AGENDA

Christopher Benosky, AECOM

- Welcome
- The Meadowlands Challenge
- Alternative 1
- Alternative 2
- Alternative 3
 - Build Plan
 - Future Plan
- Preferred Alternative
- Takeaways / Next Steps
- Question & Answer
REBUILD BY DESIGN COMPETITION & AWARD

- Original Proposed RBD Concept
- Protect: Flood Protection
- Connect: Transportation Improvements
- Grow: Re-Development
- Cost Estimate (Competition Cost) $850M+

Competition Graphic: MIT
• HUD awarded State of New Jersey $150M for Phase 1 Pilot Area only

• Project must be functional and completed by September 2022
Address flood risk

Increase resiliency of the communities and ecosystems

Reduce impacts to critical infrastructure, residences, businesses, and ecological resources
THE NEED

Address systemic inland flooding & coastal flooding from storm surges

Increase community resiliency

Reduce flood insurance rates and claims from future events

Enhance water quality and protect ecological resources

Protect life, public health, and property

Incorporate flood hazard risk reduction strategy with civic, cultural, & recreational values
PROJECT GOALS

1. Create the **BEST POSSIBLE PROJECT** with the available funding

2. Meets the Project Mandate by providing **FLOOD REDUCTION & CO-BENEFITS** such as reducing sediment & improving water quality

3. Construct a project that provides **STORM PROTECTION** and allows for a **QUICKER RECOVERY**
PROJECT CONSTRAINTS

1. Construct a complete project that functions with independent utility to meet purpose & need without relying on future projects.

2. Use only available funds without relying on future funding.

4. Project must have a positive benefit cost ratio.
The Meadowlands sits at a low elevation relative to sea level. Protection from tidal influence and storm surge is limited. Some existing storm infrastructure is under-performing and needs to be updated, or more frequently maintained.
PROJECT AREA NEEDS

- **Insufficient Drainage**: The existing drainage system proves to be insufficient during flood events.
- **Insufficient Protection**: Existing protection from tidal surge is limited, which can result in severe flooding.
- **Frequent Storms**: Severe interior flooding can occur multiple times a year due to frequent rain storms.
- **Water Quality**: Runoff flows directly into the storm system untreated.
THE MEADOWLANDS - THREE ALTERNATIVES

Alternative 1:
Storm Surge Flooding

Alternative 2:
Frequent Rain Flooding

Alternative 3:
Storm Surge & Frequent Rain Flooding
ALTERNATIVE 3 - THE PREFERRED ALTERNATIVE

Alternative 3:
Storm Surge & Frequent Rain Flooding
SELECTING A PREFERRED ALTERNATIVE

LULU LOQUIDIS, AECOM
COMMUNITY ENGAGEMENT
EXECUTIVE STEERING COMMITTEE & CITIZENS ADVISORY GROUP

EXECUTIVE STEERING COMMITTEE (ESC)
- NJ Department of Environmental Protection (NJDEP) Commissioner
- Department of Housing & Urban Development (HUD)
- Rebuild By Design (RBD) Project Management (PM) Team
- NJ Department Environmental Protection (NJDEP)
- AECOM (Consultant)
- Local Mayors and other representatives
- New Jersey Sports & Exhibition Authority (NJSEA)
- Berger-Hill Joint Venture (Consultant/Third Party Reviewer)

CITIZEN ADVISORY GROUP (CAG)
- Community Representatives
- Vulnerable Population Representatives

ENVIRONMENTAL IMPACT STATEMENT OUTREACH
- Stakeholder Outreach
- Pertinent Federal/State/Local/Agencies
- Federally Recognized Native American Tribes

Workshops / Meetings with CAG & ESC
Newsletters / Flyers / Websites
Public Scoping Meetings at Notice of Intent
Public Hearing at DEIS
OUR PROCESS
THE SCREENING TOOL

Concepts are screened against each other to determine how they will meet the below metrics:

