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EXECUTIVE SUMMARY 

 
This research projected, entitled “Forecasting Algal blooms in Surface Water Systems 

with Artificial Neural Networks,” was funded by the New Jersey Department of 

Environmental Protection. The original objectives of this study were: 1) to assess the 

feasibility of using artificial neural networks (ANNs) as a real-time tool for accurately 

forecasting cyanobacteria counts, more commonly knows as blue-green algae, in surface 

water systems; 2) through sensitivity analyses conducted with the ANNs, identify critical 

climate, hydrologic, and water quality factors (i.e. variables) that may influence algae 

levels; 3) assess the feasibility of using ANNs with formal optimization for optimizing 

water treatment processes for reducing algae levels; 4) assess and provide guidance for 

improving  data collection/organization for the purpose of improving algae level 

forecasting capability with the ANN technology.    With regard to item 1 above, as 

discussed in more detail later, algal forecasting was expanded to include two additional 

classes; chorophytes and chrysophytes.  

 

Blue-green algal blooms are becoming an increasingly serious water quality concern 

around the world as they pose threats to both environmental quality and human health. In 

addition to causing taste and odor problems, on a more serious level, cyanobacteria 

blooms constitute a potentially serious human health risk.  Adverse health effects due to 

human exposure to water with high counts of cyanobacteria are varied, and include skin 

rashes from dermal contact and gastrointestinal illnesses from ingestion.  At least one 

human fatality is reported to have occurred, for a person undergoing kidney dialysis 

treatment.  Wildlife such as waterfowl and household pets like dogs can also be adversely 

affected by these blooms.  Algal blooms are expensive to treat, and can translate into 

thousands of dollars per day for a water utility.  In extreme cases, as reported by Maier et 

al. (1998), they can cause “considerable economic and social hardship with the restriction 

of the use of water for domestic, agricultural, and recreational purposes and increased 

treatment costs.”     
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This research was motivated by the premise that development and implementation of an 

accurate real-time forecasting tool could provide utilities with a means to respond to 

potential algal blooms proactively, rather than reactively.    A proactive capability, if not 

actually minimizing the risk of bloom occurrence, could at least minimize the 

consequences, possibly reducing treatment costs while providing higher quality potable 

water. In this project, artificial neural network (ANN) technology, a form of artificial 

intelligence, was investigated as a possible forecasting tool. The ANN technology offers 

the advantage of “learning” system behavior from historical data, and hence are not 

necessarily constrained by simplifying model assumptions inherent to mechanistic or 

physical-based models and statistical models.  However, in order to effectively learn to 

generalize system behavior, ANNs also require sufficient training data that covers the 

expected range of conditions, as well as inclusion of important predictor (i.e. causal 

and/or correlative) variables.  The highly complex nature of the algal surface water 

systems, which are reported as exhibiting non-linear behavior (Recknagel and others, 

1997), increases the need for historical data sets of sufficient quality and quantity.  One 

of the critical issues of this study, then, was a rudimentary assessment of the existing 

data, and analysis as to what sampling strategies might improve forecasting capability.    

 

At the beginning of this project, New Jersey American Water was the sole participating 

utility, with the Swimming River facility serving as the test case.  A preliminary research 

phase completed in August of 2004 used water quality and physical data collected by the 

utility, supplemented by weather data, to assess the feasibility of using artificial neural 

networks for predicting and enhancing understanding of algal blooms.  Although the data 

sets were rather limited, particularly with regard to water quality parameters, the ANN 

technology demonstrated promise, and they outperformed linear models that were used 

for comparison.  Still because of the limited data set, Passaic Valley Water Commission 

(PVWC) was invited to participate in the study to facilitate a more comprehensive study.  

Like American Water, PVWC routinely samples for a variety of parameters on their 

surface water supply system, including algae counts. The fact that their system consists of 

multiple water sources, while complicating the modeling exercise, also provided a means 
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for better understanding possible important predictor factors that may also be correlated 

with watershed conditions. As with Swimming River, data collected by the utility was 

supplemented by weather data from neighboring climate stations.   

 

Consequently, in this comprehensive study, NOAH developed, tested, and assessed 

several hundred ANN models of a variety of types to forecast cyanobacteria counts at 

both Swimming River and PVWC. Many different models were developed, characterized 

by the input variables used, the forecasting horizons, the output variables, and for PVWC, 

the sampling locations. In addition, for PVWC, two additional algae groups were also 

modeled; chrysophyta (gold algae) and chlorophyta (green algae).  These additional algae 

classes were added to the study as they exhibited more temporal fluctuation in counts 

than cyanobateria, and also present water quality and treatment concerns.  Later, ANN 

models that classify algal counts within ranges or bins were also developed and tested for 

the PVWC facility.  Finally, ANNs for predicting finished water quality were also 

developed using water quality and treatment data for the since renovated water treatment 

plant at Swimming River.   

 

Based upon the modeling results for Swimming River, it was concluded by both NJDEP 

and NOAH that the ANN models were “over-fitting” the data.  This is attributed to the 

relatively limited quantity of historical algae data available for this facility.  Although 

there was a relatively large set of physical data for this facility (222 events), there were 

only 48 events that included water quality parameters that often serve as “limiting 

nutrients”, including phosphorous and nitrate.  This quality of this limited data set was 

further diminished by the fact that three station locations were modeled collectively 

rather than individually, due to the scarcity of the data.  In addition, the modeling results 

tentatively indicate that for this facility, the limiting nutrients are important for accurately 

forecasting algal counts.   

 

Another challenge in modeling this type of the system is the inherent impreciseness of the 

measured data values, and the uncertainty of how representative they are of system 
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conditions. Physical, chemical and biological variables in surface water systems often 

exhibit high spatial variability (i.e. heterogeneity) over relatively short horizontal and/or 

vertical distances.     Further adding unquantifiable noise to the biological data are the 

analytical techniques used for measuring algae counts.  As reported by PVWC:  

“Phytoplankton analytical methods are time consuming and subjective relying on 

observation and identification skills, which can vary by analyst. Existing sampling 

techniques are time consuming and subjective. Collecting a representative sample of a 

complex watershed is challenging at best. A one-liter sample is collected at some 

frequency typically once or twice per week, possibly at different depths along the water 

column and this is meant to represent the quality of the river.”   Previous literature cites 

that “precision of the cell count data can be ±20 percent or more” (Maier and others, 

1998).  

 

Modeling approaches for PVWC evolved to address important modeling issues that 

emerged during this project, including relatively limited number of historical data events, 

following submission of the first draft report to DEP for review.  They included:  1) 

natural time lags in algal population dynamics, or temporal correspondence between 

system conditions/inputs and final measured algal counts; 2) importance of larger training 

data sets on model performance; 3) importance of select water quality variables on model 

performance; 4) the effect of so-called “correlative” water extraction input variables on 

model performance, and 5) feasibility of developing radial basis function nets for 

predicting the bin or classification range in which the final algal count falls, rather than a 

single numerical value estimate.  The different approaches increased understanding of the 

surface water system and algal population dynamics, as well as enhanced awareness of 

data collection and design and development issues for the ANN forecasting models.    

 

With regard to issue one above, the first or original ANN input structure or input 

approach consisted of model input values measured primarily at the beginning of the 

prediction period.   The second or revised ANN input structure used model input values 

measured primarily at the end of the prediction period, coinciding with the final or 
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predicted algal count.  For PVWC, the number of historical training events available for 

each forecasting problem ranged between 19 and 136, and averaged 65, far less than the 

minimum required number of 200, computed on the basis of the average number of input 

(i.e. 32) and output (i.e. 1) variables.  To address the second data quantity versus quality 

issue, both the original and revised modeling approaches were assessed with two distinct 

data sets.  The first set consisted of the smaller number of historical events, which 

included a higher number of input variables.  The second set consisted of a larger number 

of historical events, and, by excluding five select water quality variables for two stations, 

and four for the third station, fewer model inputs.  The five water quality variables, which 

included some of the so-called limiting nutrients, are:  Biological Oxygen Demand 

(BOD), Total Phosphorous/Orthophosphate, Nitrite/Nitrate, Sulfate, and Total Organic 

Carbon (TOC), with BOD included for the third station (measured at higher frequency).   

 

In general, both types of ANN models performed well during validation, and in many 

cases, accurately predicted large changes in algal populations.  The level of accuracy was 

surprising, given the complexity of algal populations, their non-linear behavior, the 

expected noise in the data, and the relatively small number of historical events available 

for training.  On the basis of validation correlation coefficients, the models that used 

input values measured at the beginning of the prediction period slightly outperformed 

those that used input values measured at the conclusion of the prediction period, with 

average values of 0.72 and 0.69, respectively.  A more subjective visual comparison of 

the time-series for the validation figures appears to confirm that the original models did 

achieve higher performance.  The models that excluded the select water quality variables 

for the benefit of more training events achieved a higher average validation correlation 

coefficient of 0.77, versus the 0.63 average value for models that included these 

variables.  However, there was at least one case where the models that included the five 

select water quality variables achieved significantly higher validation performance. 

 

That the ANN models developed with inputs measured at the beginning of the one-week 

and two-week ahead prediction periods accurately predicted formation and dissipation of 
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algal bloom events, as well as relative increase and decreases, may indicate that there are 

natural time lags between system conditions and algal population responses.  Thus, algal 

populations may on average evolve predictably in response to system conditions, and the 

trajectory of the population over one and two-week forecast periods can be accurately 

forecasted on the basis of real-time measurements.  This may also reflect that open water 

conditions do not typically change significantly in the short-term (e.g. weekly or even bi-

weekly), and thus evolving algal populations are by nature predictable, and not prone to 

diverge significantly from trajectory paths.   For example, because of the high specific 

capacity of water, significant temperature changes will not typically occur over one or 

even two-week prediction periods.  Exceptions may occur with a particularly extreme 

weather event, such as a cold front or heavy precipitation event, which may also induce 

large water quality changes, but this will be atypical.  Additional research is necessary to 

test the validity of these claims.  Furthermore, the validity of any general rules 

concerning algal population dynamics will likely vary somewhat from system to system, 

or even over time as watershed characteristics change.  However, one would expect 

certain fundamental behavior to remain fairly consistent.     

 

That the ANN models that excluded the water quality variables on average slightly 

outperformed models that included them may signify less about the influence of these 

variables on algal population dynamics, and more about the inadequate number of 

training events.  At the same time, it does indicate that during most time periods in the 

PVWC system, these variables may not be important predictors of algal populations, 

suggesting that they usually exist within a range of values that neither dissipate nor 

propagate algal blooms.  This is weakly supported by the Swimming River results, where 

significantly better results were achieved when water quality variables were included, 

even though this meant a five-fold reduction in the number of data events.  

 

 It should be recognized that for some time periods, inclusion of some or all of these 

variables may be important.  There was at least one case where inclusion of these 

variables significantly improved validation performance.  A comparison of time-series 
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between nitrite/nitrate concentrations and algal counts suggest at least a correlative if not 

causal relationship, where extreme blooms events occurred during periods of high 

concentrations.  Thus, with an adequate number of data events for training, inclusion of 

the select water quality variables could improve overall performance, and may increase 

the likelihood of forecasting the formation and dissipation of bloom conditions during 

unusual conditions.   

 

A modeling concern that arose towards the end of the project was the effect of so-called 

“correlative” variables, namely volumetric extractions from water sources, on ANN 

forecasting performance.  It was speculated that these variables may be more correlative 

than causative in nature, as they often reflect operational decisions instituted by PVWC in 

response to measured algal counts (e.g. discontinue extractions from a river during a 

bloom event).  If indeed more correlative, it would not be appropriate to input correlative 

variables into models that are designed to capture the underlying mechanistic processes 

that govern algal population dynamics. To investigate this, volumetric extraction 

variables from various water sources were eliminated as input variables for select models.  

It was found that the ANNs still performed relatively well, particularly for the two river 

sampling stations where mixing of various source waters does not occur.  

 

Finally, a different ANN forecasting paradigm was developed and tested for PVWC.    

Radial basis function (RBF) nets were developed to predict the pre-selected bin (i.e.  

(data range group or classification) within which the final measured algal count fell.  

Given the combination of inherent data noise and forecast uncertainty, this approach may 

be more appropriate when the goal is to classify water quality within ranges of conditions 

with relatively high probability for success.   In consultation with NJDEP and PVWC, 

four different bins or classifications were selected for eight different modeling exercises.  

The ANNs, despite the limited number of historical events available for model 

development, performed extremely well, even for cases where significant variations in 

measured counts were present.  For three of the eight cases, perfect classification was 
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achieved, with the poorest performing RBF model classifying 83 percent of the final 

counts into their correct bin.   

 

The LMs, developed as an objective benchmark for comparison, did not perform as well, 

on average achieving significantly lower correlation coefficients and higher mean 

absolute errors, and in some cases, failed to predict very high count algal blooms while 

erroneously predicting other blooms during low count periods.  It should be mentioned 

that the statistical distribution of input variables were not computed in this study, and 

consequently, data transformations performed (e.g. log normal).  Had statistical 

transformations been made, it is possible that the LMs would have performed better.  

However, this also underscores one of the inherent advantages of ANNs; because of their 

universal non-linear modeling capability, they are not limited by the form of the data 

distribution(s).   

 

To facilitate an understanding of the system and help assess model performance, three 

general types of sensitivity analyses were conducted.  For the first analysis, the ANN 

models confirmed physical intuition that the three stations generally represent distinct 

water quality systems. This was determined on the basis of the higher model performance 

achieved when modeling each station individually, rather than collectively, although the 

later approach generated significantly larger data sets.   

 

For the second analysis, a general ranking methodology identified the most important 

model predictor variables on the basis of the relative changes in root mean squared errors 

when the variables are excluded as inputs.  Although this type of sensitivity analysis is 

suspect when data events are relatively spare, some consistent trends did emerge.  

Variables that ranked highly included reservoir and river extractions, which were 

presumed to be correlative rather than causal variables.  Another finding was that the 

select “limiting nutrients” excluded from some models did not generally rank highly.  In 

contrast, some weather/meteorological conditions like length of day did consistently rank 

high, with the exception for the models that excluded water extraction variables.   
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For the third sensitivity analysis already discussed above, exclusion of select variables 

was performed. First, the importance of the less frequently measured water quality 

variables was assessed by excluding them from various models.   Statistically, there is an 

increase in predictive performance when these variables are excluded.  Again, this may 

have more to do with the relative lack of historical events, than any physical relationship 

or lack thereof between these water quality parameters and algal populations.  Still, on 

the basis of the other sensitivity analysis, where these variables did not generally rank 

highly, that during most time periods, they exist within a range of conditions that neither 

diminish nor propagate algal populations.  Second, exclusion of the water extraction 

variables, as previously mentioned, was assessed for various models, and results indicate 

that the ANN models are not overly biased by possible correlations between utility 

operational decisions and algal counts.   

 

This work provides a foundation for future modeling work as more data become 

available.  Systematic elimination of input variables combined with additional sensitivity 

analyses may improve system understanding, and facilitate convergence to optimal sets 

of model input variables.  Not only would increased ANN forecasting accuracy be 

achieved, but data collection strategies could be improved, which may even reduce 

sampling costs and efforts for the utility.   Following ANN model refinement, 

implementation of various forecasting models in real-time would provide a more rigorous 

assessment of forecasting capability, as well as a comparative analysis of their 

performance, strengths, and limitations, which may further improve modeling 

methodology and forecasting capability.   

 

For the water treatment modeling component of this project, significantly more data was 

available for model development, assessment, and refinement.  The ANN models overall 

performed well in predicting finished water quality conditions, and even confirmed a 

non-intuitive relationship between raw water quality and temperature.  However, 

consultation with utility personnel is necessary to assess whether the ANN models, as 

developed, are sufficiently robust for optimizing water treatment processes. At a 
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minimum, this modeling effort demonstrates how ANNs could possibly be used for water 

treatment optimization, and also affords the opportunity for future improvements and 

enhancements in accordance with utility guidance.    

 

Because of the large number of models that were developed and assessed (several 

hundred), this document overviews the important general findings of this project and 

discusses representative results and important conclusions.  To augment future efforts, 

and provided interested readers with additional information, an extensive collection of 

summary tables and figures for other ANN models are provided in the appendices. The 

presentation of algae modeling, results, and analysis for both Swimming River and the 

documentation and discussion of the original PVWC modeling efforts also appear in the 

appendices.  Finally, the modeling data used in this study is also available in digital 

format.  
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1. INTRODUCTION 

 

This document constitutes the final report for the algae study, entitled “Forecasting Algal 

blooms in Surface Water Systems with Artificial Neural Networks,” funded by the New 

Jersey Department of Environmental Protection, with participating utilities New Jersey 

American Water Company and the Passaic Valley Water Commission.    The objectives 

of this study were: 1)  to assess the feasibility of using artificial neural networks (ANNs) 

as a real-time tool for accurately forecasting cyanobacteria counts, more commonly 

knows as blue-green algae, in surface water systems; 2) through sensitivity analyses 

conducted with the ANNs, identify critical climate, hydrologic, and water quality factors 

(i.e. variables) that may influence algae levels; 3) assess the feasibility of using ANNs 

with formal optimization for optimizing water treatment processes for reducing algae 

levels; 4) assess and provide guidance for improving  data collection/organization for the 

purpose of improving algae level forecasting capability with the ANN technology.    With 

regard to item 1 above, as discussed later in this report, the algal forecasting was 

expanded to include two additional classes; chorophytes and chrysophytes.  

 

For the initial phase of this project, the Swimming River reservoir system, owned and 

operated by New Jersey American Water, was used as a test case for assessing the 

feasibility of using ANNs for forecasting algae levels of cyanobacteria based upon 

weather/meteorological, hydrological, biological, and water quality conditions.  Despite a 

relatively limited data set, particularly with regard to water quality data, the ANNs 

demonstrated potential as a useful algae level forecasting tool.  The ANNs not only 

outperformed linear models, but surprisingly, when limited water quality data were 

included, accurately reproduced variable algae levels.  A concern, however, was the 

relatively limited data events (48) that included water quality data, which is supported by 

relatively low validation accuracy. Given the relatively high number of input variables, 

and the possible range of conditions, it was concluded that additional data would be 

necessary to develop robust ANN forecasting models for the reservoir.  However, as 

discussed in the initial report (August 4, 2004), additional follow-up modeling was still to 
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be conducted with this data set to further assess ANN model capability, and help identify 

potentially important predictor variables for possible future model refinement and 

implementation.  Following review of the algal modeling results by both NOAH and DEP 

personnel, it was determined that the ANNs were likely “over-fitting” the state-transition 

equations to the limited data.  Consequently, the detailed description and findings of this 

algal modeling work for this facility appears in Appendix A-1, and can be obtained from 

the NJDEP in disk form upon request.    

 

The Swimming River facility also provided NOAH with a rather extensive water 

treatment data set, consisting of daily measurement values for a variety of parameters, 

spanning approximately 2.5 years, from July 2001 to December 2003.  This data set, 

consisting of raw water quality conditions, chemical dosages, and final water quality 

conditions, was used for assessing the feasibility of using ANNs for optimizing treatment 

processes.  Thus, in accordance with study objective 3 stated above, the feasibility of 

using ANNs for accurately predicting finished water quality following treatment was 

investigated, so that their potential for reducing treatment costs via optimization while 

achieving water quality standards could be assessed.   

 

Finally, to facilitate algae study objectives, the Passaic Valley Water Commission 

(PVWC) was invited to serve as a second test case.  This utility’s participation provided 

at least two additional benefits.  First, unlike Swimming River, where relatively few 

sampling events precluded individual modeling of sampling locations, a larger set of 

historical events at the PVWC utility permitted individual modeling of sampling stations.  

This site specific modeling issue may not be as relevant for Swimming River, as the three 

sampling locations in the reservoir essentially represent the same watershed/water 

sources, with perhaps some variability due to wind and hydraulic dynamics.  At the 

PVWC utility, however, two sampling stations are located on two different rivers, each 

part of a different watershed with distinct water quality conditions.  In addition, 

occasional diversions from a storage reservoir can induce unique water quality changes at 
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the third sampling location, which is usually a combination of the two river sources.  

Second, the PVWC routinely samples for a higher number of water quality indicators.   

 

For the PVWC test case, in addition to cyanobacteria, ANN modeling efforts were 

extended to two other algae phyla/divisions: chrysophyta and chlorophyta.  Discussions 

with Ms. Linda Pasquarello of PVWC determined that it would be helpful if the utility 

could also forecast levels for these two algae phyla/divisions.  Although not posing the 

potential health problems as cyanobacteria, their elevated presence can create undesirable 

taste and odor problems for consumers, as well as clog water treatment filters.  The 

capability to forecast possible high levels of these organisms, then, would allow the 

utility to implement proactive measures to minimize potential negative effects.  In 

addition, over the period of records for the PVWC, these species exhibited greater 

temporal variability in counts than cyanobacteria, and provided an additional test for 

ANN forecasting capability.   

 

Consequently, in this final study, NOAH developed, tested, and assessed a variety of 

ANN models to forecast cyanobacteria counts at both Swimming River and PVWC. 

Many different models were developed, each differing by the input variables used, the 

forecasting horizons, and, for PVWC, the sampling locations. In addition, for PVWC, 

two additional algae groups were also modeled; chrysophyta (gold algae) and 

chlorophyta (green algae).  These additional algae classes were added to the study as they 

exhibited more temporal fluctuation in counts than cyanobateria, and also present water 

quality and treatment concerns.  ANN models that classify algal counts within ranges or 

bins were also developed and tested for the PVWC facility.  Finally, ANNs for predicting 

finished water quality were also developed using water quality and treatment data for the 

since renovated water treatment plant at Swimming River.   

 

Modeling approaches for PVWC evolved to address important modeling issues that 

emerged during this project, following submission of the first draft report to DEP for 

review.  They included:  1) natural time lags in algal population dynamics, or temporal 
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correspondence between system conditions/inputs and final measured algal counts; 2) 

importance of larger training data sets on model performance; 3) importance of select 

water quality variables on model performance; 4) the effect of so-called “correlative” 

water extraction input variables on model performance, and 5) feasibility of developing 

radial basis function nets for classifying algal counts into bins or ranges, rather than a 

single numerical value estimate.  The different approaches increased understanding of the 

surface water system and algal population dynamics, as well as enhanced awareness of 

data collection and design and development issues for the ANN forecasting models.    

 

Two different ANN model paradigms were used in this project; prediction of a single 

numerical algal count value using traditional multilayered perceptron nets, and 

classification of algal counts into bins or ranges using radial basis function (RBF) nets.  

The single value predictions used two general input variable structures or approaches.  

The first or original approach consisted of model input values measured primarily at the 

beginning of the prediction period.   The second or revised approach consisted of model 

input values measured primarily at the end of the prediction period.   Modeling 

performance was further assessed using two distinct data sets; a larger data set (i.e.  more 

historical events) generated by eliminating select water quality variables that were less 

frequently measured, and a data set that included these water quality variables, resulting 

in fewer historical events, and more input variables.  In addition, the influence of so-

called correlative water extraction variables was assessed by including and then 

excluding for select forecasting problems.  Sensitivity analyses were also conducted to 

try and help identify important predictor variables and increase system understanding.   

The study permitted a systematic analysis of available modeling and data collection 

options for performing real-time forecasting, particularly with limited data sets, with a 

general discussion of their comparative advantages and disadvantages, as well as their 

feasibility under real-time conditions.   In addition, the multitude of approaches permitted 

a more general evaluation of ANN capability, as well as helping to cross-verify results 

and interpretations.   
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Despite relatively few historical events available for ANN training and validation, ANN 

models in general demonstrate the potential for accurately forecasting algal population 

counts.  Different model types generally performed well during validation, accurately 

reproducing higher and lower algal count periods during validation, and even accurately 

predicting the incidence and magnitude of a number of blooms during validation, 

including dissipation.   The original model input approach performed slightly better than 

the revised input approach, and larger training sets that excluded the less frequently 

measured water quality variables generally improved overall performance for the ANN 

models that explicitly predict single algal counts.  The opposite result occurred for the 

few classification models developed and assessed, though larger data sets (i.e. eliminating 

five water quality variables) produced more events that border on two bins; still, they 

demonstrate strong potential for accurately differentiating between low count periods and 

algal bloom events.   

 

ANN models because of the ease at which they can be implemented in real-time have the 

potential to serve as a powerful proactive management tool for utilities seeking to 

minimize the problems posed by algal blooms.  By accurately forecast the occurrence of 

problematic algal blooms, they can provide utilities with sufficient lead time to 

implement cost-effective mitigative measures.  These forecasting models also provide 

value added to expensive data collection systems, and may even be used to optimize 

sampling strategies, potentially reducing costs.   As more data becomes available, the 

ANN models can relatively easily be retrained in real-time to increase forecasting 

capability.   

 

The entire report, including appendices, presents the following ANN modeling work, 

with select linear models included for comparison; 1) additional cyanobacteria forecast 

modeling for the Swimming River facility; 2) modeling of finished water quality 

conditions at the Swimming River facility due to treatment processes; 3) individual 

forecast modeling of cyanobacteria, chrysophyta, and chlorophyta counts at the PVWC 

facility.  In addition to presenting and assessing modeling predictive results, sensitivity 



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks 
 
 

Introduction  Page 6 

analyses are also presented, and are analyzed within the context of the physical system 

being modeled.  

 

Because of the large number of models that were developed and assessed during this 

research, most of the results are presented in the appendices, including some detailed 

analysis.  Appendix A-1 includes a description of the ANN and LM modeling 

approaches, results, and analyses pertaining to algae prediction for Swimming River.  

Appendices B-1 through B-6 generally present additional ANN and LM modeling results 

in tabular and figure form, with some text describe modeling efforts and results not 

presented in this main report document.  Appendices C-1 through C-3 present additional 

water treatment modeling results and analyses for the Swimming River facility not 

presented in this report (e.g. seasonal models).  Please note that the appendices as well as 

all data used in this project are available in electronic format upon request from NJDEP. 

 

Lastly, because of water security issues, detailed facility site maps were not be provided 

in this report.  The schematics and text use arbitrary naming conventions for the rivers 

and the reservoir to protect the identity of the water source and intake point locations.   
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2. ALGAL BLOOM MODELING PROBLEM  

 

Although there is consensus among scientists that the incidence of algal blooms world-

wide is increasing (Smith et al, 2006), and the detrimental effects of these blooms on the 

environment and water supplies are well documented, controversy remains over the 

important factors and mechanisms responsible for their occurrence, and the most 

effective means for both modeling and forecasting this phenomena.   

 

Researchers have identified fundamental “nutrient” variables, primarily nitrogen and 

phosphorous, as “limiting” to the growth of algae.  Because nitrogen and phosphorous are 

often strongly correlated with the quantity of algal biomass in water systems, researchers 

frequently develop models that predict algal biomass as a function of one or more of 

these compounds.  Limiting the models to such highly reduced input-output relationships, 

while efficient and sometimes effective, not only ignores the complexity of processes that 

determine nutrient levels, but also overlooks the myriad of other factors that can 

influence algal biomass.  For example, nitrogen may originate from a number of different 

sources, and its chemical form and concentration is dictated by different nitrogen 

processes, such as nitrification, which depends upon the presence of certain bacterial 

organisms.  In some water systems, nutrients that might otherwise be considered limiting 

on the resident algal populations appear to persist within a range of concentrations that 

does not significantly affect the organisms.   

 

Further complicating the dynamics of algal populations are the variety of physical and 

biological factors that influence the formation and dissipation of algal blooms.  Sunlight 

is essential for the development of these photosynthetic organisms, and the amount of 

light that penetrates the water column is controlled by a number of factors, each of which 

may have multiple effects upon the system.  For example, precipitation not only reflects a 

lower sunlight factor, but also influences the amount of turbidity in the water column via 

sediment transfer from rainfall run-off.  The degree of run-off depends not only upon the 

quantity of precipitation, but also the size and characteristics of the watershed.   
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Precipitation also increases surface water flow velocities which can stir up and suspend 

sediments from the bottom and scour sediments from the banks.  Other factors that 

influence algal levels, like dissolved oxygen are similarly affected by other conditions of 

the system, such as water temperature, wind speed and direction, and the presence of 

other competing or even predatory organisms.   

 

Given the multitude, interplay, and complexity of various weather, water quality, 

biological, and hydrologic factors, many of which will vary over space and/or time, some 

researchers argue that there are no fast and true “rules” for predicting algal biomass and 

blooms. As with many complex natural phenomena, developing a robust model that 

adequately represents the site-specific conditions and dynamics of the system, 

specifically for the purpose of providing accurate prediction capability, can be a daunting 

challenge. It is undoubtedly true that some algal biomass models, while appropriate for 

some systems, will be inappropriate and/or infeasible for others, dictated largely by the 

degree to which the fundamental assumptions and characteristics of the model conform to 

the essential elements of the real-world system, as well as the quality and quantity of the 

data.    Some researchers argue that reliance upon numerical models for predicting algal 

biomass is insufficient, given our inadequate “’level of understanding of how these 

complicated ecological systems work’” (Pelley, 2005).   

 

The challenge then, is not only to increase our understanding of the complex dynamics 

that govern algal populations, but to develop different sampling protocols and models 

that can be adapted to our scientific understanding for improving real-time forecasting 

capability.  This goal is becoming more important as algal biomasses around the world 

become more prevalent, contaminating water supplies, often in areas where acceptable 

alternative supplies to not exist.  Thus, this research not only attempts to provide insights 

into algal populations in the surface water system considered here, which can perhaps be 

extrapolated to other similar systems, but to also provide an alternative paradigm for 

researchers and decision-makers seeking to model and forecast these organisms.   
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3.  RELATED ANN RESEARCH 

 

There is previous work in the scientific literature where ANNs were developed and tested 

for predicting algal blooms, as reported in two journal articles, both published in the 

Journal of Ecological Modeling.  Both papers have researchers associated with the 

University of Adelaide in Australia, with the first published in 1997 and the second in 

1998.   

 

The first paper, “Artificial neural network approach for modeling and prediction of algal 

blooms” (Rechnagel and others, 1997) applies the technology to four different freshwater 

systems.   The paper first introduces the complexity and non-linearity of algal bloom 

dynamics and the severe impacts associated with them, such as water discolorations and 

human exposure to toxins.   

 

The researchers used at least six and up to ten years of what appear to be weekly data 

consisting of  limiting nutrients, water temperature, light conditions, and, in one case, 

density data of zooplankton groups to train the ANN models to predict phytoplankton 

organisms.  Two years of data not used for training were then used to validate or test each 

model.    Typical ANN input variables included silica, total nitrogen, turbidity, color, 

water temperature, conductivity, pH, ortho-phosphate, nitrate, photosynthetic active 

radiation, wind speed, secchi depth, and oxygen.  For one lake system, some of the 

grazing organisms, namely Rotifera, Cladocera, and Copepoda, were also used as inputs.   

For the sole river system, flow rate was considered an important predictor variable, and 

was included in the model. The output variable for a single ANN consisted of all the 

different algal organisms measured in the water body.  As the authors state, the variables 

used represent those that were measured consistently over time.   

 

In general, the ANNs were able to predict the timing and magnitude of different blooms, 

although there were some validation years where the ANNs did not perform particularly 

well.  The ANNs were also used to conduct sensitivity analyses to assess the relative 
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importance of different predictor variables.  The authors conclude that the results 

“provide a means of defining the primary components driving they dynamics of algae 

species.”   

 

In the second paper, “Use of artificial neural networks for modeling cyanobacteria 

Anabaena spp. in the River Murray, South Australia” (Maier and others, 1998), seven 

years of weekly data, consisting of eight input variables, was used to provide forecast 

algae counts four weeks into the future.  This river is the same used in the study presented 

in the first paper, and the predictor variables consisted of color, turbidity, temperature, 

flow, soluble phosphorous, total phosphorous, oxidized nitrogen, and total iron.  The four 

nutrient variables were collected on a monthly basis, but linear interpolation was used to 

estimate weekly values.  With the exception of flow, which was measured on a daily 

basis, the remaining variables were measured on a weekly basis.   

 

One issue explored in this research was the importance of using lagged inputs. The 

researchers concluded that models that did not use lagged inputs were “relatively 

unsuccessful”, particularly with regard to flow.  Inclusion of this variable allowed the 

ANN models to forecast the onset and duration of algal blooms. Different combinations 

of input variables were used, including models with just a single input.  It was found that 

the most important variables were flow, temperature, and color for predicting blooms.  

Other variables, namely nutrients, iron, and turbidity, were not important for predicting 

blooms.  The authors concluded that adequate nutrients were available for algal growth, 

and hence were not limiting factors for the river system studied.   

 

One of the most relevant findings within the context of the NJDEP sponsored study is 

that the ANN models were unable to predict one particular algal bloom event.  The 

authors attribute this bloom to an unusual hydrodynamic event, where a large flood 

transported algae populations from shallow lagoons connected to the River.  Thus, 

because many of the algae did not originate on the river system, this was not a true 

“bloom” event, but rather a mixing of two different populations.  Consequently, not only 
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was this event outside the physical bounds of the “closed” system, there were insufficient 

representations of this anomaly for the ANN models to effectively learn this extreme 

condition, which underscores the need for data that represents the expected range of 

system behavior. 

 

With respect to water treatment, numerous sources in the literature document successful 

ANN applications.  In the work of Skipworth and others (1999), ANN technology was 

demonstrated to accurately predict oxidation-reduction potential under different patterns 

of demand and using different sources at multiple locations within a water distribution 

system.  Yu and others (1999) accurately predicted proper coagulant dosing for a water 

treatment plant, significantly outperforming a regression model.  Mirsepassi and others 

(1995) used ANNs to accurately determine alum and polymer dosages, achieving 

correlation coefficients for both parameters of 0.97 (between measured and predicted 

values) for a water treatment plant in Australia.   

 

Baxter and others (2001) present the application of ANN technology for optimizing 

several treatment processes in a large water treatment plant.  The first application 

presented is for optimizing color removal through coagulation.  The ANN achieved a 

mean absolute error (MAE) (< 0.32 TCU) less than the instrument error used to measured 

color in the clarifiers. Second, an ANN model was developed for turbidity removal via 

coagulation, using raw water quality, operations, and dose information.  For the same 

process, an inverse model was developed, where the turbidity becomes an input to predict 

the alum dosage required for treatment.  The models not only achieved low errors, but 

also provide insights into particulate removal by enhanced coagulation, and are being 

used in real-time to enhance operational decisions.  The third application was for water 

softening, where ANNs were developed to estimate the total hardness in a softening 

clarifier effluent and the softening lime dose requirements.  High predictive accuracy was 

achieved with the ANN models, with correlation coefficients for the validation data 

ranging between 0.84 and 0.95.  Lastly, an ANN model was developed for predicting 

filter effluent counts following filtration.  As stated in the paper, “there is currently a 
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weak understanding of relationships among particle count removal, chemical usage, and 

raw water quality, since the relationships are complex and nonlinear.”  The model 

achieved a mean absolute error for the validation data of 2.3 counts/ml, with a correlation 

coefficient of 0.79, demonstrating “excellent predictive capacity on previously unseen 

data.”   

 

In summary, limited research in the literature demonstrates the potential utility of ANN 

technology for predicting algal blooms and optimizing water treatment processes.  

However, every site, particularly in regard to algae population dynamics, will offer 

different challenges, and perhaps the most daunting challenge with algal bloom 

forecasting is implementation of the model in real-time conditions.  That is, the current 

research has used historical data to test or validate the models, where the model inputs are 

known a-priori.  The real challenge is to develop models that can accurately forecast 

water quality conditions in real-time using available measured data and forecasted 

conditions (e.g. weather).   
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4. ARTIFICIAL NEURAL NETWORKS 

 

ANN technology is a compelling alternative to the physical-based modeling approaches, 

and as discussed previously in the Related Research section, has been used with success 

for algal bloom prediction problems (Recknagel and others, 1997; Maier and others, 

1998).  An ANN, through proper development and training, “learns” the system behavior 

of interest by processing representative data patterns through its architecture. What sets 

an ANN apart from a physical-based model is that because it does not rely upon the 

governing physical laws, information regarding physical parameters is often not required 

for its development and operation.  

 

Because of its empirical nature, ANN technology is sometimes erroneously referred to as 

an “advanced” type of regression analysis.  What distinguishes ANN technology from 

regression is the famous Kolmogorov’s Theorem (Hecht-Nielsen, 1987, Sprecher, 1965).  

Specifically, this theorem asserts that any continuous function, from Rm to Rn, can be 

represented exactly by a three layer feedforward neural network with n elements in the 

input layer, 2n+1 elements in the hidden layer, and m elements in the output layer, where 

n and m are arbitrary positive integers.   By contrast, regression is guaranteed to provide 

only an approximation by computing the best fit from a given function family.  In 

addition, unlike regression, which treats all output variables independent of each other, 

the presence of common arcs in the ANN architecture allows it to identify important 

inter-relationships that may exist between output variables.   

