Rebuild by Design - Hudson River Project
Hydrology and Flood Risk Assessment Report

Original: October 10th, 2016
Final: January 26th, 2017
This Page Intentionally Left Blank
Table of Contents

1 Executive Summary ... 1

2 Project Background ... 4
 2.1 Modeling Objectives .. 4

3 Coastal Modeling Methodology .. 7
 3.1 Model Description ... 7
 3.2 Coordinate Systems and Units .. 7
 3.2.1 Units .. 7
 3.2.2 Horizontal Coordinate System ... 8
 3.2.3 Vertical Coordinate System .. 8
 3.2.4 Time Reference ... 8
 3.3 Model Extent and Resolution ... 8
 3.4 Topography and Bathymetry .. 14
 3.4.1 Topography Data .. 15
 3.4.2 Bathymetry Data .. 15
 3.5 Hydraulic Roughness ... 17
 3.6 Wetting and Drying ... 18
 3.7 Time Step .. 19
 3.8 Boundary Conditions .. 19
 3.8.1 Water Level .. 19
 3.8.2 Discharge .. 21
 3.9 Model Setup Parameters and Simulation Scenarios .. 22

4 Model Validation ... 25
 4.1 Background .. 25
 4.2 Model Validation .. 25
 4.3 Superstorm Sandy Flood Inundation Results from Coastal Model 33
 4.4 Comparison of Validated Model with FEMA’s Stillwater Elevations within Model Domain 44
 4.5 Additional Tide Validation Model Simulation .. 45
 4.6 Model Validation Results Discussion ... 47

5 Evaluation of No-Action Alternative (NAA) for “Resist” Only .. 48

6 Evaluation of “Resist” Alternatives ... 53
6.1 Modeling Methodology ... 53
6.2 Evaluation of Preliminary “Resist” Alignment Alternatives .. 55
6.3 Recommendation for Additional “Resist” Components ... 64
6.4 Evaluation of Final “Resist” Alternative 1 ... 66
6.5 Evaluation of Final “Resist” Alternative 2 ... 74
6.6 Evaluation of Final “Resist” Alternative 3 ... 82
6.7 Coastal Model Results Discussion .. 90
7 Stormwater Modeling Methodology ... 95
 7.1 Stormwater Model Study Area Overview .. 95
 7.2 North Hudson Sewerage Authority (NHSA) Network ... 97
 7.3 Stormwater Model Setup .. 102
 7.3.1 MIKE URBAN Model and MIKE FLOOD Module Description 102
 7.3.2 Hydrologic Model Setup ... 103
 7.3.3 Hydraulic Model Setup .. 114
 7.3.4 Integrated Stormwater and Coastal Model Setup ... 118
 7.3.5 Model Simulation Scenarios .. 121
8 Stormwater Model Validation .. 123
 8.1 Hurricane Irene Observed Conditions ... 123
 8.2 Stormwater Model Parameter Adjustments .. 128
 8.3 Stormwater Model Validation Results ... 128
9 Stormwater Modeling Alternatives and Results ... 132
 9.1 No-Action Alternative (NAA) Stormwater Model Results .. 132
 9.2 Delay, Store, Discharge (DSD) Alternative Stormwater Model Results 140
 9.3 Comparison of NAA and DSD Alternatives ... 149
10 Conclusions and Recommendations ... 161
11 References ... 164
Appendices ... 166
 Appendix A
 Appendix B
 Appendix C
 Appendix D
 Appendix E