- Flood Reduction Benefits
- Built Human Environment
- Natural Environment
- Construction & Maintenance
- Cost & Benefit
FLOOD REDUCTION BENEFITS

Categories Evaluated:

- Reduces Flood Risk from Coastal Storm Surge (Alternatives 1 and 3)
- Reduces Flood Risk from Rainfall /Interior Drainage Challenges (Alternatives 2 and 3)
- Provides Protection to Vulnerable and Underserved Populations
- Provides Protection to Critical Infrastructure (emergency services, hospitals, transit facilities)
Categories Evaluated:

- Effects to Existing Utilities & Utility Infrastructure
- Effects to Existing Transportation Network, Local Traffic, and Connectivity
- Effects on Land Acquisition / Housing Displacements
- Potential to Provide Increased Waterfront Access
- Effects to Recreational, Civic, and Cultural Amenities and Uses
- Effects to Viewshed and Local Visual Quality
- Effects to Air Traffic Safety at Teterboro Airport
NATURAL ENVIRONMENT

Categories Evaluated:

- Effects to Existing Hazardous Waste Sites
- Effects to Berry's Creek Remediation
- Effects on the Transport of Environmental Contaminants/Sediments during Flood Events
- Effects to Water Resources, including Water Quality, "Waters of the US," Wetlands, and Mitigation Banks
- Effects to Fisheries and Essential Fish Habitat (EFH)
- Effects on Protected Species and their Habitats
- Effects on Other Sensitive Ecological Resources, including Biodiversity, Habitat, and Migration/Movement Corridors
- Effects to Historic and Prehistoric Cultural Resources
Categories Evaluated:

- Constructability
- Minimizes Long-Term Maintenance & Operation Requirements for Overall System
- Potential to Complete by September 2022
BENEFIT & COST

Categories Evaluated:

- Provides Benefits to the Project Area and Community
- Can be Implemented within Available Funding Limits
- Has a Positive Benefit/Cost Ratio
Economic Revitalization Benefits
- Direct effects on local or regional economy (e.g., tourism revenue)
- Improved Property Value (exclusive of enhanced flood protection)
- Value creation attributable to Rebuild By Design

Environmental Benefits
- Protection from disruptive non-disasters (nuisance flooding)
- Reduced vulnerability of energy and water infrastructure
- Improved Ecosystem and Biodiversity
- Water & Air Quality Improvements

Social Benefits
- Reductions in human suffering
- Improved Recreation Value
- Improved Community Identity and Social Cohesion
- Greater access to Cultural, Historical, Archeological Sites and Landscapes

Benefit Cost Ratio

Grant-Specific Benefit/Cost Evaluation Criteria
ALTERNATIVE 1 STORM SURGE
APPROACH & GOALS

+ INFRASTRUCTURE
Connecting to high points to reduce construction costs and minimize grading

+ ECOLOGY
Minimize disturbance, consider habitat improvements to fragmented systems, and creation of new ecological zones

+ PARKS
As a co-benefit to flood reduction, the project seeks to connect existing public parks as well as provide new park space
Existing topography was analyzed to determine water flow and identify areas of high ground.
All proposed flood protection strategies were informed by geo-technical analysis.

The soil type helped the team determine how deep the piles and sub-structure needed to extend.
ALTERNATIVE 1 STORM SURGE SCREENING EXAMPLE

<table>
<thead>
<tr>
<th>Initial Concepts</th>
<th>Description</th>
<th>Within Budget</th>
<th>No Increased Flood Risk</th>
<th>Benefit Cost Ratio >1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td>100-year Storm Protection/Expanded Project Area</td>
<td>X</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Option 2</td>
<td>100-year Storm Protection/Project Area</td>
<td>X</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Option 3</td>
<td>50-year Level of Protection/Project Area</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Option 4</td>
<td>Ring Levees/Reduced Project Area</td>
<td>✔</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>Option 5</td>
<td>Storm Surge Barrier on Hackensack River</td>
<td>X</td>
<td>X</td>
<td>✔</td>
</tr>
</tbody>
</table>

- Explored many options to a 100-year flood, but both Options 1 and 2 resulted in fatal flaw.
- The 7’ NAVD88 design elevation was further analyzed.