 

Figure 1 depicts a sample three-layer feedforward ANN architecture.  Each ANN layer 

consists of individual nodes (elements), and the nodes are interconnected across layers by 

special non-linear (usually non-rational) transfer functions, expressed in terms of the 

nodal input variables and connection weights.  During training, data patterns are 

processed through the ANN, and the connection weights are adaptively adjusted until a 

minimum acceptable error between the ANN predicted output and the actual output is 
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achieved.  It is at this point that the ANN has “learned” to predict the system behavior of 

interest (i.e. values of output variables) in response to the values of the input variables.   

 
Figure 1. Architecture for a simple multi-perceptron ANN 

 
 

In this work, the commonly employed non-linear hyperbolic tangent transfer function,  
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was used, where Sumj represents the weighted sum for a node in the hidden layer, and e 

denotes the basis of the natural logarithm.   In Sumj, the input value received by each 

node in the hidden layer is multiplied by an associated connection weight, whose value is 

identified during learning.  This weighted sum can be formally represented as:   
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where wji represents the connection weight between the ith node in the input layer and the 

jth node in the hidden layer.  The input xi is known, and represents the values of the input 

variables for node i in the input layer.  A bias unit, which helps to provide numerical 

stability, is merely added as the connection weight wjb because it has a constant input 

value of 1.0.    

 

There are various kinds of ANN learning algorithms, and the interested reader is referred 

to the work of Poulton (2001) for more details.  In this work, a combination of back 
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propagation and conjugate gradient algorithms were used.  The prediction accuracy of an 

ANN is measured by the mean squared difference between the actual and predicted 

output values.  For a preselected ANN model and corresponding data set, this mean 

squared error depends only on the values of the connection weights.  During learning, the 

ANN processes training patterns consisting of input-output patterns through the network, 

systematically adjusting the connection weights, so that the measure of the overall 

goodness of the ANN model defined as the root mean squared error (RMSE) between the 

ANN-estimated output values and the actual values, is minimized.    The minimization 

learning algorithm is always iterative, and each step is considered “learning”.   

 

The RMSE is mathematically defined as:   
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k k
k
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γ
=

= −∑       (3) 

 

where kγ is the ANN-estimated/predicted algae count value for the kth training event, Ck 

is its corresponding measured algae count, and N denotes the total number of such events.   

 

In selecting the most appropriate ANN model, a variety of factors must be considered.  

This includes the functional form of the ANN transfer functions, the number of hidden 

layers and nodes, the most appropriate set of input variables, and the method used to 

minimize the objective function.  This process is typically conducted in an iterative 

manner within the context of professional judgment and modeling experience.  For 

example, selection of an appropriate set of input variables during initial ANN 

development requires a basic understanding of the governing system dynamics.  

However, a sensitivity analysis in conjunction with trial and error can help the modeler 

converge to the most appropriate feasible set of predictor variables.  The sensitivity 

analysis, which quantifies the relative importance of each input variable for accurately 

predicting each output variable, can be used in lieu of common statistical methods.   
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During ANN development in this project, learning proceeded in a series of training and 

verification steps. The ANN is presented with training data during which patterns are 

processed through the network, and the learning algorithm adaptively adjusts the network 

connection weights to minimize the RMSE between actual and estimated output values.  

Intermittently, the training phase is interrupted, and a separate (verification) data set is 

processed through the ANN to verify progressive learning, as indicated by a declining 

RMSE value obtained with the verification data set.  Verification guards against 

overtraining, where the ANN has memorized or over-fitted the connection weights to the 

training patterns.  Training proceeds until the verification RMSE either stabilizes or 

begins to increase.  At this point, ANN training is terminated, and the ANN can now be 

validated with a third data set not previously used for training or verification.  Validation 

is used to determine whether the ANN has learned system behavior of interest over the 

range of expected conditions.  To provide robust training, verification, and validation, 

statistically similar data sets spanning the expected range of system behavior were used 

for ANN development and validation.  One half of the available data are used for 

training, one quarter for verification, and the remaining one quarter for validation or 

testing.  

 

Being “data-driven” models, robust ANN development is absolutely dependent upon the 

quantity and quality of the data used to train the models.  As discussed by Coppola and 

others (2003), “appropriate training set size for an ANN depends upon a number of 

factors, including its dimension (i.e. number of connection weights), the required ANN 

accuracy, the probability distribution of behavior, the level of noise in the system, and the 

complexity of the system.”  Complexity within the context of ANN modeling refers to a 

system where small changes in model input values produce large and even contradictory 

changes in model output values.  A system that does not exhibit this type of complexity 

may then be referred to as a “well-behaved” system.   

 

Researchers have developed a number of heuristic equations for estimating the minimum 

number of training data required for robust ANN model development.  One such rule 
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uses the following mathematical relationship, where this number is a function of the 

number of ANN input or predictor variables, designated m, and the number of ANN 

output or prediction variables, designated n: 

 

Minimum Number of Required Training Samples = [(1.5 × m) + (1.5 × n)] × c             (4) 

 

where c is some constant, typically ranging between 4 and 10. Thus, assuming an average  

sized model for the algae work conducted for PVWC, consisting of 32 inputs and one 

output, the summation in the brackets, [(1.5 × 32) + (1.5 × 1)], computes to 50 (rounded 

up).  Using the range of values for the constant c, the computed number of training events 

required for robust ANN training ranges from 200 to 500 sample events.  

 

Because algae population dynamics are highly complex and even considered non-linear 

in behavior (reference), and, given the expected noise in the data, the number of required 

training data necessary for robust ANN model development is probably closer to the 

upper value approaching 500 events.  It should not be overlooked that more data also 

permits validation of the models under a greater range of conditions.   

 

The poor performance for the Swimming River facility is also related to the second data 

issue, quality, as pertaining to model inclusion of all important causal or predictor 

variables governing the behavior or outputs of interest.  As discussed above, ideally, the 

modeler should have a well-founded intuitive or empirical if not theoretical 

understanding of the governing dynamics of the system.  This understanding ensures that 

all necessary predictor variables are included as model inputs.  An excellent illustration 

of this requirement, and in stark contrast to the PVWC case, is that ANN performance for 

the Swimming River facility declined significantly following elimination of four water 

quality parameters intermittently sampled for by the utility (ammonia, turbidity, 

nitrite/nitrate, and phosphorous).  This decline in predictive performance occurred even 

though the sample size for ANN development and assessment increased more than five-

fold, from 48 to 221 events.  
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As part of the quality issue, data should also span the expected range of system 

conditions.  For example, if there is the possibility for algae blooms during cooler 

months, data collected should include these months, and not only warmer months when 

blooms occur at higher frequency.  While ANNs are excellent interpolators, they 

generally do not extrapolate well outside of the range of conditions for which they have 

been trained.   

 

As was done in this research, sensitivity analysis and selective inclusion and exclusion of 

input variables can help the modeler converge to an appropriate set of predictor variables.  

However, ideally, the modeler should have a basic understanding of the system, which 

eliminates the possibility of excluding an important variable, but also promotes a more 

expedient convergence to a robust model.  This understanding can help the modeler 

assess the potential strengths and weaknesses of the model, and identify situations under 

which its predictive capability may be suspect, or where inclusion of a certain variable 

critical.  In addition, the modeler can help design a sampling program to include 

important or potentially important variables that to date have been sample either 

infrequently or not at all.  This type of analysis is an accepted modeling methodology to 

reduce the dimensionality of the problem, and also eliminate spurious input variables 

(Swingler, 1996).   

 

Two statistical measures in particular are used to assess ANN performance in this study; 

mean absolute error and correlation coefficient, mathematically defined as: 

 

Mean Absolute Error = 1/N CkYk
N

k

−∑
=1

   (5) 

Correlation Coefficient = 
SccSyy
Scy     (6) 

 

where kγ is the ANN-estimated/predicted algae count value for the kth event, Ck is its 

corresponding measured algae count, N denotes the total number of such events, Scc and 
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Syy denote the sample variances of the final predicted algal counts and final measured 

algal counts, respectively, and Scy represents the covariance between final predicted and 

final measured counts.  Mean absolute error is a measure of the absolute average 

difference between final measured and final predicted algal counts.   Correlation 

coefficients range between -1 and +1, with values close to +1 indicating a strong positive 

correlation between predicted and measured values, and values closer to 0 indicating little 

correlation.  In this analysis, no correlation values were below 0.   

 

At the end of this project, radial basis function (RBF) neural networks were also 

developed for eight select cases.  As discuss in more detail later, instead of forecasting a 

single count value, as done previously, the RBF nets were developed to predict the bins 

or classification range (four pre-specified bins or classes) in which the final measured 

algal counts would fall.   

 
For the RBF nets used for predicting the bin or classification range of the final measured 

algal counts (into four pre-specified bins or classes), a slightly different learning 

approach are used.  For this paradigm, it is assumed that it input patterns are mapped to a 

higher dimensional space,   there is a greater chance that the problem will become 

linearly separable based on Cover's Theorem (Cover, 1965; Haykin, 1999).  For RBF’s, 

the input pattern is non-linearly mapped to this higher dimensional space through the use 

of radially symmetric functions (usually Gaussian), with similar input patterns 

transformed through the same RBF node.  The training process starts with an 

unsupervised phase during which the center and width of each RBF node must be trained.  

The centers start with random values and for each input pattern, and the center with the 

minimum distance to the input pattern is updated to move closet to that input pattern.  

Once the center vectors are fixed, the widths of the RBFs are established based on the 

root-mean-squared distance to a number of nearest neighbor RBFs.  Following 

completion of the unsupervised phase, the connection weights between the RBF layer and 

the output layer are trained.    
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As discussed above, networks with a large number of input variables can be susceptible 

to over-fitting and a sign of over-fitting is a network function with high curvature.  High 

curvature of the fitted function is a result of large connection weights.  One method to 

reduce the network complexity or curvature is to penalize large connection weights 

through a process of weight regularization.  The method of Weigend et al. (1991) is 

commonly used, where a penalty term in Equation 7 is calculated and added to the error 

term and to the connection weight’s derivative at each step.  Weights with large values 

are penalized the most and driven to small values.  Once the weights are below a user-

defined threshold the input variable or the hidden processing element is eliminated if all 

connection weights attached to it fall below the threshold value. 

 
Penalty  =  λ Σ wi

2 / (w0 + wi
2)   (7)              

                      
 λ and w0 are user specified constants. 
 
For the RBF modeling only, this approach was used, with a threshold value of 0.5 

assigned to determine when a variable or processing element should be eliminated during 

training. 

 
For all modeling conducted in the project, the commonly used modeling software 

Statistica was used. NOAH has used this software in a variety of projects, including an 

EPA Water Security Project and groundwater modeling.  Dr. Mary Poulton, a NOAH 

principle and ANN expert modeler, uses this software in her graduate level course at the 

University of Arizona.  Both she in this course and NOAH in its work have benchmarked 

the software against MATLAB’s neural network toolbox and NeuralWare, two other 

popular ANN software programs, and it has comparatively performed well.   In addition, 

the software was also used for the linear modeling in this project, which served as a 

benchmark for ANN performance.   
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5. THE STUDY AREAS 

 

5.1 Swimming River 

 

The Swimming River facility is located in Tinton Falls, New Jersey, approximately 6 

miles west of the Atlantic Ocean.   The facility has a history of algal blooms, which 

normally occur in warmer months.  The data set used for developing and assessing the 

ANN methodology included most variables that are considered potentially important for 

predicting algae levels.  A total of 221 weekly events of physical parameters 

measurements were initially generated from the available data, as well as 48 water quality 

samples collected intermittently over the period March 2002 to November 2003.  Data 

provided by the New Jersey American Water Company (NJAWC) for the study site 

included water temperature, dissolved oxygen or D.O., secchi depth, pH level, algae 

counts per class, Total Phosphorus (µg/L), Nitrite/ Nitrate (µg/L), Ammonia as N (µg/L), 

Turbidity NTU, Silica (mg/L), Iron (mg/L), and Manganese (mg/L).   Much of the data 

was provided in paper format, which was entered by NOAH personnel, and then 

underwent QA/QC for transcription accuracy, by an independent assessor.  For this 

preliminary assessment, the later three constituents were not used, as they were measured 

relatively infrequently.  Climate data was obtained from the National Oceanic and 

Atmospheric Administration (NOAA) and included total daily precipitation, average 

daily temperature, wind speed, wind direction and sky cover, while solar radiation data 

were taken from stations operated and maintained by NJDEP.  The weather station used 

for precipitation, wind speed, and direction was Belmar, which is located approximately 

8 miles southeast of the study area.  For the relatively few days where data was missing, a 

linear regression was performed using Glendola’s and Belmar’s data from January 1, 

2002 to July 24, 2003, with which missing precipitation values were estimated.  Solar 

radiation data was collected at the Flemington station, located approximately 44 miles 

from Tinton Falls.   In this final phase, additional modeling efforts and refinement were 

restricted to the 48 events that included water quality conditions.  The rationale for this is 

the most accurate modeling performance was achieved with this data set, even though the 
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“physical” data set, which did not include any of the “chemical” parameters (total 

phosphorous, nitrite/nitrate, ammonia, and turbidity), had significantly more data 

available for training.   

 

The conclusion drawn from these preliminary modeling results, and supported by algae 

population dynamics, is that inclusion of water quality conditions can be important for 

developing robust models that can accurately forecast algal levels.  As discussed 

previously, following review of the algal modeling results by both NOAH and DEP 

personnel, it was determined that the existing data set was insufficient for model 

development, and the ANNs were likely “over-fitting” the state-transition equations to 

the data.  Consequently, a detailed description and analysis of this modeling effort is not 

included in this document, but is provided in Appendix A-1, which can be obtained upon 

request by interested individuals from NJDEP in disk format.    

 

For the water treatment modeling, the data set provided by New Jersey American 

constituted approximately 2.5 years of daily data consisting of 60 variables, of which 57 

were used as model inputs, with the remaining 3 serving as outputs.  The outputs were:  

average daily turbidity, highest daily turbidity, and average daily number of readings 

above 0.1 NTU.  

 

The variables used in the water treatment problem can be classified into four basic 

groups: physical water data, chemical water data, water treatment data, and weather data. 

For example, physical water data includes variables such as total daily flow and average 

water temperature.  Chemical water data include average daily measured turbidity, pH, 

and average daily chlorine levels. Water treatment data was the quantity or doses of 

chemicals added for treatment, such as sodium hydroxide and hydryfluosilicic acid.  

 

A variety of different modeling exercises were conducted for the water treatment 

problem.  However, because of length concerns, only the most important and 

representative modeling work and results are presented in this document.  Similar to the 
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Swimming River algal modeling, the complete description and analysis of this modeling 

effort is provided in Appendices C-1 through C-3, which can be obtained upon request by 

interested individuals from NJDEP in disk format.    

 

5.2   Passaic Valley Water Commission (PVWC) 

 

Passaic Valley Water Commission (PVWC) is a wholesale and retail provider of drinking 

water to over 750,000 customers in Northern, New Jersey. The Commission owns and 

operates the Little Falls Water Treatment Plant (LFWTP), located in Totowa, New 

Jersey. The treatment plant was recently upgraded to include high rate sand-ballasted 

flocculation, ozonation and biological filtration to provide multiple barriers of microbial 

protection and to comply with recently implemented Safe Drinking Water Act 

Regulations.  

 

Algal blooms result in two basic types of treatment challenges: effective particle 

settling/removal and objectionable tastes and odors. PVWC has an extensive watershed 

water quality monitoring program in place to assist with decision making for source 

water selection and prediction of water quality changes. Grab and online sample data are 

supplemented by USGS flow and water quality monitoring stations located throughout 

the watershed. The existing algal monitoring program consists of analyzing key water 

quality parameters and correlating changes in concentrations to predictions of algal 

concentrations. Routine direct measurement of the odorants Methyl Isoborneol and 

Geosmin, both algal metabolites, at key watershed, plant and finished water locations 

provide additional guidance for source water selection, in particular to minimize algal 

related taste and odor events. However, PVWC is continually exploring innovative 

methods to provide early warning of changes in water quality, and in particular, presence 

of algal blooms with sufficient response time to adjust treatment as required for 

mitigating negative water quality impacts.  
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Figure 2 provides a schematic representation of the system used in this project, with 

actual site location names omitted for water security reasons. The figure depicts the two 

possible river sources and a surface water reservoir used to supply the utility with its 

source water, which enters the LFWTP intake point for treatment.  River B is gravity fed 

to the treatment plant intake. River A flows into and becomes part of River B upstream of 

the LFWTP intake, but can also be directly pumped to the plant intake via Pumping 

Station 2, thereby influencing the blend of River A being treated at the plant. A third 

surface supply, Reservoir A, is available on a limited basis to dilute any negative water 

quality impacts that may be present in Rivers A and B. Reservoir A is recharged with 

water from River A via Pumping Station 1 as needed to maintain adequate raw water 

storage levels, and in times of abstraction, is delivered directly to the plant intake location 

in the canal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  PVWC Raw Water Configuration 
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The LFWTP typically treats raw water from either one of two surface water supplies, 

Rivers A and River B, or some blended combination thereof.  A third raw water reservoir, 

Reservoir A, is available on a limited basis, as needed during drought conditions and/or 

to minimize negative water quality impacts from either of the two primary surface water 

sources. These source waters are highly variable in both quality and quantity with respect 

to seasonal changes and precipitation related events. Source water selection is based 

primarily on water quality conditions followed by economic factors such as treatment and 

pumping costs.  

 

Rivers A and B have historically exhibited variable and unique water quality 

characteristics that impart differing degrees of treatment challenges.  River B is 

considered to be of poorer water quality because of higher organic concentrations, while 

River A has a higher incidence of extreme algal blooms, which have challenged the 

treatment plant prior to the recently upgrade treatment processes.  

 

The three water quality monitoring or sampling stations, numbered 100, 101, and 612 

shown in figure 2 were used in this study.  Sampling Station 100 is located at the raw 

water intake point for the LFWTP, and is representative of the water sources used to 

supply the treatment plant.  The water source(s) entering the intake point at sampling 

Station 100 can at any given time originate from one or more of three possible sources; 

River A, River B, and Reservoir A.  Water quality sampling Station 612, located at the 

intake for Pumping Station 2, is almost always representative of water quality on River A 

(in past years, some low flow extreme conditions coupled with high extractions at 

Pumping Station 2 captured some portion of River B for short periods).  The third and 

last water quality sampling location, Station 101, located at the mouth of the canal that 

leads from River B to the LFWTP, is representative of water quality conditions on River 

B capturing conditions after the confluence of Rivers A and B.  

 

As part of the recent plant upgrade, online water quality monitoring stations were 

installed at the pumping stations 1 and 2 and at the plant intake to provide continuous 
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data for source water selection and for advanced warning of water quality changes. 

Because the largest source of water used by the utility during the study period was 

derived from River A, for most time periods, water quality at Station 100 (i.e. intake 

location) is highly correlated with water quality at Station 612 (i.e. Pumping Station 2 on 

River A).  During most of the data collection period of this study, Station 100 intake 

water was a blend of River A (100 – 60%) and River B (0 – 40%) water.  On rare 

occasions, it was a blend of River B and Reservoir A water. 

 

The data set used for developing and assessing the ANN methodology included most 

variables that are considered potentially important for predicting algae levels.  The final 

ANN models were developed for two forecast prediction periods; one-week ahead and 

two-weeks ahead.  The two forecasting horizons were selected in part recognizing that 

the best available weather forecasts that provide some measure of confidence do not 

extend much beyond two weeks or so.  In addition, these forecast horizons provide the 

utility with sufficient lead time to plan and implement effective proactive measures and 

strategies.    

 

It was found that to improve model performance, each station should be individually 

modeled, rather than collectively as was done with Swimming River.  This finding 

conforms to physical intuition, as two of the stations measure water quality conditions on 

different rivers, each with unique watershed characteristics. A summary of modeling 

results for the combined station modeling effort is presented in Appendix B-4.   

 

 A total of 553 measurement events, consisting of water quality, hydrologic, and water 

data collected intermittently over the period January 1999 to August 2004 were used in 

the study.  The three individual stations were sampled at different frequencies, and thus 

events between stations do not always correspond in time.  Station 100, located at the 

intake point, was sampled at the highest frequency, with as many as 270 historical events 

available for model training and validation.  At the other extreme, Station 101, located on 

the least frequently abstracted river source, was sampled much less frequently, with as 
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few as 41 events and no more than 109 available for model training and validation.  

Station 612, located on the most frequently abstracted River A, also had relatively few 

historical events, but when the five select water quality variables were eliminated, it had 

the largest relative increase in sample size, from approximately 40 or 50 events to as 

many as 174 events.   

 

The parameters provided by PVWC are listed in Table 1 below. 

 

Table 1.  Parameters Provided by PVWC for the Algae Modeling Study 
 

Parameter Unit Parameter Unit 

Water Temperature 0C Total Phosphorus  mg/L 

pH  Orthophosphate  mg/L 

Turbidity1 NTU Nitrite  mg/L 

Alkalinity1 mg/L as CaCO3 Nitrate mg/L 

Hardness, Total  mg/L as CaCO3 Ammonia mg/L 

Hardness, Ca4  mg/L as CaCO3 Total Suspended Solids3 mg/L 

Color2 Cu Total Solids4  mg/L 

Odor  Total Dissolved Solids 4 mg/L 

Conductivity  Umhos/cm UV254   cm-1 

Dissolved Oxygen mg/L Total Organic Carbon mg/L 
Biochemical Oxygen 
Demand mg/L Total Amorphous Materials2 Cells/ml 

COD4  mg/L Cyanobacteria counts Cell/ml 

Sulfate  mg/L Chrysophyta counts Cell/ml 

Chloride  mg/L Chlorophyta counts Cells/ml 

Fluoride4 mg/L   
 1 – value estimated for Station 100, 2 – data not available to Station 100 
 3 – data not available to Station 101 and 612, 4 – very limited data, not used in ANN development 
 

The data were provided to NOAH in electronic format by Ms. Linda Pasquarello, Water 

Quality Specialist.  Climate data was obtained from National Oceanographic and 

Atmospheric Administration (NOAA) and included total daily precipitation, average 
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daily temperature, wind speed, and wind direction.  There was no available data for solar 

radiation; hence data for sky cover, heating degree days, and length of day were also 

used, with values for the two first variables also obtained from NOAA, and the last 

obtained from sunrise and sunset tables obtained from the following website:  

www.jgiesen.de/GeoAstro/GeoAstro.htm.   

 

The weather stations included Caldwell, located approximately 6 miles southeast of the 

site, Newark, located approximately 11.4 miles south of the site, and Tetterboro, which is 

located approximately 9 miles southwest of the site.  Flow data were collected by the 

United States Geologic Survey (USGS) at the River A gauging station.  PVWC also 

provided daily volumetric extraction data for River A, River B, Reservoir A and Pumping 

Station 1 and Pumping Station 2.  Pumping Station 2 is at the intake point of River A. 
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6.   WATER TREATMENT MODELING – SWIMMING RIVER RESERVOIR 

 

6.1  Overview 

 

As discussed above, for the water treatment modeling, the data set provided by New 

Jersey American spanned approximately two and a half years, consisting of 60 variables 

recorded for each day. The variables used in this water treatment modeling problem can 

be classified into four basic groups- physical water data, chemical water data, water 

treatment data, and weather data. For example, physical water data includes variables like 

total daily flow and average daily water temperature.  Chemical water data include 

average daily measured turbidity, pH, and average daily chlorine levels. Water treatment 

data was the quantity or doses of chemicals added for treatment, such as sodium 

hydroxide and hydryfluosilicic acid. Weather variables were the most limited, consisting 

of only three variables; middle ambient air temperature, average daily ambient air 

temperature, and maximum daily ambient air temperature.   

 

The water treatment output variables for which ANN prediction models were developed 

were average daily effluent turbidity reading (average turbidity), highest daily effluent 

turbidity reading (highest turbidity),  and daily number of readings above 0.1 NTU (daily 

readings).  All three of these variables are a measure of how effectively water treatment 

processes have removed suspended materials, such as sediments and organic material, 

like algae.  A complete list of the input variables can be found in Appendix C-3, Table 1.  

 
Somewhat less modeling was performed for the highest daily turbidity reading output 

variable.  Because most of the variables measured represent average or total daily values, 

it may not be realistic to accurately model and predict a system state that is highly 

dependent on system changes that occur over much shorter time periods (e.g. hourly).  

Nevertheless, modeling of this variable was conducted for most cases.   It should be 

noted that improved modeling performance was achieved with ANN models developed 

for each season, and a detailed overview of these results, and comparison with the models 

presented here, can be found in Appendix C-1. 
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6.2   Initial ANN Modeling Results 

 

Figure 3 depicts the three prediction output variables of interest over the roughly 2.5 year 

period of record, from July 1, 2001 to December 31, 2003.  As shown, the levels of the 

three variables generally increased over time, and this could be due to a reduction in the 

effectiveness of the water treatment processes. A plotting of the turbidity levels for the 

raw water does not exhibit an obvious increase with time, but instead, is correlated with 

seasons, which will be discussed in more detail later.    
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Figure 3.  Daily turbidity readings above 0.1 NTU, average daily turbidity, and 
highest daily turbidity with respect to time over data record for Swimming River. 

 
 

For the initial modeling exercise, seven different ANN models were developed and 

tested; two to predict average turbidity, two to predict daily readings, and three to predict 

highest turbidity.  More than one ANN was trained for each so that, as with the 

Swimming River modeling efforts described above, the robustness of the models as 

indicated by consistency in both statistical performance and sensitivity analysis results 

could be assessed.  Table 2 below compares the overall model performance achieved for 

the seven initial models.   
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Table 2.  Overall Statistical Performance of the ANN Models for 
Swimming River Water Treatment 

 Average Turbidity Highest Turbidity Daily Readings 

 First Second First Second Third First Second 

MAE 0.01 0.01 0.025 0.03 0.01 1.48 1.49 

Correlation Coefficient 0.72 0.66 0.11 0.18 0.61 0.72 0.72 

 
 

As shown, the ANN models for average turbidity and daily readings performed 

consistently well, with relatively high correlation values.  In contrast, there were 

inconsistent results for the three individual ANN models developed for predicting highest 

daily turbidity, with generally low correlations. Relatively similar performance can be 

observed from Table 3, which compares, for each of the best models for each variable, 

overall ANN model performance against performance during training and validation (i.e. 

testing).    

 

Table 3.  Comparison of Overall Performance versus Training and Validation for 
Best ANN Water Treatment Models for Swimming River 

 
 Overall Training Validation 

 MAE Correlation 
Coefficient MAE Correlation 

Coefficient MAE Correlation 
Coefficient 

Average Turbidity 0.01 0.72 0.01 0.71 0.01 0.80 

Highest Turbidity 0.01 0.61 0.01 0.66 0.02 0.58 

Reading 1.53 0.72 1.27 0.81 1.56 0.66 

 

The training and validation results are most similar for the ANN models that predict 

average daily turbidity and daily readings. There is more discrepancy between training 

and validation for the ANN model that predicts highest daily turbidity, as shown by the 

mean absolute errors.   

 

Figures 4 through 6 compare measured against ANN model predicted values, for average 

turbidity, highest turbidity, and daily readings, respectively.  As shown, for average 
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turbidity and daily readings, the ANN models generally follow the higher and lower 

readings.  For average turbidity, the ANN model has a stronger tendency to under-predict 

extremely high readings, and over-predict very low readings. This tendency to miss 

extremes is likely due to relatively few extreme examples for which the ANNs can learn 

from.  Similarly, for the highest turbidity, the models have a stronger tendency to under-

predict extreme high values and over-predict extreme low values.   

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Measured average daily turbidity readings versus ANN predictions 
For Swimming River. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Measured highest daily turbidity readings versus ANN predictions for 
Swimming River. 
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Figure 6.   Measured daily turbidity readings above 0.1 NTU versus ANN 
predictions for Swimming River. 

 
 
6.3  Sensitivity Analysis 

 

As was done with the Swimming River algae modeling component, sensitivity analyses 

were conducted for the ANN water treatment models. Tables 4, 5, and 6 depict 

representative results for all ANN models used for the three prediction variables, average 

turbidity, highest turbidity, and average readings, respectively.  The ten highest and 

lowest ranking variables for each model are displayed in the tables.  Color coding has 

been used to facilitate recognition of identical input variables.    The complete tables can 

be found in Appendix C-3.   
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Table 4.  Comparison of Sensitivity Analysis Results for 
Average Daily Turbidity Models with top 10 and bottom 10 variables in terms of 

RMSE ratio values for Swimming River 
 

Model 1 Model 2 

Variable Input Variable 
No. Ratio Rank Variable Input Variable 

No. Ratio Rank

Temp Raw °C Var45 1.087 1 Turbidity Settled 
NTU Var35 1.061 1 

Turbidity Settled 
NTU Var35 1.036 2 Chlorine mix 

mg/l Var41 1.021 2 

Chlorine mix 
mg/l Var41 1.034 3 Filters 

Washed/24H Var3 1.015 3 

Chlorine Eff 
mg/l Var44 1.028 4 Chlorine Eff 

mg/l Var44 1.014 4 

Filters 
Washed/24H Var3 1.021 5 Chlorine 

PPM/24H Var24 1.012 5 

Temp Eff °C Var46 1.02 6 Temp Raw °C Var45 1.011 6 

Chlorine 
PPM/24H Var24 1.016 7 

Polyaluminum 
chloride 
gals/24H 

Var15 1.011 7 

Hydryfluosilicic 
acid PPM/24H Var26 1.015 8 Sysdel SR Midd 

MGD Var31 1.01 8 

Fluoride 
avg.mg/l/24H Var47 1.011 9 pH Settled Var39 1.01 9 

Air temp °C 
min/24H Var54 1.011 10 Fluoride 

avg.mg/l/24H Var47 1.01 10 

Washwater 
MGD Var4 0.999 48 Turbidities 

measured/24H Var49 1 48 

pH Mix Var38 0.999 49 pH Mix Var38 0.999 49 

Peak flow raw 
MGD/24H Var52 0.999 50 

Zinc 
orthophosphate 
PPM/24H 

Var27 0.999 50 

Air temp °C 
avg/24H Var56 0.999 51 Air temp °C 

min/24H Var54 0.999 51 

Chlorine lowest 
mg/l/24H Var50 0.999 52 Raw MGD/24H Var1 0.999 52 

Zinc 
orthophosphate 
gals/24H 

Var19 0.999 53 Air temp °C 
avg/24H Var56 0.999 53 

Polymer 
PPM/24H Var22 0.999 54 Air temp °C 

max/24H Var55 0.999 54 

Settled readings 
>2,0 NTU/24H Var57 0.998 55 Peak flow raw 

MGD/24H Var52 0.999 55 

Polymer 
gals/24H Var16 0.997 56 System Delivery 

MGD Var2 0.997 56 

Carbon 
PPM/24H Var25 0.997 57 pH Effluent Var40 0.962 57 
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Table 5.  Comparison of Sensitivity Analysis Results for Highest Daily Turbidity Models with top 10 and bottom 10 variables 
in terms of RMSE ratio values for Swimming River. 

 
Model 1 Model 2 Model 3 

Variable Input 
Variable Ratio Rank Variable Input 

Variable Ratio Rank Variable Input 
Variable Ratio Rank

Turbidity Settled  
NTU Var35 1.003 1 Settled readings >2,0 

NTU/24H Var57 1.008 1 Turbidity Settled  
NTU Var35 1.028 1 

Temp Raw °C Var45 1.001 2 Turbidity Settled  
NTU Var35 1.003 2 pH Raw Var37 1.015 2 

Turbidity Raw NTU Var34 1.001 3 Temp Raw °C Var45 1.001 3 NaOH PPM/24H Var23 1.015 3 

Air temp °C min/24H Var54 1.001 4 Turbidity Raw NTU Var34 1.001 4 Chlorine mix mg/l Var41 1.013 4 

Sysdel SR Main MGD Var30 1 5 Temp Eff °C Var46 1.001 5 Temp Raw °C Var45 1.012 5 

Chlorine lbs/24H Var8 1 6 Chlorine lbs/24H Var8 1 6 Chlorine PPM/24H Var24 1.011 6 

Zinc orthophosphate 
gals/24H Var19 1 7 Zinc orthophosphate 

PPM/24H Var27 1 7 Raw MGD/24H Var1 1.011 7 

Hydryfluosilicic acid 
PPM/24H Var26 1 8 Chlorine CW mg/l Var43 1 8 Fluoride 

avg.mg/l/24H Var47 1.01 8 

Fluoride avg.mg/l/24H Var47 1 9 Sysdel SR Main 
MGD Var30 1 9 Filters Washed/24H Var3 1.007 9 

Polymer lbs/24H Var7 1 10 Fluoride 
avg.mg/l/24H Var47 1 10 Polyaluminum 

chloride PPM/24H Var21 1.007 10 
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Table 6. Comparison of Sensitivity Analysis Results for Highest Daily Turbidity Models with top 10 and bottom 10 variables 
in terms of RMSE ratio values for Swimming River (continued) 

 
Model 1 Model 2 Model 3 

Variable Input 
Variable Ratio Rank Variable Input 

Variable Ratio Rank Variable Input 
Variable Ratio Rank

Polyaluminum 
chloride lbs/24H Var6 1 48 CW Lowest level/24H Var51 1 48 Polymer gals/24H Var16 1 48 

Carbon PPM/24H Var25 1 49 Sodium Chlorite 
gals/24H Var20 1 49 Zinc orthophosphate 

lbs/24H Var12 1 49 

Polymer gals/24H Var16 1 50 Chlorine PPM/24H Var24 1 50 Turbidity Raw NTU Var34 1 50 

Settled readings >2,0 
NTU/24H Var57 1 51 Polyaluminum 

chloride PPM/24H Var21 1 51 Chlorine lbs/24H Var8 0.999 51 

Average  % 
solids/liter Var14 1 52 Polyaluminum 

chloride gals/24H Var15 1 52 Air temp °C avg/24H Var56 0.999 52 

Chlorine PPM/24H Var24 1 53 Washwater MGD Var4 1 53 Settled readings >2,0 
NTU/24H Var57 0.999 53 

Temp Eff °C Var46 1 54 Carbon lbs/24H Var5 1 54 Zinc orthophosphate 
PPM/24H Var27 0.999 54 

NaOH PPM/24H Var23 1 55 Hydrofluosilicic acid 
lbs/24H Var11 1 55 Ferric chloride 

PPM/24H Var28 0.998 55 

Chlorine mix mg/l Var41 1 56 Chlorine Settled mg/l Var42 1 56 Air temp °C 
max/24H Var55 0.998 56 

Air temp °C max/24H Var55 1 57 pH Raw Var37 1 57 pH Effluent Var40 0.996 57 
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Table 7.  Comparison of Sensitivity Analysis Results for Readings  
above 0.1 NTU Models with top 10 and bottom 10 variables in terms of  

RMSE ratio values for Swimming River. 
 

Model 1 Model 2 

Variable 
Input 

Variable 
Number 

Ratio Rank Variable 
Input 

Variable 
Number 

Ratio Rank 

Sodium chlorite lbs/24H Var9 1.148 1 Turbidity Settled  NTU Var35 1.095 1 

Chlorine mix mg/l Var41 1.107 2 Temp Raw °C Var45 1.081 2 

Air temp °C min/24H Var54 1.076 3 Chlorine mix mg/l Var41 1.062 3 

Temp Raw °C Var45 1.060 4 Fluoride avg.mg/l/24H Var47 1.021 4 

Turbidity Settled  NTU Var35 1.059 5 Hydrofluosilicic acid 
lbs/24H Var11 1.018 5 

Air temp °C max/24H Var55 1.057 6 CW Lowest level/24H Var51 1.011 6 

Hydryfluosilicic acid 
PPM/24H Var26 1.037 7 Chlorine Settled mg/l Var42 1.010 7 

Chlorine lbs/24H Var8 1.037 8 Filters Washed/24H Var3 1.010 8 

System Delivery MGD Var2 1.034 9 pH Raw Var37 1.008 9 

Ferric chloride lbs/24H Var13 1.000 48 Polyaluminum chloride 
gals/24H Var15 1.000 48 

Sodium chlorite 
PPM/24H Var29 1.000 49 Sysdel NS Midd MGD Var33 1.000 49 

Turbidities required/24H Var48 1.000 50 Raw MGD/24H Var1 0.999 50 

NTU over limit Var36 1.000 51 Sysdel SR Midd MGD Var31 0.999 51 

Turbidities 
measured/24H Var49 1.000 52 Sysdel SR Main MGD Var30 0.999 52 

pH Effluent Var40 1.000 53 Polyaluminum chloride 
PPM/24H Var21 0.998 53 

Sysdel SR Midd MGD Var31 0.999 54 Average  % solids/liter Var14 0.998 54 

Carbon lbs/24H Var5 0.999 55 pH Settled Var39 0.998 55 

Zinc orthophosphate 
lbs/24H Var12 0.999 56 Zinc orthophosphate 

gals/24H Var19 0.998 56 

Ferric chloride PPM/24H Var28 0.995 57 pH Effluent Var40 0.994 57 
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What is first striking is that none of the variables for any of the seven models had a 

particularly high ratio value. That is, no single input variable was particularly important 

for predicting the final output value.  For predicting average turbidity, there was 

consistency between the two models. The two models shared seven of the ten highest 

ranking predictor variables, with raw water temperature, turbidity settled, and both 

chlorine mixed and chlorine effluent ranking right near the top. All of the ten highest 

ranking variables had a ratio value about 1.01.  There was less similarity for the ten least 

important variables, all of which had a ratio value < 1.0.  