Dewberry
List of Tables

Table 3-1. Manning’s “M” and “n” Roughness Coefficients for Landuse/Landcover Classes 17
Table 3-2. Stillwater Elevations for Storm Scenarios .. 20
Table 3-3. Parameters Used in the Setup of the MIKE 21 Coastal Hydrodynamic Model 23
Table 4-1. Details of Observed High Water Mark Data during Superstorm Sandy (Source: USGS) 29
Table 4-2. Details of Observed High Water Mark Data during Superstorm Sandy (Source: Stevens Institute of Technology) ... 30
Table 4-3. Root Mean Square Error (RMSE) between Modeled and Observed High Water Mark (HWM) .. 31
Table 4-4. Comparison of MIKE 21 and FEMA 1% Stillwater Elevations 44
Table 6-1. Flood Risk Reduction Benefits from Alternative 1 (Waterfront) 90
Table 6-2. Flood Risk Reduction Benefits from Alternative 2 (15th Street) 91
Table 6-3. Flood Risk Reduction Benefits from Alternative 3 (Alleyway) 91
Table 6-4. Population within the 2015 Preliminary FEMA 1% Annual Chance (100-year) Floodplain Receiving Flood Risk Reduction Benefits from Each Alternative .. 91
Table 6-5. Maximum Water Depths in NAA and Alternative 3 at three locations around Harborside Lofts Building ... 93
Table 6-6. Properties impacted by Residual Flooding under Alternative 1 93
Table 6-7. Properties impacted by Residual Flooding under Alternative 2 94
Table 6-8. Properties impacted by Residual Flooding under Alternative 3 94
Table 7-1. Summary of NHSA’s Storm-Sewer System .. 99
Table 7-2. Summary of Modeled Catchments by Sewershed in Existing Conditions 104
Table 7-3. Dry Weather Flows for each Zone within City of Hoboken 106
Table 7-4. Land Use Characteristics in the Study Area ... 108
Table 7-5. 24-hour Rainfall Depths from NOAA Atlas 14 .. 112
Table 7-6. SCS Type III Rainfall Distribution Table for various Rainfall Return Periods 112
Table 7-7. Pipe Material and Roughness Coefficients ... 116
Table 7-8. Model Setup Parameters ... 118
Table 7-9. Integrated Stormwater and Coastal Model Simulation Scenarios 121
Table 8-1. Rainfall Depths at various locations around City of Hoboken, NJ 124
Table 8-2. Model Parameters for Hurricane Irene Scenario .. 128
Table 8-3. Comparison of Observed and Model Simulated Flood Depths 129
Table 9-1. Model Parameters for No-Action Alternative Scenario 133
Table 9-2. Model Parameters for DSD Alternative Scenario .. 142
Table 9-3. Flooded Area Reduction from NAA to Proposed DSD Alternatives 149