50-YEAR LEVEL OF PROTECTION ADVANCES
ALTERNATIVE 1 STORM SURGE - PLAN

- Provides protection from a storm surge to elevation 7’ NAVD88 (approximately a 50-yr storm)
- Provides community co-benefits through water access & multifunctional wall elements
- Positive Benefit Cost Ratio greater >1
- Revised Feasibility-level concept cost exceeds $150M

- Provides protection from a storm surge to elevation 7’ NAVD88 (approximately a 50-yr storm)
- Provides community co-benefits through water access & multifunctional wall elements
- Positive Benefit Cost Ratio greater >1
- Revised Feasibility-level concept cost exceeds $150M

1. Existing Riverwalk
2. Sheet Pile Cantilever
3. Berms at Fluvial Park
4. Cantilever Walkway
5. Sheet pile or Floodwall
6. Surge Barrier
CANTILEVER WALKWAY
CONCEPTUAL RENDERING FOR ILLUSTRATIVE PURPOSES

- The Cantilever Walkway combines flood protection and public access.
FLOOD PROTECTION
CONCEPTUAL RENDERING FOR ILLUSTRATIVE PURPOSES

- The entire structure is built up to a 7' NAVD88 elevation

1. Flood protection system
2. Newly-created tidal wetland
• Sheet pile is a cost effective material used in the southeast

• Public viewing platforms were integrated into the system
FLOOD PROTECTION
CONCEPTUAL RENDERING FOR ILLUSTRATIVE PURPOSES

- Sheet pile wraps around viewing platform to form the flood protection system
FREQUENT RAIN FLOODING

ALTERNATIVE 2

GARRETT AVERY, AECOM
ALTERNATIVE 2 FREQUENT RAIN FLOODING

APPROACH & GOALS

+ INFRASTRUCTURE
Enhance & restore channels to improve capacity to convey stormwater

+ ECOLOGY
Native plantings and naturalized channel edges provide habitat and improve water quality

+ PARKS
New park spaces slowing runoff & improve water quality

Diagram:
- Native vegetation
- Green infrastructure
- New or improved parks
- Grey infrastructure improvements
- New recreation
ALTERNATIVE 2 FREQUENT RAIN FLOODING - ANALYSIS

20 SUB-BASINS

- Analyzed 20 sub-basin areas in the hydrologic model

A: UPPER EAST RISER
B: MIDDLE EAST RISER
C: LOWER EAST RISER
D: UPPER WEST RISER 1
E: UPPER WEST RISER 2
F: MIDDLE WEST RISER
G: LOWER WEST RISER
H: UPPER LOSEN SLOTE 1
I: UPPER LOSEN SLOTE 2
J: MOONACHIE
K: CARLSTADT
L: INDIAN LAKE
M: MAIN STREET
N: DEPEYSTER CREEK
O: LOWER LOSEN SLOTE
P: UPPER HACKENSACK
Q: MIDDLE HACKENSACK 1
R: MIDDLE HACKENSACK 2
S: LOWER HACKENSACK
T: BERRY’S CREEK

Sub-basin boundary
Runoff flows to lower elevations, into creeks or ditches and is conveyed eventually into the Hackensack River or Berry’s Creek.