 

For predicting highest turbidity, because three models rather than two were developed, it 

is less likely to have similar rankings between all models.  However, for all three models, 

the same two input variables, turbidity settled and raw water temperature, rank within the 

top five.  Other input variables, such as chlorine (lbs/24hr) raw water turbidity, and zinc 

orthophosphate, rank within the top ten most important variables for two models.  

Fluoride appears within the top ten for all three models.  In terms of least important, no 

single variable occurs in all three models as ranking within the bottom 10.   

 

The two ANN models developed for predicting daily readings share some highly ranked 

variables.  Turbidity settled, mixed chlorine, and raw water temperature rank within the 

top five for both models.  For the least important variables, two rank near the bottom; pH 

effluent and zinc orthophosphate.   

 

One would expect that on average, out of 57 input variables, there would be some overlap 

between higher and lower ranking variables.  However, for the three prediction output 

variables, two input variables ranked within the top six most important variables for all 

seven models; raw water temperature and settled turbidity.  In terms of chemicals added, 

besides chlorine, no single coagulant or chemical agent appears to consistently rank high 

for any single finished water quality output variable.  For predicting average turbidity, 

filters (washed/24hr) ranked highly for both models.   
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6.4   ANN versus Linear Models 

 

As a comparison of ANN performance, linear models (LMs) were applied to the identical 

data sets.   Table 8 below is a statistical performance comparison between the best ANN 

models against the LMs developed for each of the three output prediction variables  

 

Table 8.  Statistical Performance Comparison of LMs versus Best ANNs  
for Water Treatment Modeling at Swimming River 

 

 
Average Daily 

Turbidity 
Maximum Daily 

Turbidity 
No. of Readings > 

0.1 NTU 

ANN Mean Absolute Error 0.0095 0.014 1.48 

LM Mean Absolute Error 0.0096 0.018 1.81 

ANN Correlation Coefficient 0.72 0.60 0.72 

LM Correlation Coefficient 0.65 0.14 0.41 

 

 

For the best performing ANN models, and in fact, for the two different models that were 

used for predicting average turbidity and daily readings, the ANN models consistently 

outperformed the LMs.  The discrepancy between the model types for average turbidity 

was relatively small; it was more significant for high turbidity and daily readings.  

However, some of the poorer performing ANN models did not statistically perform as 

well as the LMs for predicting highest turbidity.  

 

Figures 7 through 11 further below compare measured versus linear model predicted 

values for average turbidity, highest turbidity, and average readings, respectively.  What 

is interesting is that while on average, the LMs performed well, there are rare events 

where a highly erroneous output value is computed by the linear model.  At least one of 

these erroneously high computed values was due to a data input error, which will be 

discussed later within the context of the sensitivity analyses results.   
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Figure 7.  Comparison of measured average daily turbidity versus LM predictions 

for Swimming River. 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 8.  Comparison of measured highest daily turbidity versus LM predictions 
for Swimming River 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  A magnification of Figure 19 above. 
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Figure 10.  Comparison of daily turbidity readings above 0.1 NTU 
versus LM predictions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  A magnification of Figure 21 above. 
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achieved by the LM produced is associated with a highly erroneous output value.  This 

occurred for prediction event 433 with both output variables highest turbidity and daily 

reading, where extremely erroneous high values were computed by the LMs.   A review 

of the data showed that an infeasible value of 85 was reported and used for the input 

variable pH effluent, which likely should have been 8.5.    

 

For the pH effluent input variable, the LM produced a ratio value of 0.313 for predicting 

highest daily turbidity and a ratio value of 0.619 for predicting daily readings above 0.1 

NTU.  By comparison, the ANN models for this variable had computed ratio values of 

0.996 and 1.00 for the highest turbidity and daily reading outputs, respectively.  In these 

cases, then, that the LMs may have a tendency to “over-react” or overcompensate for a 

single erroneous value, while the ANN models are not as affected by an erroneous, or in 

this case, infeasible input value for pH.   

 
6.5   ANN Models (Reduced) with Fewer Input Variables 
 
 
The next modeling exercise was to develop ANNs with only the most important predictor 

variables, as identified by the sensitivity analyses discussed above. The primary objective 

is to determine whether the ANNs can provide relatively accurate predictions with fewer 

variables, which could have cost savings benefits.  In addition, this would help confirm 

the importance of or lack thereof of certain model input predictor variables.  

 

The ten most important predictor variables as identified by the sensitivity analyses results 

(i.e. ten highest ranked variables) were used to develop a new ANN model for each of the 

three output variables, average daily turbidity, highest daily turbidity, and daily readings.   

Because all of these variables had computed ratio values above 1.0, they would all be 

expected to improve overall model performance.  Table 9 compares the statistical 

performance of the original best ANN models with the best performance for each of the 

three output variables against the models that used only 10 input variables. It should be 

noted that the ANN models that used only 10 inputs had more events.  Some days had at 

least one variable with a missing value, for which the model cannot be used.  Thus, the 
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model using fewer input variables will have fewer days (i.e. events) with at least one 

missing value. 

 

Table 9.  Statistical Performance Comparison of Complete versus Reduced ANN 
Models for Water Treatment at Swimming River 

 
 Average Turbidity Highest Turbidity No. of Readings > 

0.1 NTU 
Complete ANN 
Mean Absolute Error 0.00948 0.0143 1.48 

Reduced ANN 
Mean Absolute Error 0.00933 0.0148 1.63 

Complete ANN 
Correlation Coefficient 0.720 0.605 0.721 

Reduced ANN Correlation 
Coefficient 0.703 0.582 0.690 

 
 
Although the complete ANN models consistently outperformed the reduced ANN 

models, the discrepancy is relatively small. This is somewhat unexpected given the fact 

that in the original sensitivity analyses results, far more than ten variables in each case 

attained ratio values >1.0, approximately 45 total. Figures 12 through 14 compare 

measured versus ANN predicted values by the reduced models for average turbidity, high 

turbidity, and daily readings, respectively.  On the other hand, probably relatively few 

variables are critical state and water treatment variables for the process.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  Average daily turbidity measurements versus reduced ANN model 
predictions for Swimming River 
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Figure 13. Highest daily turbidity measurements versus reduced ANN model 

predictions for Swimming River 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 14. Daily readings measurements versus reduced ANN model predictions for 

Swimming River 
 

 

A comparison of the sensitivity analysis results for the complete versus the reduced ANN 

models shows that the relative rankings of the ten variables are relatively dissimilar for 

the corresponding models (e.g. average turbidity, etc.).  The tabulated sensitivity analyses 

results can be found in Appendix C-3.     

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0 200 400 600 800
Prediction Event

Av
er

ag
e 

D
ai

ly
 T

ur
bi

di
ty

 (N
TU

) Turbidity

ANNRev

Measured

0

2

4

6

8

10

12

14

16

0 200 400 600 800
Prediction Event

N
um

be
r o

f R
ea

di
ng

s>
 .1

N
TU

Readings

ANNRed
Measured



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks  
 
 

Water Treatment Modeling – Swimming River Reservoir           Page 45 

6.6   More Refined ANN Models 
 
 
As an additional analysis, instead of using only the ten most important predictor 

variables, as identified by the sensitivity analysis, as ANN model inputs, all variables that 

had an overall computed ratio value of at least 1.001 was used.  For average turbidity, 

there were 32 variables; for highest turbidity, 28 variables; and for daily readings, 33 

variables.   Table 10 compares the statistical performance of the best performing 

complete ANN models against the ANN models with the refined input set.    

 

Table 10.  Statistical Performance Comparison of Complete ANN models versus 
Refined ANN Models for Water Treatment at Swimming River 

 
 Turbidity Highest 

Turbidity Readings 

Complete ANN 
Mean Absolute Error 0.00948 0.0142 1.48 

Refined ANN 
Mean Absolute Error 0.00927 0.0144 1.52 

Complete ANN 
Correlation Coefficient 0.720 0.605 0.721 

Refined ANN 
Correlation Coefficient 0.722 0.6118 0.708 

 
 

Statistically there is nominal difference between the refined and the complete ANN 

models.  Not only did the refined models on average perform almost as well as the 

complete ANN models, but at times, their accuracy was better. This similar performance 

would potentially have cost implications, where marginal improvement may be offset by 

increased sampling costs. What is necessary is a more clear understanding of what is 

essential for predicting water quality variables of interest to acceptably accurate 

standards. What is also important to consider is the likelihood that the utility is following 

a consistent pattern of treatment strategies, based upon raw water quality conditions, etc., 

and that the ANN is consequently “keying” off surrogate variables, which implicitly 

represent chemical doses, etc.  Figures 15 through 17 depict the modeling results.   
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Figure 15.  Comparison of average daily turbidity measurements versus ANN 

predictions for Swimming River with refined model. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 16.  Comparison of highest daily turbidity measurements versus ANN 
predictions for Swimming River with refined model. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 17.  Comparison of daily readings above 0.1 NTU versus ANN predictions 
with refined model. 
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A sensitivity analysis comparison was also performed for the two models.  Again, the 

input variables identified by the complete ANN as important (i.e. RMSE ratio above 

1.001) were used as the input variables for the corresponding refined ANN models.  

Tables 11 through 13 compare the variable ratios and rankings for the variables in the 

refined models that ranked above 1.001.   Color coding is again used to facilitate 

reviewer comparison. A complete listing of the sensitivity analyses results is provided in 

Appendix C-3.   

 

Table 11.  A Comparison of the Top 15 Variables for Complete and Refined ANN 
Models that Predict Average Daily Turbidity for Swimming River 

 
Complete ANN Model Refined ANN Model 

Temp Raw °C Var45 1.087 1 Temp Raw °C Var45 1.177 1 

Turbidity Settled  NTU Var35 1.037 2 Temp Eff °C Var46 1.118 2 

Chlorine mix mg/l Var41 1.035 3 Turbidity Settled  NTU Var35 1.101 3 

Chlorine Eff mg/l Var44 1.029 4 Hydryfluosilicic acid 
PPM/24H Var26 1.095 4 

Filters Washed/24H Var3 1.021 5 System Delivery MGD Var2 1.077 5 

Temp Eff °C Var46 1.020 6 Sodium hydroxide 
gals/24H Var17 1.046 6 

Chlorine PPM/24H Var24 1.016 7 Chlorine mix mg/l Var41 1.041 7 

Hydryfluosilicic acid 
PPM/24H Var26 1.015 8 Filters Washed/24H Var3 1.040 8 

Fluoride avg.mg/l/24H Var47 1.012 9 Sysdel NS Main MGD Var32 1.031 9 

Air temp °C min/24H Var54 1.011 10 Fluoride avg.mg/l/24H Var47 1.025 10 

CW Lowest level/24H Var51 1.009 11 Polyaluminum chloride 
PPM/24H Var21 1.025 11 

Sodium hydroxide 
gals/24H Var17 1.008 12 Turbidity Raw NTU Var34 1.024 12 

Sysdel NS Midd MGD Var33 1.008 13 pH Settled Var39 1.022 13 

Zinc orthophosphate 
lbs/24H Var12 1.007 14 Sysdel NS Midd MGD Var33 1.022 14 

Chlorine CW mg/l Var43 1.007 15 Zinc orthophosphate 
PPM/24H Var27 1.021 15 
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For average turbidity, of the original 32 input variables used in the refined model, 15 

retained a ratio above 1.001.  Both the complete and refined ANN models exhibit 

similarities in terms of the top ranking variables, with eight of the same variables ranking 

within the top fifteen for both models.  Raw water temperature and turbidity settled were 

within the top three for both models.  Also within the top eight for both models were 

temperature of the effluent, chlorine mixed, filters washed, and hydrofluosilic acid.    

 

Table 12.  A Comparison of the Top 16 Variables for Complete and Refined ANN 
Models that Predict Highest Daily Turbidity for Swimming River 

 
Complete ANN Model Refined ANN Model 

Turbidity Settled  NTU Var35 1.028 1 Temp Raw °C Var45 1.123 1 

pH Raw Var37 1.015 2 Turbidity Settled  NTU Var35 1.049 2 

NaOH PPM/24H Var23 1.015 3 Hydrofluosilicic acid 
lbs/24H Var11 1.045 3 

Chlorine mix mg/l  Var41 1.013 4 Hydryfluosilicic acid 
PPM/24H Var26 1.044 4 

Temp Raw °C Var45 1.012 5 Polyaluminum chloride 
PPM/24H Var21 1.044 5 

Chlorine PPM/24H Var24 1.011 6 Raw MGD/24H Var1 1.028 6 

Raw MGD/24H Var1 1.011 7 Temp Eff °C Var46 1.024 7 

Fluoride avg.mg/l/24H Var47 1.010 8 Chlorine mix mg/l  Var41 1.020 8 

Filters Washed/24H Var3 1.007 9 Chlorine CW mg/l  Var43 1.017 9 

Polyaluminum chloride 
PPM/24H Var21 1.007 10 Sodium hydroxide 

lbs/24H Var10 1.016 10 

Temp Eff °C Var46 1.006 11 Peak flow raw 
MGD/24H Var52 1.015 11 

Sysdel NS Midd MGD Var33 1.006 12 Filters Washed/24H Var3 1.014 12 

Chlorine Eff mg/l  Var44 1.006 13 Air temp °C min/24H Var54 1.010 13 

pH Settled Var39 1.005 14 pH Raw Var37 1.009 14 

Hydryfluosilicic acid 
PPM/24H Var26 1.004 15 Sysdel NS Main MGD Var32 1.009 15 

Polyaluminum chloride 
lbs/24H Var6 1.004 16 Sysdel NS Midd MGD Var33 1.008 16 
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For predicting highest daily turbidity, 16 of the original 28 variables in the refined ANN 

model retained a ratio value above 1.001.  Both the complete and refined ANNs had the 

same nine variables within the top 16. As with the ANN models that predicted average 

turbidity, both models had raw water temperature and settled turbidity ranked highly; in 

this case, within the top 5 for both models.  However, compared to the average turbidity 

models, there were not as many shared variables that ranked near the top (i.e. within top 

half of the table).   

 

Table 13.  A Comparison of the Top 17 Variables for Complete and Refined ANN 
Models that Predict Number of Turbidity Readings > 0.1 NTU for Swimming River 
 

Complete ANN Model Refined ANN Model 

Sodium chlorite lbs/24H Var9 1.148 1 Temp Raw °C Var45 1.164 1 

Chlorine mix mg/l Var41 1.107 2 Turbidity Settled  NTU Var35 1.131 2 

Air temp °C min/24H Var54 1.076 3 Sodium hydroxide 
lbs/24H Var10 1.093 3 

Temp Raw °C Var45 1.060 4 Temp Eff °C Var46 1.087 4 

Turbidity Settled  NTU Var35 1.059 5 Polyaluminum chloride 
PPM/24H Var21 1.084 5 

Air temp °C max/24H Var55 1.057 6 Chlorine mix mg/l Var41 1.079 6 
Hydryfluosilicic acid 
PPM/24H Var26 1.037 7 NaOH PPM/24H Var23 1.052 7 

Chlorine lbs/24H Var8 1.037 8 Sodium hydroxide 
gals/24H Var17 1.049 8 

System Delivery MGD Var2 1.034 9 Air temp °C min/24H Var54 1.041 9 

Chlorine CW mg/l Var43 1.031 10 Raw MGD/24H Var1 1.026 10 

Temp Eff °C Var46 1.029 11 Chlorine Settled mg/l Var42 1.017 11 

pH Raw Var37 1.027 12 Zinc orthophosphate 
PPM/24H Var27 1.017 12 

CW Lowest level/24H Var51 1.026 13 Average  % solids/liter Var14 1.014 13 

Washwater MGD Var4 1.024 14 Chlorine lbs/24H Var8 1.010 14 
Polyaluminum chloride 
PPM/24H Var21 1.024 15 Hydryfluosilicic acid 

PPM/24H Var26 1.010 15 

pH Settled Var39 1.022 16 pH Raw Var37 1.009 16 

Sodium Chlorite gals/24H Var20 1.020 17 Chlorine CW mg/l Var43 1.008 17 
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Of the 33 original input variables for the refined ANN model developed for daily 

readings, seventeen retained a ratio value above 1.001. As with the ANN models for 

average and highest turbidity, raw water temperature and settled turbidity ranked within 

the top five for both the complete and refined ANN models.  Chlorine mixed also ranked 

within the top six variables for both models.   

 
Overall, then, for the three predictor variables, approximately half of the original inputs 

for the refined models retained ratio values above 1.001.  In addition, approximately half 

of the highest ranking variables for the refined models ranked near the top for the 

complete models.  As was found previously for the complete ANN models, raw water 

temperature and settled turbidity consistently ranked near the top, and in fact both were 

always within the top three most important variables for the three refined ANN models.   

 

6.10  Incremental Sensitivity Analysis 

 

As a final modeling exercise, model simulations were run to assess the effect of select 

variables on computed outputs.  In this exercise, as was done for the cyanobacteria count 

modeling, several events were selected for which the value of a single input variable was 

systematically changed, with all other input variables held constant, from which a new  

output value was computed.  This exercise was repeated for several input variables to 

assess their effect on the output variable.  For example, would an increase in raw water 

temperature increase or decrease average turbidity of the finished water?  As previously 

discussed, it should be emphasized that this analysis is rather limited and simplistic, and 

discretion should be used when interpreting the significance of the results.  Again, for 

complex and non-linear systems, such cause and effect relationships may not be 

straightforward.  That is, the corresponding changes of the system are undoubtedly 

related to the state of the system with respect to other variables. In this case, similar 

increases in temperature for two events may product two different outcomes, depending 

upon the other states or inputs into the system.  In addition, incremental temperature 

changes may induce a different range of responses, depending upon the temperature 

values over which these incremental changes occur.  However, this exercise may also 
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help identify some basic tendencies, and helps to illustrate how perhaps ANN technology 

can be used to help optimize treatment strategies.  

 
Two different spring ANN models were used; both used all original 57 inputs, with the 

first predicting average turbidity only, and the second predicting both average turbidity 

and average readings (model outputs).  For predicting average turbidity, five different 

prediction events were used, each representing a different range of system conditions (i.e. 

season), for each of which seven different input variables were incrementally varied. Of 

the seven variables, five of the most important variables, as identified by the sensitivity 

analysis, were selected, and they are: raw water temperature, in °C; system delivery, in 

million gallons per day; ferric chloride added, in parts per million per 24 hours; zinc 

orthophosphate added, in lbs per 24 hours; and turbidity settled, in NTU.   As a 

comparison, two of the least important predictor variables were also used; measured 

chlorine effluent, in mg/l, and polyaluminum chloride, in lbs/24H.    For each iteration, 

the selected input variable was changed from the actual measured value for the event to 

its minimum, mean, or maximum measured values for that particular variable.  Table 14 

below lists these values for the seven parameters.  

 
Table 14.  Input Variables Used in the Sensitivity Analysis for the Average 
Turbidity Model, with their Corresponding Ratio Rankings and Minimum,  

Mean, and Maximum Measured Values. 
 

Ratio 
Ranking Name Min Average Max 

1 Temp Raw °C 3.00 11.63 20.00 

2 Sysdel NS Midd MGD 1.900 5.364 10.480 

3 Ferric chloride PPM/24H 5.38 11.51 15.95 

4 Zinc orthophosphate lbs/24H 957.00 2752.38 3834.38 

5 Turbidity Settled NTU 0.36 0.72 2.10 

56 Chlorine Eff mg/l 0.5 1.5 1.6 

57 Polyaluminum chloride lbs/24H 0.00 1065.85 2260.50 
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Bar figures 18 and 19 depict representative results for two events, which were consistent 

for all five events, with the other bar graphs contained in Appendix C-2.  The bar graphs 

show that for each perturbed input variable, the corresponding computed output for the 

actual event value versus the corresponding computed outputs associated with the 

minimum, mean, and maximum input values listed above in Table 14.   
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Figure 18.  Predicted average daily turbidity in response to different input values 
for different variables for the first event for Swimming River. 
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Figure 19.  Predicted average daily turbidity in response to different input values 
for different variables for the second event for Swimming River. 

 
 

Both higher water deliveries and higher settled turbidity readings both resulted in higher 

average turbidity levels for finished water. Both of these tendencies would appear to 

make sense, as both of these variables are measures of the quantity of mass in the raw 

water.  If all other variables (e.g. chemical dosages) are held constant, turbidity removal 

is not increased, and thus average turbidity levels of the finished water will be elevated.   
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The inverse relationship between raw water temperature and average turbidity identified 

with the above analysis is consistent with the inverse relationship first identified when 

these two variables were plotted against each other.  Thus, at higher temperatures, the 

raw water has lower turbidity.  By extension, then, the treated finished water would also 

be expected to have lower turbidity during times when the raw water has a higher 

temperature, such as in summer months.   

 

Lastly, chlorine effluent appears to be weakly positively correlated with average 

turbidity. This may have some physical basis, as the presence of organic material, such as 

algae, will increase raw water turbidity, which will increase the quantity of chlorine 

added.  Figure 20 depicts raw water turbidity versus chlorine effluent, and does not show 

an obvious relationship.    
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Figure 20.   Raw water turbidity versus chlorine effluent concentrations for 

Swimming River. 

 

The next analysis was to compare the average range over which the output values 

changed with respect to each of the seven input variables against the relative effect of 

each of the different input variables on the outputs.  This was done using the five events.  

Again, because different variables can assume significantly different ranges of values, a 

direct comparison in computed output values using minimum and maximum possible 
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values provides limited information. The relative effect of each input variable on the 

corresponding outputs was computed using the sensitivity ratio provided previously in 

Equation 5. 

 

In effect, the sensitivity ratio provides not only a measure of whether an input is 

positively or negatively correlated with a particular output, but also the unit change of the 

output per unit change of the select input variable. This understanding can be important 

for helping to identify treatment strategies.  At the same time, as discussed earlier, it must 

be emphasized that the unit responses will not be uniform in a non-linear system, and 

may also depend upon the other states of the system. Table 15 below compares the 

RMSE ratio ranking against the range ranking and sensitivity ranking, with the computed 

values for the later two measures.  

 

Table 15.  Comparison of different variable’s relative effect on  
average daily turbidity 

 

Variable Name 
RMSE 
Ratio 

Ranking 

Range 
Change 

Range 
Ranking 

Sensitivity 
Ratio 

Sensitivity 
Ranking 

System Delivery 2 0.0162 1 0.00155 3 

Raw Water Temp 1 -0.0149 2 -0.000552 4 

Zinc Ortho 4 -0.0141 3 -1.47E-06 7 

Ferric Chloride 3 -0.0122 4 -0.000352 5 

Polyalum. Chloride 57 -0.0111 5 -2.75E-06 6 

Turbidity Settled 5 0.0101 6 0.00492 1 

Chlorine Effluent 56 0.00523 7 0.00436 2 

  

For the events considered, turbidity settled and chlorine effluents have the greatest 

relative effect on average daily turbidity, while zinc orthophosphate has the least.   

 

For the dual ANN model that included two output variables, average turbidity and 

average readings, the sensitivity analysis results were somewhat different than that for the 

single (output) ANN model. In this case, the five most important variables, in descending 

order of importance, are:  raw water temperature, in °C; pH Effluent; maximum air 
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temperature, in °C per 24 hours; polymer added, in lbs per 24 hours, and settled readings 

in NTU.  The two least important were Sodium hydroxide lbs/24H and pH Raw. Table 16 

below reports the range of values for these seven input variables.  

 

Table 16.  Input Variables Used in the Sensitivity Analysis for the Dual Average 
Turbidity and Number of Readings Model, with their Corresponding Ratio 

Rankings and Minimum, Mean, and Maximum Measured Values 
 

RMSE Ratio 
Ranking Name Min Mean Max 

1 Temperature Raw °C 3.00 11.50 20.00 

2 pH Effluent 7.20 7.5 7.80 

3 Air temperature °C max/24H -1.00 17.5 36.00 

4 Polymer lbs/24H 45.45 204.525 363.60 

5 Settled readings >2,0 NTU/24H 0.00 5 10.00 

56 Sodium hydroxide lbs/24H 957.00 2395.69 3834.38 

57 pH Raw 6.50 7.05 7.60 

 

It should be noted, however, that the ratio and corresponding ranking values are 

computed cumulatively for the two outputs.  Thus, a particular input variable that is not 

an important predictor for one output variable may be relatively important for the other 

output variable. In this case, because average turbidity and average are physically related, 

and hence are probably correlated, it is expected that there would be some consistency 

between these two variables. This apparent correlation is shown by the plotting of 

normalized average turbidity versus normalized average readings in Figure 21, where the 

values have been normalized between 0 and 1 to facilitate a more direct comparison.  
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Figure 21.  A regression chart comparing average daily turbidity versus daily 

readings about 0.1 NTU with a Line of Best Fit for Swimming River. 
 
As the figure shows, lower average turbidity correlates with lower average reading, and 

similarly, higher average turbidity correlates with higher average readings.  

 

Table 17 lists the variables in descending order relative to the computed sensitivity 

values, with a comparison to the ratio rankings.  

 
Table 17.  Comparison of Different Variable’s Relative Effect on Average Daily 

Turbidity for the Dual ANN Output Model 
 

Variable Name RMSE  Ratio 
Ranking 

Range 
Change 

Range 
Ranking 

Sensitivity 
Ratio 

Sensitivity 
Ranking 

Temp Raw °C 1 -0.0136 1 -0.000798 3 
Polymer lbs/24H 4 0.00986 2 3.1E-05 6 
Air temp °C max/24H 3 0.00703 3 0.00019 5 
Sodium hydroxide lbs/24H 56 0.00489 4 1.7E-06 7 
pH Effluent 2 -0.00417 5 -0.00695 1 
Settled readings >2,0 NTU/24H 5 0.004 6 0.0004 4 
pH Raw 57 -0.00123 7 -0.00111 2 
 

Figures 22 and 23 depict for two representative events the computed output response for 

average turbidity associated with individual changes in model inputs for the seven 

variables. Four variables consistently demonstrate a positive correlation with average 

daily turbidity, where increases in values for these inputs increased average daily 
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turbidity. The four variables include polymers added, sodium hydroxide, air temperature, 

and settled readings.   

 

The single input variable that consistently exhibits an inverse relationship with average 

readings is raw water temperature.  This inverse relationship is consistent with what was 

obtained with the ANN model with average turbidity as the single output. What appears 

to contract this relationship is how the model predicts that higher air temperatures result 

in a decrease of average daily turbidity.  One would assume a positive correlation 

between air temperature and raw water temperature, and, by extension, would expect air 

temperature to be negatively correlated with average daily turbidity, as raw water 

temperature is.  Both the input variables pH raw and pH effluent don’t exhibit consistent 

behavior in terms of being positively or negatively correlated with average daily 

turbidity.  

 

 

 

 

 
 
 
 
Figure 22.  Predicted average daily turbidity in response to different input values 

for different variables for the first event for Swimming River 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 23.  Predicted average daily turbidity in response to different input values 
for different variables for the second event for Swimming River 
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0.062
0.064
0.066
0.068
0.070
0.072
0.074
0.076
0.078
0.080
0.082

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Polymer lbs/24H Sodium hydroxide
lbs/24H

pH Raw pH Eff luent Temp Raw  °C Air temp °C max/24H Settled Readings

N
TU

First Set

Incremental Sensitivity Analysis

0.060

0.065

0.070

0.075

0.080

0.085

0.090

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Ac
tu

al M
in

Av
g

M
ax

Polymer lbs/24H Sodium hydroxide
lbs/24H

pH Raw pH Effluent Temp Raw  °C Air temp °C max/24H Settled Readings

N
TU

Second Set



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks 
 
 

PVWC Data         Page 58                                 

7.     PVWC DATA 

 

7.1   General Overview 

 

Data utilized for the development of ANN models included the physical and chemical 

water data collected at three distinct sampling station locations.  As discussed previously 

in the Study Area section, and depicted in Figure 2, Station 612 is located on the River A 

at the intake point for the Pumping Station 2.  Station 101 is located just inside the mouth 

of the canal that connects River B with the PVWC treatment plant.  Station 100 is located 

further inside the canal at the intake point for the PVWC water treatment plant. Measured 

conditions, then, at stations 612 and 101, are generally representative of water quality on 

Rivers A and B, respectively.  Measured conditions at Station 100 are representative of 

water entering the treatment plant from the rivers and reservoir.  When River B is not 

used for supply, hydraulic loading of water from the other source(s) minimizes its mixing 

at Station 100. Thus, if most of the source water for the day is extracted from either River 

A via the Pumping Station 2 or the Reservoir A, water quality at Station 100 is more 

representative of these water sources. Conversely, when River B is the predominant 

water source for the day, water quality conditions at Station 100 will be more 

representative of this river.  Because of unique water quality conditions specific to each 

station, it was found using ANN models that the best predictive performance was 

achieved by modeling each station individually.   

 

The sampling data used in this study were collected over the following time periods for 

the three stations; Station 100 - April 1999 to September 2004;  Station 101 – May 1999 

to October 2004; and Station 612 - April 1999 to September 2004.  Available data sets at 

the three stations consisting of water quality, hydrologic, and weather were paired with 

corresponding counts of three different algae classes; Chrysophyta and Chlorophyta 

(under the kingdom Protista), and Cyanophyta (under the Kingdom Monera).   
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The initial data set used for developing and assessing the ANN methodology included 

most variables that are considered potentially important for predicting algae levels.  Table 

18 summarizes the number of historical data events available for modeling development 

and testing by station, potential prediction period, and data set (i.e. complete and 

reduced).  From the data collected intermittently during the periods listed above, a total 

number of 156 sampling events were available for station 100, 41 events for station 101, 

and 52 events for station 612.   For generating data events for model development 

purposes, however, incomplete data records reduced the final number of events available 

for ANN training and validation.   That is, some sampling events had missing physical 

and/or chemical measurements, and in some cases, missing algal count measurements. In 

accordance with guidance provided by PVWC, some missing values were estimated by 

interpolation. For the second reduced data set used in this study, which excluded the less 

frequently measured water quality variables (four for Station 100, five for Stations 101 

and 612), a total number of 266 sampling events were available for Station 100, 109 

events for Station 101 and 173 events for Station 612.  The actual number of these events 

available for model development and assessment depended on predicted on the length of 

forecasting horizons, as events separated by the prediction period (e.g. one-week ahead) 

had to be paired.  (Note that 3-weeks ahead is included for previous modeling efforts – 

contained in Appendices).   

 

Table 18. Available number of data events for each station  
for different modeling horizons 

 
Original Models Revised Models Station Prediction Horizon 

Complete Reduced Input Complete Reduced Input 
One-week Ahead 156 266 182 270 
Two-week Ahead 160 249 167 252 100 
Three-week Ahead 150 236 142 218 
One-week Ahead 41 109 47 96 
Two-week Ahead 40 106 35 66 101 
Three-week Ahead 48 110 36 71 
One-week Ahead 52 173 51 174 
Two-week Ahead 54 139 40 140 612 
Three-week Ahead 56 135 45 135 
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As overviewed previously, data provided by the Passaic Water Valley Commission 

(PWVC) for the study station included water temperature, pH level, alkalinity, color, 

odor, conductivity, total hardness, turbidity, dissolved oxygen (DO), biochemical oxygen 

demand (BOD), sulfate, chloride, total phosphorus/orthophosphate, nitrite/ nitrate, 

ammonia, total suspended solids (TSS), UV 254, total organic carbon (TOC), algae 

counts for Chrysophyta, Cyanobacteria and Chlorophyta, fluoride and chemical oxygen 

demand (COD).   Most of the data was provided in electronic format by PVWC and 

underwent further organization and assimilation by NOAH personnel.  In this project, the 

later four constituents namely fluoride, COD, TDS and total solids were not used, as they 

were measured relatively infrequently.  Climate data were obtained from NOAA and 

included total daily precipitation, wind speed, wind direction, sky cover, and heating 

degree days.  Water source extraction data were provided by PVWC for Rivers A and B, 

Reservoir A (supplies water directly to Station 100) and Pumping Stations 1 and 2.  Daily 

river flow data collected by the United States Geologic Survey for River A were also 

used. 

 

As advised by Ms. Pasquarello of PVWC, data gaps at Station 100 for turbidity and 

alkalinity were estimated by taking a weighted average of values for these parameters 

measured at Stations 612 and 101, by proportioning their relative contribution to the 

PVWC treatment plant for the subject time period.  Other missing data for a particular 

variable (e.g. temp, pH, conductivity, etc.) were estimated using linear regression with 

highly correlated variables; for example, turbidity was estimated from total algae counts 

using linear regression.  Although less preferable to actual measurements, this is a 

reasonable approach for generating adequate data for this preliminary modeling 

assessment.  In addition, this method was employed relatively infrequently; from less 

than 1% (one estimated value out of 166 events) for temperature and pH to 7% (12 out 

166 events) for total suspended solids (TSS) for Station 100; 2% (temperature and pH) to 

24% (total hardness) of the data for Station 101;  and 1% (turbidity) to 17% (BOD) for 

Station 612.   
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Table 19 below presents a statistical tabulation of all the variables used in this modeling 

effort by Station. As was mentioned previously in section 5.2, and is discussed in more 

detail in the Modeling Section, a number of the less frequently measured variables, 

including some of the so-called “nutrients”, were systematically eliminated as model 

inputs. In addition, so-called “correlative” or water extraction variables, were also 

eliminated from select models.  Again, a complete presentation of the original models 

that used the complete set of input variables is presented in Appendices B-1 through B-4. 

The remainder of this section provides a detailed discussion of each of the variables used 

in this modeling problem.  It should be noted that many of the variable types used for 

modeling the PVWC system were also used for modeling the Swimming River reservoir 

system.  
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Table 19.  Statistical tabulation for all model variables used by Station 
Station 100 Station 101 Station 612 

Parameter* Unit 
Min Ave Max Min Ave Max Min Ave Max 

Water Temperature oC 0.1 13.6 25.8 0.6 13.5 26.5 0.0 13.2 27.8 
pH  6.4 7.4 8.8 6.3 7.3 8.5 7.0 7.6 9.8 
Turbidity NTU 0.0 4.0 22.5 2.6 9.7 22.1 1.7 7.1 55.0 

Alkalinity mg/L as 
CaCO3 0.0 41.6 103.5 6.4 72.7 106.0 30.0 68.1 110.0 

Total Hardness mg/L as 
CaCO3 38.0 101.5 194.0 30.0 116.3 192.0 60.0 108.6 220.0 

Conductivity umhos/cm 168 432 1312 203 540 1307 253 445 756 
Color umhos/cm    15.1 44.1 153.0 12.0 34.8 195.0 
Dissolved Oxygen mg/L 4.8 10.5 16.2 5.3 9.6 15.1 4.8 10.3 15.5 
Biochemical Oxygen 
Demand mg/L 0.7 4.2 10.2 0.4 4.2 8.1 4.8 10.3 15.5 

Chloride mg/L 25.0 85.1 283.0 52.0 109.0 192.0 44.0 87.8 174.0 
Sulfate mg/L 10.3 22.2 55.7 12.2 27.7 61.1 10.6 20.2 39.3 
T.Phosphorus/Orthophos-
phate mg/L 0.0 0.3 1.7 0.0 0.7 2.5 0.0 0.2 1.5 

Nitrite/Nitrate mg/L 0.0 1.6 5.3 0.4 2.3 6.2 0.4 1.4 3.7 
Ammonia mg/L 0.0 0.1 0.4 0.0 0.1 0.4 0.0 0.1 0.2 
Total Suspended Solids mg/L 1.0 13.4 47.0       
UV-254 cm-1 0.1 0.1 0.3 0.1 0.2 1.0 0.1 0.1 0.1 
Total Organic Carbon mg/L 2.7 4.8 11.3 3.1 6.2 11.4 0.0 3.8 8.5 
Prediction Period’s 
Precipitation Total inches 0.0 0.7 3.6 0.0 0.8 4.6 0.0 0.9 8.1 

Prediction Period’s Lagged 
Precipitation Total inches 0.0 0.9 8.2 0.0 0.8 3.0 0.0 0.6 3.0 

Wind Direction 0-3600  52 211 301 93 214 293 120 219 299 
Wind Speed mph 4.7 7.4 11.2 4.7 7.3 10.9 4.9 7.6 10.9 
Heating Degree Days oC 0.0 12.5 45.6 0.0 12.6 38.2 0.0 13.0 45.5 
Sky Cover  0.9 4.3 9.1 0.6 4.2 8.7 0.4 4.2 8.0 
Length of Day hour 9.2 12.5 15.1 9.3 12.6 15.1 5.3 12.2 15.1 
River A Streamflow cu.ft./sec 30 546 3684 40 375 2569 30 379 4159 
River A Extraction MGD 0.0 35.4 62.1 0.0 31.8 59.1 0.0 29.9 60.2 
River B Extraction MGD 0.0 19.0 89.7 0.0 24.6 89.7 0.0 26.7 86.4 
Reservoir A Extraction MGD 0.0 0.4 19.5 0.0 0.6 19.5 0.0 0.6 18.3 
Pumping Station 1 
Extraction MGD 0.0 0.6 28.0 0.0 1.8 31.4 0.0 0.9 29.6 

Total Algae Count Cells/ml 8 167 1520 8 115 572 16 187 842 
Chrysophyta Count Cells/ml 0 84 656 0 67 200 0 88 616 
Cyanophyta Count Cells/ml 0 30 1364 0 6 180 0 47 760 
Chlorophyta Count Cells/ml 0 49 608 0 40 304 0 48 420 

Min = minimum, Max = maximum, Ave = Average  
* - Total Amorphous Materials were measured as Light, Medium and Heavy 
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7.2 Biological Data 

 

7.2.1  Cyanobacteria 

 

Cyanobacteria, more commonly known as blue green algae (after the color of the first 

known species), are prokaryotic organisms that belong to the kingdom Monera.  They are 

relatives of bacteria because they share similar structures but they are also related to the 

chloroplasts present in eukaryotic organisms (algae).  They are sometimes referred to as 

blue-green algae.  Cyanobacteria occur naturally in fresh water and in marine 

environments and along with the eukaryotic algal phyla, comprise the important 

component of phytoplankton community.  However under favorable conditions, they can 

become dominant and can turn into a phenomenon called a bloom.  Cyanobacteria 

blooms appear mostly in summer months or during periods of hot weather, when lack of 

mixing of surface and deeper water layers in a river or reservoir can lead to thermal 

stratification.   Factors that contribute to thermal stratification of water bodies include 

temperature, wind, solar radiation and flow.   Cyanobacteria prosper in non-turbulent 

conditions where water column stability enhances their ability to maintain an optimum 

position in the water column for photosynthetic activity and growth.   