List of Figures

Figure 2-1. Map showing Project Study Area Boundary .. 6
Figure 3-1. Maximum Extent of the Entire Coastal Model Domain Area 10
Figure 3-2. Mesh Resolution along the Streets of Weehawken and Weehawken Cove (red line is the municipal boundary) ... 11
Figure 3-3. Mesh Resolution along the Streets of Hoboken and Adjacent Open Areas (red line is the municipal boundary) ... 12
Figure 3-4. Mesh Resolution along the Southern Portion of Hoboken (red line is the municipal boundary) .. 13
Figure 3-5. Mesh Resolution along the Streets of Jersey City and Adjacent Open Areas (red line is the municipal boundary) ... 14
Figure 3-6. Topographic Survey Data Collected Along Portions of Hoboken Waterfront in July 2015 (Northern Portion in Left, and Southern in Right) ... 15
Figure 3-7. Topography and Bathymetry as Defined in the MIKE 21 Model Mesh (in feet, NAVD88).. 16
Figure 3-8. Manning’s M Roughness Coefficients within the Study Area 18
Figure 3-9. Superstorm Sandy and FEMA Water Level Boundary Hydrographs for various Storm Events .. 20
Figure 3-10. Time Series of Daily Average Fresh Water Discharge at Green Island, NY 21
Figure 4-1. Location of Observed High Water Mark (HWM) Data Collected by USGS for Superstorm Sandy .. 27
Figure 4-2. Location of Observed High Water Mark (HWM) Data Collected by Stevens Institute of Technology during Superstorm Sandy .. 28
Figure 6-3. Correlogram showing Model and Observed High Water Mark Data .. 33
Figure 4-4. Water Depth (feet) in the Study Area on Oct 29th, 2012 at 5.00 pm .. 35
Figure 4-5. Water Depth (feet) in the Study Area on Oct 29th, 2012 at 6.30 pm .. 36
Figure 4-6. Water Depth (feet) in the Study Area on Oct 29th, 2012 at 7.00 pm .. 37
Figure 4-7. Water Depth (feet) in the Study Area on Oct 29th, 2012 at 8.00 pm .. 38
Figure 4-8. Water Depth (feet) in the Study Area on Oct 29th, 2012 at 9.00 pm .. 39
Figure 4-9. Water Depth (feet) in the Study Area on Oct 29th, 2012 at 10.00 pm ... 40
Figure 4-10. Water Depth (feet) in the Study Area on Oct 29th, 2012 at 11.00 pm.. 41
Figure 4-11. Water Depth (feet) in the Study Area on Oct 30th, 2012 at 12.00 am ... 42
Figure 4-12. Maximum Water Depth Simulated by MIKE 21 Coastal Model during Superstorm Sandy ... 43
Figure 4-13. Time Series of Water Level at Battery between May 1st – May 15th 2016 (Source: NOAA) .. 45
Figure 4-14. Location of PANYNJ’s Gage at Hudson Square, NY .. 46
Figure 4-15. Comparison of Simulated (Blue) and Observed Tide (Red) Water Levels at Hudson Square, NY .. 47
Figure 5-1. Projects included in the No-Action Alternative .. 48
Figure 5-2. Flood Inundation and Maximum Water Depth in the Study Area during a 10% (10-year) Annual Chance Coastal Storm Surge Event .. 50
Figure 5-3. Flood Inundation and Maximum Water Depth in the Study Area during a 2% (50-year) Annual Chance Coastal Storm Surge Event .. 51
Figure 5-4. Flood Inundation and Maximum Water Depth in the Study Area during a 1% (100-year) Annual Chance Coastal Storm Surge Event ... 52
Figure 6-1. Representation of “Resist” Alignment in MIKE 21 Model using “Dike” Feature .. 54
Figure 6-2. Proposed Preliminary Alignments for the Three “Resist” Alternatives ... 55
Figure 6-3. Proposed Preliminary Alignment for Alternative 3 (Alleyway) .. 56
Figure 6-4. Comparison of the Flood Inundation and Maximum Water Depth in the Study Area during a 10% (10-year) Annual Chance Coastal Storm Surge Event ... 58
Figure 6-5. Difference Plots for the 10% (10-year) Annual Chance Coastal Surge Event .. 59
Figure 6-6. Comparison of the Flood Inundation and Maximum Water Depth in the Study Area during a 2% (50-year) Annual Chance Coastal Storm Surge Event ... 60
Figure 6-7. Difference Plots for the 2% (50-year) Annual Chance Coastal Surge Event ... 61
Figure 6-8. Comparison of the Flood Inundation and Maximum Water Depth in the Study Area during a 1% (100-year) Annual Chance Coastal Storm Surge Event ... 62
Figure 6-9. Difference Plots for the 1% (100-year) Annual Chance Coastal Surge Event ... 63
Figure 6-10. Location of the Three Additional Components (Shown in Green Boxes) for Alternative 3 64
Figure 6-11. Plan showing Alignments for the Final Three “Resist” Alternatives .. 65
Figure 6-12. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 10% Annual Chance Coastal Storm Surge Event (10-Year) with Alternative 1 (Waterfront)................................. 67
Figure 6-13. Difference in Maximum Water Depths between NAA and Alternative 1 for 10% Annual Chance Storm Surge (10-Year) Event in Northern and Southern Portions of Study Area................................. 68
Figure 6-14. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 2% Annual Chance Coastal Storm Surge Event (50-Year) with Alternative 1 (Waterfront)................................. 70
Figure 6-15. Difference in Maximum Water Depths between NAA and Alternative 1 for 2% Annual Chance Storm Surge (50-Year) Event in Northern and Southern Portions of Study Area................................. 71
Figure 6-16. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 1% Annual Chance Coastal Storm Surge Event (100-Year) with Alternative 1 (Waterfront)................................. 72
Figure 6-17. Difference in Maximum Water Depths between NAA and Alternative 1 for 1% Annual Chance Storm Surge (100-Year) Event in Northern and Southern Portions of Study Area................................. 73
Figure 6-18. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 10% Annual Chance Coastal Storm Surge Event (10-Year) with Alternative 2 (15th Street) ... 75
Figure 6-19. Difference in Maximum Water Depths between NAA and Alternative 2 for 10% Annual Chance Storm Surge (10-Year) Event in Northern and Southern Portions of Study Area................................. 76
Figure 6-20. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 2% Annual Chance Coastal Storm Surge Event (50-Year) with Alternative 2 (15th Street) ... 78
Figure 6-21. Difference in Maximum Water Depths between NAA and Alternative 2 for 2% Annual Chance Storm Surge (50-Year) Event in Northern and Southern Portions of Study Area................................. 79
Figure 6-22. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 1% Annual Chance Coastal Storm Surge Event (100-Year) with Alternative 2 (15th Street) ... 80
Figure 6-23. Difference in Maximum Water Depths between NAA and Alternative 2 for 1% Annual Chance Storm Surge (100-Year) Event in Northern and Southern Portions of Study Area................................. 81
Figure 6-24. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 10% Annual Chance Coastal Storm Surge Event (10-Year) with Alternative 3 (Alleyway) ... 83
Figure 6-25. Difference in Maximum Water Depths between NAA and Alternative 3 for 10% Annual Chance Storm Surge (10-Year) Event in Northern and Southern Portions of Study Area................................. 84
Figure 6-26. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 2% Annual Chance Coastal Storm Surge Event (50-Year) with Alternative 3 (Alleyway) ... 86
Figure 6-27. Difference in Maximum Water Depths between NAA and Alternative 3 for 2% Annual Chance Storm Surge (50-Year) Event in Northern and Southern Portions of Study Area 87
Figure 6-28. Spatial Plot Showing Maximum Flood Depths and Inundation Extents for the 1% Annual Chance Coastal Storm Surge Event (100-Year) with Alternative 3 (Alleyway) ... 88
Figure 6-29. Difference in Maximum Water Depths between NAA and Alternative 3 for 1% Annual Chance Storm Surge (100-Year) Event in Northern and Southern Portions of Study Area 89
Figure 6-30. Location Map of three points adjacent to Harbor Side Lofts for Comparison of Maximum Water Depths