We listened to the community members and used their input to map areas of frequent flooding.
ALTERNATIVE 2 FREQUENT RAIN FLOODING

SCREENING EXAMPLE

<table>
<thead>
<tr>
<th>Initial Concepts</th>
<th>Description</th>
<th>Within Budget</th>
<th>Distribution of Benefits</th>
<th>Benefit Cost Ratio > 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Street</td>
<td>Increase storage capacity at Indian Lake, improves storm drainage pipes, includes upgrades to existing Willow Lake pump station discharge line, and new street and park green infrastructure</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DePeyster Creek</td>
<td>Upgrade of existing pump station, upgrades of existing upstream culvert, channel dredging with habitat restoration, and new street and park green infrastructure</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Losen Slote & Carol Place</td>
<td>Two new pump stations and force mains to divert stormwater from residential area to downstream of Losen Slote, upgrades to existing storm drainage ditches and culverts, and new street and park green infrastructure</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>West Riser</td>
<td>New pump station, channel conveyance improvements with habitat restoration, culvert upgrades, and new street green infrastructure.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>East Riser</td>
<td>Pump station improvements, channel conveyance improvements with habitat restoration, culvert and bridge upgrades, and new street and park green infrastructure.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revised Concept</td>
<td>New pump station and force mains to divert stormwater from residential area to downstream of Losen Slote, upgrades to culverts and bridge crossings, East Riser Ditch conveyance improvement and new pump station, and new street and park green infrastructure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Top concepts were reviewed and evaluated using the screening criteria
- The Revised Concept was a result of reviewing and rearranging to create a concept carrying increased benefits

REVISED CONCEPT ADVANCES
ALTERNATIVE 2 – FREQUENT RAIN FLOODING PLAN

- Reduction in areal extent of flooding and depth of flooding for fluvial storms of a recurrence interval of 100-yr or less
- Provides community co-benefits through green infrastructure
- Positive Benefit Cost Ratio greater >1
- Revised Feasibility-level concept cost exceeds $150M

East Riser Channel Improvements + New Park
Green Infrastructure + New Park
Force Main + Public Facility Improvements
Green Infrastructure + New Park
Park Improvements + 3 New Parks + Green Infrastructure
LOSEN SLOTE DRAINAGE IMPROVEMENTS
CONCEPTUAL RENDERING FOR ILLUSTRATIVE PURPOSES

New pump stations improve conveyance capacity by moving water from one location to another.

- New pump stations improve conveyance capacity by moving water from one location to another.

1. Submersible pump
2. 36" force main
3. Losen Slote
4. Control panel
• Wetland enhancement, improves storage and treatment capacities, and improves public recreation opportunity.
THE PREFERRED ALTERNATIVE
ALTERNATIVE 3 – STORM SURGE & FREQUENT RAIN FLOODING
GARRETT AVERY, AECOM
ALTERNATIVE 3 – HYBRID
APPROACH & GOALS

+ INFRASTRUCTURE
Structural Flood Reduction and local drainage infrastructure improvements

+ ECOLOGY
Minimize ecological disturbance and improve habitat within channels, streets, and parks

+ PARKS
Green infrastructure provides additional flood reduction & improves existing public parks
ALTERNATIVE 3 – THE PREFERRED
A PLAN FOR BOTH CHALLENGES

Stormwater Management
1. East Riser Channel Improvements + Enhanced Wetland Open Space
2. Green Infrastructure + Enhanced Existing Open Space
3. Force Main + Public Facility Improvements
4. Green Infrastructure + Enhanced Open Space
5. GI Improvements to Existing Park + 3 New Wetland / Open Spaces

Storm Surge Protection
1. Existing Riverwalk
2. Sheet Pile Cantilever
3. Berms at Fluvial Park
4. Cantilever Walkway
5. Sheet pile or Floodwall
6. Surge Barrier
ARRIVING AT A PREFERRED ALTERNATIVE SCREENING

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Description</th>
<th>Stormwater & Storm Surge Protection</th>
<th>Distribution of Benefits</th>
<th>Benefit Cost Ratio >1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1</td>
<td>Final Storm Surge Protection Concept</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 2</td>
<td>Final Stormwater Reduction Concept</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative 3</td>
<td>Final Storm Surge & Stormwater Protection Concept</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE PREFERRED ALTERNATIVE
The Build Plan represents a feasible project that can be **constructed by 2022**. Components include flood reduction strategies to address frequent rain flooding.

