Introduction

- **Marine Mammal Survey** - Dr. Jason See
 - Oceanography
- **Acoustics** - Dr. Kathleen Dudzinski
 - Marine Mammal Behavior and Acoustics
- **Fisheries** – Juan Levesque
 - Fishery Biologist
- **Introduction to Avian** – Chris Clark
 - Avian and Radar Studies
- **Avian Survey** - Dr. Jarrod Santora
 - Ornithology and Modeling
- **Dr. Sidney Gauthreaux, Jr.**
 - Ornithology and Remote Sensing Techniques
Shipboard Surveys – Marine Mammals and Sea Turtles

Monthly surveys conducted onboard the University of Delaware’s R/V Hugh R. Sharp under NOAA Permit #10014-01
Survey Effort

- Randomly-generated tracklines (double saw-tooth pattern) using DISTANCE program (Buckland et al. 2004)

- Tracklines were altered only if sea state, glare, or weather inhibited survey effort

Survey Effort

- Visual observations recorded from flying bridge during BSS ≤ 5
- 3 stations: port bigeyes, recorder (naked eye), starboard bigeyes
- Each observer scanned out to the horizon from abeam (90°) on his/her side of the ship to 10° to the opposite side of the bow (100° in all).
Sightings

- Observers went off-effort after a sighting was made
- All sighting data recorded using WinCruz--computer program developed by NMFS-SWFSC and integrated with ship GPS
- Vessel’s speed and course altered as necessary to obtain sighting data
- Attempts were made to photograph all the animals in a sighting to document species identification
- Once all the necessary data were collected for the sighting, the vessel resumed the same course and speed as prior to the sighting
- Extensive daily QA/QC procedures conducted by chief scientist
Sightings

Common bottlenose dolphin

Short-beaked common dolphin

North Atlantic right whale

Photo: A. Whitt

Photo: A. Whitt

Photo: T. Leukering

Photo: A. U

Photo: A. Whitt

NOAA Permit
No. 10014-01
Sightings

• Shipboard surveys - Covered 7,090 km (3,896 NM) of on-effort trackline
• Total 260 sightings (215 on-effort)
• 7 cetacean species, 1 pinniped species, and 2 sea turtle species identified
• Bottlenose dolphin was the most frequently sighted species; most of these sightings were recorded in the summer months
• Fin whale was the only species sighted throughout the year
Aerial Surveys

- Conducted February - May 2008
- Aircraft crash in May 2008
- Surveys resumed in January 2009
Aerial Sightings

- Aerial surveys - Covered 2,186 km (1,180 NM) of on-effort trackline (February-April 2008)
 Total 22 sightings (22 on-effort)
- 4 identified species, 2 unidentified species
Concurrent Data

- Collection of oceanographic data for use as co-variates in density models
- CTD casts: salinity, temperature, depth
- Real time surface data
 - Sea surface temperature
 - Salinity
 - Fluorescence
- ADCP data
 - Currents
 - Potential zooplankton ‘swarms’
Density modeling

- Distance density estimations
- Spatial modeling (as possible)
- Minimum 20 observations of species
- Species with few observations may be pooled (by family, etc.)

Common dolphin (DoN 2007)
Acoustics

Dr. Kathleen Dudzinski – Marine Mammal Behavior and Acoustics
Underwater Acoustic Survey - Methods

• Methods
 – Study area
 – PopUp locations
 – Sampling rates

• Results
 – Data totals
 • Deployment returns
 • Data format, bytes, hours
 – Species detected, investigated
 • Baleen whales
 • Toothed whales
 – Sample Sounds

• Summary

Photos: GMI
Underwater Acoustic Survey - Results

• Methods

• Results
 – Data totals
 • Deployment returns
 • Data format, bytes, hours
 – Species detected, investigated
 • Baleen whales
 • Toothed whales
 – Sample Sounds

• Summary

<table>
<thead>
<tr>
<th>Deployment</th>
<th># days</th>
<th>units dep'd</th>
<th>units rec'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>March '08</td>
<td>84</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>June '08</td>
<td>85</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>September '08</td>
<td>64</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>December '08</td>
<td>97</td>
<td>5</td>
<td>na</td>
</tr>
</tbody>
</table>
Underwater Acoustic Survey - Results

