

FIELD INVESTIGATION TEAM ACTIVITIES AT UNCONTROLLED HAZARDOUS SUBSTANCES FACILITIES — ZONE I

NUS CORPORATION SUPERFUND DIVISION

_

BBA000004

TIERRA-B-017579

02-9004-37-SI REV. NO. 0

FINAL DRAFT SITE INSPECTION REPORT ELIZABETH COAL GAS SITE #1 ELIZABETH, NEW JERSEY

PREPARED UNDER

TECHNICAL DIRECTIVE DOCUMENT NO. 02-9004-37 CONTRACT NO. 68-01-7346

FOR THE

ENVIRONMENTAL SERVICES DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY

JUNE 22, 1990

NUS CORPORATION

SUBMIT

DAVID GRUPP

¥ *

Ŧ.

t

Ŧ

÷.

REVIEWED/APPROVED BY:

for RN

RONALD M. NAMAN FIT OFFICE MANAGER

TIERRA-B-017580

SITE INSPECTION REPORT: LEVEL I

PART I: SITE INFORMATION

ŧ -

1...

ŧ

.

-

* e

à 4

1.	Site Name/Alias	Elizabeth Coal Gas Site	<u>#1</u>	
	Street <u>3rd Ave.</u>	Between South 2nd St. a	and Delaware St.	
	City <u>Elizabeth</u>		State <u>New</u> Jerse	γ Ζip_ <u>07200</u>
2.	County Union		County Code_39	Cong. Dist. 7
3	EPA ID No. <u>NJD9</u>	81082894		
4.	Block No. <u>5</u>		Lot No. <u>1381</u>	
5.		49"N	•	1′ 56″W
	USGS Quad. <u>Elia</u>	abeth, New Jersey		······································
6.	Owner <u>Elizabet</u>	htown Gas Light Co.	Tel. No. <u>(201) 28</u>	9-5000
	Street <u>One Eliza</u>	beth Plaza		
	City Elizabeth	· · · · · · · · · · · · · · · · · · ·	State_New Jerse	y Zip <u>08830</u>
7.	Operator <u>Elizab</u>	ethtown Gas Light Co	Tel. No. (201) 28	9-5000
	Street_ <u>One</u> Eliza	beth Plaza		
	City <u>Elizabeth</u>	····· • · · · · • · · · •	State <u>New Jerse</u> y	Zip <u>Q8830</u>
8.	Type of Owners	hip		
	X Private	📑 Federal	🗖 State	
	County	🗌 Municipal	Unknown	[] Other
9.	Owner/Operator	Notification on File		
	🔲 RCRA 3001	Date	🔀 CERCLA 103c*	Date September 19, 1983
	🗋 None	🔲 Unknown		
	e: A copy of an of enclosed in Ref. P		is not available. This inform	nation is based on the

10. Permit Information

	Permit	Permit No.	Date issued	Expiration Date	Comments
	<u>N/A</u>	<u> </u>	<u> </u>		
11.	Site Status				
	⊠ Active	🔲 Inactive		known	
12.	Years of Operation	1857	to <u>Pr</u>	resent	

12. Identify the types of waste units (e.g., landfill, surface impoundment, piles, stained soil, above- or below-ground tanks or containers, land treatment, etc.) on site. Initiate as many waste unit numbers as needed to identify all waste sources on site.

(a) Waste Management Areas

وبو

#Ŧ

e --

. .

...

. .

Waste Unit No.	Waste Unit Type	Facility Name for Unit
1	Unlined Pits	Waste Pits
2	Aboveground Containers	Concrete Bins
3	Aboveground Tanks	Qil Tanks
4	Aboveground Tank	Unused Oil Tank

(b) Other Areas of Concern

Identify any miscellaneous spills, dumping, etc. on site; describe the materials and identify their locations on site.

There is an expansion tank located on site that is reported to be used for water storage. The use of this water is unknown. A battery of aboveground propane storage tanks is located in the southwest corner of the property. A railroad spur exists on the northwest portion of the property. During an NUS Region 2 FIT off-site reconnaissance, a number of railroad tanker cars were seen parked on this spur. The contents or condition of these tanker cars is unknown.

13. Information available from

Contact Amy Brochu	Agency U.S. EPA	Tel. No. <u>(201) 906-6802</u>
Preparer_Richard Settino	Agency_NUS Corp. Region 2 FIT	Date_June 22, 1990

02-9004-37-SI Rev. No. 0

PART II: WASTE SOURCE INFORMATION

÷ =

##

ε٠.

- -

4.2

Wastes produced on site were the result of gasification processes using coal, coke, and oil, as appropriate. These wastes typically include ammonia, ammonlum sulfate, sulfur, coke, coal tar, coal tar pitch, dinker, and light oils. The coal tars may contain significant concentrations of pyrene, anthracene, and other polynuclear aromatic hydrocarbons (PAHs), including known or suspected carcinogens (Ref. No. 1, p. 4). Actual waste handling practices that occurred at the plant are largely unknown but areas of the yard were reported to be designated for waste storage. Concrete bins were used to separate and store tar, and oils were kept in aboveground tanks. Leaks or spills associated with these waste units are unknown. Wastes were also reported to be disposed of on site in several unlined pits. Poor grade tar and spent oil were most likely dumped on site. Evidence of this has reportedly been observed in the center of the property where the coal and coke piles were located (Ref. No. 1, p. 12). During an NUS Corp. Region 2 FIT off-site reconnaissance conducted on May 18, 1990, no evidence of waste or waste pits could be seen (Ref. No. 2). These pits have been reported to be underlain by relatively impermeable clay; test hole and test pit logs indicate the presence of wastes, including tar, clinker, coal, ash, and coke, underlain by layers of clay and silt (Ref. No. 6). No remedial action has been taken except for filtration of storm water runoff.

The manufacturing plant and most of the buildings were removed from the site in 1978-(Ref. No. 1, p. 12). The remaining potential hazardous substance sources in current use on site include two expandable gas holders, a liquified natural gas (LNG) storage tank, and an unused oil tank (Ref. Nos. 1, p. 12; 2). During the NUS Corp. Region 2 FIT off-site reconnalssance an earthen berm approximately 15 feet in height was noted around the LNG tank. Also, during the reconnaissance, a berm was noted around the unused oil tank (Ref. No. 2). An aerial photo of the area from 1940 shows this berm to have been in existence at that time (Ref. No. 3). The present condition of the oil tank and when its use was discontinued is unknown. The exact quantity of waste deposited on site, as well as the size or capacity of various smaller tanks and pits that currently exist or formerly existed on site, is unknown (Ref. Nos. 1, 2, 3).

PART III: PRE-EXISTENT ANALYTICAL DATA

There are no known pre-existent analytical results available for the Elizabeth Coal Gas Site #1. During the NUS Corp. Region 2 FIT off-site reconnaissance, three monitoring wells were noted on site. There are no known data available for these monitoring wells.

PART IV: SITE INSPECTION SAMPLE RESULTS

NUS Corporation Region 2 FIT did not conduct a sampling site inspection at the Elizabeth Coal Gas Site #1.

PART V: HAZARD ASSESSMENT

GROUNDWATER ROUTE

 Describe the likelihood of a release of contaminant(s) to the groundwater as follows: observed, alleged, potential, or none. Identify the contaminant(s) detected or suspected, and provide a rationale for attributing the contaminant(s) to the facility.

It has been reported that poor quality tars and oils have been deposited in unlined pits on site in the past. Test hole and test pit logs confirm the presence of buried gasification wastes. These waste pits present a high potential for groundwater contamination since contaminants could leach through the soil to groundwater. The actual amount of waste deposited and the contaminants contained in the waste is unknown. Suspected contaminants include pyrene, anthracene, and other PAHs.

There is little potential for release to groundwater to occur from existing operations on site. The site is used for gas storage and distribution and is no longer used for manufacturing. There have been no reported releases from any of the existing tanks or gas holders.

Ref. Nos.1, pp. 4, 12; 2; 6

2. Describe the aquifer of concern; include information such as depth, thickness, geologic composition, permeability, overlying strata, confining layers, interconnections, discontinuities, depth to water table, groundwater flow direction.

The aquifer of concern is the Passaic Formation, which was formerly known as the Brunswick Formation. The Passaic Formation is the most extensive and important aquifer in Union County. It is located from 15 to 30 feet below the ground surface in the vicinity of the site. The bedrock is composed of thin-bedded shales, mudstones, and sandstones which range in thickness from 6,000 to 8,000 feet. The permeability of shale is 10" cm/sec. Overlying a majority of the Passaic Formation is a stratum of unconsolidated glacial sediments, consisting of clay, silt, sand, gravel, and boulders. The permeability of the glacial till and silty clay is 10⁵ to 10" cm/sec. The thickness of these sediments generally ranges from 0 to 200 feet. Groundwater within the aquifer of concern occurs along joints and fracture zones which decrease in volume with depth. The permeability of fractured shale is 10-3 to 10-5. Pump tests indicate joints and fractures which strike parallel to the strike of the bedding (southwest to northeast) are better developed and interconnected than those which strike in other directions. Groundwater in the area exists under confined and unconfined conditions resulting in both artesian and water table conditions, respectively. The confining layers consist of silt and clay beds. There is direct regional hydraulic connection between the glacial deposits and the bedrock, and also with adjacent surface water. The local groundwater flow is presumed to be southwest toward the Elizabeth River.

Ref. Nos. 4, 5, 6, 7

3. Is a designated sole source aquifer within 3 miles of the site?

A sole source aquifer has not been designated within 3 miles of the site.

Ref. No. 22

¥ ÷

62

é ••

¥

. ..

- 4

02-9004-37-51 Rev. No. 0

4. What is the depth from the lowest point of waste disposal/storage to the highest seasonal level of the saturated zone of the aquifer of concern?

On-site test pits and soil borings indicate that wastes associated with coal gasification exist at depths ranging from 1 to 8 feet. Groundwater has been observed in these soil borings and test pits to exist from 1 to greater than 15 feet beneath the site; therefore, wastes deposited on site are in contact with groundwater in the overlying strata of the Passaic Formation. The groundwater in these strata are hydraulically connected with the Passaic Formation.

Ref. No. 6

÷ 1

р÷

3

: 7

s à

-é

5. What is the permeability value of the least permeable continuous intervening stratum between the ground surface and the aquifer of concern?

The permeability value for overburden sediments consisting of glacial till and silty clay is estimated to be 10⁻⁵ to 10⁻⁷ cm/sec.

Ref. No. 7

6. What is the net precipitation for the area?

The net annual precipitation for the area is approximately 12 inches.

Ref. No. 7

 Identify uses of groundwater within 3 miles of the site (i.e., private drinking source, municipal source, commercial, industrial, irrigation, unusable).

Groundwater within 3 miles of the site is used only for commercial and industrial purposes. There are no known wells used for drinking or irrigation purposes within 3 miles of the site. All wells that exist within 3 miles of the site are reported to be closed.

Ref. Nos. 8-12, 17, 21

8. What is the distance to and depth of the nearest well that is currently used for drinking or irrigation purposes?

There are no known wells currently used for drinking or irrigation purposes within 3 miles of the site. All wells that do exist within 3 miles of the site have been reported to be closed.

Ref. Nos. 8-12, 17, 21

9. Identify the population served by the aquifer of concern within a 3-mile radius of the site.

There are no people known to be served by the aquifer of concern within 3 miles of the site. All public supply water is supplied by the Elizabethtown Water Company and the City of Newark Water Department. These utilities receive water from reservoirs outside the 3-mile radius of the site.

Ref. Nos. 8-12, 17, 21

.

SURFACE WATER ROUTE

10. Describe the likelihood of a release of contaminant(s) to surface water as follows: observed, alleged, potential, or none. Identify the contaminant(s) detected or suspected, and provide a rationale for attributing the contaminants to the facility.

There is potential for a release of contaminants to surface water in runoff from the facility to have occurred as a result of past coal gas production. Coke and coal were stored in piles on site. Ammonia liquor, a waste product of coal gasification, was generally disposed of prior to 1950 by mixing with cooling water and discharging to the nearest waterway. It is also possible that oils and tar leaked or were spilled on to the ground surface and subsequently migrated to the Elizabeth River via surface runoff. It is reported that the U.S. Army Corps of Engineers built a 12 to 15 foot high embankment between the river and the site. It is unknown if this embankment prevents runoff migration from the site. Storm drains in the area do not discharge directly to surface water. Stormwater runoff is discharged to the sanitary sewer and subsequently treated. Presently, stormwater runoff is reported to be filtered before it leaves the site.

There have been no reported releases of contaminants to surface water. However, groundwater is presumed to flow to, and be in direct hydraulic connection with, the Elizabeth River. Wastes deposited on site are known to be in contact with groundwater underlying the site. Therefore, there is a potential for a release of contaminants to surface water through groundwater.

Ref. Nos. 1, pp. 4, 12, 19; 2; 6; 19

11. Identify and locate the nearest downslope surface water. If possible, include a description of possible surface drainage patterns from the site.

The Elizabeth River creates the southwest boundary of the site. This is the nearest downslope surface water. There is significant tidal influence on the river at this point. It is reported that the U.S. Army Corps of Engineers built a 12 to 15 foot high embankment between the river and the site. It is unknown if this embankment prevents runoff migration from the site. Storm drains in the area do not discharge directly to surface water and stormwater is reported to be filtered before it leaves the site. The Elizabeth River joins the Arthur Kill within 1 mile of the site.

Ref. Nos. 1, p. 13; 2; 13; 19

12. What is the facility slope in percent? (Facility slope is measured from the highest point of deposited hazardous waste to the most downhill point of the waste area or to where contamination is detected.)

The facility slope is less than 3 percent.

Ref. Nos. 2, 13

13. What is the slope of the intervening terrain in percent? (Intervening terrain slope is measured from the most downhill point of the waste area to the probable point of entry to surface water.)

The Elizabeth River borders the site to the southwest; therefore, the site is in contact with surface water.

Ref. Nos. 2, 13

14. What is the 1-year 24-hour rainfall?

The 1-year 24-hour rainfall for the region is approximately 2.75 inches. Ref. No. 7

1

FŦ

ŧ٠

6.4

6.8

15. What is the distance to the nearest downslope surface water? Measure the distance along a course that runoff can be expected to follow.

The Elizabeth River, which is in contact with the site at its southwest boundary, is less than 1,000 feet from suspected waste source areas.

Ref. Nos. 2, 13

85

22

÷ -

16. Identify uses of surface waters within 3 miles downstream of the site (i.e., drinking, irrigation, recreation, commercial, industrial, not used).

The Elizabeth River and the Arthur Kill are both classified as SE3 waterways in the vicinity of the site. Designated uses include secondary contact recreation, maintenance and migration of food populations, migration of diadromous fish, maintenance of wildlife, and any other reasonable uses.

Ref. No. 14

17. Describe any wetlands, greater than 5 acres in area, within 2 miles downstream of the site. Include whether it is a freshwater or coastal wetland.

A tidally influenced coastal wetland just over 5 acres in area is located approximately 0.25 mile downstream of the site. The wetland is classified as an emergent, intertidal, estuarine wetland.

Ref. Nos. 13, 15

 Describe any critical habitats of federally listed endangered species within 2 miles of the site along the migration path.

There are no critical habitats of federally listed endangered species located within 2 miles of the site.

Ref. No. 15

19. What is the distance to the nearest sensitive environment along or contiguous to the migration path (if any exist within 2 miles)?

A 5-acre tidally influenced coastal wetland is located approximately 0.25 mile downstream of the site. This wetland is classified as an emergent, intertidal, estuarine wetland.

Ref. Nos. 13, 15

20. Identify the population served or acres of food crops irrigated by surface water intakes within 3 miles downstream of the site and the distance to the intake(s).

There are no known surface water intakes used for drinking or irrigation within 3 miles downstream of the site. All public supply water is supplied by the Elizabethtown Water Company and the City of Newark Water Department. Both of these use reservoirs located outside the 3-mile radius of the site.

Ref. Nos. 8-12, 17

21. What is the state water quality classification of the water body of concern?

The Elizabeth River and the Arthur Kill are both classified as SE3 waterways in the vicinity of the site.

Ref. No. 14

i.

÷ à

02-9004-37-51 Rev. No. 0

22. Describe any apparent biota contamination that is attributable to the site.

No apparent biota contamination was observed during the NUS Corp. Region 2 FIT off-site reconnaissance conducted on May 18, 1990.

Ref. No. 2

AIR ROUTE

₹-1

92

23. Describe the likelihood of a release of contaminant(s) to the air as follows: observed, alleged, potential, none. Identify the contaminant(s) detected or suspected, and provide a rationale for attributing the contaminant(s) to the facility.

There is low potential for a release of contaminants to air. The site is presently used as a system dispatch center, and for storage and distribution of winter peaking supplies of liquified natural gas (LNG) and propane. It is no longer used for manufacturing. The unlined pits used for waste disposal in the past are reported to be buried on site. During the NUS Corp. Region 2 FIT offsite reconnaissance all tanks on site, with the exception of the unused oil tank, were observed to be well maintained. There have been no reported releases to air associated with the facility.

Ref. Nos. 1, 2

24. What is the population within a 4-mile radius of the site?

The population within a 4-mile radius of the site is approximately 272,000.

Ref. No. 18

FIRE AND EXPLOSION

25. Describe the potential for a fire or explosion to occur with respect to the hazardous substance(s) known or suspected to be present on site. Identify the hazardous substance(s) and the method of storage or containment associated with each.

The potential for a fire or explosion to occur with respect to hazardous substances suspected to be present at the facility is low. The unlined pits that were used for prior waste disposal are reported to be buried on site. During the NUS Corp. Region 2 FIF off-site reconnaissance all tanks on site, with the exception of the unused oil tank, were observed to be well maintained. There have been no fires or explosions known to have occurred at the site.

Ref. Nos. 1, 2

26. What is the population within a 2-mile radius of the hazardous substance(s) at the facility?

The population within a 2-mile radius of the site is approximately 74,200.

Ref. No. 18

۰. س

02-9004-37-SI Rev. No. 0

DIRECT CONTACT/ON-SITE EXPOSURE

27. Describe the potential for direct contact with hazardous substance(s) stored in any of the waste units on site or deposited in on-site soils. Identify the hazardous substance(s) and the accessibility of the waste unit.

There is little potential for direct contact with the hazardous substances possibly deposited in on-site soils. The site is completely surrounded by an 8-foot barbed wire fence. There is a 24-hour guard on duty, and plant personnel monitor a closed circuit television scan of the plant entrance. Wastes deposited on site are reported to be buried in unlined pits and the yard is mostly covered by crushed stone and fill. During the NUS Corp. Region 2 FIT off-site reconnaissance no wastes associated with coal gasification were observed on site.

Ref. Nos. 1, 2

28. How many residents live on a property whose boundaries encompass any part of an area contaminated by the site?

There are no residential properties whose boundaries encompass any part of an area contaminated by the site.

Ref. Nos. 2, 13

29. What is the population within a 1-mile radius of the site?

The population within a 1-mile radius of the site is approximately 32,300.

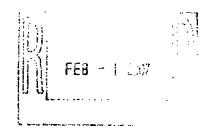
Ref. No. 18

02-9004-37-51 Rev. No. 0

PART VII: SITE SUMMARY AND RECOMMENDATIONS

The Elizabeth Coal Gas Site #1 is an active facility located on 3rd Avenue in Elizabeth, New Jersey. The site is comprised of approximately 25 acres which are presently used for gas storage and transfer as well as a computer center and an industrial field operations base.

The site has been owned and operated by Elizabethtown Gas Light Company since 1857. From 1857 to 1911 the facility was used to manufacture coal gas. From approximately 1912 to 1952 carbureted water gas was produced on the site daily, and for peak shaving only from 1952 to 1971 (Ref. No. 20). The manufacturing plant and most of the buildings were removed from the site in 1978. Approximately half of the original site has been sold and is now used by a trucking company. Aerial photographs from 1940 suggest that this half of the site was not used in the coal gasification process. The remaining structures are used primarily for gas mixing, distribution and storage.


Actual waste handling practices used at the plant during the time of coal gas production are largely unknown. It is known, however, that areas of the yard were designated for waste storage. Coal and coke were stored in large piles in the center of the property. Concrete bins were used to separate and store tars, and other oils were kept in aboveground tanks. Tars were removed from the site and sold to asphalt companies and a refinery. Materials which were not marketable, such as poor quality tars and oils, were probably deposited on site in unlined pits. There is reported evidence of these products in the center of the property. it was believed, during the time of gas production, that the coal and coke piles would act as a filter on these waste materials (Ref. No. 1, p. 12). Test pit logs from 1973 and soil boring logs from 1980 indicate that wastes associated with coal gasification have been deposited in on-site soils (Ref. No. 6). Because the material is believed to be underlain by a layer of relatively impermeable clay, no remedial action has been reported to have occurred at the site with the exception of filtration of stormwater runoff (Ref. No. 1, p. 13).

The site is completely surrounded with a barbed wire fence. There is a guard on duty 24 hours a day and plant personnel monitor a closed circuit television scan of the plant's main entrance. There is no known source of potable water supply within 3 miles of the site. Groundwater within 3 miles is not used for drinking or irrigation and there are no known surface water intakes within 3 miles downstream of the site. Storm drains in the area do not discharge directly to surface water. No exposed wastes were observed to be present on the site and no actual hazardous conditions have been documented. The facility no longer manufactures gas and is used only for gas storage and distribution. For the reasons mentioned above, a recommendation of NO FURTHER REMEDIAL ACTION PLANNED under CERCLA/SARA is given for the Elizabeth Coal Gas Site #1.

Elizabethtown Gas

One Elizabethtown Plaza PO Box 3175 Union, New Jersey 07083

908 289 5000 phone www.eiizabathtowngas.com

January 30, 2007

CERTIFIED MAIL <u>RETURN RECEIPT REQUETSED</u>

Mr. Raymond Pinkstone New Jersey Department of Environmental Protection Bureau of Case Management 401 East State Street, CN 028 Trenton, New Jersey 08625-0028

Re: Erie Street Former Manufactured Gas Plant Site Elizabeth, Union County, New Jersey

Dear Mr. Pinkstone:

Enclosed for you information is a project summary prepared by GEI Consultants (GEI), dated January 25, 2007, which documents the actions taken to date regarding the flow of impacted storm water from the above referenced site. We are currently moving forward with scheduling the additional activities recommended by GEI in the recommendation section of the summary. I will keep you informed of these actions as they are implemented. Please contact me at (908) 662-8205 if you should have any questions or require additional information.

Very truly yours,

Steven L. Cook Senior Environmental Specialist

ENCLOSURE xc: T. Goodson File

Ŀ.

7905 Browning Road Suite 306 Pennsauken, NJ 08109

Ph. (856) 910-9750 Fax (856) 910-9751

Memorandum

To:Steven Cook, Project Manager, AGL ResourcesFrom:Christopher Dailey, P.E., GEI Consultants, Inc.Subject:Project Summary for Water Drainage Issue
Drainage Basin and Outlet to Elizabeth River
Erie Street Former MGP Site
Elizabeth, New Jersey

Date: January 25, 2007

The purpose of this memorandum is to document efforts taken to stop the flow of impacted stormwater entering the Elizabeth River from the site and document current site conditions. As you know, GEI confirmed a discharge of impacted stormwater to the Elizabeth River with laboratory analytical results that reported a benzene concentration of 8.1 parts per billion (ppb), collected below an outfall that collects stormwater drainage from the property. The source of this stormwater discharge was a drainage basin located in the upper reaches of a swale that runs between the property boundary and the flood control berm that lines the Elizabeth River. The swale runs the length of the Elizabeth River from the Conrail Lines in the northwest portion of the property to the inlet to the Arthur Kill located approximately ½ mile to the southeast. Stormwater flow from the upper reaches of the swale between the Conrail line and approximately the northern third of the back portion of the Property appear to drain into the swale before the water enters the drainage basin and the outlet to the Elizabeth River. A stormwater collection system is also located on the back portion of the property which is believed to lead into the drainage basin; however, the site drainage system has been closed off for some time and is believed to have been abandoned.

Our original efforts to stop the flow of water entering the river were focused on closing the valve located on top of the flood control berm between the stormwater collection basin in the swale and the outlet. This valve is owned by the City of Elizabeth however it is maintained under contract by E'town Services, LLC, an affiliate of New Jersey American Water. Elizabethtown Gas (ETG) met with a supervisor from E'town Services at the site to discuss concerns over potential flood impacts by closing the valve and to visually inspect the valve. It was determined that due to its age and lack of maintenance, the valve was not functional and that, even it could be made functional, it would not be effective in stopping the flow of stormwwater from entering the outfall from the drainage basin. Project Summary for Water Drainage Issue Drainage Basin and Outlet to Elizabeth River Erie Street Former MGP Site January 25, 2007 Page 2

Activities Conducted

1

In an attempt to control the flow of impacted stormwater in the swale, ETG directed an environmental contractor, Veolia Environmental Services (Veolia), to clean out the offsite drainage swale which appeared to be backed up with stagnant water and sediment. Veolia began swale cleanout operations on January 2, 2007. Veolia pumped out stagnate water from the swale near the drainage basin which resulted in stopping the discharge to the drainage basin and the river. Approximately 15,000 gallons of water were pumped out of the swale into tanker trucks for offsite treatment and disposal. GEI inspected the outlet and the Elizabeth River on January 3, 2007 and confirmed that the flow of water to the outlet from the basin had stopped. At that time, no visible signs of impacts to the river were observed. Because flow was stopped at the basin and no continuing flow was observed at the outlet, it was determined that the water leaving the drainage swale and entering the basin is the primary source of stormwater flow that was observed leaving the outlet.

Once the flow of water leading into the offsite drainage basin from the swale had been stopped, Veolia continued to clean out the swale using a vactor truck to remove any remaining standing water and sediment that has accumulated in the swale. During this process approximately 50 foot sections of the swale were diked off to prevent the further spread of impacted water and sediments and any sediments or debris encountered in the trench were removed and staged on the property before disposal. The entire length of the swale between the property boundary and the flood control berm was cleaned using this approach. A total of approximately 48 cubic yards of sediments and debris were removed from the bottom and sides of the swale for offsite treatment and disposal. An inspection of the swale reveled that it was lined with asphalt and that the asphalt was deteriorated in some areas. Subsequent to cleaning out the swale, a berm was constructed along the length of the property line from the drainage basin to the southeast property boundary with pigs and gravel. This berm replaced an existing berm that had become deteriorated. The purpose of the new berm is to stop any surface flow of stormwater from entering the swale and drainage basin. In addition, sorbent material was placed around the basin itself to prevent any product from entering the basin.

GEI inspected the progress of this operation on January 5, 2007 and confirmed that no flow of water to the outlet was occurring and that no visible signs of MGP impacts were observed along the portions of the drainage swale that had been cleaned. It was observed that stormwater flow along the swale appeared to flow toward the drainage basin on the northwest corner of the property for the upper 1/3 of the swale with the remainder 2/3 of the swale draining to a low area located south of the property at the end of Second Street. A slight sheen was observed in the collection area to the south of the property, however, it is unknown if the sheen was related to the site. It appears that the swale to the south of the site property boundary is also backed up with sediment and debris from Second Street and Bilkays Express.

During the week of January 8th, Veolia continued work on the swale until a significant rainfall event occurred on January 10, 2007 and continued through the remainder of the week. During this time, a slow but steady flow of rainwater was observed entering the drainage basin from the swale. Water flow to the outlet to the Elizabeth River had resumed at a 1-2 gallon per minute

 Project Summary for Water Drainage Issue Drainage Basin and Outlet to Elizabeth River Erie Street Former MGP Site January 25, 2007 Page 3

t

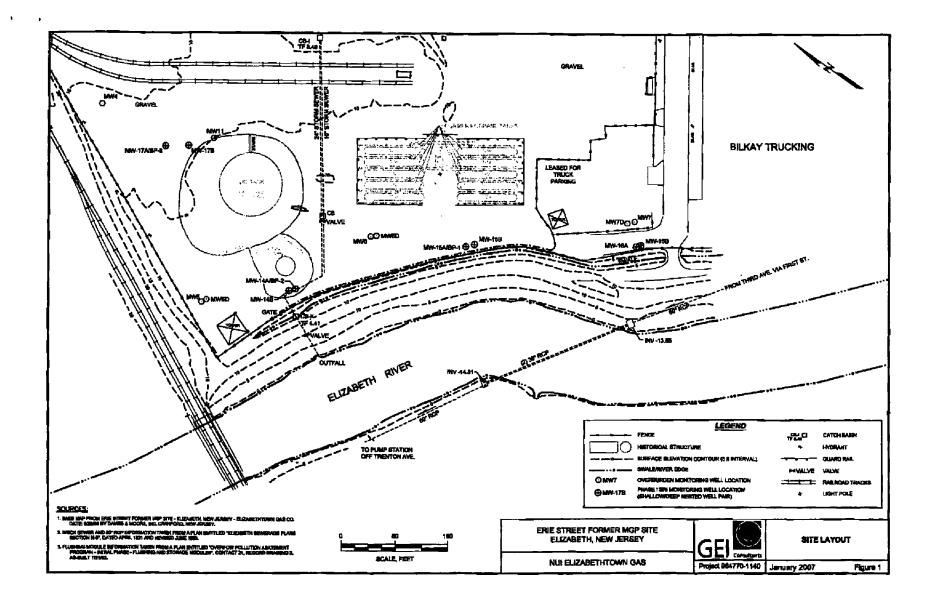
(gpm) rate. While rainwater was collecting in the swale, no surface flow was observed entering the trench over the berms that were constructed on the property and no visual evidence of MGP impacts was observed in the swale, the drainage basin or the Elizabeth River outlet.

The following Monday, January 15, 2007, subsequent to a prolonged period of rain, GEI entered the property to inspect the swale and sample the water coming from the outlet to the Elizabeth River. Upon inspecting the swale, a sheen was observed in the swale along the length of the property. The sheen may have been associated with Veolia's operation of heavy equipment during the construction of the berm and regarding of the site area adjacent to the swale during wet weather earlier that day, as no sheen was observed the week before. Although water was entering the drainage basin from the swale, the sorbent material placed around the drainage basin appeared to be stopping product from entering the river. An inspection of the drainage outlet reveled that the river was under high tide and the outlet was submerged at the time of the inspection. To assess the contaminant levels entering the outlet, GEI collected a sample of water entering the drainage basin and sent the sample to IAL Analytical Laboratory for VO+10 analyses. Analytical results of this sampling event revealed that concentrations of benzene were reported at 6.73 ppb which is below the initial sampling results of 8.1 ppb, but still above the surface water standard for saline water of 3.3 ppb.

Recommendations

While the actions taken to date have controlled the drainage of water from the swale into the basin and subsequently into the river during dry conditions, there remains the potential for an impacted stormwater discharge from the swale to the river during heavy or prolonged rain events. In order to control the discharge to the river from the outlet during periods of heavy or prolonged rain, the drainage outlet would need to be closed off entirely and the swale dammed up to the south to prevent the flow of impacted water from continuing to drain to the south towards the Bilkay's Express property. This has the potential to cause drainage problems in the back portion of the property be surveyed and that groundwater flow be monitored to predict the effects of blocking off the outlet and damming the swale. Once the outlet is blocked, rainfall, drainage and surface and groundwater conditions on the back portion of the property should be monitored closely. If the drainage area served by the outlet is adversely impacted by flooding, then GEI will work with ETG to develop options for handling stormwater discharges on the property to prevent flooding.

ATTACHMENT A


•

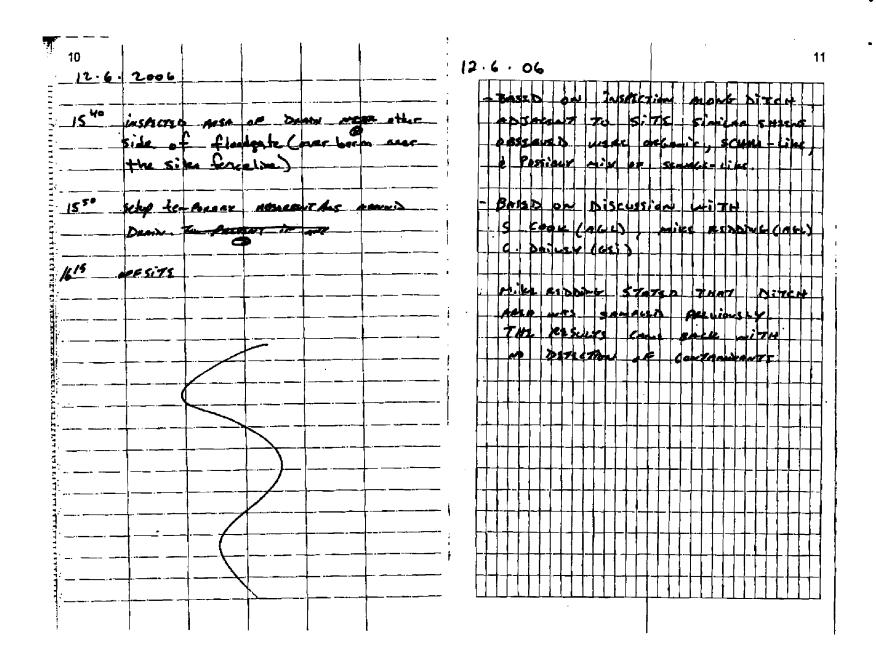
. .

.

.

Site Plan

ATTACHMENT B


1

a

GEI Field Notes

12.5.	2006		WEATHE	Low	40'S CLOUDY	۰ د) ا	6 · 2	,006					ر 2 ایما	*771	rL.	ant:	4	
	20		iver in			!][\square		П		44	-
14 00	ONSITS_					14		nesi 7						╺┢╽╴			┇╽┇	
· · · ·							┟╌┥┟╸	TTT		a				++-	╡╴╿┣	╧╋	╎╹┛	Ť
14 20	WALK- A	ALENGS	Cive D				†∔†	111			1 I F			+ -	┢╵╎╌┽	+	i++	-
J-¥	(8-5200		-				┼╀┥	575	╹┼┤		╞╴┤┈┡	74	╇╉┥	+-)	┝┽╁		┟╌┝╾╁	- .
	-		i	-	TIGHT DEFT)	-			╧┤┤	++		╎┼	┿┦╢		┝╍┥╼┞	· ·	i	
-			-			:		5A1C	7-11	╺┼┍		-/		14 2	┡┼┢	ѷ┣╋	547	-
	Meen	151 8 163-77	7.9.70					Kipy					┼╆┽			+	<u></u>	Н
30					6.6.475		- r#3	1447	144	- 0	27 14	 =	ا م	19-	/ 3	<u>1</u> 21	╇╌┥╴┟	-+-
<u>_14</u>	NATICE	. 58 ku - J	an NS			· }	╋╌╿╌┝╴	┢╋╎	╋╈	- - -		┦┥╴		╌┝╾╋╍	┝╶╎╷┿	┽┼	╎╎┽	┷┥
	CUT T	6665_j. <u>S</u> M	MAS / HAN	AAG C	CIPPED		-	1 20	<u>ه ۾ </u>	chip	2 2 2	797	[e pu]	¥:!-				
14.45								65	╉┝┨				╀╢				+	
f						/ 14 ¹	F K	65 540			1/54		1 1 5		- 71	цż.	┥╴╽╺┼	
£	ļ			L	PROVT	1 <u> </u>	- - *	₽;	جعومه	╺┥╌┼┇	s l	rju ja	4 4	4	Í -∔	+	ŀ - - - - - - - - - - - - - - - - - - -	<u>+</u>
	FLAND	GATS	. (046-ni	, Assess	com 2)		┥╪╡┛	ka-r	المطنية	<u> </u>	₽			sas		- u ?	siac	.e
·	· · · · · · · · ·					-	<u> </u> i	<u> </u> #	k e .	- þ .		┢╋	¢.47\$	- 1	44	444	襘	
	ALSO FO		·]• •	1	-		<u></u>					╄┨╴	┞╌╎╏	+			┝┥╽	
•			f dam-	FLOODG	15 in 70	י_ ז ו		Cone	┥╍┥	4	-	ika .	-	75-	. \$	ene	F .	
	THE Riv	1.0	<u> </u>			. -	┝╍┿╸┦╶	Pre .	┢┥╽	4000	-	<u>.</u>	ميطح	ws 7/	a de la	╘╎╴┥┲	┇╷┥	
						, -	┊╷┝╴╇	FL. OP	¢4a		<u>}_</u>	<u> </u>	┥┥┝		4.		Щ	_;
15 65	offsit	¢				15	<u>\$</u>		isci		مهمر			750			4	
	∔						↓	1	k		Eler	<u>/</u>	pr		44	dec		
	↓			 			╎╎╢	15		char.	1							
)	.			╽┙╿		- 5	And	25	En		Jac	s,	Su	e s	
		1 . 6	1												4			

-

12		1				
12.21	2006	- WEATHERS C	COM MOD	 2·2: · 3 +96	┱╶┰╍┰╌┰╺╬╾┯╴┯╶┥	
			40'3	River		
		i i	,			
1115	ONSITE					╒┼┽┼┥┿┿┽┼┼╴
μ			+	┈┢╍┿╍╄╍┞╼╄╼┽╴┼╺┽╍╄╍┨	00754	╺┼╶┽╌┧╌╢╎╞╾┾╾┽╾┪╍
	w eny (ASU)		1	┝┾┿╁┾╢┽┼┿	┥ ┥┥ ┛╷┱╼╹╸╢┩	┍╉╋╸
						<u>, </u>
	NSPSCTINE FLOW ANT	L OF WATS	Presenta		O? Vard	
	OUTFALL TO RIVE				F	┥╺╸┝┥┿╺╴
					┍╵┢╽┽┾┾┥	╺┾┽┼╄┼╵┝╆┼╴╎╶┾╴ ┍╄┿┿┿╴┤
	APPROXIMETELY 0.	S - 1.0 July	M. PER. Die		╡╹<mark>╏</mark>╵┢┿┽┥	╺ ╘╍ ┥╸╂╶┠╶┨╶╢╴╎
· 	╷╶──╷╶╍╾┼╼╌┈───┤── ╹		· · · · · · · · · · · · · · · · · · ·	┟╊╋╋╢		┍═┾┈╎╍╋╌┼╋╋┿╋╼╟╍╏═╵
145 1	VEOLIA SNE DAS	. 				
	STENS CARE (ACA. ans					
			<u> </u>	┝┄╁╌╉╼╃╶┾╌╁╼╋╼┿╸╎╾╅╾╃╼┥╼	╋┿┽╄╈╢╢╢	╺╁╴╁╼┽╍╄┄╿┄┞╍┼╶┾╴┼
1	ne plan is to put	no dry			╞═┤ ┛┼╴┼╶┦╍╢╌║	╺┽┼╅╀╢╎┉╎╴╄╄╸
	itch_t_remove_	sadment	:	╺╴ <mark>┝╶╎┝┥┥┥</mark> ╢╢ <mark>╖┨┶┥╍</mark>	┽╶┼╌┼╼ ┠╍┠┈┠╼┥	╺╋┽┾┥╢╀┼┼┾
			i			
	leve cook with Dis	10.055 . 1.704	THE			
				┣┥┟┦╸╢╵┝┥┑┥┥┾╴┾╴┤╴	┧╌╽ ╴╂╶┨═╄╌┤ ╶┾╾╽	
C	TY ABOUT - CLOSING	THE DRCV		┠╍ <mark>╎╸╁╶╀╶┾╍┿┽╌┥┉╃╶┼</mark> ╌╢╶┼╍	╏╺┢╍┋╶╿╶╽	╺╉╊╀╌┣┥╸╎┈┾╍╆╶╁╴
			,	<mark>┝┽┽┼┾╋╅┦┝╢</mark> ╢┉	┿╋╋╋	╶┽┽┼┼┥╎┤╾┝╌╉╄╾
	toto - document descent			┝┿┽┦╄╀╎┙╵║┈┝┾┽╴	┦╶┽╍┽╶┦╼╏┉┝╍┿╍┩	╶┼┦┥╸┦╷╿╴┼┥┥╏╺┷╸
			I			
			.			
			· · · · · · · · · · · · · · · · · · ·	<u><u></u><u></u></u>	╏╸╡ ╶┨ ┇╸╡╞╺╪╶ ┨	╶╉┄╢┈┩╾╊╾┝╌╊╼┽╴╅╶╢╴│
-/6	OFFSITT	·	<u>↓</u> •	┝╶╋╾╄╾╄╾┨┅╿┅┨╴┧╴┼╼╉╴┨	<mark>┟╶┥┄╎╍┠╼╁╴┞╶┝╸</mark> ┧	╍╉╍┦┈┼╌╁╴╁╴╂╾╉╼╢╌╿╶╵
· ·			·····	┟┼┯┦╍┠╵┥┉┟╍┡╍┽╌┾╌┤╶┠╴	┟┉╎╷╽╌┣╾┦╴┧╴┽╌╿	╶┼╢╺╎┅┥╾╃╶╏╼┽╌┧╌
:			·····			
			1			

.