Components that were not selected for the Build Plan became elements of a Future Plan. These elements could be implemented by others over time as new funding sources become available.
ALTERNATIVE 3 - BUILD PLAN
FREQUENT FLOOD REDUCTION

Stormwater Management Features

1. East Riser: Channel Improvements + Enhanced Wetland Open Space
2. Avanti Park: Street Green Infrastructure + Enhanced Open Space
3. Losen Slote: Force Main + Public Facility Improvements
4. Green Infrastructure + Enhanced Wetland Open Space
5. GI Improvements to Willow Lake Park + 1 New Wetland / Open Space along Hackensack River
FOR FUTURE IMPLEMENTATION
ADDITIONAL RAIN FLOODING REDUCTION FROM ALTERNATIVE 2

1. East Riser Channel Improvements Extension toward South Hackensack
2. A second Losen Slote Pump Station & Force Main
FOR FUTURE IMPLEMENTATION

50-YEAR STORM SURGE PROTECTION FROM ALTERNATIVE 1

- All Future Plan elements will be evaluated in the Feasibility Study and Draft EIS
- Utilizing the Feasibility Study and EIS could reduce the timeline and initial expense for those implementing Future Plan components

All Future Plan elements will be evaluated in the Feasibility Study and Draft EIS. Utilizing the Feasibility Study and EIS could reduce the timeline and initial expense for those implementing Future Plan components.
• The Build Plan can be constructed and functional by 2022
• Will require less maintenance than that of an Alternative 1 system
• Positive Benefit Cost Ratio greater >1
• Can be constructed within Available Funds
EAST RISER CHANNEL IMPROVEMENTS

FLOOD REDUCTION BENEFITS

- Channel conveyance improvements below Moonachie Ave with a new pump station
- New wetland eco-park with ~12,000 SF of integrated green infrastructure and ~129,000 SF of wooded and emergent wetland to improve storage and water quality
EAST RISER CHANNEL IMPROVEMENTS
CONCEPTUAL RENDERING FOR ILLUSTRATIVE PURPOSES

- Improves conveyance capacity
- Captures road runoff and filters suspended solids
- Native vegetation provides habitat and improves visual quality along the channel

1. Gravel trench
2. Channel improvement
3. Native vegetation
4. Curb cut
EAST RISER CHANNEL IMPROVEMENTS
FLOOD REDUCTION CO-BENEFITS

- Channel conveyance improvements include habitat restoration with native vegetation.
- New wetland eco-park is part of the flood reduction system, but also offers benefits in the form of habitat, environmental education, and recreation space.
• Wetland enhancement, improves storage and treatment capacities, and improves public recreation opportunity
LOSEN SLOTE DRAINAGE IMPROVEMENTS
FLOOD REDUCTION & CO-BENEFITS

- New pump station within the residential area of the stream
- Stormwater discharges via a 36" force main to the downstream Losen Slote marsh
- Energy dissipation structure limits erosion at discharge points
- Street green infrastructure collects water and filters total suspended solids
A new pump station improves conveyance capacity by moving water from one location to another.

- Submersible pump
- 36" force main
- Losen Slote
- Control panel
AVANTI PARK
FLOOD REDUCTION BENEFITS

- Water is stored in new open space and green infrastructure
- ~19,000 SF of improved wetland and ~11,000 SF of native planting and raingardens capture total suspended solids
AVANTI PARK
FLOOD REDUCTION CO-BENEFITS

- Street green infrastructure improves water quality, creates new habitat, and provides visual improvements.
- New park space also creates places for people to gather, new habitat, and space for recreation.
AVANTI PARK
CONCEPTUAL RENDERING FOR ILLUSTRATIVE PURPOSES

- Bioretention systems capture and filters 1.25 inches of rainfall in two hours through planting media
- New retention areas create room for additional water storage
- Undeveloped land becomes public park and productive ecosystem

1. Boardwalk foundation
2. Headwall & inlet pipe
3. Energy dissipator
4. Native planting
5. Integrated seating
Multiple improvements are proposed at public facilities in Little Ferry such as bioswales and underground storage trenches.