- Methods
- Results
 - Data totals
 - Deployment returns
 - Data format, bytes, hours
 - Species detected, investigated
 - Baleen whales
 - Toothed whales
 - Sample Sounds
- Summary

<table>
<thead>
<tr>
<th>Deployment</th>
<th>units rec.d</th>
<th>data (gb)</th>
<th>data (hrs)</th>
<th>Species Confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>March '08</td>
<td>4</td>
<td>330</td>
<td>8,064</td>
<td>Eg Bp Tt</td>
</tr>
<tr>
<td>June '08</td>
<td>4</td>
<td>522</td>
<td>4760</td>
<td>Eg Bp Tt</td>
</tr>
<tr>
<td>2 kHz</td>
<td>2</td>
<td>167</td>
<td>4,080</td>
<td>Eg Bp</td>
</tr>
<tr>
<td>31.25 kHz</td>
<td>2</td>
<td>355</td>
<td>680</td>
<td>Tt</td>
</tr>
<tr>
<td>September '08</td>
<td>3</td>
<td>279</td>
<td>3,328</td>
<td>Eg Bp</td>
</tr>
<tr>
<td>2 kHz</td>
<td>2</td>
<td>105</td>
<td>3,072</td>
<td>Eg Bp</td>
</tr>
<tr>
<td>31.25 kHz</td>
<td>1</td>
<td>174</td>
<td>256</td>
<td>TBA</td>
</tr>
<tr>
<td>December '08</td>
<td>na</td>
<td>to be recovered in late March '09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total hours collected: 16,152

Additional projected hours
Dec. '08: 7,760*
March '09: 7,760*

*assuming all PopUps recovered

Photos: GMI
Underwater Acoustic Survey - Results

Fin whale pulses

15 Apr 08

S# 3, 4, 5 presented fin pulses, on this day (March Deployment)

Ch 2

Ch1 (amp)
Underwater Acoustic Survey - Results

North Atlantic right whale upcalls

15 Apr 08

March 28, 2008 @ ~1:11 AM unamplified, normal speed

2x rate, amplified 4x
Underwater Acoustic Survey - Results

- dolphin whistles
- clicks, claps, pulses, squawks, etc, too

14 July 08

PU081 - WHS

July 14, 2008 @ ~6:00 AM
Underwater Acoustic Survey - Results

- Methods
- Results
- Summary
 - Baleen whales detected
 - Call detectors for few species
 - Manual review for most
 - Toothed whales detected
 - Manual review
 - Whistle (FM) call variability
 - Pulsed calls
 - Species differences?
 - Analysis ongoing
 - Toothed whale calls – review related to survey data
 - Other baleen species – related to survey data
Fisheries

Juan Levesque – Fishery Biologist
Fish and Fisheries
One of New Jersey’s most valuable natural resources

- **Fish Diversity**
 - 336 fish species classified under 116 families

- **Fish Habitats**
 1. **Inshore**
 2. **Offshore**

 - **Study Area:**
 - coastal beaches (surf zone)
 - pelagic zone
 - benthic zone
 - artificial reef-structures

 - 38 Essential Fish Habitat (EFH) areas
 - 2 Habitat Areas of Particular Concern (HAPC)
 - Summer Flounder and Sandbar Shark
Fish and Fisheries

- **Inshore**
 - Coastal Beaches (Surf zone): Anchovy, Silverside, Bluefish, Northern Kingfish

- **Offshore**
 - Pelagic zone (water column): Bluefish, Striped Bass, Atlantic Mackerel
 - Benthic zone (bottom substrate):
 1. Sand-mud Plain: Yellowtail Flounder, Silver Hake, Sand Lance, Atlantic Surfclam
 - Shoreface Sand Ridges: Butterfish, Bay Anchovy, Atlantic Surfclam, Decapod crustaceans (e.g., Atlantic Rock Crab and American Lobster)
 2. Artificial Structures: Tautog, Black Sea Bass, Red Hake (~ 150 different marine species)
Fish and Fisheries