 

Similar to other algae, cyanobacteria are photoautotrophic organism, producing their 

own food by using chlorophylls (and other pigments) to fix carbon as starch through the 

process of photosynthesis. Nutrients also play a role in their growth and 

reproduction.  Dissolved organic carbon, as well as phosphate, nitrate, ammonia and 

iron, are important factors.  Cyanobacteria are one of very few groups of organisms that 

can convert (“fix”) inert atmospheric nitrogen into an organic form, such as nitrate or 

ammonia.  Cyanobacteria reproduce asexually and photosynthesis also plays a large and 

important role in their reproduction and growth.  The wavelength of the light available 

determines what form of Cyanobacteria will grow.  
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The taxa included in the phylum for Cyanobacteria published under the Bacteriological 

Code (1990 Revision) include the classes Chroobacteria, Hormogoneae and 

Gloeobacteria; the orders Chroococcales, Gloeobacterales, Nostocales, Oscillatoriales, 

Pleurocapsales and Stigonematales; the families Prochloraceae and 

Prochlorotrichaceae, and the genera Halospirulina, Planktothricoides, 

Prochlorococcus, Prochloron, Prochlorothrix. 

 

Figure 24 compares measured cyanobacteria counts for each of the three stations with 

respect to time.  At Station 100, over the four year period, cyanobacteria bloom episodes 

occurred from June to October 1999, with the highest levels measured in August and 

September of this year at 1072 and 1364 cells/ml, respectively.  By comparison, 

relatively small counts of cyanobacteria occurred over the remaining years, with a minor 

algal bloom occurring in July 2002 with a count of approximately 200 cells/ml.   
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Figure 24. Comparison plots of measured cyanobacteria counts at  

three sampling stations 
 
At Station 101, no data were available in 1999 to compare algae counts with Station 100.  

An algal bloom did occur at this station from July through August 2002, with the highest 

levels measured at 180 cells/ml in August.   
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Like Station 100, Station 612 had two cyanobacteria bloom events in the same years, the 

first in 1999 and the second in 2002.  As shown in the figure, the bloom episodes that 

occurred in 1999 at this station (with the highest of 506 and 760 cells/ml in August and 

September, respectively) coincided with the blooms at Station 100.  Similarly, the 2002 

bloom incidence (highest at 684 cells/ml in August) also coincided with the bloom at 

Station 101.  The 2002 bloom occurred over the period when water was extracted from 

the Point View Reservoir (July 24 to August 30).  The Pumping Station 2 was 

temporarily turned off on July 23, 2002 and the Reservoir A was online the following 

day.  Over this five week period, an average of 35% (13-100%) of daily water supply 

came from the Reservoir A.  This water source was likely used to mitigate the algal 

bloom on the River A. By contrast, in 1999, only the River A through the Pumping 

Station 2 and the River B supplied water to the treatment facility.  

 

In summary, then, the cyanobacteria bloom episode that occurred at Station 612 in July to 

September 1999 coincides with the bloom at Station 100.  Station 101 during this period 

did not experience any bloom episodes.  Another coincident bloom at Stations 100 and 

612 occurred in July 2002; however, the algae levels at Station 100 started to decline by 

the end of the month, as the alternative reservoir source was used. At Station 612, the 

high algae counts persisted until the middle of August, around which time a bloom at 

Station 101 occurred.   Most of the time, particularly during low cyanobacteria periods, 

counts at the three stations are more or less equal.  However, during bloom events, 

cyanobacteria counts at Station 612 could be as much as eight times more than the other 

two stations.  Thus, the River A appears to be the surface water source most subject to 

cyanobacteria bloom events, and extraction of this source appears to be responsible for 

bloom events measured at Station 100.     

 

7.2.2 Chrysophyta 

 

Chrysophytes are eukaryotes organisms that are abundant in freshwater, but may also be 

found in marine environments.  These protists are particularly important in lakes where 
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they are the primary food source for zooplankton.  Chrysophytes are also called golden 

algae because the yellow and brown caroteneoid (including fucoxanthin) and xantophyll 

accessory pigments masks the chlorophylls a and c, imbuing them with a golden color.  

There are more than a thousand described species of golden algae, mostly unicellular or 

colonial, swimming or floating in lakes and oceans as phytoplankton.  In many 

chrysophytes, the cell walls are composed of cellulose with large quantities of silica, 

while some species are amoeboid forms with no cell walls.  Motile species may have one 

or two flagella, which can be similar or dissimilar in structure.     In shallow ponds that 

dry up in summer or freeze completely in winter, golden algae survive by forming 

protective cysts that can withstand the harsh conditions.  When favorable conditions 

return, the algae emerge from the cysts.   

 

The vast majority of golden algae are autotrophs (photosynthetic).  They store food 

outside of the chloroplasts in the form of oil or polysaccharide laminarin, or 

chrysolaminarin.  However, some biologists do not consider them to be truly autotrophic 

since they become facultatively heterotrophic (get energy from non-photosynthetic 

sources) in the absence of adequate light, or in the presence of plentiful dissolved food.  

When this occurs, the chrysoplasts atrophies and the alga may turn predator, feeding on 

bacteria or diatoms (www.ucmp.berkely.edu).   Very few chrysophytes do not have 

chloroplasts, and those few live on dead organic material.  However, some golden algae 

can use dead and organic materials, or use chloroplasts for energy, and thus switch back 

and forth between the two modes of nutrition, depending upon conditions (Lund and 

Lund).   

 

Motile forms of golden algae reproduce by fission, while non-motile forms produce 

motile zoospores.  There is also a special type of spore unique to this group, known as a 

statospore.  It is spherical with a plug, which is popped out as the spore germinates.  

Isogamous sexual reproduction is rare.  The unicellular species with a single flagellum 

include Chromulina, Chrysococcus and Mallomonas and the larger colonial forms 

comprise of Synura, Chrysophaerella, Uroglena and Dinobryon.  
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Figure 25 compares measured chrysophyta counts for each of the threes stations over 

time.   
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Figure 25. Comparison plots of measured chrysophyta counts at three sampling 

stations 
 

At Station 100 (PVWC intake point at treatment facility), the highest counts of 

Chrysophytes over the period 1999 into 2004 were recorded in July and August 1999 at 

520 and 656 cells/ml, respectively.  With the exception of 2003, when measured 

concentrations were relatively low throughout the year, seasonal patterns over each of the 

years are evident.  Higher Chrysophytes levels generally occurred in late winter/early 

spring (March) until the earlier to middle part of summer (June or July), while for the 

remainder of the year, counts were low.    

 

At Station 101 (River B), the highest Chrysophytes counts were measured in April 2000 

at 184 cells/ml and in May 2001 at 200 cells/ml.  In general, a temporal pattern similar to 

Station 100 is evident, in which counts rise begin around the month of March until June, 

after which levels decline and remain low for the rest of the year.  As at Station 100, low 

counts were also recorded at this station over 2003.   

 

Station 612 (River A) exhibited a pattern consistent with the other two stations, with 

higher levels beginning in March and lasting though June or July followed by lower 
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levels through the end of the year.  The highest Chrysophytes counts were measured in 

April 1999 at 616 cells/ml, and in May 2000 at 320 cells/ml. 

 

7.2.3  Chlorophyta 

 

Chlorophytes are eukaryotic organisms that form the largest phylum of the algae, the 

Chlorophyta.  Commonly known as green or grass-green algae, the abundance of 

chlorophyll pigments in their chloroplasts gives them the bright green color.  There are 

about 8,000 species of chlorophytes, mostly aquatic, but some are terrestrial living on 

damp soil or attached to land plants and even in snow and ice.  These protists range in 

size from microscopic unicellular plankton that grow in lakes and oceans, to colonial 

filaments of pond scum, to leaflike seaweeds that grow along rocky and sandy intertidal 

areas.    Some species are symbiotic, forming lichens with fungi or living with corals, 

while others can be found in freshwater sponges, imbuing the sponges with a bright green 

color, or in permanent snow banks, turning the snow reddish in color because of the 

secondary pigment that masks the chlorophyll.  These green algae are also found on 

damp soil or attached to land plants (a few are parasitic).  

 

Green algae are photosynthetic, containing organelles called chloroplasts which are 

characterized by clearly stacked thylakoids (any of the membranous disks of lamellae 

within plant chloroplasts that are composed of protein and where photochemical reactions 

of photosynthesis occur).  Their photosynthetic pigments contain chlorophylls a and b, 

and various carotenoids are found in plants and in similar proportions.  Food reserves are 

stored inside their plastids in the form of starchs, fats and oils.  Most green algae have 

cell walls made up of two layers: an inner cellulose layer and an outer layer of pectin.  

Like most protists, chlorophytes have two or more flagella (tail like appendage) near the 

apex of the cell, at least once in their life cycle. 

 

Green algae may reproduce vegetatively, by fragmentation and by cell division; 

asexually, by means of spores and zoospores that develop directly into new plants; and 
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sexually by the fusion of pairs of sex cells (gametes).  In multicellular chlorophytes, 

alternation of generations is common, where the algae alternate between gametophyte 

and sporophyte generations. 

 

Green algae are an extremely important source of food for other aquatic life forms.  This 

makes green algae vital to many ecosystems on the planet.  They also make a major 

contribution to the world’s oxygen supply through photosynthesis and by fixing 

approximately 1010 tons of carbon per year. Classes of Chlorophyta include: Chara, 

Chlamydomonas, Cladopjora, Coleochaete Desmid, Eremosphaera, Hydrodictyon, 

Oedogonium, Pandorina, Pediastrum, Spirogyra Ulothrix,  Ulva and Volvox. 

 

Figure 26 compares measured chlorophyta counts for each of the three stations with 

respect to time.   
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Figure 26. Comparison plots of measured chlorophyte counts at three sampling 

stations 
 

At Station 100, counts were comparatively high throughout 1999, while levels over the 

succeeding years through 2004 counts were low, with exception to one sudden rise in 

May 2001.  As depicted by the figure, higher levels generally occurred in the middle part 

of the year from approximately May to September, and the highest counts occurred in 

June 1999 and May 2001 with counts of 608 and 596 cells/ml, respectively.    At Station 
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101, the highest Chlorophyte counts was measured in May 2001 at 164 cells/ml, and in 

2002, high values of 304 and 284 cells/ml were measured in July and August, 

respectively. Station 612 exhibited more or less the same pattern as Station 100, wherein 

high chlorophytes levels usually occurred in May to September.  The highest were 

measured at this station 612 were measured at 268 cells/ml in July 1999 and 420 cells/ml 

in May 2001.  Because most of the source water at Station 100 originates from the River 

A, the correlation between Stations 100 and 612 is not unexpected.   

 

7.3 Physical Data  

 

7.3.1  Temperature 

 

Most algae are freshwater organisms, and like most aquatic organisms, are unable to 

internally regulate their core body temperature.  Consequently, temperature exerts a 

major influence on their biological activity and growth. Each species thrives within a 

narrow range of temperature, with some preferring cooler temperatures over warmer 

temperatures, while others have the opposite preference.  When temperature gets too far 

above or below the preferred range, algae concentration decreases until there may be few 

or none.   

 

Water temperature data collected at the three sampling stations were plotted against algae 

counts, and are presented in Figures 27 through 29.  Temperature as expected exhibits a 

seasonal component.  Different relationships between temperature and algae counts are 

exhibited by algae types and Station locations. At Station 100 as shown in Figure 27, 

higher chrysophytes level from 2000 to 2003 coincide with periods before temperatures 

reached their peak for each year, usually within the range of 10 to 20oC, while the highest 

chrysophtes levels in 1999 coincide with periods when temperatures were highest (above 

20oC) in the year.  Higher Chlorophytes counts that occurred primarily during the middle 

part of the year also coincide with high temperature periods above 15oC.  Similarly, the 
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two cyanobacteria bloom events in 1999 at this station coincide with periods of highest 

temperatures, measured from 20 to above 25oC. 
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Figure 27. Total Algae counts versus Temperature measured at Station 100 

 

At Station 101, chrysophytes counts from in 2000 through 2003 exhibited an almost 

identical pattern to that observed at Station 100, where higher counts coincide with 

periods before temperature (below 20oC) reached their annual peaks.   High Chlorophytes 

counts that occurred in 2002 coincided with higher temperatures measured above 20oC, 

while in 2001, higher chlorophytes counts occurred when temperatures were lower 

(around 15oC). Cyanobacteria blooms at this station that occurred in 2002 coincide with 

periods of high temperatures, measured above 25oC.  The relationship between 

temperature and high cyanobacteria and chrysophytes counts at this station was observed 

to be consistent with that of Station 100. 
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Figure 28. Total Algae counts versus Temperature measured at Station 101 
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At Station 612, the three algae types exhibited somewhat similar behavior to those from 

the other two stations.  Most high Chrysophytes levels occurred during relatively warmer 

periods, around 10 to 20oC, as temperature warmed up to their peaks (>20oC) towards the 

summer period.  As for the chlorophytes, higher levels during the years 1999 and 2002 

coincide with periods of higher temperatures measured above 20oC.  In 2001, however, 

the highest algae levels occurred when temperatures were lower, around 15oC.  

Cyanobacteria exhibited a consisted pattern at all three stations, in which blooms 

occurred during times when temperatures were highest (above 20oC in 1999 and above 

25oC in 2002). 
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Figure 29. Total Algae counts versus Temperature measured at Station 612 

 
 
7.3.2 pH 

 

The pH is by definition a measure of concentration of hydrogen ions in a water sample 

(negative log of the concentration).  During photosynthesis, algae consume hydrogen 

molecules, diminishing the hydrogen ion concentration, and therefore increasing the pH.  

Consequently, pH is generally higher during daylight hours or during the growing 

seasons, while the process of respiration and decomposition decreases pH.    

 

As depicted in Figures 30, 31 and 32, pH levels fluctuate from 6.4 to 8.8 at station 100, 

6.3 to 8.5 at station 101 and from 7 to 9.8 at station 612, respectively.   High algae levels 

coincide with high pH levels at the corresponding sampling stations. Chrysophyta, 



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks  
 
 

PVWC Data         Page 73                                 

chlorophyta, and cyanobacteria are organisms that produce their own food through 

photosynthesis, thereby increasing the pH level during the process. 
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Figure 30. Total Algae counts versus pH measured at Station 100 
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Figure 31.  Total Algae counts versus pH measured at Station 101 
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Figure 32.  Total Algae counts versus pH Level measured at Station 612 
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7.3.3 Turbidity 

 

Turbidity refers to “solids and organic matter that do not settle out of water” (Driscoll, 

1986), and can include constituents ranging from clay, silt, and plankton to industrial 

wastes and sewerage.  It is an important factor in algae prediction because it affects the 

light penetration into the water column, which regulates photosynthesis of organisms as 

well as the temperature of water that affects their biological activities.  However, the 

measured turbidity may also be a measure of the amount of algae in the water column.  

 

Figures 33 through 35 depict the comparison plots of turbidity levels against total algae 

counts at the three sampling stations.  At Station 100 (water treatment intake point), no 

clear relationship between algae levels and of turbidity levels emerged. At Station 101 

(River B) however, higher levels of turbidity coincide with higher levels of chrysophyta 

chlorophyta and cyanobacteria, most evident of which was in August 2002.  During this 

month, the highest recorded turbidity level was measured at 22 NTU, which coincided 

with a cyanobacteria bloom, as well as the highest overall chlorophytes level measured at 

this station.  In addition, the chrysophytes count was also relatively high during this 

period.   

 

0

5

10

15

20

25

Apr-99 Jan-00 Nov-00 Sep-01 Jul-02 May-03

Station 100

Tu
rb

id
ity

 (N
TU

)

0

200

400

600

800

1000

1200

1400

1600

To
ta

l A
lg

ae
 c

ou
nt

Turbidity
Chrysophyta

Cyanophyta
Chlorophyta

 
Figure 33.  Total Algae counts versus Turbidity measured at Station 100 
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Figure 34.  Total Algae counts versus Turbidity measured at Station 101 
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Figure 35.  Total Algae counts versus Turbidity measured at Station 612 

 

At Station 612, the highest turbidity levels over the 4-year records (51 and 55 NTU in 

September 1999 and July 2002, respectively) coincide almost perfectly with 

cyanobacteria bloom incidences.  The other two algae types, chrysophyta and 

chlorophyta, exhibited different behavior, in which higher levels occurred during times 

when turbidity levels were lower. 

 

In conclusion, there may be some threshold at which a higher turbidity levels during the 

right conditions is indicative of or corresponds with higher algae levels and/or limiting 

nutrients and minerals.  However, above this threshold, elevated turbidity may reflect a 

high presence of material (e.g. sediments) which, by limiting sunlight penetration, 

inhibits algae growth.   
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7.3.4 Alkalinity 

 

Alkalinity is a measure of the capacity of water to neutralize acids, as it measures how 

much acid can be added to water without causing a significant change in pH (i.e. 

buffering capacity).  If any chemical changes are made to the water that could raise or 

lower the pH value, alkalinity acts as a buffer, protecting the water and its life forms 

from sudden shifts in pH.  

 

Alkalinity is important in rivers and lakes because it buffers pH changes that occur 

naturally during photosynthetic cycles, or un-naturally by addition of acids to water via 

acid rain.   The normal pH value of natural surface water bodies is usually between 6.5 

and 8.5 but raising the alkalinity almost always raises the pH, which in turn affect 

aquatic life.  If the alkalinity is too high, the water can become too cloudy and inhibit 

photosynthesis.    

 

At the PVWC utility, as shown by Figures 36, 37 and 38, contradictory behavior was 

observed at the different stations.  At Station 100, algae thrived during times when 

alkalinity was low.  The highest alkalinity at this station was measured in July 2000 at 

103 mg/l, and algae levels were correspondingly low.  However, at Stations 101 and 

612, higher algae levels generally occurred during periods of high alkalinity. The high 

alkalinity level of 98 mg/l in August 2002 at station 101 (highest at 106 mg/l in July) 

and the highest alkalinity level of 110 mg/l at stations 612 measured in July 2002, 

coincided with cyanobacteria bloom episodes at their respective stations.  Moreover, at 

station 101, the highest chlorophytes counts occurred in July and August 2002, at 

exactly the same periods when alkalinity levels were highest.  Another obvious 

coincidence between high chlorophytes and chrysophytes counts and high alkalinity 

occurred at this station in May 2001.    At station 612, the highest chlorophytes counts 

occurred in May 2001 during relatively high alkalinity, while another cyanobacteria 

bloom episode in September 1999 at this station also coincide with high alkalinity 

above 70 mg/l.  
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Figure 36.  Total Algae counts against Alkalinity measured at Station 100 
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Figure 37.   Total Algae counts versus Alkalinity measured at Station 101 
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Figure 38.  Total Algae counts versus Alkalinity measured at Station 612 
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7.3.5 Total Hardness 

 

Hardness is a measure of the concentration of divalent cations dissolved in water, and the 

principal components in most natural water systems are typically calcium and magnesium 

ions.  Hardness is generally defined by the following equation; 

 

    Hardness = 2.5(Ca2+) + 4.1(Mg2+)                              (6) 

 

where the Ca2+ and Mg2+ ion concentrations are measured in mg/l.  The hardness 

represents the equivalent concentration of CaCO3 that would produce an equivalent effect 

in terms of forming a soft precipitates or reacting in boilers to form a solid scale 

precipitate.  The factors 2.5 and 4.1 represent the ratio of CaCO3 formula mass to Ca and 

Mg atomic masses, respectively.  Water with hardness below 75 mg/l is considered “soft” 

and water with hardness above 150 mg/l is considered hard.   

 

At Station 100 as shown in Figure 39, the cyanobacteria bloom episodes in August and 

September 1999 occurred when corresponding total hardness was measured within the 

range 107 to 144 mg/l of CaCO3, which by standard can be considered as moderately 

hard to hard water.  The highest chrysophyta and chlorophyta counts occurred in the 

same year when water was hard (total hardness is above 150 mg/l of CaCO3).   Figure 40 

depicts the comparison plot of different algae counts against total hardness at Station 101.  

As shown, the highest levels in all three algae types occurred during times when water 

was hard (above 120 mg/l of CaCO3).  As depicted by the figure, other higher 

chrysophyta concentrations coincided with moderately hard water as well.  At Station 

612, the two cyanobacteria bloom events and the highest chrysophyta and chlorophyta 

event coincided with moderately hard water (below 120 mg/l of CaCO3).  Figure 41 

depicts these trends.  
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Figure 39.  Total Algae counts versus Total Hardness measured at Station 100 
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Figure 40.  Total Algae counts versus Total Hardness measured at Station 101 
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Figure 41.  Total Algae counts versus Total Hardness measured at Station 612 
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7.3.6 Conductivity 

 

Conductivity is a meaure of electrical current flow through a solution, is expressed in 

units of microSiemens (uS).  Because conductivity increases nearly linearly with 

increasing ion concentration, it is generally found to be good measure of the 

concentration of total dissolved solids in water, which may contain nutrients available for 

algal growth, or other ions, such as chloride, which may inhibit it.   

 

Figures 42 through 44 depict the algae counts against the conductivity measurements at 

the three sampling stations.  All three stations exhibited the same distinct patterns: high 

algae levels corresponding with high conductivity measurement, and low algae levels 

with low conductivity measurements.  The highest conductivity values measured at three 

stations occurred during the same measurement event, January 2002, at 1312 umhos/cm 

for Station 100, 1307 umhos/cm for Station 101, and 756 umhos/cm for Station 612.  
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Figure 42.  Total Algae counts versus Conductivity measured at Station 100 
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Figure 43.  Total Algae counts versus Conductivity measured at Station 101 
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Figure 44.  Total Algae counts versus Conductivity measured at Station 612 

 

Algae levels during this event were correspondingly low at all three stations.  At station 

100, the cyanobacteria bloom episodes in August and September 1999, as well as the 

high chrysophytes and chlorophytes  counts occurred during periods when conductivity 

were moderately high, from 593 to 717 756 umhos/cm.  At Station 101, the single 

cyanobacteria bloom episodes in August 2002 coincide with conductivity level of 701 

umhos/cm, while the highest chrysophytes counts that occurred in July to August 2002 

occurred during periods when conductivity was considerably high, within the range of 

637 to 1037 umhos/cm.   High chlorophytes counts, on the other hand, coincide with low 

to moderate conductivity.  At Station 612, the two cyanobacteria bloom episodes in 

September 1999 and August 2002 coincide with moderate conductivity level, from over 

400 and over 500 umhos/cm, respectively.   
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7.3.7 Total Suspended Solids 

 

Total Suspended Solids (TSS) consist of sand, silt and fine organic matters such as 

leaves, pieces of woods, etc. suspended in streams or lakes.  High flows can increase TSS 

as water erodes banks and prevent the suspended solids from settling to the river bottom.  

High suspended solids can also exacerbate chemical degradation of water quality. 

Pesticides and bacteria that attach to them are more readily transportable, and their 

advection downstream can kill plants and animals, while making the water less safe or 

even undrinkable to humans and wildlife.   

 

TSS data were available only for Station 100.   As depicted by Figure 45, the four-year 

record at this station shows that the highest TSS at 47 mg/l was measured in March and 

April 2001.  It was observed that the cyanobacteria bloom episodes that occurred in 

August and September 1999 coincide with higher TSS values measured at 16 and 34 

mg/l, respectively.  During lower periods of TSS, all three algae levels were 

correspondingly low. 
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Figure 45.  Total Algae counts versus Total Suspended Solids measured  

at Station 100 
 

7.3.8 Total Amorphous Materials  

 

Aggregate particles not passing through the 0.45 μm pore-size filter during rapid 

processing of water samples with materials along streams and rivers are more often 
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described as being amorphous.  They consist of various unidentifiable fragments of 

organic and inorganic matter bound in an organic matrix.  Sometimes the components 

are identifiable and may consist of diatom frustules or animal remain. 

 

Particles passing the 0.45 μm pore-size filter are considered discrete materials and can 

be further classified into dissolved organic matter (DOM) and particulate organic matter 

(POM).   

 

7.3.9 Color 

 

Suspended sediments and organic matter (e.g. algae) affect the color of water in rivers or 

reservoirs.  The green water that promotes fish production comes from billions of 

suspended microscopic algae.  Eventually, the algae are consumed and/or simply die-off 

and the color of water will change.    Sediments washed into rivers after heavy rains will 

also change the color of water, and as settling proceeds, the water color will return to 

normal, which may take several days.   Obviously water that is too dark will inhibit 

photosynthesis necessary for algae to flourish.   

 

There is no available data for color measurements at Station 100.  At Station 101, the two 

highest color units were both recorded in 2002, at 96 Cu in June and at 153 Cu in April, 

while the lowest reading of 15 Cu, also in 2002, was recorded in August.  As shown in 

Figure 46, high algae counts at this station occurred during periods of moderate color 

units, from 65 to 75 Cu.  At Station 612 however, a different relationship was observed, 

where cyanobacteria bloom episodes in 1999 and 2002 corresponded with the two highest 

color measurements of 92 and 195 Cu, respectively.    The two other algae types did not 

exhibit any consistent correlation with color levels.  Plot of the three algae counts against 

the color measured at Station 612 is presented in Figure 47. 
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Figure 46.  Total Algae counts against Color measured at Station 101 
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Figure 47.   Total Algae counts against Color measured at Station 612 

 

7.3.10 Odor  

 

Odor in water is usually caused by organic compounds, inorganic salts, or dissolved 

gases as well as microscopic organisms such as algae.  Seasonal occurrences of 

musty/moldy or earthy odors in rivers are due to naturally occurring algal and fungal 

by-products.  Compounds known as Methyl-Isoborneol (MIB) and Geosmin are algal 

metabolites and can be released to the water during algae die off. These compounds are 

usually stable and difficult to remove.  
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7.4  Chemical Data 

 

7.4.1 Dissolved Oxygen 

 

Chrysophytes, chlorophytes and cyanobacteria like plants use the energy of sunlight to 

make their own food through the process called photosynthesis, and produce oxygen as 

byproduct of the process.  Dissolved oxygen (DO) is consumed by algae through 

respiration and during decomposition as the algae are broken down by bacteria.  

 

Figures 48, 49 and 50 depict DO measurements at the three sampling stations plotted 

against their corresponding algae levels.  Station 100 exhibited a more distinct pattern in 

which generally higher DO levels, ranging from 13.8 to 16.2 mg/l, were measured from 

the end of the year to beginning of the following year.  Most of the cyanobacteria blooms 

at this station, including the two particularly high count events in August and September 

1999, coincided with period of lower DO levels.  However, the bloom events in July and 

early August 1999 occurred during periods of relatively high DO levels, at 10.4 to 12.5 

mg/l, respectively.  Most of the higher counts of chrysophyta and chlorophyta also 

coincide with periods of relatively low DO levels.  At Station 101 no distinct pattern 

between algae and DO levels emerges from the data, as shown by the figure.  Higher 

algae levels occurred during both higher and lower DO levels. The highest DO level at 

this station was measured at 15.1 mg/l in February 2000, while the lowest at 5.34 and 

5.52 mg/l were measured in August and June of the same year, respectively.  At station 

612, DO levels fluctuate from 4.8 to 13 mg/l during the years 1999 to 2000.  However, at 

the beginning of 2001, DO levels were high and progressively increased towards the end 

of the year.  A high spike (15.4 mg/l) in August 2002 coincided with a cyanobacteria 

bloom at this station.  The other cyanobacteria bloom at Station 612, in 1999 coincide 

with high DO level, however high counts of chryosphyta and chlorophyta coincide with 

periods of relatively low DO levels. 
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Figure 48.  Total Algae counts versus Dissolved Oxygen measured at Station 100 
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Figure 49.  Total Algae counts versus Dissolved Oxygen measured at Station 101 
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Figure 50.  Total Algae counts versus Dissolved Oxygen measured at Station 612 
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7.4.2 Biochemical Oxygen Demand 

 

Biochemical Oxygen Demand (BOD) is a measure of the amount of dissolved oxygen in 

the water required by the aerobic organisms to breakdown organic matter.  It is 

sometimes referred to biological oxygen demand.  Higher amounts of organic material in 

the water body results in higher oxygen consumption by the organisms for aerobic 

oxidation.  In extreme cases, an overabundance of organic material can result in depletion 

of DO, which can stress or kill other aquatic life.   

 

As depicted by Figure 51, BOD levels at Station 100 ranged from 0.70 to 10.2 mg/l, and 

fluctuated on a weekly basis over the 4-year record.  Algae levels do not appear to 

correlate either positively or negatively with BOD levels.  Similarly, at Station 101, no 

obvious relationship between BOD and algae levels can be discerned as depicted by 

Figure 52. The BOD levels at this station ranged from 0.40 mg/l August 2004 to 8.10 

mg/l in June 2001.  Incidences of high algae concentrations occurred for all different 

levels of BOD.  At Station 612 and shown in Figure 53, BOD levels over the 4-year 

record showed no distinct pattern, although relationships between BOD levels and algae 

counts do emerge.  

 

The maximum level was measured at 10 mg/l in August 1999, while the lowest at 1.58 

mg/l was measured in June 2002.  At this station, high algae levels occurred mostly 

during the periods of high BOD.  The two cyanobacteria bloom episodes that occurred in 

1999 and 2002 as well as the highest chlorophyta levels in 2001 coincide with high BOD 

levels.  The same positive correlation can be observed for chrysophyta, where higher 

counts correspond with higher BOD, with exception to April 1999, when the highest 

measured chrysophyta event occurred during a low BOD period. 
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Figure 51.  Total Algae counts versus Biochemical Oxygen Demand measured at 

Station 100 
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Figure 52.  Total Algae counts versus Biochemical Oxygen Demand measured at 

Station 101 
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Figure 53.  Total Algae counts versus Biochemical Oxygen Demand measured at 

Station 612 
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7.4.3 Nitrogen Compounds 

 

Nitrogen, as an integral component of proteins and nucleic acids (like carbon), is required 

by all organisms to grow and reproduce. Dissolved nitrogen in water bodies may 

originate from a number of different sources.  Organic forms may enter streams from 

surface runoff or groundwater sources, while proteins that contain organic nitrogen which 

are released by decomposing organic matters are broken down by bacteria to form 

ammonium (NH4
+).  Under very alkaline conditions (pH > 9), ammonium is converted to 

ammonia (NH3).  Inorganic forms of nitrogen, namely nitrate (NO3), nitrite (NO2), 

ammonia (NH3) and nitrogen gas (N2), are products of different nitrogen processes.  

Ammonium is the preferred nitrogen source for most algae.   

 

Nitrite and nitrate are formed through the process of nitrification, in which ammonium is 

oxidized (combined with oxygen) by specialized bacteria and transformed into nitrate 

(NO3) with nitrite (NO2) as an intermediate product.   The two steps of nitrification are 

performed by different bacterial species, the ammonium oxidizers and nitrate oxidizers, 

which convert ammonium to nitrite (NH4
+ to NO2)  and nitrite to nitrate (NO2

 to NO3), 

respectively.  Nitrate is usually the most prevalent form of nitrogen in lakes that can be 

used by most aquatic plants and algae, as nitrite is relatively short-lived in water due to 

its rapid conversion to nitrate by bacteria.  Nitrate and/or nitrite can be harmful to humans 

and wildlife at high concentration. 

 

As depicted by Figure 54, no distinct pattern of ammonia concentrations can be observed 

at Station 100.  High concentrations were measured four times over four different years; 

0.43 mg/l in November 1999; 0.42 mg/l in December 2000; 0.41 mg/l in April 2002; and 

0.33 mg/l in February 2003.  The cyanobacteria bloom episodes in August and September 

1999 as well as high cyanobacteria counts in July 2002, all coincide with low ammonia 

concentration below 0.05 mg/l.  The same behavior was observed for chrysophyta and 

chlorophyta, that is, high algal counts occurred during low ammonia concentration 

periods usually below 0.05 mg/l.   
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Figure 54.  Total Algae counts versus Ammonia measured at Station 100 

 

As depicted by Figure 55 below at Station 101, ammonia concentrations fluctuated over 

time, from a low 0.02 mg/l in July and August 2002 and November 2003 to a high of 

0.43 mg/l in January 2002.  The three algae classes behaved differently in response to 

ammonia concentration.  The lone cyanobacteria bloom episode at this station occurred at 

the lowest ammonia concentration of 0.02 mg/l.  Similarly, the highest chlorophytes 

counts also coincide with the lowest concentration.  On the contrary several higher 

chlorophytes counts coincided with relatively high ammonia concentrations that ranged 

from 0.02 to 0.10 mg/l.   Chrysophyta counts on the other hand, coincide with moderate 

ammonia concentrations ranging from 0.07 to more than 0.16 mg/l.    
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Figure 55.  Total Algae counts versus Ammonia measured at Station 101 

 

At Station 612, as with the other two stations, ammonia concentrations varied over time, 

ranging from a low of 0.01 mg/l in July and August 1999 to a high of 0.19 mg/l in 

January 2002.  During 2000 and 2001, there were more dramatic weekly fluctuations as 



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks  
 
 

PVWC Data         Page 91                                 

compared to the years 1999, 2003, and 2004.  Similar to the other two stations, the two 

cyanobacteria bloom episodes that occurred in July to September 1999 and July to 

August 2002 coincide with low ammonia levels less than 0.05 mg/l.  As with 

cyanobacteria, the highest chrysophytes counts coincide with low ammonia levels below 

0.05 mg/l, while the other higher counts occurred with ammonia levels above 0.05 and 

0.17 mg/l.  The highest chlorophytes counts occurred with ammonia concentrations at 

0.05 mg/l.  Comparison plot of nitrite/nitrate measured at Station 612 against the three 

algae counts is shown below in Figure 56. 
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Figure 56.  Total Algae counts versus Ammonia measured at Station 612 

 

As also depicted by Figures 57 through 59, nitrite/nitrate concentrations, like ammonia, 

did not exhibit any consistent patterns at the three stations with respect to time or algae 

counts.  At station 100, measured concentrations ranged from a low of 0.03 mg/l 

measured in November 2000 to a high of 5.34 mg/l measured in January 2002.  Over the 

five-year record, particularly high nitrite/nitrate concentrations were observed in 1999, 

2000 and 2002, during which the three algae types exhibited conflicting patterns. The 

highest nutrient concentrations in 1999 measured from June to September 1999 coincide 

with the highest counts of all three algae types.  Similarly, the highest algal counts for 

2000 also coincided with the highest concentrations, measured in December 2000.   In 

contrast, all three algae classes had relatively low measured counts in January to April 

2002 when nitrite/nitrate was again the highest during the year.  In fact, measured 

cyanobacteria counts for this period were zero, chrysophyta counts were moderate and 

chlorophyta counts were relatively low.   
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Figure 57.  Total Algae counts versus Nitrite/Nitrate measured at Station 100 

 

At Station 101, the sampling events in October 2001 and January 2002 yielded the two 

highest concentrations for this station with values measured at 5.94 and 6.15 mg/l, 

respectively. As depicted by the Figure 58, high algae levels coincide predominantly with 

low nitrite/nitrate concentrations.  A notable exception occurred during the period July to 

September 2002, when the highest chlorophyta and cyanobacteria levels as well as 

moderate levels of chrysophyta coincide with fairly high nitrite/nitrate concentrations.  

Figure 59 shows that at Station 612, the highest nitrite/nitrate concentrations were 

measured in November 2001 at 3.70 mg/l, with moderately high concentrations also 

occurring in January, February and April of 2002.  As can be seen in the figure, the three 

algae types behaved differently in response to variable nitrite/nitrate concentrations.  

