0275
SDSTCL 0.231

Flow 1531
Summary Table

Step# Vars. Entered R

1 Cond 0.330
2 NH3-N 0.462
3 Open (%)- 0.553
4 ™ 0.619

Adj Rsgr =0.324

MS F
0.669 6.509
0.103
Std. Coeff.
0.814
-0.366
0.605
0.618
0.321

P

0.637

0.592

0.869

0.633

0.223
RSqr
0.109
0.214
0.306
0.383

P
<0.001
Std. Error F-to-Remove P
0.195 5.235 0.027
0.158 14.246 <0.001
0.356 16.334 <0.001
0.0538 6.799 0.013
Delta RSgr Varsin Model
0.109 1
0.105 2
0.0921 3
0.0769 4

The dependent variable 1og10(-Chl a (m can be predicted from alinear combination of the independent

variables:

P
TN 0.027
NH3-N <0.001
Cond <0.001
Open (%) 0.013

The following variables did not significantly add to the ability of the equation to predict Chl a, and were
not included in the final equation: TP, pH, BASIN, SDSTCL, Flow.

Normality Test: Passed (P = 0.163)

Constant Variance Test:

Passed (P = 0.430)

Power of performed test with alpha = 0.050: 0.998