- **Commercial Fisheries (2003-2007)**
 - Total value $700 Million
 - Annual mean value $178 Million
 - Ranks 7th domestically in value

- **Gear**
 - **New Jersey:**
 - Trawls and dredges
 - **Study Area:**
 - Clam dredge
 - Sink gillnets
 - Pot/traps

Source: NMFS (2008b)
Fish and Fisheries

Source: NMFS (2008b)
Fish and Fisheries

Commercial Fisheries (2003-2007)

![Graph showing the value and landings for different species of fish.]

- **Atlantic Sea Scallop**: High value and landings.
- **Atlantic Clam**: Moderate value and low landings.
- **Ocean Quahog**: Low value and high landings.
- **Atlantic Mackerel**: Moderate value and low landings.
- **Atlantic Menhaden**: Very little value and landings.

Source: NMFS (2008b)
Fish and Fisheries

- **Recreational Fisheries**
 - **Fishing Hotspots:**
 1. Shipwrecks (~102)
 2. Artificial Reef Complexes (9)
 3. Shoals/Lumps (23)
 - **Common Species:**
 - Black Sea Bass
 - Tautog
 - Striped Bass
 - Bluefish
 - Winter Flounder
 - Atlantic Mackerel
 - Bonito

Source: NMFS (2008b)
Fish and Fisheries

Source: NMFS (2008b)

[Map of New Jersey and Atlantic Ocean with various labels and symbols indicating study areas and hotspots.]

Legend:
- Major Commercial Fishery Port
- Artificial Reef
- Recreational Fishing Hotspots
- National Estuarine Research Reserve
- Fishery Closed Area
- XX See Table 3-5 for List

Approximate:
- 0 5 10 Kilometers
- 0 5 10 Nautical Miles

Source: GMI
Fish and Fisheries

• Recreational Fisheries (2003-2007)

Source: NMFS (2008b)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Trips (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>34,429,880</td>
</tr>
<tr>
<td>2004</td>
<td>34,429,880</td>
</tr>
<tr>
<td>2005</td>
<td>34,429,880</td>
</tr>
<tr>
<td>2006</td>
<td>34,429,880</td>
</tr>
<tr>
<td>2007</td>
<td>34,429,880</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Fish (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Flounder</td>
<td>50,000,000</td>
</tr>
<tr>
<td>Bluefish</td>
<td>25,000,000</td>
</tr>
<tr>
<td>Black Sea Bass</td>
<td>15,000,000</td>
</tr>
<tr>
<td>Sea Robins</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Striped Bass</td>
<td>5,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Fish (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Flounder</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Bluefish</td>
<td>5,000,000</td>
</tr>
<tr>
<td>Black Sea Bass</td>
<td>2,500,000</td>
</tr>
<tr>
<td>Sea Robins</td>
<td>1,250,000</td>
</tr>
<tr>
<td>Striped Bass</td>
<td>625,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fishing Mode/Location</th>
<th>Number of Trips (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private/Rental: Inland</td>
<td>12,000,000</td>
</tr>
<tr>
<td>Shore/Ocean: <= 3 miles</td>
<td>6,000,000</td>
</tr>
<tr>
<td>Shore/Ocean: > 3 miles</td>
<td>4,000,000</td>
</tr>
<tr>
<td>Private/Rental: Ocean: <= 3 miles</td>
<td>2,000,000</td>
</tr>
<tr>
<td>Private/Rental: Ocean: > 3 miles</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Party/Charter: Ocean: <= 3 miles</td>
<td>500,000</td>
</tr>
<tr>
<td>Party/Charter: Ocean: > 3 miles</td>
<td>250,000</td>
</tr>
<tr>
<td>Party/Charter: Inland</td>
<td>125,000</td>
</tr>
</tbody>
</table>
Introduction to Avian Studies