High levels of chrysophyta occurred during lower concentration events, while high 

chlorophyta levels occurred during both lower and higher nitrite/nitrate concentration 

events.  In contrast, Cyanobacteria bloom events in September 1999 and August 2002 

coincide with moderate level of nitrite/nitrate concentrations.  
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Figure 58.  Total Algae counts versus Nitrite/Nitrate measured at Station 101 

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04

Station  612

N
itr

ite
/N

itr
at

e 
(m

g/
L)

0

100

200

300

400

500

600

700

800

To
ta

l A
lg

ae
 c

ou
nt

Nitrite/Nitrate

Chrysophyta

Cyanophyta

Chlorophyta

 
Figure 59.  Total Algae counts versus Nitrite/Nitrate measured at Station 612 

 

Because nitrogen compounds are important nutrients for algae growth, higher algae levels 

might be expected immediately following or during periods of nitrogen concentrations.  

However, the different observed relationships between the three types of algae types and 

the nitrite/nitrate levels at the three stations underscores the complex algae population 

dynamics that is certainly affected by multiple factors and conditions. 

 

7.4.4 Total Phosphorus/Orthophosphate 

 

Phosphorus as a structural component of nucleic acids and a key component of a cell’s 

regulatory machinery (of signal transduction enzymes, nucleotides, factors and co-

factors, etc.) is an essential nutrient that stimulates the growth of algae and aquatic plants.  
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It is considered as the limiting factor for algae and plants growth, as both will not grow if 

there is not enough phosphorus, even when plenty of other nutrients are present in water.  

The simplest form of phosphorus found in water is orthophosphate, which algae most 

readily consume.   

 

Figure 60 shows that at station 100, no distinct pattern can be observed in the total 

phosphorous/orthophosphate concentrations over the study period.  The measured total 

phosphorous/orthophosphate concentrations ranged from 0.003 to 1.71 mg/l.  The three 

algae classes, all with the highest counts measured in 1999, behaved differently in terms 

of the nutrient concentrations.  The two particularly high cyanobacteria counts in August 

and September 1999 coincide with moderately high nutrient concentrations from 0.7 to 

0.82 mg/l.  Similarly, the highest Chrysophyta count also coincides with moderate 

nutrient concentration of 0.84 mg/l.  However, several higher chrysophyta counts also 

occurring during this year coincide with a range of concentrations for this variable, from 

a low 0.07 to as high as 1.27 mg/l.  Chlorophyta showed somewhat more consistency; the 

highest count in 1999 and a fairly high count in 2001 both occurred when concentration 

were low, at 0.003 and 0.02 mg/l, respectively.   
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Figure 60.  Total Algae counts versus Total Phosphorous/Orthophosphate measured 

at Station 100 
 

As depicted by Figure 61, at station 101, a number of events of high total 

phosphorous/orthophosphate concentrations were measured from November 2001 (when 

the highest concentration was measured at 2.49 mg/l) to November 2002.  Incidentally, 
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the highest chlorophyta levels, the cyanobacteria bloom episode and higher level of 

chrysophyta occurred simultaneously from July to September 2002, which coincide with 

the period of high total phosphorus/orthophosphate concentrations at this station.  Station 

612 also experienced several high total phosphorus/orthophosphate concentrations during 

the 4-year study period as shown by Figure 62.  Among the peaks, the highest was in 

September 2001 at 1.58 mg/l.  The two cyanobacteria bloom episodes in September 1999 

and August 2002 at this station coincide with high total phosphorus/orthophosphate 

concentrations, while high levels of chrysophyta and chlorophyta occurred during periods 

of both low and high levels for this chemical.   
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Figure 61.  Total Algae counts versus Total Phosphorous/Orthophosphate measured 

at Station 101 
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Figure 62.  Total Algae counts versus Total Phosphorous/Orthophosphate measured 

at Station 612 
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7.4.5 Total Organic Carbon 

 

Total Organic Carbon (TOC) is the total amount of organic matter found in natural water, 

including suspended particulate and dissolved organic carbon, which are essential 

components of the carbon cycle.  Organic matter plays a major role in aquatic systems 

because it affects biogeochemical processes, nutrient cycling, biological availability, 

chemical transport and interactions. It also has direct implications in the planning of 

wastewater treatment and drinking water treatment.  The TOC of a water body is affected 

by several factors, including vegetation, climate and treated sewage.  

 

At station 100 as depicted by Figure 63 below, the four-year record showed no distinct 

pattern.  There were several high TOC events, the highest of which was measured in May 

2002 at 11.34 mg/l.  High algae counts at this station coincide with TOC values between 

approximately 4 and 6 mg/l.   Figure 64 below shows that at Station 101, the highest 

TOC level measured in August 2002 at 17.2 mg/l coincide with a cyanobacteria bloom 

episode and the second highest chlorophytes count.  The highest chlorophytes counts as 

well as high chrysophytes counts occurred when TOC levels were below 6 mg/l.   At 

station 612, there were little variations in TOC levels from January 1999 to October 

2002. As depicted by Figure 65, the highest TOC was measured in August 2004 at 8.48 

mg/l.  Measured high counts of all three algae types occurred during periods when TOC 

was between 3 and 5 mg/l.   
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Figure 63.  Total Algae counts versus Total Organic Carbon measured at  

Station 100 
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Figure 64.  Total Algae counts versus Total Organic Carbon measured at  

Station 101 
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Figure 65.  Total Algae counts versus Total Organic Carbon measured at  

Station 612 

 

7.4.6 Chloride 

 

Chlorides are binary compounds of chlorine chemically combined with a metal.  The 

presence of chloride in water bodies where it does not occur naturally indicates possible 

pollution, along with excessive nutrients or bacteria.   Sources of chloride include septic 

systems, wastewater treatment plant effluent, animal waste, potash fertilizer, and drainage 

from rock salt applied to roads, parking lots and sidewalks to lower the melting point of 

ice  The normal range of chloride in fresh surface water systems  is 45-155 mg/L, while 

USEPA has set a public drinking water standard of 250 mg/L. 
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Elevated chlorides can kill plants and wildlife, and may affect other organisms present in 

water including algae.  Small amounts of chlorides are necessary for normal cell 

functions in plant and animal life. However, fish and aquatic animals can not live in high 

levels of chlorides. 

 

Chloride concentrations over time at stations 100, 101 and 612 are shown in Figures 66, 

67 and 68, respectively.  At Station 100, a temporal pattern of chloride concentrations for 

the year 2000 to 2003 is evident, with peak concentrations occurring in late winter/early 

spring (January to March), after which concentrations decline and remain low through 

summer months.  The highest chloride level at 283 mg/l was measured in January 2002.  

A notable exception to this otherwise consistent temporal pattern occurred in 1999, when 

the highest measured concentration of 164 mg/l occurred in July.   High algae levels 

occurred mostly during moderate chloride concentrations.  At Station 101, four high 

chloride events were measured from 2000 to 2002 with values ranging from 172 

(February 2002) to 192 mg/l (February 2000). In 2000, another high chloride 

concentration occurred in August to September which coincides with the highest 

chlorophyta level and algal bloom incidence.  Chrysophyta level on the other hand was 

moderate during this period.  At Station 612, peak concentrations were observed in 

January to March with values ranging from 127 mg/l in March 2003 to 174 mg/l in 

January 2002.  At this station however, most of high algae levels coincide with periods of 

moderate chloride concentrations. 
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Figure 66.  Total Algae counts versus Chloride measured at Station 100 
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Figure 67.  Total Algae counts versus Chloride measured at Station 101 
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Figure 68.  Total Algae counts versus Chloride measured at Station 612 

 

7.5 Climate Data 

 

7.5.1 Precipitation 

 

In most algal bloom studies, precipitation is generally not considered one of the major 

controlling factors.   However, as blooms occur in response to a variety of natural 

conditions, it is important that the potential affect of precipitation on these events not be 

excluded.   During relatively high precipitation events, when run-off is generated, large 

amounts of nutrients are delivered to surface water bodies.  This nutrient loading 

promotes the growth of aquatic plants and algae.   Another impact due to precipitation, 

when it is minimal or absent, is a decline in surface water levels with an associated 
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decrease in flow rate.   Low flow conditions increase the retention time of the water along 

any stretch of river, and thus increase the time available for algae to grow.   Low flow 

conditions also promote water column stability, which enhances the ability of the algae to 

optimally locate themselves within the water column for photosynthesis.   

 

Three weather stations located in proximity to the study area and operated by NOAA 

were used for the ANN development.  These stations include Caldwell, located 

approximately 6 miles to the southwest, Newark, located 11.4 miles to the south, and 

Tetterboro, located 9 miles to the southeast.   Data collected during the study period from 

1999 to 2004, showed that distributions of average monthly precipitation totals from all 

three weather stations were similar.  That is, the lowest precipitation of about 2 inches 

occurred in January and February, the highest precipitation of more than 5 inches 

occurred in June and September while the rest of the months, all stations received an 

average monthly precipitation totals of around 3 to 4 inches.   For this study, the averages 

of daily precipitation totals from the three stations were used.   

 

7.5.2 Wind Speed/Direction 

 

Wind direction and speed have influence on the movement and/or mixing of water in the 

river or lake.  As the wind become stronger, it creates waves and underwater currents 

below the waves.  The underwater currents tend to move water particles horizontally and 

in irregular swirling motion known as turbulence.  Nutrients are distributed vertically by 

turbulence, hence facilitating the recycling of nutrients from sediments and deeper water, 

which in turn will be available for algae suspended in water.  At the other extreme, 

resuspension of sediments due to turbulence also increase the turbidity of the water and 

reduce light penetration which can affect the biochemical activity of algae such as 

photosynthesis. 
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Available wind speed and direction data used for developing the ANNs were taken from 

the three NOAA weather stations located in Caldwell, Newark and Tetterboro, all in 

proximity to the study area.   

Computed average wind speeds over the week at the three stations were 7.4 miles per 

hour (mph) at station 100, 7.3 mph at station 101 and 7.6 mph at station 612.  Based upon 

the data used in the modeling efforts, it was observed that most of high algae levels (all 

three) occurred during periods when wind speeds were around the average values 

between 6 to 8 mph.  With exception to station 612 in April 1999, when the 

corresponding wind speed to the highest chrysophytes count was computed to 9.6 mph.   

 

7.5.3 Heating degree days/Sky Cover/Length of Day  

 

For any individual day, heating degree days indicate how far that day's average 

temperature departed from 65 degrees Fahrenheit, measuring heating energy demand.  

Sky cover indicates the total cloud cover throughout the entire day, 0.0 indicates a nearly 

clear sky, where high thin clouds may not be included in the total sky cover for some 

locations.  

 

As in precipitation and wind direction/speed, data for heating degree days and sky cover 

used in this study were taken from the three weather stations maintained and operated by 

NOAA.  Again, the stations used were Caldwell, Newark and Tetterboro. 

 

Length of day is the time difference between sunrise and sunset.  Sunrise and sunset are 

defined as instants in the morning/evening under ideal meteorological conditions, with a 

standard refraction of the sun's rays, when the upper edge of the sun's disk is coincident 

with an ideal horizon.  Length of day has been shown to be an important variable for 

many higher plants that have “critical photoperiods”, during which growth regulators 

respond to length of day.  The data used in this study was downloaded from a public 

domain provided as a public service by Horizon Network Security.  
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8. MODELING APPROACH AND RESULTS 

 

Because the three water quality sampling stations each have distinct water quality and 

hydrologic conditions (e.g. unique watershed, etc.), each was modeled independently of 

the others.  The validity of this approach was verified by preliminary ANN modeling 

results presented to DSR and PVWC during an October, 2004 meeting, showing superior 

modeling performance when each station was modeled individually rather than 

collectively.  This finding was further verified with a comprehensive modeling effort, 

with the results for modeling all the stations collectively for each prediction period and 

algae type summarized in Appendix B-4. As previously discussed, many different ANN 

models were developed and tested for the PVWC, which evolved to address important 

modeling issues that emerged during this project, following submission of the first draft 

report to DEP for review.   

 

After organizing the corresponding measurements for each variable by date, the values 

for the input and output variables were assigned or computed for each prediction event. 

For many variables, the input value is a single measurement, such as water temperature 

measured at a particular station on a particular date.  For other variables, such as the 

prediction period’s cumulative precipitation, daily values were summed over the period 

of interest.  For other variables, such as wind direction and water temperature, the 

average daily values were used.   

 

ANNs that explicitly predicted final measured count values constituted the great majority 

of forecasting models in this study, but eight RBF classification nets were also developed 

and assessed.  Model forecast performances were assessed based upon a number of 

criteria, including standard statistical measures, such as absolute mean errors and 

correlation coefficients, statistical discrepancies between training and validation results, 

the ability of the models to forecast bloom and non-bloom events, the ability of the 

models to accurately predict relative changes in population counts, and visual comparison 

of time series.  Again, the relatively few number of historical validation events limits the 
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strength with which conclusions can be drawn, particularly since there are relatively few 

events where populations change from bloom to non-bloom events, and vice versa. As a 

final benchmark of performance, LMs were also developed for comparison against ANN 

performance.  

 

Sensitivity analyses was performed, using both the ratio and ranking method described in 

the water treatment modeling section, as well as the exclusion of select water quality and 

water extraction variables.    The hope was that certain fundamental trends or tendencies 

would emerge that might help identify important predictor variables for improving future 

data collection and modeling strategies. 

  

Most of the modeling results are presented in Appendices B-1 through B-6, with 

representative results for three test cases presented here.  A detailed discussion of the 

original and revised modeling approaches is provided, followed by the systematic 

comparison of different modeling approaches that evolved out of the original modeling 

effort to address important data and modeling issues.     

 

8.1 Original and Revised ANN Modeling Approaches 

 

For the original modeling work, 27 different cases were modeled; the three stations, for 

the three different algal groups, for three prediction periods consisting of real-time, one-

week ahead, and two-weeks ahead.  As discussed previously, and presented in the 

appendices, the original set of ANN models developed for PVWC, which utilized all of 

the variables listed in Table 19, did not consistently perform well during validation, 

particularly for cases with smaller data sets.  This finding was not unexpected, given the 

low number of data events, the relatively high number of input variables, and the 

complexity of algal population dynamics.   Another potentially complicating factor 

considered was the original model inputs reflect conditions existing at or preceding the 

beginning of the prediction period, which may not be strongly causal and/or correlative 

factors of algal counts one-week or more into the future.  That is, system changes (e.g. 
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precipitation event(s), hot spell, etc.) over the prediction period of interest, which is not 

captured or represented by the model inputs, could largely determine the algal 

populations as measured at the end of the prediction period.  Lastly, the original models 

did not include length of day as an input variable, which ranked fairly high in importance 

for many of the models.   

 

To further assess the possible disconnection between real-time system conditions and 

algal counts at some future date, the revised models were developed, with the 

measurement date of the input values generally corresponding to the prediction date. In a 

sense, then, these models are developed in a more correlative manner, though, as 

discussed in more detail later, for real-time operation, the modeler would have to forecast 

or predict final system conditions. Tables 20 and 21 below specify how the value for each 

model input type was computed/assigned for the original and revised models, 

respectively, using sample calendar dates.  Again, the most recently developed original 

and revised models used forecasting periods of one-week and two-weeks ahead, but some 

three week models were developed in previous work, contained in the Appendices. 

 

Table 20.  Input Value Assignments/Computations for Three Prediction Periods for 
Original ANN Models 

 

Model Variable Type July 14 
(one-week ahead) 

July 21 
(two-weeks ahead) 

July 28 
(three-weeks ahead) 

Physical Water Parameters Single Value 
Measured July 7 

Single Value 
Measured July 7 

Single Value 
Measured July 7 

Water Quality Parameters Single Value 
Measured July 7 

Single Value 
Measured July 7 

Single Value 
Measured July 7 

Streamflows/ 
River Extractions 

Mean Value 
July 1 – July 7 

Mean Value 
July 1 – July 7 

Mean Value 
July 1 – July 7 

Prediction Period’s 
Precipitation Two Week Lag 

Total Cumulative 
June 24– June 30 

Total Cumulative 
June 24 – June 30 

Total Cumulative 
June 24 – June 30 

Prediction Period’s 
Precipitation One Week Lag 

Total Cumulative 
July 1 – July 7 

Total Cumulative 
July 1 – July 7 

Total Cumulative 
July 1 – July 7 

Other Weather 
Conditions 

Mean Value 
July 1 – July 7 

Mean Value 
July 1 – July 7 

Mean Value 
July 1 – July 7 

Initial Algae Count July 7 July 7 July 7 
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Table 21.  Input Value Assignments/Computations for Three Prediction Periods for 
Revised ANN Models 

 

Model Variable Type July 14 
(one-week ahead) 

July 21 
(two-weeks ahead) 

July 28 
(three-weeks ahead) 

Physical Water Parameters Single Value 
Measured July 14 

Single Value 
Measured July 21 

Single Value 
Measured July 28 

Water Quality Parameters Single Value 
Measured July 14 

Single Value 
Measured July 21 

Single Value 
Measured July 28 

Streamflows/ 
River Extractions 

Mean Value 
July 7 – July 14 

Mean Value 
July 7 – July 21 

Mean Value 
July 7 – July 28 

Prediction Period’s Lagged 
Precipitation 

Total Cumulative 
July 1 – July 7 

Total Cumulative 
June 24 – July 7 

Total Cumulative 
June 16 – July 7 

Prediction Period’s 
Precipitation 

Total Cumulative 
July 7 – July 14 

Total Cumulative 
July 7 – July 21 

Total Cumulative 
July 7 – July 28 

Other Weather 
Conditions 

Mean Value 
July 7 – July 14 

Mean Value 
July 7 – July 21 

Mean Value 
July 7 – July 28 

Initial Algae Count July 7 July 7 July 7 

 

As depicted by Tables 20 and 21, the major functional difference between the original 

and revised modeling approaches is the temporal correspondence of the input values with 

the final predicted algal counts.  For the original models, the input values for future 

prediction periods are generally measured at the beginning of the prediction period, and 

hence, under real-time conditions, would be explicitly known a-priori.  Thus, there is no 

uncertainty with regard to the values of the input variables.  In contrast, for the revised 

models, input values generally correspond to the end of the prediction period, and hence, 

under real-time conditions, would have to be assumed or forecasted.    

 

 Another important distinction is that, unlike for the revised modeling approach, the 

original ANN models, for predicting algal counts n days into the future, use exactly the 

same input values, regardless of the forecast period (e.g. one-week ahead, two-weeks 

ahead, etc.).  This may seem counterintuitive to use identical input values for different 

prediction periods, but a different model was developed for each different prediction 

period.  It may be, as is discussed in more detail later, that there is a natural and therefore 

repeatable temporal transition of algal populations from initial state conditions, and thus 
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the one-week ahead ANN model would “learn” a different rate of algal population 

changes than the two-week ahead model.   

 

The obvious limitation of the revised modeling approach is the uncertainty regarding 

model input values, each of which constitutes a prediction problem in itself.  However, a 

number of these variables, such as water temperature, D.O., and conductivity, are related 

to seasons, and consequently, input values can be estimated or assumed with reasonable 

accuracy based upon measured historical conditions. Weather forecasts can be obtained 

from NOAA, and hydrologic and water use conditions, such as river flow and water 

extractions, can also be estimated or forecasted.  Thus, using historical records and 

weather forecasts, uncertainty with regard to input values can be reduced.   

 

Another factor that further reduces uncertainty is that some variables will generally not 

exhibit large changes over the relatively short prediction periods.  Water, because of its 

high specific heat capacity, is characterized by gradual temperature changes.  Exceptions 

may occur during freezing or thawing periods, but the modeler can combined historical 

records, weather forecast information, with physical intuition to estimate expected 

changes over prediction periods of interest.  For example, if mean daily temperatures are 

expected to remain fairly constant over the next prediction period, relatively small water 

temperature changes may be expected.  However, if a hot or cold spell is forecasted, the 

modeler may assume more dramatic change in water temperature.   

 

To investigate at a very basic level the feasibility of this approach, the range and mean 

changes of representative input variables over one-week, two-weeks, and even three-

weeks ahead forecast periods are presented below in Tables 22, 23, and 24 for Stations 

100, 101, and 612, respectively.  Both the actual and absolute value changes with respect 

to minimum, mean, maximum, and standard deviations are presented.   

  

As the tables show, on average, relatively small absolute value changes in the values of 

the predictor variables occur over the three different periods.  In some cases, even the 
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maximum observed changes for some variables is relatively small.  What would be 

important in future modeling work is to more systematically quantify how algae counts 

predicted by the ANN models change in response to expected changes in input values 

over the prediction period of interest.   
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Table 22.  Statistical Summary of Input Value Changes for Representative 
Variables for Three Prediction Periods at Station 100 

One-week Interval Two-week Interval Three-week Interval 
Changes Changes Changes Parameter Statistics 

Actual Absolute Actual Absolute Actual Absolute 
Std. Dev. 2.80 1.85 3.29 2.19 3.86 2.52 

Min -7.30 0.00 -9.10 0.00 -10.30 0.00 
Ave 0.08 2.10 0.28 2.46 0.43 2.95 Temperature 

Max 9.40 9.40 11.00 11.00 11.80 11.80 
Std. Dev. 0.60 0.44 0.55 0.40 0.55 0.36 

Min -2.60 0.00 -2.90 0.00 -2.30 0.00 
Ave 0.02 0.41 0.01 0.38 0.00 0.41 pH 

Max 3.20 3.20 2.20 2.90 1.70 2.30 
Std. Dev. 6.40 5.41 6.08 5.01 6.19 5.08 

Min -34.90 0.00 -33.50 0.00 -33.50 0.00 
Ave -0.15 3.42 -0.23 3.44 -0.25 3.55 Turbidity 

Max 30.33 34.90 37.86 37.86 38.44 38.44 
Std. Dev. 23.60 18.01 25.29 18.13 27.07 18.90 

Min -86.08 0.00 -86.68 0.00 -89.00 0.00 
Ave 0.83 15.24 0.65 17.61 0.30 19.34 Alkalinity 

Max 89.67 89.67 87.23 87.23 91.10 91.10 
Std. Dev. 25.14 16.94 29.00 17.97 32.15 19.71 

Min -88.00 0.00 -109.00 0.00 -110.00 0.00 
Ave -1.05 18.58 0.63 22.73 1.93 25.42 Hardness 

Max 110.00 110.00 62.00 109.00 106.00 110.00 
Std. Dev. 113.31 76.64 139.35 93.68 146.62 95.06 

Min -558.00 0.50 -468.00 0.00 -472.50 3.50 
Ave -7.87 83.67 1.63 102.97 2.17 111.40 Conductivity 

Max 324.50 558.00 675.50 675.50 436.50 472.50 
Std. Dev. 1.63 1.12 1.80 1.24 1.89 1.21 

Min -6.56 0.00 -7.59 0.00 -7.32 0.02 
Ave -0.01 1.18 -0.06 1.30 -0.12 1.45 

Dissolved 
Oxygen 

Max 7.57 7.57 6.62 7.59 4.99 7.32 
Std. Dev. 2.19 1.32 2.20 1.41 2.45 1.52 

Min -5.27 0.02 -5.83 0.00 -8.07 0.00 
Ave -0.02 1.74 -0.10 1.68 -0.16 1.93 

Biochemical 
Oxygen 
Demand 

Max 7.24 7.24 6.27 6.27 7.54 8.07 
Std. Dev. 23.24 16.77 26.74 18.17 31.77 21.92 

Min -91.00 0.00 -111.00 0.00 -120.00 0.00 
Ave 0.21 16.06 0.65 19.59 1.39 22.98 Chloride 

Max 128.00 128.00 86.00 111.00 116.00 120.00 
Std. Dev. 0.06 0.04 0.06 0.05 0.07 0.05 

Min -0.26 0.00 -0.28 0.00 -0.26 0.00 
Ave 0.00 0.04 0.00 0.04 0.00 0.05 Ammonia 

Max 0.36 0.36 0.31 0.31 0.32 0.32 
Std. Dev. 24.85 23.36 18.66 17.12 20.53 18.90 

Min -264.00 0.00 -41.00 0.00 -52.63 0.00 
Ave -0.33 8.44 0.46 7.42 0.68 8.03 

Total 
Suspended 

Solids 
Max 263.00 264.00 253.00 253.00 263.00 263.00 

Std. Dev. 0.04 0.03 0.04 0.03 0.05 0.03 
Min -0.11 0.00 -0.19 0.00 -0.16 0.00 
Ave 0.00 0.03 0.00 0.03 0.00 0.03 UV254 

Max 0.13 0.13 0.17 0.19 0.16 0.16 
Std. Dev. 1.32 0.84 1.34 0.85 1.44 0.94 

Min -4.15 0.00 -4.07 0.01 -4.35 0.02 
Ave -0.05 1.02 -0.06 1.03 -0.05 1.10 

Total Organic 
Carbon 

Max 3.90 4.15 5.35 5.35 3.99 4.35 
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Table 23. Statistical Summary of Input Value Changes for Representative Variables 
for Three Prediction Periods at Station 101 

 
One-week Interval Two-week Interval Three-week Interval 

Changes Changes Changes Parameter Statistics 
Actual Absolute Actual Absolute Actual Absolute 

Std. Dev. 3.26 2.13 3.92 2.55 4.53 2.98 
Min -8.24 0.00 -7.90 0.10 -7.54 0.20 
Ave 0.55 2.52 1.10 3.16 1.15 3.58 Temperature 

Max 9.94 9.94 10.20 10.20 13.09 13.09 
Std. Dev. 0.56 0.40 0.58 0.40 0.49 0.32 

Min -2.20 0.00 -1.70 0.00 -1.10 0.00 
Ave 0.02 0.39 0.00 0.41 0.05 0.37 pH 

Max 1.70 2.20 1.60 1.70 1.30 1.30 
Std. Dev. 5.50 4.31 6.01 4.59 5.87 4.55 

Min -18.90 0.00 -18.20 0.00 -17.10 0.00 
Ave -0.20 3.41 -0.33 3.86 -0.49 3.72 Turbidity 

Max 17.90 18.90 19.50 19.50 17.00 17.10 
Std. Dev. 14.21 8.30 17.41 11.74 22.91 15.83 

Min -30.00 0.00 -52.00 0.00 -84.60 0.00 
Ave 2.28 11.70 6.78 14.45 5.48 17.33 Alkalinity 

Max 39.60 39.60 53.60 53.60 62.60 84.60 
Std. Dev. 39.01 25.41 41.20 25.59 41.92 25.51 

Min -120.00 0.00 -98.00 0.00 -96.00 0.00 
Ave 3.47 29.65 5.80 32.56 7.94 33.97 Hardness 

Max 130.00 130.00 112.00 112.00 100.00 100.00 
Std. Dev. 28.36 19.80 31.41 20.81 30.19 20.97 

Min -99.00 0.00 -84.00 0.00 -84.00 0.00 
Ave 0.12 20.20 -0.85 23.37 -4.32 21.99 Color 

Max 106.00 106.00 97.11 97.11 79.00 84.00 
Std. Dev. 121.14 79.67 136.98 71.57 169.29 105.53 

Min -542.00 3.00 -271.00 3.00 -486.00 6.00 
Ave 9.14 91.24 35.31 121.17 46.79 139.52 Conductivity 

Max 219.00 542.00 265.00 271.00 506.00 506.00 
Std. Dev. 2.41 1.70 2.63 1.91 2.22 1.47 

Min -7.38 0.01 -10.66 0.00 -5.08 0.03 
Ave 0.16 1.70 0.04 1.79 -0.12 1.66 

Dissolved 
Oxygen 

Max 6.73 7.38 8.60 10.66 8.44 8.44 
Std. Dev. 23.66 15.21 25.46 13.46 34.90 23.33 

Min -92.00 0.00 -60.00 0.00 -88.00 0.00 
Ave 1.82 18.12 5.98 22.26 9.93 27.62 Chloride 

Max 54.00 92.00 54.00 60.00 131.00 131.00 
Std. Dev. 0.08 0.05 0.07 0.04 0.08 0.06 

Min -0.15 0.00 -0.15 0.00 -0.27 0.00 
Ave 0.00 0.06 0.00 0.05 -0.01 0.06 Ammonia 

Max 0.32 0.32 0.13 0.15 0.25 0.27 
Std. Dev. 0.06 0.04 0.08 0.06 0.08 0.06 

Min -0.19 0.00 -0.25 0.00 -0.21 0.00 
Ave 0.00 0.04 0.00 0.05 0.00 0.06 UV254 

Max 0.15 0.19 0.28 0.28 0.29 0.29 
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Table 24. Statistical Summary of Input Value Changes for Representative Variables 
for Three Prediction Periods at Station 612 

 
One-week Interval Two-week Interval Three-week Interval 

Changes Changes Changes Parameter Statistics 
Actual Absolute Actual Absolute Actual Absolute 

Std. Dev. 2.94 1.88 3.68 2.37 3.68 2.37 
Min -8.20 0.00 -10.00 0.00 -10.00 0.00 
Ave 0.26 2.26 0.72 2.89 0.72 2.89 Temperature 

Max 9.30 9.30 12.50 12.50 12.50 12.50 
Std. Dev. 0.36 0.26 0.39 0.29 0.39 0.29 

Min -1.50 0.00 -1.50 0.00 -1.50 0.00 
Ave -0.02 0.25 -0.03 0.27 -0.03 0.27 pH 

Max 1.60 1.60 1.40 1.50 1.40 1.50 
Std. Dev. 5.65 4.93 3.48 2.65 3.48 2.65 

Min -14.00 0.00 -15.00 0.00 -15.00 0.00 
Ave 0.18 2.76 -0.35 2.26 -0.35 2.26 Turbidity 

Max 56.00 56.00 7.40 15.00 7.40 15.00 
Std. Dev. 11.18 7.68 12.12 7.20 12.12 7.20 

Min -45.00 0.00 -36.00 0.00 -36.00 0.00 
Ave 0.37 8.11 1.26 9.79 1.26 9.79 Alkalinity 

Max 40.00 45.00 28.00 36.00 28.00 36.00 
Std. Dev. 19.93 14.47 22.32 14.14 22.32 14.14 

Min -80.00 0.00 -68.00 0.00 -68.00 0.00 
Ave -0.82 13.68 0.84 17.23 0.84 17.23 Hardness 

Max 84.00 84.00 80.00 80.00 80.00 80.00 
Std. Dev. 11.88 8.50 11.58 8.36 11.58 8.36 

Min -49.00 0.00 -60.00 0.00 -60.00 0.00 
Ave 0.11 8.28 -0.87 8.03 -0.87 8.03 Color 

Max 40.00 49.00 30.00 60.00 30.00 60.00 
Std. Dev. 82.56 55.14 105.23 67.10 105.23 67.10 

Min -328.00 0.00 -330.00 1.00 -330.00 1.00 
Ave -3.35 61.36 -3.20 80.83 -3.20 80.83 Conductivity 

Max 249.00 328.00 310.00 330.00 310.00 330.00 
Std. Dev. 1.61 1.08 1.81 1.22 1.81 1.22 

Min -4.78 0.00 -5.62 0.00 -5.62 0.00 
Ave -0.09 1.20 -0.35 1.38 -0.35 1.38 

Dissolved 
Oxygen 

Max 7.16 7.16 4.43 5.62 4.43 5.62 
Std. Dev. 18.43 13.54 21.34 15.23 21.34 15.23 

Min -58.00 0.00 -69.00 0.00 -69.00 0.00 
Ave -0.45 12.47 -0.98 14.92 -0.98 14.92 Chloride 

Max 79.00 79.00 88.00 88.00 88.00 88.00 
Std. Dev. 0.09 0.08 0.10 0.09 0.10 0.09 

Min -0.49 0.00 -0.47 0.00 -0.47 0.00 
Ave 0.00 0.05 0.01 0.05 0.01 0.05 Ammonia 

Max 0.81 0.81 0.70 0.70 0.70 0.70 
Std. Dev. 0.60 0.59 0.62 0.61 0.62 0.61 

Min -4.74 0.00 -4.76 0.00 -4.76 0.00 
Ave 0.00 0.10 -0.02 0.11 -0.02 0.11 UV254 

Max 4.79 4.79 4.76 4.76 4.76 4.76 
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8.2 Representative Modeling Results 
 

Because of the large number of models previously developed, as well as the high possible 

number of prediction cases, for illustration purposes, six select cases are presented in this 

document for the single value algal count forecast models.  The cases include each of the 

three different algal classes and stations, with each presenting different characteristics in 

terms of system conditions, algal populations, prediction periods, and the number of 

historical events.   The general results are consistent with other modeling work 

performed, some of which is presented in the appendices.  These case studies are 

considered sufficient for achieving the important objective of demonstrating the 

feasibility of using ANNs to accurately forecast algal blooms, and important modeling 

and data acquisition and processing issues are fully addressed.  This is achieved with the 

comparisons between the original and revised modeling approaches, inclusion versus 

exclusion of select water quality inputs, inclusion versus exclusion of water volume 

extraction variables, and smaller versus larger number of data events. For the 

classification models, eight select test cases were used, which is discussed in detail in the 

corresponding section.   

 

For the cyanobacteria forecasting example, Station 612, located on River A at the intake 

point for the Pumping Station 2, was selected.  Not only is this the largest source of water 

for the utility for most time periods, but it also has the highest frequency of algal bloom 

events for this algae class.  A two-week ahead prediction period was used for this 

location.  For the chlorophytes class, Station 100 was selected, which is the location of 

the water intake point for the treatment facility.  Based upon the available data, station 

100 has the highest frequency of chlorophytes bloom incidences among the three 

sampling stations, and a one-week ahead prediction period was selected for this location. 

Lastly, for chrysophytes, Station 101, located just outside the mouth of the canal that 

connects the River B with the water treatment facility, was selected.  A two-week ahead 

prediction period was selected for this modeling case.  The other three modeling cases 

include the one-week ahead cyanobacteria predictions at Station 100, two-week ahead 

chlorophytes predictions at station 101 and lastly, the one-week ahead chrysophytes 
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predictions at Station 612.  The figures, descriptive statistics and sensitivity analyses 

results of the six representative models are presented in the remainder of this section. 

 

8.2.1 Original Modeling Paradigm – Larger Data Sets with Fewer Inputs versus 
Smaller Data Sets with More Inputs 

 

Recognizing the inherent advantage of the original modeling approach, where input 

values are known a-priori, an effort was made to improve generalization capability of 

these models by simultaneously generating larger number of data events by reducing the 

number of input variables by excluding the following less frequently measured water 

quality variables:  Biological Oxygen Demand (BOD), Total 

Phosphorous/Orthophosphate, Nitrite/Nitrate, Sulfate, and Total Organic Carbon (note 

BOD not excluded for Station 100).  For Station 100, the increase in the number of data 

events increased on average approximately 1.6 times; for Station 101, data set sizes 

increased approximately 2 to 2.5 times; and for Station 612, the increase was 

approximately 2.4 to 3.5 times.  At the same time, for all models, data set sizes for 

training fell short of the minimum computed value of 200 training events.  This was most 

pronounced for Stations 101 and 612, when all input variables were included, with as 

little as 19 and 20 events available for training, respectively.  Station 100, with by far the 

most historical data, was the only station that ever had more than 100 events available for 

training, with a maximum number of 136.  However, even this station had less than 100 

events available for training when its four less frequently water quality variables were 

included.   

 

Thus, in general, training set sizes were on average one quarter to one half less than the 

minimum 200 required, computed in accordance with the number of input and output 

variables. As discussed in the ANN Background section, ANN generalization capability 

generally increases with larger training sets consisting of more historical events.  Also, an 

ANN with a larger number of input variables will generally require more training patterns 

to effectively search the higher dimensional error surface during learning.  In a complex 
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and non-linear system, it may be expected that even more data events are required for 

robust model development and validation.   

 

A comparison between representative original ANN models, which included these water 

quality variables, and the models that excluded them, is shown below for the six 

representative cases.  Tables 25 and 26 summarize the statistical performances of the 

models developed with complete and reduced input variable sets, respectively, including 

the number of data events available for model training and validation, the number of 

bloom events, and the number of false positive and false negatives with respect to algal 

blooms.  In terms of mean absolute errors and correlation coefficients, there does not 

appear to be a significant discrepancy in overall model performance between the 

complete and reduced input models.  A similar lack of discrepancy can be observed when 

comparing the occurrences of false positives and false negatives.  However, it should also 

be noted that because the models that used the reduced input variable set had larger data 

sets, there was more variability in system conditions, or algal counts, as measured by the 

standard deviation.  Thus, the reduced models were also subject to a greater range of 

conditions during validation.   