•

•

1/3/2007	with the clart	- TOY CIN X	Г	15	200	• 7 .	╌╌╌	┯┯┯	- - -	(a 71)	϶_	40'1	کې	ŝ
				30	┶	$\downarrow\downarrow\downarrow$	╶┼┷╿╴	<u> </u> _ _				2-	-	۲
BAISITE 13			· /	Carse 7										
VEOLIA ENV. ON	TE ALKS ANY			insn	11	2.12	e D				-	Laby		
				1 1 1	1 4 1			111					\square	
Berning soil insid	hache to		ſ											
Pigs (previously in	+ 41 -	lesso	-	Ee										1
	1 1 2	12.7	F		Ø	T PT								1
- to absorb pay-				┤┼┍╸		6							$\left + \right $	1
- Thusfer B2 a	1	Sela 1	4	AL		11		┥╷╷╷╻╷╸ ╡	1	1-	.	╏╋╋		-
rearned for	.7.					747		〕	ΈŊ			┠┠╉╴	$\left[+ \right]$	•
	5/TC		' -	╅╋┾	┠┅┥┽	┼┼┟	╅╁┿╸	┞╌╿╼┦┄	++-	┝╀╂╸	$\left\{ + \right\}$	╞╞┥	┼┼┤	1
- 5k-salla +		<u>_</u>		p -		╉╌┨╌┝	┉┤╼╌┡╾┼╴	╅┾╀┥				.	┝╌┼╼┥	-
<u>- 272 - 54 (10- 1</u>	m pm pzs	ware	14	╀┼┼┛	- 54	47	ev 75		Loc	e 72 A	- 7	╞╴╽╷┈	-	+
_ FROM DitcH			· -	┢┼┼┥	₽ ₽ ∱•	∖ ∦ -∔*	+ P	perf	\$ ·	╧╁┥╸	╏╋╀╸	┢╼┦╸╉┄	┝╺╋┥	┦
			F	┨┈┞┈┞━	┝┼┼	╅╂╍┠	╋┿╢┅	┥╴┝╸┽╺	╶╁╄╴	┝┽╂╸	╞╊┼┙	╞╼╁╍┡╶╵		-
Approximate Ly for	- dre. 140	of	ŀ		esc.	hed.	14030	14	K 5	hiela	┢┼╇┛			-
the ditch has	been cloud.		-	┼╎┽╸		34.	┼╇┤┙	┝╌┞┲╋┯╺	-	. 4 8-	q 	 2	┝╋┨	-
			-	┥╌╎╸┣╍╸		┥┽╄╴	┽╉┨	┝╺┝┅┿╼	++	-+	┝╍┨╌╿┄╹	╽─┨╶┤╶┤	┼┽╎	4
- OBSERVED QUER	- A		15	Þ .	#	site	┫╋╋			╶┨╺╃	┝╌╁╌┦	┢┿┻┥╷	┝╇┥	4
(Phobodocom +			+	┟┿┼	┝┼┼	┝╁┟	┝	┝┼┼┦┫	<u> </u>		┝╇╄┦	┝╾┽╌┞╾╎		•
1415 stere apple 1	DANSITI		-	┝┊╞	┝┦╄	┼-┟-┦-	╷│╷┠╌┠╴		╶┼╍┤╺╿		╽╍┾╌╁╺┦	┝┥╁╿	┟╺┽┈┟	ŀ
Offer LAR .	WALK MOUND SIT	E	• -	┧╸╽╴╽╸┥		╎┥╽	╄╋┼				┝╼╂╍╽	╷╷╷		ļ
15 00 PPSITS			-	┨┄┢╺┫━┥	┢╺┨╎	╋┥╏	╞╋┥		++	+	┝╾╇╴╎.╶	┉┝╍┟╴╽	┟┿╉	╞
·			Ĺ											

٠

-

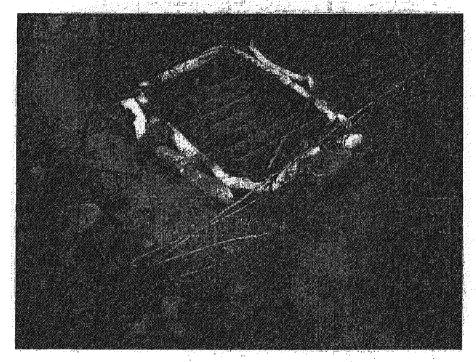
. . Cloudy 405 16 17 1/15/07 1/15/07 1415 Chris Dailey arrived - site and met Steven Capt ith ETG 15 00 Treate 1430 Inspected swale with SINGAT. Steve ok hous emptym brsin Contin pactri the swale Visible impacts boundary .bern 14:55 rain as564 abet v+let River, Basic -43 water bod SLA trem 1D 1610 Chris biffe river. 911 river The butlet water was observed decolored leaving the outlet. No sheen

ATTACHMENT C

Photographs

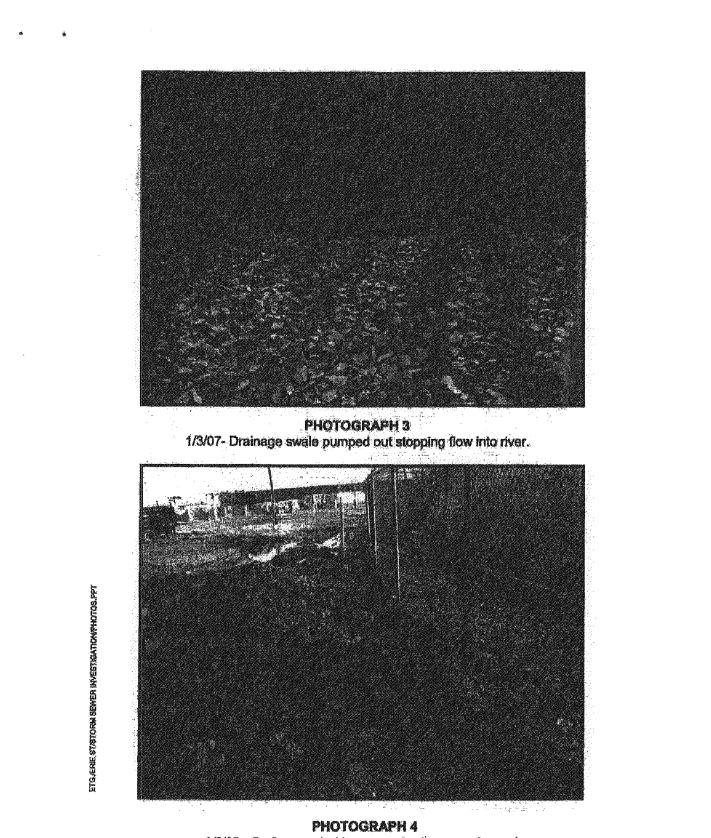
.

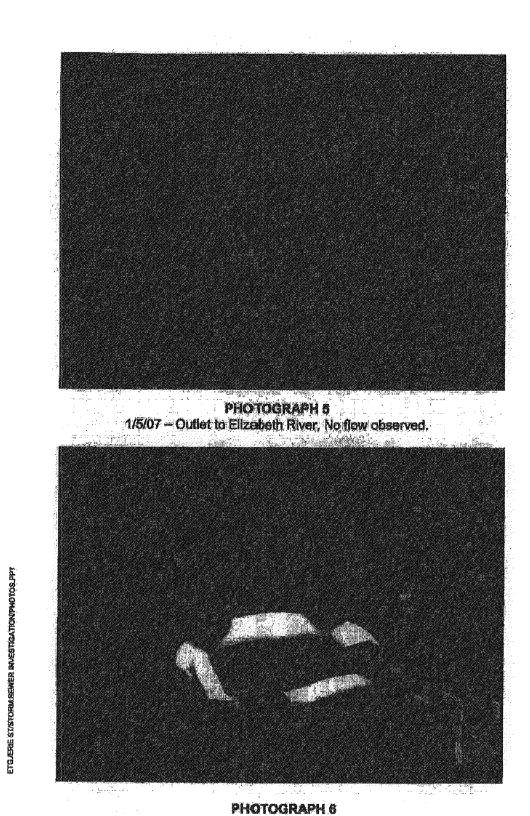
•


.

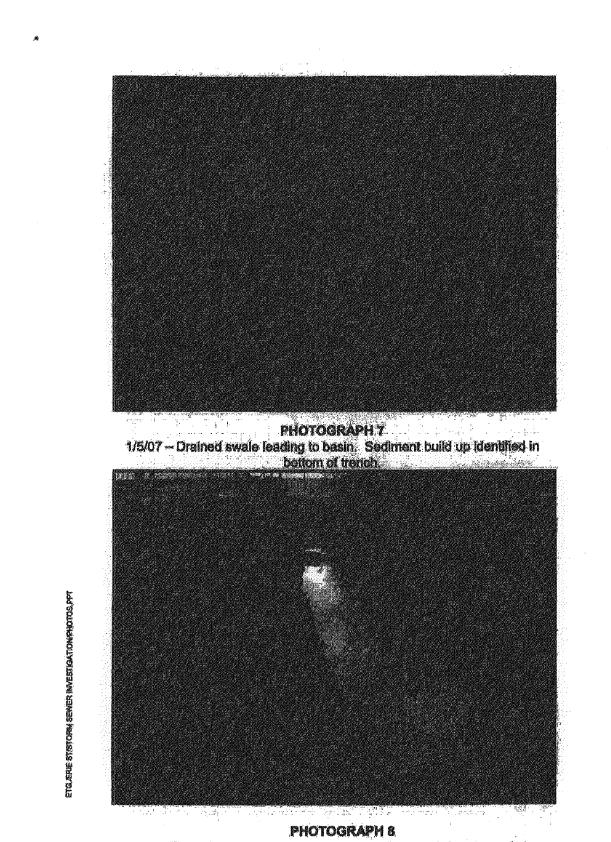
1

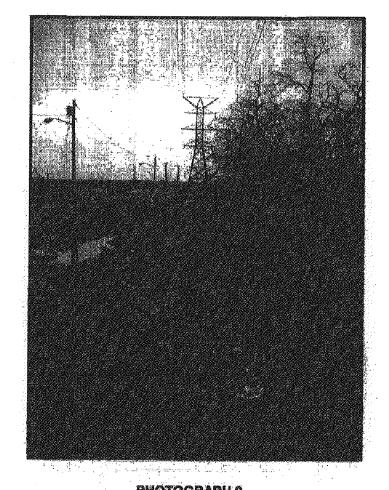
.


PHOTOGRAPH 1 12/21/06 - Photo of drainage outlet into Elizabeth River.

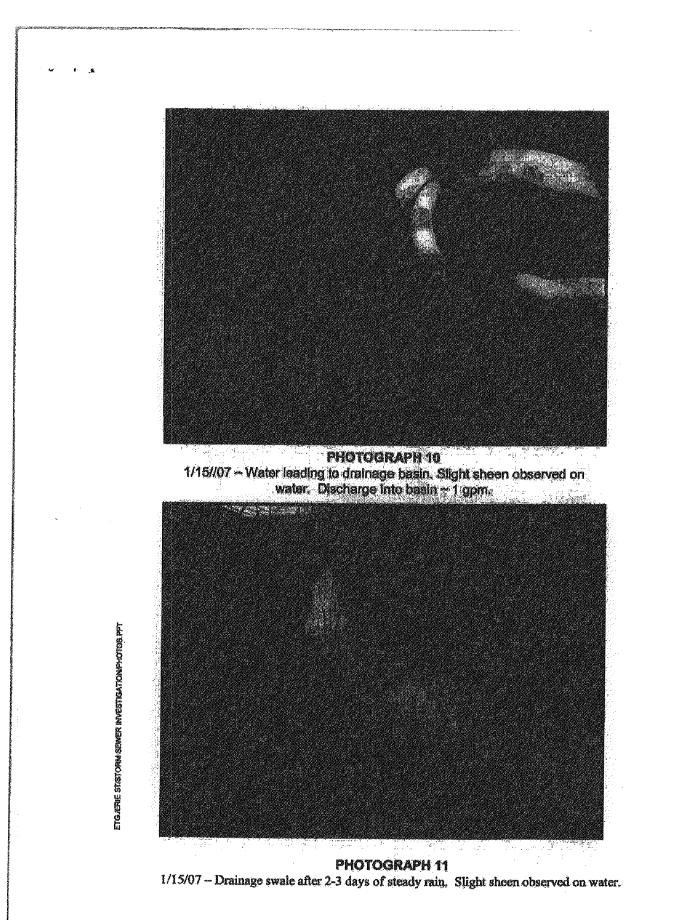

PHOTOGRAPH 2 12/21/06 – Photo of drainage basin that leads to river outfall.

ETG.ERE STISTORM SEWER INVESTIGATION PHOTOS PHT


ĩ


1/3/07 - Surface area inside property leading towards trench.

1/5/07 - Drainage basin no water observed flowing toward basin.



1/5/07 - Drainage swale in areas where sediment is being removed.

PHOTOGRAPH 9 1/5/07 – Area along fence line bermed to prevent surface water flow from entering the drainage swale.

ETG-EERE ST/STORM SEWER INVESTIGATIONPHOTOS.PPT

TIERRA-B-017609

ATTACHMENT D

Analytical Summary

.

.

INTEGRATED ANALYTICAL LABORATORIES, LLC.

SUMMARY REPORT Client: GEI Consultants, Inc. Project: ERIE ST MGP Lab Case No.: E06-13471									
Lab		1-001		71-002		53-901 W-1			
Client I Locatio		V-1 tream	-	W-2 Dutlet	-				
Matr Sampled D	ix: Aqu nte 12/	6/06	Aq 12	ucous /6/06	Drainage Basir Aqueous 1/15/07				
PARAMETER(Units)	Conc	Q MDL	Conc	Q MDL	Conc	Q MDL			
Volatiles (Units)	(ug/1	-ppb)	(4g /	L-ppb)	(#g/	L-ppb)			
Benzene	0.716	0.400	8.10	0.400	6.73	0.420			
Trichloroethene	0.522	0.400	ND	0.400	ND	0.460			
Tetrachloroethene	0.646	0.490	ND	0.490	ND	0.420			
Ethylbenzene	ND	0.370	0.489	0.370	2.59	0.330			
Total Xylenes	ND	0.960	ND	0.960	2.40	0.960			
TOTAL VO's:	1.88		8.59		11.7				
TOTAL TIC's:	ND		25.3		34.3				
TOTAL VO's & TIC's:	1.88		<u>33.9</u>		46.0				
*Semivolatiles - BN (Units)	(ug/1	L-ppb)	(ug/	L-ppb)	(ug/	(L-ppb)			
Naphthalene	1.48	0.158	1.12	0.158	NA				
Acenaphthene	ND	0.170	1.40	0.170	NA				
Fluorene	ND	0.256	0.985	0.256	NA	. <u> </u>			
TOTAL BN'S:	1.48		3.51		NA				
TOTAL TIC's:	ND		ND		NA				
TOTAL BN'S & TIC's:	1.48		3.51		NA				

ND = Analyzed for but Not Detected at the MDL

NA = Not Analyzed

.

*Result from Sims Analysis

Bold results exceed standard

÷ . .

March 30, 2007 Project # 964770-1130

APB g

Georechnical Environmental and Water Resources Engineering Raymond Pinkstone, Case Manager Bureau of Case Management New Jersey Department of Environmental Protection PO Box 028 401 East State Street Trenton, NJ 08625

RE: Phase I Supplemental Remedial Investigation Report Elizabethtown Gas Company Erie Street Former MGP Site Elizabeth, Union County, New Jersey

Dear Mr. Pinkstone:

In accordance with the schedule provided to the New Jersey Department of Environmental Protection (NJDEP) by Elizabethtown Gas (BTG) and the Department's March 22, 2007 schedule approval letter. GEI Consultants, Inc. on behalf of our client ETG, submits the enclosed copies of the above referenced report to the NJDEP for review. We have included one complete copy of the report with Data Validation (Volume III) and 3 copies that include the main report Volume I and supporting Appendixes (Volume II). The Phase I Supplemental Remedial Investigation (Phase I Supplemental RI) Report was originally submitted to the NJDEP in May, 2001. After the report was submitted in May 2001 some discrepancies were found regarding the validation results of the analytical data. As such, certain sections of the report were corrected and those corrections were submitted to the department on January 21, 2004. The enclosed report includes all the corrected data.

To expedite your review of the report and the conditions at the Erie Street former MGP, we suggest a meeting with you to walk you through the site history and results of the Supplemental Phase I RI. In addition, we wanted to discuss issues related to the inspection and diversion of stormwater away from the Elizabeth River that is planned.

The weeks of April 16 or April 23, 2007 are good for GEI and ETG to meet with you. If this time frame is not convenient for you then let us know and we can select a better time. If you have any questions or wish any further information in the meantime, please do not hesitate to contact myself at 856-910-9750 or Steven Cook with BTG at 908-662-8205.

Very truly yours,

GEI Consultants, Inc. Christopher W. Dailoy, P.E.

Senior Project Manager

www.geiconsultants.com

GEI Consultants, Inc. 7905 Browning Road, Suite 306, Pennsauken, New Jerrey 08109 856.910.9750 fax: 856.910.9751

BBA000018

TIERRA-B-017612

Geotechnical Environmental and Water Resources Engineering

- **4**

l. Le

...

71

۰.

74

- **
- A .
- **
- ••
- r N
- •
- • •
- ••
- ••
- **
- yr Mi
- --..
- b.a
- .
- ...
- ____
- . هد
- .

Phase I Supplemental Remedial Investigation Report

Erie Street

Elizabeth, New Jersey

Volume I Text, Tables, Figures, Plates

Submitted to: NUI Elizabethtown Gas One Elizabethtown Plaza Union, NJ 07083-1975

. . . .

 \mathcal{D}^{1}

Submitted by: GEI Consultants, Inc. 455 Winding Brook Drive, Suite 201 Glastonbury, CT 06033 860-368-5300

April 27, 2001 (corrected January 21, 2004) Project 964770-1130

Table of Contents

.

Executive S	ummary	vi
	Hydrogeologic Regime	vi
	Surface-Soil Evaluation	vii
	Subsurface-Soil Evaluation	vii
	Groundwater Evaluation	viji
	Elizabeth River Sediment and Surface Water Evaluation	ix
1. Introducti	ion	1
1.1	Report Organization	3
2. Site Back	ground	5
2.1	Site Location and Description	5 5
2.2	Previous Investigations	5
2.3	Site History	5
3. Physical (Conditions of the Site and Surroundings	9
3.1	Topography	9
3.2	Surrounding Land Use	9
3.3	Wetlands Review	11
3.4	Regional Setting	12
3.5	Local Water Supply and Well Search	12
<u>4. Phase Ş</u>	RI Site Activities	14
4.1	Field Activity Methodologies	18
	4.1.1 Soil Boring, Monitoring Well Installation/Development and	
	Subsurface-Soil Sampling	18
	4.1.2 Test Pit Excavation and Subsurface-Soil Sampling	21
	4.1.3 Groundwater Level Measurement, DNAPL Evaluation, and	
	Groundwater Sample Collection	21
	4.1.4 Elizabeth River Sediment and Surface Water Sampling	22
	4.1.5 Tidal Survey	22
	4.1.6 Surface-Soil Sample Collection	23
	4.1.7 Data Validation	23
5. Phase I S	RI Results (corrected January 2004)	24
5.1	Site Geology	24
	5.1.1 Site Overburden	24
	5.1.1.1 Subsurface Structures	26
	5.1.2 Site Bedrock	27
5.2	Groundwater	27

i

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT Nui Elizabethtown gas April 27, 2001 (corrected January 2004)

ŧ

т **р**т 2

7 7

*:: . *:

3

.

• . ,

۰,

ء - - -ه ه -

. 6

. _ .

2.3

• •

<u>References</u>			57
7. Recomme	endatio	M \$	56
6. Summary and Conclusions			
	5.3.5	Elizabeth River Surface Water Quality	50
		Elizabeth River Sediments	47
		5.3.3.3 Shallow Bedrock Groundwater Quality	43
		5.3.3.2 Overburden B Zone Groundwater Quality	44
		5.3.3.1 Overburden A Zone Groundwater Quality	43
	5.3.3	Groundwater	42
	5.3.2	Subsurface Soils	37
		Surface Soils	36
5.3	Nature and Extent of Site Impacts		
	J.W. 1	Bedrock	3:
	5.2.0		
	5.2.5 5.2.6		32 33
		Hydraulic Interaction Between the Overburden A and B Z	
		Overburden Permeability	30
		Deeper Overburden (B Zone)	29
	5.2.1		28

N

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS April 27, 2001 (Corrected January 2004)

TABLES

....

...

e .

¥. /

- 1: Subsurface-Soil Sample Rationale
- 2: Sample Collection and Analytical Summary
- 3: Test Pit Descriptions
- 4: Monitoring Well Information and Groundwater Levels
- 5: Monitoring Well NAPL Summary Information
- 6: Surface-Soil Analytical Data
- 7a: Test Pit Subsurface-Soil
- 7b: Soil Boring Subsurface-Soil Analytical Results
- 7c: Monitoring Well Subsurface-Soil Analytical Results
- 7d: Analytical Results for Product and Groundwater Collected from MW-2D, January 2001
- 8: Analytical Results to Characterize Visibly Impacted Soil
- 9: Monitoring Well Purge Data
- 10a: Groundwater Overburden A and B Zone Analytical Results
- 10b: Groundwater Analytical Results from the Shallow Bedrock
- 11: Sediment Sample Summary Table
- 12: Sediment Analytical Results
- 13: Elizabeth River Surface Water Analytical Results

Note: Bold indicates the table was corrected in January 2004.

FIGURES

.....

¥15

4

- 1: Site Location Map
- 2: Cross-Section Location Map
- 3: Cross Section A-A'
- 4: Cross Section B-B'
- 5: Cross Section C-C'
- 6: Cross Section D-D'
- 7: Cross Section E-E'
- 8: Cross Section F-F'
- 9: Groundwater Elevations in Overburden A Geologic Unit on May 23, 2000
- 10: Groundwater Elevations in Overburden A Geologic Unit on August 22, 2000
- 11: Groundwater Elevations in Overburden A Geologic Unit on January 8, 2001
- 12: Groundwater Elevations in Overburden A Geologic Unit on February 21, 2001
- 13: Groundwater Elevations in Overburden B Geologic Unit on May 23, 2000
- 14: Groundwater Elevations in Overburden B Geologic Unit on August 22, 2000
- 15: Groundwater Elevations in Overburden B Geologic Unit on January 8, 2001
- 16: Groundwater Elevations in Overburden B Geologic Unit on February 21, 2001
- 17: Groundwater Elevations in Bedrock Geologic Unit on May 23, 2000
- 18: Groundwater Elevations in Bedrock Geologic Unit on August 22, 2000
- 19: Groundwater Elevations in Bedrock Geologic Unit on January 8, 2001
- 20: Groundwater Elevations in Bedrock Geologic Unit on February 21, 2001
- 21: Tidal Survey Results
- 22: Tidal Survey (Catch Basins)
- 23: Tidal Survey (Overburden A Zone)
- 24: Tidal Survey (Overburden B Zone)
- 25: Tidal Survey (Shallow Bedrock)
- 26: Tidal Survey (Overburden A and B Zones and Shallow Bedrock)
- 27: Cross Section A-A' Visible Impacts
- 28: Cross Section B-B' Visible Impacts
- 29: Cross Section C-C' Visible Impacts
- 30: Cross Section D-D' Visible Impacts
- 31: Cross Section E-E' Visible Impacts
- 32: Cross Section F-F' Visible Impacts
- 33: Illustration of Subsurface-Soil Analytical Results for BTEX Compared to the NJDEP Soil Cleanup Criteria
- 34: Illustration of Subsurface-Soil Analytical Results for PAHs Compared to the NJDEP Soil Cleanup Criteria
- 35: Illustration of Subsurface-Soil Analytical Results for Inorganic Compounds Compared to the NJDEP Soil Cleanup Criteria

Note: Bold indicates the figure was corrected in January 2004.

6 7

۰.

Ì٧

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT Nui Elizabethtown gas April 27, 2001 (corrected January 2004)

PLATES

71

F't

.

ŧ -

. 1

. .

٤.

÷

4.1

- 1: Base Map
- 2: Topographic Map
- 3: Illustration of Analytical Samples Collected in Visibly Impacted Soil
- 4: Surface-Soil Sample Locations and Analytical Results That Exceed NJDEP Criteria
- 5: Areal Extent of Product Map
- 6: Illustration of Subsurface-Soil Analytical Results That Exceed NJDEP Soil Cleanup Criteria
- 7: Groundwater Analytical Results for Overburden A Monitoring Wells
- 8: Groundwater Analytical Results for Overburden B Monitoring Wells
- 9: Shallow Bedrock Groundwater Analytical Results
- 10. Total PAHs in Elizabeth River Sediments

APPENDICES

- A: Project Correspondence (1997-2000)
- B: Phase I SRI Boring Logs, Monitoring Well Construction and Form Bs. Previous Investigation Boring Logs, Monitoring Well Construction, and Test Pit Logs
- C: City of Elizabeth Tax Assessor's Map
- D: Phase I SRI Data Validation Reports
- E: Shelby Tube Data
- F: Tidal Survey Data
- G: Previous Investigation Analytical Data

Note: Bold indicates the Plate or Appendix was corrected in January 2004.

J:WPROCYProjectelgtERIE-STVPHASE1151 Report/SI Report, connected Jan 04-R.doc

Executive Summary

F1

\$3

. .

۰.

. .

n 4

. :

44

× 4

The Memorandum of Agreement (MOA) between NUI Elizabethtown Gas (ETG) and the New Jersey Department of Environmental Protection (Department) signed on June 23, 1992 requires that a remedial investigation and remedial action be conducted at the Erie Street former manufactured gas plant (MGP) site. Although several previous investigations were performed at the site, ETG contracted GEI Consultants, Inc. (GEI) to perform a Phase I Supplemental Remedial Investigation (SRI) to resolve data gaps remaining from previous investigations. This report presents historical as well as recent site investigation activities and results.

The overall objectives of the Phase I SRI are to:

- Further characterize the hydrogeologic regime at the site
- Complete delineation of surface-soil impacts or determine necessity for background surface soil evaluation.
- Complete characterization and delineation of subsurface-soil impacts
- Further characterize the nature and extent of groundwater impacts
- Investigate the Elizabeth River sediment and surface water quality in the vicinity of the site.

Hydrogeologic Regime

The hydrogeologic regime was further characterized at the site. Groundwater is present in and was evaluated in two zones in the overburden and within the shallow bedrock beneath the site. The overburden at the site was divided into A and B zones. The A zone is situated above the peat (where present) and is under unconfined conditions. The B zone is situated below the peat (where present) and is under semi-confined conditions. Groundwater elevations are consistently higher in the A zone than the B zone. Groundwater in the A zone flows southeast towards the Elizabeth River, east towards South Second Street and north towards Third Avenue. Groundwater in the B zone flows southeast towards the Elizabeth River in the southern two-thirds of the site and has a relatively flat gradient in the northern one-third of the site. Based on groundwater and surface water elevation measurements, groundwater in the overburden A and B zones appears to be connected to the Elizabeth River, however, local discharge may be impeded by the presence of steel sheet piling within

vi

```
PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT
NUI ELIZABETHTOWN GAS
APRIL 27, 2001
```

the core of the flood control berm adjacent to the site. Groundwater in the shallow bedrock is under confined conditions and flows southeast towards the Elizabeth River. Groundwater elevation in the shallow bedrock is generally less than groundwater elevation in the overburden. The degree of connection between the overburden and shallow bedrock is based on the permeability of the intervening deposits and varies widely across the site. Tidal impacts on groundwater levels are most prevalent in the shallow bedrock but are not of sufficient magnitude to affect groundwater flow direction in the overburden or shallow bedrock.

Surface-Soll Evaluation

F19

21

Ŧ

÷.

4.4

The analytical results for surface-soil samples indicate the presence of VOCs, PAHs, and metals in excess of the NJDEP soil cleanup criteria on the site and adjacent to the site. Impacts detected adjacent to the site are typical of urban settings. Based on the distribution and magnitude of compounds detected in surface-soil samples, the surface-soil impacts associated with the site have been delineated and no further evaluation is necessary.

Subsurface-Soil Evaluation

Product (sheen, NAPL, residual product, or free product) was noted in the subsurface across the site and appears to be concentrated in the former production area in the northnorthwestern portion of the site, in the vicinity of the former oil storage area in the southwestern corner of the site, and along the southern site boundary adjacent to the Elizabeth River. Product was not observed in the Elizabeth River sediments adjacent to the former MGP site. Based on NAPL surveys performed in onsite monitoring wells, the product noted in test pit, boring and monitoring well logs is not present as mobile product in significant quantities except potentially in the former oil storage area in the southwestern portion of the site.

VOCs, PAHs, and various metals are present in subsurface soils at concentrations exceeding the NJDEP soil cleanup criteria. The analytical results for subsurface-soil samples indicate that the horizontal/lateral delineation of subsurface-soil impacts is complete to the north of the site along Third Avenue and along the northern portion of South Second Street. Horizontal/lateral delineation of subsurface soil impacts has not been completed east of the site along the southern portion of South Second Street or west of the site along the Central Railroad of New Jersey. Subsurface-soil impacts are present to the southern boundary of the site however no product was noted in the river sediments adjacent to the site. Therefore, delineation of subsurface-soil impacts to the south is considered complete.

The analytical results for subsurface-soil samples indicate that subsurface soil impacts have been vertically delineated at the site. In general, subsurface-soil impacts (soils with compounds exceeding NJDEP soil cleanup criteria) are present in the fill and upper peat (or upper till where peat is absent) at the site. Subsurface-soil impacts, noted in the deeper

portion of the till and/or within the upper residual soil/weathered bedrock were limited to an area adjacent to and west of the former 340,000 cf gas holder (MW-2D, MW-9D, and MW-22B), and in the vicinity of the former gas oil/oil tanks (MW-17B). Subsurface-soil delineation is considered complete at these locations since bedrock is at or within a few feet of sample intervals collected from these locations.

Groundwater Evaluation

**

6.4

1 1

. .

6.8

- -

The analytical results for shallow overburden A zone groundwater indicate that BTEX, PAHs, some metals, and cyanide are present at concentrations exceeding the NJDEP GWQC. Based on the distribution of these compounds it is apparent that impacts onsite have been delineated to the north-northeast of the site north of Third Avenue. Impacts have not been delineated to the east towards Bilkay's Trucking facility. Impacts are present along the western property boundary, however, based on the groundwater flow direction from west to east the western groundwater impacts generally are delineated. Groundwater impacts in the overburden A zone are present along the southern site boundary adjacent to the Elizabeth River. Groundwater in the overburden A zone likely discharges to the Elizabeth River, however, such discharge may be impeded by the presence of steel sheet piling within the core of the flood control berm adjacent to the site. Surface water samples collected from the Elizabeth River adjacent to the site indicate that the overburden A zone groundwater is not impacting the surface water quality in the Elizabeth River.

The analytical result for the deeper overburden B zone groundwater indicate that BTEX, PAHs, some metals, and cyanide are present at concentrations exceeding the NJDEP GWQC but are not as widespread as those in the overburden A zone. Based on the distribution of these compounds, groundwater impacts in the overburden B zone are delineated to the north and east of the site except for the presence of various metals and cyanide. Groundwater impacts are present along the western property boundary however based on the groundwater flow direction the western impacts are generally delineated. One well adjacent to the river contained concentrations of organics exceeding the NJDEP GWQC. Otherwise, only various metals and cyanide were detected at concentrations exceeding the NJDEP GWQC along the southern property boundary. Overburden B zone groundwater likely discharges to the Elizabeth River, however, such discharge may again be impeded by the presence of steel sheet piling within the core of the flood control berm. Surface water samples collected from the Elizabeth River adjacent to the site indicate that the overburden B zone groundwater is not impacting the surface water quality in the Elizabeth River.

vili

#1

**

5

The shallow bedrock groundwater analytical results indicate that VOCs, PAHs, various metals, and cyanide are present at concentrations exceeding the NJDEP GWQC. Shallow bedrock groundwater impacts are present in the vicinity of the former 340,000-cf holder and extend downgradient to MW-8D. Based on the analytical data, it does not appear that organic impacts in the shallow groundwater beneath the site extend to the southern property boundary, except possibly at MW-5D (which may have a separate source). Based on the shallow bedrock groundwater flow direction it appears that the western and northern groundwater impacts are delineated. Organic shallow bedrock groundwater impacts may extend further east of MW-8D and south of MW-5D and inorganic shallow bedrock groundwater impacts may extend further east of MW-8D and south of the Elizabeth River (MW-5D, MW-6D, and MW-7D).

Elizabeth River Sediment and Surface Water Evaluation

The Elizabeth River sediment analytical data indicate the presence of VOC, SVOCs, pesticides, PCBs, dioxin, and metals. Based on a comparison of the analytical results with NOAA ER-L and ER-M values, SVOCs, pesticides, PCBs, and metals were detected at elevated concentrations. There are no ER-L or ER-M values for VOCs, dioxin, and various metals. The distribution of the compounds detected in the Elizabeth River indicates that the Erie Street former MGP site is not the source of the compounds detected. Rather, the data clearly illustrate the conclusions stated in the Elizabeth River Sediment Evaluation (Appendix G of the September 27, 1999 SRIWP), that the Elizabeth River has drained a highly industrial area for over a century that has impacted sediments, and that there were and are many potential sources of impacts to sediment in the Elizabeth River, based on historical and current land use along the Elizabeth River and surrounding water bodies. This is further illustrated by the detection of compounds such as chlorinated VOCs, pesticides, PCBs, dioxin, and some metals in river sediments that are not present at the Erie Street former MGP site. Therefore, evaluation of the impact of the Erie Street former MGP site on the Elizabeth River sediments is considered complete.

Analytical results for surface water samples collected from the Elizabeth River indicate that no compounds were detected above the SE-3 SWQC in any of the surface water samples collected except for the furthest downstream sample collected at SW-1 (Transect 1). The surface water sample collected at SW-1 contained concentrations of arsenic and thallium that exceeded the SW-3 SWQC standards. The analytical results do not indicate a trend in the surface water quality along the section of the river evaluated and do not indicate that the former MGP site is impacting the surface water quality of the Elizabeth River.

Based on the findings of the Phase I SRI and previous investigations, additional remedial investigation work is recommended to complete the remedial investigation of the site. This work includes:

. .

. .

ix

1

P1

Additional subsurface soil and groundwater impact delineation as listed below:

- Subsurface soil to the west along the rail line and to the east of South Second Street.
- Overburden A and B zone groundwater to the east of South Second Street.
- Shallow bedrock groundwater to the east of South Second Street and south of the Elizabeth River.

An additional offsite-upgradient shallow bedrock monitoring well is recommended to evaluate background shallow bedrock groundwater quality in the site vicinity.

Based on groundwater hydrology and groundwater quality data obtained during the Phase I SRI, it is also recommended that previous investigation monitoring wells MW-4, MW-5, MW-6, MW-7, MW-9, MW-10, MW-12, and BP-3 be abandoned to prevent further potential cross-contamination between the overburden A and B zones and to provide better hydraulic information. Additionally, monitoring wells MW-11 and MW-13 can be abandoned as overburdened wells were installed in their vicinity during the Phase I SRI.

It is recommended that the two production wells be abandoned when the monitoring wells are abandoned.

x

1. Introduction

**

1.5

. .

6.4

1.4

NUI Elizabethtown Gas (ETG) entered into a Memorandum of Agreement (MOA) with the New Jersey Department of Environmental Protection (the Department) on June 23, 1992. The MOA required that a remedial investigation and remedial action be conducted at the Erie Street former manufactured gas plant (MGP) site. Numerous investigations were previously completed at the site; however, data gaps remained. ETG contracted GEI Consultants, Inc. (GEI) to perform a Phase I Supplemental Remedial Investigation (SRI) to resolve data gaps at the Erie Street former MGP Site.