Chris Clark – Avian and Radar Studies
Avian Studies - Introduction

Visual Surveys
- Large Boat
- Small Boat
- Aerial

Remote Sensing
- Radar
 - Coastal
 - Marine
- Thermal
- Ground Truthing and Observations
Avian Aerial Survey
Track lines

• 16 April 2008
• Total length = 593 NM

Data Review
– Report submitted to NJDEP
 • Peer Review Group comments
 • Consultation with USFWS

– Conclusions
 • Possible biasing towards larger birds
 • Limited number of surveys compared to other efforts
 • Utilization of resources for other tasks (e.g., radar validation)
Avian Studies – Technical Presenters

• Dr. Jarrod Santora
 – Ornithology and Modeling

• Dr. Sidney Gauthreaux, Jr.
 – Ornithology and Remote Sensing Techniques
Avian Studies - Overview

Dr. Jarrod Santora

• Visual Surveys:
 – Density Mapping
 – Project Area Coverage
 – Monthly Break-outs
 – Flight Directions and Hotspots
 – Objectives of Density and Modeling

Dr. Sidney Gauthreaux, Jr.

• Radar Surveys:
 – Radar Background
 – Clutter Environment
 – Comparable Studies
 – Horizontal Data
 – Radar Post-Processing
 – Vertical Data
 – Filtering
 – Altitude
 – TI/VPR
Avian Density Mapping: Shipboard and Coastal Surveys

- Offshore (14) and coastal surveys (13)
- Standardized strip-transect methods (300m)
- Data used for density calculation:
 - Vessel speeds ≥ 7 knots, Sea State ≤ 5, Good Visibility
- Density estimates (birds km2)
 - calculated using the standard formula:
 - $D = n / (l \times w)$, where D is density (birds per square kilometer), n is the number of birds observed, l is the transect length, and w is the width of the strip.
SURVEY COVERAGE

January-November
Offshore (11): 5160 km
Coastal (10): 924 km

Distribution Patterns?
<table>
<thead>
<tr>
<th>Common Name</th>
<th>N</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Gannet</td>
<td>776</td>
<td>1.55</td>
</tr>
<tr>
<td>Red-throated Loon</td>
<td>118</td>
<td>0.24</td>
</tr>
<tr>
<td>Common Loon</td>
<td>83</td>
<td>0.17</td>
</tr>
<tr>
<td>Herring Gull</td>
<td>71</td>
<td>0.14</td>
</tr>
<tr>
<td>Black Scoter</td>
<td>63</td>
<td>0.13</td>
</tr>
<tr>
<td>Total</td>
<td>1,111</td>
<td>2.23</td>
</tr>
</tbody>
</table>

1 includes avian observations within the 300-m x 300-m survey strip transect when the ship was traveling ≥7 kts

2 No./km
April 2008 Shipboard Offshore In-Zone

<table>
<thead>
<tr>
<th>Common Name</th>
<th>N</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surf Scoter</td>
<td>1,297</td>
<td>1.80</td>
</tr>
<tr>
<td>Northern Gannet</td>
<td>809</td>
<td>1.12</td>
</tr>
<tr>
<td>Black Scoter</td>
<td>335</td>
<td>0.46</td>
</tr>
<tr>
<td>Scoter, dark-winged (unknown)</td>
<td>204</td>
<td>0.28</td>
</tr>
<tr>
<td>Herring Gull</td>
<td>160</td>
<td>0.22</td>
</tr>
<tr>
<td>Total</td>
<td>2,805</td>
<td>3.88</td>
</tr>
</tbody>
</table>

1 includes avian observations within the 300-m x 300-m survey strip transect when the ship was traveling ≥7 kts

2 No./km
June 2008 Shipboard Offshore In-Zone

<table>
<thead>
<tr>
<th>Common Name</th>
<th>N</th>
<th>Abundance2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson’s Storm-petrel</td>
<td>338</td>
<td>0.41</td>
</tr>
<tr>
<td>Common Tern</td>
<td>182</td>
<td>0.22</td>
</tr>
<tr>
<td>Laughing Gull</td>
<td>174</td>
<td>0.21</td>
</tr>
<tr>
<td>Northern Gannet</td>
<td>132</td>
<td>0.16</td>
</tr>
<tr>
<td>Cory’s Shearwater</td>
<td>57</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>883</td>
<td>1.07</td>
</tr>
</tbody>
</table>