Figure 7-1. Adams Street WWTP Service Area and Stormwater Model Domain Area

Figure 7-2. Schematics showing Typical Regulator Layout (Source: EmNet, 2011)

Figure 7-3. Schematics showing Adams Street WWTP Collection System in City of Hoboken

Figure 7-4. Sewersheds within Study Area

Figure 7-5. Existing Drainage Infrastructure within the Study Area

Figure 7-6. Subcatchments with Study Area’s Sewersheds

Figure 7-7. Map Overlaying Zoning Districts and Sewersheds

Figure 7-8. Land Use and Land Cover over the Model Area

Figure 7-9. Soils Classification over the Model Area

Figure 7-10. Impervious Area over the Model Area (from USGS NLCD 2011 Landcover data)

Figure 7-11. 24 Hour Rainfall Distribution Graph for the Modeled Storm Events

Figure 7-12. Example of a Regulator in MIKE Urban

Figure 7-13. Hydraulic Model Network Key Plan (Hurricane Irene Conditions)

Figure 7-14. Map showing the Overall and Zoomed in MIKE 21’s 2-D Overland Flow Model Mesh

Figure 7-15. MIKE URBAN 2D Topography and Coupled Nodes

Figure 8-1. Rainfall and Tide Data at Central Park and Battery, respectively, during Hurricane Irene

Figure 8-2. Map showing Spatial Location of Rain Gauge Locations from Study Area

Figure 8-3. Observed Flood Locations during Hurricane Irene by Emnet LLC

Figure 8-4. Flood Prone Areas Identified by the City of Hoboken

Figure 8-5. Locations of Photos Used for Model Validation

Figure 8-6. Comparison of Model Simulated Flood Inundation Areas with Observed Flooding Locations from Emnet, LLC

Figure 9-1. No-Action Alternative (NAA) Projects

Figure 9-2. Flood Inundation Areas from 5-year Rainfall Event in No-Action Alternative

Figure 9-3. Flood Inundation Areas from 10-year Rainfall Event in No-Action Alternative

Figure 9-4. Flood Inundation Areas from 25-year Rainfall Event in No-Action Alternative

Figure 9-5. Flood Inundation Areas from 50-year Rainfall Event in No-Action Alternative

Figure 9-6. Flood Inundation Areas from 100-year Rainfall Event in No-Action Alternative