Improvements are planned for the following facilities: Little Ferry Library, Little Ferry Municipal Building, Memorial Middle School, Washington Elementary, and Robert Craig Elementary.
CIVIC LOCATIONS
FLOOD REDUCTION CO-BENEFITS

- Co-benefits to the municipal buildings include improvements near community buildings, such as opportunities for education, community outreach and involvement, and new habitat.
Permeable paving and rain gardens collect and filters 1.25 inches of rainfall in two hours through planting media.

- Green infrastructure can be an educational opportunity for schools and public buildings.

- Greener streets improve habitat, create safer streets, and improve visual quality of the street.

1. Permeable paver
2. Bioretention
3. Grass and concrete permeable paver
Green infrastructure provides a holding space for street runoff that is slowly released back into the stormwater system.

Subsurface green infrastructure features provide storage and ability to infiltrate runoff to reduce peak flow reaching the existing stormwater system.

- Connection to storm system
- Filter media
- Native vegetation
- Street Trees
WILLOW LAKE & RIVERSIDE PARKS

FLOOD REDUCTION BENEFITS

- Reduce sedimentation into the drainage system & slows water movement
- Improvements to Willow Lake include approximately 65,000 SF of new native planting and low meadow and approximately 1,200 SF of rain gardens
- A new public open space on the Hackensack River includes approximately 5,700 SF of restored riparian wetland and approximately 30,000 SF of native planting and bioswales
Co-benefits to the new and improved Little Ferry open spaces include new walking trails, space for recreation, water access, new habitat, and visual improvements.
WILLOW LAKE PARK IMPROVEMENTS

CONCEPTUAL RENDERING FOR ILLUSTRATIVE PURPOSES

- Green infrastructure system would be sized to capture and treat 1.25 inches of rainfall in two hours
- Stone chimneys provided outlet for ponding water to reach stone storage
- Improvements to Willow Lake Park enhance water quality and user experience

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Permeable paving</td>
</tr>
<tr>
<td>2</td>
<td>Stone chimney</td>
</tr>
<tr>
<td>3</td>
<td>Native planting</td>
</tr>
<tr>
<td>4</td>
<td>Recreation space</td>
</tr>
<tr>
<td>5</td>
<td>Existing playground</td>
</tr>
</tbody>
</table>
BUILD PLAN CONSTRUCTION COST
FEASIBILITY-LEVEL COST BREAKDOWN

100% MEETS PROJECT PURPOSE & NEED

85% GREY INFRASTRUCTURE AND CHANNEL IMPROVEMENTS

15% GREEN INFRASTRUCTURE AND PARK IMPROVEMENTS
BUILD PLAN BENEFITS

GARRETT AVERY, AECOM
BUILD PLAN BENEFITS
2-YEAR STORM (2023)

- **Approximately 20 ACRES** would no longer flood during the 2-year storm (2023)

- **Approximately 642 ACRES** would experience a reduction in flood water between 0.1ft to 3ft

Additional Flood depth reduction would occur in the vicinity of the drainage channels within East Riser Ditch (East Riser Ditch tide gate to Route 46) and Losen Slote (East Joseph Street to Niehaus) watersheds.
BUILD PLAN BENEFITS
100-YEAR STORM (2023)

• **Approximately 39 ACRES** would no longer flood during the 100-year storm (2023)

• **Approximately 1,244 ACRES** would experience a reduction in flood water between 0.1ft to 3ft

* Additional Flood depth reduction would occur in the vicinity of the drainage channels within East Riser Ditch (East Riser Ditch tide gate to Route 46) and Losen Slote (East Joseph Street to Niehaus) watersheds.
OPEN SPACE ENHANCEMENT: POPULATION & HOUSEHOLDS

~300 HOUSEHOLDs
Within 500’ of a new park

~5,000 PEOPLE
Within 0.25 miles of a new park

Benefit Inputs
1. 0.25 Mile Buffer from New Parks
2. 500’ Buffer from New Parks
BUILD PLAN BENEFIT
STREET GREEN INFRASTRUCTURE: HOUSEHOLDS