1 includes avian observations within the 300-m x 300-m survey strip transect when the ship was traveling ≥7 kts

2 No./km
August 2008 Shipboard Offshore In-Zone¹

<table>
<thead>
<tr>
<th>Common Name</th>
<th>N</th>
<th>Abundance²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson's Storm-petrel</td>
<td>1,245</td>
<td>1.55</td>
</tr>
<tr>
<td>Laughing Gull</td>
<td>517</td>
<td>0.64</td>
</tr>
<tr>
<td>Common Tern</td>
<td>510</td>
<td>0.63</td>
</tr>
<tr>
<td>Great Black-backed Gull</td>
<td>56</td>
<td>0.07</td>
</tr>
<tr>
<td>Purple Martin</td>
<td>47</td>
<td>0.06</td>
</tr>
<tr>
<td>Total</td>
<td>2,375</td>
<td>2.95</td>
</tr>
</tbody>
</table>

¹ includes avian observations within the 300-m x 300-m survey strip transect when the ship was traveling ≥7 kts
² No./km
November 2008 Shipboard Offshore In-Zone

Common Name	N	Abundance
Surf Scoter | 2,101 | 3.85
Laughing Gull | 1,323 | 2.43
Northern Gannet | 1,065 | 1.95
Black Scoter | 1,062 | 1.95
Scoter, dark-winged (unknown) | 510 | 0.94
Total | 6,061 | 11.12

NOVEMBER

Atlantic Ocean

Avian Density #/km²
Near Shore
0.000000 - 0.001500
0.001501 - 0.001500
0.001501 - 0.006000
0.020001 - 0.029428
0.294287 - 0.779412
0.779413 - 2.011429
0.333167 - 0.616583

Off Shore
0.000000 - 0.001500
0.020001 - 0.029428
0.060001 - 0.195784
0.156785 - 0.333166
0.333167 - 0.616583

Study Area

Quadrant

Figure B5A-10: November 2008 total avian density

GMI GEO MARINE INCORPORATED
Flight Direction

- Relevance of Circular Uniformity vs. Mean Flight Direction
- Importance to subsequent calculations of avian mortality strikes.
- Collision rate of birds with wind turbine blades depends on relative directional orientation between birds and blades.
Circular Statistics

Objectives
Assess the statistical distribution of avian flight directions and their variability with respect to species, taxonomic group, month, and season.

Estimate a mean direction angle and calculate associated statistical errors (circular SD, 95% confidence interval, etc.)

Hypothesis testing: Do the directional data exhibit circular uniformity (random directional distribution) or a mean flight direction?

Mean flight direction can exhibit monthly/seasonal variability in accordance with seasonal flight migration patterns.
Flight Direction: Summary

- **Mean angle** is dependent on **species**, **group**, **month**, and **season**.

Offshore (Ship) Surveys:
- Mean angle = 148.20° (95% CI: 142.05° to 154.34°) for total birds.
- Data exhibit circular uniformity with respect to species, group, month, and season.

Coastal (Boat) Surveys:
- Mean angle = 200.75° (95% CI: 199.84° to 201.66°) for total birds.
- Data exhibit circular uniformity with respect to season, but **not** species, group, or month.
Avian Hotspot Mapping

• Hotspot maps provide a direct link between sampling effort and observed avian density
• Effective tool for tracking changes within and among cells through time (Seasonal Variability)
• Examine changes in
 – Species diversity
 – Community Composition
 – Interspecific associations
JANUARY - NOVEMBER

Total Species

Northern Gannet

Legend

0.000 - 0.299
0.300 - 0.879
0.880 - 1.925
1.926 - 3.414
3.415 - 7.184
7.185 - 28.369

New Jersey

Atlantic Ocean

Avian Density Sum as Percent Total
0% - 0.137356%
0.137356% - 0.701038%
0.701038% - 1.400774%
1.400774% - 2.901166%
2.901166% - 5.323382%
5.323383% - 16.01647%
JANUARY - APRIL
Total Species
Northern Gannet