Figure 9-7. Proposed DSD Alternatives Projects

Figure 9-8. Proposed DSD Alternatives 5-Year Rainfall Results

Figure 9-9. Proposed DSD Alternatives 10-Year Rainfall Results
Figure 9-10. Proposed DSD Alternatives 25-Year Rainfall Results ... 146
Figure 9-11. Proposed DSD Alternatives 50-Year Rainfall Results ... 147
Figure 9-12. Proposed DSD Alternatives 100-Year Rainfall Results ... 148
Figure 9-13. Comparison of NAA and Proposed DSD Alternatives 5-Year Low Tide Results 151
Figure 9-14. Comparison of NAA and Proposed DSD Alternatives 5-Year High Tide Results 152
Figure 9-15. Comparison of NAA and Proposed DSD Alternatives 10-Year Low Tide Results 153
Figure 9-16. Comparison of NAA and Proposed DSD Alternatives 10-Year High Tide Results 154
Figure 9-17. Comparison of NAA and Proposed DSD Alternatives 25-Year Low Tide Results 155
Figure 9-18. Comparison of NAA and Proposed DSD Alternatives 25-Year High Tide Results 156
Figure 9-19. Comparison of NAA and Proposed DSD Alternatives 50-Year Low Tide Results 157
Figure 9-20. Comparison of NAA and Proposed DSD Alternatives 50-Year High Tide Results 158
Figure 9-21. Comparison of NAA and Proposed DSD Alternatives 100-Year Low Tide Result 159
Figure 9-22. Comparison of NAA and Proposed DSD Alternatives 100-Year High Tide Results 160
1 Executive Summary

The Rebuild by Design– Hudson River feasibility assessment and Environmental Impact Statement (EIS) study involves the development and evaluation of flood risk reduction measures to reduce flood risk from coastal storm surge and rainfall events within the entire City of Hoboken and adjoining portions of Weehawken and Jersey City (also referred to as study area). A coastal hydrodynamic and stormwater management model is required to understand the flooding effects of coastal storm surge and rainfall events and evaluate the effectiveness of proposed flood risk reduction measures. The main objectives of modeling is to aid in the development of potential flood risk reduction measures, evaluate flood risk reduction benefits and potential residual flooding impacts from the proposed alternatives.

A two-dimensional (2D) coastal hydrodynamics model was developed using the Danish Hydraulic Institute’s (DHI) MIKE 21 software to evaluate the coastal storm surge conditions. Additionally, a combined stormwater and coastal conditions model was developed using DHI’s MIKE FLOOD program to assess flooding within the study area from rainfall events.

The best available data was utilized as inputs for the development of the MIKE 21 coastal hydrodynamic model including Post Sandy Light Detection and Ranging (LiDAR) overland topography, recent topographic surveys developed as part of this effort, bathymetry from NOAA and Stevens Institute of Technology and others. The MIKE 21 model captures street-level flooding in the study area and has a minimum horizontal resolution of approximately 3 meters (10 feet) with a total of approximately 1 million computation nodes in the entire MIKE 21 model domain. The MIKE 21 model mesh also includes building footprints located within the study area that are modeled as blocked obstructions to replicate flow volume for the coastal storm surge through the streets of the project area. In reality it is likely that a volume of surge floodwater would enter some buildings, but given the difficulty of simulating flow volume into buildings, the approach used results in a somewhat conservative coastal hydrodynamic model.

A hindcast of Superstorm Sandy was conducted to validate the MIKE 21 coastal hydrodynamics model. Measured high water mark (HWM) data obtained from USGS (United States Geological Survey) and Stevens Institute of Technology allowed for the MIKE 21 coastal model results to be evaluated and verified against observed data for Sandy. An overall comparison of water depth between the model and the observed HWM data showed Root Mean Square Error (RMSE) of less than 6 inches (0.5ft). Overall these minor differences in water depths are within the uncertainty of the measured height and time of the HWM data and thus indicates that the MIKE 21 coastal model performs well to predict the hydrodynamics within the study area. The model results and comparisons with measured water depths are also in good agreement with other past modeling efforts of Superstorm Sandy in the study area (Blumberg et al., 2015).
This validated MIKE 21 coastal hydrodynamics model was utilized to evaluate flooding effects of coastal storm surge during a 10-year (10% annual chance), 50-year (2% annual chance) and 100-year (1% annual chance) storms in the No-Action Alternative (NAA) and the three build alternatives (see Figure 5-1 and 6-11 for map showing NAA and three “Resist” alternatives, respectively). To accurately reflect future project area conditions the NAA scenario considers completion of two existing independent projects underway: the filling-in of the Long Slip canal located on NJ Transit’s property and the development of Newport property in Jersey City. Each of the three build alternatives include “Resist” alignments has potential to reduce the area subject to flood risk from coastal storm surge at varying levels. The maximum flood water depths in NAA and each of the three build alternatives within the study area were compared to evaluate the flood risk reduction benefits and any potential residual flooding. Alternative 1 which includes “Resist” alignment primarily along the waterfront provides the maximum flood risk reduction benefits with 98% percent of the population currently living within the 2013 preliminary Federal Emergency Management Agency (FEMA) 100-year floodplain. Similarly, Alternative 2 which includes a “Resist” alignment along 15th street in Hoboken and Alternative 3 which includes a “Resist” alignment along the pedestrian alleyway between Garden Street and Washington Street provides flood risk reduction benefits for 86% and 85% of the population currently living within the 2013 preliminary FEMA 100-year floodplain, respectively. Residual flooding risk as per NJAC 7:13 rules is defined as an adverse effect or impact with the proposed Resist structure that results in a potential increase of greater than 0.04 feet of flood depths as shown by the coastal model to an existing area that is located within FEMA’s 1-percent-annual-chance Special Flood Hazard Area (SFHA). The coastal model results indicate that Alternative 1 has the least residual flooding impacts whereas Alternative 2 and 3 has potential residual flooding impacts at 5 properties within the entire study area.

