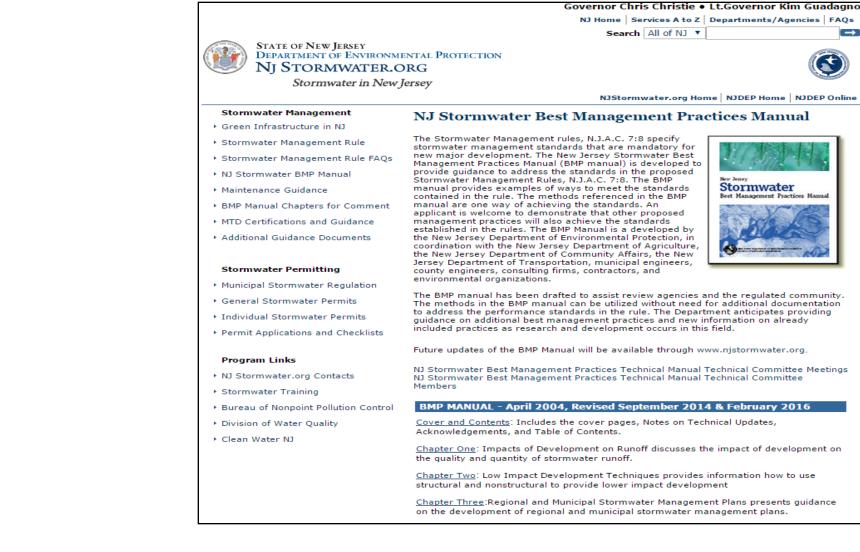
STORMWATER BEST MANAGEMENT PRACTICES (BMPs)

Rich Ambosio NJDEP Division of Water Enforcement October 13, 2016

BMP MANUAL General Overview


TYPES OF BMPs

Vegetative Infiltration Uncategorized

BMPs ve on zed

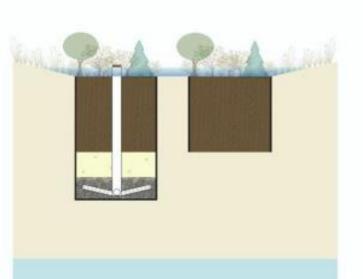
BMP MANUAL: General Overview

- Guidance to help meet the requirements in the Stormwater Management rules
- Stormwater management planning -
- Stormwater runoff calculations
- Structural BMP design -
- Maintenance & landscaping
- njstormwater.org/bmp manual2.htm

Chapter Nine: provides general information on Structural Stormwater Management Measures

- Chapter 9.1 Bioretention Systems ***UPDATED*** ٠
- Chapter 9.2 Standard Constructed Wetlands
- Chapter 9.3 Dry Wells ***UPDATED***
- Chapter 9.4 Extended Detention Basins •
- Chapter 9.5 Infiltration Basins ***UPDATED***
- Chapter 9.6 Manufactured Treatment Devices ***UPDATED*** •
- Chapter 9.7 Pervious Paving Systems
- Chapter 9.8 Blue Roofs (reserved)
- Chapter 9.9 Sand Filters
- Chapter 9.10 Vegetative Filter Strips
- Chapter 9.11 Wet Ponds •
- Chapter 9.12 Grass Swales
- Chapter 9.13 Subsurface Gravel Wetlands

TYPES OF BMPS: Vegetative



Grass Swales

BMP DESIGN: Bioretention Systems

Bioretention systems are stormwater management facilities used to address the stormwater quality and quantity impacts of land development. The system consists of a soil bed planted with vegetation; it can be underdrained, or runoff can discharge from the system into the underlying soil layers. Pollutants are treated through the processes of settling and uptake and filtration by the vegetation. Pollutants are also treated in the soil bed through infiltration. The total suspended solids (TSS) removal rate is 80 -90%; this rate will depend on the depth of the soil bed and the type of vegetation selected.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards

0	Nonstructural Strategies	Assist with Strategies #2, 4, 7, aYes, when designed as an on-lineYes, for systems designed to in		
٠	Water Quantity			
GR	Groundwater Recharge			
%	Water Quality	80 - 90% TSS Removal, depend and depth of soil bed		

and 8; See Page 3

line system

nfiltrate into the subsoil

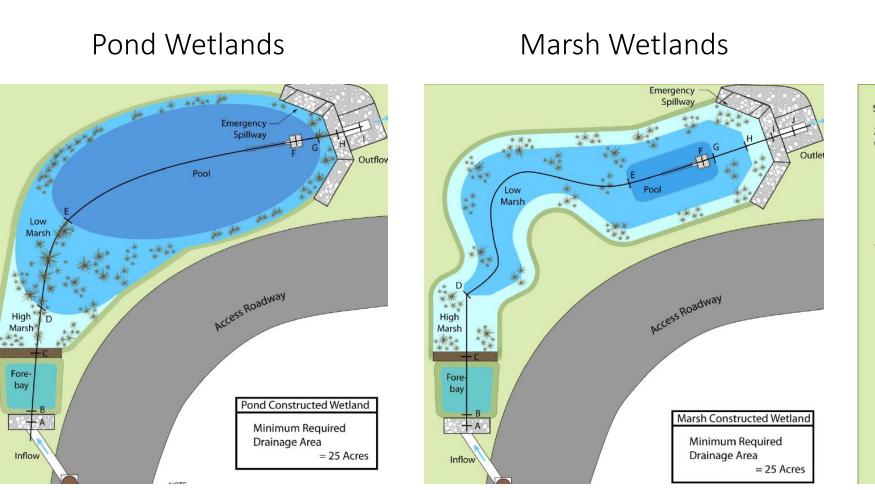
ding on vegetation selection

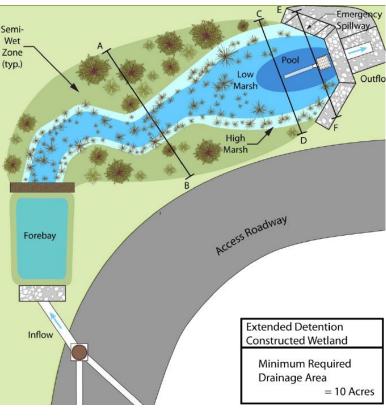
BMP DESIGN: Constructed Wetlands

9.2 STANDARD CONSTRUCTED WETLANDS

Standard constructed wetlands are stormwater management systems designed to maximize the removal of pollutants from stormwater runoff. Flow is directed through an engineered, open marsh system where pollutants are removed through settling and vegetative uptake/filtration. The total suspended solids (TSS) removal rate is 90%.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards


	Nonstructural Strategy	Assist with Strategy #7; See Pa	
Water Quantity		When designed to receive run	
œ	Groundwater Recharge	Not Allowed	
%	Water Quality	90% TSS	


age 2

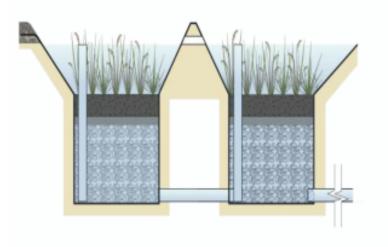
noff from all storm events (on-line)

BMP DESIGN: Constructed Wetlands: *Types*

- Majority of water in pool _ zone
- Minimum drainage area: -25 acres
- Majority of water in marsh zones
- Minimum drainage area: _ 25 acres

- _

_


10 acres

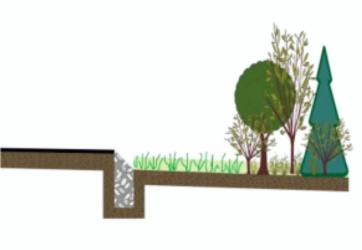
Extended Detention Wetlands

Include a semi-wet zone Minimum drainage area:

BMP DESIGN: Subsurface Gravel Wetlands

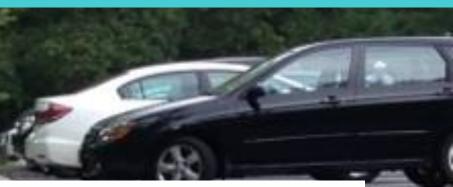
A subsurface gravel wetland is a stormwater management system designed to maximize the removal of pollutants from stormwater; the system is a combination of a surface marsh and a subsurface gravel bed. Pollutants are treated through settling, both uptake and filtration by vegetation, and chemical transformation in the subsurface bed, specifically denitrification. Both the total suspended solids (TSS) removal rate and the nitrogen removal rate are 90%.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards


		Assist with Strategy #7; See Pag	
		Not Allowed	
Ē	Groundwater Recharge	Not Allowed	
%	Water Quality	90% TSS; 90% Nitrogen	

ige 2

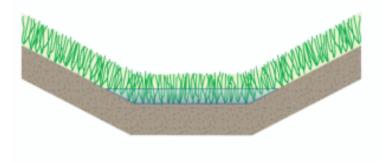
BMP DESIGN: Vegetative Filter Strips


9.10 VEGETATIVE FILTER STRIPS

A vegetative filter strip is a stable, evenly graded area that removes pollutants from stormwater runoff through filtration and biological uptake. In order to provide pollutant treatment, runoff must enter and move through the filter strip as sheet flow; therefore, vegetative filter strips must have shallow enough slopes to maintain sheet flow. When designed in accordance with this chapter, the total suspended solid (TSS) removal rate is 60 - 80%, depending on the type of vegetation.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards

	Nonstructural Strategies	Assist with Strategies #1, 3, 4, 5,		
💧 Water Quantity		Not Allowed		
GR	Groundwater Recharge	Not Allowed		
%	Water Quality	60 - 80% TSS, depending on type		



and 7; See Page 2

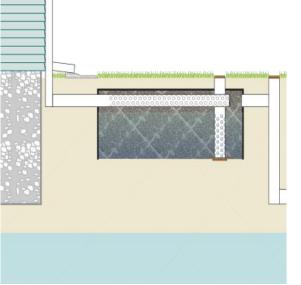
of vegetation

BMP DESIGN: Grass Swales

9.12 GRASS SWALES

A grass swale is a stable, parabolic or trapezoidal channel that is lined with turf; it is used to improve water quality and convey stormwater runoff. Grass swales do not rely on the permeability of the underlying soil for pollutant removal; instead, pollutants are removed by settling and filtration through the grass. The maximum total suspended solids (TSS) removal rate is 50%.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards

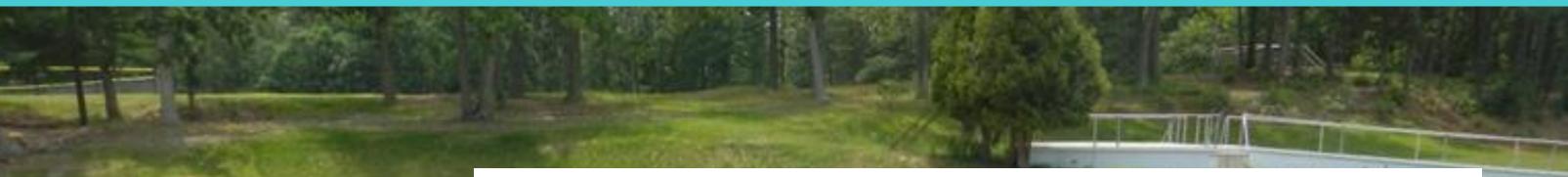

	-			
	Nonstructural Strategies	Assist with Strategies #4 and 8; S		
Water Quantity		Not Allowed		
Groundwater Recharge		Not Allowed		
%	Water Quality	≤ 50% TSS		