This Phase I SRI report presents historical as well as recent site investigation activities and results. The recent site investigation activities are a result of implementing the Phase I SRI Work Plan (SRIWP) that was developed by ETG and GEL working with the Department. The Phase I SRIWP development began after a meeting with the Department, held on November 20, 1996, to discuss the next phase of work to be performed for the site. ETG developed a draft Phase I SRIWP, based on discussions in the November 20, 1996 meeting, and submitted the Phase I SRTWP to the Department on January 13, 1997. ETG received comments on the Phase I SRIWP from the Department in June 1997. In general, the Department's June 1997 comments dealt with dividing the site into areas of concern (AOCs), additional sampling for horizontal and vertical delineation of soil, dense nonaqueous phase liquid (DNAPL) investigation and delineation, Elizabeth River investigation, and off-site delineation issues. ETG responded to the Department's comments with a response letter dated August 19, 1997. ETG's response stated that they considered the site to be one AOC, based on previous sampling results, and that there was no technical basis for dividing the site into AOCs at the time. ETG's position on off-site surface-soil sampling, as discussed in the November 20, 1996 meeting, was one of concern that off-site sampling may produce results that are not indicative of site impacts, but are impacts from diffuse anthropogenic sources. The Department suggested a background soil evaluation and ETG presented a scope for the background soil evaluation in the revised January 1997 Phase I SRIWP. ETG stated that the proposed work plan included adequate sampling to delineate horizontal and vertical delineation of site impacts and to evaluate DNAPL. Finally, ETG expressed concern that sampling of sediment in the Elizabeth River would not be representative of the Erie Street site impacts and provided historical information to support this concern in the January 1997 Phase I SRIWP.

On December 11, 1997, an unscheduled meeting was held on the Erie Street former MGP site with Matt Turner (the Department case manager at the time), and discussions were held regarding ETG's response to the Department's comments on the January 13, 1997 Phase I SRIWP. The discussions centered on site groundwater investigations, off-site surface-soil sampling, dividing the site into AOCs, and river investigations. As a result of this meeting,

~

27

*

47

ŧ.,

6.4

8.4

6.3

6.4

ETG submitted a letter to the Department, dated December 30, 1997, that re-emphasized ETG's position on these specific issues. ETG received a comment letter from the Department dated February 20, 1998 responding to ETG's August 19, 1997 letter. The Department's comments focused on developing AOCs, off-site soil sampling, DNAPL investigations, and river investigations. ETG responded with a letter to the Department on March 10, 1998, restating the rationale for their positions and requesting a meeting to resolve these issues. Although ETG strongly disagreed with the approach, they decided to divide the site into AOCs to allow the on-site investigation to proceed.

On March 24, 1998, a meeting was held among ETG, the Department, and GEI to discuss the issues presented above. ETG submitted a letter, dated April 13, 1998, stating that they would resubmit the revised Phase I SRIWP to the Department on or about May 8, 1998. ETG transmitted the revised Phase I SRIWP to the Department on May 7, 1998. The Department provided comments on the May 7, 1998 Phase I SRIWP to ETG via a comment letter dated November 20, 1998. The Department conditionally accepted the Phase I SRIWP pending the addition of a river investigation and additional on-site soil characterization sampling and analysis (in addition to visual inspection). There were also several new comments that had not been discussed in previous meetings or correspondence, such as analyzing soil samples for total petroleum hydrocarbons (TPH).

ETG provided a response letter, dated March 23, 1999, to the Department's November 28, 1998 comment letter, including clarification of the plan to visually delineate product and analyze soil samples collected below impacts to verify vertical extent as discussed in the March 24, 1998 meeting; the rationale for not analyzing soil samples for TPH; and amendment of the work plan to include Elizabeth River sediment and surface water sampling. ETG included revisions and corrections to the May 7, 1998 Phase I SRIWP as attachments to the comment letter, rather than reissuing four volumes of the Phase I SRIWP. The letter concluded with ETG providing the Department with written notice that they intended to initiate the field program on or about April 26, 1999. On April 16, 1999, ETG contacted the Department as notification that the field work was scheduled to begin at the site on April 26, 1999. The Department stated that they would prefer that ETG postpone field activities pending final Department approval of the Phase I SRIWP, but that ETG could proceed at risk. On April 22, 1999, ETG sent a letter to the Department confirming that the Department had expressed its strong preference that ETG not proceed with the implementation of any portion of the field activities until receiving written approval of the Phase I SRIWP from the Department.

The Department sent ETG a letter responding to ETG's March 23, 1999 response letter on June 29, 1999. This letter conditionally accepted the March 23, 1999 revisions to the Phase I SRIWP pending the incorporation of additional soil samples for characterization purposes. On August 17, 1999, a meeting was held with ETG, the Department (new case manager Gary Lipsius and Ann Hayton), and GEI. The purpose of the meeting was to provide project background information to the new Department case manager. As a result of this meeting.

the Phase I SRIWP was revised and resubmitted by ETG to the Department on September 27, 1999. The revised Phase I SRIWP included the addition of a significant number of soil characterization and vertical delineation samples. The cover letter to the Phase I SRWIP submission to the Department from ETG stated that the field activities would commence on or about October 25, 1999 as had been discussed in a previous telephone conversation on September 29, 1999. ETG notified the Department, by letter dated October 28, 1999, that field activities would be initiated on November 15, 1999. Copies of the correspondence summarized above (without attachments and reports) are included in Appendix A of this report.

Based on the data gaps identified from previous investigations and the comments and concerns of the Department, as detailed in the correspondence summarized above, the overall objectives of this Phase I SRI are to:

- Complete characterization and delineation of surface-soil impacts
- Complete characterization and delineation of subsurface-soil impacts
- Further characterize the hydrogeologic regime at the site
- Further characterize the nature and extent of groundwater impacts
- Investigate the Elizabeth River sediment and surface water quality

1.1 Report Organization

This Phase I SRI Report (SRIR) is organized into the following sections.

Volume I. Section 1 – Introduction Section 2 – Site Background Section 3 – Physical Conditions of the Site and Surroundings Section 4 – Phase I SRI Activities Section 5 – Phase I SRI Results Section 6 – Summary and Conclusions Section 7 – Recommendations References Tables Figures

Plates

. .

3 A

1.4

د.

**

3

Volume II - Appendices

1

174

£ 7

f 7

۰.

A: Project Correspondence (1997-2000)

- B: Phase I SRI Boring Logs, Monitoring Well Construction and Form Bs. Previous Investigation Boring Logs, Monitoring Well Construction, and Test Pit Logs
- C: City of Elizabeth Tax Assessor's Map
- E: Shelby Tube Data
- F: Tidal Survey Data
- G: Previous Investigation Analytical Data

Volume III – Appendix

D: Phase I SRI Data Validation Reports

i a

48

. .

2. Site Background

÷.,

#1

2.1 Site Location and Description

The ETG Erie Street facility, covering approximately 24.5 acres, is presently used for storage, transfer, and distribution of liquid natural gas (LNG). Parts of the facility in the southeastern corner and along the central portion of the northern property boundary are leased for truck parking only. The facility is located in a mixed commercial, residential, and industrial district of Elizabeth, New Jersey. The site is bounded on the north by Third Avenue and private residences; on the east by Bilkay's Trucking Company; on the south by the Elizabeth River; and on the west by Conrail railroad tracks and the New Jersey Turnpike (NJTP). A site location map and a site plan are presented in Figure 1 and Plate 1, respectively.

2.2 Previous Investigations

Extensive remedial investigations have been conducted on the site since 1984. These investigations have been documented and submitted to NJDEP in the following three reports.

- 1. Final Report, Site Investigation, Erie Street Site. Dames and Moore, Cranford, New Jersey, February 23, 1989. (Dames & Moore, 1989)
- 2. Pre-Design Investigations Report (Tasks 1-5). Dames & Moore, Cranford, New Jersey, March 3, 1993. (Dames & Moore, 1993)
- 3. Pre-Design Studies Report, Erie Street Facility, Elizabethtown Gas Company. Dames & Moore, Cranford, New Jersey, January 31, 1994. (Dames & Moore, 1994)

The results of these investigations were summarized and consolidated in the September 27, 1999 Phase I SRIWP. The results of these previous investigations are incorporated in Section 5 of this Phase I SRIR, as appropriate. The site history, surrounding land use, and other information presented in this section are based on information included in the previous investigation results. These subsections also were included in the September 27, 1999 Phase I SRIWP.

2.3 Site History

Prior to serving in its present capacity, the facility served as a water gas manufacturing plant from approximately 1895 to 1952. In 1952, the plant was retrofitted to manufacture oil gas.

- 4

- 4

E 3

The oil gas manufacturing process ceased circa 1974, after which the facility was used as a storage and transfer facility for LNG and propane, and as an administrative control center for gas distribution.

Buildings and structures associated with gas manufacturing operations were clustered in the northern portion of the site, along Third Avenue. The majority of the structures associated with the former gas manufacturing process have since been removed; former MGP-related structures still existing at the site include two office buildings.

The course of the Elizabeth River, which borders the site to the southwest, was modified during the late 1970s and early 1980s by the United States Army Corps of Engineers (COE). The channel was re-aligned to run approximately west-east, and flood control embankments, containing a steel sheet-pile core, were constructed along the river as part of its flood control program in the City of Elizabeth. As part of the realignment process, the COE acquired a small portion of the property located at the southeastern section of the former site.

The historical review of the ETG Erie Street facility as summarized herein is based on the following list of Sanborn Fire Insurance (Sanborn) maps, aerial photographs, and site plans as obtained and interpreted by Dames & Moore. Copies of the Sanborn maps, aerial photographs, and the site plans, as well as the detailed description of specific facility alterations (additions and removals), are provided in the Dames & Moore 1994 report. A compilation of historical site structures is provided on Plate 1.

Sanborn Maps	Aerial Photographs	Site Plans	
1903	April 1940	April 1949	
1922	February 1951	June 1950	
1951	April 1959	January 1955	
1963	April 1961	May 1973	
1969	December 1966		
1960	April 1976		
	April 1979		
	March 1991		

In 1889, the Metropolitan Gas Light Company (MGLC) initiated gas-manufacturing activities at the Erie Street site. At this time, the MGP property occupied a total area of 2 acres, located between Third Avenue (to the northeast), Erie Street (to the northwest), Florida Street (to the southeast), and Fourth Avenue (to the southwest).

In 1892, the Elizabethtown Gas Light Company (EGLC) purchased the MGLC MGP property and additional properties to the west-southwest. By 1903, the subject site extended between Third Avenue, Florida Street, Fourth Avenue, and Erie Street. It should be noted

÷

. 4

n

¥ 7

r

. .

. .

4.4

•4

that Fourth Avenue and the extension of the streets traversing the site between Third and Fourth Avenues were paper roads (i.e., not physically present). MGP-related structures existing at this time included a small office building, a retort/purifier house, one 340,000cubic-foot (cf) gas holder, one 30,000-cf relief holder, two drip shanties, a storage shed, and a railroad siding.

A facility-owned and operated by the New York Chemical Company was situated to the west of the MGP site between Third Avenue, Florida Street, Fourth Avenue, and Erie Street. Anatron Chemical Company existed to the west between the A&E Railroad, Baltic Avenue, Third Avenue, and Fourth Avenue. A one-story house/shed was shown at the southwestern corner of Third Avenue and Geneva Avenue.

By 1922, the Sanborn maps indicate ETG's property extended between Florida Street, the Elizabeth River, Delaware Street, and Third Avenue. The 1922 Sanborn map also indicate the expansion of site operations and facilities (see Dames & Moore 1994 report for details).

The map indicates that timber was stored on the former New York Chemical Company property, located west of the MGP site. Furnace houses located in the center of this property were dismantled. The A&E Railroad, located on the western boundary of the New York Chemical Company property, was changed to CRR of New Jersey.

Kalbfleish Corporation replaced Anatron Chemical Company, which was located on the western side of the CRR of New Jersey property, between Baltic Avenue, Third Avenue, and Fourth Avenue. Anatron Chemical Company installations shown on the 1922 Sanborn map included sulfuric acid chambers, a sulfur pile, hydrochloric acid chambers, a sulfate of soda tank (southern segment of the property), and sulfuric acid storage (northeastern segment of the property).

The 1940 aerial photograph indicated that significant expansion of facilities took place between 1922 and 1940 (see Dames & Moore 1994 report for details).

The areal extent of the Elizabeth Consolidated Gas Company former MGP property was further extended to the west by the inclusion of the adjacent former New York Chemical Company property. A storage house (located near the northwestern boundary of the property, oriented parallel to the CRR of New Jersey) was shown in this portion of site. The storage house was constructed sometime between 1922 and 1940. It is unknown whether this structure was present on the property prior to ownership by Elizabethtown Consolidated Gas Company. Two gas holders were constructed (1928) on the northwest corner of the property adjacent to Third Avenue and South Second Street.

Between 1940 and 1951, additional facilities including a 10-million-cf holder (Holder No. 8), were constructed. To the west of the property, adjacent to the western side of the CRR of New Jersey, construction of the New Jersey Turnpike was underway.

•	PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT
	NUI ELIZABETHTOWN GAS
m	APRIL 27, 2001

e 7

. :

. ،

1.4

Between 1951 and 1963, there were no significant changes on the Erie Street site. The four purifiers located southeast of the 1-million-cf gas holder were dismantled between 1955 and 1961 and a switch house was built in their place. Also during this time period, the 300,000-cf relief holder north of the 3-million-cf gas holder was removed from the site. No changes were observed in the site between 1961 and 1963.

Between 1963 and 1966, an aerial photograph indicated that property boundaries and site structures do not appear to have been changed since 1961, with the exception of the rail spur. This photograph indicated that the railway line traversing the site east-west and the center of the facility was removed.

Between 1966 and 1969, no visible modifications were made to the facility.

By 1976, the LNG tank and associated berm was installed and the existing railroad spur was in place. Many of the site structures were removed or dismantled during the period between 1969 and 1976. Bilkay's Trucking Company, a transportation company, started operating on the adjacent property to the east of the ETG property, across South Second Street.

Between 1976 and 1980, aerial photographs and Sanborn maps indicate additional removal of MGP-related structures at the site (see Dames & Moore 1994 report for details) and realignment of the Elizabeth River was in progress to the east of the site at the southern boundary of the Bilkay Express property.

By 1991, most remaining MGP-related structures were dismantled with the exception of three gas holders on the northeast corner of the property. A portion of the property located in the southeastern corner was leased to Bilkay's for use as a parking lot. The mid-northeast section of the site, adjacent to Third Avenue, was also leased for truck parking. Realignment of the Elizabeth River, adjacent to the site, was completed.

The three remaining gas holders were dismantled and removed from the site in 1997 and 1998. Dismantling of the propane gas distribution/storage system was initiated in late 1999/carly 2000.

3. Physical Conditions of the Site and Surroundings

3.1 Topography

177

-

. .

: *

ار د

n 4

The Erie Street site was surveyed by the RBA Group of Morristown, New Jersey, a New Jersey-licensed surveyor, during the 1993 Dames & Moore investigation. The surveyor mapped the locations of the on-site monitoring wells, test borings, test pits, cone-penetration tests, and piezometers for their horizontal and vertical locations. The positions of these locations were measured in coordinates referenced to New Jersey State Plane Coordinate System, NAD 83, and the elevations were referenced to the National Geodetic Vertical Datum (NGVD 1929 Datum). The vertical datum was transferred from geodetic benchmark NJGS Disk R-37.

A base map was prepared at a scale of 1 inch equals 50 feet, covering the site and surrounding area extending from the Elizabeth River to Third Avenue, and from South Second Street to the railroad tracks of the Central Railroad of New Jersey. Topographic contours were generated from spot elevations obtained at 50-foot grid intersections to the nearest one-hundredth (0.01) foot in paved areas, and to the nearest one-tenth (0.10) foot in unpaved areas. Plate 2 illustrates the topographic contours for the site.

The site gently slopes towards the Elizabeth River from an elevation of approximately 9.5 feet above mean sea level (MSL) in the northern portion of the site to an elevation of approximately 7 feet above MSL in the southern portion of the site. An exception to this terrain is a portion of the site centrally located along the western boundary where an earthen fill embankment, which carries a railroad spur onto the site, is present at approximately 15 to 20 feet higher than the grade of the surrounding areas. The southern portion of this fill embankment slopes down to an elevation of approximately 15 feet above MSL, and extends into the center of the site where it serves as a railroad embankment.

3.2 Surrounding Land Use

In 1993, Dames & Moore reviewed the land use within a 1,000-foot radius around the site using information gathered from City of Elizabeth Zoning Maps, and the Elizabeth Tax Assessor's Office, as well as from observations made during a cursory field inspection. The official use of properties within a 1,000-foot radius was obtained from the City of Elizabeth based on the actual lot number, and is provided in two maps in Appendix C.

Maps and listings obtained from the Elizabeth Tax Assessor's Office indicate that there are a total of 431 real properties within the search area. These properties include eight industrial (Code 4B) and 34 commercial (Code 4A) facilities, and 389 units classified as other, including vacant land, residential farm (regular and qualified), apartment, schools, public properties, church/charitable properties, cemeteries/graveyards, and other exempt properties (Codes 1, 2, 3A/B, 4E, 15A/B/C/D/E/F).

The Eric Street facility is zoned as M-2, as shown on the Zone of the City of Elizabeth, New Jersey (amended June 30, 1971). As per the city code used in identifying various areas, the areas designated as Zone M-2 can be used as follows.

Auto-related services

57

*7

2 1

. ب

4 -

. .

. .

. ;

÷.

. .

....

- Selected commercial and light manufacturing
- Wholesale and storage
- Distribution and trucking
- Light manufacturing
- General industrial

The Bilkay's Trucking facility, located to the east of the ETG facility and extending to First Street, is also zoned as M-2. The area to the east of First Street up to the Elizabeth River is also zoned as M-2.

A portion of the land north of Bilkay's Trucking facility, extending to the north of Third Avenue and east of South Second Street, is designated as Zone M-1, which could be used for all the purposes listed for M-2, except "general industrial." A block of land north of Second Avenue and east of South Second Street is designated as R-3, a designation used for single/multi-residential dwellings.

The area north of the ETG facility enclosed between Merritt Avenue, South Second Street, Third Avenue, and Lt. Glenn Zamorski Street is zoned as C-I/R-2. Properties with this designation could be used as single and two-family dwellings, as well as for professional offices and neighborhood and local convenience, general, and specialty retail stores.

The New Jersey Tumpike (NJTP) is located approximately 500 feet to the west of the site. The area to the west of the NJTP is zoned as residential (R-2 and R-3). An auto-related service center, a motel, and an NJTP yard are located between Trenton Avenue and the NJTP to the west of the NJTP.

The area to the south of the ETG site, across the Elizabeth River, is occupied by the Joint Meeting Wastewater Treatment Plant.

To evaluate the presence of sites with potential environmental concerns within the surrounding area, an environmental database search was performed by Environmental Data

63

21

Resources (EDR) for Dames & Moore. The EDR report presents maps showing facilities within 1 mile of the Erie Street site and the locations of the sites within a 1-mile radius of the site with existing or potential environmental concerns that are subject to regulatory action. This report is included in Appendix C.

The Elizabeth River runs along the site's southern boundary. The river is subject to the provisions of NJAC 7:9-4, Surface Water Quality Standards, which establishes rules by which NJDEP classifies surface water bodies, provides for their designated uses, and develops policy for protecting surface water bodies.

In accordance with Surface Water Quality Standards, the Elizabeth River has been classified as an SE-3 class waterway. The "SE" designation is the surface water classification applied to saline waters of estuaries, and the "3" indicates water with the fewest designated uses of the SE class. As such, designated uses of the Elizabeth River are restricted to the following.

- Secondary contact recreation
- Maintenance and migration of fish populations
- Migration of diadromous fish
- Maintenance of wildlife
- Any other reasonable use

Less restrictive designated uses for SE-1 and SE-2 classified waters include primary contact recreation, shellfish harvesting and maintenance, and migration and propagation of natural and established biota. These less restrictive uses are not applicable to the Elizabeth River.

3.3 Wetlands Review

In 1993, Dames & Moore evaluated the potential presence of wetlands in the site vicinity by contacting appropriate NJDEP offices and federal agencies, performing a field inspection, and reviewing the following documents and maps pertaining to this area.

- Environmentally Sensitive Areas Guidance Document, prepared by the NJDEP
- National Wetlands Inventory Map, prepared by the U.S. Department of the Interior, Fish and Wildlife Services
- Freshwater Wetlands Map for Elizabeth SW, prepared by the NJDEP
- Flood Insurance Rate Map
- Aerial photographs

. .

Copies of the maps are provided in Appendix D of the Dames & Moore 1994 report.

Based on Dames & Moore's review of these documents, maps, photographs, and the field inspection, no wetlands were determined to be present at or in the vicinity of the site, except for the Elizabeth River.

3.4 Regional Setting

.....

....

The regional setting information reported herein was reported in the 1993 Site Investigation Report (Dames and Moore, 1993). The Erie Street former MGP site is located in Elizabeth, Union County, New Jersey. Union County lies within the Piedmont Plateau physiographic province. The province is characterized as a region of low-lying plains and gently sloping hills with occasional basalt ridges. Altitudes range from approximately 550 feet along the Watchung basalt ridges to sea level at the Arthur Kill near the site area. Topography and surficial features are primarily the result of Quaternary glacial events, which both scoured the existing bedrock surfaces and deposited a mantle of lacustrine deposits. In the Elizabeth area, the glacial deposits are reported to be primarily ground moraine deposits (till that was deposited from below the glaciers as the ice retreated). Bedrock underlying the site consists of the Triassic Brunswick Formation, which consists of soft red shales and sandstones and serves as the most important aquifer in the county. However, no public water supply well fields tapping the bedrock are reported in the City of Elizabeth. Reportedly, valley fill deposits (glacial soils and gravels that accumulated in ancient bedrock valleys) serve as additional sources of groundwater in the county. Several drainage basins are located in Union County. The site lies within the Elizabeth River basin, which encompasses the majority of Elizabeth.

3.5 Local Water Supply and Well Search

Public water in the vicinity of the site is provided by the City of Elizabeth Water Department. According to the New Jersey Municipal Data Book (1990 Edition), all city water is provided by two municipal sources. The city water is supplied from two surface water reservoirs (Spruce Run Reservoir and Round Valley Reservoir). According to discussions with representatives of the City of Elizabeth Water Department, City Engineer and Health Department, no information about domestic wells in the area is on file with the City of Elizabeth. Furthermore, based on discussions with the City of Elizabeth Tax Assessor's Office, the two residential properties with reported domestic wells are connected to city water and are presently owned by A. Mazza (property with Well 21, located at 328 Palmer Street) and by C.B. Sortino (property with Well 22, located at 327 Redcliff Street).

Notwithstanding, a well search was performed by Dames & Moore to characterize the type and distribution of existing wells within a ½-mile radius of the facility. The well search was primarily based on records provided by the NJDEP Bureau of Water Allocation. Two hundred off-site monitoring/exploration wells/piezometers/test borings, one recovery well,

27

77

. .

1 1

and six production wells were identified within approximately ½ mile of the facility. A summary of well construction details, NJDEP well records, and a well location map are provided in the Dames & Moore 1994 report.

All of the six production wells identified in the well search are bedrock wells. All other wells (i.e., monitoring wells, piezometers, recovery wells) are overburden wells. The total depths of the six production wells range from 92 to 467 feet. Four wells (wells 51, 94, 95, and 150) out of the six production wells were reported to have been installed for industrial use. The other two production wells (wells 21 and 22) were reported as domestic wells. With the exception of well 51, all of the industrial wells are located side gradient or upgradient of the site. Well 51 is located approximately ½ mile downgradient of the site, south of the Elizabeth River, which is classified as Class SE3 surface water (i.e., saline water). The two reported domestic wells are located in residential properties upgradient of the site.

In 1994, subsequent to this well search, the Department identified four production wells on the Eric Street MGP site. ETG was previously unaware of these wells, and attempted to gather documentation regarding the wells and to identify their locations. The well driller was contacted and notes from the well installation were retrieved. Historic site plans were reviewed and two of the four wells were preliminarily located. Based on the driller's notes regarding low (2 gallons per minute [gpm]) to no (0) gpm) well yield for two of the four wells, it is ETG's belief that, although permits were obtained for the installation of four wells, only two were actually installed. The existence and location of the two wells identified on historic site plans were confirmed by field inspection in February 1995 and in 1999. The two wells located on site were designated FW-1 and FW-2. FW-1, located approximately 200 feet south of the gate house in the northern portion of the site, had an 8inch-diameter steel casing, the top of which was approximately 2 feet below land surface (bls). The well depth and water level were 102.4 feet and 3.5 feet below the top of casing, respectively. FW-2, located approximately 80 feet north of FW-1 in the area leased for truck parking, also had an 8-inch steel casing, the top of which was approximately 0.8 foot bls. The casing was filled with brick and rubble to a depth of at least 1.5 feet. FW-2 could not be probed deeper than 1.5 feet below the top of the casing. Both wells were marked with traffic cones and the soil excavated to locate the wells was backfilled around the wells. The abandonment of these two wells will be performed concurrently with the abandonment of specific previous investigation monitoring wells.

Ĵ.

. 4

1

20

5.7

* *

. .

ς. γ

. .

-4

- 6

4. Phase I SRI Site Activities

Phase I SRI field investigations were initiated at the Erie Street former MGP site in November 1999. These investigations were conducted in accordance with the NJDEPapproved Phase I SRIWP, dated September 27, 1999. Additional investigative work, which was beyond the scope proposed in the Phase I SRIWP, was conducted to address site conditions observed during implementation of the Phase I SRI field sampling program. Field activities for this investigation included exploratory test trenching, soil boring drilling, monitoring well installation, soil, sediment, surface water, and groundwater sampling and laboratory analysis, groundwater level monitoring, and a tidal survey. This work was completed during various field events that occurred between November 1999 through February 2001, as summarized in the following discussions. The Phase I SRI sample locations referenced below are illustrated on Plate 1.

November 15, 1999 through February 25, 2000

The first field event began November 15, 1999 and extended to February 25, 2000. This event began with the drilling of soil borings B-24, B-34, B-33, B-12, B-29, and B-30 to assess subsurface stratigraphic conditions such that the vertical and horizontal positioning of future monitoring wells to be installed at the site could be determined. Specifically, the soil borings were advanced to determine whether a previously reported peat layer was continuous or whether a silt/clay layer merges with the peat to form a continuous confining unit across the site, and to determine the general stratigraphic units that should be screened with monitoring wells to evaluate the groundwater quality and distribution of impacts at the site. After the soil borings were drilled, monitoring wells MW-15B, MW-16B, MW-16A, MW-20A, MW-14B, MW-19A, MW-17B, MW-18B, MW-22A, MW-21B, MW-22B, MW-19B, MW-9D, MW-21A were installed between November 29, 1999 and December 21, 1999. Monitoring well pair MW-23A/23B was not installed as proposed due to thin overburden in the northeastern corner of the site. It was decided that existing well MW-3 would be sufficient to evaluate overburden groundwater quality in this area of the site.

Soil boring and monitoring well locations are illustrated on Plate 1. Soil boring and monitoring well construction logs are provided in Appendix B. Copies of soil boring and well construction logs from previous investigations are also provided in Appendix B.

Sixty-six test pits were excavated at the site between January 5, 2000 and February 7, 2000 to visually characterize/delineate soil conditions. As requested by the Department, samples of visibly impacted soil were collected from various locations and submitted for analytical testing. Such testing was requested by the Department to determine the range in concentration of MGP-related constituents present at the site. Test pits in the general order

71

73

2.1

: 1

. .

. .

. .

- 4

of excavation, include the following: TP-27, TP-32, TP-35, TP-47, TP-48, TP-49, TP-50, TP-54, TP-55, TP-65, TP-66, TP-37, TP-38, TP-39, TP-40, TP-41, TP-42, TP-44A, TP-44B, TP-72, TP-39A, TP-70, TP-71A, TP-71B, TP-16A, TP-16B, TP-18, TP-19, TP-15, TP-17, TP-17A, TP-22, TP-23, TP-23A, TP-64, TP-68/69, TP-30, TP-56, TP-57, TP-57A, TP-59, TP-24, TP-25, TP-26, TP-28, TP-29, TP-43, TP-45(A&B), TP-46, TP-33, TP-36, TP-36A, TP-51, TP-31, TP-73, TP-75, TP-34, TP-34A, TP-60, TP-61, TP-62, TP-62A, TP-63, TP-B-5, and TP-B-6. A test pit was excavated in the vicinity of a former tar separator and was identified as TP-TS-2.

Subsequent to test trenching activities, additional soil borings were drilled to complete soil characterization and delineation at the site as proposed in the work plan. Such borings include B-35, B-22, B-23, B-15, B-11, B-14, and B-16. Additional borings SB-TP-39/TP-39A, SB-TP-30, SB-TP-75, SB-TP-14, and SB-TP-25 that were not identified in the work plan were drilled to delineate the vertical extent of impacts observed in the corresponding test pits.

Soil samples were collected for laboratory analysis during test pitting, soil boring, and monitoring well installation activities. Table 1 provides a summary of the soil samples collected, the rationale for their collection, and a summary of the analyses performed. QA/QC samples are summarized in Table 2. The observations recorded during the excavation of test pits are summarized in Table 3. The hydrogeologic data generated from the soil boring, monitoring well installation, and test pit activities are presented in subsections 5.1 and 5.2 of this report. The subsurface-soil analytical results are presented and discussed in subsection 5.3 of this report.

May 22, 2000 and June 9, 2000

Between May 22, 2000 and June 9, 2000, the potential presence of nonaqueous phase liquid (NAPL) was investigated and water levels were measured in the following monitoring wells and piezometers: MW-1, MW-1D, MW-2, MW-2D, MW-3, MW-4, MW-5, MW-5D, MW-6, MW-6D, MW-7, MW-7D, MW-8, MW-8D, MW-9, MW-9D, MW-11, MW-12, MW-13, MW-14A(BP-2), MW14B, MW-15A(BP-1), MW-15B, MW-16A, MW-16B, MW-17A(BP-8), MW-17B, MW-18A(BP-4), MW-18B, MW-19A, MW-19B, MW-20A, MW-20B(BP-6), MW-21A, MW-21B, MW-22A, MW-22B, BP-3, BP-5, and BP-7.

Groundwater samples were collected during the same time period from the following wells: MW-1D, MW-2D, MW-5D, MW-6D, MW-7D, MW-8D, MW-9D, MW-14A, MW-14B, MW-15A, MW-15B, MW-16A, MW-16B, MW-17A, MW-17B, MW-18A, MW-18B, MW-19A, MW-19B, MW-20A, MW-20B, MW-21A, MW-21B, MW-22A, and MW-22B.

The groundwater samples were analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX), target compound list (TCL) base-neutral semivolatile organic compounds plus 15 tentatively identified compounds (BNs + 15), target analyte list (TAL) metals, total cyanide,

and amenable cyanide. The QA/QC sampling is summarized in Table 2. The hydrogeologic data generated from these activities are summarized and presented in subsections 5.1 and 5.2 of this report. The groundwater analytical results are summarized and discussed in subsection 5.3 of this report.

June 26 and July 7, 2000

71

77

77

17

: *

e •

. .

÷

.

Ł

The Elizabeth River surface water and sediment sampling investigation was performed between June 26 and July 7, 2000. One set of surface water samples was collected at the approximate mid-point of each of seven transects, starting at the farthest downstream location, for a total of seven surface water samples. Surface water sampling was scheduled to correspond with the low ebb-tide event. Sediment samples were collected from four locations along each of seven transects (see Plate 1). Two depth intervals were sampled at each of the four locations on each transect for a total of 56 sediment samples. The sediment and surface water samples were analyzed for: TCL volatile organic compounds (VOCs), TCL semivolatile organic compounds and 15 tentatively identified compounds (SVOCs + 15), total cyanide, TAL metals, pesticides, polychlorinated biphenyls (PCBs), herbicides, total organic carbon (TOC), and dioxin.

The QA/QC samples are summarized in Table 2. The observations noted during sampling and the sediment and surface water analytical results are summarized and discussed in subsection 5.3 of this report.

August 21 and August 25, 2000

Between August 21, 2000 and August 25, 2000, water levels were measured in the following monitoring wells and piezometers: MW-1, MW-1D, MW-2, MW-2D, MW-3, MW-4, MW-5, MW-5D, MW-6, MW-6D, MW-7, MW-7D, MW-8, MW-8D, MW-9D, MW-9D, MW-10, MW-11, MW-12, MW-13, MW-14A(BP-2), MW-14B, MW-15A(BP-1), MW-15B, MW-16A, MW-16B, MW-17A(BP-8), MW-17B, MW-18A(BP-4), MW-18B, MW-19A, MW-19B, MW-20A, MW-20B(BP-6), MW-21A, MW-21B, MW-22A, MW-22B, BP-3, and BP-7. The results of this survey are presented and discussed in subsection 5.3 of this report.

In addition, the need for additional monitoring wells north of Third Avenue was identified to better evaluate shallow groundwater flow direction north of the site. Therefore, property owners north of Third Avenue were identified from tax assessor maps for well permit purposes.

November 20, 2000 through February 21, 2001

Access to drill soil borings located along South Second Street was approved by the City of Elizabeth on October 13, 2000. Therefore, beginning November 20, 2000, borings B-17, B-

....

.

18, B-19, B-20, and B-21 were drilled along South Second Street as specified in the September 27, 1999 Phase I SRIWP.

In addition, GEI determined the need to further evaluate the contents, structure, and integrity of two subsurface holder structures on site. Therefore, borings HB-1, HB-1A, HB-2, HB-3, and HB-4 were drilled at the locations illustrated on Plate 1. GEI also identified the need for additional vertical delineation data based on a cursory review of analytical and geologic data collected during the first field event. Therefore, borings VB-1, VB-2, VB-3, and VB-4 were drilled at the locations illustrated on Plate 1. Based on preliminary groundwater elevation contour maps, six additional monitoring wells were installed north of Third Avenue to better define groundwater flow direction. The new wells installed north of Third Avenue include MW-23A, MW-23B, MW-24A, MW-24B, MW-25A, and MW-26A.

Soil boring and monitoring well construction logs are included in Appendix B. Subsurfacesoil analytical sampling rationale is provided in Table 1, along with a summary of the analyses performed on each sample. The QA/QC sampling is summarized in Table 2. The analytical and hydrogeologic data from these activities are summarized and presented in subsections 5.1 through 5.3 of this report.

To evaluate the extent of potential surface impacts and to evaluate surface-soil quality near the site, surface-soil samples SS-1, SS-2, SS-3, SS-4, and SS-5 were collected from grassy medians between the sidewalk and curb on the northern side of Third Avenue. Surface-soil samples could not be collected along the southern side of Third Avenue due to the paved surface. All surface soil samples were analyzed for BTEX, BNs + 15, TAL metals, total cyanide, and amenable cyanide. The analytical results are summarized and discussed in subsection 5.3 of this report.

Beginning January 8, 2001, groundwater samples were collected from the monitoring wells sampled in May 2000, as well as from the following additional wells: MW-3, MW-23A, MW-23B, MW-24, MW-24A, MW-25A, and MW-26A. Prior to sampling, water levels were measured and the potential presence of NAPL was evaluated in each monitoring well. The groundwater samples were analyzed for the same parameters as in the May 2000 sampling event. The hydrologic and analytical data are summarized and discussed in subsections 5.2 and 5.3 of this report.

During the week of January 22, 2001, a tidal survey was performed using pressure transducers installed in several monitoring wells, two catch basins, and the Elizabeth River. The tidal survey results are presented in subsection 5.2 of this report.

On February 21, 2000, water levels were measured and the potential presence of NAPL was evaluated all monitoring wells at the site. These data were compiled and are presented in subsections 5.2 and 5.3 of this report.

۰.

```
PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT
NUI ELIZABETHTOWN GAS
APRIL 27, 2001
```

.

81

Deviations from September 27, 1999 Phase I SRIWP

Several proposed activities were not completed as described in the September 27, 1999 Phase I SRIWP due to site conditions or access issues and several additional investigation activities were performed based on site observations. A summary of these deviations from the September 27, 1999 Phase I SRIWP is as follows.

Surface-soil samples proposed in the Phase I SRIWP immediately adjacent to the site (i.e., south side of Third Avenue) were not collected due to paving. However, five surface-soil samples (SS-1 through SS-5) were collected from the grassy medians between the sidewalk and curb on the northern side of Third Avenue.

Borings B-25 through B-28 were not completed along the western site boundary because access has not been obtained from Central Railroad of New Jersey. Access negotiations with the railroad are currently in progress. Boring B-13 could not be drilled due to the abundance of underground and overhead utilities. Proposed nested pair of monitoring wells MW-23A/B were not installed in the northeastern portion of the site because the overburden was not of sufficient thickness to warrant additional wells in this area of the site. Previously installed monitoring well MW-3 will be used to evaluate overburden groundwater quality in this portion of the site.

Several test pits and borings could not be drilled due to conflicts with multiple underground or overhead utilities and on-site structures. These sample locations include B-31, B-32, B-13, TP-21, TP-20, TP-74, TP-53, TP-52, and TP-58. Test Pit 14 was not excavated but was replaced with boring SB-TP-14 and TP-B5. Test Pit 67 was not excavated but was replaced with angle borings HB-1 and HB-1A and boring B-30.

As described previously, several additional borings (SB-TPs and VBs) were drilled to delineate the vertical extent of impacts observed in test pits and in other areas of the site. Several borings (HBs) were drilled to evaluate the contents, structures, and integrity of two subsurface gas holders. Several additional monitoring wells were installed to better evaluate the direction of groundwater flow.

4.1 Field Activity Methodologies

4.1.1 Soll Boring, Monitoring Weil Installation/Development and Subsurface-Soll Sampling

All drilling activities conducted from November 1999 through February 2000 were performed by Talon Drilling, Inc. of Trenton, New Jersey. All drilling activities conducted from November 2000 through January 2001 were performed by Uni-Tech Drilling of Malaga, New Jersey.

. .

ŧ٠

٠

2

4.4

۰.

Soil borings B-33, B-34, B-35, B-12, B-30, SB-29, B-22, B-23, B-14, B-15, SB-16, SB-TP39, SB-TP30, SB-TP75, SB-TP14, and SB-TP25 were advanced using a truck-mounted drill rig equipped with a pneumatic direct-push sampler. A 2-foot by 3-inch macrosampler equipped with dedicated, disposable, acetate liners was advanced ahead of 3¹/₄-inch temporary casing.

Soil borings B-17, B-18, B-19, B-20, B-21, B-24, B-34, VB-1, VB-2, VB-3, VB-4, HB-1, HB-1A, HB-2, HB-3, HB-4, and monitoring wells MW-19A, MW20A, MW-21A, MW-21B, MW-22A, MW-23A, MW-23B, MW-24A, MW-24B, MW-25A, and MW-26A were advanced using a truck-mounted drill rig and hollow-stem auger (HSA) drilling methods. Soil samples were collected using 2-foot by 3-inch stainless-steel split spoons. All soil borings were tremie-grouted from bottom to top upon completion. Displaced groundwater was collected in 55-gallon drums and stored on site for subsequent off-site disposal.