 

As an additional measure of model performance, Table 27 compares the percentage 

accuracy of the models in terms of predicting relative increases or decreases from the 

initial to final measured counts.  Please note that for cases where the initial and final 

measured counts were 0, ANN predictions less than 100 were deemed correct (i.e. non-

bloom event).  This was done to correct for what would otherwise require an exact 

prediction of 0, and as shown later in the figures, for most of these cases, the ANNs 

predicted counts significantly less than 100.  Using this measure, all ANN models 

achieve 56% accuracy or higher in predicting increasing or decreasing counts.  The 

original ANN models that included the less frequently measured water quality variables 

statistically outperformed the models that excluded these variables for four of the six 

cases, though advantages were relatively small, with average correct percentages of 78 

and 71.5%, respectively, for the two methods.  On the other hand, the models that 
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excluded the select water quality inputs on average achieved a higher correlation 

coefficient during validation; 0.80 versus 0.64 for the models that included these 

variables. Thus, the impact of excluding the five select water quality variables for the 

purpose of generating larger data sets is not clear in this case.  At the same time, unlike 

Swimming River, it appears that excluding select water quality variables does not 

significantly compromise forecasting performance.  
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Table 25. Comparison of statistical performance of Original ANN Models for 
Predicting the three different algae classes at different modeling horizons  

using all inputs 
 

Station 612 – Two week 
Ahead Cyanobacteria 

Predictions 

Station 100 -  One week 
Ahead Chlorophytes 

Predictions 

Station 101 – Two week 
Ahead Chrysophytes 

Predictions   

Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 52.000 45.143 104.000 45.455 54.910 38.667 75.400 73.000 77.600 

Data S.D. 174.835 157.523 260.059 82.410 96.075 68.815 61.635 76.230 39.159 

Error Mean 0.072 0.511 1.517 -4.433 -10.906 -1.519 -1.311 -4.838 -1.737 

Error S.D. 72.343 11.389 145.360 65.237 81.245 54.315 47.906 59.438 30.982 
Abs E. 
Mean 25.607 8.643 72.119 33.485 41.627 30.026 32.075 36.307 27.853 

S.D. Ratio 0.414 0.072 0.559 0.792 0.846 0.789 0.777 0.780 0.791 

Correlation 0.939 0.997 0.915 0.612 0.538 0.618 0.638 0.670 0.657 
No. of 
Events 54 28 13 156 78 39 40 20 10 
No. of 
Blooms 5 2 2 17 12 5 9 5 2 
False 
Positives 0 0 0 3 2 1 4 1 2 
False 
Negatives 1 0 1 5 7 3 2 2 0 

Station 100 – Two week 
Ahead Cyanobacteria 

Predictions 

Station 101 -  One week 
Ahead Chlorophytes 

Predictions 

Station 612 – One week 
Ahead Chrysophytes 

Predictions   

Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 34.152 52.200 17.128 52.293 41.714 26.800 63.769 67.077 57.846 

Data S.D. 144.995 196.960 45.363 76.158 70.260 25.111 55.032 65.636 38.769 

Error Mean 5.133 2.349 21.386 5.034 2.735 10.720 -0.032 0.509 -0.926 

Error S.D. 49.080 44.384 61.905 48.849 40.327 47.876 27.086 21.487 40.909 
Abs E. 
Mean 20.457 20.251 28.864 35.939 26.729 42.159 19.529 15.147 31.480 

S.D. Ratio 0.338 0.225 1.365 0.641 0.574 1.907 0.492 0.327 1.055 

Correlation 0.944 0.974 0.903 0.780 0.828 0.640 0.871 0.945 0.122 
No. of 
Events 158 80 39 41 21 10 52 26 13 

No. of 
Blooms 11 7 2 7 3 0 9 5 2 

False 
Positives 5 3 2 5 1 2 0 0 0 

False 
Negatives 3 2 0 0 0 0 4 2 2 
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Table 26. Comparison of statistical performances of Original ANN Models for 
Predicting the three different algae classes at different modeling horizons excluding 

five water quality inputs.   
 

Station 612 – Two week 
Ahead Cyanobacteria 

Predictions 

Station 100* -  One week 
Ahead Chlorophytes 

Predictions 

Station 101 – Two week 
Ahead Chrysophytes 

Predictions   

Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 34.849 20.000 28.941 49.455 48.515 44.939 69.736 59.037 74.615 

Data S.D. 157.155 93.832 157.271 77.028 72.579 70.967 67.014 53.632 70.217 

Error Mean -1.414 0.855 2.074 3.697 -2.165 18.461 -0.300 6.022 -12.226 

Error S.D. 32.336 22.685 16.580 52.465 40.655 68.847 54.353 40.884 52.119 
Abs E. 
Mean 12.816 10.933 7.446 33.569 27.683 42.556 37.639 30.523 38.308 

S.D. Ratio 0.206 0.242 0.105 0.681 0.560 0.970 0.811 0.762 0.742 

Correlation 0.979 0.975 0.995 0.772 0.828 0.807 0.590 0.649 0.707 
No. of 
Events 139 71 34 266 134 66 106 54 26 
No. of 
Blooms 8 4 1 39 18 8 26 10 6 

False 
Positives 0 0 0 11 4 4 7 4 0 

False 
Negatives 2 2 0 19 6 4 7 4 1 

Station 100*– Two week 
Ahead Cyanobacteria 

Predictions 

Station 101 -  One week 
Ahead Chlorophytes 

Predictions 

Station 612 – One week 
Ahead Chrysophytes 

Predictions   

Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 30.297 45.600 9.871 44.367 50.982 31.259 80.231 78.667 86.698 

Data S.D. 121.847 162.598 34.542 75.159 83.132 49.556 82.210 82.743 83.477 

Error Mean 6.100 -6.193 26.298 2.782 0.053 8.697 -2.623 -1.869 -5.852 

Error S.D. 59.382 60.479 71.099 50.770 58.035 34.239 58.721 58.456 64.108 
Abs E. 
Mean 31.144 33.885 31.982 30.809 32.441 28.385 39.477 37.550 44.684 

S.D. Ratio 0.487 0.372 2.058 0.675 0.698 0.691 0.714 0.706 0.768 

Correlation 0.873 0.937 0.847 0.738 0.716 0.789 0.700 0.708 0.656 
No. of 
Events 249 125 62 109 55 27 173 87 43 

No. of 
Blooms 19 14 1 15 8 3 46 20 15 

False 
Positives 5 2 3 8 6 1 9 6 3 

False 
Negatives 10 8 0 1 1 0 22 7 10 

* - excluded only four less frequently measured water quality variables  
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Table 27.  Percentage accuracy of the Original ANN Models for predicting the three 
different algae classes at different modeling horizons in terms of predicting relative 

increases or decreases from the validation data sets’ Initial to Final measured counts 
 

Accuracy 
 Prediction Events No. of 

Events Correct % Incorrect % 

612-2wk  Ahead Cyanobacteria  13 12 92 1 8 

100-1wk Ahead Chlorophyta  39 27 69 12 31 

101-2wk Ahead Chrysophyta  10 9 90 1 10 

100-2wk  Ahead Cyanobacteria  39 37 95 2 5 

101-1wk Ahead Chlorophyta  10 6 60 4 40 

Original 
Models 
with All 
inputs 

612-2wk  Ahead Chlorophytes  13 8 62 5 38 

612-2wk  Ahead Cyanobacteria 34 31 91 3 9 

100*-1wk Ahead Chlorophyta  66 37 56 29 44 

101-2wk Ahead Chrysophyta  26 16 62 10 38 

100*-2wk  Ahead Cyanobacteria  62 58 94 4 6 

101-1wk Ahead Chlorophyta  27 17 63 10 37 

Original 
Models 

with Fewer  
Inputs 

(exclude 
select water 

quality 
variables) 

612-2wk  Ahead Chlorophytes  43 27 63 16 37 

* - excluded only four less frequently measured water quality variables 

 

This finding suggests that for this particular system, unlike Swimming River, the range of 

values under which the excluded variables exist over the modeling history, while having 

some influence, may not significantly affect the algal populations.  Similar findings have 

been reported in the literature (Maier and others, 1997), and it may be that the 

constituents exist within a range of values that do not significantly diminish or propagate 

the organisms.  Again, however, given the size deficiency of data sets, this possible 

explanation must be taken with guarded skepticism.   

 

What does lend support, however, is the opposite result was found with the Swimming 

River Reservoir, where significantly smaller data sets that included nutrient variables 

significantly increased performance.  There may even be a physical basis for these 

differences in model sensitivities to nutrient conditions in the two water utility systems.  

A reservoir, by nature a closed system, is hydraulically less dynamic, and short-term 
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water quality changes may induce stronger influences over algal populations during 

relatively short time periods.  A river system by its flowing nature is more dynamic 

hydraulically, and may comprise an algal ecosystem that is less influenced by nutrient 

changes over relatively short time periods.   

 

In order to provide a visual comparison, Figures 69 through 80 below compare the 

overall and validation modeling results for the different models.   

 

 

 

 

 

 

 

 

(a) (b) 

Figure 69.  Time-series plots of measured Cyanobacteria counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 612 (Original Model with all inputs) 
 

 
 
 
 

 
 

 
 

 

 

    (a)         (b) 

Figure 70. Time-series plots of measured Cyanobacteria counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

12 (Original Model excluding five water quality inputs) 
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(a) (b) 

Figure 71.  Time-series plots of measured Chlorophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

100 (Original Model with all inputs) 
 
 

 
 
 
 
 
 
 
 
 
    (a)      (b) 

Figure 72.  Time-series plots of measured Chlorophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

100 (Original Model excluding five water quality inputs) 
 

 

 

 

 

 

 

    (a)      (b) 

Figure 73. Time-series plots of measured Chrysophytes counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

101 (Original Model using all inputs) 
 

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160
Prediction Event

A
lg

ae
 C

ou
nt

s 
(c

el
ls

/m
l)

Measured
ANN

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160
Prediction Event

A
lg

ae
 c

ou
nt

 (c
el

ls
/m

l)

Initial
Final
ANN

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250
Prediction Event

A
lg

ae
 C

ou
nt

s 
(c

el
ls

/m
l)

Measured

ANN

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250
Prediction Event

A
lg

ae
 c

ou
nt

 (c
el

ls
/m

l)
Initial
Final
ANN

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45
Prediction Event

A
lg

ae
 C

ou
nt

s 
(c

el
ls

/m
l)

Measured
ANN

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40
Prediction Event

A
lg

ae
 c

ou
nt

 (c
el

ls
/m

l)

Initial
Final
ANN



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks  
 
 

Modeling Approach and Results  Page 120                                 

 
 
 
 
 
 

 

 

    (a)      (b) 

Figure 74. Time-series plots of measured Chrysophytes counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

101 (Original Model excluding five water quality inputs) 
 

 
 

 
 
 

 
 

 
 
 
    (a)      (b) 

Figure 75. Time-series plots of measured Cyanobacteria counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

100 (Original Model using all inputs) 
 
 

 
 
 
 
 
 
 
 
 
   (a)      (b) 

Figure 76. Time-series plots of measured Cyanobactera counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

100 (Original Model excluding five water quality inputs) 
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    (a)      (b) 

Figure 77. Time-series plots of measured Chlorophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

101 (Original Model using all inputs) 
 

 
 

 
 
 
 

 
 

 
 

(a) (b) 

Figure 78. Time-series plots of measured Chlrophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

101 (Original Model excluding five water quality inputs) 
 
 

 
 
 
 
 
 

 
 

 
    (a)      (b) 

Figure 79. Time-series plots of measured Chrysophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

612 (Original Model using all inputs) 
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(a) (b) 
 

Figure 80. Time-series plots of measured Chrysophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

612 (Original Model excluding five water quality inputs) 
 
 
A visual comparison of the model predictions, particularly the validation figures, is 

helpful for assessing ANN performance.  For depicting validation results, the initial algal 

counts measured at the beginning of the prediction period are plotted along with the 

measured and ANN predicted final counts so as to provide a more transparent assessment 

of forecasting performance.  For example, on Figure 80b, the first validation event had an 

initial chrysophytes algal count around 680 organisms (i.e. cells).  At the end of the 

corresponding one-week prediction event, the final measured count was just over 300 

organisms, while the ANN predicted a count just below 300.  

 

Overall, given the sparse data, many models perform surprisingly well in predicting 

dramatic changes in algal populations during validation.  For example, for the two-week 

ahead prediction period for cyanobacteria at Station 612 using all inputs (Figure 69b), the 

ANN model accurately predicted a 600 count increase for this organism.  The ANN 

model developed for predicting chlorophytes at Station 101 one-week ahead (Figure 77b) 

using all inputs validated extremely well, accurately predicting relative increases and 

decreases in counts.  The same was achieved with the mode developed for predicting 

chrysophytes counts one week ahead for Station 612 with the reduced inputs.  The model 

accurately predicted very large decreases in algal counts (i.e. 200 or more) for three 

events, and generally reproduced higher and lower count events.  Even a model trained 
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complete inputs) accurately predicted relative increases and decreases in algal counts 

during validation (Figure 73b).  Interestingly, the corresponding model that used the 

reduced input set for the same prediction problem did not predict relative changes as 

well, as shown by Figure 74b, and seems to be “keying” off the initial counts.   In this 

case, it suggests that at least some of the water quality variables may have been important 

for this prediction problem.   

 

As inferred from statistical measures, the figures do not reveal an obvious superiority 

between the complete and reduced input models.  Thus, increasing the number of 

historical events did not significantly improve ANN forecasting ability, although the 

models developed with more data events generally achieved higher correlation 

coefficients (0.80 versus 0.64).  By extension, excluding the five select water quality 

variables may not generally compromise development of robust ANN forecasting 

models, although there appears to be at least one exception.    

 

Perhaps most importantly, the modeling results suggest that on average, the initial system 

conditions measured at the beginning of the prediction period capture the dynamics that 

govern algal population changes over the prediction periods of interest.  This could be 

due to relatively small changes in system conditions over the short prediction periods, 

and/or natural and consistent transitions from initial system conditions, measured at the 

beginning of the period, to end of the prediction period, when final algal counts are 

predicted.  In other words, there may be a natural and consistent time lag in algal 

population responses to system conditions that, except under extreme conditions (e.g. 

sudden and dramatic temperature change), evolve in a fairly consistent.  The extremely 

important implication is that development of robust ANN models that use input values 

measured at the beginning of the prediction period appears to be quite feasible.  
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8.2.2  Sensitivity Analysis Results – Original Model Paradigms  

 

This section compares the sensitivity analyses results obtained for the two original 

modeling approaches.  The analysis is done using both the ratio and ranking method, 

described previously in the water treatment modeling section.   

 

Table 28 below presents the sensitivity analysis results for the original model that 

included all input variables for the two-week ahead prediction of cyanobacteria at Station 

612.  As depicted by the table, odor and total algal counts ranked first and second in 

terms of importance, respectively, both with ratio value over 1.2.  Other variables that 

ranked highly in terms of importance with ratio value over 1.1.  These variables include 

length of day, total amorphous materials and Reservoir A extraction.  At the other 

extreme, a total of 14 of the 34 variable inputs achieved low ratio values of less than 1.0.  

The three lowest ranking were pH, sky cover, and BOD. 

 

Table 28. Sensitivity Analysis for Original ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 612 with complete input set 
Variable Ratio Rank Variable Ratio Rank 

Odor 1.530 1 Total Hardness 1.010 18 
Total Algal Count 1.214 2 Nitrite/Nitrate 1.008 19 
Temperature 1.129 3 Pumping Station 1 Extraction 1.004 20 
Length of Day 1.109 4 Chloride  0.998 21 
Total Amorphous Material 1.108 5 Initial Cyanobacteria counts 0.998 22 
Reservoir A Extraction 1.097 6 River A Extraction 0.993 23 
Wind Direction 1.088 7 Dissolved Oxygen 0.991 24 
Sulfate  1.063 8 UV254  0.989 25 
Initial Chrysophytes counts 1.046 9 Turbidity  0.983 26 

Heating Degree Days 1.035 10 Prediction Period's Precipitation 
Total 0.975 27 

Ammonia 1.032 11 Color 0.975 28 
Alkalinity  1.031 12 TotalPhosphorus/Orthophosphate 0.967 29 
Conductivity  1.029 13 River B Extraction 0.964 30 

River A Streamflow 1.028 14 Prediction Period's Lagged 
Precipitation Total 0.946 31 

Initial Chlorophytes counts 1.025 15 Biochemical Oxygen Demand 0.938 32 
Wind Speed 1.024 16 Sky Cover 0.936 33 
Total Organic Carbon 1.012 17 pH 0.864 34 
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For the original model with reduced input variables for the two-week ahead prediction of 

cyanobacteria at Station 612, as presented in Table 29, extraction from Reservoir A was 

the most important variable with a ratio value of 2.89.  Odor and extraction from River A 

also ranked high in importance, both with ratio values over 1.8.  At the other extreme, a 

number of low ranking variables had ratio values below 1.0, five of which had ratio 

values of 0.89 and below, including total hardness, dissolved oxygen, alkalinity, pH and 

conductivity.  

 

Table 29. Sensitivity Analysis for Original ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 612 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Reservoir A Extraction 2.895 1 Total Algal counts 1.025 16 

Odor 1.835 2 River A Streamflow 1.024 17 

River A Extraction 1.802 3 Initial Chlorophytes counts 1.023 18 

Length of Day 1.602 4 Initial Chrysophytes counts 1.010 19 

River B Extraction 1.451 5 UV254 0.998 20 

Turbidity 1.278 6 Pump Station 1 Extraction 0.992 21 

Sky Cover 1.229 7 Prediction Period's Precipitation 
Total 0.984 22 

Prediction Period's Lagged 
Precipitation 

1.189 8 Initial Cyanobacteria counts 0.974 23 

Heating Degree Days 1.133 9 Chloride 0.933 24 

Wind Direction 1.091 10 Conductivity 0.895 25 

Total Amorphous Material 1.068 11 pH 0.893 26 

Ammonia 1.064 12 Alkalinity 0.873 27 

Wind Speed 1.044 13 Dissolved Oxygen 0.818 28 

Temperature 1.033 14 Total Hardness 0.818 29 

Color 1.032 15    
 

The sensitivity analyses results for the original ANN model with all the variable inputs 

for one-week ahead prediction of chlorophytes counts at Station 100 is shown below in 

Table 30.  Initial chlorophytes counts ranked first in importance, followed by heating 

degree days and length of day.  Ratio values, however, were relatively low.  That is, most 

of the variables on top of the ranking including the highest ranking initial chlorophytes 

counts had ratio values of just a little over 1.0.   At the other extreme, several variables 
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achieved ratio values of less than 1.0, with the three lowest ranking being odor, ammonia 

and initial cyanobacteria counts. 

 

Table 30. Sensitivity Analysis for Original ANN Model for One-week Ahead 
Predictions of Chlorophytes at Station 100 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chlorophytes counts 1.043 1 UV-254 1.002 18 

Heating Degree Days 1.024 2 Total Suspended Solids 1.001 19 

Length of Day 1.020 3 pH 1.001 20 

Wind Direction 1.017 4 River B Extraction 1.001 21 

River A Extraction 1.017 5 Dissolved Oxygen 1.000 22 

Total Algal counts 1.013 6 River A Streamflow 1.000 23 

Temperature 1.011 7 Pumping Station 1 Extraction 1.000 24 

Nitrite/Nitrate 1.010 8 Prediction Period's Lagged 
Precipitation Total 1.000 25 

Wind Speed 1.010 9 Conductivity 1.000 26 

Total Organic Carbon 1.008 10 Total Hardness 0.999 27 

Initial Chrysophytes counts 1.006 11 Chloride 0.999 28 

Sulfate 1.006 12 Reservoir A Extraction 0.999 29 

T.Phosphorus/Orthophosphate 1.005 13 Alkalinity 0.998 30 
Prediction Period's 
Precipitation Total 1.005 14 Initial Cyanobacteria counts 0.996 31 

Sky Cover 1.004 15 Ammonia 0.991 32 

Turbidity  1.003 16 Odor 0.964 33 

Biochemical Oxygen Demand 1.002 17    

 

Table 31 below presents the sensitivity analysis results for the similar model with 

reduced inputs.  Initial chlorophytes counts ranked first in terms of importance with a 

ratio value of 1.3, followed by odor, and then extractions from Rivers A and B.  At the 

bottom of the ranking, a total of seven variables had ratios less than 1.0. Among these 

lower ranking variables were initial chrysophytes counts, previous and current week’s 

precipitation totals, and dissolved oxygen.  
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Table 31.  Sensitivity Analysis for Original ANN Model for One-week Ahead 
Predictions of Chlorophytes at Station 100 with reduced input set 

 
 

Variable Ratio Rank Variable Ratio Rank 

Initial Chlorophytes 1.304 1 Conductivity 1.006 16 

Odor 1.241 2 River A Streamflow 1.004 17 

River A Extraction 1.181 3 Total Organic Carbon 1.004 18 

River B Extraction 1.181 4 Initial Cyanobacteria counts 1.002 19 

Biochemical Oxygen Demand 1.059 5 Alkalinity 1.001 20 

Sky Cover 1.045 6 Reservoir A Extraction 1.001 21 

Turbidity 1.036 7 pH 1.001 22 

Chloride 1.029 8 Heating Degree Days 0.999 23 

Ammonia 1.026 9 UV254 0.999 24 

Total Algal Counts 1.022 10 Pump Station 1 Extraction 0.999 25 

Wind Direction 1.018 11 Dissolved Oxygen 0.998 26 

Temperature 1.017 12 Prediction Period’s Precipitation 
Total 0.998 27 

Wind Speed 1.011 13 Prediction Period’s Lagged 
Precipitation Total 0.995 28 

Length of Day 1.009 14 Initial Chrysophytes counts 0.994 29 

Total Hardness 1.008 15    
 

Table 32 below presents the sensitivity analysis results for the original model that 

included all input variables for the two-week ahead prediction of chrysophytes at Station 

101.  As  with the other original models developed and assessed with the complete input 

set, variables achieved relatively low ratio values, including most of the top ranked 

variables with ratio values of just over 1.0.   A number of variables at the bottom of the 

ranking had ratio values of less than 1.0, and the three lowest ranking variables were 

extraction from Pumping Station 1, conductivity, and chloride. 
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Table 32.  Sensitivity Analysis for Original ANN Model for Two-week Ahead 
Predictions of Chrysophytes at Station 101 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chrysophytes count 1.091 1 Prediction Period's Precipitation 
Total 1.004 18 

Color 1.067 2 River A Streamflow 1.003 19 

Length of Day 1.043 3 Nitrite/Nitrate 1.003 20 

Wind Direction 1.035 4 Wind Speed 1.002 21 

Ammonia 1.016 5 Turbidity  1.001 22 

Total Algal Counts 1.012 6 T.Phosphorus/Orthophosphate 1.000 23 

Alkalinity 1.010 7 Reservoir A Extraction 1.000 24 

Initial Cyanobacteria counts 1.010 8 Biochemical Oxygen Demand 1.000 25 

pH 1.009 9 UV254 1.000 26 

River B Extraction 1.009 10 Dissolved Oxygen 0.999 27 

River A Extraction 1.009 11 Sulfate  0.999 28 

Initial Chlorophytes counts 1.008 12 Total Hardness 0.998 29 

Heating Degree Days 1.006 13 Temperature 0.997 30 

Odor 1.006 14 Prediction Period's Lagged 
Precipitation Total 0.997 31 

Total Organic Carbon 1.005 15 Chloride  0.994 32 

Total Amorphous Material 1.005 16 Conductivity  0.994 33 

Sky Cover 1.005 17 Pumping Station 1 Extraction 0.992 34 

 

Similar to the ANN model for two-week ahead chrysophytes predictions at Station 101 

using the complete input set, the sensitivity analysis result for the model with reduced 

inputs exhibited low overall ratio values, as shown in Table 33 below.   In particular, the 

four highest ranking variables, total algal counts, initial chrysophytes counts, length of 

day, and pH, had ratio values of just over 1.0.  .   Most of the remaining variables had 

ratio values around 1.0, and the seven lowest ranking variables all had ratio values less 

than 1.0, with the three lowest ranking being total amorphous materials, turbidity and 

previous week’s precipitation. 
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Table 33. Sensitivity Analysis for Original ANN Model for Two-week Ahead 
Predictions of Chrysophytes at Station 101 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Total Algal counts 1.026 1 Color 1.002 16 

Initial Chrysophytes counts 1.022 2 UV254 1.001 17 

Length of Day 1.014 3 Chloride 1.001 18 

pH 1.010 4 Sky Cover 1.001 19 

Pump Station 1 Extraction 1.009 5 Heating Degree Days 1.000 20 

Reservoir A Extraction 1.008 6 River A Streamflow 1.000 21 
Prediction Period’s 
Precipitation Total 1.007 7 Ammonia 1.000 22 

Initial Cyanobacteria counts 1.005 8 River B Extraction 0.999 23 

Conductivity 1.004 9 Initial Chlorophytes counts 0.999 24 

Alkalinity 1.004 10 Total Hardness 0.999 25 

Odor 1.003 11 River A Extraction 0.998 26 

Dissolved Oxygen 1.003 12 Prediction Period’s Lagged 
Precipitation Total 0.995 27 

Temperature 1.002 13 Turbidity 0.994 28 

Wind Direction 1.002 14 Total Amorphous Material 0.990 29 

Wind Speed 1.002 15    

 

The sensitivity analysis result for original modeling for two-week ahead cyanobacteria 

counts at station 100 with the complete input set is shown in Table 34.  In terms of 

importance, the two highest ranking variables were pH and nitrite/nitrate, both with ratio 

value over 1.6.  Oother variables that ranked highly with ratio values above 1.3 include 

odor, sky cover, total organic carbon, River B extractions and intial chrysophytes counts.  

At the other extreme, a total of nine variables achieved ratio values less than 1.0, with the 

lowest ranking being total suspended solids, wind speed, and length of day. 
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Table 34.  Sensitivity Analysis for Original ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 100 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

pH 1.667 1 Total Algal Counts 1.043 18 

Nitrite/Nitrate 1.638 2 Prediction Period’s Lagged 
Precipitation Total 1.034 19 

Odor 1.430 3 UV-254 1.030 20 

Sky Cover 1.396 4 Chloride 1.020 21 

Total Organic Carbon 1.362 5 Biochemical Oxygen Demand 1.009 22 

River B Extractions 1.321 6 Reservoir A Extractions 1.006 23 

Initial Chrysophyta counts 1.301 7 Initial Cyanophytes counts 1.004 24 

T.Phosphorus/Orthophosphate 1.240 8 Prediction Period’s Precipitation 
Total 0.999 25 

Wind Direction 1.227 9 Alkalinity 0.984 26 

Sulfate 1.217 10 Pumping Station 1 Extractions 0.981 27 

Heating Degree Days 1.206 11 Conductivity 0.978 28 

River A Extractions 1.203 12 River A Streamflow 0.953 29 

Turbidity  1.194 13 Temperature 0.943 30 

Dissolved Oxygen 1.170 14 Length of Day 0.941 31 

Total Hardness 1.116 15 Wind Speed 0.927 32 

Initial Chlorophytes counts 1.101 16 Total Suspended Solids 0.896 33 

Ammonia 1.092 17    

 

The sensitivity analysis results for the similar prediction model but with the reduced input 

set are presented in Table 35.  Extractions from River B ranked first in terms of 

importance with ratio value of 1.52, followed by sky cover, total organic carbon, and 

biochemical oxygen demand, all with ratio values of over 1.2.  The lower ranking 

variables, all with ratio values less than 1.0, include the prediction period’s precipitation 

total, water temperature, and extractions from Pumping Station 1. 
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Table 35.  Sensitivity Analysis for Original ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 100 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

River B Extraction 1.519 1 Prediction Period’s Lagged 
Precipitation Total 1.136 16 

Sky Cover 1.327 2 Ammonia 1.119 17 
Total Organic Carbon 1.299 3 River A Streamflow 1.062 18 
Biochemical Oxygen 
Demand 1.297 4 Length of Day 1.051 19 

Initial Chrysophytes counts 1.292 5 Initial Cyanobacteria counts 1.051 20 
Wind Direction 1.281 6 Total Hardness 1.043 21 
Turbidity 1.269 7 Total Algal Counts 1.029 22 
Heating Degree Days 1.233 8 UV254 1.020 23 
River A Extraction 1.220 9 Chloride 1.019 24 
Dissolved Oxygen 1.213 10 Total Suspended Solids 1.010 25 
Initial Chlorophytes counts 1.196 11 Conductivity 1.009 26 
pH 1.182 12 Reservoir A Extraction 1.005 27 
Odor 1.171 13 Pump Station 1 Extraction 0.995 28 
Alkalinity 1.168 14 Temperature 0.994 29 

Wind Speed 1.162 15 Prediction Period’s Precipitation 
Total 0.952 30 

 

The overall sensitivity analysis results for one-week ahead chlorophytes predictions with 

complete input set at Station 101 are summarized in Table 36.  The three highest ranking 

variables were the initial chlorophytes counts, wind speed, and direction, and all input 

variables exhibited low ratio values, with only the initial chlorophytes counts having a 

ratio value above 1.07 (1.2).  Most of the variables had ratio values just over 1.0, with 

and 13 having ratio values less than 1.0.  The three lowest ranking variables were odor, 

heating degree days, and water temperature. 
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Table 36.  Sensitivity Analysis for Original ANN Model for One-week Ahead 
Predictions of Chlorophytes at Station 101 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chlorophytes counts 1.211 1 Reservoir A Extractions 1.001 18 
Wind Speed 1.070 2 Conductivity  1.000 19 
Wind Direction 1.069 3 Dissolved Oxygen 1.000 20 
River A Extraction 1.047 4 Chloride  1.000 21 
Total Organic Carbon 1.035 5 Biochemical Oxygen Demand 0.999 22 
Total Hardness 1.027 6 Total Amorphous Material 0.996 23 
River A Streamflow 1.025 7 Length of Day 0.994 24 
Initial Cyanobacteria counts 1.022 8 Ammonia  0.993 25 
Sulfate  1.018 9 River B Extractions 0.992 26 
Total Algal Count 1.014 10 Pumping Station 1 Extractions 0.992 27 
UV254  1.012 11 Alkalinity  0.990 28 
Color, Cu 1.007 12 T.Phosphorus/Orthophosphate 0.990 29 
Turbidity  1.006 13 Sky Cover 0.989 30 
Prediction Period’s Lagged 
Precipitation Total 1.006 14 Initial Chrysophytes counts 0.987 31 

pH 1.005 15 Temperature 0.970 32 
Nitrite/Nitrate 1.001 16 Heating Degree Days 0.966 33 
Prediction Period’s 
Precipitation Total 1.001 17 Odor 0.961 34 

 

As with the previous model, the one-week ahead chlorophytes predictions at Station 101 

with reduced input set exhibited low sensitivity ratio values, as presented in Table 37.  

Even the highest ranking variable achieved a value of little just over 1.0 and six low 

ranking variables have ratio value less than 1.0.  In terms of importance, initial 

chlorophytes counts, total algal counts, and the prediction period’s precipitation ranked 

first, second and third, respectively, while the three lowest ranking variables were sky 

cover, wind speed and wind direction.   
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Table 37.  Sensitivity Analysis for Original ANN Model for One-week Ahead 
Predictions of Chlorophytes at Station 101 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chlorophytes counts 1.110 1 River B Extraction 1.002 16 
Total Algal counts 1.093 2 Turbidity 1.001 17 
Prediction Period’s Precipitation 
Total 1.050 3 Conductivity 1.001 18 

River A Extraction 1.021 4 Ammonia 1.001 19 
Total Hardness 1.009 5 UV254 1.001 20 
Initial Chrysophytes counts 1.007 6 Chloride 1.001 21 
Temperature 1.006 7 Pump Station 1 Extraction 1.000 22 
Dissolved Oxygen 1.006 8 pH 1.000 23 
Reservoir A Extraction 1.006 9 Length of Day 0.999 24 

Color 1.005 10 Prediction Period’s Lagged 
Precipitation Total 0.997 25 

Heating Degree Days 1.005 11 Odor 0.997 26 
River A Streamflow 1.004 12 Sky Cover 0.996 27 
Alkalinity 1.004 13 Wind Speed 0.995 28 
Initial Cyanobacteria counts 1.003 14 Wind Direction 0.990 29 
Total Amorphous Material 1.002 15    
 

The sensitivity analysis results for the original ANN model for one-week ahead 

chrysophytes predictions at Station 612 with complete inputs is shown below in Table 38.  

Initial chrysophytes counts was the highest ranking variable, with a ratio value of 1.65.  

Other variables that also ranked highly were length of day, wind speed, and total 

amorphous materials.  Of the seven low ranking variables that achieved ratio value of less 

than 1.0, the three lowest ranking were initial cyanobacteria counts, total algal counts, 

and turbidity. 

 

 

 

 
 

 
 
 



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks  
 
 

Modeling Approach and Results  Page 134                                 

Table 38.  Sensitivity Analysis for Original ANN Model for One-week Ahead 
Predictions of Chrysophytes at Station 612 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chrysophytes counts 1.658 1 Reservoir A Extractions 1.013 18 
Length of Day 1.295 2 Sky Cover 1.013 19 
Wind Speed 1.104 3 Temperature 1.013 20 
Total Amorphous Material 1.100 4 Biochemical Oxygen Demand 1.009 21 
UV254  1.094 5 pH 1.008 22 
TotalPhosphorus/Orthophosphate 1.088 6 Chloride  1.002 23 
River B Extractions 1.078 7 Total Organic Carbon 1.000 24 

Initial Chlorophytes counts 1.075 8 Prediction Period’s Precipitation 
Total 1.000 25 

Conductivity m 1.062 9 River A Streamflow 1.000 26 

Total Hardness  1.059 10 Prediction Period’s Lagged 
Precipitation Total 1.000 27 

Alkalinity  1.051 11 Nitrite/Nitrate 0.998 28 
River A Extractions 1.046 12 Color 0.997 29 
Odor 1.031 13 Wind Direction 0.994 30 
Ammonia  1.022 14 Pumping Station 1 Extractions 0.994 31 
Dissolved  Oxygen 1.020 15 Turbidity  0.993 32 
Heating Degree Days 1.017 16 Total Alga Count 0.991 33 
Sulfate  1.013 17 Initial Cyanobacteria counts 0.965 34 
 

Table 39 presents the sensitivity analysis results for one-week ahead predictions of 

Chrysophytes at Station 612 with the reduced input set.  As with the similar model with 

complete input set, initial chrysophytes counts was the highest ranking variable; however, 

this variable achieved a relatively low ratio value of only 1.1, as compared with the 1.6 

with the other model.   Other variables that ranked near the top, with low ratio value just 

over 1.0, include odor, temperature and chloride.  The three lowest ranking variables, all 

with ratio values below 1.0, were sky cover, pH, and initial chlorophytes counts. 
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Table 39.  Sensitivity Analysis for Original ANN Model for One-week Ahead 
Predictions of Chrysophytes at Station 612 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chrysophytes counts 1.146 1 Turbidity 1.005 16 
Odor 1.046 2 UV254 1.003 17 
Temperature 1.029 3 Pump Station 1 Extraction 1.002 18 
Chloride 1.021 4 River A Extraction 1.002 19 
Heating Degree Days 1.018 5 Conductivity 1.000 20 
Length of Day 1.017 6 Alkalinity 1.000 21 
Total Hardness 1.014 7 Reservoir A Extraction 1.000 22 

Total Algal counts 1.014 8 Prediction Period’s Precipitation 
Total 1.000 23 

Color 1.009 9 River B Extraction 0.999 24 

Ammonia 1.008 10 Prediction Period’s Lagged 
Precipitation 0.998 25 

Dissolved Oxygen 1.006 11 River A Streamflow 0.997 26 
Wind Direction 1.006 12 Initial Chlorophytes counts 0.997 27 
Wind Speed 1.006 13 pH 0.995 28 
Total Amorphous Material 1.005 14 Sky Cover 0.986 29 
Initial Cyanobacteria counts 1.005 15    
 

 

8.2.3 Revised Modeling Paradigm – Larger Data Sets with Fewer Inputs versus 
Smaller Data Sets with More Inputs 

 

As was done with the original modeling approach, a comparison between the larger 

number of historical data events that excluded the select water quality variables versus 

inclusion of these variables with fewer events was performed with the revised models.  

As was found with the original modeling approach, increasing the number of data events 

by excluding the five select water quality variables did not necessarily produce superior 

results.   Tables 40 and 41 summarize the statistical results for these two data sets for the 

six representative forecasting cases.  Half of the models that excluded the five select 

water quality variables achieved higher correlations during validation, and half did not. 