Legend
0% - 0.249482%
0.249483% - 0.943785%
0.943786% - 1.674594%
1.674595% - 2.688388%
2.688389% - 8.664947%
8.664948% - 35.735139%

Total Species Northern Gannet
JANUARY - APRIL
AUGUST - NOVEMBER
Total Species
Northern Gannet

Legend
- 0% - 0.249482%
- 0.249483% - 0.943785%
- 0.943786% - 1.674594%
- 1.674595% - 2.688388%
- 2.688389% - 8.664947%
- 8.664948% - 35.735139%

Unprojected
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Avian Density Sum as Percent Total
- 0% - 0.183069%
- 0.18307% - 0.687734%
- 0.687735% - 1.587329%
- 1.587333% - 3.610437%
- 3.610431% - 5.609177%
- 5.609178% - 22.881077%

Study Area
North Atlantic Ocean
New Jersey

Figure 7 - Avian Density Totals August to November 2008

GEO MARINE INCORPORATED
Comparative Habitat Use of Seabirds
January-November

Northern Gannet

Scoter Spp.

Laughing Gull
Avian Density and Distribution Modeling

- Objectives:
 - Determine probability of occurrence and spatial distribution for birds.
 - Density Plots
 - Presence/Absence
 - Hotspot Mapping
 - Use spatial interpolation tools to examine changes in avian density over the study area and through time.
 - Kernel Density and Krigging
 - Design and implement Marine Geospatial Ecosystem tool to predict spatial distribution of birds using survey data and environmental predictors.
Example: Species Habitat Modeling

Presence/absence observations

Sampled environmental data

Multivariate statistical model (GAM’s)

$g(\mu) = \beta_0 + \beta_1 x_1 + \ldots + \beta_m x_m$

Probability of occurrence predicted from environmental covariates

From MGET Marine Geospatial Ecosystem Tool; J. Roberts, Duke University

Example: NJ Seabird Density and Environmental Predictors

- **Bathymetry**
- **Sediment**
- **Sea Temperature**
- **Ocean Color Chlorophyll-a**

Multivariate statistical model (GAM’s)

\[g(\mu) = \beta_0 + \beta_1 x_1 + \cdots + \beta_m x_m \]

Avian Density km²

Presence/Absence

Hotspot Maps

Species

Probability of occurrence predicted from environmental covariates
Example: Predicted densities of seabirds using shipboard surveys and GAM’s off Central California

Fig. 4. The predicted densities of adult western gulls within their foraging range from the primary breeding colony on south-east Farallon Island, during spring 1985, 1988, 1991 and 1994. The positions of the survey segments are superimposed. Densities greater than 8 birds km\(^{-2}\) have been set to 8 birds km\(^{-2}\) to show changes in density more clearly.
Example: Using GAM’s to explore the shape bird/mammal-habitat relationships.

Fig. 5. Generalized additive models can be used to explore the shape of cetacean–habitat relationships. In this hypothetical example, smoothing splines were used to model the relationship between cetacean encounter rate and several habitat variables. A linear fit was selected between encounter rate and distance to shore. A smoothing spline with 2 degrees of freedom suggests that encounter rates may level off with increasing temperature, while a smoothing spline with 3 degrees of freedom captures a peak in encounter rate at a depth of approximately 3500 m.

From Redfern et al. 2008
Example: Predicting probability of occurrence of Right Whales and ship strikes

From Vandrlaan et al. 2008. Reducing the risk of lethal encounters: vessels and right whales in the Bay of Fundy and on the Scotian Shelf. MEPS, 4:283-297
Example: NJ Seabird Density and Environmental Pre

Multivariate statistical model (GAM’s)

\[g(\mu) = \beta_0 + \beta_1 x_1 + \cdots + \beta_m x_m \]

Avian Density km²
Presence/Absence
Hotspot Maps
Species

Probability of occurrence predicted from environmental covariates
Avian Radar/TI-VPR