Soil borings for monitoring wells MW-14B, MW-15B, MW-16B, MW-17B, MW-18B, MW-19B, and MW-22B required the installation of an outer casing to prevent the downward migration of impacted soils. HSA drilling methods and continuous split-spoon sampling were conducted from ground surface until a confining unit was encountered (peat layer) at which point a steel outer casing was installed. Outer casings were installed using 12¹/₄-inch inside diameter (I.D.) augers advanced approximately 1 to 2 feet into the peat layer. Teninch outside diameter (O.D.) steel casing was inserted into the borehole and tremie grouted into position. Outer casings were allowed to set for a minimum of 48 hours prior to continuation of sampling. Upon installation of the outer casings, soil borings were advanced using 4¹/₄-inch hollow-stern auger (HSA) and continuous split-spoon sampling.

Monitoring wells MW-14B, MW-15B, MW-16A, MW-16B, MW-17B, MW-18B, MW-19A, MW-19B, MW-20A, MW-21A, MW-21B, MW-22A, and MW-22B were installed by Talon Drilling, Inc. using 4-inch diameter, Schedule 40 polyvinyl chloride (PVC) casing, 20-slot PVC screens. The wells were constructed with a sand filter pack, sand choke, and bentonite grout, according to Department guidelines.

Monitoring wells MW-23A, MW-23B, MW-24A, MW-24B, MW-25A, and MW-26A were installed by Uni-Tech Drilling, Inc. using 2-inch diameter, Schedule 40 PVC casing, 20-slot PVC screens. The wells were constructed with a sand filter pack, sand choke, and bentonite grout according to Department guidelines.

During the installation of shallow bedrock monitoring well MW-9D, overburden soil sampling was completed using traditional hollow-stem auger drilling methodologies. HSAs were advanced and soils were sampled continuously using 3-inch diameter, 2-foot long split spoons. Competent bedrock was encountered at approximately 28 feet bls, at which point a 6-inch diameter steel casing was advanced approximately 4 feet into the competent rock and pressure grouted into place. The casing was allowed to set for 72 hours prior to continuing. A roller bit was advanced 2 feet below the casing, and a 10-foot core was collected from 34

F 1

Ø.7

2

÷

ι.

L .

• •

• *

. .

to 44 feet bls, using a 21/2-inch core barrel. The 10-foot core (100% recovery) consisted of brown siltstone with few fractures, no staining, and no odors was collected. After the core was removed, the core barrel hole was reamed out to a diameter of 6 inches, using a tricone roller bit.

Subsurface stratigraphy was logged and soil conditions were evaluated through visual and olfactory screening and portable field screening instruments (photoionization [PID] and/or flame ionization detector [FID]). As specified in the Phase I SRIWP, the presence of product was noted using the following visual and olfactory definitions. Two additional categories were, however, added during implementation of the Phase I SRI field program. These two categories include "oil" and "tar".

- Stained Soil. Soil that is stained a color differing from the color of non-impacted soil or fill material observed in the area is defined as stained soil. The color and consistency of the staining should be identified (i.e., wet silty sand stained black, grading to dark brown at bottom of interval). Samples exhibiting sheens and/or product as described below should not be identified as stained.
- Sheens. Sheens are typically identified by soils displaying iridescence. Sheens are typically noted in moist to wet soil that has marginal product present (i.e., more than stained but no significant separate product phase).
- Residual Product. Residual product is NAPL that exists in the subsurface at less than pore space residual saturation levels; therefore, it is held in soil pore spaces by capillary forces. Residual product will remain trapped within the pores of the porous media unless the viscous forces are greater than the capillary forces holding the product in the pores. Capillary pressure will also be reduced if the soil is disturbed, releasing the residual product from the pore spaces. Residual product can be identified as discrete zones of product within discrete pore spaces of soil. If possible, the product should be identified as tar, oil, or other.
- Free-Phase Product. Free-product is NAPL that exists in the subsurface in a volume greater than the pore space residual saturation volume; therefore, it exists in the subsurface with a positive pressure such that it can flow through the subsurface.
 Free-phase product will flow through the subsurface until a confining unit is reached.
 If possible, the product should be identified as tar, oil, or other.
- Oil. During the Phase I SRI field investigation, the term "oil" was used to characterize free and/or residual product that exhibited a distinct fuel oil or diesel fuel type odor, distinctly different from MGP-related odors/impacts. The use of the term oil as it is applied, should be considered subjective and is based solely on the experience of the field personnel.

24

**

.,

1.4

1

٤

. .

- Tar. During the Phase I SRI field investigation the term "tar" was used to characterize free and/or residual oily product that exhibited a distinct coal tar type odor. Generally gold, brown, or black in color. The use of the term tar as it is applied, should be considered subjective and is based solely on the experience of the field personnel.
- Solid Tar. Product that is present in the solid or semi-solid phase is defined as solid tar. The extent of the solid tar should be identified (i.e., small pieces of solid tar should be differentiated from a layer of solid tar).
- **Purifier Waste.** Purifier waste is brown/rust or blue/green wood chips or blue/green granular material. It is typically associated with a distinctive sulfur odor.
- Odor. Although odor is a very subjective sense, the degree of odor should be noted with as much consistency as possible. Odors should be identified as slight, moderate, or heavy. The type of odor should also be identified (i.e., sulfur or rotten eggs [purifier water]; naphthalene or moth balls [coal tar]; petroleum, oil, gasoline, etc.).
- Instrument Readings. Readings from a flame ionization detector (FID) and/or a photoionization detector (PID) will also be noted in the log for each test pit.

All sampling and drilling equipment decontamination was conducted in accordance with requirements set forth in the New Jersey Field Sampling Procedures Manual (1992).

After installation the wells were developed in accordance with New Jersey Field Sampling Procedures Manual (May 1992). All drill cuttings and waste fluids were collected in 55gallon drums and secured on site prior to disposal. The location and elevation of the top of the inner casings of the wells were surveyed by the RBA Group following well development.

4.1.2 Test Plt Excavation and Subsurface-Soil Sampling

All test pits were excavated using a John Deere model 410D backhoe equipped with a 3-footwide bucket. Soil samples were collected either using a telescoping stainless-steel sampling tool or directly from the test pit side wall using a stainless-steel spoon. All test pit sampling equipment was decontaminated prior to each use.

4.1.3 Groundwater Level Measurement, DNAPL Evaluation, and Groundwater Sample Collection

Water level measurements were performed in site monitoring wells. Prior to water level measurements, all monitoring wells were located, the expandable caps were removed, and

**

23

٤.,

...

P +

the static water wells were allowed to equilibrate for a minimum of one hour. Water levels were measured to the nearest 0.01 foot using a Solinst water level meter Model 101. Measurements for the presence of DNAPL and/or light nonaqueous phase liquid (LNAPL) were performed using a Solinst interface probe Model 122.

Groundwater sampling was conducted in accordance with NJDEP-approved procedures. Before the collection of groundwater samples, static water levels and well depths were measured. Prior to sampling, a minimum of three well volumes was purged from each well to ensure proper water quality. During purging activities, pH, conductivity, turbidity, temperature, dissolved oxygen, and ORP were recorded using a Horiba U-22 water quality meter. Well evacuation data were tabulated and are provided in subsection 5.3 of this report. Shallow wells were purged using a peristaltic pump and disposable tubing. Deep wells were purged using a submersible pump (Redi-Flo 2). VOC samples were collected using disposable polyethylene bailers. All other parameters were collected via the sampling equipment. The use of disposable tubing and bailers for sampling negated the need for field decontamination. The submersible pump was decontaminated prior to being used and after each well was purged. Analytical data collected during prior sampling events were used to determine sampling order. Wells were sampled according to the level of contamination, with the least impacted wells being sampled first.

4.1.4 Elizabeth River Sediment and Surface Water Sampling

Sediment sampling was performed by Ocean Surveys, Inc. of Old Saybrook, Connecticut. Sediment sampling was completed using a 20-foot pontoon style boat equipped with a tripod and vibra-core type sampler. Sediment samples were collected in a thin-walled aluminum core barrel fitted with a dedicated disposable acetate liner. Ten-foot-long core barrels were advanced through the sediment at each sampling point to a depth of 6 feet or until the sampler could no longer be advanced (refusal). The acetate liners and samples were removed from the core barrel, cut to length, and the ends were capped and labeled. Samples were transported to shore where they were logged and sediment conditions were evaluated through visual and olfactory observations and field instrument readings (PID). Sample locations were recorded using GPS.

4.1.5 Tidal Survey

A tidal survey was completed at the site in January 2001. Pressure transducers were installed in monitoring wells MW-1D, MW-5D, MW-14A, MW-14B, MW-18A, MW-18B, MW-19A, MW-19B, MW-21A, MW-21B. Pressure transducers were also placed in two catch basins: CB-1 was installed in the catch basin located adjacent to MW-14A, and CB-2 was installed in a catch basin located next to the Control Room. An additional pressure transducer was installed in the Elizabeth Channel located adjacent to the site. The tidal survey was conducted for a minimum of 72 hours at each location.


```
PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT
NUI ELIZABETHTOWN GAS
APRIL 27, 2001
```

4.1.6 Surface-Soil Sample Collection

Surface soil samples were collected using split-spoon samplers. Surface-soil samples collected in the grassy medians north of Third Avenue were collected by hammering 2-foot long, 2-inch diameter split spoons in the ground with a sledgehammer. Surface-soil samples from the 0- to 2-foot interval were collected from borings with split spoons and a drill rig.

4.1.7 Data Validation

F 1

**

NJDEP Reduced Deliverable QA/QC documentation was requested for all analytical work. In accordance with the NJDEP-approved Phase I SRIWP, in-house data validation was performed by a qualified chemist on all analytical results received from the laboratory to ensure that:

- Data packages are complete
- Holding times have been met
- Blanks are reviewed
- Data are qualified if validation indicates that the sample results do not meet strict quality assurance objectives
- · Generally, that the analytical data are complete, reliable, and of high quality

This approach ensures the overall quality and completeness of the project's analytical program. All analytical results received from STL of Monroe, Connecticut, were received in both hard copy form and in digital format. Analytical results tables were generated electronically from the digital data to minimize the risks associated with the transcription process. All final tables were crosschecked with original hard copy data to ensure completeness. All analytical data were reviewed in accordance with the following documents.

- Quality Assurance Data Validation of Analytical Deliverables TAL Organics, SOP Number 5.A.13
- Quality Assurance Data Validation of Analytical Deliverables TAL Inorganics, SOP Number 5.A.02

Data validation reports are provided in Appendix D. In addition, all data will be transmitted to NJDEP electronically in accordance with the specified format.

Analytical quality control samples associated with the sediment sampling analytical results for benzene, DDT, and cyanide were outside acceptable reporting limits. Re-extraction and reanalysis by the laboratory confirmed that there was a sediment matrix interference. Associated nondetect samples were rejected and positive results were estimated. Validation results are reflected in the analytical data tables. The validation reports are included in Appendix D.

5. Phase I SRI Results (corrected January 2004)

5.1 Site Geology

P\$

71

GEI excavated 66 test pits, installed 20 monitoring wells, and drilled 32 borings during the Phase I SRI field activities. The geologic information gathered during these activities combined with the previous investigation data provide the basis of the geologic discussion provided herein. Sample locations are illustrated on Plate 1. Boring logs for the Phase I SRI borings/wells and from previous investigations are provided in Appendix B. A summary of observations recorded during Phase I SRI test pit excavation activities is provided in Table 3. Six geologic cross sections were developed based on the Phase I SRI and previous investigation data. Geologic cross-section locations are illustrated on Figure 2 and the geologic cross sections are presented as Figures 3 through 8. Soil impacts noted during test pit and drilling activities were described based on the definitions provided in subsection 4.1.1 of this report.

Based on GEI's field work and interpretation of previous investigation data, the materials encountered at the site in descending order (with increasing depth from the surface) generally consist of fill (the ground surface in many areas of the site is covered with crushed stone); semi-decomposed fibrous peat grading locally to peat with organic silts and clay; glacial till consisting of various proportions of coarse to fine sand, silts and clays; residual soils/weathered bedrock consisting of clayey silt and fine sand with frequent fragments of weathered bedrock (mudstone/siltstone), and bedrock (mudstone/siltstone). The site geology is divided into overburden soils and bedrock, which are discussed in subsections 5.1.1 and 5.1.2, respectively.

5.1.1 Site Overburden

The overburden at the site consists of fill; semi-decomposed fibrous peat grading locally to peat with organic silts and clay; glacial till; and residual soils/weathered bedrock.

The fill layer was encountered throughout the site and consisted of gray/black to reddishbrown medium to fine sand with various proportions of cobbles, gravel, silt and clay, along with miscellaneous debris, including fragments of concrete, steel, pipes, bricks, clinker, cinder, coke, slag, ash, lampblack, and wood chips. The fill material was generally noted to be locally stained in several areas, as well as impacted with oily and/or tarry material, sheen, and occasionally residual product. A summary of visible impacts is presented in subsection 5.3 of this report.

÷)

÷ .

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS APRIL 27, 2001 (CORRECTED JANUARY 2004)

eð,

F3

¥ . 2

- 4

The thickness of the fill layer generally varied between 2 and 15 feet. The fill thickness was occasionally observed to exceed 20 feet, such as at MW-2D where a thickness of about 30 feet was noted, and at the center of the western side near the railroad spur, where it was estimated to be 20 feet at MW-18B. The large fill thickness around MW-2D is assumed to be related to the installation of the subsurface holder at this location.

Underlying the fill layer, a semi-decomposed, fibrous greenish/olive-gray to dark gray peat layer, grading to peat with occasional gray organic clayey lenses/intercalations, was encountered mainly across the southern two thirds of the site. The Phase I SRI field activities generally confirmed the extent of the peat as observed during previous investigations. Generally, the thickness of this layer is greatest within the southern portion of the site, gradually thinning out toward the north, where it was noted to be missing within the northern portion of the site, as shown on Figure 2 and Figures 3 through 8. The peat is not present in the northern one-third of the site and does not form a continuous confining unit beneath the site. The nature of organic silt and clay within the peat varied from non-plastic to plastic. The fibrous peat was relatively semi-decomposed. The consistency of this material was found to be very soft to medium stiff.

A layer of glacial deposits referred to as glacial till on the Phase I SRI boring/well logs was encountered underneath the peat layer in the southern portion and underneath the fill in the northern portion of the site. This layer consists of reddish-brown clayey silt and silty clay with varying proportions of coarse to fine gravel and some lenses of sand. The glacial material was generally encountered throughout the site and its thickness varied between 8 and 25 feet. The gravel encountered in this layer was heterogeneous, ranging from subangular to rounded. In the northwestern and north-central portion of the site, silt and/or very fine sand were observed above the till or immediately below the peat at locations B-22, B-23, B-24, B-30 and MW-22B. Cobbles and boulders were also suspected during drilling in the lower portions of the glacial deposits and relative densities increased with depth. The lower portion of this soil horizon appeared to be of very low permeability, as indicated by on-site borehole and laboratory permeability tests conducted during previous investigations.

Field investigations indicate that the glacial till gradually grades to and was frequently undifferentiated from residual soils formed from the weathering of underlying bedrock and older glacial material. The residual soils are referred to as weathered bedrock on the Phase I SRI boring logs and are reddish-brown clayey silt and fine sand with varying proportions of fragments of siltstone/mudstone. The thickness of this layer was estimated to range from 2 to 10 feet. Residual soils were not noted above bedrock in every boring log and, therefore, the unit is not illustrated as continuous on the cross-sections. The fragments of bedrock were reported to be soft within the upper layers, gradually grading to hard with increasing depth as bedrock was encountered. Also, the percent of fines gradually

PHASE I SUPPLEMENTAL RENEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS April 27, 2001 (Corrected January 2004)

decreased with increasing depth, where only the fragments of bedrock were encountered near the surface of bedrock.

5.1.1.1 Subsurface Structures

F 1

- -

۰.

1.4

4.4

6.4

Several test pits and borings were excavated/drilled to evaluate the potential presence, contents, and integrity of subsurface former MGP structures. The only subsurface structures encountered during the Phase I SRI include a former tar separator and one former gas holder. The former tar separator was encountered in test pit TP-TS-2 in the northwestern portion of the site. No tar was encountered in the separator; however, some soil within the separator was partially saturated with an oily residue. The sides and floor of the tar separator were constructed of 6-inch thick concrete. Several broken iron pipes were noted within the structure. The separator was encountered at approximately 1.5 feet bls and extended to approximately 6.5 feet bls.

The former 340,000-cf-gas holder situated northeast of the office building was encountered in test pits TP-63, TP-62A, and TP-61. Based on these test pits, it was determined that previously installed monitoring wells MW-2 and MW-2D are situated outside of the former holder structure. Previously, these wells were believed to have been drilled within the holder foundation. The holder foundation is constructed of brick and has a 0.5-foot thick concrete slab on top. The holder has a diameter of 100 feet. Three borings were drilled within the holder (HB-2, HB-3, and HB-4). A concrete slab was encountered at each of these locations between 8 and 10 feet bls. This slab, believed to be the holder bottom, was approximately 0.5- to 1.0-foot thick. Based on the boring and test pit observations, the holder contents include sand and gravel fill with numerous brick fragments, concrete pieces, and coal noted throughout. A thin layer (less than 0.2 foot) of asphalt-like material was encountered directly above the holder bottom. Soil samples collected below the holder bottom consisted of brown silty fine sand and silt with a trace of fine-to-medium grained gravel (subrounded). Visual and olfactory observations of this material indicated MGPtype impacts ranging from staining and residual product directly below the holder bottom, to slight odors and staining (HB-3(18-20)).

Three borings were advanced in an attempt to locate the former relief holder beneath the western portion of the office building. Based on historic maps, borings HB-1 and HB-1A were located within the limits of the former relief holder and were advanced to verify/observe any subsurface component of the historic structure (if still present). Field observations for these locations did not indicate the presence of a below grade holder. Soil boring B-30 was completed adjacent to the former holder location. Information collected from this soil boring was also used to support the presence/absence of the historic holder. Based on the findings of HB-1, HB-1A, and B-30, the existence of a subsurface holder at this location could not be verified or the holder was an above-grade holder (slab on grade).

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS April 27, 2001 (Corrected January 2004)

5.1.2 Site Bedrock

7 9

* ج

2

£ =

L

8. ÷

* *

Monitoring well MW-9D was the only boring/well drilled into the bedrock beneath the site during the Phase I SRI. Bedrock information provided herein is based on previous investigation reports. Bedrock of the Passaic Formation was encountered at the site underneath the residual soils. The bedrock consisted of yellowish-red to reddish-brown mudstone, thickly bedded to massive with possible small-scale wavy bedding, possibly due to roots or bioturbations. Numerous calcite-coated sand grains were found entrapped in segments of the bedrock. Hairline calcite veins were noted to be horizontal and oblique. Layers of greenish-gray mudstone were also noted. Generally, the bedrock was reported to be strong to very strong by Dames & Moore. The degree of weathering varied with depth, where the bedrock was noted to be highly to moderately weathered near the top of bedrock grading to moderately to slightly weathered at greater depths. Both near vertical and/or near horizontal fractures were noted with an intensity that generally decreased with depth in the previous investigations. The core collected from MW-9D indicated few fractures.

The elevation of the top of the competent bedrock surface ranges from a high of -3.8 NGVD feet in the east-northeast portion of the site (B-16) to a low of -20 feet NGVD in the central portion of the site (MW-2D in the northern portion and MW-6D and MW-15A/BP-1 in the southern portion). The elevation increases from the central portion of the site to the west to -11.1 feet NGVD at MW-1D in the northern corner of the site. In the southern portion of the site along the Elizabeth River, the top of the bedrock surface increases slightly from the center of the site to the west to an elevation of -17.4 feet NGVD at MW-5D.

5.2 Groundwater

Groundwater is present in the overburden and shallow bedrock beneath the site. Previous investigations treated the overburden groundwater as one unit. Previous investigation well construction diagrams and boring logs illustrate that several of the wells (MW-4, MW-5, MW-6, MW-7, MW-9, MW-10, MW-12, and BP-3) are screened across several strata, including fill, peat (where present), glacial deposits, and residual soils, making it difficult to relate the data collected from these wells, such as water level measurements and analytical results, to specific strata. Therefore, as part of the Phase I SRI, monitoring well pairs were installed in the overburden based on the presence of the peat unit. The shallow wells were screened above the peat and the deeper wells were screened at the same general elevation to evaluate hydraulics and groundwater quality within each zone. Wells screened above the peat zone were designated with 'A' and wells screen ed below the peat zone were designated with 'B'.

_	PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT
•	
	NUI ELIZABETHTOWN GAS
	APRIL 27, 2001 (CORRECTED JANUARY 2004)
PT	• • • •

p+t

, **b**

-

ь -

£ .

1.4

4.4

Twenty monitoring wells were installed during the Phase I SRI, including nine in the shallow overburden 'A' zone (MW-16A, MW-19A, MW-20A, MW-21A, MW-22A, MW-23A, MW-24A, MW-25A, and MW-26A), 10 in the deeper overburden 'B' zone (MW-14B, MW-15B, MW-16B, MW-17B, MW-18B, MW-19B, MW-21B, MW-22B, MW-23B, and MW-24B) and one in shallow bedrock (MW-9D). Where possible, new monitoring wells were paired with existing piezometers/wells to form nested pairs (BP-2 (renamed MW-14A) is paired with MW-14B, BP-1 (renamed MW-15A) is paired with MW-15B, BP-8 (renamed MW-17A) is paired with MW-17B, BP-4 (renamed MW-18A) is paired with MW-18B, and BP-6 (renamed MW-20B) is paired with MW-20A). Four rounds of groundwater level measurements were conducted during the Phase I SRI on May 23, 2000, August 22, 2000, January 8, 2001, and February 21, 2001. Two rounds of NAPL evaluations were performed in May 2000 and January 2001.

Table 4 summarizes the top of casing (TOC) elevation, screen interval, geologic unit within the screen interval, depth to water measurements, and groundwater elevations for each of the monitoring wells for each measurement round. Other well construction details are available on the boring logs in Appendix B. Form Bs containing well location and elevation survey information for the wells installed during the Phase I SRI also are included in Appendix B. Table 4 also indicates the existing piezometers that were used to form nested pairs; these piezometers were renamed to indicate their well pairs. Table 5 summarizes the observations recorded during the NAPL evaluation. NAPL evaluation results are discussed in more detail in subsection 5.3 of this report.

5.2.1 Shallow Overburden (A Zone)

Groundwater within the shallow overburden is under unconfined conditions where the water table was encountered within the fill layer or within the upper portion of the glacial deposits (where peat is absent). Observations made during previous investigations and the Phase I SRI indicate that groundwater is likely to be present under local perched conditions (as noted in test pits within the northern and southeastern portions of the site). The groundwater was noted to be under localized semi-confined conditions (e.g., BP-8) in previous investigations. These perched and semi-confined conditions are likely related to the occurrence of discontinuous layers of varying permeability.

Based on the boring and test pit logs, the peat is absent in the northern portion of the site along Third Avenue as illustrated in Figure 3. However, silty clays and claycy silts that may be locally confining occasionally were reported on previous investigation and Phase I SRI boring logs where peat is absent. Based on observations during the Phase I SRI, these

#네

P-3

* *

, '

4.0

clayey silts/silty clays are not homogeneous or continuous and do not form a shallow continuous confining unit across the site.

Four rounds of water level measurements were performed during the Phase I SRI. Tabulated water level measurements are summarized in Table 4. In general, the groundwater elevations were highest in May 2000 and lowest in January 2001, with measurements fluctuating between 0.6 and 2 feet. Groundwater elevation contour maps for the shallow overburden (A zone) are presented in Figures 9 through 12. These maps indicate that groundwater elevations are highest along the western central portion of the site (MW-21A, MW-19A, and MW-18A), and that groundwater flows to the east across Third Avenue, southeast towards South Second Street, and south toward the Elizabeth River in a somewhat radial pattern. This groundwater flow pattern is similar to the groundwater flow in the overburden as described in previous investigations. (Tabulated water level measurements, well construction details, and overburden groundwater contour maps constructed by Dames & Moore from 1993 water level measurements were provided in Appendix D of the September 27, 1999 Phase I SRIWP.)

Based on the proximity of the Elizabeth River to the site, it would be expected that shallow site groundwater would flow across the entire site to the south-southeast towards the river rather than radially from the center of the site. A local source of recharge, is suggested by these contour maps, in the north-central portion of the site but the nature of this source has not been identified. The radial flow pattern is not a result of contouring data from wells screened in different strata or from wells screened across more than one stratum. Since the water levels used to generate these maps were collected in wells screened above the peat layer, where present, it does not appear that the presence of the peat layer which may be semi-confining/confining in the southern portion of the site results in the radial flow pattern in the shallow overburden (A zone). An old brick sewer approximately 3 feet by 4.5 feet is situated in Third Avenue north of the site. Based on a sewer plan that illustrates the elevation of the inverts of manholes along Third Avenue and the groundwater elevations in the northeastern portion of the site, it is believed that the sewer intercepts the groundwater in this area. For these reasons, it is surmised that the groundwater flow direction in the eastern-northeastern portion of the site may be affected by the presence of the brick sewer in Third Avenue.

5.2.2 Deeper Overburden (B Zone)

Groundwater within monitoring wells screened in the deeper overburden is primarily under semi-confined conditions where the potentiometric head rises above the peat layer (where present) into the fill layer, or is unconfined within the upper portion of the glacial deposits or fill material (where peat is absent in the northern portion of the site). As with the shallow overburden, deeper overburden water levels were highest in May 2000 and lowest in January 2001. Groundwater elevation contour maps for the deeper overburden (B zone)

are presented in Figures 13 through 16. These maps indicate that groundwater in the deeper overburden generally flows south-southeast in the southern two-thirds of the site towards the Elizabeth River and to the east in the northern one-third of the site across Third Avenue. The groundwater gradient in the northern portion of the site is very flat and becomes steeper in the southern portion of the site near the river. On the January 2001 contour map, it appears that there may be a groundwater divide trending northwest-southeast across the site and groundwater in the northeast corner of the site flows east-northeast towards Third Avenue. In this area of the site, the overburden A and B zones are continuous and relatively thin (approximately 10 to 15 feet thick). This flow pattern may be related to the fact that the peat unit pinches out in this area so that the overburden A and B zones are continuous, and may be affected by the presence of the sewer in Third Avenue.

5.2.3 Overburden Permeability

e ?

.

۰.

Permeability testing was not performed as part of the Phase I SRI activities other than a shelby tube sample analyzed for permeability. The remaining permeability data presented herein is based on previous investigations and is restated from the September 27, 1999 Phase I SRIWP. Dames & Moore performed borehole permeability tests in April and May 1993 (detailed in the Dames & Moore 1994 report) at CB-1, BP-4, and BP-6 at depth intervals of 11 to 12.5 feet, 23 to 24.5 feet, and 14 to 16 feet below grade, respectively.

These tests were primarily intended to estimate the *in-situ* lateral hydraulic conductivities at a discrete location and to assess local variations of the hydraulic characteristics of the overburden. It should be noted that the bottom of the test section was open, thereby allowing for potential vertical flow. The vertical flow component was considered to be relatively negligible in comparison with the lateral flow in the analysis.

The results indicate that the estimated average of the lateral hydraulic conductivity for the test zones are 1.02 foot/day (3.6 x 10^4 cm/sec), 0.0053 foot/day (1.87 x 10^6 cm/sec), and 0.02 foot/day (7.27 x 10^6 cm/sec) for tests at CB-1, BP-4 and BP-6, respectively. These results indicate that, although both tests in CB-1 and BP-1 were performed on glacial deposits consisting primarily of fine-grained soils, the hydraulic conductivity varies locally by more than two orders of magnitude.

These estimates of the lateral hydraulic conductivity were compared with estimates of vertical hydraulic conductivity obtained from laboratory permeability testing. The laboratory tests were conducted on relatively undisturbed soil samples collected from locations coinciding with test sections where the borehole permeability tests at CB-1 and BP-4 were performed. This comparison indicates that the vertical hydraulic conductivity is smaller than the lateral hydraulic conductivity by nearly one order of magnitude for BP-4 soils, and by more than two orders of magnitude for CB-1 soils.

.....

e a

ŧ

e - 1

. •

• •

. .

. .

÷...

These estimates of the hydraulic conductivity indicate that the lower glacial/residual deposits and a portion of the upper glacial deposits are very slow-draining soils, which are likely to act as a semi-impervious barrier retarding groundwater flow, particularly along the vertical direction. This observation is further supported by the laboratory permeability test results for other soil samples collected from these horizons, where the vertical hydraulic conductivity was estimated to range from 1×10^{-6} to less than 1×10^{-7} cm/sec. The shelby tube sample collected from glacial till material during the Phase I SRI had a vertical hydraulic conductivity of 2.10 x 10^{-8} cm/sec which corresponds with previous investigation findings. The shelby tube permeability results are provided in Appendix E.

Five slug tests were performed by Dames & Moore during this investigation in overburden wells MW-5, MW-6, MW-7, MW-8, and MW-12. With the exception of MW-6, both falling head and rising head slug tests were performed. The field data and the curve matching of test results for all these tests are presented in the Dames & Moore 1994 report. A summary of the slug test data was presented in Appendix D of the September 27, 1999 Phase I SRIWP. It should be noted that the results from MW-5, MW-6, MW-7, and MW-12 represent the permeability of more than one stratum as the wells are screened across two or more strata.

The data were analyzed using the Bouwer and Rice (1976) method and the update by Bouwer (1989) for slug tests in unconfined aquifers. The curve matching of the test results using this method was carried out via a computer software called ISOAQXC, developed by Hydrologic, Inc. (Hydrologic, 1993). The results for both rising head and falling head tests were generally consistent. The average lateral hydraulic conductivity estimates varied between 2.4 x 10^4 to 2.5 x 10^2 cm/sec, indicating the wide spatial variations in the hydraulic characteristics of the overburden unit. Generally, these results indicate that the overburden unit within the southern portion of the site is more permeable than that in the northern portion of the site. However, zones of low permeability in the southern part of the site, such as that around MW-7 with a lateral hydraulic conductivity of about 5 x 10^4 cm/sec, should also be expected. It is pertinent to note that these results should be considered cautiously, since slug tests typically provide an approximate estimate of the lateral hydraulic conductivity of the soil immediately surrounding the test well.

Three aquifer performance tests were performed in overburden wells MW-11, MW-13 and MW-6. MW-6 is screened across the fill, peat, and sandy clay glacial deposits. MW-11 is screened solely in the fill unit. MW-13 is screened in the fill and in the upper portion of the glacial deposits (peat is absent in this location). Each test consisted of:

- the pre-pumping step-drawdown tests and long-term groundwater level monitoring;
- the pumping (drawdown) phase; and
- the recovery phase.

#1

17

2

2

. .

۰.

5.4

£ .

1.0

. .

In addition, short-term well capacity pumping tests were conducted at several on-site wells during groundwater sampling. These step-drawdown and well capacity tests were conducted by Dames & Moore during the 1992 and 1993 investigations to evaluate the hydraulic response and efficiency, and to estimate the feasible pumping rates and specific capacity of the various wells tested. Estimates of sustainable yields and specific capacities were developed for on-site wells based on the results of these tests. These estimates were developed using empirical equations and techniques presented in Driscoll (1986). Estimates of the lateral hydraulic conductivity were developed by fitting the field drawdown data to appropriate type curves (i.e., Theis, Boulton/Neuman or Jacob). Summary tables and the preliminary analysis of data from the various step drawdown tests conducted during the three aquifer tests are presented in the Dames & Moore 1994 report.

5.2.4 Hydraulic Interaction Between the Overburden A and B Zones

The groundwater elevation in the overburden A zone is consistently higher than the groundwater elevation in the overburden B zone across the site. On the northern side of Third Avenue, the groundwater elevations measured in monitoring well pairs MW-23A/B and MW-24A/B indicate that the B zone level was higher than the A zone level in the February 2001 measurement event. In the southern portion of the site, the B zone overburden groundwater is semi-confined by the peat zone and the A and B zones are somewhat separated. In the northern portion of the site, the zones are continuous in the absence of the peat. The overburden A and B zones are indistinguishable in the northeastern corner of the site (MW-3), where the overburden is approximately 10 to 12 feet thick. Water levels in the overburden in this area of the site tend to be similar to overburden A zone water levels.

Based on a review of the groundwater elevations and flow directions in the overburden A and B zones, it is apparent that there are significant differences in these zones to warrant wells screened separately in each zone. Therefore previously installed monitoring wells and piezometers, which are screened across the peat zone (where present) and within both the overburden A and B zones should be abandoned to prevent mixing of the two zones and masking hydraulic characteristics. Monitoring wells and piezometers, which should be abandoned based on their construction, include MW-4, MW-5, MW-6, MW-7, MW-9, MW-10, MW-12, and BP-3.

5.2.5 Shallow Bedrock

Groundwater within the shallow bedrock is under confined conditions (where the static potentiometric surface is above the top of bedrock). Based on the Phase I SRI groundwater level measurements, groundwater elevations within the shallow bedrock were highest in May 2000 and lowest in January 2001. The potentiometric surface of the shallow bedrock

is presented in Figures 17 through 20 for the four measurements periods. These maps indicate that groundwater flow in the shallow bedrock generally is to the south towards the Elizabeth River. The gradient is relatively flat in the northern two-thirds of the site and is steeper in the southern one-third of the site.

Field observations made during well development and groundwater sampling in previous investigations indicate that fractures intersecting bedrock well MW-2D may likely be discontinuous and not connected to fractures intersecting other on-site bedrock wells. Water level measurements in MW-2D indicate that the water level in the well was about 48 to 50 feet below the water level in other bedrock wells during previous investigations. In addition, bedrock well MW-2D was fully evacuated (dried) upon continuous pumping for a short period of time, even at pumping rates less than 0.2 gallon per minute (gpm) during previous investigations. During the Phase I SRI the water level in MW-2 was within 7 feet of land surface during the May 2000 measurement event, but was 44 and 55 feet bls during the August 2000 and February 2001 measurement events, respectively. The total depth of well MW-2D is 61 feet, which is approximately 20 feet deeper than the other site bedrock wells; its depth may account for the difference in water level and permeability.

5.2.6 Tidal Survey Results

...

**

p 4

÷ •

.

÷ .

63

ä.,

A tidal survey was performed at the site in January 2001. During the survey, water levels were monitored continuously in the Elizabeth River, two catch basins (CB-1 and CB-2), four overburden A zone wells (MW-14A, MW-18A, MW-19A, and MW-21A), four overburden B zone wells (MW-14B, MW-18B, MW-19B, and MW-21B), and two shallow bedrock wells (MW-5D and MW-1D) for a minimum of 72 hours. Figure 21 illustrates the water level fluctuations for each of the points measured, except for MW-14A. The water levels in MW-14A were monitored for 72 hours after the 72-hour period in which the other wells were monitored. Tidal Survey data are compiled in Appendix F.

Figure 22 illustrates the river water level fluctuations and the catch basin water level fluctuations. Catch basin CB-1 illustrates the same tidal fluctuation as the river. Catch basin CB-2, located in the center of the site, is not connected to the same storm sewer system as CB-1 and shows no tidal effect. This catch basin was monitored to evaluate whether the relatively high groundwater elevations in the A zone in this area of the site were related to tidal fluctuations.

Figure 23 illustrates the river water level fluctuations and A zone monitoring well water level fluctuations. Although MW-14A is not illustrated on this graph because it was monitored during a different timeframe, review of the data from MW-14A indicates that the water level in MW-14A is tidally influenced and showed a maximum change of 0.4 foot over the measurement period. The water level in monitoring well MW-18A (approximately halfway between the Elizabeth River and Third Avenue) shows very

e •

7 7

÷4

e ::

af c

. .

4.3

minimal tidal effects (maximum fluctuation of 0.069 feet). The water level in MW-21A (in the northern corner of the site near Third Avenue) does not show tidal effects. Based on this figure, it is apparent that tidal influence does not extend to the northern property boundary in the overburden A zone. Therefore tidal impacts have minimal effect on groundwater flow direction in the overburden A zone and are not causing the eastern-northeastern groundwater flow direction observed in the eastern-northeast portion of the site in the overburden A zone.

The water level fluctuation curve for MW-19A does not appear to be impacted by the tidal fluctuations in the river adjacent to the site. Rather, the curve for MW-19A appears cyclical but not sinusoidal. In addition, the magnitude of change in the water level in MW-19A (1.8 feet) is greater than any other tidal-related groundwater fluctuation recorded on site. Current site activities are being reviewed to evaluate potential causes for the water level fluctuations recorded in MW-19A. The cause of the groundwater level fluctuations may also be the cause of the relatively high water level measured in this area of the site and may contribute to the apparent radial groundwater flow pattern in the overburden A zone.

Figure 24 illustrates the river water level fluctuations and B zone monitoring well water level fluctuations. Monitoring wells MW-14B, MW-18B, and MW-21B show tidal impacts at varying degrees. MW-14B, adjacent to the river, shows the greatest impact (1.7 feet); MW-18B, in the center of the site, shows moderate change (0.6 foot); and MW-21B, the furthest B zone well from the river monitored during the tidal survey, shows a moderate impact (0.6 foot). The variable impacts likely are related to the discontinuous lenses of silty/clay and sandy silt with varying permeabilities that are present in the overburden, and the distance of the well from the river. The water level fluctuation curve for MW-19B seems to show some of the same effects as the MW-19A curve, but to a much lesser degree. It is apparent that tidal influence in the overburden B zone extends to the northern property boundary. However, based on the tide-related overburden B zone groundwater level fluctuation in the northern portion of the site (0.6 foot) and the horizontal gradient in the overburden B zone in the southern half of the site, the tidal influence does not appear great enough to cause a groundwater flow direction reversal in the overburden B zone, but may contribute to the flat gradient in the northern part of the site.

Figure 25 illustrates the river water level fluctuations and shallow bedrock zone monitoring well water level fluctuations. Water levels in MW-5D adjacent to the river and in MW-1D adjacent to Third Avenue are clearly affected by tidal changes. Cyclical variations of about 0.6 feet were observed. These fluctuations are concurrent with tidal fluctuations in the Elizabeth River without a significant time lag. The impacts noted in the bedrock wells are more pronounced than those observed in the overburden wells. Because the tidal impacts in shallow bedrock groundwater at the site are concurrent with tidal fluctuations in the river and are consistent across the site it does not appear the tidal impacts cause a groundwater flow direction reversal in the shallow bedrock beneath the site.