~218 HOUSEHOLDS
Within 100’ of a new trees

~775 TREES
New Trees Planted

Benefit Inputs
1. 100’ Buffer from New Trees in Parks and Streets
2. Improvements in Parks, Schools, and Public and Municipal Facilities
Economic Revitalization Benefits
- Direct effects on local or regional economy (e.g., tourism revenue)
- Improved Property Value (exclusive of enhanced flood protection)
- Value creation attributable to Rebuild By Design

Environmental Benefits
- Protection from disruptive non-disasters (nuisance flooding)
- Reduced vulnerability of energy and water infrastructure
- Improved Ecosystem and Biodiversity
- Water & Air Quality Improvements

Social Benefits
- Reductions in human suffering
- Improved Recreation Value
- Improved Community Identity and Social Cohesion
- Greater access to Cultural, Historical, Archeological Sites and Landscapes
BENEFITS CATEGORIES ANALYZED

BENEFIT/COST EVALUATION

ENVIRONMENTAL 1%

RESILIENCY 81%

SOCIAL 8%

ECONOMIC 10%
BUILD PLAN BENEFITS

RESILIENCY

PRESENT VALUE

$87.1M

INDUSTRIAL BENEFITS

35%

INJURY AND LOSS OF LIFE BENEFITS

31%

30%

1.5%

COMMERCIAL BENEFITS

1.4%

MOTOR VEHICLES BENEFITS

1.0%

MUNICIPAL BENEFITS

0.1%

RESIDENTIAL BENEFITS

Other category benefits include: Apartment Structures, Utility Structures, Debris Removal, Emergency Service, Critical Facility Disruption
BUILD PLAN BENEFITS
ECONOMIC REVITALIZATION

PRESENT VALUE
$10.9M

PROPERTY VALUE BENEFITS 97%

ENERGY CONSERVATION BENEFITS 1%

PROPERTY TAX BENEFITS 2%
BENEFIT EVALUATED
SOCIAL BENEFITS

PRESENT VALUE
$8.8M

RECREATION BENEFITS 80%

WATER RETENTION/FLOOD HAZARD RISK REDUCTION BENEFITS 0.5%

AESTHETIC VALUE BENEFITS 2.5%

AVOIED STORMWATER TREATMENT BENEFITS 17%
BENEFIT EVALUATED
ENVIRONMENTAL BENEFITS

PRESENT VALUE
$175,000

AIR QUALITY BENEFITS
78%

NUTRIENT POLLUTION BENEFITS
2%

POLLINATION BENEFITS
20%
NEXT STEPS

DAVE ROSENBLATT, ASSISTANT COMMISSIONER
NJDEP
CONSTRUCTING THE PREFERRED ALTERNATIVE

- Meets the project Purpose & Need
- Satisfies HUD mandate
- Can be constructed by 2022 with the allocated funding
- Provides Flood Reduction & numerous co-benefits
NEXT STEPS
OPERATIONS & MAINTENANCE (O&M)

- The State will provide an O&M plan that identifies the entities performing routine, on-going maintenance.

- In cooperation with the Agencies and local municipalities receiving flood protection benefits, the State has begun by establishing an O&M Subcommittee.
Next Steps

NJDEP: Upcoming Activities

- Action Plan Amendment (APA) 25:
 - Draft APA publication: January 12, 2018
 - APA public comment period: January 13 – February 12, 2018
 - APA Public Hearing: January 31, 2018

- Draft Environmental Impact Statement (DEIS):
 - DEIS publication: Spring 2018
 - DEIS public comment period: 45 Days
 - DEIS Public Hearing: Spring 2018 (during public comment period)
NEXT STEPS

Critical Information

Project Website
www.rbd-meadowlands.nj.gov

Project Email
rbd-meadowlands@dep.nj.gov

Question & Answer
THANK YOU