Dr. Sidney Gauthreaux, Jr. – Ornithology and Remote Sensing Techniques
Mobile Avian Radar System (MARS®)
Mobile Avian Radar System (MARS®)

(Furuno FR-2165)
Wave-length: S-band, 10 cm
Peak Power: 60 kW
Transmit Frequency: 3040 MHz
Pulse Length: 80 ns
Pulse Repetition Frequency: 1900 Hz
Horizontal Beam Width: 2.2°
Vertical Beam Width: 25°
Maximum Study Range: 4 NM (7.4 km)
Polarization: Horizontal

Determines range, flight direction, speed, and heading of targets
Mobile Avian Radar System (MARS®)

(Furuno FR-2155)
Wave Length: X-band, 3 cm
Peak Power: 50 kW
Transmit Frequency: 9415 MHz
Transmit Pulse Length: 80 ns
PRF: 2200 Hz
Beamwidth: 20° x 0.95°
Maximum Study Range: 1.5 NM downrange (2.8 km) both directions; 3.0 NM (18,200 ft) altitude
Antenna Polarization: Vertical

VerCat® Coverage Pattern
Locations of offshore radar in the New Jersey Study Area during Spring (March through May) 2008.

Grid 1: 14-21 March 2008
Grid 7: 22-27 March 2008
Grad 13: 3-13 April 2008
Grid 19: 13-19 April 2008
Grid 26: 24-30 April 2008
Grid 23: 30 April-7 May 2008
Grid 17: 7-11 May 2008
Locations of onshore radar in the New Jersey Study Area during Spring (March through May) 2008.

Site 1: Island Beach State Park
15-23 May 2008

Site 2: North Brigantine Beach
29 May-8 June 2008

Site 3: Corson’s Inlet
9-19 June 2008
European radar studies of local and migratory bird movements in offshore areas selected for wind development projects have noted that rain and waves affect marine radar performance when the radar is operated in the conventional horizontal scan mode (Tulp et al. 1999, Christensen et al. 2004).

One study of bird movements and collision risks at the offshore wind farms Horns Rev, North Sea, and Nysted, Baltic Sea, in Denmark, have been conducted only when the sea is relatively calm with winds less than 2 m/sec or 4 knots (Blew et al. 2006).

Marine radar has a sea clutter filter but use of this filter decreases the detection of all targets close to the radar—both sea clutter and birds.
TracScan® Targets per Day

15 March 2008

19 March 2008
Relationship between mean wind velocity and maximum range of targets (sea clutter) in TracScan®

\[y = 0.8026\ln(x) - 0.0023 \]

\[R^2 = 0.828 \]
At least one European offshore radar study has reported results from a horizontally scanning marine radar (S-band, 30 kW, 25° beam width, 6-NM range) with digital processing similar to MARS® TracScan® (Kreijgsved et al. 2005).

The authors noted that sea clutter produced 85% of the tracks (false tracks) and cautioned readers that even after the application of a clutter removing procedure, the data still contained an unknown number of false tracks within the ranges affected by sea clutter.

Mark Desholm (AWEA offshore teleconference, 4 Feb 2009) confirmed sea clutter is still a problem in offshore radar studies of bird movements.
MARS® TracScan® also produces false detections and tracks when sea clutter is present. The false detections are particularly evident when the velocity measured between two detections is plotted in a histogram.

We do not know exactly how the plotting algorithms produce these false detections, but we suspect that sea clutter is responsible, because the histograms of velocity measured between detections with MARS® VerCat® do not contain the abnormally fast velocities.
To enhance Quality Assurance/Quality Control we developed filtering rules to eliminate false detections and tracks from sea clutter. The filtering rules are similar to those used by Kreijgsveld et al. (2005).

1. Eliminated tracks with distances greater than 0.06 NM between successive detections (i.e., tracks with velocities above 100 kts).
2. All tracks with gaps in detections were treated as separate tracks to avoid treating two unrelated tracks as one and generating false tracks.
3. Selected only tracks with nine or more continuous detections (number of echoes per track).
4. Only used tracks beyond the sea clutter range (tracks equal to or greater than 1.5 NM. If a portion of a track occurred at 1.5 NM the entire track was included in the analysis.)
Histogram of total ground speeds between detections for 15 March 2008 after eliminating tracks that did not have nine continuous detections in a track for MARS® TracScan®.