81

* 1

7

Figure 26 illustrates the river water level fluctuations and the water level fluctuations in all of the groundwater zones monitored at the site in the northern corner of the site. Tidal impacts are obvious in the overburden B zone and the bedrock zone, but not in the overburden A zone in this area of the site.

The shallow bedrock tidal survey impacts observed during the Phase I SRI are consistent with the tidal survey results presented in previous investigations. The overburden tidal impacts observed during the Phase I SRI vary from those reported in previous investigations. Phase I SRI data indicate that the overburden B zone is impacted by tides across the site and the overburden A zone is impacted by tides along the southern site boundary adjacent to the river. Previous investigations reported that tidal influence in the overburden at the site was not noticeable. The different observations likely are due to varying well construction of the wells used in the tidal surveys. Some of the overburden wells monitored for tidal impacts during the previous investigations were screened across several strata, which may have masked the tidal impacts in the overburden.

5.2.7 Hydraulic Interaction Between the Overburden and the Shallow Bedrock

The various water level measurements conducted at on-site wells indicate that the groundwater elevation within the overburden is higher than the groundwater elevation in the shallow bedrock. The difference in elevation (except for the couplet MW-2 and MW-2D), ranged between 0.6 and 3 feet, based on the well location and the time of measurement due to the tidal effect. Generally, this difference appears to be more pronounced within the northern portion of the site. Once during the Phase I SRI, the potentiometric surface of groundwater in bedrock well MW-7D was noted to be higher than the groundwater elevation in overburden well MW-7.

Although the connectivity of groundwater in the overburden with that in the shallow bedrock has not been fully investigated, a localized hydraulic connection between the two water-bearing units was noted during previous investigations. This was observed during the pumping test in MW-6, where the water level in MW-6D seems to have responded to pumping, during both the pumping and recovery phases. The degree of connectivity is likely to be associated with the degree of perviousness of the intervening glacial/residual deposits and the upper decomposed/fractured bedrock portions, which appear to vary widely throughout the site.

5.3 Nature and Extent of Site Impacts

Phase I SRI and previous investigation analytical data and field observations are compiled in this section to describe the nature and extent of site-related impacts. Previous investigation locations were not based on AOCs. Phase I SRI sample locations were based on AOCs as

4.4

requested by the Department. The purpose of developing AOCs, according to the Department, was to evaluate the extent of impacts associated with each individual AOC. The Phase I SRI and previous investigation visual observations of soil impacts and soil analytical results have been compiled and are graphically summarized on Plate 3. All sample identification numbers and symbols illustrated in any color except black on Plate 3 indicate that visible impacts were observed at that location. Visible impacts include staining, sheen, residual product, and free product. Additionally, if an analytical sample was collected of the impact and concentrations of any compound analyzed exceeded any of the Department soil cleanup criteria, it is illustrated in brown. Based on this graphical summary of the data collected at the site to date, it is apparent that almost the entire site has been impacted by former site activities. Although some AOCs have less impacts, in general the types of contaminants, their concentrations, and their visible presence does not distinguish one AOC from another. In addition, non-impacted zones of sufficient size to be excluded from future remedial actions were not encountered between AOCs during the investigation. Therefore, the results of the combined Phase I SRI and previous investigations are not presented by AOC in the following subsections. Rather, the data are presented for the site as a whole (the site itself is one AOC) and are subdivided by media (i.e., surface soil, subsurface soil, groundwater, and river sediments and surface water).

5.3.1 Surface Solls

24

* *

r 4

Ten surface-soil samples were collected during the Phase I SRI (not including QA/QC samples) and analyzed for the parameters summarized in Section 4 of this report. Twelve surface-soil samples were collected during previous investigations (not including QA/QC samples) and were analyzed for the parameters summarized in Table 2-3 of the September 27, 1999 Phase I SRIWP, a copy of which is provided in Appendix G of this report. Table 6 provides the analytical results for the surface-soil samples collected during previous investigations. These collected during the Phase I SRI. Table 2-2 in Appendix G of this report provides the analytical results for the surface-soil samples collected during previous investigations. These tables are summary tables and list only analytes that were detected in at least one sample. The analytical results are compared to the New Jersey Department of Environmental Protection (NJDEP) soil cleanup criteria consisting of impact to groundwater (IGW) residential (RDC) and non-residential (NRDC) criteria. Plate 4 illustrates the Phase I SRI and previous investigation surface-soil sample locations and analytes that were detected at concentrations exceeding any of the NJDEP soil cleanup criteria.

The analytical results for the surface-soil samples collected to date indicate the presence of VOCs, PAHs, and metals in excess of NJDEP criteria. Although total cyanide was detected at 11 of the 20 samples analyzed for cyanide, none of the detected concentrations exceeded NJDEP criteria. Benzene was the only VOC that exceeded the criteria at two of 22 locations (SS-1 and DTP-11). PAHs were detected at concentrations exceeding the NJDEP criteria at all but 5 of the 22 surface-soil sample locations.

2.4

.

e 1

E.4

. .

4.4

é. e

Previous investigation analytical results for metals in surface soils indicated the presence of arsenic and lead above the criteria. The concentrations of arsenic ranged between 6.8 and 190 parts per million (ppm). Lead concentrations ranged from 33.4 to 1,720 ppm. Arsenic and lead were not detected at concentrations exceeding criteria in surface-soil samples collected during the Phase I SRI. Copper was the only metal that exceeded its RDC criteria of 600 ppm in one sample (B-21 at a concentration of 1730 ppm.).

Previous investigation analytical results for total phenols and TPH indicate the presence of these compounds in the surface soils. Phenols were detected in two of the samples analyzed and TPH was detected in six of the samples analyzed.

The purpose of the surface-soil sample collection and analysis was to determine the horizontal extent of surface-soil impacts associated with the site. Surface-soil impacts (exceedances of NJDEP RDC criteria) are present north of the site on the northern side of Third Avenue, east-southeast of the site along South Second Street, and along the western property boundary abutting the Central Railroad of New Jersey. As stated in correspondence to the Department (referenced in Section 1 of this report), the difficulty with obtaining surface-soil samples off site is determining whether detected impacts are site related or from diffuse anthropogenic sources. The isolated benzene hit detected in sample SS-1 north of Third Avenue does not appear to be site related, as benzene was not detected at concentrations exceeding the criterion in surface soils in the northern corner of the site near SS-1. The benzene detected in the SS-1 sample barely exceeds the RDC criterion and is an estimated concentration. The PAH concentrations detected in samples collected below the pavement on South Second Street and north of Third Avenue barely exceed the RDC criteria and are typical of urban background concentrations. The PAH concentrations detected in samples collected along the western property boundary are consistent with former site activities, but can also be related to the adjacent railroad. As discussed in previous meetings with the Department, delineation of surface-soil impacts to the west need not be performed due to the presence of and potential source from the adjacent rail line.

Based on the distribution and magnitude of compounds detected in surface-soil samples collected during the Phase I SRI and previous investigations, ETG believes that the surface-soil impacts associated with the site have been delineated and no further evaluation is necessary.

5.3.2 Subsurface Solls

Table 2-5 from the Phase I SRIWP (copy provided in Appendix G of this report) provides the analytical results for the subsurface soils collected during previous investigations. Forty-six subsurface-soil samples were collected during previous investigations (not including QA/QC samples) and analyzed for the parameters summarized in Table 2-6 of the September 27, 1999 Phase I SRIWP, a copy of which is also provided in Appendix G of this report.

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT Nui Elizabethtown gas April 27, 2001 (Corrected January 2004)

F 1

e 1

÷ 1

1.1

13

.

. 1

۰.

...

•

Ninety-one subsurface-soil samples were collected during the Phase I SRI (not including QA/QC samples) and analyzed for the parameters summarized in Table 1. Table 1 also summarizes the rationale for collecting each of the 91 Phase I SRI subsurface-soil samples. Tables 7a, 7b, and 7c provide the analytical results for the subsurface-soil samples collected during the Phase I SRI from test pits, borings, and monitoring wells, respectively. These tables are summary tables and list only analytes that were detected in at least one sample. The analytical results are compared to the NJDEP RDC and NRDC soil cleanup criteria for all subsurface-soil samples collected below 2 feet bls. The analytical results for samples collected below 2 feet bls. The analytical results for samples collected above the water table are also compared to the NJDEP IGW soil cleanup criteria. Tables 7a through 7c use an inverted triangle symbol next to the sample identification number to indicate sample intervals that are below the water table and hence were not compared to IGW criteria when shading concentrations that exceeded NJDEP criteria. Also if the method detection limit is above the applicable soil criteria but the result is non-detect then the result is considered non-detect. These results are highlighted in bold italicized text.

Due to the fact that there are analytical results for 137 subsurface-soil samples for this site, figures/plates using call-out boxes to summarize analytes that were detected at concentrations exceeding NJDEP criteria were not created because the sheer volume of data clutters the interpretation of the results. Alternatively, graphics were developed to illustrate locations where visual impacts were observed, the extent of product, and the location and delineation (horizontal and vertical) of areas with concentrations of compounds that exceed NJDEP soil cleanup criteria. Detailed analytical results for each sample are provided in the subsurface soil summary tables (Tables 7a, 7b, 7c and Table 2-5 in Appendix G).

Visible Subsurface-Soil Impact Characterization

Plate 3 illustrates Phase I SRI and previous investigation sample locations where visible impacts were noted during field activities. Visible impacts include staining, sheen, residual product, and free product. Detailed descriptions of visible impacts are provided in subsection 4.1.1 of this report. Plate 3 also illustrates where samples were collected for laboratory analysis to characterize the visible impacts. There are only two locations on Plate 3 where visual evidence of impacts was noted, yet the analytical results from the sample collected at that location did not contain concentrations of compounds exceeding NJDEP soil cleanup criteria. These samples were collected from previous investigation locations MW-11 and CB-3. In both of these instances samples were collected of slightly stained material. At all other locations where visible impacts were noted and analytical samples were collected, concentrations of one or more compounds detected exceeded NJDEP soil cleanup criteria. This is consistent with the nature of impacts at MGP sites.

Table 8 summarizes the analytical results for subsurface-soil samples that were collected during the Phase I SRI to document constituent concentrations in visibly impacted soil as requested by the Department. Table 8 illustrates that visibly impacted samples at the Erie Street former MGP site contain concentrations of BTEX and PAHs at concentrations

exceeding the NJDEP criteria. Arsenic, antimony, lead, thallium, zinc, copper, mercury and nickel were detected at concentrations exceeding the NJDEP criteria. Cyanide was detected at only one location, MW-15B, exceeding the NJDEP criteria. Figures 27 through 32 illustrate visual and olfactory notations recorded during the Phase I SRI and previous investigation subsurface activities on the geologic cross sections of the site. These sections illustrate that the majority of impacts were noted in the fill material beneath the site. At a few locations, impacts were noted in the peat, till and weathered bedrock.

Areal Extent of Product

ŧ7

8.78

-1

£ 1

• •

4.4

4

Plate 5 illustrates the areal extent of product observed at the Erie Street former MGP site. Product on this figure refers to sheen, residual product, and free product in accordance with the NJDEP definition of product. The fact that product is noted at specific locations does not imply that 'free product' or mobile product is present at these locations. Descriptions of the noted product are provided on the boring logs in Appendix B and in Phase I SRI test pit descriptions in Table 3. It is apparent from Plate 5 that product is present across the site and appears to be concentrated in the former production area in the north-northwestern portion of the site, in the vicinity of the former oil storage area in the southwestern corner of the site, and along the southern boundary adjacent to the Elizabeth River. Product was not observed in the Elizabeth River sediments adjacent to the Erie Street former MGP site during the river sediment and sampling activities.

Previous investigations reported that NAPL and tar globules had been observed in monitoring wells MW-2D, MW-5, and MW-5D. During the October 1984 investigation, no separate phase oil was detected in the bottom of any well; however, trace oil or tar globules were detected on the surface of the water table in wells MW-5 and MW-5D. Prior to the groundwater sampling performed in June 1992, a 2-foot layer of product was detected in monitoring well MW-5. During the 1994 investigation, 4 to 5 inches of product was observed in MW-5 and a few millimeters of product was noted in MW-2D.

The presence of NAPL at the Erie Street former MGP site was further evaluated by performing a NAPL survey in monitoring wells at the site using an interface probe. NAPL surveys were performed in February 1997 prior to the Phase I SRI and in May 2000 and February 2001 as part of the Phase I SRI. The results of these NAPL surveys are summarized in Table 5. The wells at the site that contained a measurable thickness of NAPL during any of the surveys include MW-2D, MW-5, MW-10, MW-11, MW-14A(BP-2), MW-15A(BP-1), MW-17A(BP-8) and MW-18A(BP-4), as summarized on Table 5. Indications of NAPL, including tar staining on the well casing, sheen on sediments in the base of the well, DNAPL blebs on probes, or droplets of DNAPL in the base of wells, were noted in MW-4 and MW-6. However, no measurable NAPL was noted in these wells.

DNAPL was only observed in one bedrock well (MW-2D) during one survey (1997) at a thickness of 0.04 foot. DNAPL was not measurable in MW-2D in May 2000 or February

**

11

* 1

.

÷

1.1

2001. LNAPL and DNAPL were measurable in wells MW-10 and MW-11 during the 1997 survey. Subsequent surveys in these wells indicate that more than 1 foot of LNAPL is present in MW-10 and DNAPL is not present in MW-10. The thickness of NAPL in MW-10 could not be determined in February 2001 because the LNAPL coated the tape as it passed through the LNAPL interval. A thickness of 0.1 to 0.4 foot of DNAPL was measured in MW-11, but LNAPL was not noted in MW-11. DNAPL thickness in MW-5 was reported as 0.33 foot in 1997; however, DNAPL was not measurable in 2001. NAPL was not noted in MW-14A(BP-2), MW-15A(BP-1), MW-17A(BP-8), and MW-18A(BP-4) during the 1997 survey. NAPL was measurable in these wells in 2000 and 2001 as summarized on Table 5. Most notably, 1 to 2 feet of DNAPL was reported in MW-17A in the 2001 survey. The other noted monitoring wells contained less than 0.1 foot of measurable LNAPL or DNAPL.

Although DNAPL was not present at a measurable thickness in MW-2D, the groundwater sample collected from MW-2D in January 2001 contained droplets of DNAPL. The analytical results for the sample collected from this round characterize the product in this area of the site and are summarized in Table 7D. These results were not included in the groundwater analytical results as they are not considered representative of the groundwater quality.

Based on the NAPL survey, it appears that the product noted in test pit, boring, and monitoring well logs (the extent of which is illustrated on Plate 5) is not present as mobile product in significant quantities except in the vicinity of MW-17A and MW-10.

Analytical Results Compared to NJDEP Soil Cleanup Criteria

Plate 6 illustrates subsurface-soil analytical results that exceed NJDEP soil cleanup criteria. Analytical data used to generate this graphic are presented in Tables 7a, 7b, 7c, and Table 2-5 (in Appendix G). Figures 33 through 35 provide further detail on the distribution and the types of analytes that exceed the NJDEP criteria in subsurface soils at the site. Figures 33 through 35 illustrate subsurface-soil sample analytical results that exceed NJDEP criteria for BTEX, PAHs, and inorganics, respectively. The distribution of analytical results that indicate concentrations exceeding NJDEP criteria are further illustrated on the geologic cross sections for the site (Figures 3 through 8).

Based on these figures and tables, it is apparent that BTEX, PAHs, some metals, and cyanide are present not only at detectable concentrations in the subsurface beneath the site, but also at concentrations exceeding NJDEP soil cleanup criteria. These subsurface-soil exceedances are primarily within the shallow subsurface soils (fill) beneath the site. Exceptions were noted in locations of former structures such as the gas holder encountered north of the site office building (MW-2D and MW-9D), the former oil gas holder in the southwestern corner of the site (MW-17B), and B-22 near the former production area of the site. The metals detected at concentrations exceeding NJDEP criteria include antimony, arsenic, barium, beryllium, cadmium, copper, lead, mercury, nickel, thallium, and zinc. These metals were

23

83

ę d

• •

not detected consistently in subsurface-soil samples. Barium (B-18(5-5.5) and MW-21(2-4)), mercury (MW-22(2-4)), nickel (MW-15B(6-8)), and zinc (TP-37(pipe) and MW-21(2-4)) were each only detected at concentrations exceeding standards once or twice at various sample locations. Arsenic, lead, and thallium were the metals detected at concentrations exceeding NJDEP criteria most frequently. Cyanide was detected at concentrations exceeding the RDC criteria in only one subsurface-soil sample collected at the site (MW-15B(6-8)).

Four samples were analyzed for phenols and TPH during previous investigations. Analytical results for total phenols and TPH indicate the presence of these compounds in the subsurface soils. Phenols (136 ppm) and TPH (14,500 ppm) were detected at 4.5 ft bls in TP-3, which is in the former oxide storage area. TPH were also detected at 3 ft bls in TP-8 near former Gas Holder No. 6.

Eighteen subsurface-soil samples were analyzed for TOC. Table 2-8 from the September 27, 1999 Phase I SRIWP (included in Appendix G of this report) presents all of the TOC data indicating sample location and depth of sample. The TOC in these soil samples ranged between 3,600 ppm and 280,000 ppm. TOC levels were elevated, even for soil samples where no VOCs or SVOCs were detected, indicating that the organic carbon detected is characteristic of the solid matrix of the soil particles and is not resulting from adsorption of petroleum hydrocarbons introduced into the subsurface (i.e., contamination). These levels of TOC are considered relatively high, indicating the high adsorption capacity of soils underlying the site for organic constituents. Generally, soil analytical results indicate that concentrations of organic constituents (i.e., VOCs and SVOCs) detected in soil samples collected from the fill were substantially higher than those detected in the underlying soils (glacial deposits), particularly those underlying the peat and the organic clay/silt layer. The migration of contamination appears to have been significantly retarded throughout the site overburden soils, by the relative imperviousness of the glacial deposits and the adsorption capacity of the soil, particularly within the peat and organic clays/silts, and clays within the fill.

Delineation and Characterization of Subsurface-Soil Impacts

The purpose of the subsurface-soil sampling efforts was to characterize and delineate the extent of subsurface-soil impacts at the site. Plate 6 and Table 8 summarize the characterization sample locations and analytical results. As stated previously, these data indicate that the impacts at the Erie Street former MGP site are frequently visible and generally exceed NJDEP criteria for BTEX, PAHs, and some metals, which is consistent with other MGP sites. Cyanide was detected in subsurface soils at a concentration exceeding the RDC criteria at only one location at the Erie Street former MGP site.

...

#19

Based on Plates 3 and 6 and Figures 27 through 29, it is apparent that the horizontal/lateral delineation of subsurface-soil impacts is complete to the north of the site along Third Avenue and along the northern portion of South Second Street. Horizontal/lateral delineation of subsurface-soil impacts has not been completed east of the site along the southern portion of South Second Street or west of the site along the Central Railroad of New Jersey. Subsurface-soil impacts are present to the southern boundary of the site however no product was noted in the river sediments adjacent to the site. Therefore, delineation of subsurface-soil impacts to the south is considered complete.

Several borings were drilled at the site and several samples were collected for laboratory analysis during the Phase I SRI, specifically to delineate the vertical extent of observed/detected shallow impacts and to provide general vertical delineation coverage for the site. These borings/sample locations include B-11, B-22, B-23, B-29, B-30, B-33, B-35, SB-TP-25, SB-TP-30, SB-TP-39, SB-TP-75, VB-1, VB-2, VB-3, VB-4, MW-14B, MW-15B, MW-16B, MW-17B, MW-18B, MW-19B, MW-21B, MW-22B, MW-23B, and MW-24B. As illustrated on Figures 27 through 29, Plate 6 and the subsurface-soil analytical summary tables (7a through 7c and 2-5 in Appendix G) samples were collected at these locations that verify vertical delineation at the site. Geologic cross sections (Figures 3 through 8) also illustrate the analytical verification of vertical delineation of site impacts. Figures 27 through 32 also illustrate the visible vertical extent of site impacts. In general, subsurface-soil impacts exceeding NJDEP criteria are present in the fill and upper peat (or upper till where peat is absent) at the site. Subsurface-soil impacts were noted in the deeper portion of the till and/or within the upper residual soil/weathered bedrock at MW-2D and MW-9D adjacent to a former subsurface holder, and at MW-17B in the vicinity of a former gas oil/oil tank. Deeper till impacts were also noted in MW-22B. Subsurface-soil delineation is considered complete at these locations since bedrock is at or within a few feet of these sample intervals. Analytical verification of vertical delineation is complete above the residual soil/bedrock surface everywhere subsurface soils were investigated at the site, except as noted above.

5.3.3 Groundwater

Groundwater analytical results are presented for the overburden and shallow bedrock groundwater in this subsection. Groundwater samples were collected from newly installed overburden monitoring wells, five previously installed overburden piezometers (which are renamed and part of nested overburden pairs), and all bedrock monitoring wells during the Phase I SRI. The previously installed piezometers, which were sampled include BP-1 (MW-15A), BP-2 (MW-14A), BP-4 (MW-18A), BP-6 (MW-20B), and BP-8 (MW-17A). The only overburden monitoring well sampled during the Phase I SRI that was installed during previous investigations was MW-3, in the northeastern corner of the site. This well was used in place of a nested pair proposed in this area of the site in the Phase I SRIWP due to the decreased thickness of the overburden in this area of the site. Previously installed overburden monitoring wells were not sampled during the Phase I SRI because several of

4.4

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT Nui Elizabethtown gas April 27, 2001 (Corrected January 2004)

67

23

+1

÷ •

. .

1.4

× 4

them were constructed with open screens across several strata. The previous investigation groundwater results are included in the discussion of groundwater quality presented in the following subsections.

As noted in subsection 5.2.4 of this report, several previously installed monitoring wells and one piezometer should be abandoned because they are screened throughout several strata and across the peat unit (where present). As is evident from the previous discussion of subsurface soil impacts, the majority of subsurface soil impacts are in the overburden A zone above the peat unit. The groundwater data described in this subsection illustrate that the majority of overburden groundwater impacts also are present in the overburden A zone. Therefore it is important to abandon wells constructed with screens across several strata from a groundwater quality standpoint as well as a hydraulic standpoint. The monitoring wells and piezometer recommended to be abandoned for groundwater hydraulic and quality purposes include MW-4, MW-5, MW-6, MW-7, MW-9, MW-10, MW-12, and BP-3.

5.3.3.1 Overburden A Zone Groundwater Quality

Groundwater samples were collected during the Phase I SRI in May 2000 and January 2001. The wells sampled and the parameters analyzed are summarized in Section 4 of this report. Groundwater analytical results for the overburden A and B zones are summarized in Table 10a. The analytical results on Table 10a and throughout this section are compared to the NJDEP Specific Groundwater Quality Criteria, Interim Specific Ground Water Quality Criteria and the practical quantitation limits all of which will be referred to as the groundwater quality criteria (GWQC). Groundwater analytical results for the overburden from previous investigations were summarized in Table 2-9 of the September 27, 1999 Phase I SRIWP. A copy of this table is provided in Appendix G of this report. Table 2-9 in Appendix G has been modified to reflect revisions and additions to the GWQC. These summary tables list only analytes that were detected in at least one sample. These tables were used to create Plate 7, which illustrates groundwater analytical results that exceed the GWQC. Plate 7 provides the Phase I SRI groundwater analytical results for the overburden A zone highlighted in black outline, and the previous investigation overburden groundwater analytical results highlighted in gray outline. The previous investigation overburden groundwater analytical results are gray because they are historic data and they were collected predominantly from wells screened throughout the overburden rather than in one stratum.

As illustrated in the tables and Plate 7, groundwater impacts are present in the overburden A zone at the site. These impacts include VOCs, PAHs, various metals, and cyanide. Benzene and ethylbenzene were the only VOCs detected in groundwater at concentrations exceeding the GWQC during the Phase I SRI and previous investigations. PAHs and dibenzofuran were the only SVOCs detected at concentrations exceeding the GWQC during the Phase I SRI and previous metals, including aluminum, antimony, arsenic, barium, beryllium, cadmium, iron, lead, manganese, silver, sodium, thallium, and zinc were

£4.

27

78

: 8

. . **.**

...

64

detected in at least one groundwater sample collected from the overburden. Cyanide was detected in several on-site wells at concentrations exceeding the GWQC.

The highest concentrations of organics (BTEX and PAHs) detected in overburden A zone groundwater at the site were detected in the vicinity of the former 340,000-cf gas holder in monitoring well MW-2, adjacent to the LNG tank (MW-10), and in the vicinity of the former gas oil storage tank in the southwestern corner of the site (MW-4, MW-5, MW-17A, and MW-14A). The most prevalent metals detected at concentrations exceeding GWQC include aluminum, arsenic, iron, lead, manganese, and sodium. These metals were detected at concentrations exceeding GWQC north of Third Avenue. These metals are not typically or necessarily associated with MGP sites, are detected at concentrations where MGP-related organics are not detected, and are present off site. Cyanide was detected at concentrations exceeding GWQC at 12 of the 25 locations where groundwater was analyzed for cyanide during the Phase I SRI. No cyanide was detected above the GWQC in wells north of Third Avenue.

Ammonia and hardness were detected above the GWQC in four unfiltered overburden groundwater samples collected and analyzed during previous investigations. Generally, alkalinity, total dissolved solids (TDS), and total suspended solids (TSS) were also detected at elevated levels during previous investigations. Total dissolved solids were detected exceeding the standard in only unfiltered overburden groundwater sample MW-11 at concentrations of 879,000 μ g/L. Analytical results for phenols and TPH indicated the presence of these compounds in the overburden groundwater in previous investigations.

Based on the distribution of compounds in overburden A zone groundwater at concentrations exceeding the GWQC, it is apparent that impacts on site have been delineated to the north of the site, north of Third Avenue. Impacts have not been delineated to the east towards Bilkay's Trucking Facility. Groundwater impacts are present along the western property boundary, however, since groundwater flows from the west across the site, the western groundwater impacts generally are delineated. Groundwater impacts in the overburden A zone are present along the southern site boundary adjacent to the Elizabeth River. Based on groundwater and river water elevations measured during the tidal survey, groundwater in the overburden A zone appears connected to the Elizabeth River, however, local discharge may be impeded by the presence of steel sheet piling within the core of the flood control berm adjacent to the site. The surface water samples collected from the Elizabeth River adjacent to the site adjacent to the site overburden A zone groundwater is not impacting the surface water quality in the Elizabeth River.

5.3.3.2 Overburden B Zone Groundwater Quality

The analytical results for groundwater samples collected from the overburden B zone during the Phase I SRI are summarized in Table 10a. This table lists only analytes that were detected in at least one sample. Plate 8 was generated from the data summarized in Table

#7

P 3

**

. -

10a and illustrates the distribution of compounds exceeding the GWQC. Organic (BTEX and PAH) impacts in the overburden B zone are not as widespread as those in the overburden A zone. Benzene was the only VOC detected at concentrations exceeding the GWQC. Naphthalene, 2-methylnaphthalene, benzo(k)fluoranthene, benzo(a)anthracene and benzo(a) pyrene were the only SVOCs detected above GWQC. These organics were only detected in groundwater in the overburden B zone collected from monitoring wells on approximately the western half of the site. Organics were not detected in groundwater collected from the overburden B zone north of Third Avenue.

Several metals were detected at concentrations exceeding the GWQC in overburden B zone groundwater, including aluminum, arsenic, antimony, iron, manganese, sodium, and thallium. The most prevalent metals present at concentrations exceeding the GWQC across the site are aluminum, iron, manganese, and sodium. These metals are not typically associated with MGP sites, are detected at locations where MGP-related organics are not detected, and are present off site. Aluminum, iron, and manganese were detected at concentrations exceeding the GWQC north of Third Avenue. Cyanide was detected at concentrations exceeding the GWQC in five of the 11 monitoring wells sampled to evaluate overburden B zone groundwater quality.

Except for the presence of various metals and cyanide, the groundwater impacts in the overburden B zone are delineated to the north and east of the site, based on the distribution of the data illustrated on Plate 8. Overburden B zone groundwater impacts are present along the western property boundary; however, based on the groundwater flow direction, the western impacts are generally delineated. One well adjacent to the river (MW-14B) contained concentrations of organics exceeding the GWQC. Otherwise, only various metals and cyanide were detected at concentrations exceeding the GWQC along the southern property boundary. Based on groundwater and river water elevations measured during the tidal survey, groundwater in the overburden B zone appears connected to the Elizabeth River, however, local discharge may again be impeded by the sheet pile core of the flood control berm. The analytical results of the surface water samples collected from the Elizabeth River adjacent to the site during the Phase I SRI indicate that the overburden B zone groundwater is not impacting the surface water quality of the Elizabeth River.

5.3.3.3 Shallow Bedrock Groundwater Quality

Shallow bedrock groundwater analytical sample results from samples collected during the Phase I SRI are summarized in Table 10b. These results are compared to the NJDEP GWQC. Shallow bedrock groundwater analytical results from previous investigations were summarized in Table 2-10 in the September 27, 1999 Phase I SRIWP. A copy of this table is provided in Appendix G of this report. This table has been modified to reflect updates to the GWQC since September 1999. The data in these tables were used to generate Plate 9, which illustrates the compounds detected in shallow bedrock groundwater at concentrations exceeding the NJDEP GWQC.

2.8

6.4

쁥

77

: 1

. .

2.3

The shallow bedrock groundwater at the site contains VOCs, SVOCs, various metals, and cyanide at concentrations exceeding the GWQC. Benzene, ethylbenzene, and xylenes are the only VOCs that were detected at concentrations exceeding the GWQC. These compounds are consistently detected in the vicinity of the former 340,000-cf gas holder in the northern portion of the site (MW-9D and MW-2D). Benzene has been detected in the groundwater collected from MW-8D since its installation in 1993, although the concentration decreased an order of magnitude between 1993 and 2001. The other detections of VOCs in shallow bedrock groundwater are not consistent. Benzene and ethylbenzene were detected in MW-7D in the southeastern corner of the site in 1984, but have not been detected since then. Benzene was detected during one sampling event (June 2000) in MW-5D in the southwesterm corner of the site, but was not detected in groundwater collected from MW-5D prior to 2000. Benzene was detected during the 1993 sampling event in MW-6D in the center of the southers of the site boundary, but has not been detected since then.

PAHs are the only SVOCs that were detected above NIDEP GWQC. PAHs were only detected in shallow bedrock groundwater samples collected from MW-2D and MW-9D adjacent to the former 340,000-cf gas holder however only the PAHs in MW-9D ground water exceeded the criteria.

Various metals were detected in shallow bedrock groundwater at concentrations exceeding the GWQC. These include aluminum, arsenic, cadmium, iron, manganese, sodium, and zinc. The most prevalent metals detected at concentrations exceeding the GWQC include iron, manganese, and sodium. These metals are not typically associated with MGP sites, are detected at locations where MGP-related organics are not detected, and are present off site.

Cyanide was detected in five of the seven locations where shallow bedrock groundwater samples were collected and analyzed for cyanide. Groundwater samples collected from monitoring wells MW-2D and MW-5D did not contain concentrations of cyanide exceeding the GWQC.

Analytical results from previous investigations for phenols and TPH indicate the presence only of phenols in the shallow bedrock groundwater. Phenols were detected in MW-7D.

Based on the distribution of shallow bedrock groundwater analytical data, it is apparent that shallow bedrock groundwater organic impacts are present in the vicinity of the former 340,000-cf gas holder and extend downgradient to MW-8D. Based on the data, it does not appear that organic impacts in the shallow groundwater beneath the site extend to the southern property boundary, except possibly at MW-5D. Based on the groundwater flow direction for the shallow bedrock (southeast), it appears that the western and northern groundwater impacts are delineated. Organic shallow bedrock groundwater impacts may extend further east of MW-8D and south of MW-5D and inorganic shallow bedrock

groundwater impacts may extend further east of MW-8D and south of the Elizabeth River (south of MW-5D, MW-6D, and MW-7D).

5.3.4 Elizabeth River Sediments

B

79

***** 3

Fifty-six sediment samples were collected from the Elizabeth River adjacent to and upstream and downstream of the Erie Street former MGP site. The sample locations are illustrated on Plate 1. Section 4 describes the sample collection methodology and the parameters for which the samples were analyzed. Observations recorded during the sediment sample collection are summarized in Table 11. Table 12 provides a summary of the analytical results for the sediment samples. Table 12 is a summary table and lists only analytes that were detected in at least one sediment sample. The sediment analytical results are compared to the National Oceanic and Atmospheric Administration (NOAA) sediment criteria: ER-L (effects range low) and ER-M (effects range medium) for marine sediments. Although the river is tidally influenced, upstream is to the west and downstream is to the east.

Based on a review of the analytical results table and the large volume of sediment data, plots of analytical data using callout boxes to summarize exceedances of ER-L and ER-M criteria were not generated. All of the types of compounds analyzed in sediment samples were detected at various concentrations and locations. Based on Table 12, PAHs, pesticides, PCBs, and metals are the compounds that were detected above NOAA criteria in the sediment samples collected during the Phase I SRI. There are no ER-L and ER-M standards for VOCs, semivolatile organic compounds other than PAHs, dioxin, insecticides, and cyanide. Since PCBs and pesticides were not found at the site during previous investigations, PAHs were chosen to assess any impact from the Erie Street former MGP site. PAHs were totaled and plotted to graphically illustrate the distribution of total PAHs in the river sediments adjacent to and upstream and downstream of the Erie Street former MGP site on Figure 36. PAH totals do not include non-detect values. Figure 36 shows that the highest concentration of total PAHs was detected in river sediments collected from transect 7, situated approximately 530 feet upstream of the Erie Street former MGP site. Total PAHs were detected at maximum concentrations of 3,178 ppm in the shallow sediments (0-0.5 foot below the riverbed) 10,474 ppm in the deeper sediments (2.0-4.5 feet below the riverbed). A distinct asphalt-like odor (distinctly different from MGP-related odors) was noted when sampling along this transect.

The lowest total PAH concentrations (less than 125 ppm) were detected in river sediments collected immediately upstream (transect 6) and immediately downstream (transect 2) of the Eric Street former MGP site. Total PAH concentrations adjacent to the former MGP site and the City of Elizabeth Sewage Treatment Plant were generally less than 150 ppm, except in one surficial and one deeper sediment sample collected along transect 5 (western corner of former MGP site) and one surficial sample collected along transect 4 (center of former MGP site). Total PAH concentrations downstream of the former MGP site at transect 1 are similar to those detected adjacent to the former MGP site. Based on the distribution of total PAH

. .

concentrations in the Elizabeth River sediments, it is evident that the former MGP site is not the source of the PAHs detected in the river sediments.

PCBs and pesticides were detected above ER-L and ER-M criteria in the majority of the transect samples as summarized in Table 12. Eleven soil samples and 13 groundwater samples were analyzed for PCBs and pesticides during the Tasks 1-5 Pre-Design Investigations (report dated March 31, 1993). One pesticide (4,4'DDT) was detected in two test pit soil samples (TP-11 and TP-11A) and one pesticide Beta-BHC was detected in one groundwater sample. Otherwise, PCBs and pesticides were not detected in soil or groundwater at the Erie Street former MGP site. Copies of these analytical results are provided in Appendix D of this report. Previous investigation sample locations are included on Plate 1 of this report. A review of previous investigation data for the Erie Street former MGP site is not the source of the pesticides and PCBs detected in the Elizabeth River sediments.

A variety of VOCs were detected in the Elizabeth River sediment samples. There are no ER-L and ER-M standards for VOCs, hence none of the detected concentrations are noted as exceeding standards in Table 12. A review of the data indicates that the VOCs detected include benzene, toluene, ethylbenzene, xylene, styrene, carbon disulfide, chloroform, trichloroethene, 2-Hexanone, and tetrachloroethene. These compounds were detected at various concentrations along the river. The highest VOC concentrations were detected in samples collected from transect 7. Chloroform, trichloroethene, 2-Hexanone, and tetrachloroethene are not associated with former MGP activities and these compounds have not been identified on the former MGP site. Based on the types of VOCs detected and the distribution of VOC analytical results from samples collected along the river, it is evident the former MGP site is not the source of VOCs in the Elizabeth River.

Several metals were detected in the Elizabeth River sediment samples. These include aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc. As summarized in Table 12, ER-L and ER-M criteria have not been developed for 14 of these 23 metals. Transects 1 and 6 had the greatest number of metals detected at their highest concentrations (i.e., highest concentrations of antimony, arsenic, beryllium, potassium, selenium, silver, and thallium were detected in transect 1 and the highest concentrations of aluminum, beryllium, cobalt, iron, manganese, and vanadium were detected along transect 6). Transect 1 is located approximately 550 feet downstream of the former MGP site and Transect 6 is situated approximately 280 feet upstream of the former MGP site. Transect 4, situated perpendicular to the center of the southern property boundary of the former MGP site did not contain the highest concentration of any of the metals detected. The distribution of metal concentrations in the sediment samples collected from the Elizabeth River during the Phase I SRI does not indicate that the former MGP site is the source of metals in the river sediments.

. .

**

• 3

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT Nui Elizabethtown GAS April 27, 2001 (Corrected January 2004)

77

F 1

The sediment samples were also analyzed for dioxins. Three dioxin/furan compounds were detected at various concentrations along six of the transects sampled, as summarized in Table 12. These compounds include tetrachlordibenzo-p-dioxin, tetrachlorordibenzofuran, and hexachlorodibenzofuran. The distribution of the dioxin concentrations does not indicate that the Erie Street former MGP site is a source of dioxin in river sediments.

As discussed in the September 27, 2000 Phase I SRIWP, assessing site impacts on the river sediments is complicated by the fact that the river drains a highly industrial area that has been industrial for a long period of time. It is evident that the river sediments are impacted by other sources, many of which have contaminants similar to those found at the Erie Street former MGP site. An additional complication is that the very nature of a river, especially an estuary, is a dynamic system in which sediments are transported and deposited in a continuous cycle. ETG prepared a report, the *Elizabeth River Sediment Evaluation*, that documents these issues for the Elizabeth River, and included the report as Appendix G of the Phase I SRIWP.