See Page 2

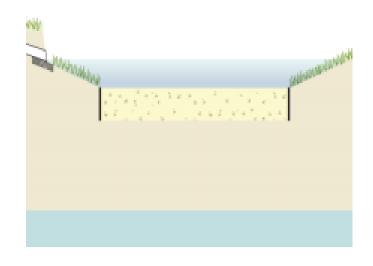
Infiltration Basins

Bioretention Systems*

Pervious Paving Systems



Sand Filters



BMP DESIGN: Infiltration Basins

9.5 INFILTRATION BASINS

Infiltration basins are stormwater management systems constructed with highly permeable components designed to both maximize the removal of pollutants from stormwater and to promote groundwater recharge. Pollutants are treated through settling, filtration of the runoff through, and biological and chemical activity within, the components. The total suspended solids (TSS) removal rate is 80%.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards

Nonstructural Strategy		Assist with Strategy #2; See Page		
•	Water Quantity	Yes, when designed as an on-line		
œ	Groundwater Recharge	Yes		
%	Water Quality	80% TSS Removal		

e 3

e system

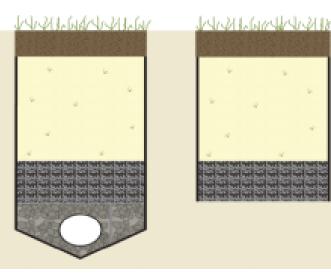
BMP DESIGN: Dry Wells

9.3 DRY WELLS

Dry wells are subsurface stormwater facilities that are used to collect and temporarily store runoff from clean rooftops; runoff is discharged through infiltration into the subsoil. Dry wells may be used to comply with the groundwater recharge design and performance standard of the Stormwater Management rules. Additionally, they may also be used to reduce the volume of clean, roof runoff.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards				
1	Nonstructural Strategies Assist with Strategy #2; See Page 3			
٠	Water Quantity	Not Allowed		
GR	Groundwater Recharge	Yes		
%	Water Quality	Not Allowed		

BMP DESIGN: Pervious Paving Systems



BMP DESIGN: Sand Filters

9.9 SAND FILTERS

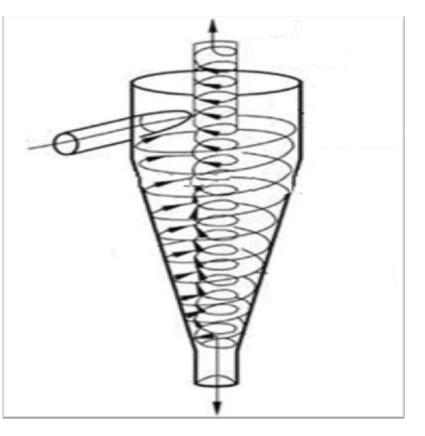
A sand filter is a stormwater management system designed to maximize the removal of pollutants from stormwater. It consists of a pre-treatment zone and a treatment zone, which includes the sand bed, and in underdrained systems, and the underlying components. Pollutants are treated through settling, filtration, and adsorption by the sand bed. The total suspended solids (TSS) removal rate is 80%.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards

Ø	Nonstructural Strategy	Not Allowed	
•	Water Quantity	Yes, when designed as an on-line	
Ē	Groundwater Recharge	Yes, for systems designed to infilt	
%	Water Quality	80% TSS	

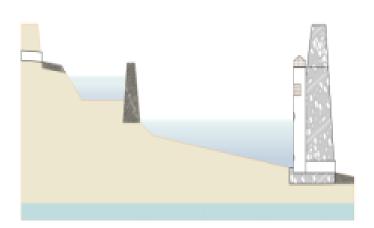
e system

Itrate into the subsoil


TYPES OF BMPS: Uncategorized BMPs

Extended Detention Basins

Wet Ponds



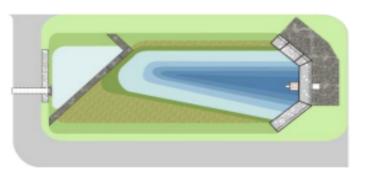
Manufactured Treatment Devices

BMP DESIGN: Extended Detention Basins

An extended detention basin is a stormwater management facility that temporarily stores and attenuates stormwater runoff. In addition, extended detention basins provide pollutant treatment for runoff from the Water Quality Design Storm through settling. When designed in accordance with this chapter, the total suspended solids (TSS) removal rate is 40 - 60%, depending on the duration of runoff detention.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards

	¢	Nonstructural Strategies	Not Allowed		
	Water Quantity		Yes, when designed for the 2-, 10		
	E	Groundwater Recharge	Not Allowed		
% Wa		Water Quality	40 - 60% TSS Removal, depending		



0- and 100-year design storms

ng on duration of detention

BMP DESIGN: Wet Ponds

9.11 WET PONDS

Wet ponds, also known as retention basins, are used to address the stormwater quantity and quality impacts of land development. This type of stormwater facility has an elevated outlet structure that creates a permanent pool where stormwater runoff is detained and attenuated. Wet ponds can be designed as multi-stage, multi-function systems; extended detention in the permanent pool provides pollutant treatment for runoff from the Water Quality Design Storm through

sedimentation and biological processing; detention and attenuation are also provided for larger storm event through the higher elevation outlets. When designed in accordance with this chapter, the total suspended solids (TSS) removal rate is 50 - 90%, depending upon the storage volume in the permanent pool and the duration of detention time, if extended detention is provided.

N.J.A.C. 7:8 Stormwater Management Rules - Design and Performance Standards

	Nonstructural	Not Allowed		
	Water Quantity	Yes, when designed as an on-line		
GR	Groundwater Recharge	Not Allowed		
%	Water Quality	50% TSS removal with 1:1 pool v up to 90% TSS removal if extend		

e system

volume ratio; ded detention is also provided

BMP DESIGN: Manufactured Treatment Devices

- Proprietary devices supplied by a manufacturer
- Best for use in small, highly-impervious drainage areas
- Often used as pretreatment for another stormwater management facility
- TSS removal rate varies based on device
- All devices must be verified by NJCAT and certified by NJDEP

Stormwater Management Manufactured Treatment Devices Certified by NJDEP	MTD Laboratory Test Certifications	Field Test Certifications	Superseded Certifications	Certified TSS Removal Rate	Maintenance Plan
AquaFilter Filtration Chamber by AquaShield, Inc.		Certification	Superseded	80%	Plan
Aqua-Swirl Concentrator By Aqua-Shield. Inc.		Certification	Superseded	50%	Plan
Continuous Deflective Separator (CDS) Unit by CONTECH Stormwater Solutions, Inc.	Certification	Certification	Superseded	50%	Plan
Downstream Defender by Hydro International, Inc.	Certification		Superceded	50%	Plan
Filterra Bioretention System by Contech Engineered Solutions	Certification		Superceded	80%	Plan
Jellyfish Filter by Imbrium Systems Corporation		Certification	Superseded	80%	Plan
Media Filtration Systems by CONTECH Stormwater Solutions, Inc.		Certification	Superseded	80%	Appendix A
StormPro Stormwater Treatment Device by Environment 21, LLC	Certification			50%	
StormVault by Jensen Precast, Inc.		Certification	Superseded	80%	Appendix A
Stormwater Management StormFilter by CONTECH Stormwater Solutions, Inc.		Certification	Superseded	80%	Plan
Up-Flo Filter by Hydro International		Certification	Superseded	80%	Plan
Vortechs Stormwater Treatment System by CONTECH Stormwater Solutions, Inc		Certification	Superseded	50%	Plan

http://www.njstormwater.org/treatment.html http://www.njcat.org/verification/Verifications.cfm

More Information

- Richard Ambrosio, Environmental Specialist III
- Water Compliance & Enforcement – Central Field Office
- 401 East State Street
- Mail Code 44-03
- P.O. Box 420, Trenton, NJ 08625-0420
- Cell: 609-273-6179
- Office-Bureau 609-292-3010
- E-mail address: richard.ambrosio@dep.nj.gov