Histogram of total ground speeds between detections for 15 March 2008 after eliminating tracks within 1.5 nautical miles of the radar for MARS® TracScan®.
Directional plots from TracScan data in Quadrants
TracScan® Radar Data Processing

Before filtering rules applied

After filtering rules applied
Sea clutter is not a serious contamination problem in the VerCat® data, because the radar does not transmit below the horizontal.

Precipitation (i.e., rain, sleet, snow) and virga (precipitation that falls from a cloud but evaporates before reaching the ground) generate detections (echoes) that may produce false tracks when algorithms process the data. When this occurs VerCat® counts are inflated and the median altitude distribution is increased.

To avoid the problems, for the Interim Technical Report we eliminated from analysis time periods containing precipitation and virga.

Since receiving comments from reviewers we have developed a rain clutter filter that greatly reduces false tracts and allows us to use data with precipitation and virga.
VerCat® Radar Data Processing

Virga Conditions

No Rain Filtering

With Rain Filtering
VerCat® Radar Data Processing

Rain Conditions

No Rain Filtering

With Rain Filtering
VerCat® Radar Data Processing

Clear Conditions

No Rain Filtering

With Rain Filtering
Altitude Histogram: 14-22 March 2008 (Grid 1) limited to 2500 feet maximum
<table>
<thead>
<tr>
<th>Lower Extreme</th>
<th>MEDIAN</th>
<th>Upper Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Lower Quartile</td>
<td>Upper Quartile</td>
</tr>
<tr>
<td>25% of data</td>
<td>25% of data</td>
<td>25% of data</td>
</tr>
<tr>
<td>← Values arranged in ascending order →</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grid A1 diurnal (clear weather) altitude quartiles, 14 to 22 March 2008.

Grid A1 nocturnal (clear weather) altitude quartiles, 14 to 22 March 2008.
Table 6-3. Grid A1, cumulative diurnal and nocturnal (clear weather) target counts, 14 to 22 March 2008.

<table>
<thead>
<tr>
<th>Altitude Band</th>
<th>Total Target Count</th>
<th>Percent Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diurnal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-100 ft AMSL</td>
<td>2,717</td>
<td>40.05</td>
</tr>
<tr>
<td>101-500 ft AMSL</td>
<td>3,314</td>
<td>48.85</td>
</tr>
<tr>
<td>501+ ft AMSL</td>
<td>753</td>
<td>11.10</td>
</tr>
<tr>
<td>Subtotal</td>
<td>6,784</td>
<td>-</td>
</tr>
<tr>
<td>Nocturnal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-100 ft AMSL</td>
<td>637</td>
<td>19.90</td>
</tr>
<tr>
<td>101-500 ft AMSL</td>
<td>1,082</td>
<td>33.80</td>
</tr>
<tr>
<td>501+ ft AMSL</td>
<td>1,482</td>
<td>46.30</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3,201</td>
<td>-</td>
</tr>
<tr>
<td>Total Dataset</td>
<td>9,985</td>
<td>-</td>
</tr>
</tbody>
</table>
Number of birds (raw and corrected) within 50-ft altitudinal bands for TI-VPR samples on the night of 11 May 2008

<table>
<thead>
<tr>
<th>Altitudinal Band (ft)</th>
<th>Raw Count</th>
<th>Corrected Altitudinal Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50-99</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>100-149</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150-199</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200-249</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>250-299</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>300-349</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>350-399</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400-449</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>450-499</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>500-549</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>550-599</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>600-649</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>650-699</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>700-749</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>750-799</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>230</td>
</tr>
</tbody>
</table>
Circular diagram showing the direction of nocturnal bird movements through the TI/VPR field of view on 11 May 2008. The dark line is the mean angle and the arc at the end is the 95% confidence limits of the mean.