The report evaluation concluded that there were and are many potential sources of impacts to sediment in the Elizabeth River, based on historical and current land use along the Elizabeth River and surrounding water bodies. This is substantiated by the NJDEP's report on the Elizabeth River sediment quality and the detection of PAHs in the Arthur Kill. Several types and sources of current and historical information regarding the Elizabeth River and Arthur Kill overwhelmingly imply that there are many both identifiable and unidentifiable sources to the impacts detected in the Elizabeth River sediment. The data provided in the river evaluation report (Appendix G of the SRWIP) show that the Elizabeth River is an industrial river, which makes sediment sampling ineffective due to the certainty that all of the compounds detected will be the cumulative result of many sources and are not due to one or two properties. In addition, the realignment, filling, and construction associated with the ACOE flood control project make it virtually impossible to conclusively determine the source of Elizabeth River sediment contamination.

The sediment data collected during the Phase I SRI illustrate the points summarized above from the *Elizabeth River Sediment Evaluation* (Appendix G of the Phase I SRIWP). Although compounds that can be associated with the former MGP site (as well as other sources such as oil refineries) were detected in the river sediments, the distribution of the detected compounds indicates that the Erie Street former MGP site is not the source of the detected compounds. Additionally, several compounds that are not associated with MGP sites, and were not detected on the Erie Street former MGP site (such as chlorinated VOCs, pesticides, PCBs, dioxin, and some metals), were detected along many of the transects investigated. This confirms that the Elizabeth River sediments have been impacted by other sources. Therefore, evaluation of the impact of the Erie Street former MGP site is considered complete.

. .

5.3.5 Elizabeth River Surface Water Quality

n

73

2.9

2

. 1

Seven surface water samples were collected from the Elizabeth River during the Phase I SRI. These samples were collected from the center of each transect during low tide events as the tide was receding. No visual observations of impacts were noted on the water surface during the surface water sample collection efforts. The surface water samples were analyzed for the parameters summarized in Section 4 of this report. The analytical results are summarized in Table 13. Table 13 lists only analytes that were detected in at least one surface water sample. The surface water analytical results are compared to the NJDEP Saline Estuary Class 3 Surface Water Quality Criteria (SE-3 SWQC).

Based on the data summarized in Table 13, it is apparent that no compounds were detected above the SE-3 SWQC in any of the surface water samples except the furthest downstream sample collected at SW-1 (along Transect 1). The surface water sample collected at SW-1 contained concentrations of arsenic and thallium that exceeded the SE-3 SWQC standards. Six VOCs, two PAHs, two herbicides, and several metals were detected at concentrations below the SE-3 SWQC. The analytical results do not indicate a trend in the surface water quality along the section of the river evaluated.

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS APRIL 27, 2001

1

12

Ŧ

. á

. .

6. Summary and Conclusions

Based on the compilation of the previous investigation data and the Phase I SRI data, the following summary/conclusion statements can be made regarding the Eric Street former MGP site.

- The Erie Street facility covers approximately 24.5 acres and is located in a mixed commercial, residential, and industrial district of Elizabeth, New Jersey. The site is bounded by private residences, Bilkay's Trucking Facility, the Elizabeth River, and Conrail railroad tracks and the New Jersey Turnpike.
- The Erie Street facility is presently used for storage, transfer, and distribution of LNG and truck parking.
- The facility served as a water gas manufacturing plant from approximately 1895 to 1952 when it was retrofitted to manufacture oil gas which ceased circa 1974.
- No wetlands are present at or in the vicinity of the site except for the Elizabeth River which bounds the site to the south.
- Public water in the vicinity of the site is provided by the City of Elizabeth Water Department. All city water is provided by two surface water reservoirs (Spruce Run and Round Valley). A well survey did not identify potential receptors to overburden groundwater impacts at the site. One industrial bedrock well was identified approximately ½ mile south of the site.
- Two bedrock production wells were drilled on the Erie Street facility in the past. These wells are not used. They have been located and will be abandoned.
- The geologic materials encountered at the site generally consist of fill underlain by peat (in the southern 2/3 of the site), glacial deposits (till), and weathered bedrock/residual soil which make up the overburden beneath the site, and bedrock (Triassic Brunswick Formation – shale and siltstone).
- The peat zone is present in the southern two-thirds of the site. Silty clays and clayey silts are present in the northern one-third of the site where the peat is absent, however they are not laterally continuous or homogeneous and do not transition into the peat to form one continuous confining unit across the site.

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS APRIL 27, 2001

77

17

. .

. .

ź

- Groundwater is present in the overburden and the shallow bedrock beneath the site. The overburden groundwater was divided into two zones. The A zone is the shallow overburden zone above the peat (where present) and the B zone is the deeper overburden zone beneath the peat (where present).
- Groundwater within the shallow overburden A zone is under unconfined conditions. Overburden A zone groundwater generally flows from the western central portion of the site to the east-northeast toward Third Avenue, southeast across South Second Street and south to the Elizabeth River. It is presumed that the old brick sewer in Third Avenue causes the shallow groundwater in the northeast portion of the site to flow towards the northeast. Although the remaining shallow overburden groundwater flows to and is connected to the Elizabeth River, local discharge may be impeded by the steel sheet pile core within the flood control berm adjacent to the site.
- Groundwater within the deeper overburden B zone is under semi-confined conditions in the southern two-thirds of the site and under unconfined conditions in the northern one-third of the site where the peat is absent. Groundwater flow within the overburden B zone is generally to the south-southeast towards the Elizabeth River in the southern two-thirds of the site and to the east in the northern one-third of the site. This flow pattern may be related to the pinching out of the peat in the northern portion of the site the continuity of the A and B zones in the northern portion of the site, and/or the presence of the sewer in Third Avenue north of the site. Although groundwater in the overburden B zone flows toward and is connected to the Elizabeth River, local discharge may again be impeded by the sheet pile core of the flood control berm.
- The groundwater elevation in the overburden A zone is higher than the groundwater elevation in the overburden B zone across the site.
- Groundwater within the shallow bedrock is under confined conditions and generally flows to the south towards the Elizabeth River.
- In general, groundwater elevations in the overburden are greater than groundwater elevations in the shallow bedrock beneath the site. A localized hydraulic connection between the overburden and shallow bedrock groundwater was noted in previous investigations. The degree of connectivity is associated with the degree of perviousness of the intervening glacial/residual deposits and the upper decomposed/fractures bedrock portions, which appear to vary widely throughout the site.
- Tidal cycles affect groundwater elevations in the shallow bedrock and overburden B zone across the site. Tidal impacts were noted in the overburden A zone but do not extend across the site to Third Avenue. The tidal impacts on groundwater levels are

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS
APRIL 27, 2001

×ų

£12

*

not of sufficient magnitude to affect the groundwater flow direction in the overburden or bedrock at the site.

The surface and subsurface soils and the overburden and shallow bedrock groundwater quality have been impacted by the former MGP operations at the Erie Street facility as summarized below.

- The analytical results for surface-soil samples indicate the presence of VOCs, PAHs, and metals in excess of the NJDEP soil cleanup criteria. Based on the distribution and magnitude of compounds detected in surface-soil samples, ETG believes that the surface-soil impacts associated with the site have been delineated and no further evaluation is necessary.
- Visible impacts including staining, sheen, NAPL, residual product, and free product were noted in the subsurface soils across the site. At all but two locations where visible impacts were noted, analytical results indicate that subsurface soils contain compounds (BTEX, PAHs, and/or metals) that exceed the NJDEP soil cleanup criteria.
- Product (sheen, NAPL, residual or free) was noted in the subsurface across the site and appears to be concentrated in the former production area in the northnorthwestern portion of the site, in the vicinity of the former oil storage area in the southwestern corner of the site, and along the southern site boundary adjacent to the Elizabeth River. Product was not observed in the Elizabeth River sediments adjacent to the former MGP site. Based on NAPL surveys performed in onsite monitoring wells, the product noted in test pit, boring and monitoring well logs is not present as mobile or free product in significant quantities except in the vicinity of MW-17A and MW-10.
- The analytical results for subsurface-soil samples indicate that the horizontal/lateral delineation of subsurface-soil impacts is complete to the north of the site along Third Avenue and along the northern portion of South Second Street. Horizontal/lateral delineation of subsurface soil impacts has not been completed east of the site along the southern portion of South Second Street or west of the site along the Central Railroad of New Jersey. Subsurface-soil impacts are present to the southern boundary of the site however no product was noted in the river sediments adjacent to the site. Therefore, delineation of subsurface-soil impacts to the south is considered complete.
- The analytical results for subsurface-soil samples indicate that subsurface soil impacts have been vertically delineate at the site. In general, subsurface-soil impacts (soils with compounds exceeding NJDEP soil cleanup criteria) are present in the fill and upper peat (or upper till where peat is absent) at the site. Subsurface-soil impacts

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUL ELIZABETHTOWN GAS APRIL 27, 2001

12

- - -

noted in the deeper portion of the till and/or within the upper residual soil/weathered bedrock were limited to the area adjacent to and west of the former 340,000 cf gas holder (MW-2D, MW-9D, and MW-22B), and in the vicinity of the former gas oil/oil tanks (MW-17B). Subsurface-soil delineation is considered complete at these locations since bedrock is at or within a few feet of sample intervals collected from these locations.

- The analytical results for shallow overburden A zone groundwater indicate that BTEX, PAHs, some metals, and cyanide are present at concentrations exceeding the NJDEP GWQC. Based on the distribution of these compounds it is apparent that impacts onsite have been delineated to the north-northeast of the site north of Third Avenue. Impacts have not been delineated to the east towards Bilkay's Trucking facility. Impacts are present along the western property boundary, however, based on the groundwater flow direction from west to east the western groundwater impacts generally are delineated. Groundwater impacts in the overburden A zone are present along the southern site boundary adjacent to the Elizabeth River. Although groundwater in the overburden A zone flows toward the Elizabeth River, surface water samples collected from the Elizabeth River adjacent to the site indicate that the overburden A zone groundwater is not impacting the surface water quality in the Elizabeth River.
- The analytical result for the deeper overburden B zone groundwater indicate that BTEX, PAHs, some metals, and cyanide are present at concentrations exceeding the NJDEP GWQC but are not as widespread as those in the overburden A zone. Based on the distribution of these compounds, groundwater impacts in the overburden B zone are delineated to the north and east of the site except for the presence of various metals and cyanide. Groundwater impacts are present along the western property boundary however based on the groundwater flow direction the western impacts are generally delineated. One well adjacent to the river contained concentrations of organics exceeding the NJDEP GWQC. Otherwise, only various metals and cyanide were detected at concentrations exceeding the NJDEP GWQC along the southern property boundary. Although overburden B zone groundwater flows toward the Elizabeth River, surface water samples collected from the Elizabeth River adjacent to the site indicate that overburden B zone groundwater is not impacting the surface water quality in the Elizabeth River.
- Due to the significant differences in overburden A and B zone groundwater hydraulics and quality, previously installed monitoring wells which are screened across the peat unit should be abandoned. These wells include MW-4, MW-5, MW-6, MW-7, MW-9, MW-10, MW-12, and BP-3. In addition, previous investigation monitoring wells MW-13 and MW-11 can be abandoned as they are in the vicinity of

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTÖWN GAS April 27, 2001

77

73

• •

monitoring wells MW-15A and MW-17A, respectively which were installed during the Phase I SRL

The shallow bedrock groundwater analytical results indicate that VOCs, PAHs, various metals, and cyanide are present at concentrations exceeding the NJDEP GWQC. Shallow bedrock groundwater impacts are present in the vicinity of the former 340,000-cf holder and extend downgradient to MW-8D. Based on the analytical data, it does not appear that organic impacts in the shallow groundwater beneath the site extend to the southern property boundary, except possibly at MW-5D (which may have a separate source). Based on the shallow bedrock groundwater flow direction it appears that the western and northern groundwater impacts are delineated. Organic shallow bedrock groundwater impacts may extend further east of MW-8D and south of the Elizabeth River (MW-5D, MW-6D, and MW-7D).

The Elizabeth River sediment analytical data indicate the presence of VOC, SVOCs, pesticides, PCBs, dioxin, and metals. Based on a comparison of the analytical results with NOAA ER-L and ER-M values, SVOCs, pesticides, PCBs, and metals were detected at elevated concentrations. There are no ER-L or ER-M values for VOCs, dioxin, and various metals. The distribution of the compounds detected in the Elizabeth River indicates that the Erie Street former MGP site is not the source of the compounds detected. Rather, the data clearly illustrate the conclusions stated in the Elizabeth River Sediment Evaluation (Appendix G of the September 27, 1999 Phase I SRIWP), that the Elizabeth River has drained a highly industrial area for over a century that has impacted sediments, and that there were and are many potential sources of impacts to sediment in the Elizabeth River, based on historical and current land use along the Elizabeth River and surrounding water bodies. This is further illustrated by the detection of compounds such as chlorinated VOCs, pesticides, PCBs, dioxin, and some metals in river sediments that are not present at the Erie Street former MGP site. Therefore, evaluation of the impact of the Erie Street former MGP site on the Elizabeth River sediments is considered complete.

 Analytical results for surface water samples collected from the Elizabeth River indicate that no compounds were detected above the SE-3 SWQC in any of the surface water samples collected except for the furthest downstream sample collected at SW-1 (Transect 1). The surface water sample collected at SW-1 contained concentrations of arsenic and thallium that exceeded the SW-3 SWQC standards. The analytical results do not indicate a trend in the surface water quality along the section of the river evaluated and do not indicate that the former MGP site is impacting the surface water quality of the Elizabeth River.

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS APRIL 27, 2001

7. Recommendations

97 B

#1

14

77

.

The following recommendations are made to complete the remedial investigation of the Erie Street former MGP site based on the combined results of the Phase I SRI and previous investigations.

- Complete subsurface soil delineation on the western portion of the site along the rail line and to the east of the site across South Second Street;
- Complete delineation of overburden A and B zone groundwater quality to the east of South Second Street;
- Complete delineation shallow bedrock groundwater to the east of South Second Street;
- An additional off site, upgradient shallow bedrock monitoring well is recommended to evaluate background shallow bedrock groundwater quality upgradient of the site;
- Abandonment of previous investigation monitoring wells MW-4, MW-5, MW-6, MW-7, MW-9, MW-10, MW-12, and BP-3 is recommended to prevent further potential cross-contamination between the overburden A and B zones and to provide better hydraulic information in the future. Monitoring wells MW-11 and MW-13 should also be abandoned as new wells were installed in their vicinity during the Phase I SRI.
- Abandonment of historic production wells is recommended to be performed in conjunction with the abandonment of the previous investigation monitoring wells noted above.

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS APRIL 27, 2001

References

2 Q

.

Bouwer, H. and R.C. Rice 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells". *Water Resources*, V. 12.

Bouwer, H., 1989. "The Bouwer and Rice Slug Test – An Update." Groundwater, Vol. 27, No.3.

Dames & Moore, 1989. Final Report, Site Investigation, Erie Street Site. Cranford, New Jersey, February 23, 1989.

Dames & Moore, 1993. Pre-Design Investigations Report (Tasks 1-5). Cranford, New Jersey, March 3, 1993.

Dames & Moore, 1994. Pre-Design Studies Report, Erie Street Facility, Elizabethtown Gas Company. Cranford, New Jersey. January 31, 1994

Driscoll, 1986. Groundwater and Wells. Johnson Filtration Systems, Inc., St. Paul, Minnesota.

Hydrologic, 1993. ISOAQXTM- Operations, Guide, Version 4.0, Missoula, Montant


New Jersey Department of Environmental Protection, 1992. Field Sampling Procedures Manual. May 1992.

.

TABLES

PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS APRIL 27, 2001

Tables

r

*

•

.

.

.

			Table 1 Subsurface-Soll Sam Erie Streat Form Elizabeth, New	pie Rationale ner MGP					
· · · · ·	1 1					Anal	yele		
Sample Location ID	Semple Location	Location Rationale	Sample Designation (depth is feet <u>below lend surface)</u> Test Pite	Selected Sample Analytical Rationale	втех	BNs+10	TAL Metals	Total Cyanide	Amenable Cyanide
TP-17A	Located in the north- central portion of the site to the southwest of the Gate House within Area of Concern 8-4	Test pit to characterize the nature : and horizontal and vertical extent of potential impacts in the former purifying area	TP-17A (3)	Sample collected to characterize black-stained soils, residual product/slight oily product on gravels, and tar/oil odors at groundwater interface	•	•	•	•	
TP-22	Located to the east of the welding shop in Area of Concern B-6	Test pit to characterize subsurface- soil impacts to evaluate vertical and lateral extent of potential impacts in the former tar processing area	TP-22 (2.0-2.5)	Sample collected to characterizar shallow fill material	•	•	•	•	
TP-24	Located to the south of the welding shop in Area of Concern B-8	Test pli to characterize the nature and vertical and horizontal extent of potential impacts adjacent to the former clarifying pli	TP-24 (6)	Sample collected to characterize black-stained fill material coared with ter/oly product	•	•	•	•	•
TP-33	Localed in the southwestern portion of the site in Aree of Concern C	Test pit to characterize the nature and extent of subsurface-soli impacts in the liquid fuel storage area of the site	TP-33 (5.6)	Sample collected to characterize black-stained fill and residual product	•	•	•	•	
TP-34	Located to the west of the Liqueted Melhane Storage area in the western portion of the site within Area of Concern D-2	Test pit to characterize the nature and extent of potential subsurface- soil impacts in the former coal and	TP-34 (10)	Sample collected to characterize black asphall-like tar, soits with tridescant sheen, and residual tar product on gravel	•	•	•	•	•
TP-38A	Located in the southwestern portion of the site within Area of Concern C	Test pit to characterize the nature and extent of potential subsurface- soil impacts in the former liquid fuel storage area of the site	TP-36A (8)	Sample collected to characterize tar-saturated, black-stained soils	•	•	•	•	
TP-37	Located in the	Test pit to characterize subsurface	TP-37 (3.0 -3.5)	Sample to characterize black- stained fill meterial	•	•	•	•	•
	southwestern corner of the site adjacent to Area of Concern C	soils along the southwestern property boundary	TP-37PIPE	Sample to characterize contents within a piece of 12- inch diameter cast iron pipe	•	•	•	•	
TP-39	Test pit located in the southern portion of the site adjacent to the propene tanks between Areas of Concern C and D-4		TP-38 (3-4)	Sample to characterize fill material encountered within the test pit (The log for this test pit was not complete.)	•	•	•	•	•

٠

.

.

			Table 1 (conti Subsurface-Soil Sam Erie Street Form Elizabeth, New	ple Rationale ler MGP								
						Analysia						
Sample	Sample Location	Location Rationale	Sample Designation (depth in fest below land surface)	Selected Sample Analytical Rationals	BIEX	BNe+10	TAL Metala	Total Cyanide	Amenabie Cyanide			
7P-39A	Test pit located in the southern portion of the site adjacent to the propene tanks between Areas of Concern C and	Test pit to characterize potential subsurface soil impacts between the formar liquid luet storage and oxide storage ereas at the site	TP-38A (4)	Sample to characterize black- steined Ril with sheen and MGP/punitier odor	6	. 🗢		đi	8			
TP-49	D-4 Test pit located on the eastern edge of the site north of Area of Concern A-3	Test pit to characterize the nature and extent of potential subsurface- soil impacts in the vicinity of former holder 8	TP-49 (5.0 -5.5)	Sample to charactarize solls with moderate-to-strong purifier odor	٩	*	+	*				
TP-51	Test of located in the northeastern comer of the site adjacent to Aree of Concern A-2	Test pit to characterize the nature	TP-51 (3.59/TP-61 (7.5)	Sample to characterize black- steined soils with moderate to strong diesel odor at 35 feet and soils to evaluate vertical extent at 7.5 feet	-	*	ø	*				
7P-58	Test pit located in the northeastern portion of the site within Area of Concern A-7	Test pit to cheraclarize the nature and extent of potential subsurface- soil impacts in the former purifying box area of the site	TP-56 (4-5)	Sample to characterize black- stained fill with strong purifient strong burnt MGP odor	\$	*	۲		8			
TP-57A	Test pit located in the nontheastern portion of the site	Test pil to characlerize the nature and extent of potential subsurface- soil impacts in the former purifying box area of the site	TP-57A (3-4)	Sample to characterize solls (pelow fill material at the peat layer	•	-	6	۵	\$			
TP-68	Test pit located in the north-central portion of the site within Area of Concern B-3	Test pit to characterize the nature and extent of potential subsurface soil impacts in the former tar separator area of the site	TP-88 (3-4)	Sample to characterize block- stained fill with strong tar odor, heavy sheen, and gravel coated with liquid ter	*			5				
			A CARLEN AND AND A CARLEND	Non-Destance and second second			Constanting	的一個評判的資源	REPRESENT: A NOT			
MW-148	Located on the southwestern edge of the site along the Elizabeth River	properties below the peet layer and above the bedrock in this area of	14114-11 [100 10]	Soil sample collected from below impacts observed in the fill above the peal to verify vertical extant of observed introdots		*	٠					
7		the site	MW-14 (22-24)	Soli sample collected at the surface of the weathered bedrock No impacts were observed at this interval	*	•	e	8	Not Semple			

			Table 1 (conti Subsurface-Soli Sam Erie Street Form Elizabeth, New	ple Rationale ler MGP					
						×	Anat	ymis	
Semple Location (D	Sample Location	Location Rationale	Sample Designation (depth in feet below land surface)	Selected Sample Analytical Rationale	BTEX	8Ns+1 <u>0</u>	TAL Metais	Total Cyanide	Amenable Cyanide
MW-15B	Located in the center of the southern property boundary along the Elizabeth River	Monitoring well to evaluate the groundwater quality and hydrologic properties below the pest layer and above the bedrock in this area of the site	Mw-15 (6-8)MW-15 (10-11)	Soil sample collected to evaluate soils with slight MGP odors below observed contamination (8-8) and to evaluate peat material (10-11')	•	•	•	•	•
			MW-158 (14-15) MW-158 (23-24)	Soil sample collected to evaluate the quality of the glacks till immediately below the pest (14-15) and the quality of soils at the weathered bedrock surface (23-24) Impacts were not observed at either of these intervals	٠	•	•	•	
MW-16A	Located off sile on a percel owned by the City of Elizabeth sciecent to the southeastern portion of the property	properties above the peat layer	MW-16Ä (8.0-8.5)	Soli sample collected to characterize stalned soils observed above the peat	•	•	•	•	
	Localed off sits on a percel owned by the City of Elizabeth adjacent to the southeastern portion of the property	properties below the peet layer and		Soll sample collected as specified in the September 27, 1999 SRIWP	•	•	•	•	
MW-178	Localad in the southwestern portion of the site adjacent to Area of Concern C	Monitoring well to evaluate the groundwater quality and hydrologic		Soil sample collected Immediately below impacts observed in the peat to verify venical extent of impacts and as specified in the September 27, 1999 SRIWP (18 to 207), and to characterize soils with a slight MGP odor within the weathered bedrock (30-32)	•	•	•	•	
MW-168	Located along the western edge of the site	Monitoring well to evaluate groundwater quality and hydrologic properties below the pest layer and above the bedrock in this area of the site		Soil sample collected to verify ventcel extent of impacts observed in overlying fill and pest material	•	•	•	•	
MW-19A	Located in the central portion of the elle	Monitoring well to evaluate the groundwater quality and hydrologic properties above the pest in the center of the site	MW-18A (4-8)	Sample collected as specified In the September 27, 1999 SRIWP	•	•	•	•	•

	Table 1 (continued) Subsurface-Soil Sample Rationals Erie Street Former MGP Elizabeth, New Jersey										
					Analysis						
Sample Location ID	Sample Location	Location Rationale	Sample Designation (depth in feet below land surface)	Selected Sample Analytical Rationale	BTEX	BNa+10	TAL Metala	Total Cyanide	Amenable Cyanide		
NW-198	Locsted in the central portion of the site, paired with MW-18A	Monitoring well to evaluate the groundwater quality and hydrologic, properties below the peat and above bedrock in the center of the site	MW-19B (18-20)	Sample collected to evaluate soil quality and to delineate ovarburden impacts in the center of the site	•	•	•	•			
MW-21A/ MW-21B	Localed in the northwestern comer of the eite	Nested pair of monitoring wells to evaluate groundwater quality and hydrologic properties in this area of the site	MW-21 (2-4)/MW-21 (10-12)	3 and 10-12 lest as specified in the September 27, 1999 SRWP	•	•	•	•			
MW-22A MW-22B	Located in the north- central portion of the site	Nested pair of monitoring wells to		Sample collected as specified in the September 27, 1999 SRIWP	•	•	•	•	•		
		the sile	MW-22 (10-12)	Soil sample collected to characterize stain and tar material observed at this interval and as specified in the September 27, 1999 SRWIP	•	•	•	•			
			MW-22 (22-23)	Soil sample collected to verify the vertical extent of the overlying observed impacts	•	•	•	•			
MW-23A/8	Located on the eastern side of Florida Street north of Third Avenue	Nested pair of monitoring wells to avaluate groundwater quality and hydrologic properties north of the alte	MW-23B (3-4)	Soit sample collected to delineate the horizontal extent of soil exceedances in 8-14 from 3-4 feet bis	•	•	•	•			
		and a	MW-238 (8-10)	Soil sample collected at the approximate groundwater interface due to the absence of visual/odor impacts	•	•	•	•			
			MW-238 (24-25)	Soil sample collected at the base of the buring to verify no soil impacts at this depth	•	•	•	•			
side of Er	Located on the weatern side of Erie Street, north of Third Avenue	Nested pair of monitoring wells to evaluate groundwater quality and hydrologic properties north of the site		Soil sample collected to delineate the horizontal extent of impacts observed in TP-63 between 2 and 8 test bis	•	•	•	•			
			MW-248 (7-8)	Soil sample collected to delineate the horizontal extent of impacts observed in YP-83 between 2 and 8 feet bis		•	•	•	_		
			MW-24B (16-17)	Soil sample collected at the top of weathered bedrock to verify no soil impacts at this deoth	•	•	•	•			

.

P1

Page 4 of 9

na na sa waxaa xa dada ga	aanaan ahaa faasaa ahaa ahaa ahaa ahaa ahaa ah		Table 1 (cont Subsurface-Soil San Erie Street For Elizabeth, New	uple Rationale ner MGP					
			*****	1			Anal	ysis	
Sample Location (D	Sample Location	Location Rationals	Sample Designation (depth in feet below land surface)	Belected Sample Analytical Rationale	ØTEX	BNs+10	TAL Metais	Total Cyanide	Amenable Cyanide
NW-25A	Located on the eastern side of Geneva Street, north of Third Avenue	Shellow monitoring well to evaluate groundwater quelity and flow direction in the shellow overburden north of the site	MW-25A (4-5)	Soli sample collected to delineate the horizontal extent of impacts observed in TP-10 between 4 and 8 feet bis	8			8	
			MW-25A (6-7)	Soil sample collected to delineate the horizontal extant of impacts observed in TP-10 between 4 and 8 feet bis	8	*	•		
MW-26A	Located on the eastern side of Delaware Street.	Shallow monitoring well to evaluate groundwater quality and flow	MW-26A (3-4)	Soil semple collected at the groundwater interface	\$	*	*	•	
	north of Third Avenue	direction in the shallow overbunden north of the site	MW-26A (9-10)	Soil sample collected at the lop of weathered bedrock to verify no soil impacts at this depth	9	9			
MIG AND STREET	and the second second second second		Contract Contract		and a strike	。"这些课题了"	的物理地和		A CALLER AND LOOK
8-11	Located in the southern portion of the site within Area of Concern D (Waterial Storage)	Boring to delineate the vertical extent of contamination at the she	B-11 (13-15)	Sample to evaluate slight hydrocarbon and staining noted at the apparent groundwater table	*			8	
	(manua awaya)		8-11 (19-20)	Sample to evaluate vertical extent of contamination	٥	8	•	٠	6
SB-12	Located adjacent to the current meter house in the eastern polion of the site		SB-12 (5-6)	Soil sample to evaluate vertical extent of contamination	ø	8	*	•	8
	adjacent to Area of Concern A-5 (Purifying Boxes)	ihe ske	SB-12 (7.5-8)	Soil cample to evaluate vertical extent of contamination			•	•	
			SB-12 (13-14)	Soil sample to evaluate vertical extent of contamination	۰	•	8	•	
B-14	Located off alte adjacent to the northeastern portion of the site within Third Avenue Right-of- Way	Boring to delineate the vertical extent of contemination adjacent to the site		Samplo to evaluate soits with fuel oil/disset odors		0		*	
B-15 (2~3)	Located off site adjacent to the northeastern portion of the site within Third Avenue Right-of- Way	Boring to definisate the vertical extent of contamination adjacent to the site	B-15 (2-3¥) B-15 (12-14¥) B-15 (20-22¥) B-15 (25-28) B-15 (25-28)	Soil sample to evaluate soils above observed contamination at 2-3' and 12-14' Sample to evaluate soils with aveet door at 20-22'/residual product at 25 26'/and weathered bedrock at 26 to 28'		*	æ		

æ

			Table 1 (cont Subsurface-Soll San Erie Street Forr Elizabeth, New	tple Rationale ner MGP					
							Analy	da	
Sample Location ID	Semple Location	Location Rationale	Sample Designation (depth in fast below land surface)	Selected Sample Analytical Rationale	BTEX	BNs+10	TAL Metals	Total Cyanide	Amenable Cyanide
B-10	Localed off sile adjacent to the eastern portion of the site within Third Avenue Right-of-Way)	Boring to definests the vertical extent of contamination adjacent to the site	B-16 (1-2)/B-16 (8-9)	Soil sample to evaluate shallow fill material/Sample to evaluate vertical extent of possible diesel fuel	•	•	•	•	
B-17	Located in South 2nd Street	Boring drilled to evaluate the extent of impacts to the east of the sile	8-17 (3.5-4)	Soil sample collected as specified in the September 27, 1999 SRWP		•			
			B-17 (7-8)	Soil sample collected to evaluate soil quality and to defineate overburden impacts in this area of the site	•	•	•	•	
B-1B	Located in South 2nd Street	Baring diffied to evaluate the extent of impacts to the sest of the site, including PAH exceedences from 5 - 5.5 feet bis in TP-49	B-18 (5-5.5)	Soil sample collected to evaluate the extent of PAH exceedances detected in this interval on site at TP-49	•	•	•	•	•
		0 - 0,31001.0m 81 17	B-18(9-10)	Sal sample collected to evaluate acil quality and to delineate overburden impacts in this area of the site	•	•	•	•	_
B-19	Localed in South 2nd Street	Baring drilled to evaluate the extent of impacts to the east of the site	B-19 (2-4)	Soil sample collected as specified in the September 27, 1999 SRIWP		•			
			B-1 9 (8-10)	Soil sample collected to evaluate soil quality and to delineate overburden impacts In this area of the site	•	•	•	•	
B-20	Located in South 2nd Street	Boring drilled to evaluate the extent of impacts to the east of the site	8-20 (5-6)	Soil sample collected to characterize the black stain and sheen observed from 4 to 8 feet bla al this location		•			
			B-20 (8-10)	Soll sample collected to verify visible vertical extent of overlying impacts	•	•	•	•	
B-21	Located in South 2nd Street	Boring diffied to delineate the extent of impacts to the east of the site	9-21 (6-7)	Soil sample collected to characterize stain and sheen observed at this location		•			•
			B-21 (8-9)	Soil sample collected to evaluate the extent of PAH exceedances detected in this interval in MW-16A/B	•	•	•	•	
			B-21 (13-14)	Soil sample collected to verify visible vertical extent of overlying impacts	•	•	•	•	

Page 6 of 9

			Table 1 (contin Subsurface-Soli Samp Erie Street Form Elizabeth, New .	er MGP					
	1						Anal	rele	
Semple Location ID	Semple Location	Location Rationale	Sample Designation (depth in fast below land surface)	Selected Sample Analytical Rationale	BTEX	BNe+10	TAL. Metals	Total Cyani <u>de</u>	Amenable Cyanide
B-22	Located in the northern portion of the site within Area of Concern B-S (lief segarator)	Boring to delineate the vertical extent of contamination at the site	B-22 (21-22)	Sample to evaluate soil conditions below observed contamination	•	•	•	•	
8-23	Located in the northwestern portion of the site within Area of Concern 6-6 (tar processing area, tar separator)	Boring to delineate the vertical extent of contamination of the alle	8-23 (17-18)	Sample to evaluate soil conditions below observed contamination	•	•	•	•	
\$8-29	Located in northern portion of the alle within Area of Concern B-5 (large relief holder, tur tank, drip oil area)	Boring to delineste the vertical extent of contamination at the site	SB-28 (18-17)	Soil sample to evaluate vertical extent of contamination and to evaluate sweet MGP/gasoline odor	•	•	•	•	•
\$8-30	Located in the central- northeast portion of the site adjacent to Area of Concern 8-2 (amell rollef holder)	Boring to defineste the vertical extent of contamination at the site	SB-30 (24-25)	Soil sample to evaluate vertical extent of contamination and to evaluate slight odor	•	•	•	•	
6-33	Located in the central portion of the site adjacent to Areas of Concern D-2 and D-3 (coal and coke pile)	Boring to delineate the vertical extent of contemination at the site	38-33 (13-14)/58-33 (20-21)	Sample to evaluate soil conditions above observed tar impects/Sample to evaluate soft conditions below ter impacts to determine vertical extent of contamination	₽	•	•	•	
8-35	Located in the southwestern portion of the site within Area of Concern D-4 (oxide	Boring to defineate the vertical extent of contemination at the site	B-35 (16-18)	Sample to analyze slight sweet odor and to evaluate soils for vertical extent of contamination	•	•	•	•	
SB-TP-14	storage area) Located adjacent to test pit 14 location in the northern corner of the site adjacent to Area of Concern B-5 (former relief holder)	extent of contamination at the site	SB-TP-14(15-16)	Soli sample to avaluate fil materiei with slight nephthelene ador	•	•	•	•	
<u>\$8</u> -TP-25	Located adjacent to test pit 25 facetion in the northwestern portion of the site within Area of Concern B-6 (former claritying pit)	Boring completed adjacent to GEI test pit 25 to determine vertical and lateral extent of contamination at the site	\$8-TP-25 (13-15)	Soll sample to evaluate solls above observed contamination	•	•	•	•	

....

• -

			Table 1 (contin Subsurface-Soli Samp Erie Street Form Elizabeth, New 3	er MGP			·		
		·····					Anal	yele	
Sample Location (D	Semple Location	Location Rationale	Sample Designation (depth in feet below land surface)	Selected Sample Analytical Rationate	BTEX	BNs+19	TAL Metals	Total Cyanida	Amenable Cya <u>nide</u>
SB-TP-30	Located adjacent to test pit 30 location in the north centrel area of the site adjacent to the liquefied methane storage area within Area of Concerns B and D-2 (former production area and meterial storage area)	Boring completed adjacent to GB test pit 30 to determine vertical and lateral extent of cantamination at the site	SB-TP-30 (20-21)	Soil sample to determine the vertical extent of contemination	•	•	•	•	
58-TP-39	Located adjacent to test pit 39 location in the western portion of the site adjacent to Aree of Concern C (liquid fuel storage area)	Boring completed adjacent to GEI test pit 39 to determine vertical and leteral extent of contamination at the site	SB-TP-39 (15-16)/SB-TP-39 (23-25)	Soil sample to evaluate soils with a very slight naphthalene odor and to defineste vertical extent of contermination at 15- 167Soil sample to evaluate soils at the top of the bedrock at 23-25	•	•	•	•	
SB-TP-75	Located adjecent to test pit 75 location in the central portion of the site within Area of Concern D- 1 (drip oil area)		SB-TP-75 (15-16)	Self sample to determine the vertical extent of contamination	•	•	•	•	
HB-1	Angle boring drilled beneath the office building	Boring drilled to evaluate the presence, contents, structure, and integrity of the holder situated beneath the building	HB-1 (12-14)	Soil eample collocted to characterize the MGP material observed at this depth	•	•	•	•	•
			HB-1 (23-24)	Soil sample collected at the top of the weathered bedrock where no visual impacts were noted	•	•	•	•	•
HB-3	Located in the former gat holder situated north of the office building		HB-3 (6-8)	Soil sample collected to evaluate soil quality and to delineate overburden impacts in this area of the site	•	•	•	•	•
			HB-3 (14-16)	Soil sample collected to characterize residual product observed from 8.5 to 16 feet bis	•	•	•	•	•

Page 8 of 9

			Table 1 (cont Subsurface-Soil San Erie Street For Elizabeth, New	npie Rationale ner MGP					
Sample		Location Rationale	Sample Designation (depth in fast below land surface)	Selected Sample Analytical Rationale	BTEX	Bhis+10	Anal TAL Metals	Total Cvanide	Amenable Cyanide
<u>Lecriton ID</u> V8-1	Sample Location Located in the southwestern corner of the site, west of the former oil tank	Boring drilled to evaluate vertical extent of impacts observed in TP- S3, TP-36, TP-37, and MW-17B	VB-1 (17-18)	Soil sample callected below stain and shean observed from C-16 feet to verily visual vertical extent	•	•	•	•	•
		-	VB-1 (24-25)	Soil sample collected at the top of the weathered bedrock where no visual impacts were noted	•	•	•	•	•
VB-2	Located in the south- central portion of the aile, south of the propane tanks	Boring diffed to delineate the vertical extent of impacts observed in B-34 and TP-39 and SB-TP-39	" VB-2 (18-17)	Soil earnple collected to evaluate soil quality and to delineate overburden impacts in this area of the site	•				
		-	VB-2 (22-24)	Soil sample collected to evaluate soil quality and to delineate overburden impacts in this area of the site	•				
VB-3	Located in the southern portion of the site, north of the truck parking area fence	Boring drilled to defineate the vertical extent of impacts in this area of the site	V8-3 (15-16)	Soil sample collected to evaluate vertical extent of impacts noted from 0-12 feet bis in this boring	•	•		•	•
VB-4	Located in the northeastern portion of the site, south of the former propene air plant	Boring diffied to delineate the vertical extent of impacts in this area of the site	VB-4 (6.5-7.5)	Soil sample collected to evaluate vertical extent of staining observed from 2 to 4.5 feet bis	. •	•	. •	•	•
			VB-4 (14-15)	Soli sample collected to evaluate soil quality and to delineate overburden impacts in this area of the site	•	•	•	•	•

		-	able 2				
	Sam	ple Collection Erie Street			lary		
	· · · · · · · · · · · · · · · · · · ·				of Samples Co	liscted	
Medium	Sampling Method	Analytica! Parameters	Primary Samples	Field Duplicates	Equipment Blanks	Ambient Blanks	Trip Blanks
Surface Soil (0- 2" bgs)	2" Split-Speen Soil Sampler	BTEX TCL BN SVOCs TAL Metals Cyanida	10	1	D	NA	NA
	3" Split Spoon or Direct Push/Acetate Liner from Borings	BTEX TCL BN SVOCs TAL Metals Cyanide	69 ¹	7	7	<u>14</u> NA	<u>11</u> NA
Subsurface Soli (>2' bgs)	Grab Using Remote Test Pit Sampler from Test Pits	BTEX TCL BN SVOCs TAL Metals Cyanide	221	2	1	5 NA	5 NA
Sedment	VibraCore Sampler/Boat	TCL VOCs TCL BN SVOCs Pesticides Herbicides PCBs TAL Metals Cyanide TOC Dioxins	56	1	1	NA	NA
Groundwater May-June 2000	Bailer Peristaltic or Submersible Pump	BTEX TCL BN SVOCs TAL Metals Cyanide	25	3	4	NA	4 NA
Groundwater January 2001	Baller Peristaltic or Submersible Pump	Cyanide BTEX TCL BN SVOCs TAL Metals Cyanide	31	2	7	NA	4 NA
Surface Water	Grab Sample	TCL VOCs TCL BN SVOCs Pesticides Herbicides PCBs TAL Metals Cyanide TOC Dioxins	7	1	1	NA	2 NA

Notes

f

Ambient Blanks - These are only used in conjunction with methanol preservation for soil samples BTEX - Benzene, toluene, etinylbenzene, xylenes

TCL BN SVOCs - Target Compound List Base/Neutral Semivolatile Organic Compounds

TAL - Target Analyte List

Cyanide - Analysis for total cyanide was performed; if detected, analysis for amenable cyanide was performed NA - Not applicable

¹ Ninety-one primary subsurface-soil samples were collected. Eighty-five of the 91 samples were analyzed for all the parameters listed. Eight of the 91 were analyzed for different combinations of analytes, as follows. BTEX only (2 samples); TCL BNA SVOCs only (2 samples); PAHs only (1 sample);

TCL BN SVOCs, arsenic, and lead (1 sample); BTEX, TAL metals, PAHs, and cyanide (1 sample); TCL BN SVOCs, TAL metals, and cyanide (1 sample). In addition, one of the 85 samples that was

analyzed for all of the listed parameters was also analyzed for Diesel Range Organics (DRO).