What is interesting is that the revised models, regardless of the set of input variables, 

generally avoided false positives and false negatives.   
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Table 40. Comparison of statistical performances of Revised ANN Models for 
Predicting the three different algae classes at different modeling horizons using all 

inputs 
Station 612 – Two week 

Ahead Cyanobacteria 
Predictions 

Station 100 -  One week 
Ahead Chlorophytes 

Predictions 

Station 101 – Two week 
Ahead Chrysophytes 

Predictions   

Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 11.900 21.400 4.400 55.582 70.630 31.467 75.771 78.316 70.500 

Data S.D. 51.244 70.782 10.651 95.147 113.067 49.750 52.424 44.016 61.284 

Error Mean -1.194 0.160 -5.419 3.204 1.584 7.182 -4.116 -0.314 -28.581 

Error S.D. 8.324 7.853 11.346 51.870 57.877 28.108 31.599 7.393 53.261 

Abs E. Mean 4.019 4.313 6.539 33.123 39.016 21.007 19.655 5.488 52.268 

S.D. Ratio 0.162 0.111 1.065 0.545 0.512 0.565 0.603 0.168 0.869 

Correlation 0.987 0.994 0.342 0.839 0.860 0.825 0.824 0.986 0.581 
No. of 
Events 40 20 10 182 92 45 35 19 8 
No. of 
Blooms 1 1 0 30 21 4 10 5 2 

False 
Positives 0 0 0 9 5 1 2 0 1 

False 
Negatives 0 0 0 11 9 0 3 1 1 

Station 100 – Two week 
Ahead Cyanobacteria 

Predictions 

Station 101 -  One week 
Ahead Chlorophytes 

Predictions 

Station 612 – One week 
Ahead Chrysophytes 

Predictions   

Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 31.760 44.988 17.171 53.277 39.360 90.545 81.020 98.815 38.333 

Data S.D. 140.813 189.279 47.124 77.348 64.693 88.087 67.909 76.824 37.003 

Error Mean -0.773 -3.300 0.211 9.530 -1.356 39.375 15.904 9.073 46.659 

Error S.D. 54.234 63.786 43.339 36.275 11.082 61.744 39.417 43.281 21.648 

Abs E. Mean 24.456 28.531 19.361 19.995 9.176 51.255 34.964 35.164 48.131 

S.D. Ratio 0.385 0.337 0.920 0.469 0.171 0.701 0.580 0.563 0.585 

Correlation 0.923 0.942 0.393 0.908 0.985 0.803 0.814 0.826 0.842 
No. of 
Events 167 85 41 47 25 11 51 27 12 

No. of 
Blooms 12 6 3 7 2 4 15 9 2 

False 
Positives 8 2 0 1 0 1 2 2 0 

False 
Negatives 2 4 2 0 0 0 5 3 0 
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Table 41.  Comparison of statistical performances of Revised ANN Models for 
Predicting the three different algae classes at different modeling horizons excluding 

five water quality inputs 
 

Station 612 – Two week 
Ahead Cyanobacteria 

Predictions 

Station 100* -  One week 
Ahead Chlorophytes 

Predictions 

Station 101 – Two week 
Ahead Chrysophytes 

Predictions  
Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 28.886 33.829 10.857 51.167 57.360 32.537 80.606 77.529 64.250 

Data S.D. 142.553 143.274 53.858 83.488 85.256 52.854 72.390 64.389 72.477 

Error Mean 0.540 1.876 -2.077 1.810 0.561 9.598 -2.259 0.854 -3.943 

Error S.D. 26.645 23.973 36.732 49.504 51.883 44.289 36.326 15.916 51.068 

Abs E. Mean 10.973 12.160 12.131 34.560 36.144 29.930 26.909 12.983 41.603 

S.D. Ratio 0.187 0.167 0.682 0.593 0.609 0.838 0.502 0.247 0.705 

Correlation 0.983 0.987 0.897 0.805 0.794 0.603 0.865 0.969 0.722 
No. of 
Events 140 70 35 270 136 67 66 34 16 
No. of 
Blooms 7 4 1 40 23 6 21 8 5 

False 
Positives 0 0 0 6 2 1 2 1 0 

False 
Negatives 2 1 0 23 13 3 3 0 1 

Station 100* – Two week 
Ahead Cyanobacteria 

Predictions 

Station 101 -  One week 
Ahead Chlorophytes 

Predictions 

Station 612 – One week 
Ahead Chrysophytes 

Predictions   

Overall Training Validate Overall Training Validate Overall Training Validate 

Data Mean 29.921 44.635 17.143 47.542 49.417 49.333 79.885 81.636 75.814 

Data S.D. 121.225 165.547 40.938 83.662 86.946 84.614 82.099 90.686 61.425 

Error Mean 2.015 -0.605 5.752 -1.505 0.717 -2.126 -1.291 1.208 -5.225 

Error S.D. 36.711 42.937 34.892 38.167 31.260 57.128 47.770 45.794 46.045 

Abs E. Mean 19.328 22.188 19.558 21.032 18.116 28.920 35.973 34.487 34.685 

S.D. Ratio 0.303 0.259 0.852 0.456 0.360 0.675 0.582 0.505 0.750 

Correlation 0.954 0.966 0.793 0.891 0.933 0.761 0.814 0.867 0.684 
No. of 
Events 252 126 63 96 48 24 174 88 43 

No. of 
Blooms 20 13 3 14 8 4 46 23 12 

False 
Positives 4 3 1 1 0 1 12 6 1 

False 
Negatives 8 5 1 1 0 1 17 7 5 

* - excluded only four less frequently measured water quality variables  
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As done for the original models, the percentage accuracy for predicting relative increases 

or decreases from the initial to final measured counts were compared between the revised 

models with complete and reduced input sets, shown below in Table 42 below.  Unlike 

the original models, the revised ANN models that excluded the five select input variables 

slightly outperformed the models that included them, with average correct forecast 

percentages of 77.5% and 75%, respectively.  In a head to head comparison, it was a 

draw, with three of each outperforming the corresponding model.  In terms of average 

correlation coefficient, the discrepancy between the revised models that excluded and 

included the select variables was larger, with computed values of 0.74 and 0.63, 

respectively.   

 

Table 42.  Percentage accuracy of the Revised ANN Models for predicting the three 
different algae classes at different modeling horizons in terms of predicting relative 

increases or decreases from the validation data sets’ Initial to Final measured counts 
 

Accuracy 
 Models No. of 

Events Correct % Incorrect % 

612-2wk  Ahead Cyanobacteria Predictions 10 8 80 2 20 

100-1wk Ahead Chlorophyta Predictions 45 34 76 11 24 

101-2wk Ahead Chrysophyta Predictions 8 5 62 3 38 

100- 2wk  Ahead Cyanobacteria Predictions 41 38 93 3 7 

101- 2wk Ahead Chlorophyta Predictions 8 5 62 3 0.38 

Revised 
Models 
with All 
inputs 

612-1wk  Ahead Cyanobacteria Predictions 12 9 75 3 25 

612-2wk  Ahead Cyanobacteria Predictions 35 33 94 2 6 

100*-1wk Ahead Chlorophyta Predictions 67 52 78 15 22 

101-2wk Ahead Chrysophyta Predictions 16 9 56 7 44 

100*- 2wk  Ahead Cyanobacteria Predictions 63 57 90 6 10 

101- 2wk Ahead Chlorophyta Predictions 16 12 75 4 25 

Revised 
Models 

with Fewer  
Inputs 

(exclude 
select water 

quality 
variables) 

612-1wk  Ahead Cyanobacteria Predictions 43 31 72 12 28 

* - excluded only four less frequently measured water quality variables  

 

Figures 81 through 92 depicting the various models are presented below for all 

representative test cases, showing both the overall and validation results.   
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    (a)      (b) 

Figure 81.  Time-series plots of measured Cyanobacteria counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 612 (Revised Model using all inputs) 
 

 

 

 

 

 

 

 

    (a)      (b) 

Figure 82.  Time-series plots of measured Cyanobacteria counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

612 (Revised Model excluding five water quality inputs) 
 

 

 

 

 

 

 

 

    (a)        (b) 

Figure 83.  Time-series plots of measured Chlorophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 100 (Revised Model using all inputs) 
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    (a)            (b) 

Figure 84.  Time-series plots of measured Chlorophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data set at Station 

100 (Revised Model excluding four water quality inputs) 
 
 

 

 

 

 

 

 

    (a)      (b) 

Figure 85.  Time-series plots of measured Chrysophytes counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 101 (Revised Model using all inputs) 
 
 
 

 
 

 

 

 

 

    (a)                      (b) 

Figure 86.  Time-series plots of measured Chrysophytes counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 101 (Revised Model excluding five water quality inputs) 
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    (a)      (b) 

Figure 87.  Time-series plots of measured Cyanobacteria counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 100 (Revised Model using all inputs) 
 
 

 
 

 

 

 

 

    

    (a)                  (b) 

Figure 88.  Time-series plots of measured Cyanobacteria counts against ANN Two-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 100 (Revised Model excluding four water quality inputs) 
 
 

 

 

 

 

 

 

    (a)       (b) 

Figure 89.  Time-series plots of measured Chlorophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 101 (Revised Model using all inputs)  
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    (a)                   (b) 

Figure 90.  Time-series plots of measured Chlorophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 101 (Revised Model excluding five water quality inputs) 
 
 

 

 

 

 

 

    (a)         (b) 

Figure 91.  Time-series plots of measured Chrysophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 612 (Revised Model using all inputs) 
 
 

 

 

 

 

 

 

    (a)                   (b) 

Figure 92.  Time-series plots of measured Chrysophytes counts against ANN One-
week Ahead predicted values for (a) complete and (b) validations data sets at 

Station 612 (Revised Model excluding five water quality inputs) 
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Compared to the original models, the validation performance of the revised models are 

similar, but perhaps slightly less accurate (coefficient value of 0.69 is slightly below the 

0.72 value achieved with the former model type).  There are some examples where the 

models during validation accurately predicted very large algal count changes, from bloom 

to non-bloom events, and vice-versa.  For example, the revised model developed with the 

reduced inputs for predicting chlorophytes one-week ahead at Station 101 (Figure 90b) 

accurately predicted the evolution of a bloom to non-bloom condition of with a count 

below 50 for the first validation event.  Around event 30, the model accurately forecasted 

the evolution from an initial non-bloom condition of 60 counts to a bloom condition of 

approximately 300 counts.  Impressively, the model then predicts dissipation of this 

bloom condition to a non-bloom condition of approximately 60 counts.  The model did 

fail to predict one significant bloom event during validation, but overall, it performed 

extremely well.   

 

The model developed for predicting chrysophytes one-week ahead at Station 612 with 

reduced inputs also performed well during validation, accurately forecasting large 

increases and decreases in algal counts (Figure 92b).  Other models performed reasonably 

well; for example, predicting chlorophytes one-week ahead at Station 100 with all inputs, 

where evolution from a non-bloom to bloom condition and other relatively large changes 

were accurately predicted (Figure 83b).  For this same prediction problem, the revised 

model with reduced inputs did not perform quite as well, but did generally manage to 

predict relative changes (Figure 84b).   At the same time, there were models that while 

correctly predicting a certain condition, may have underestimated or overestimated the 

magnitude by a fairly large number.  The ANN model developed for predicting 

cyanobacteria two-weeks ahead at Station 612 using the reduced input set is an excellent 

example (Figure 82b).  From an initial count close to 400, it accurately predicts a 

decrease, but significantly undershoots the measured final value of approximately 270 

counts to around 110 counts (Figure 82b).       
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For the revised models, exclusion of the five select water quality variables at the benefit 

of larger data sets for ANN development appears to have slightly improved forecasting 

performance.  It is likely that for some conditions, however, inclusion of at least some of 

these variables would be important, but this needs to be assessed with larger data sets.  

Again, ideally, the utility will continue to monitor these variables at some regular and 

perhaps increased frequency, and perhaps, in the future, their potential contribution under 

a variety of conditions can be more fully investigated.    

 

8.2.4 Sensitivity Analyses Results – Revised Model Paradigm  

 

Table 43 presents the sensitivity analysis result for two-week ahead cyanobacteria 

predictions with complete set at Station 612.  Extraction from PVWC ranked first in 

terms of importance with relatively high ratio value of 3.7, followed by sky cover and 

initial cyanobacteria counts, both with ratio values over 2.9.  Other variables that ranked 

near the top also had high ratio values exceeding 2.0.  These variables include turbidity, 

heating degree days, prediction period’s precipitation, and total 

phosphorus/orthophosphate. At the bottom of the ranking, a number of variables achieved 

low ratio values of less than 1.0, with the three lowest ranking variables being extraction 

from River B, length of day, and temperature.   
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Table 43. Sensitivity Analysis for Revised ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 612 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Reservoir A Extraction 3.662 1 Prediction Period’s 
Precipitation Total 1.076 18 

Sky Cover 2.915 2 Sulfate 1.075 19 

Initial Cyanobacteria counts 2.901 3 Initial Chlorophytes counts 1.065 20 

Turbidity 2.637 4 Total Hardness 1.051 21 

Heating Degree Days 2.557 5 Chloride 1.050 22 
Prediction Period’s Lagged 
Precipitation Total 2.275 6 Wind Direction 1.036 23 

T.Phosphorus/Orthophosphate 2.201 7 Alkalinity 1.014 24 

Biochemical Oxygen Demand 1.732 8 Conductivity 0.999 25 

Wind Speed 1.537 9 Total Organic Carbon 0.991 26 

pH 1.381 10 Initial Chrysophytes 0.989 27 

Initial Total Algal Counts 1.356 11 River A Streamflow 0.987 28 

River A Extraction 1.320 12 Total Amorphous Materials 0.979 29 

UV254 1.308 13 Pumping Station 1 Extraction 0.974 30 

Color 1.287 14 Odor 0.949 31 

Dissolved Oxygen 1.123 15 Temperature 0.947 32 

Nitrite/Nitrate 1.112 16 Length of Day 0.935 33 

Ammonia 1.078 17 River B Extraction 0.922 34 
 

The overall sensitivity analysis result for the similar revised models but with reduced 

input variables is shown below in Table 44.  As shown, color, turbidity and initial 

cyanobacteria counts were the three highest ranking, all with ratio values over 2.5.  

Extraction from Reservoir A and odor also rank high with ratio values around 2.0.  At the 

other extreme, three variables achieved a ratio value less than 1.0, and were total 

amorphous materials, initial cholorophytes counts, and sky cover. 
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Table 44. Sensitivity Analysis for Revised ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 612 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Color 2.614 1 Initial Chrysophytes counts 1.091 15 

Turbidity  2.601 2 Prediction Period’s Lagged 
Precipitation Total 1.061 16 

Initial Cyanobacteria counts 2.581 3 Alkalinity  1.058 17 

Heating Degree Days 2.352 4 Prediction Period’s Precipitation Total 1.058 18 

Reservoir A Extraction 2.241 5 Length of Day 1.052 19 

Odor 1.960 6 Total Hardness 1.045 20 

River A Streamflow 1.452 7 Conductivity  1.038 21 

Wind Direction 1.353 8 Chloride  1.038 22 

River A Extraction 1.269 9 Initial Total Algal Counts 1.029 23 

pH 1.199 10 Pumping Station 1 Extraction 1.002 24 

Wind Speed 1.187 11 Ammonia  1.000 25 

Dissolved Oxygen 1.180 12 UV254  1.000 26 

River A Extraction 1.093 13 Sky Cover 0.991 27 

Temperature 1.092 14    

 

Table 45 below presents the overall results of sensitivity analysis for one-week ahead 

prediction of chlorophytes at Station 100. As depicted by the table, initial chlorophytes 

counts and odor ranked first and second in importance, respectively, with ratio values 

above1.2, with total organic carbon ranking third with a ratio value of 1.1.  All other 

variables exhibited relatively low ratio values, ranging from just less than 1.0 to just 

greater than 1.0.  Turbidity, wind direction, and extraction from Pumping Station 1 were 

the three lowest ranking variables. 
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Table 45. Sensitivity Analysis for Revised ANN Model for One-week Ahead 
Predictions of Chlorophytes at Station 100 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chlorophytes counts 1.268 1 Wind Speed 1.010 18 

Odor 1.212 2 Biochemical Oxygen Demand 1.009 19 

Total Organic Carbon 1.104 3 Sulfate 1.008 20 

Sky Cover 1.050 4 Dissolved Oxygen 1.007 21 

Heating Degree Days 1.045 5 Prediction Period’s 
Precipitation Total 1.006 22 

T.Phosphorus/Orthophosphate 1.044 6 Chloride 1.006 23 

UV-254 1.038 7 River A Extraction 1.005 24 

Temperature 1.025 8 Prediction Period’s Lagged 
Precipitation Total 1.003 25 

Initial Total Algal Counts 1.024 9 Initial Chrysophytes counts 1.003 26 

Ammonia 1.022 10 Reservoir A Extraction 1.003 27 

Initial Cyanobacteria counts 1.020 11 pH 1.002 28 

Length of Day 1.020 12 River A Streamflow 1.002 29 

Total Hardness 1.018 13 Total Suspended Solids 1.001 30 

Conductivity 1.016 14 Pumping Station 1 Extraction 1.000 31 

River B Extraction 1.014 15 Wind Direction 0.999 32 

Nitrite/Nitrate 1.013 16 Turbidity 0.984 33 

Alkalinity 1.011 17    

 

Table 46 below presents the overall sensitivity analysis result for the ANN revised model 

with reduced inputs for one-week ahead chlorophytes predictions at Station 100.  As 

shown, heating degree days ranked first in terms of importance, with a  ratio value of 1.2, 

followed by initial chlorophytes counts, odo,r and initial total  algal counts, all with ratio 

values around 1.1  For the lower ranking variables, several variables achieved ratio 

values less than 1.0, with the three lowest ranking being River A streamflow, wind 

direction, and UV254. 
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Table 46. Sensitivity Analysis for Revised ANN Model for One-week Ahead 
Predictions of Chlorophytes at Station 100 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Heating Degree Days 1.224 1 Total Organic Carbon 1.015 16 

Initial Chlorophytes Counts 1.163 2 Prediction Period’s Lagged 
Precipitation Total 1.014 17 

Odor 1.118 3 Ammonia 1.012 18 

Initial Total Algal Counts 1.100 4 Turbidity 1.011 19 

River A Extractions 1.099 5 Alkalinity 1.006 20 

Total Hardness 1.095 6 Reservoir A Extraction 1.005 21 

Length of Day 1.080 7 Initial Cyanobacteria Counts 1.003 22 

Biochemical Oxygen Demand 1.048 8 Total Suspended Solids 1.000 23 

Initial Chrysophytes Counts 1.045 9 Sky Cover 1.000 24 

Dissolved Oxygen 1.041 10 pH 1.000 25 

Temperature 1.033 11 Wind Speed 0.998 26 

Conductivity 1.024 12 Pump Station 1 Extraction 0.997 27 

River B Extraction 1.022 13 UV254 0.995 28 
Prediction Period’s Precipitation 
Total 1.017 14 Wind Direction 0.994 29 

Chloride 1.015 15 River A Streamflow 0.993 30 

 

As for the two-week chryosphytes predictions at Station 101, Table 47 below presents the 

the sensitivity analysis results.  As shown by the table, extraction from River B ranked as 

the most important predictor variable, with a ratio value of 1.7.  Other variables that 

ranked near the top include odor, color, sulfate, and dissolved oxygen.  At the other 

extreme, only three variables had ratio values less than 1.0, and they were extraction from 

Pumping Station 1, wind speed and biochemical oxygen demand. 
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Table 47. Sensitivity Analysis for Revised ANN Model for Two-week Ahead 
Predictions of Chrysophytes at Station 101 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

River B Extraction 1.725 1 T.Phosphorus/Orthophosphate 1.081 18 

Odor 1.424 2 pH 1.078 19 

Color 1.270 3 River A Streamflow 1.077 20 

Sulfate 1.239 4 Sky Cover 1.075 21 

Dissolved Oxygen 1.229 5 Prediction Period’s Lagged 
Precipitation 1.063 22 

Ammonia 1.218 6 Total Amorphous Materials 1.057 23 

UV254 1.206 7 Length of Day 1.038 24 

Heating Degree Days 1.200 8 Wind Direction 1.028 25 

Conductivity 1.187 9 Nitrite/Nitrate 1.028 26 
Prediction Period’s 
Precipitation 1.166 10 Initial Cyanobacteria counts 1.025 27 

Initial Total Algal Counts 1.162 11 Initial Chlorophytes counts 1.024 28 

Turbidity 1.134 12 Reservoir A Extraction 1.012 29 

Initial Chrysophytes 1.129 13 Total Organic Carbon 1.007 30 

River A Extraction 1.123 14 Total Hardness 1.003 31 

Alkalinity 1.121 15 Biochemical Oxygen Demand 1.000 32 

Temperature 1.102 16 Wind Speed 0.978 33 

Chloride 1.081 17 Pumping Station 1 Extraction 0.924 34 

 

The result of sensitivity analysis for the similar revised model but with reduced input is 

shown in Table 48.  Length of day ranked first with a ratio value of 1.45, followed by 

total algal counts and odor, both with ratio values over 1.2.  At the bottom of the ranking, 

three variables achieved ratio values less than 1.0, indicating that they were the least 

important predictor variables in this particular prediction case.  These variables include 

DO, wind direction, and initial chrysophytes counts. 

 

 

 

 

 

 



Forecasting Algal blooms in Surface Water Systems with Artificial Neural Networks  
 
 

Modeling Approach and Results  Page 150                                 

Table 48. Sensitivity Analysis for Revised ANN Model for Two-week Ahead 
Predictions of Chrysophytes at Station 101 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Length of Day 1.450 1 pH 1.050 15 

Initial Total Algal Count 1.279 2 Turbidity 1.047 16 

Odor 1.220 3 Color 1.042 17 

Wind Speed 1.172 4 Temperature 1.036 18 
Prediction Period’s Lagged 
Precipitation Total 1.152 5 Conductivity 1.016 19 

Alkalinity 1.145 6 UV254 1.014 20 

River B Extraction 1.134 7 River A Extraction 1.010 21 

Initial Cyano Counts 1.092 8 Pump Station 1 Extraction 1.003 22 

Chloride 1.089 9 Total Amorphous Materials 1.003 23 

Ammonia 1.078 10 Initial Chlorophytes Counts 1.002 24 

River A Streamflow 1.065 11 Total Hardness 1.002 25 
Prediction Period’s Precipitation 
Total 1.061 12 Initial Chrysophytes Counts 0.997 26 

Heating Degree Days 1.052 13 Wind Direction 0.978 27 

Sky Cover 1.051 14 Dissolved Oxygen 0.971 28 
 

Table 49 presents the sensitivity analysis results for the revised ANN model two-week 

ahead cyanobacteria predictions with complete inputs at Station 100.  River A extractions 

and turbidity were the two highest ranking variables in terms of importance, with ratio 

value of 1.94 and 1.9, respectively.   Other high ranking variables achieved high ratio 

values of from 1.3 to over 1.6, including River B extractions, wind direction, and heating 

degree days.  Several low variables attained ratio values of less than 1.0, including   

dissolved oxygen, UV254, and length of day. 
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Table 49.  Sensitivity Analysis for Revised ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 100 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

River A Extraction 1.940 1 Initial Cyanobacteria counts 1.033 18 
Turbidity 1.905 2 Total Hardness 1.019 19 

River B Extraction 1.637 3 Prediction Period’s Precipitation 
Total 1.016 20 

Wind Direction 1.375 4 Alkalinity 1.012 21 
Heating Degree Days 1.368 5 Sulfate 1.009 22 
Odor 1.280 6 Initial Chrysophytes counts 1.008 23 
Wind Speed 1.223 7 Biochemical Oxygen Demand 1.006 24 
Initial Total Algal Counts 1.197 8 Chloride 1.003 25 
Initial Chlorophytes counts 1.190 9 Pumping Station 1 Extraction 1.002 26 
Total Suspended Solids 1.166 10 Reservoir A Extraction 0.998 27 
Temperature 1.164 11 Conductivity 0.995 28 
Ammonia 1.140 12 pH 0.995 29 
River A Streamflow 1.076 13 Nitrite/Nitrate 0.995 30 
Total Organic Carbon 1.066 14 Length of Day 0.991 31 
Prediction Period Lagged 
Precipitation Total 1.053 15 UV-254 0.988 32 

Sky Cover 1.047 16 Dissolved Oxygen 0.973 33 
T.Phosphorus/Orthophosphate 1.040 17    
 

As for the similar model with the complete input set, input variables for the ANN model 

with the reduced inputs achieved relatively high ratio values, as presented in Table 50.  It 

is interesting that both models have the same three highest ranking variables, though in 

different orders; turbidity and extractions from Rivers A and B. For the reduced input set 

model, the first two variables had ratio value just over 2.0 and the third had a ratio value 

of 1.92.  Other high ranking variables include wind speed, wind direction, and dissolved 

oxygen.  At the other extreme, five variables at the bottom of the ranking attained ratio 

values less than 1.0, with the three lowest ranking being initial chrysophytes counts, 

biochemical oxygen and total organic carbon. 
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Table 50.  Sensitivity Analysis for Revised ANN Model for Two-week Ahead 
Predictions of Cyanobacteria at Station 100 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Turbidity 2.494 1 River A Streamflow 1.026 16 
River A Extractions 2.101 2 Alkalinity 1.023 17 
River B Extraction 1.920 3 Temperature 1.014 18 

Wind Speed 1.429 4 Prediction Period’s Precipitation 
Total 1.014 19 

Wind Direction 1.407 5 pH 1.007 20 
Dissolved Oxygen 1.386 6 Chloride 1.006 21 
Odor 1.386 7 Total Hardness 1.002 22 
Initial Total Algal Counts 1.248 8 Pump Station 1 Extraction 1.002 23 
Heating Degree Days 1.205 9 Reservoir A Extraction 1.001 24 
Initial Chlorophytes Counts 1.190 10 Total Suspended Solids 1.000 25 
Ammonia 1.187 11 UV254 0.999 26 
Initial Cyanobacteria Counts 1.155 12 Conductivity 0.997 27 
Length of Day 1.070 13 Total Organic Carbon 0.997 28 
Sky Cover 1.040 14 Biochemical Oxygen Demand 0.992 29 
Prediction Period’s Lagged 
Precipitation Total 1.035 15 Initial Chrysophytes Counts 0.987 30 

 

For the ANN developed for two-week ahead chlorophytes predictions at Station 101, 

Table 51 below shows that initial cyanobacteria counts and Reservoir A extractions were 

the two highest ranking variables, with ratio values of 1.8 and 1.65, respectively.  The 

next two highest ranking variables were initial chlorophytes counts and conductivity, 

both with ratio values just over 1.1.  At the other extreme, the three lowest ranking 

variables were heating degree days, temperature, and ammonia.  These three variables 

were among the ten low ranking variables that achieved ratio values less than 1.0.   
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Table 51.  Sensitivity Analysis for Revised ANN Model for One-week Ahead 
Predictions of Chlorophytes at Station 101 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Cyanobacteria counts 1.810 1 Chloride 1.006 18 
Reservoir A Extraction 1.650 2 Initial Chrysophytes counts 1.004 19 
Initial Chlorophytes counts 1.189 3 pH 1.004 20 
Conductivity 1.109 4 Turbidity 1.003 21 

Wind Speed 1.094 5 Prediction Period’s Lagged 
Precipitation Total 1.002 22 

Prediction Period’s 
Precipitation Total 1.060 6 Total Hardness 1.001 23 

Initial Total Algal Counts 1.040 7 Sky Cover 1.001 24 
UV254 1.037 8 Sulfate 0.996 25 
Colro 1.026 9 Dissolved Oxygen 0.995 26 
Biochemical Oxygen Demand 1.025 10 Total Amorphous Materials 0.994 27 
River A Extraction 1.021 11 Pump Station 1 Extraction 0.992 28 
Wind Direction 1.020 12 Odor 0.990 29 
Total Organic Carbon 1.019 13 T.Phosphorus/Orthophosphate 0.984 30 
River A Streamflow 1.018 14 Nitrite/Nitrate 0.977 31 
River B Extraction 1.016 15 Ammonia 0.975 32 
Length of Day 1.015 16 Temperature 0.968 33 
Alkalinity 1.015 17 Heating Degree Days 0.954 34 
 

Table 52 below presents the overall sensitivity analysis results for one-week ahead 

predictions of Chlorophytes a at Station 101 with reduced inputs.   In terms of 

importance, alkalinity, wind direction, and length of day were the three highest ranking 

variables, all with ratio values just over 1.1.   Other variables near the top of the ranking 

include pH, initial chlorophytes counts, and sky cover.  At the bottom of the ranking, four 

variables achieved ratio values of less than 1.0, including extraction from Pumping 

Station 1, color, conductivity, and turbidity. 
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Table 52.  Sensitivity Analysis for Revised ANN Model for One-week Ahead 
Predictions of Chlorophytes a at Station 101 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Alkalinity 1.188 1 Prediction Period’s Precipitation 
Total 1.014 15 

Wind Direction 1.184 2 Heating Degree Days 1.013 16 
Length of Day 1.162 3 Initial Total Algal Count 1.012 17 
pH 1.127 4 Initial Cyano Counts 1.012 18 
Initial Chlorophytes Counts 1.120 5 Ammonia 1.009 19 
Sky Cover 1.089 6 Chloride 1.007 20 
Odor 1.077 7 Total Amorphous Materials 1.007 21 

River A Streamflow 1.069 8 Prediction Period’s Lagged 
Precipitation Total 1.005 22 

Temperature 1.064 9 Initial Chrysophytes Counts 1.001 23 
Wind Speed 1.048 10 River A Extraction 1.000 24 
Total Hardness 1.036 11 Turbidity 0.999 25 
UV254 1.022 12 Conductivity 0.998 26 
Dissolved Oxygen 1.019 13 Color 0.997 27 
River B Extraction 1.018 14 Pumping Station 1 Extraction 0.997 28 
 

As for the one-week chryosphytes predictions at Station 612, Table 53 below presents the 

overall results for the sensitivity analysis.  As shown, the prediction period’s lagged 

precipitation total, extraction from River A, and temperature were the first three top 

ranking variables.  The first had a ratio value of 1.2 while the other two had ratio values 

just over 1.1.  A total of eleven variables achieved ratio values of less than 1.0, and the 

three lowest ranking variables were total amorphous material, pH, and heating degree 

days. 
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Table 53.  Sensitivity Analysis for Revised ANN Model for One-week Ahead 
Predictions of Chrysophytes at Station 612 with complete input set 

 
Variable Ratio Rank Variable Ratio Rank 

Prediction Period’s Lagged 
Precipitation Total 1.201 1 Length of Day 1.005 18 

River A Extractions 1.124 2 Prediction Period’s Precipitation 
Total 1.002 19 

Temperature 1.109 3 Biochemical Oxygen Demand 1.001 20 
Odor 1.084 4 T.Phosphorus/Orthophosphate 1.001 21 
Initial Chlorophytes counts 1.082 5 Conductivity  1.000 22 
UV254  1.037 6 Sulfate 1.000 23 
Wind Speed 1.027 7 Nitrate/Nitrite 0.999 24 
Pumping Station Extraction 1.027 8 Turbidity  0.999 25 
River A Streamflow 1.026 9 Initial Cyanobacterial counts 0.995 26 
Chloride  1.022 10 Ammonia  0.994 27 
Sky Cover 1.018 11 River B Extractions 0.992 28 
Total Organic Carbon 1.016 12 Reservoir A Extractions 0.992 29 
Color 1.016 13 Total Algal Counts 0.987 30 
Initial Chrysophytes counts 1.014 14 Dissolved Oxygen 0.986 31 
Total Hardness  1.013 15 Heating Degree Days 0.985 32 
Alkalinity  1.012 16 pH 0.984 33 
Wind Direction 1.008 17 Total Amorphous Materials 0.970 34 
 

The sensitivity analysis result for revised ANN model for one-week ahead predictions of 

chrysophytes at Station 612 with reduced input set is presented in Table 54.   Initial 

chrysophytes counts ranked first with a ratio value of 1.28, followed by length of day and 

odor, both with ratio value just over 1.1.  At the other extreme, only sky cover achieved a 

ratio value of less than 1.0.  Other low ranking variables were wind direction, total algal 

counts, and ammonia. 
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Table 54.  Sensitivity Analysis for Revised ANN Model for One-week Ahead 
Predictions of Chrysophytes at Station 612 with reduced input set 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chrysophytes counts 1.282 1 Chloride 1.014 16 
Length of Day 1.162 2 Turbidity 1.008 17 
Odor 1.130 3 Pumping Station 1 1.007 18 
River A Extractions 1.075 4 Dissolved Oxygen 1.006 19 
UV254 1.058 5 Wind Speed 1.006 20 
Color 1.054 6 Total Hardness 1.006 21 
Temperature 1.037 7 Conductivity 1.005 22 
Total Amorphous Materials 1.034 8 pH 1.005 23 
Prediction Period’s 
Precipitation Total 1.030 9 Reservoir A Extractions 1.003 24 

River B Extractions 1.027 10 Prediction Period’s Lagged 
Precipitation 1.002 25 

River A Streamflow 1.023 11 Ammonia 1.002 26 
Alkalinity 1.016 12 Total Algal Counts 1.001 27 
Initial Cyanobacteria counts 1.015 13 Wind Direction 1.000 28 
Initial Chlorophytes counts 1.015 14 Sky Cover 0.999 29 
Heating Degree Days 1.015 15    
 

 

8.2.5 ANN Models without Water Extraction Input variables  

 

A concern that emerged during the study was whether the ANN models were at least 

partly biased by operational input variables of a more correlative relationship with algal 

counts, rather than causal.  This correlative relationship or bias would be problematic for 

a real-time forecasting method that is assumed to capture the mechanistic processes that 

govern algal population dynamics.  The variables in question, water extractions from the 

rivers and reservoir, often reflect operational decisions made in response to formation 

and/or dissipation of bloom events, and except for Station 100, a mixing point, may not 

have significant causative effects on algal counts at the water quality river stations.  As 

the example given previously, during an algal bloom event on River A, the utility may 

discontinue use of this source and make up the deficit with reservoir extraction.  Because 

the reservoir extraction may have relatively little effect on the algae counts on River A, 
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unlike a weather or chemical variable, but can be correlated with this variable, there is the 

possibility that the ANN model is “keying” off this relationship.  A simple relationship or 

correlation that the ANN might learn is:   “If River A extraction drops to 0, algal counts 

are relatively high at Station 612, and if River A extraction is high, algal counts are 

relatively low at Station 612.”  

 

Ideally, the real-time forecasting method should be based upon variables that are 

independent of any operational actions that the utility may implement in response to 

measured algal counts, such as water extraction from the reservoir.   It should be 

qualified, however, that river extractions may induce some causal effect on river algal 

populations.  For example, a lower extraction from River A during a bloom event is 

expected to produce different hydrodynamic and chemical conditions on the river that 

may effect populations, such as higher turbulence and sediment suspension (i.e. less 

sunlight penetration).   Some overlap between causal and correlative is naturally present 

for other variables; for example, some water quality parameters were observed to 

correlate to some degree with measured algal counts.  The difference is that these 

variables are not direct human responses to algal counts, although the human responses 

manifested in water extraction rates may also influence these variables (e.g. lower river 

extraction may produce lower dissolved oxygen levels).   

 

To assess the possible influence of these so-called correlative extraction variables on 

model performance, they were eliminated as inputs for select modeling cases.  In 

consultant with NJDEP and PVWC, the four following forecasting cases were selected, 

using the original data sets (inputs generally measured at beginning of prediction period); 

one-week ahead chlorophytes counts predictions for both Stations 100 and 101;  two-

week ahead cyanobacteria predictions for Stations 100 and 612.   

 

The statistical summaries for these four models are shown in Table 55, with 

accompanying figures 93 though 96 that depict measured versus predicted values for both 

the overall and validation data sets. 
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Table 55.   Comparison of statistical performances of ANN Models for predicting 
the two different algae classes at different modeling horizons excluding water 

extraction inputs 
 

Station 612 – Two week Ahead 
Cyanobacteria Predictions 

Station 100 -  Two week Ahead 
Cyanobacteria Predictions   

Overall Training Validation Overall Training Validation 

Data Mean 34.849 27.380 49.294 30.297 43.360 14.710 

Data S.D. 157.155 118.630 182.950 121.847 162.515 47.664 

Error Mean -2.985 -2.476 2.218 1.913 1.255 2.262 

Error S.D. 48.151 33.808 68.044 55.346 65.822 35.942 

Abs E. Mean 16.479 14.335 24.108 25.473 28.838 17.157 

S.D. Ratio 0.306 0.285 0.372 0.454 0.405 0.754 

Correlation 0.952 0.964 0.945 0.891 0.915 0.657 

No. of Events 139 71 34 249 125 62 
No. of Blooms 8 5 2 19 13 2 
False Positives 1 1 0 1 0 0 
False Negatives 3 3 0 7 3 1 

Station 100 – One week Ahead 
Chlorophytes Predictions 

Station 101 -  One week Ahead 
Chlorophytes Predictions   

Overall Training Validation Overall Training Validation 

Data Mean 49.455 51.552 51.848 44.367 55.200 37.185 

Data S.D. 77.028 75.136 73.359 75.159 75.743 64.165 

Error Mean 5.518 -0.780 13.493 3.651 -0.942 7.800 

Error S.D. 50.863 44.149 62.370 47.343 42.079 40.628 

Abs E. Mean 32.425 29.475 39.456 27.709 25.155 27.723 

S.D. Ratio 0.660 0.588 0.850 0.630 0.556 0.633 

Correlation 0.783 0.811 0.788 0.778 0.833 0.775 

No. of Events 266 134 66 109 55 27 
No. of Blooms 39 23 10 15 11 2 
False Positives 21 7 7 4 2 1 
False Negatives 17 8 5 1 1 0 
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   (a)              (b) 
Figure 93.  Time-series plots of measured Cyanobacteria counts against ANN Two-

week Ahead predicted values for (a) complete and (b) validations data set at  
Station 612 

 
 
 

 

 

 

 

 

   (a)              (b) 
Figure 94.  Time-series plots of measured Cyanobacteria counts against ANN Two-

week Ahead predicted values for (a) complete and (b) validations data set at  
Station 100 

 
 

 

  

 

 

 

 

   (a)               (b) 
Figure 95.  Time-series plots of measured Chlorophytes counts against ANN One-

week Ahead predicted values for (a) complete and (b) validations data set at  
Station 100 
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   (a)             (b) 
Figure 96.  Time-series plots of measured Chlorophytes counts against ANN One-

week Ahead predicted values for (a) complete and (b) validations data set at  
Station 101  

 
As expected, the models performed best for Stations 101 and 612, given that mixing of 

various source waters does not occur, and extractions are not assumed to be strongly 

causative mechanisms on algal populations. In comparison, there was relatively larger 

diminishment in forecasting performance for Station 100, where mixing of various source 

waters does occur, and hence extractions are considered more causal. For the two-week 

ahead forecasting problem for cyanobacteria at Station 612, the ANN model correctly 

predicted blooms during both validation events, with no false positives.  Similarly for 

predicting chlorophytes one-week ahead at Station 101, the model correctly forecasted 

both blooms during validation, with just one false positive.  For both stations, the 

statistical measure for the models that excluded extractions compare favorably with the 

models that included extractions, with slightly lower correlation coefficients for the 

former (0.945 versus 0.985 for Station 612, and 0.775 versus 0.788 for Station 101).     