Storm-sewer data was provided by North Hudson Sewerage Authority (NHSA) in order to develop a stormwater model using DHI’s MIKE URBAN and MIKE FLOOD program. The stormwater model primarily covers the City of Hoboken sewersheds, but it takes into account rainfall runoff flow coming into the NHSA sewer system within the City of Hoboken from portions of Jersey City and Union City. DHI’s MIKE FLOOD program was utilized to integrate the storm-sewer data with the two-dimensional (2-D) overland topographic flow model developed with DHI’s MIKE 21 model. The stormwater model results were validated with the best available data on inland rainfall flood depths from Hurricane Irene. Additionally, NHSA officials confirmed the flooding extents and water depths from the integrated model for Hurricane Irene based on their observations at the time of this hurricane.

Based on discussions with FEMA, the interior drainage in a coastal flood risk reduction project subject to impact from tidal action requires evaluation of the stormwater system in two conditions – with outfalls open (low tide) and with outfalls closed (high tide) – for various rainfall events. The No-Action Alternative (NAA) for stormwater management as well as the “Delay, Store, Discharge (DSD)” alternative for the 5-year (20% annual chance), 10-year (10% annual chance), 25-year (4% annual chance), 50-year (2% annual chance) and 100-year (1% annual chance) rainfall events was simulated under these two conditions. The NAA considers
several on-going and completed projects undertaken by the City of Hoboken and NHSA which can be found in Figure 9-1. The DSD alternative includes the implementation of 61 Right-of-Way (ROW) green and grey infrastructure enhancements along with three parcel based stormwater management improvements (BASF, NJ Transit/Housing Authority and Block 10 sites). The extent of flooding demonstrated by the integrated model for various rainfall events in the NAA and DSD alternatives was compared. Model results indicates that the DSD alternative has a potential to reduce rainfall induced flooded area by 73% and 81% over the NAA flooded areas in a 5-year flood event in high tide and low tide conditions, respectively. As the rainfall return period increases, the flood risk reduction benefits provided by the DSD alternative over the NAA flooded areas decreases.

The main conclusions of this task report are as follows –

- Coastal storm surge modeling results shows that all the three “Resist” alternatives provides coastal flood risk reduction benefits within the study area
- Stormwater modeling results shows that the proposed “DSD” alternative provides significant flood risk reduction benefits especially for lower rainfall return period events such as the 5-year rainfall

For the final preferred alternative, we recommend the following major items should be considered during the design phase of this project –

- Perform Wave Height Analysis for Flood Insurance Study (WHAFIS) model analysis using the best available FEMA data to satisfy FEMA’s Conditional Letter of Map Revision (CLOMR) requirements
- Perform interior drainage analysis by updating the integrated stormwater and coastal model developed for this project to satisfy the interior drainage requirements for the FEMA levee certification
- Conduct coordination meetings with FEMA Region II before the submittal of CLOMR documentation to ensure appropriate methodology was adopted and implemented

Additional recommendations for the design phase of the project is provided in Section 10 of this report.