PAHs - Polycyclic aromatic hydrocarbons

TCL VOCs - Target Compound List Volatile Organic Compounds

PCBa - Polychlorinated biphenyls

TOC - Total organic carbon

Table 3 Test Pit Descriptions Erie Street Former MGP Site						
Test Pit	Depth (feet bis)	Description	Comments			
TP-15	2.2.5	Brown fine to coarse sand and gravel - fill; slight staining Same as above; fill - some bricks; black staining Same as above; tar (residual product) present at approximately 24 inches; cast iron pipe running along fence line (approximately 5 offset); wood at approximately 3 feet bls; heavy sheen on water collecting in trench; PID: 100-150 ppm				
TP-16A	0-0.5: 0.5-3: 3-4: 4-7.5: 7.5-8:	Black-stained fill; strong MGP odor Reddish-brown silt and very fine sand, some clay; PID: 180-200 ppm Black-stained silts and clay; moderate to slight MGP odor				
TP-16B	0-4: 4-6:	Difference in the second state of the second s				
TP-17	0-0.5: 0.5-1.5: 1.5-3.5: 3.5-7: 7-8:	 Fill - brick fragments and fine to coarse sand and gravel; black-stained medium to coarse sand at 1.5 feet; slight sheen on soil; moist Black-stained fine sand; some roots noted; dry/slightly moist Brown very fine sand and silt; very slight MGP odor; slight staining 				
TP-17A	0-1: 1-2.5: 2.5-3.5: 3.5-5:	Gravel Fill - bricks, brown sand and gravel Black-stained medium gravel and sand; wet; residual product noted on gravel; strong sheen on water in hole; slight oily product LNAPL noted tar/oil odor on gravel; PID: 50-100 ppm	Analytical Sample TP-17A(3 collected on 1/12/00			

	Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site						
Test Pit	Depth (feet bis)	Description	Comments				
ТР-18	0-1: 1-6.5: 6.5-7: 6.8:	and a second sec					
TP-19	0-0.5: 0.5-2:	A A A A A A A A A A A A A A A A A A A					
TP-22	0-0.5: 0.5-1: 1-5:	Reddish-brown silt	Analytical Sample TP-22(2-2.5 collected on 1/12/00				
TP-23	0-1: 1-2:	111, 1, 1 5 3), and a method show a second s					
TP-23A	0-2: 2-3:	the second					
TP-24	0-0.5: 0.5-2: 2-4.5: 4.5-6: 6-7:	Reddish-brown sand and silt, some gravel, some bricks Black-stained sand and gravel - fill, some brick/clinker; moist; moderate purifier odor Black gravel and clinker; strong diesel fuel odor; water at approximately 5 feet bls; LNAPL noted; PID: 400- 500 ppm	Analytical Sample TP-24(6) collected on 1/13/00				

-

Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site						
Test Pit	Depth (feet bis)	Description	Comments			
TP-25	0-0.5: 0.5-3: 3.5: 5-5.5:	Reddish-brown sand and gravel, some bricks				
TP-26	0-0.5: 0.5-3: 3-5.5: 5.5-8.5:	Dark brown sand and gravel - fill; some trace brick and concrete; slight staining; slight burnt odor				
TP-27		No log available				
TP-28	0-3: 3-6.5: 6.5-7.5: 7.5-8.5:	Tan/heavy brown fine to medium sand and pieces of concrete; one long piece of timber approximately 5 feet long (2x8x5); no staining, dry; no odors; PID: 0-1 ppm Same as above; moist; slight hydrocarbon odor				
TP-29	0-0.5: 0.5-3: 3-7: 7-9: 9-11:	Gravel Reddish-brown sand, gravel, and bricks - fill; dry; no staining; slight purifier type odor Fill/riprap, sand/gravel, large pieces of stone and concrete, numerous pieces of wood (4x4); slight odor; slight staining on bricks Same as above with black staining; moderate MGP-tar-fuel oil odor Gravel; black with clinker; wet at approximately 10 feet				
TP-30	0-0.5: 0.5-1.5: 1.5-3.5: 3.5-4.5:	Sand and gravel Brown fine sand and gravel, trace brick fragments; dry; no odor; no staining; PID: 0 ppm Tan/light brown medium sand; moist; several slabs (brick/concrete walls?); soil/fill no odors; no staining Fill - black-stained sand and gravel; wet; slight hydrocarbon odor; PID: 3-5 ppm; sheen on water entering hole at approximately 3.5 bls				

		Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site	
Test Pit	Depth (feet bis)	Description	Comments
TP-3 1	0-0.5: 0.5-3: 3-5: 5-5.5	Fill - reddish-brown silty sand and gravel; numerous cracks; no staining; no odors; PID: 0 ppm Fill - black gravel and silty sand; moderate MGP odor; water entering the hole at approximately 4 feet bls; moderate sheen on water; PID: 10-120 ppm	
TP-32	0-0.5: 0.5-5:	Coarse black gravel Brown fine-to-coarse sand and gravel fill. Several bricks and pieces of concrete.	
T P -33	0-0.5: 0.5-1.5: 1.5-4.5: 4.5-4.6: 4.6-6;	Fill - sand and gravel, some bricks and tubing Fill - concrete slabs (numerous) approximately 4'x4'x0.5'; no staining, very slight odor (hydrocarbon) Wet, black-stained sitty clay; slight MGP odor; PID: 10-15 ppm	Analytical Sample TP-33(5.5) collected on 1/19/00
TP-34	0-0.5: 0.5-6.5: 6.5-10: 10-10.5:	Coarse black gravel Reddish-brown silty fine sand and gravel; dry; no staining; no odor, PID: 0 ppm Same as above; slight black staining on soil with trace wood fragments; no odor; dry; PID: 0 ppm	Analytical Sample TP-34(10) collected on 2/2/00
TP-35		No log available	
TP-36	0-0.5: 0.5-2: 2-3: 3-5:	Brown sand and gravel/some silty clay; fill - numerous bricks and concrete fragments; no staining; no odor Dark brown-black silty sand and gravel, some bricks; moist; slight hydrocarbon odor; not wet; several metal pipes Black gravel and sand; wet; strong MGP odor; tar/oil sheen on material and in hole; water at approximately 3-5	

.

<u></u>	Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site						
Test Pit	Depth (feet bis)	Description	Comments				
TP-36A	0-0.5; 0.5-2.5; 2.5-8.5; 8.8-9; 9-9.5;	Gravel and sand; no odors; no staining; dry Reddish-brown fine sand and silt, some bricks and gravel; dry; no staining; no odor; PID: 0 ppm Till - reddish-brown silt and clay, some fine gravel; very tight; slightly moist; no staining; hole left open - no water coming in from any depth; PID: 0 ppm Black-stained fine to medium gravel, some sand; tar saturated; water begins to come up from the bottom; black tar/water; PID: >100-200 ppm Peat and clay	Analytical Sample TP-36A(8) collected on 1/19/00				
TP-37	0-0.5: 0.5-3: 3-3.5: 3.5: 3.5: 3.5-4:	Brown fine sand and gravel; fill and brick fragments/concrete; no odor; slight staining Same as above with intermittent pockets of black-stained spent coal and clinker Wood timber (4x4) and piece of 12-inch diameter cast iron pipe with elbow	Analytical Sample TP-37(3-3.5) collected on 1/6/00 Analytical Sample TP-37 (pipe) collected on 1/6/00				
TP-38	0-0.5: 0.5-2.5: 2.5-3: 3-5:	Fill - sand and gravel; concrete slab with rebar at 1 foot bls; approximately 7 feet thick; 6x6 foot; slight purifier odor Black wood chips; moderate to strong purifier odor; PID: 10 ppm; same material seen in TP-40					
TP-39	0-0.5: 0.5-2: 2-4:	Gravel Fill - brown very fine sand, some gravel and bricks	Analytical Sample TP-39(3-4) collected on 1/6/00				
TP-39A	0-1: 1-2.5: 2.5-4.5:	Gravel Brown sand and gravel fill, some bricks and ash; PID: 0-5 ppm	Analytical Sample TP-39A(4) collected on 1/6/00				
тр-40	0-0.5: 0.5-2.5: 2.5-3: 3-4.5:	Fill - sand and gravel; some brings; dry; slight purifier odor; PID: 0-10 ppm Black wood chips; moderate to strong purifier odor; lampblack "ash" quality to black staining; not "oily"; wet; PID: 5-10 ppm; PID H.S. 7300 ppm					

· .

•

		Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site	
Test Pit	Depth (feet bis)	Description	Comments
TP-41	0-1: 1-3: 3-3.5: 3.5-6: 6-7.5:	Gravel; sorbent pads at 1 foot Fill - brown/black sand and gravel; some brick fragments and wood chips - purifier; plastic sheeting at 3 feet Light brown medium sand; moist, burnt color Black coarse sand-sized coal fragments; slight sheen on material Peat/meadow mat; water trickling into trench from approximately 6 feet; slight sheen on water; burnt odor at 6 feet; peat is dry with swampy odor	
TP-42	0-1: 1-2.5: 2.5-5:		
TP-43	0-0.5: 0.5-4.5: 4.5-6: 6-6.5: 6.5-7.5:	 Fill - fine to coarse brown/light brown sand and gravel, some bricks; depositional layering of fill (several layers of various shades of brown each approximately 0.5- to 1-inch thick; dry; slight purifier odor; slight staining; moist at approximately 4 feet bls Black-stained wood chips; very moist; strong to moderate purifier odor; PID: 50-75 ppm Black stained wood chips and taffy-like tar matrix; shiny appearance; slight sheen on water collecting/entering pit; PID: 75-125 ppm 	
ТР-44А	0-2: 2-3: 3-4:	Fill - sand and gravel; brick fragments; black staining; wet	<u></u>
TP-44B	0-1: 1-2: 2-4: 4-4.5: 4.5-6:	Clean fill - sand, gravel, bricks Black fill, bricks, clinker, some purifier; moderate purifier odor; PID: 10-20 ppm; numerous 3/4-inch cables (steel) at approximately 4 feet bls; soil is moist not wet Purifier waste - black wood chips; moist not wet; PID: 10-20 ppm	

....

		Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site							
Test Pit	Depth (faet bis)	(feet							
TP-45A	0-0.5; 0.5-5; 5-5.5; 5.5-6.5;	Gravel Reddish-brown fill - sand and gravel, some bricks; dry; slight odor (purifier); no staining; PID: 0-2 ppm Black-stained wood chips; moist; purifier odor; PID: 5 ppm Gray peat and silty clay; "swampy odor"							
TP-45B	0*4: 4-6: 6-7;	the second							
TP-46	0-0.5: 0.5-2.5: 2.5-3.5: 3.5-4.5: 4.5-5: 5.2-5.5:	Fill - numerous bricks, fine to coarse sand; partially stained black; moderate purifier odor; dry Fill - fine to coarse sand and gravel; staining noted on few bricks; moist, not wet Purifier waste - black wood chips; moderate to strong burnt MGP/purifier odor							
TP-4 7	0-0.5: 0.5-1.5: 1.5-2.5: 2.5-6.5: 6.5-8:	Brown fine sand and gravel; no odor; no staining Olive/grey silty sand and fine gravel							
TP-48	0-0.5: 0.5-3: 3-5: 4-4.5: 4.5-5.5:	Brown sand and medium gravel; dry; no staining; no odor Black-stained fill, clinker, wood chips, gravel; very wet; trace brick fragments; water table at 4 feet bls; trench fills with water immediately when digging below 4 feet; water; black; no sheening; PID: 300 ppm Wood chips; stained black Gray silty clay; slight odor; very tight plastic clay; moist not wet; PID: <1 ppm							

i.

.

-

	Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site										
Test Pit	Depth (feet bis)	Description	Comments								
TP-49	0-0.5: 0.5-4: 4.5-5.5: 5.5-6.5: 6,5-7.5:	Black "vegetative mat"; roots very wet; moderate to strong purifier odor; PID: 300 ppm Transitioning into gray silty clay; moist not wet; slight staining; moderate purifier odor	Analytical Sample TP-49 (5-5.5) collected on 1/6/00								
TP-50	0-0.5: 0.5-4.5: 4.5-7: 7-8:	Fill; brown fine to coarse sand and gravel; some brick and coal fragments; dry; slight purifier odor Black/brown fill/sand and gravel/clay; some wood chips; some concrete "sloppy"; wet to moderate purifier odor; black gravel tar layer at approximately 6 feet bls; semi-solid tar (sample)									
TP-51	0-3: 3-5: 5-8:	Fill - dark brown fine to coarse sand and gravel; dry; slight staining; slight hydrocarbon odor; PID: 0 ppm Same as above; moist; wet with black staining; moderate to strong diesel odor; PID: 10-35 ppm Reddish-brown silty sand and clay, some gravel (rounded and subrounded); till; PID: 0-2 ppm; very little water entering hole; no detectable sheen	Analytical Sample TP-51(3.5) collected on 1/19/00 Analytical Sample TP-51(7.5) collected on 1/19/00								
TP-54	0-2: 2-2.5: 2.5-3: 3-4: 4-8:	Black-stained fill with coal and solid tar; lens is 1-inch thick; shiny/hard material Yellowish-red sand layer pinching out at eastern corner Brown/black fill; slab at 4 feet bls; PID: 0-5 ppm									
TP-55	0-1: 1-2.5: 2.5-3: 3:	Tan medium sand; moist; slight MGP/naphthalene odor; moist; no staining Same as above; wet; slight odor; no staining; several pieces of concrete and large cobbles/boulders									

		Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site	
Test Pit	Depth (feet bis)	Description	Comments
TP-56	0-0.5; 0.5-3; 3-5; 5-6;	Brown fine to coarse sand, some gravel, some clay, fill; pieces of terra cotta pipe and plastic tubing at 3 feet bls; slight burnt MGP/purifier odor Black-stained fill, silty clay, some fine gravel; strong purifier/burnt MGP odor; moist; water very slowly entering hole at approximately 4 feet bls; sheen noted; large slab at 5 feet bls	Analytical Sample TP-56(4-5) collected on 1/12/00
TP-57	0-0.5: 0.5-1: 1-3: 3-5: 6-8: 8-10:	Brown fine to coarse sand and gravel; no staining; slight naphthalene odor; dry Brown fine to coarse sand and gravel mottled with black staining; slightly moist; slight moderate naphthalene odor Black-stained sand and gravel, some silts, some clay; strong naphthalene/tar odor; residual product noted on gravel; moist Reddish-brown silt with veins of residual tar noted; slightly moist	
TP-57A	0-0.5: 0.5-1: 1-1.5: 1.5-3: 3-6: 6-7: 7-8:	Gravel Brown fine to coarse sand; no staining; no odor; dry Gravel Fill - brown, fine to coarse sand and gravel; some concrete and metal debris; moist; no odor; no staining Fine to coarse dark brown sand and gravel; wet; no staining; no odor; very thin peat/organic layer at 6 feet Brown silt and clay; moist; no staining; no odors Reddish-brown silt, some clay; no staining; no odors; PID: 0 ppm	Analytical Sample TP-57A(3-4 collected on 1/13/00
TP-59	0-2: 2-3: 3-4:	Large gravel and heavy brown fine to medium sand; moist to wet; PID: 0 ppm	

		Table 3 (continued) Test Plt Descriptions Erie Street Former MGP Site	
Test Pit	Depth (feet bis)	Comments	
TP-60	0-0.5: 0.5-4: 4-5: 5-6: 6-8: 8-9:	Gravel Intermittent layers of red-brown silty sand and dark brown fine to coarse sand and gravel; each layer is approximately 0.5-foot thick; slightly moist; slight hydrocarbon odor; no staining Black-stained sand and gravel; wet; strong diesel odor Dark brown sand and gravel; wet; moderate odor (diesel); slight staining Reddish-brown silty clay; wet; some gravel; slight naphthalene odor; no staining; till Same as above; till; no odor; no staining Water entering the hole from 4-8 feet bls; slight sheen on water	
TP-61	0-0.5: 0.5-3: 3-4: 4-4.5	Large black gravel Fill - sand and gravel, numerous brick fragments and concrete pieces; slight diesel fuel odor Light brown medium sand; moist; no staining; slight to moderate diesel fuel type odor; PID: 20 ppm Same as above, stained black; diesel/MGP odor; wet; PID: 20-40 ppm Holder is of brick construction with 0.5-foot concrete slab on top	
TP-62		No log available	
TP-62A		Upon completion of TP-61 and TP-63, we extrapolated the approximate location of the former 100-foot diameter holder by locating the center and swinging a 50-foot radius. Both MW-2 and MW-2D fell outside this radius. Supplemental test pit TP-62A was excavated to confirm the holder location. The holder is approximately 5 feet away from MW-2. Water inside the holder is approximately 2.5 feet bls with visible sheen and slight LNAPL.	
TP-63	0-1: 1-2: 2-8:	 Large black gravel and sand Fill - fine to coarse sand and gravel, some bricks; no odor; dry; no staining Reddish-brown silty clay, some subrounded gravel (fine to medium); residual product within the gravelly submatrix; stains gloves; dark brown/black (MGP product) The pit remained open down to 8 feet bls with no water entering the hole. Material at 8 feet appeared slightly moist/damp; very tight material 	
TP-64	0-1: 1-3.5: 3.5-5: 5-5.5: 5.5-6.5:	Fill - reddish-brown fine sand and gravel transitioning into black-stained sand and gravel; moist Black fine to coarse sand/silts and clay with sheen; wet water entering pit; has moderate sheen; strong odor (burnt MGP odor); PID: 10-50 ppm Brown silty sand; some staining; slight odor	

		Table 3 (continued) Test Pit Descriptions Erle Street Former MGP Site	
Test PX	Depth (feet bis)	Description	Comments
TP-65	0-2: 3-5: 5-6.5: 6.5-7:	 Red/brown sand and gravel (fill); three electrical conduits running parallel to trench; PID: 0-5 ppm Gray/brown sand and gravel (fill); some bricks, soda/beer cans circa 1970s "flip top"; sweet naphthalene odor; moist; PID: 10-50 ppm Brown, fine sand and silt; some wet; strong "sweet" odor (naphthalene); no staining; moist not wet at 6.5 feet; PID: 200-300 ppm Reddish/brown clayey silt; slightly moist; no staining; slight odor; PID: 3-5 ppm 	
TP-66	0-4: 4-8:	Fill - grayish/brown sand and gravel; dry; slight naphthalene odor; PID: 0-10 ppm Brown fine sand and silt, some clay; wet; no staining; strong naphthalene odor Refusal at 8 feet bls rock or concrete slab-flat; numerous underground utilities prevent moving out to locate extent of slab/naphthalene odor; PID: 200-300 ppm	
TP-68	0-1: 1:	Gravel, some medium-to-coarse sand Concrete slab	Concrete slab 1 foot bls. Move three times and encountered sla at 1-foot bls each time.
TP-69	0.5-1:	Gravel Fill - sand and gravel, some brick; slight staining; slight odor Fill; stained black; moist; moderate MGP/fuel odor; PID: 10-15 ppm Fill - fine to coarse gravel; stained black; wet-strong tar odor; heavy sheen; gravel coated with liquid tar; pit fills with water up to 3.5 feet bls; heavy sheen on water; PID: 100-800 ppm	Analytical Sample TP-68(3-4) collected on 1/12/00
TP-70	0-0.5: 0.5-1: 1-2.5: 2.5-3: 3-4:	Reddish-brown sand and gravel, some brick fragments and ash; PID: 0-1 ppm Fill - purifier waste, fine to coarse sand and gravel; stained black; moist; strong purifier odor when trench first opened - moderate during logging; PID: 50-100 ppm Black fine sand and silts; slight odor/staining; PID: 5-10 ppm	
TP-71A	0-0.5: 0.5-2.5: 2.5-3: 3-7:	Fill - ash, clinker, sand and gravel, some bricks; stained black; moist at 2 feet bls; PID: 0-5 ppm Black stained sandy silt; moist; PID: 0-2 ppm; very slight burnt odor	

		Table 3 (continued) Test Pit Descriptions Erie Street Former MGP Site						
Test Pit	Depth (feet bis)	(feet						
TP-71B	0-0.5: 0.5-2.5: 2.5-3: 3-4:	Gravel Fill - sand and gravel, ash, clinker, some bricks; stained black; no odor; wet at 2 fect bls; PID: 0-5 ppm Dark brown fine sand and silt; moist; no odor; slight staining Reddish brown silt, some clay, trace very fine sand; moist not wet; no staining; no odors; PID: 0 ppm						
TP-72	0-4: ~1: 4-6;	 Fill - fine to coarse sand and gravel; numerous bricks and purifier waste (from <1 foot bls) Concrete pad with slight dip in toward center Fill - black clinker and gravel, some wood chips and pieces of wood; free product noted on bucket of hoe and wood pieces; strong sheen and trace product noted; strong MGP odor noted 						
TP-73	0-0.5; 0.5-4.5; 4.5; 4.5-8;	Reddish-brown fine sand and gravel, some bricks and pieces of metal piping (1") Concrete; bucket refusal at northwest end of test pit						
TP-75	0-0.5: 0.5-4: 4-4.5: 4-7.5:	First Location (closest to SB-TP-75 in base map) - bucket refusal at 4.5 feet bls; black silty sand; wet; slight sheen in water entering pit; PID: 10 ppm						
TP-B5	0-0.5: 0.5-4: 4-6;	Fill - bricks, pieces of wood, residual product on wood, sand and gravel, large pieces of brick wall (4 to 5 bricks wide) (former holder wall?); concrete slab at 4 feet bls in vicinity of holder with wood framing; PID: 75-120 ppm						

Test Pit	Depth (feet bis)	Description	Comments
TP-B6	0-0.5: 0.5-1; 1-5;	Fill - sand and gravel, some bricks; slight staining; no odor	
TP- TS-2	0-0.5: 0.5-6.5:	The second	

	, <u>.</u> ,				Monitoring We	il Informatio	ble 4 on and Grour ormer MGP S		dig.				
		Monitor	ing Well Informa	tion		May 2	3, 2000	August	72, 2000	Januar	8, 2001	February	21, 2001
		Screen Length	Screen Depth Below Ground	Screen	Geologic Unit Within the		Groundwrater Elevation (feel NGVD)	Depth to Groundwater (feet bis)	Groundwater Elevation (feel NGVD)	Depth to Groundwater (jest bis)	Groundwater Elevation (feel NGVD)	Depth to Groundwater (feet bis)	Groundwater Etevation (feel NGVD)
WELLID	TOC	(feet)	Surface (feet)	Elevation (feet)	Screen laterval	(inet bis)	9.52	4.82	8.08	6,57	6.33	5.8	7.1
MW-1	12.9	14	2 to 16	7.9 lo -6.1	Glacial Tili	3.38	9.52	8.04	5.59	9.05	4.52	8,86	4.71
MW-1D	13.57	NA	NA	NA	Bedrock Fill	7.35	i 8.07	3.48	7.21	NM	NC	3.5	7.17
MW-2	10.67	16	4 to 20	4.7 to -11.3		2.6	· 4.22	44.12	-33.2	NM	NC	54.95	-44.03
MW-2D	10.92	NA	NA	NĂ	Bedrock	6.7	6.03	4.74	5.34	5.7	4.38	4.86	5.22
MN-3	10.05	12	2 to 14	4.7 10 -7.3	Giacial Till	4.05 5.33	8.62		7.95	NM	NC	6,75	7.2
MW-4	13,95	19	1 10 20	10.1 to -8.9	Fill, Pest,Glacial Till (sendy)		1	3.1	6.22	NM	NC	3.49	5.83
MW-5	9.32	18	2 to 20	4.8 to -13.4	Filt, Peet,Glacial Till	2.65	6.67	a, 1					
MW-5D	10.15	NA	NA		Sednock	4,11	6.05	4.91	5.25	NM.	NC	5.62	4.54
MW-5	8.92	17	2 to 19	4.3 10 -12.7	Fill, Pest, Glacial Til	2.36	6.54	2.85	6.07	4.12	4.6	3.49	5.43
MW-6D	9.3	NA	NA	ŇĂ	Bedrock	4.96	4.34	5.78	3.52	6.75	2.55	6.34	2.96
MW-7	8.5 10.63	16	2 to 18	6.7 10 -7.3	Fill, Peat, Glacial	7,21	3.42	6.71	3.92	NM	NC	6.79	3.84
ا تت بيده	10.16	NA	NA	NA	Bedrock	6	4,18	7.05	3.11	NM NM	NC	7.51	2.65
MW-7D MW-8	13.1	12	1 10 13	8.8 10 -3.2	FRI, Pest, Glaciat	5.41	7.69	6.11	6.99	NM	NC	6.43	6.67
أخمسمد	11.4				Bedrock	5.7	5.7	6.4	5	NM	NC NC	6.8	4.8
MW-80 MW-9	12.96	16	S to 13	6.5 to -9.5	Fill, Peet, Glecial Till (sendy)	6.75	6.21	6.91	6.05	7.33	5.63	NM	NC NC
IMW-9D	10.47		1		Bedrock	4	6.47	4.1	6.37	NM	NC	NM	0.65
MW-10	12	17	3 to 20	6.1 to -10.9	Fill, Peat, Glacial Till	NM	ÍNC	4,56	7,44	NM	NC	5.35	7.01
MW-11	12.96	7.5	4.5 to 12	5.5 to -2.0	FWL .	4.51	8.45	5.15	7.61	8.51	6.45 6.22	5.95	6.94
MW-12	11.7	13	4 to 17	5.4 to -7.8	Fill, Peet, Glaciel Till (sandy)	3.98	7.72	4,44	7.26	5.48	6.22	4.70	
MW-13	11.82	10	4 10 14	5.6 to -4.4	Fill, Glecial Till (sandy)	5.18	6.64	5.43	6.39	6.13	5.69	NM	NC
MW-	7.79	5	3 to 8	3.0 to -2.0	Fill, Peet	1.8	5.99	2.3	5.49	3.34	4.45	2.8	4.99
MW-14B	8.97	9	18 to 25	[-11 to -20]	Till, Weethered Bedrock	3.59	į 5.38	4.35	4.62	5.17	3.6	5	4,94
MW-	8.89	4	3 to 7	3.0 to -1.0	Fill, Pest	2.7	5.99	3,08	5.61	4.18	4.58	3.75	3.21
MW-158	9.71	6	18 10 24	[-9.5 to -17.5]	Till, Weathered Bedrock	5.03	4.68	5.99	3.72	6.77	2.94	6.5	3.76
MN-18A	10.23	6	2.5 10 8.5	5.110-0.9	Fil	5.81	4.42	6.3	3.93	6.79	3.44	6.47	2.48
MW-168	10.35	8	16 to 22	[-8.4 to -14.4]	Till, Weathered Bedrock	i	3,59	7.11	3.24	8.09	2.20	6.7	6.52
MW- 17A/8P-8	15.22	10	4 to 14	6.5 to -1.5	Fill, Peat	6.7	8.52	7.35	7.87	8.71	8.51		i
MW-178	13.84	7	19 lo 26	[-6 to -15]	Peat/Clay, Till, Weathered Bedrock	7 85	5.99	8.53	5.31	9.52	4.32	9.28	4.56

		Monitor	ing Well Informa	tion		May 23, 2000		August 22, 2000		Jenuery 8, 2001		February	21, 2001
WIELL ID	TOC	Screen Length (Test)	Screen Depth Below Ground Surface (Seeb		Geologic Unit Within the Screen Interval	Depth to Groundwater (feet bis)	Groundwater Elevation (leel NGVD)	Depth to Groundwater (feet bis)	Groundwater Elevation (feel NGVD)	Depth to Groundwater (feet bls)	Groundwater Elevation (feel NGVD)	Depth io Groundwater (feet bis)	Croundwater Elevation (fee NGVD)
MW-18A	24.26	10	4 to 14	12 to 2	FN	15.82	8.44	16	8.28	21.23	8.46	16.57	7.69
8P-4													:
MW-18B	25.85	10	32 to 42	[-6.35 to -16.35]	Till, Wealhered Bedrock	19,56	6.09	20.35	5.3	17.19	3.03	NM	NC
MW-19A	13.47	4	4 ta 8	6.0 to 2.0	Fill, Poet	6.75	7.72	6.4	7.07	8.02	5.45	7.02	8.45
MW-198	13.54	7	18 to 25	[-6 to -15]	Till, Westhered Bedrock	7.1	6.44	7.73	5.81	8.89	4.65	8.31	6.23
MW-20A	11.68	4	2.5 to 8.5	7 to 3	Fill, Peal	4.39	7.29	5.41	8.27	8.61	5.07	5.89	5.79
MW-208/ BP-6	8.94	4	8 10 12	(1 to -3)	Glacial Till (sandy)	2.62	6.32	3.15	5.79	4,19	4.75	3.66	5.28
MW-21A	9.48	10	3 to 13	6.7 lo -3.3	Fill, Glacial Till	0.45	9.03	0.85	8.63	1.05	8.43	1.31	8.17
MW-218	9.68	10	20 to 30	[-10.32 to -20.32]	Glacial Till	3.32	6.36	3.92	5.76	4.87	4.81	4.55	5.13
MW-22A	12.52	10	2.5 to 12.5'	7.5 to -0.5'	Fill, Glacial Till	5.09	7.43	6.02	6.5	6.82	5.7	6.1	8.42
MW-228	12.5	3.5	24.5 to 28.0	[-15 to -18.5]	Giacial Till	6.36	6.12	7.03	5.47	8	4.5	7.83	4.67
MW-23A	6.67	5	2107	4.67 to -0.13	Fill, Glaciel Till (sandy)	Not installed	Not installed	Not installed	Not Installed	3.76	3.11	2.66	4.01
MW-238	7.04	10	16 to 26	-8.96 to -18.96	Glacial TIII	Not installed	Not installed	Not installed	Not Installed	3.06	3.98	1.92	5.12 3.98
MW-24A	7.53	7	2 to 9	5.53 to -1.47	FN, Peet/Clay	Not installed	Not installed	Not installed	Not installed	NM	NC	3.67 2.85	4.75
MW-24B	7.8	7	12 to 19	-4.4 to -11.4	Giacial TW Weathered Bedrock	Not instatied	Not installed	Nol installed	Not installed				
MW-26A	6.95	6	2108	3.96 to -2.04	Fill, Glacial Till	Not Installed	Not installed	Not installed	Not installed	2.8	3,15	2.54	3.42
MW-26A	8.22	B	2 to 10	6.22 to -1.78	Fill, Glacial Till,Weathered Bedrock	Not installed	Not installed	Nol installed	. Not installed	1.13	7.09	1.92	6.3
BP-3	12.45	10	4 to 14	4.5 to -4.5	Fill, Pest, Glacial Till (sandy)	3.75	8.7	· 4,4 ·	8.05	ΝM.	NC	5.12	7.33
BP-6	11.48	10	2 10 12	7.0 to -3.0	Fill, Glecial Till (sendy)	3.31	8.17	ŃM	NĊ	NM	NC	NM	NC
8P.7	10.79	. 5	3 to 8	5.9 to 0.9	Fill, Peat	3.96	6.63	4.45	6,34	NM	ŇĊ	3.86	6.93

					Table 5 Veli NAPL. Sur Street Forme	mmary Inform	nation					
	1	February 4,1997 and	February 13,1997			May 23,	2000	February 21, 2001				
		DNAPL/Thickness in	Other		LNAPL/ Thickness in	DNAPL/ Thickness in	Other		LNAPL/ Thickness in	DNAPL/ Thickness in	Other	
WELLID	feet	feet	Observations	Ódor	feet	feet	Observations	Odor	feet	feet	Observations	Odor_
MW-1	NP	NP	None	None	NP	NP	None	None	NP	NP	None	None
MW-1D	NP .	NP	None	MGP odor in water from the bollom	NP	NP	None	None	NP	NP	None	None
₩ - 2	NP	NPANM	Slight sheen on sill from the bottom of the well	Slight MGP (Nephthe odor at bottom)	NP	NP	None	None	Not Measured	Not Measured		
MW-2D	NP	P/0.04	None	MGP odor in deep GW	NP	NP	None	None	NP		DNAPL blebs on tape	None
MW-3	NP	NP	None	Strong solvent smell in deep GW	NP	NP	None	None	NP	NP	None	^r None
MW-4	NP	NPANA	Droplets of DNAPL and sheen on water at bottom of the wall	MGP and possible solvent odor	NP/NM	NP	Tar staining on well casing	Slight Tar Odor	NP		None	Slight MG ador
MW-6	NP/ NM	P/0.33	Giobules of LNAPL	Tar/ Naphinelene Odor	NP	NP	None	Tar Odor	NP	NM	DNAPL blebs on tape	MGP odo
MW-5D	NP	NP	None	None	NP	¹ NP	'None '	None	NP	NP	None	Nona
NW-6	NP	NP	Slight sheen on sediment from well	Tar Odor	NP	NP	None	None	NP	NP	None	Slight Hydrocarbo
MW-6D	NP	NP	None	None	NP	NP	None	None	NP	NP	None	None
MN-7	NP	NP	None	Swampy odor	NP	NP	None	None	NP	NP	None	None
MW-7D	NP	NP	None	None	NP	NP	None	None	NP	NP	None	None
MW-8	NP	NP	None	None	NP	NP	None	None	NP	NP	None	None
MW-8D	NP	NP	None	MGP odor in water from the bottom	NP	NP	None	None	NP	NP	None	None
MW-9	NP	NP	None	Siight M3P ador on shellow weter/ Moderate MGP ador in deep GW	NP	NP	Nane	None	Not Measured	Nol Meesured		 - -
MW-9D MW-10	Not Installed P/0.17	Not Installed P/2.0	None	Moderate MGP odor In Shallow GW/ strong MGP odor in deep GW	NP Not Measured	NP Not Measured	None	None	Not Messured >1.0'	Nol Massured NP	None	None
MŴ-11	P/0.04	P/0.6	None	Naphthalene Odor on top/ MGP (Naphthalene on bottom)	ò.2	None	Tar staining on well casing	None	NP	0.1 to 0.4"	None	None
MW-12	NP	NP	None	Šolvent odor in groundwater from the top	NP	I I I I		None	ŇP	NP	None	None

			d February13,1997	Nay 23, 2000						February 21, 2001		
MW-13	NP	NP	None	Slight MGP ador in deep GW	NP	· NP	None	None	-	. –		-
2 2	NP	NP	None	Slight MGP odor in Deep GW	ŇP	<1'	OlVTar noted on the probe	None	NP	<0.1'	None	MGP odor
MW-14B	Not Installed	Not Installed			NP	NP	None	None	NP	NP	None	None
1 1	NP	NP	None	Slight MGP adar in deep GW	NP	<.1'	Oll/Tar noted on the probe	None	NP	NP	None	Slight hydrocarbo and MGP odors
MW-158	Not installed	Not installed			NP	NP	None	None	I NP	NP	None	None
MN-16A	Not installed	Not installed			ŇP	NP	None	None	NP	NP	None	None
MW-16B	Not installed	Not installed			NP .	NP	None	None	NP	NP	None	Swampy oc
NV-17A/BP-	NP	NP	None	Very slight MGP odor in deeper GW	0.2	NP	Ter staining on well casing	None	NP	1 10 2"	None	None
MW-178	Not installed	Not Installed			NP	NP	None	None	NP	NP I	None	None
W-18A/ BP 4	NP	NP/NM	Sheen in deep GW	Slight MGP odor shellow GW	NP	0.2	Tar on probe	None	NP	<0.1'	None	None
MW-18B	Not installed	Not installed			NP	NP	None	None	Not Measured	Not Meesured	••••	
MW-19A	Not installed	Not installed			NP	NP	None	None	NP	NP	None	None
MW-19B	Not installed	Not installed		•••	NP	NP .	None	None	NP	, NP	None	None
MW-20A	Not installed	Not Installed			NP	NP	None	None	NP	NP	None	Slight Hydrocarb
W-208/ 8P &	NP	NP	None	Slight Solvent Odor	NP	NP I	None	None	NP	NP	None	Slight Hydrocarb
MW-21A	Not installed	Not Installed			NP	NP	None	None	NP	NP	None	None
MW-218	Not installed	Not installed			NP	NP	Nome	None	. NP	I NP	None	None
MW-22A	Not installed	Not installed			NP	. NP	None	None	NP	NP	None	None
MW-22B	Not installed	Not installed			NP.	NP	None	None	NP	NP	None	Slight Hydrocarb
MW-23A	Nol Installed	Not installed	***		Not installed	Not installed			NP	. NP	None	None
MW-23B MW-24A	NoI installed NoI installed	Not installed			Not installed Not instatled	Not installed			NP	NP NP	None	None
MW-248	Nol installed	Not Installed			Not installed	Not installed		•	NP NP	NP	None None	None
MW-25A	Nol installed	Not instatled			Not installed	Not installed			NP	NP	None	None
MW-26A	Not installed	Not installed			Not installed	Not installed			NP	NP	None	None
BP-3	NP	NP	Narie	Moderate MGP odor in shallow and deep GW	NP	NP	None	None	NP	NP	None	None
8P-5	NP	NP	None	None	NP	NP	None	None	Not Measured	Not Measured		
8P-7	NP	NP	None	Slight MGP Odor In deep GW	NP	NP	None	None	NP	NP	None	Noné