 

For predicting chlorophytes one-week ahead at Station 100, the ANN model clearly 

appears to have keyed off the initial chlorophytes counts, which as presented further 

below, had the highest sensitivity ratio for the model.  The two-week ahead cyanobacteria 

forecasting model for Station 100 performed better, and correctly forecasted one of the 

two validation algal bloom events. However, this model had a relatively large 

discrepancy in its correlation coefficient between training (0.915) and validation (0.657).  
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In contrast, the model for this forecasting problem that included extraction as an input 

achieved a correlation coefficient of 0.847 during validation.   

 
The sensitivity analyses for the four models are presented below in Tables 56 through 59. 

 

Table 56.  Sensitivity Analysis for ANN Model for Two-week Ahead Predictions of 
Cyanobacteria at Station 612 without water extraction inputs 

 
Variable Ratio Rank Variable Ratio Rank 

Turbidity 2.840 1 Conductivity 1.022 14 

Initial Cyanobacteria counts 1.802 2 Sky Cover 1.011 15 

Total Algal counts 1.521 3 Dissolved Oxygen 1.010 16 

Color 1.331 4 Alkalinity 1.000 17 

Odor 1.228 5 Chloride 0.999 18 

Wind Direction 1.186 6 Prediction Period's Lagged 
Precipitation Total 0.994 19 

River A Streamflow 1.129 7 Prediction Period's Precipitation 
Total 0.991 20 

Total Amorphous Material 1.120 8 Initial Chlorophytes counts 0.990 21 

Heating Degree Days 1.104 9 pH 0.982 22 

Wind Speed 1.089 10 Total Hardness 0.982 23 

Ammonia 1.063 11 Length of Day 0.980 24 

UV254 1.034 12 Temperature 0.972 25 

Initial Chrysophytes counts 1.029 13    
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Table 57.  Sensitivity Analysis for ANN Model for Two-week Ahead Predictions of 
Cyanobacteria at Station 100 without water extraction inputs 

 
Variable Ratio Rank Variable Ratio Rank 

Odor 1.752 1 Temperature 1.026 14 

Total Algal Counts 1.268 2 UV254 1.021 15 

Initial Cyanobacteria counts 1.238 3 Alkalinity 1.021 16 

Sky Cover 1.200 4 Chloride 1.020 17 

Wind Direction 1.188 5 Initial Chrysophytes counts 1.009 18 

Total Organic Carbon 1.182 6 Initial Chlorophytes counts 1.007 19 
Biochemical Oxygen 
Demand 1.150 7 Total Hardness 1.004 20 

Dissolved Oxygen 1.141 8 Wind Speed 1.003 21 

Conductivity 1.135 9 Prediction Period's Precipitation 
Total 1.001 22 

River A Streamflow 1.124 10 Length of Day 0.999 23 

Ammonia 1.078 11 Total Suspended Solids 0.997 24 
Prediction Period's Lagged 
Precipitation Total 1.029 12 Turbidity 0.997 25 

pH 1.028 13 Heating Degree Days 0.997 26 

 

Table 58.  Sensitivity Analysis for ANN Model for Two-week Ahead Predictions of 
Chlorophytes couts at Station 100 without water extraction inputs 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chlorophytes counts 1.261 1 UV254 1.002 14 

Odor 1.216 2 Total Suspended Solids 1.001 15 

Chloride 1.200 3 Turbidity 1.000 16 

Conductivity 1.152 4 Length of Day 0.995 17 
Biochemical Oxygen 
Demand 1.065 5 Prediction Period's Lagged 

Precipitation Total 0.995 18 

River A Streamflow 1.044 6 pH 0.994 19 

Sky Cover 1.039 7 Total Hardness 0.991 20 

Dissolved Oxygen 1.016 8 Temperature 0.991 21 

Wind Speed 1.015 9 Alkalinity 0.990 22 

Ammonia 1.012 10 Prediction Period's Precipitation 
Total 0.989 23 

Total Organic Carbon 1.008 11 Heating Degree Days 0.987 24 

Wind Direction 1.006 12 Initial Chrysophytes counts 0.985 25 

Initial Cyanobacteria counts 1.006 13 Total Algal Counts 0.972 26 
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Table 59.  Sensitivity Analysis for ANN Model for Two-week Ahead Predictions of 
Chlorophytes couts at Station 101 without water extraction inputs 

 
Variable Ratio Rank Variable Ratio Rank 

Initial Chlorophytes counts 1.183 1 Initial Cyanobacteria counts 0.999 14 
Prediction Period's Precipitation 
Total 1.092 2 Total Hardness 0.998 15 

Total Algal counts 1.084 3 Length of Day 0.997 16 

Ammonia 1.037 4 River A Streamflow 0.997 17 

pH 1.026 5 Wind Direction 0.997 18 

Alkalinity 1.021 6 Initial Chrysophytes counts 0.996 19 
Prediction Period's Lagged 
Precipitation Total 1.019 7 Heating Degree Days 0.995 20 

Color 1.010 8 Total Amorphous Material 0.994 21 

Turbidity 1.004 9 Sky Cover 0.991 22 

Temperature 1.003 10 Dissolved Oxygen 0.989 23 

Wind Speed 1.002 11 Chloride 0.988 24 

UV254 1.000 12 Conductivity 0.985 25 

Odor 1.000 13    
 

While there is some similarity, there is some marked inconsistency between the earlier 

comparable ANN models and these.    For example, length of day ranked consistently 

high for the previous models, but for this case, ranked near the bottom, in all cases having 

a ratio value < 1.0.  Again, given the relatively few events available for ANN 

development, the sensitivity analyses must be regarded with skepticism.   

 

Excluding volumetric water extractions considered to be correlative variables did not 

significantly decrease forecasting performance for the two models developed for Stations 

101 and 612.  In contrast, overall there was more diminishment in performance for the 

two models developed for Station 100.  This supports the conclusion that the previously 

developed ANN models appear to be learning the underlying system behavior, and for 

Stations 101 and 612, are not overly biased in correlating extractions with counts. The 

results also agree with physical intuition, and indeed was anticipated that extraction 

variables would be more relevant for Station 100, where the mixing of various source 

waters occurs.  Thus, despite the limited data sets, the ANN models appear to have 
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learned the general underlying behavior in this complex system for the range of 

conditions measured.  This is further supported by the classification modeling results 

presented in the following section. 

 

8.2.6  ANN Classification Models 

 

As an alternative to developing ANN models that explicitly predict final measured algal 

counts, RBF nets were developed to predict the pre-specified bins or classification ranges 

in which the final measured algal counts fall.  For this exercise, the following four bins or 

classification ranges were selected:  0 to 10 counts, 11 to 50 counts, 51 to 200 counts, and 

201 and above counts.  The original model input sets were used and included both the 

complete and reduced parameter sets, and as only Stations 101 and 612 were used, water 

volume extraction variables were excluded as inputs.  Station 101 was used for predicting 

chlorophytes bins one-week ahead and chrysophytes bins two-weeks ahead.  Station 612 

was selected for predicting chrysophytes bins one-week ahead and chlorophytes bins 

two-weeks ahead.  The four classification bins and stations/algae classes and eight 

modeling exercise were selected in consultation with NJDEP and PVWC.  

 

Below in Tables 60 and 61 are the tabulated results for two representative cases, 

comparing the measured versus class predicted values for the entire data set for the 

models that included and excluded the select water quality variables.  Overall, the ANNs 

did surprisingly well in accurately classifying algal counts into their classification bins.  

The other results can be found in Appendix B-5.  
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Table 60.  Comparison of measured Chrysophytes counts against ANN One-week 
Ahead Class-predicted values at Station 101 without Chemical Inputs 

 
Event Measured Bin Accuracy Event Measured Bin Accuracy 

1* 76 51-200 Correct 34 20 11-50 Correct 
2 256 >200 Correct 35 48 11-50 Correct 
3 212 >200 Correct 36 92 51-200 Correct 
4 220 >200 Correct 37 136 51-200 Correct 

5* 196 51-200 Correct 38 44 11-50 Correct 
6 112 51-200 Correct 39 92 51-200 Correct 

7* 76 51-200 Correct 40 80 51-200 Correct 
8 164 51-200 Correct 41 0 0-10 Correct 
9 152 51-200 Correct 42 84 51-200 Correct 

10 184 51-200 Correct 43* 16 0-10 Incorrect 
11 196 51-200 Correct 44 8 0-10 Correct 
12 136 51-200 Correct 45 36 11-50 Correct 
13 120 51-200 Correct 46 12 11-50 Correct 
14 132 51-200 Correct 47 8 0-10 Correct 
15 20 11-50 Correct 48 12 11-50 Correct 
16 36 11-50 Correct 49 20 11-50 Correct 
17 20 11-50 Correct 50 8 0-10 Correct 
18 64 51-200 Correct 51 32 11-50 Correct 
19 84 51-200 Correct 52 60 51-200 Correct 
20 192 51-200 Correct 53 12 11-50 Correct 

21* 104 51-200 Correct 54* 8 11-50 Incorrect 
22 200 >200 Correct 55 8 0-10 Correct 
23 160 51-200 Correct 56 16 11-50 Correct 
24 148 51-200 Correct 57 4 0-10 Correct 
25 76 51-200 Correct 58 12 11-50 Correct 
26 84 51-200 Correct 59 4 0-10 Correct 
27 64 51-200 Correct 60 4 0-10 Correct 
28 56 51-200 Correct 61 112 51-200 Correct 
29 72 51-200 Correct 62 328 >200 Correct 
30 52 51-200 Correct 63 48 11-50 Correct 
31 60 51-200 Correct 64 24 11-50 Correct 
32 76 51-200 Correct 65 24 11-50 Correct 
33 100 51-200 Correct 66 8 0-10 Correct 

* - validation event 
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Table 61.  Comparison of measured Chrysophytes counts against ANN One-week 
Ahead Class-predicted values at Station 101 with Chemical Inputs 

 
Event Measured Bin Accuracy 

1 76 51-200 Correct 
2 152 51-200 Correct 
3 196 51-200 Correct 
4 192 51-200 Correct 
5 160 51-200 Correct 
6 72 51-200 Correct 
7 72 51-200 Correct 
8 20 11-50 Correct 
9 40 11-50 Correct 

10 100 51-200 Correct 
11 32 11-50 Correct 
12 68 51-200 Correct 
13 92 51-200 Correct 
14 20 11-50 Correct 
15 164 51-200 Correct 
16 96 51-200 Correct 
17 136 51-200 Correct 
18 44 11-50 Correct 
19 92 51-200 Correct 
20 80 51-200 Correct 
21 0 0-10 Correct 
22 84 51-200 Correct 
23 64 51-200 Correct 
24 88 51-200 Correct 
25 100 51-200 Correct 
26 48 11-50 Correct 
27 108 51-200 Correct 
28 24 11-50 Correct 
29 32 11-50 Correct 
30 12 11-50 Correct 
31 8 11-50 Correct 
32 32 11-50 Correct 
33 8 0-10 Correct 
34 28 11-50 Correct 
35 112 51-200 Correct 
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As the two representative cases demonstrate, the models correctly predicted the 

classification range or bin for the final measured algal counts with high accuracy. In the 

few cases that the classification was incorrect, it always occurred with an adjacent class. 

For example, for event 54 (a validation) shown in Table 60 above, the ANN model 

predicted the final measured algae count of 8 would fall into the bin or classification 

range of 11 to 50 counts.  Given the impreciseness of the measured algal counts, where 

previous researchers estimate a measurement error of approximately ±20% (excludes 

spatial variability), the classification performance is high.   

 

Table 62 below summarizes the overall performance of the different classification models 

by percentage classification accuracy, with the number of events provided, and the 

inclusion or exclusion of the five select water quality variables indicated.   

 

Table 62.   Overall Percentage Accurary for the Eight RBF Nets 
 

Station Organism 
Select 

Chemical 
Inputs 

Total 
Number 
Correct 

Total 
Number 
Events 

Percentage 
Classification 
Accuracy (%) 

101 Chrysophyta Included 35 35 100.0 

101 Chrysophyta Excluded 64 66 97.0 

101 Chlorophyta Included 47 47 100.0 

101 Chlorophyta Excluded 95 96 99.0 

612 Chrysophyta Included 51 51 100.0 

612 Chrysophyta Excluded 144 174 82.8 

612 Chlorophyta Included 38 44 86.4 

612 Chlorophyta Excluded 125 140 89.3 
Note:  Original Input Structure Used for All Models, and extraction variables excluded. 

 

On average, the models that included the five select chemical inputs slightly 

outperformed those that did not, with correct classification percentages of 96 and 92 

percent, respectively.  However, the models that excluded these five water quality 

variables had approximately three times the number of events, and hence had more events 

that bordered on two classification bins.  Three of the eight models, which included all 
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chemical inputs, achieved 100 percent classification accuracy.  The lowest performing 

net correctly classified 83 percent of the events, and all incorrect classifications for all 

models occurred within an adjacent bin (e.g. measured count of 8, predicted range of 11 

to 50).   

 

Finally, as described in the ANN section, RBF models excluded variables that reduced 

classification accuracy during learning.  Table 63 below presents the forecasting 

problems and corresponding variables that were excluded by the various RBF nets.   

 

Table 63.  List of Input variables excluded by various RBF nets during Training 
 

Station Organism Prediction 
Horizon 

Select 
Chemical 

Inputs  
Variables Excluded by the Nets 

101 Chrysophyta Two-week Ahead Included Conductivity 

101 Chrysophyta Two-week Ahead Excluded Ammonia 

101 Chlorophyta One-week Ahead Included 
Total Phosphorus/ Orthophosphate, 
Initial Chlorophytes counts, Odor, 
Total Amorphous Materials 

101 Chlorophyta One-Week Ahead Excluded Chloride, Odor, Total Amorphous 
Materials 

612 Chrysophyta One-Week Ahead Included 

pH, Heating Degree Days, Length of 
Day, Total Amorphous Material, 
Initial Cyanobacteria counts, Initial 
Chlorophytes counts 

612 Chrysophyta One-Week Ahead Excluded 

All variables except Alkalinity, 
Conductivity, Wind Speed, Length of 
Day, Total Algal Counts, Initial 
Chrysophytes counts, Initial 
Chlorophytes counts 

612 Chlorophyta Two-week Ahead Included 
All variables except Dissolved 
Oxygen, UV254, Heating Degree 
Days, Sky Cover, Length of Day 

612 Chlorophyta Two-week Ahead Excluded No variable excluded 

 

Again, because of the sparse data sets, it is difficult to draw conclusions with high 

confidence. It is, however, interesting to note that three of the four ANNs that initially 

included the select water quality parameters generally eliminated these as inputs.  In 

addition, length to day was included for seven of eight models, including the two models 

that eliminated most variables, and two nets for Station 612 eliminated most inputs.    
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8.2.7   Linear Models versus ANNs  

 
In order to further assess the performance of the ANN technology, as was done in the 

preliminary research for Swimming River, linear models were also applied to the PVWC 

site.  Although transformation of the data, for example, logarithmically, may have 

improved LM performance, the main objective of this analysis was to provide an 

objective assessment of ANN performance with an alternative model paradigm using the 

identical data sets.  The linear models used in this research are analogous to traditional 

linear regression equations, but utilize a superior algorithm to find the "best fitting" 

coefficients.  As with the ANN modeling, the software Statistica was used to perform this 

work.   

 

Linear models were developed to predict the three algae types at the three stations used as 

representative models.  Of the twelve prediction problems, the ANN models provided a 

lower MAE error eleven times, often significantly smaller.  The only time the LM model 

provided lower MAE’s was for predicting chrysophytes two week-ahead at Station 101 

with reduced input set measured primarily at the beginning of the prediction period. 

 

Tables 64 and 65 provide a statistical comparison between the two model types for the 

two modeling approaches and data sets as presented by the three representative models.   

 

With respect to a model’s ability to accurately predict the incidence and magnitude of 

algal blooms while avoiding false positives, the discrepancy between the ANNs and the 

LMs is often quite significant.  The ANNs were generally able to reproduce the rising and 

falling algae count levels, predicting the incidence and magnitude of algal blooms, while 

minimizing false positives.  In contrast, the LMs sometimes fail in both measures, 

particularly for cyanophyta.   
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Table 64.  Statistical Measure Comparison between ANN and LM for Original 
Models with two types of input variables 

 
Complete Input Set Reduced Input Set 

 
ANN LM ANN LM 

Mean Absolute Error 25.607 110.536 12.816 44.179 Station 612: Two-week 
Ahead Cyanobacteria 

Prediction Correlation Coefficient 0.939 0.592 0.979 0.823 

Mean Absolute Error 33.485 67.271 33.569 34.755 Station 100*: One-week 
Ahead Chlorophytes 

Prediction Correlation Coefficient 0.612 0.139 0.772 0.719 

Mean Absolute Error 32.075 38.995 37.639 32.792 Station 101: Two-week 
Ahead Chrysophytes 

Prediction Correlation Coefficient 0.638 0.404 0.590 0.662 

 

Table 65.  Statistical Measure Comparison between ANN and LM for Revised 
Models with two types of input variables 

 
Complete Input Set Reduced Input Set 

 
ANN LM ANN LM 

Mean Absolute Error 4.019 9.622 10.973 35.487 Station 612: Two-week 
Ahead Cyanobacteria 

Prediction Correlation Coefficient 0.987 0.932 0.983 0.863 

Mean Absolute Error 33.123 53.680 34.560 40.959 Station 100*: One-week 
Ahead Chlorophytes 

Prediction Correlation Coefficient 0.839 0.596 0.805 0.702 

Mean Absolute Error 19.655 30.568 26.909 49.810 Station 101: Two-week 
Ahead Chrysophytes 

Prediction Correlation Coefficient 0.824 0.491 0.865 0.361 
* - excluded only four less frequently measured water quality variables for the reduced input set 

 

Figures 97 and 98 compare the ANN and LM performance for predicting cyanophyta 

counts at station 612 two-week ahead and chlorophyta counts at Station 101 one-week 

ahead prediction periods, respectively.   The figure show the original and revised 

modeling approach using the two type of data set (i.e. larger data set with lesser input 

variables and smaller data set with more input variables).  Similar figures for the 

remaining prediction events (i.e. combinations of algae types, stations, and prediction 

periods) can be found in Appendix B-6.  
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Figure 97. Comparison of Original ANN and LM performance for two week-ahead 

predictions of cyanobacteria at Station 612 without the five chemical variables 
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Figure 98.  Comparison of Revised ANN and LM performance for One-week 

predictions of chlorophyta at Station 100 with complete input set  
 
 
As shown by Figure 97, for the two-week ahead prediction of cyanobacteria counts at 

Station 612, the LM seriously under-predicted the three highest count events.  The LM 

predicted just 388, 320 and 434 for algal blooms of 800, 932 and 1152 counts, 

respectively.  By contrast, the ANN model accurately predicted six of the eight bloom 

events, and for the entire data record produced just two relatively minor false positives.  

Similarly for the other prediction cases using the same modeling approach, LMs have the 

tendency to under-predict most of the high count events.  In particular, for one-week 

ahead prediction of chlorophyta counts at Station 101, the LM predicted just 80 and 253 
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for 304 and 608 count events, respectively.  Similarly, in predicting two-week ahead 

chrysophyta counts at Station 101, LM again under-predicted the two particularly high 

count events.  Figure 98 shows that for one-week ahead prediction of chlorophyta at 

Station 100, and as shown LM provided a total of 15 false positives, with three serious 

ones that predicted 688, 355 and 184 to a 44, zero and four count events, respectively.  

By contrast, the ANN accurately tracked down the high and low count events and 

provided just minor false positives. As the other figures in Appendix B-6 show, the LM 

in general was less reliable in avoiding false positives and negatives.  

 

Overall then, the generally inferior LM performance supports the assumed non-linearity 

of this modeling problem.   In addition, it also provides some degree of confidence that 

the ANN technology was, despite limited data, still able to learn to some degree 

seemingly subtle and complex relationships between the predictor variables and the algae 

count.   

 

Tables for the sensitivity analysis for the LMs can be found in Appendix B-6.   Because 

of the inferior performance of the LMs and the limited data sets, a formal evaluation of 

the sensitivity analysis results is not presented.  
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9. DISCUSSION AND CONCLUSIONS 

 
This primary objective of this research project was to investigate the feasibility of using 

ANN technology for forecasting algal bloom events in surface water systems used for 

potable supply.  ANN technology differs from traditional mechanistic modeling 

approaches that attempt to explicitly represent the governing laws with physical-based 

equations for forecasting system states of interest.  Instead, ANNs represent a learning 

paradigm approach, where by processing representative historical events through their 

architecture, state-transition equations that predict system responses as a function of input 

predictor variables are obtained.  Although previous work has been conducted in this 

area, every open water system presnts its own unique set of challenges and problems. In 

addition, unlike previous work in the literature, the number of available historical events 

was rather limited in this study, which likely will be the case for most facilities.  

Recognizing this, one of the objectives, then, was to attempt to identify important 

predictor variables for effective model performance so that sampling strategies could be 

improved. In addition, classification nets were also developed and tested as an alternative 

forecasting approach. Lastly, the feasibility and benefits of using ANN technology for 

modeling water treatment processes was also investigated.   

 

Two water utilities served as test cases for forecasting algal population counts, New 

Jersey American Water, at its Swimming River facility, and PVWC, with the former 

utility also serving as the test case for the water treatment component.  Each represents a 

unique system; Swimming River consists of a single reservoir within a watershed, while 

PVWC obtains its water supply from two different rivers that are part of two different 

watersheds with distinct characteristics.  Hence, for Swimming River, water quality 

samples collected at three locations were treated as one location, while for PVWC, the 

best results were achieved when each of the three sampling stations were each modeled 

individually.  While cyanobacteria, a recognized threat to human health and the 

environment, was the initial focus of this algae forecasting modeling effort, the study was 

expanded to include two other algae types measured at PVWC, chlorophyta and 

chrysophyta.   
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Several hundred ANN models of different types were developed and tested for the algal 

bloom forecasting problem, and their predictive performance was compared against 

measured values.  In addition, linear models (LMs) were also developed with the same 

data sets as an additional benchmark for ANN performance. For Swimming River, a 

single one week-ahead prediction period was used, while for PVWC, one-week and two-

week ahead prediction periods were primarily used. Input predictor variables included 

chemical, physical, hydrological, weather/meteorological, and water extraction data.   

 

Unlike the PVWC facility, it was determined on the basis of the validation results that the 

ANN models were over-fitting the data for the Swimming River facility.  Although the 

ANNs did significantly outperform LMs for the Swimming River data, the discrepancy 

between ANN training and validation results were relatively large.  In addition, based 

upon sensitivity analyses, it was determined that water quality variables measured 

relatively infrequently by the utility are important predictors of cyanobacteria populations 

in the reservoir system.  Consequently, the great majority of the ANN algae modeling 

effort were directed to the PVWC data.   

 

For the PVWC system, two different input structures were initially used to assess 

possible time lags in algal system dynamics, and to address the feasibility of real-time 

implementation.  The first or original input structure used input values measured 

primarily at the beginning of the prediction period, while the second or revised modeling 

structure used model input values measured primarily at the end of the prediction period, 

coinciding with the final or predicted algal count.   Thus, unlike the original approach, 

where, under real-time forecasting conditions, the input values would be known a-priori, 

the revised modeling approach would have to forecast or assume input values 

corresponding to the future prediction day.   

 

The number of historical training events available for each forecasting problem ranged 

between 19 and 136, and averaged 65, far below the minimum required number of 200, 

computed on the basis of the number of input and output variables.  To address the data 
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quantity issue, both the original and revised modeling approaches were assessed with two 

distinct data sets.  The first set consisted of the smaller number of historical events, which 

included a higher number of input variables, while the second set consisted of a larger 

number of historical events by excluding select water quality variables that were 

measured less frequently than other input variables.  The five water quality variables 

included some of the so-called limiting nutrients, and are:  Biological Oxygen Demand 

(BOD), Total Phosphorous/Orthophosphate, Nitrite/Nitrate, Sulfate, and Total Organic 

Carbon (TOC) (BOD was not excluded for Station 100).   

 

In general, ANN models performed well during validation, and in many cases, accurately 

predicted large changes in algal populations.  The level of accuracy was surprising, given 

the complexity and non-linear behavior of algal populations, the inherent data noise, and 

the relatively small number of historical events available for training.  On the basis of 

validation correlation coefficients, the models (not classification) that used input values 

measured at the beginning of the prediction period slightly outperformed those that used 

input values measured at the conclusion of the prediction period, with average values of 

0.72 and 0.69, respectively.  A more subjective visual comparison of the time-series for 

the validation figures appears to confirm that the original models did achieve higher 

performance.  The models that excluded the less frequently measured water quality 

variables with the benefit of more training events produced a higher average correlation 

coefficient of 0.77, to the 0.63 value for models that included these variables.  However, 

there was at least one case where the models that included the select water quality 

variables achieved significantly higher validation performance.    

 

The ANN models developed with inputs measured at the beginning of the one-week and 

two-week ahead prediction periods accurately predicted formation and dissipation of 

algal bloom events, as well as relative increase and decreases, indicating that there are 

natural time lags between system conditions and algal population responses.  That is, 

algal populations may on average evolve predictably in response to system conditions, 

and the trajectory of algal counts over one and two-week forecast periods can be 
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accurately forecasted on the basis of real-time measurements.  This may also reflect that 

open water conditions as influenced by external factors like weather do not typically 

change significantly in the short-term (e.g. weekly or even bi-weekly), and thus evolving 

algal populations are not prone to abrupt deviations from trajectory paths.  The relatively 

small changes in conditions over prediction periods is supported by the statistical 

analyses of the data, and the fact that the revised models, which primarily used final 

measured input values, also performed relatively well.  

 

There is also some physical foundation for this hypothesis.  For example, because of the 

high specific capacity of water, significant water temperature changes will not typically 

occur over one and two-week prediction periods.  Exceptions may occur with a 

particularly extreme weather event, which may also induce large water quality changes, 

but this will be atypical. Recognizing the complexity of these systems, additional 

research is necessary to test the validity of these claims for this system.  Furthermore, 

because algal population dynamics vary from system to system, different time lag scales 

may be observed for different systems.   

 

That the ANN models that excluded select water quality variables on average slightly 

outperformed models that included them (not classification) may signify less about the 

influence of these variables on algal population dynamics, and more about the inadequate 

number of training events.  At the same time, it does indicate that during most time 

periods in the PVWC system, these variables may not be important predictors of algal 

populations, suggesting that they usually exist within a range of values that neither inhibit 

nor stimulate algal blooms.  This is weakly supported by additional sensitivity analysis, 

as well as the Swimming River results, where significantly better results were achieved 

when water quality variables were included, even though this meant a five-fold reduction 

in the number of data events.  

 

 It should be recognized that for some time periods, inclusion of some or all of these 

variables may be important.  There was at least one case where inclusion of these 
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variables significantly improved validation performance.  A comparison of time-series 

between nitrite/nitrate concentrations and algal counts suggest at least a correlative if not 

causal relationship, where some large blooms occurred during periods of high 

concentrations.  Thus, it may be that with an adequate number of data events for training, 

inclusion of the select water quality variables will improve overall performance, and may 

increase the likelihood of forecasting the formation and dissipation of bloom conditions 

during unusual conditions.   

 

In comparison, the LMs did not perform as well, achieving significantly lower correlation 

coefficients and higher mean absolute errors, and in some cases, failed to predict very 

high count algal blooms while erroneously predicting other blooms during low count 

periods.  It should be mentioned that the statistical distribution of the variables were not 

formally determined for this study, and consequently, data transformations were not 

performed (e.g. log normal).  Had statistical transformations been made, the LMs would 

most likely have performed better.  However, this also underscores one of the inherent 

advantages of ANNs; because of their universal non-linear modeling capability, they are 

not limited by the form of the data distribution(s).   

 

The small number of historical data events limits the accuracy of the sensitivity analyses 

performed by measuring the relative increase in RMSE by excluding each input variable.   

However, some basic trends did emerge, with the most important possibly being the 

relative non-importance of the select water quality variables excluded from some models.  

In particular, the two “limiting nutrients”, total phosphorous/orthophosphate and 

nitrite/nitrate, generally did not rank high as important predictor variables.  This relative 

non-importance is weakly supported by the better performance of the models that 

excluded these variables.  The time-series comparison of these parameters versus algal 

population also does not reveal an obvious relationship between concentrations and 

counts.   Other variables like river and reservoir extractions ranked highly, and this is not 

surprising, given that water extraction volumes are often modified by PVWC in response 

to measured algal counts.   
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For example, a high extraction from Reservoir A, a backup source which normally is not 

used, occurs during periods of algal blooms on River A, where extraction from this river 

source is minimized.  This potentially overly correlative relationship or model bias would 

be problematic for a forecasting method that is predicated on capturing the underlying 

mechanistic processes that govern algal population dynamics. When volumetric water 

extractions were excluded for four select test cases, forecasting performance remained 

high for models developed for Stations 101 and 612.  In contrast, there was observable 

diminishment in performance for models developed for Station 100, which is a mixing 

point for various water sources, and thus extractions would be considered more causal in 

nature (i.e. hydraulic mixing of various source waters with differing levels of algal 

counts).  The possibility for some causative relationship between water extractions and 

algal populations at river stations should not be dismissed.  Variable extraction rates 

undoubtedly induce certain physical (e.g. different river stages) and water quality 

changes on the river that influences algal population dynamics.    

 

As a final ANN modeling paradigm, RBF classification nets were developed with the 

single output variable representing the predicted “bin” or classification range of values 

for final measured algal counts, with four such possible bins; 0 to 10; 11 to 50; 51 to 200; 

and > 200.  For the eight test cases, which used the original models with both the 

complete and reduced input sets, the ANN models classified the counts into the correct 

bins with very high accuracy, despite limited data.  As with the previous models 

developed for predicting single count values, the highest performing classification nets 

excluded the select water quality variables.    Even the poorest performing RBF net 

correctly classified 83 percent of the events, with all incorrect classifications falling 

within an adjacent bin (e.g. measured count of 8, predicted bin of 11 to 50).   

 

There are a number of possible ways in which the ANN algal population forecasting 

models can be improved with additional work, and include: 
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1. The systematic elimination of input variables to further distinguish between critical 

and non-critical ANN inputs.  This would help offset the relatively small number of 

historical events by reducing the dimensionality problem of the error space.   

2. Increased monitoring of certain “limiting” nutrients, such as nitrite/nitrate and total 

phosphorous/ortho-phosphate, which would further define their importance on algal 

population dynamics.   

3. Inclusion of other potentially important causal variables as model inputs, such as 

biological organisms that graze on algae.   

4. Use of time lags for select predictor variables, such as streamflows and algal counts, 

which have been shown in a previous study (Maier, 1998) to significantly increase 

model performance.   

5. A possible hybrid of the two modeling approaches, where some combination of 

existing/historical and future conditions is used as inputs.  The obvious example of 

future conditions would include weather, where weather forecasts could be used as 

inputs to account for possible significant short-term effects on algal populations.    

6. Collection of additional data to generate a larger number of events for model 

development and testing.    

7. Following development of robust models, a perturbation sensitivity analyses that 

quantifies how different changes in input values affect algal population changes.   

 

To increase data set sizes used in future modeling efforts, it is also possible to exploit the 

recently automatic data collection system recently implemented at the facility.  

Specifically, water quality conditions at Station 100, the intake point for the water 

treatment plant, is essentially the product of the relative contribution of the different 

water sources, which for most time periods is the rivers.  At the very least, real-time 

water quality data measured at Station 100 could be used to estimate real-time water 

quality conditions at the water sources, and vice versa. This type of spatial-relational 

modeling capability could in the long-run be used by the utility to make more informed 

management decisions while offsetting sampling costs.  This type of analysis also has a 

source water protection component to it, in that water quality conditions can be 
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continuously assessed in real-time.  In terms of existing sampling methodology, it is 

recommended that the five water quality variables be sampled at a higher frequency.   

 

The modeling results taken in their totality strongly indicate that the ANN models 

developed for the PVWC system learned some underlying relationship between select 

hydrologic, weather/meteorological, water quality, and extraction inputs and counts for 

the three algal classes.  This is supported by a number of study outcomes, including; 1) 

relatively high model accuracy and overall consistency between training and validation 

results; 2) consistency in performance for different types of models, including original, 

revised, and classification models; 3)  consistency between modeling results and physical 

intuition/system understanding; and 4) relatively poor performance of LMs.  

 

Future research should focus on evaluating the use of ANN as a forecasting tool to 

predict single algal species. For example, odor problems are often produced by a single 

algae specie. However, it is not cost effective for most utilities to monitor populations at 

the species-specific level. Currently, taste and odor events attributed to algal productivity 

are best predicted by direct measurement of the odorants, with budgets for analytical 

services to measure odorant concentrations sometimes running into the thousands of 

dollars per year. ANN forecasting of specific odorant producing algal species could prove 

to be a more cost effect approach for predicting algal related taste and odor events. 

Research should be conducted to evaluate the cost savings that could be realized by 

replacing a ‘traditional’ grab and online monitoring program with an ANN generated 

forecast. Utilities would benefit from being able to provide the same level of monitoring 

while minimizing the costs of consumables and staff hours needed to maintain a 

monitoring program.  Related to this, guidance is needed for utilities to develop sampling 

matrices that will generate sufficient data to adequately train and validate the ANN and 

reduce sampling costs. Identification of important predictor variables for effective model 

performance is also needed to improve sampling strategies and minimize analytical costs. 

Thus, in final summary for the algal bloom modeling: 
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• Despite a very limited number of available data sets, the ANN models performed well 

in most cases during validation, accurately predicting large changes in algal cell 

populations.  The degree of accuracy was surprising, given the complexity and non-

linear behavior of algal populations, inherent data “noise”, and the relatively small 

number of historical events available for model training. 

 

• The ANN models that forecasted algal count values (instead of classification ranges) 

achieved the highest performance when the less-frequently measured water quality 

variables (phosphate, nitrate, sulfate, TOC and BOD) were excluded as input 

variables.  This may be due to a data quantity issue rather than inherent importance of 

these parameters to algal cell growth, but it could also be that, at the concentrations at 

this WTP, these parameters were not “limiting” algal growth. 

 

• Like the cell count models, the Radial Basis Function classification net models 

classified the counts into the correct concentration ranges with very high accuracy, 

averaging 94 percent.   

 

• Linear models did not perform as well as the ANN models, however the LM models 

were not optimized. 

 

• While not definitive, the results strongly indicate that the ANN models learned some 

underlying relationship between select water quality and meteorological parameters, 

and algal cell concentrations at this WTP.  This is supported by: 1) relatively high 

model accuracy and overall consistency between training and validation results; 2) 

consistency in performance for different types of models (single value outputs and 

classification) and input structures (original and revised); 3)  consistency between 

modeling results and physical intuition/system understanding; and 4) comparatively 

poor performance of linear models.  

For the water treatment study component, the ANN technology accurately learned to 

predict finished water quality conditions, namely average daily turbidity, highest daily 
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turbidity, and number of turbidity counts exceeding 0.1 NTU, based upon raw water 

conditions and treatment processes.  The ANN models verified a seasonal component to 

treatment conditions and outcomes, and also confirmed a non-intuitive negative 

correlation between raw water temperature and raw water turbidity.  It is believed that 

future consultation with water treatment experts could improve model performance by 

identifying the most important predictor variables based in accordance with professional 

experience and knowledge.  As with the algae forecasting models, another possible way 

for improving model performance may be with inclusion of time lags for certain input 

variables.   
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