P/0.33⁺ Indicates that LNAPL or DNAPL was present and the measured thickness within the monitoring well. Not installed indicates that the monitoring well was not installed. --- Indicates that no observations were able to be made because the well was not installed or was not measured on the sampling event. None Indicates that no physical observations or olfactory observations were noted for the monitoring well.

							ie 6 Inalytical Da Ther MGP S					nin andra	en en our anna an anna an anna anna anna anna a
	IGW	RDC	NRDC		1		San	npia ID/Sample	Depth (feet b	now land sur	lace)		
	Criteria	Criteria	Criteria	8-18	8-77	8-19	8-20	8-21	SS-1	SS-2	88-3	\$8-4	\$\$-5
Perameter	(mg/Kg)	(mg/Kg)	(mg/Xg)	(1-2)	(1.5-2)	(0-2)	(0-2)	(0-2)	(0-1.5)	(0-1.6)	(0-1.2)	(0-1.2)	(0-1.3)
					Part Velet		and Nocel o					和前期的中心。在	
Benzene	1	3	13	3.3 U	2.5 U	2.9 V	2.9 U	2.9 U		3.3 U	0.31 J	0.07 J	3.2 U
Toluene	500	1000	1000	3.3 U	2.5 U	2.9 U	2.9 U	0.054 J	1.2 J	່ 3.3 U	4.9	0.11 J	3.2 U
Ethylbenzene	100	1000	1000	3.3 U	2.5 U	2.9 U	2.9 U	0.27 J	0.071 J	3.3 U	1.3 J	2.8 U	3.2 U
Xylena (total)	67	410	1000	3.3 U	2.5 U	2,9 U	2.9 U	0.036 J	0.24 J	3.3 U	5.7	2.8 U	3.2 U
					(12): Potrovello	Adoptate /Ayda	i katiki palik					的。到南京和	et vize - c
Nephthalens	100	230	4200	0.086 J	0.13 J	0.39	0.47	0.16 J	L 680.0	0.026 J	0.15 J	0.18 J	0.092 J
2-Methylnephthelena	MLS	NLS	NLS	0.069 J	0.17 J	0.29 J	0.15 J	0.091 J	0.021 J	0.025 J	0.11 J	0.12 J	0.052 J
Aconophthylene	MLS	NLS	MLS	0.12 J	0.28 J	1.7	1	0.18 J	0.15 J	0.12 J	0.73	1.3	0.14 J
Aconaphthane	100	3400	10000	0.24 J	0.062 J	Q,1 J	0.077 J	0.089 J	0.013 J	0.022 J	0.043 J	0.2 J	0.05 J
Rubrene	100	2300	10000	0.28 J	1.70	0.052 J	U.088 J	0.059 J	0.01 J	0.02 J	0.041 J	0.17 J	0.077 J
Phenenthrene	NLS	NLS	NLS	2.4	0.67 J	0.72	0.73	0.53	0.29 J	0.43	0.77	2.7	0.9 J
Anthracene	100	3400	10000	0.6	0.36 J	0.57	0.38	0.26 J	0.11 J	0.098 J	0.39	1.1	0.21 J
Pluoranthene	100	2300	10000	2.5	1.5 J	1.1	0.95	0.96	0.53	0.49	0.68	2.9	0.86 J
Pyrana	100	1700	10000	2.8	1.6 J	1.2	1.2	0.94	0.68	0.45	1.2	3.5	0.81 J
Benzlalanthracena	500	0.9	4		. 0.99 J	0.88	0.85	0.47	0.49	0.25 J	0.76		0.5
Chrysens	500	9	40	1.2	1.1 J	1.1	1.2	0.62	0.55	0.29 J	1.2	3	0.52
Benzo(b)fkuoranthene	50	0.9	4	0.78	44, 33 , 33, 34, 54			0.88	0.59	0.2 J			0.34 J
Benzolk)fluoranthene	500	0.9	4	0.87	1.01		0.86	0.76	0.58	0.28 J	0.89	10.5.2 2 0.53	0.48
Senzo(a)pyrana	100	0.68	0.86		1.1 U K	₹3 0.83 J	0.79 (1994)	0.58	0.00	0.21 J		iki i A risis	0.42
Indens(1,2,3-cd)pyrene	500	0.9	4	0.75	j 0.41 J	0.34 J	0.06 J	0.06 J	0.68	0.18 J	0.56		0.31 J
Olbenz(a,h)enthrecene	100	0.66	0.66	0.27 J	0.1 J	0.14 J	0.022 J	0.36 U	0.22 J	0.059 J	0.26 J	P 0300.	0.11 J
Benzolg,h,ilperviene	NLS	MLS	NLS	0.89	0.37 J	0.39 J	0.047 J	0.067 J	0.83	0.2 J	0.43	1.4	0.37 J
	an a			元、和 的通過	Color Same	متبعد بالجيولا فسنجتث والمسار	án tá mai tá t	经结约的 400 沿					
1,2-Olchiorobenzene	50	6100	10000	0.38 U	1.7 U	L 610.0	0.35 U	0.028 J	0.39 U	0.42 U	0.36 U	0.77 U	0.38 U
Isophorone	50	1100	10000	0.38 U	1.7 U	0.36 U	0.35 U	0.36 U	0.39 U	0.42 U	0.028 J	0.77 U	0.38 U
Dibenzoturan	NLS	NLS	NLS	0.14 J	0.055 J	0.36 U	L 660.0	0.036 J	0.014 J	0.024 J	0.36 U	0.11 J	0.068 J
Diethylphthalate	50	10000	10000	0.38 U	1.7 U	0.36 U	0.024 J	0.36 U	0.39 U	0.42 U	0.36 U	0.77 U	0.38 U
DI-n-butyiphthelate	100	5700	10000	0.38 U	1.7 U	0.011 J	0.011 J	0.36 U	0.39 U	0.008 1	0.047 J	0.77 U	0.007 J
Butylbenzylphthalate	100	1100	10000	0.38 U	1.7 U	0.13 J	0,35 U	0.36 U	0.39 U	0.42 U	0.25 J	0.19 J	0.042 J
bis(2-Ethylhexyl)phthelete	100	49	210	0.38 U	1.70	Q.42 B	0.54 B	0.36 U	0.39 U	0.39 U	0.36 U	0.77 U	0.38 U
Di-n-octylphthsiste	100	1100	10000	0.38 U	0.11 J	0.36 U	0.35 U	0.36 UJ	0.39 U	0.42 U	0.36 U	<u>0.77 U</u>	0.38 U
					的理解不知道。	and a summer and the second se	sõunds (ing/Ng)	C. S		國國阿魯德	学习 为问题(C-3)		مر بالمراجع المراجع ال محمد المراجع ال
Aluminum	NLS	MLS	NLS	13400	3520 J	5370	4820	8080	12100	_ 13060	7940	4590	7370
Antimony	NLS	14	340	1.4 U	0.87 U	2.1 J	2.8 J	0.85 W	1.2 U	1,1 U	1.0 U	1.1 U	1.0 U
Arsenic	NLS	20	20	4.6	5,1	6.1 J	5.0 J	j 3.1 J	3.4	3.7	1.9 J	9.9	4.2

• •

,

an a

10

¢

5

9

1

•								ytical Data	r					
	5011/		4000			I atree t Fo								
	IGW .	RDC	NRDC		,- <u></u>	1 <u></u>	r ·		Sample ID/De		T	T*******		·:
	Critorie	i Criteria	Criteria	TP-14	TP-17A	TP-22	TP-24	TP-25	TP-30	TP-33	TP-34	TP-36A	TP-37	TP-37
Parameter	; (mg/Kg)	(mg/Kg)	(mg/Kg)	(15-16)*	(3) Y	(2-2.5)	(6)♥	(13-15)	(20-21)*	(5.5)*	{10}	(8)	· (3-3.5) !	(PIPE)
	•	·	1.	•	Volisiin	Örgente Öcen	nounde (VDC	i vi ling/kai	I	L	1	1	•;	
Benzene	1 1	3	13	1.4 J	3.3 J	0.02 W	18 2	30	0.26 J	24 J	360	14 J	6.6	16
laluana	500	1000	1000	0.095 J	0.34 J	1.6 W	35 U	30	1.4 0	3.2 J	580	1.8 J	2.3 J	1.8 J
Ethylbenzene	100	1000	1000	0.1 J	5.3 J	0.21 J	280	30	1.4 U	190 J	200	100	6.2	16
Kylene (total)	67	410	1000	1.1 J	2.9 J	0.12 J	110	30	1,4 U	190 J	580	- 84	6.3	5.3
•	· · · · ·	1	·	1 ·	- Filycycle	Aremenic Hyd	incariona (V	ilia ingingi		L	<u> </u>	1		
Naphthalene	100	230	4200	0.21 J	61 B	1.2 J	3700 B	0.003 J	0.003 J	340	8000	30000	13 B	150 B
2-Methyinsphthalene	NLS	NLB	NLS	0.036 J	39	0.81 J	3100	0.003 J	0.002 J	1100	9200	36000 J	8.8 J	67
Acenaphthylene	NLS	NLS	Í NLS	0.006 J	9.3	2.5 J	110 J	0.38 U	0.002 J	130 J	3400	3400 .1	40	2.7 J
Acenaphthene	100	3400	10000	້ 0.39 ມື	41	2]	1100	0.36 U	0.002 3	430	580 J	12000	18	58
Fluorene	100	2300	10000	0.39 U	17	2.1 J	520	0.38 U	0.38 U	330	2700	7700 J	10 J	20 J
henenthrene	NLS	NLS	NLS	0.007 J	78 DJ	11 J	1700	0.005 J	0.016 J	910	8300	22000	15	14 J
Anthracene	100	3400	10000	0.002 J	22	3 .	510	0.001 J	0.36 U	240	2000	7300 J	20	3.1 J
luoranthena	100	2300	10000	0.006 J	14	5.2 J	410 J	0.002 J	0.38 0	170 J	2100	5000 J	36	3.4 J
Pyrana	100	1700	10000	0.011 J	31 J	17 3	660	0.003 J	0.002 J	220	4000	E 0008	68	3.2 J
Benz(a)anthracena	500	8.0	4	0.004 J	9.6 J	3,8 J	190 J	0.38 U	0.38 0	'86' J	1300 J	2700 J	34	, 1,3 J
hrysene	500	9	40	0.005 J	11 J	4.3 J	160 J	0.38 U	0.38 U	700 J	1100 J	2400 J	40	2 J
Jenzo(b) fluorenthene	50	0.9	4	0.003 J	4.1	2.8 J	76 J	0.348.U	0.38 U	20 J	480 J	600 J	10	1,7 [;] J.
Banzo(k)fluoranthene	500	0.9	4	0.004 J	5.9 J	2.1 J	<u>110 J</u>	0.38 U	0.38 U	41 J	760 J	1400 J	50	1.1 3
enzola)pyrene	100	0.66	0.66	0.003 J	1 8.8 J	44 J	210 J	0.38 U	0.38 U	44 J	1000 J	1700 J	-32	1.2 J
ndeec(1,2,3-cd)pyrene	500	0.9	4	0.002 J	4.6 J	2.2 J	66 J	0.38 U	0.38 U	16 J	280 J	\$20 J	14	0.79 J
onecertine(d, a) snedi	100	0.66	0.66	0.39 U	1.5 J	3.9 U	500 U	0.38 U	0.38 U	6.6 J	100 J	10000 U	e J	26 U
Benzo(g,h,i)perylene	NLS	NLS	NLS	0.003 J	5.9 J	31	68 J	0.38 U	0.38 U	15 J	290 J	880 J	17	0.77 J
a and a second			······································		Other Secolvo			SVOCel (mpt)						
Dibenzoturan	NLS	NLS	NLS	0.39 U	2.9 J	0.21 J	150 J	0.38 U	0.38 U	80 J	640 J	1900 J	1.7 J	4.8 J
Sutylbenzylphthalate	i 100	1100	10000	0.002 J	8 U	3.9 UJ	500 U	0.002 J	0.003 J	195 U	169 U	10000 U	12 U	26 U
lis (2-ethylhexy0phthalste	100	49	210	0.39 0	800	3.9 W	500 U	0.38 U	0.38 U	195 U	169 U	30000 U	12 U	26 U
	· /· ·································					Motals					<u>.</u>			·
Muminum	NLS	NLS	NLS	9290	5500	7380	1510	10900	7390	11400 J	986 J	4730 J	13400	8750
Intimony	NLS NLS	14	340	0.66 U	1.7 U	2.2 J	2.1 J	1.6 J	10 J	7.2 J	4.1 U	2.8 U	8.1 J	8.2 J
Insenic	NLS	20	20	1.8 J	8.4	7.1	22.5	3.2	2.0	19.5	16.0	11.4	48.6 J	32.7 J
larium	NLS	700	47000	70.9 J	66.6	118	119	143 J	90.3 J	160	64.1	37.3 .	203	114
leryilium	1 NLS		1	0,47 J	0.28 J	0.17 U	0.19 U	0.71 J	0.34 J	0.29 U	0.28 U	0.43 J	111	1.3
Ladmium Infelium	NLS	j	100	R	0.19 U	1.1 J	0.19 U	R	R	0.29 U	0.2B U	0.3 U	2.1 J	4.4 J
Lateium	NLS	NLS	NLS	2570	3410 J	24000	1390 J	2080	16200	10300 J	432 J	646 J	1650	1740
Avonium	NLB	NLS	NLS	17.3	12.9 J	39.5 J	9.2 J	20.8	13.5	14.7 U	6.5	8.9	61.7	27.7
obalt	NLS	NLS	NLS	8.3 J	4.8 J	8.7	4.4 J	13.0 J	<u> </u>	1 9.8 J	1,6 J	5.6 J	3.6 J	12.4
Copper	NLS	600	600	13.0	47.7 J	63.1 J	55 J	12.8	10.2	100	58.7	67.9	603	620

. .

Page 1 of 4

					Test Pit S	Table 7A (d ubsurface- Street For	Soil Analy							
	IGW	RDC	NRDC					51	mole (D/Dept	h				
	Criteria	Criteria	Celteria	TP-39	TP-38A	TP-39	TP-39	TP-49	TP-61	TP-51	TP-56	TP-57A	TP-58	TP-75
Peramoter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(3-4)	(4)	(16-16) Y	(23-26)*	(5-5.6) T	(3.5)	(7.5)*	(4-5)*	{3-4}♥	(3-4)▼	(15-16)*
· ·		1		L	Vofatile C	j Imania Comos	i andi (VOCi) i	(ma/ka)	l	l	i	Ι.	I	1
Benzene	1	3	13	7.8 J	3.6 J	2.8 U	2.7 U	0.26 j	0.01 UJ	1.1 W	700	NA	60	0.09 J
Toluene	500	1000	1000	37 J	0.53 J	2.8 U	2.7 U	0.15 J	1.4 W	1.1 W	150	NA	i	2.92 U
Ethylbenzene	100	1000	1000	71	4.6 J	2.8 U	2.7 U	U.93 J	1.4 00	1.1 00	160	ŇA	280	2.92 U
Xylane (total)	67	41D	1000	400	5.8 J	2.8 U	2.7 U	0.085 J	1.4 W	1.1 W	580	NA NA	280	2.92 U
	•	1			Petrevalla A		cerbens (PAH		1				i 200 .	, 2.32 0
Naphthalene	100	230	4200	10000 8	9.1 B	0.39 U	0.37 L/	0.58 J	0.5 U	0.006 J	2400 8	1.3 J	310 DB	1 0.023 J
2-Methylnaphthalone	NLS	MLS	NLS	5600	18	0.39 U	0.37 U	0.22 J	0.5 U	0.39 U	1500	0.71 J	130	0.005 J
Aconaphthylene	NLS	NLS	NLS	180 J	16	0.002 J	0.37 U		0.5 U	0.39 U	73 J	4	23	0.44
Acenaphthene	100	3400	10000	89 J	9	0.39 U	0.37 U	0.46 J	0.63	0.39 U	66 J	0.24 J	87	0.084 J
Fluorene	100	2300	10000	230 J	1	0.39 Ú	0.37 U	0.93 J	0.76	0.39 U	170 J	0.31 J	42	0.018 J
Phonenthrane	NILS	NLS	NLS	520 J	35	0.39 U	0.37 U	0.54 J	0.5 U	0.009 J	370	3 J	210 DJ	0.01 J
Anthracene	100	3400	10000	120 J		0.39 U	0.002 J	0.64 J	0.5 U	0.39 U	120 J	1.7 J	53	0.002 J
Fluoranthene	100	2300	10000	130 J	13	0.38 U	0.37 U	1.5	0.11 J	0.39 U	120 J	5.1	41	0.002 J
Pyrene	100	1700	10000	210 J	25	0.39 U	0.37 U	3,1	0.11 J	0.390	160 J	14 J	- 41 - 93 J	1
Benzialanthracane	500	0.9	4	86 J		0.39 U	0.002 J	1 1.3	0.21 3	0.39 U	100 J	5.9 J		0.004 J
Chrysene	500		40	60 J	10	0.39 U	0.002 J	1.8	0.12 J	0.39 0	63 J	6.9 J	30 J 32 J	0.002 J
Benzolbifluoranthene	50	0.9	4	- 7900 U	3.2.1	0.39 U	0.37 U	0.67 J	0.021 J	0.39 0	22 J	12 J	32 J	0.003 J
Benzolk/flyoranthene	500	0.9		1900 U	4.8	0.39 U	0.37 U	1.07	0.021 J	0.39 U	30 J	, 12 J 9.4 J	11 J	0.002 J
Benzola)gyrene	100	0.66	0.66	49 J	5.1	0.39 U	0.002 J	L 68.0	0.019 J	0.39 U	30 J 39 J	4.7 J	16 J · 26 J	0.002 J
Indeno(1,2,3 cd)pyrene	500	0.9	4	1900 U	2.9 J	0.39 U	0.37 U	0.6 J	0.021 J	0.39 U	360 U	1.3 J	14 J	0.002 J
Dibenzia hanthracene	100	0.66	0.66	7900 U	1.4 J	0.39 U	0.37 U	0.22 J	0.5 U	0.38 U	360 U	34 14	4.8.3	0.41 U
Benzolg,h,liperylene	NLS	NLS '	NLS	1900 U	3.5 J	0.39 U	0.37 U	0.67 J	0.022 J	0.38 0	380 U	3.4 UJ	19 J	0.41 0
					ther Samirola				0.022 0	0.38 0		3.4 00	1	0.410
Dibenzoturan	NLS	NLS	NLS	30 J	2.6 J	.0.39 U	0.37 U	0.3 J	0.5 U	0.39 U	31 J	0.21 J	7.5 j	0.018 J
Butylbenzylphthalate	100	1100	10000	7900 U	5 U	0.39 U	0.37 U	1.1 U	0.5 10	0.007 1	360 U	3.4 U	18.0	0.41 U
81s(2-ethylhexyliphthalate	100	49	210	1900 U		0.39 U	0.37 U	1.1 U	0.12 J	0.39 U	350 U	3.4 UJ	18 UJ	0.41 U
•• • • • • •	· · · · ·	· · · · · · ·		l '`` [_] .	l	Metals fr		L			1			
Aluminum	NLS	NLS	NLS	760	4060	15500	12400	15200	23400 J	13800 J	14000	8380	7120	14200
Antimony	NLS	14	340	16.1 J	2.3 J	1.2 U	1.1 0	8.2 J	2.0	1.4 U	1.9 0	2.6 J	1.8 U	1.4 J
Arsenic	NLS	20	20	42.5 J	8 .	3.2	3.4	22.6 J	3.0	2.4	14.8	7.6	25.2	2.5
Barlum	NLS	700	47000	30.7 J	53.2	64.2	72.4	186	147	122		····· .		
Berylium	NLS -			0.29 U	0.25 U	0.54 J	1.1 J		1.9	0.84	90.5	97.9	120	41.5 J
Cadmium	NLS		· · · · · · · · · · · · · · · · · · ·					1.1 J			0.44 J	0.20 J	0.37 J	0.25 J
			100	0.82 J	0.25 U	Ř	R	0.28 U	0.22 U	0.16 U	0.21 U	0.16 U	0.57 J	R
Calcium	NLS	NLS	NLS	11600	1080 J	5661 J	2010 J	2590	3430	2280	1800 J	1030 J	10000	270 J
Chromium	NLS	NLS	NLS	249	13.4	24.2	24.2	31.6	19.5	26.0	28.0 J	20.8 J	22.2 3	15
Cobalt	NLS	NLS	NLS	11.6 J	6.9 J	10.8	14.4	34.6	9.6 J	11.4	9.8 J	6.6 J	9.1 J	4 J
Copper	NLS	600	600	642	139	15.6	14.5	176.	20.7	12.2	147 J	85.5 J	77.2 J	14.5

Page 3 of 4

	IGW	RDC	NRDC		3	emple ID/Dep	xth				Sample ID/Sa	mole Depth		
	Criteria	Criteria	Criteria	TP-39	TP-39A	TP-39	TP-39	TP-49	1P-61	TP-51	7P-56	TP-57A	TP-68	TP-75
Parameter	{mg/Kg}	(mg/Kg)	(mg/Kg)	(3-4)	(4)	{16-16} *	(23-25)*	(5-5.6)7	(3_5)	(7.5)*	(4-5)*	(3-4)*	(3-4)*	(15-16)
• • • •				l	l	 Motule (contin	i vedi (mg/hg)	l	L	1		I : .	1	1.
	NLS	NLS	NLS	223000	18600	32500	29600	35200	23200	30000	81000	29000	39200	16300
nad	NLS	400	600	183 J	82.9	11,4	12,6	148 J	18.8 J	12.1 J	116 J	378 J	623 J	6.8
lagnesium	NLS	NLS	NLS	520 J	1000 J	8980	2660	3280	4590	7150	4260	3650	2730	3130 J
anganose	NLS	NLS	NLS	795	109	248	937	288	2050	538	453 J	273 J	154 J	74.2
letcury	NLS	14	270	0,094	0.34	0.0025 U	0.0031 J	0.30	0.054 J	0.0032 J	0.39	0.12	0.46	0.007
ickel	NLS	250	2400	177	28	23.7	32.5	95.2	23.5	28.1	35.9	18.9	35.1	1 8.8 J
otassium	NLS	NLS	NI.S	143 U	395 U	3200 J	3320 J	850 J	1310 J	2900 J	1590	969	756 J	"isto J
sienium	NLS	63	3100	12.9 J	1.5 J	0.58 ŬJ	0.57 UJ	3.7 J	1.1 UJ	0.79 UJ	4.5	2	4.5	0.83 0
iver	NLS	110	4100	0.58 UJ	0.5 UJ	0.20 UJ	0.19 UJ	0.96 UJ	0.44 U	0.32 U	0.43 UJ	0.33 UJ	0.41 0.5	0.2 U
odium	NLS	NL\$	NLS	449 U	412 U	1980 J	1170 J	411 0	ີ 155 ປີ	202 U	274 J	284. J	542 J	935 J
halium	NLS	2 '	2	22.5 J	2.7 J	0.87 U	0.76 U	3.5 J	22 W	2.2)	7.0 J	1.0 00	3.7 J	1.8 0
enadium	NLS	370	7100	54.0	17.6	32.6	25.8	34.1	26.3	32.2	37.6	27.5	26.0	23.5
Inc	NLS	1500	1500	347 J	104 J	59.8	71.1	243 J	141	72	108 J	63.3 J	318 J	26.1
•		•••••••			•	Cyunkie (mg/Kg)	• ••	•		•	• •	••	· · · -
yenide, Total	NLS	1100	21000	778	2.21	0.580 U	0.570 U	0.850 U	0.850 U	j 0.590 U	52.4	88.3	0.760 U	0.62 U
yanida, Amenabla	NLS	NLS	NLS	0.850 U	0.730 U	NA NA	NA penice (mp/Kg)	NA	NA	NA	0.690 U	19.3	NA	NA
lesel Range Organics	NLS	NLS	NLS	NA	NA	NA NA	NA	NA	1700	NA	NA	NA	NA	NA
stes: This table is a summary for his IGW - impact to Groundwater RDC - Residential Direct Coni NRDC - Non-Residential Direct NLS - no Ested standard (NJD Shading Indicates compound of Hallos Indicate that the Practic Yellow shading denotes samp J - estimated value	Soli Screaning Crit act Soli Cleanup S It Contact Soli Clea EP has not establit letected above NJ al Quantitation Lim	teria icraening Criteri enup Screening shed criterie for DEP RDC and it (PQL) is great	a Criteria: this analyte) for NRDC, and/	or I GW Cleanup S	icreening Criter	ia,	4	Saturated same	iles are not co	mpared to IGW	V criteria.	(MDL).	Seturated).	

D - result is from diluted sample analysis

B - (organic compounds) analyte was detected in blank samples NA - not analyzed ND - no detections of compounds included in total

.

.

.

Page 4 of 4

rra-e	<u>, 01</u>	774/
1 H A - F	<u> </u>	1114

Page 1 o	18
----------	----

				:	Soli Boring	j Subsurfac	e-Solf Analy	tical Data						
					Eric	B Street Fo	mer MGP S	ite						
	IGW	RDC	NRDC	1			Samp	ie ID/Depth (fr	eet below i	land surface))			
	Criteria	Criteria	Cuiteria	B-11	B-11	B-12	B-12	B-12	B-14	8-15	B-15	8-15	B-15	B-15
Parameter	(mg/Kg)	(mg/i(g)	(mg/Kg)	(13-15)*	(19-20)	(5-8)	(7.5-8)	(13-14)	(3-4)	(2-3)	(1 2-14)▼	(20-22)*	{25-26 *	(26-28)*
- • • • • • • • • • • • • • •	<u> </u>	I	·	<u>!</u>	Voletile	Oganie Caap	ounds (VOCs) in		J	L	<u> </u>		I	
Benzene	1	3	13	0.03 U	2.9 U j	0.27 J	0.03 41	2.7 UJ	0.27 J	0.03 U	2.9 U	. 6.8	8.3 J	1.
Toluene	500	1000	1000	3.2 U	2.9 U	0.26 J	2.8 W	2.7 UJ	0.23 J	3.10	2.9 U	3.6 U	18 U	2.8 U
Ethylbenzane	100	1000	1000	3.2 Ú	2.9 U	14 J	2.8 UJ	2.7 W	1.9 J	1 3.TU	2.9 U	0.46 J	11 J 🗍	1.3 J
Xylane (total)	67	410	1000	3.2 U	2.9 U	2 J	2.8 W	2.7 W	0.22 J	3.10	2.9 0	0.66 J	25	27
	• • • • • •				Pelyoyallo	Arometic Hyde	voerbone (PAHa)	ing/Kg		J	··· •• • · ·			
Naphthelene	100	230	4200	0.38 U	0.2 J	4.8	0.027 J	0.38 U	2.8 B	0.4 U	0.36 U	0.29 J	270	0.89
2-Methylnaphthalane	NLS	NLS	NLS	0.026 J	0.26 1	0.38 J	0.009 J	0.39 U	1.6 8	0.4 บ้	0.38 U	0.036 J	210	0.91
Acenaphthylene	NLS	NLS	NLS	0.009 J	0.059 J	0.3 J	0.38 U	0.38 U	2.6	0.4 U	0.38 U	0.01 J	15 3	0.092 J
Acenaphthene	100	3400	10000	0.38 U	0.012 J	0.34 J	່ວ.ຮ້ອ`ບໍ່``	0.38 0	1 1.2 J	0.4 U	0.38 U	0.006 J	52	0.31 J
Fluciene	100	2300	10000	0.004 J	0.028 J	0.72 J	0.38 0	0.38 U	1.8	0.4 U	0.38 0	0.007 J	45	0.22 J
Phenenthrene	NLS	NLS	NLS	0.38 U	0.087 J	1.8	0.026 J	Ö.018 J	4.6 B	0.4 U	0.38 U	0.019 J	140	D.8
Anthracene	100	3400	10000	L 200.0	0.028 J	0.35 J	0.006 J	0.35 U	2.1	0.4 U	0.003 J	0.003 J		0.22 J
Fluorenthene	100	2300	10000	0.005 1	0.026 J	0.43 J	0.027 J	0.011 3	2.4	- 0.4 U "	0.38 U	0.4 U	42	0.24 J
Рутеле	100	1700	10000	0.006 J	0.043 J	0.88 J	0.022 J	0.011 J	4.4 8	0.4 U	0.38 U	0.4 U	61	0.37
Benz(a)enthracene	500	0.9	4	0.003 J	0.017 J	0.22 J	0.012 J	0.38 U	1.5	0.001 J	0.002 J	0.4 U	24 J	0.13 J
Chrysene	600	9	40	0.003 J	- 200° J	0.29 J	0.011 3	0.38 U	1.6	0.002	0.002 J	0.4 U	28 J	0.14 J
Benzo(b)fluoranthene	50	0.9	4	0.001 J	0.005 J	0.085 J	0.38 U	0.38 U	0.75 J	0.4 0	0.38 U	0.4 U	6.8 J	0.035 j
Benzolkhiluorenthene	500	0.9	4	0.002 J	C 6000	0.11 J	0.38 U	0.38 U	0.84 J	0.4 U	0.38 U	0.4 U	12 J	0.063 J
Benzo(e)pyrene	100	Q.66	0.66	0.38 U	0.011 J	0.1 J	0.38 U	0.38 Ū	1.2 J	0.001 J	0.002 J	0.4 U	1# J	Q.088 J
indeno(1,2,3-cd)pyrene	500	0.9	4	0.38 U	0.004 J	0.075 3	0.38 U	0.38 U	0.47 J	0.4 U	0.38 U	0.4 Ŭ	3.8 J	0.023 J
Dibenz(a,h)enthracene		0.66	0.66	0.38 U	0.003 J	0.76 U	0.38 U	Ö.38 Ü	0.18 J	0.4 Ú	0.38 U	0.4 U	1.1 J	C 800.0
Benzo(g,h,i)perylene	NLS	NLS	NLS	0.38 0	0.005 J	0.082 J	0.38 U	0.38 U	0.55 J	0.4 U	0.38 U	0.4 U	4.2 J	0.027 J
					Other Semiro	dalla Copanio G	ampounds /8VO	Čaj img/Kgi	•		• • • •		• • • •	•
Dibenzofuran	NLS	NLS	NLS	0.002 J	0.006 J	0.11 J	0.38 V	0.38 U	0.35 J	0,4 ป	0.38 V	0.4 U	5.3 J	0.028 J
Disthylphthalets	50	10000	10000	0.38 U	0.39 U	0.76 U	0.38 U	0.38 U	1.5 U	0.4 U	0.36 U	0.4 U	41.25 U	0.37 U
Di-n-butyiphthelate	100	5700	10000	0.36 U	0.39 U	0.78 U	0,38 U	0.38 U	1.5 U	0.4 U	0.38 U	0.4 U	41.25 U	0.37 U
bis(2-Ethylnexyl)phthalate	100	49	210	0.38 U	0.56 J	0.76 U	0.38 U	0.38 U	1.50	0.4 U	0.38 V	0,4 U	41.25 U	0.37 Ü
						inorganie Comp	ounds (ng/tg)		4					· · · · · · · · · · · ·
Aluminum	NLS	MLS	NLS	15400	12700	7520	4310	2310	7680	12700	9280	8620	14400	10800
Antimony	NLS	14	340	0.68 U	0.96 U	ី 1.3 ប	1.B U	2 U	<u> </u> 1,1 'U	174 U	1.0 U	U 38.0	1.4 U	0.65 U
Arsenic	NLS	20	20	3.3	4.6	1.6	1.8 J	2.3	5.6	3.1	1.8	2.3	4.4	6.8
Barium	NLS	700	47000	96.5	105	54.2	68.5	81.7	44.2	107	43.5	64.1	[~] 141	90.2
Beryllium	NLS			0.88 J	0.74 J	0.64 J	0.52 J	0.42 J	0.18 U	0.53 J	0.31 J	0.30 J	0.65 J	0.68 J

Table 78

				:	· · ·	Subsurfac	(continued) :e-Soil Analy rmer MGP Si							
	IGW	RDC	NRDC	T			Semp	e ID/Depth (f	eet below	land surface)	1			
	Criteria	Criteria	Criteria	B-11	8-11	B-12	B-12	B-12	B-14	6-15	B-15	B-15	B-16	B-15
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(13-16)*	(19-20)	(5-6)	(7.5-8)	(13-14)▼	(3-4)	(2-3)	(12-14)	(20-22)	(25-28)*	(26-28)*
·····	1	1	-	L	L	nto Comoinid	i (continued) (m		I	I	i	•	l. <u>.</u>	l
Cadmium	NLS	: 1	100	8	1 8	0.15 Ú	0.2 U	0.22 U	8	8		B	8	8
Calcium	NLS	NLS	NLS	1050 J	1630 J	1510	2600	16400	9560 J	5710 J	1310 5	21700	6830	29900
Chromjum	NLS	NLS	NLS	26.2	24.9	6.4	8	2.8	21.9	20.0	17.5	13.7	24.3	20.2
Cobalt	NLS	NLS	NLS	13.8	12.6	4 J	6.1 J		5.9 J	9.6	8.2 3	6.5 J	12.0	9.9
Copper		600	600	16.4	15.4	16		4.7 J	32.4	15.4	11.0	14.0	14.2	12.5
Iron	NLS	NLS	NLS	33200	31500	12100	6480	2280	20400	25800	22800	17500	29800	25900
Leed	NLS	400	600	13.4	13.8	20.8	10.1	4.5	48.9	10.2	8.8	7.5	11.9	12.4
Magnesium	NLS	NLS	NËS	8910	8090	1500	1960	1980	5280	6250	4600	5340	8550	7600
Manganese	NLS	NLS	NLS	368	750	158	444	638	185	568	264	422	546	553
Mercury	NLS	14	270	0.005a U	0.0032 U	0.14	0.0066 U	0.038 J	0.031	0.0033 J		0.0020 U		0.0033 U
Nickel	NLE	250	2400	32.7	29.5	8.9	6.7 J	6.5 J	15.2	21.6	18.5	14.0	27.5	23.2
Potassium	NLS	NLS	NLS	3530 J	3210 3	268 J	270 J	526 J	827 J	3030 J	1610 J	2240 J	3780 J	3340 J
Selenium	NLS	63	3100	0.55 UJ	0.62 W	0.82 J	0.98 UJ	1.1 W	0.71 J	0.53 UJ	0.50 UJ	0.48 UJ	0.62 UJ	0.50 UJ
Silver	NLS	110	4100	0.18 UJ	0.23 0.1	0.29 0	0.39 U	0.44 U	0.18 UJ	0.18 UJ	D.17 U.	0.16 UU	0.21 UJ	0.19 UJ
Sodium	NLS	NLS	NLS	1120 J	1530 J	178 J	209 J	265 J	155 J	280 J	124 J	232 J	286 J	302 J
Thellum	NLS	2 2	2	0.73 U	0.83 U	1.9 J	2.0	22 U	0.73 U	0.71 U	0.67 U	0.65 U	0.83 U	0.74 U
Vanadium	NLS	370	7100	28.7	27.1	10.5	9.1 J	6.4 J	24.1	26.0	21.4	19.6	30.6	23.5
Zinc	NUS	1500	1500	73.4	85.3	\$2.4	23.5	18.6	150	52.4	42.3 J	44.3 J	81.4	60.3
		*	·	·	··	Öyenki	img/Kgi	L	.		й			
Cyanide, Total	NLS	1100	21000	0.600 U	5.40	9.77	0.69 Ü	0.66 V	13.2	0.570 U	0.570 U	0.670 U	0.650 U	0.580 U
Cyanida, Amenable	NLS	NLS	NLS	NA NA	8.40	0.68 U	NA	NĂ	0.550 U	NA	NA NA	NÄ	NA	NA

Parameter (mg/Kg) (mg/Kg) (mg/Kg) (19.19) (13.5.4)* (7.4)* (5.6.5)* (8.10)* (2.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)* (6.4) (8.10)*				٤	Soll Boring	Table 7B (Subsurface Street For	B-Soil Ana	Iytical Dat	3			·	
Paramotes (mg/Kg) (mg/Kg) (B-9)* (3.5 4/F (7.4)* (5.5.1)* (9.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)* (2.4) (3.10)*		IGW	RDĊ	NRDC			Sar	nple ID/Dept	th (feet below	w land surfa		<u> </u>	
Parameter (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (13.5-4)r (7-8)r (5-5.6)r (8-10)r (2-4) (8-10)r (2-4) (8-10)r (6-5) (6-5) (6-10)r (6-5) (6-5) (6-10)r (6-5) (6-5) (6-5) (6-5) (7-8)r (5-5.6)r (8-10)r (2-4) (8-10)r (6-5) (7-5) (7-5) (8-10)r (8-10)r (7-5) (8-10)r (8-10)r (8-10)r (8-10)r (7-5) (8-10)r <t< th=""><th></th><th>Criteria</th><th>Criteria</th><th>Criteria</th><th>B-16</th><th>B-17</th><th>B-17</th><th>B-18</th><th>B-18</th><th>6-19</th><th>6-19</th><th>B-20</th><th>6-20</th></t<>		Criteria	Criteria	Criteria	B-16	B-17	B-17	B-18	B-18	6-19	6-19	B-20	6-20
Denomine 1 3 13 2.8 U NA 2.8 U 6.6 U 2.7 U NA 6.6 U 2.7 U NA 3.2 U NA 7.2 U <t< th=""><th>Paramoter</th><th>(mg/Kg)</th><th>(mg/Kg)</th><th>(mg/Kg)</th><th>(8-9)v</th><th>(3.5-4)▼</th><th>(7-8)•</th><th>(5-5,5)▼</th><th></th><th></th><th></th><th></th><th>(8-10)▼</th></t<>	Paramoter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(8-9) v	(3.5-4)▼	(7-8)•	(5-5,5)▼					(8-10)▼
Toluere 500 1000 129 U NA 2,5 U 0,4 J 2,7 J 2,7 U NA 3,2 U NA 1,2 U NA 3,2 U NA 1,2 U NA 1,2 U NA			L	L	Volatife (Organic Compo	unde (VOCe)	ing/Kg					• • •••••• •/••
Ethylaenzane 100 1000 1000 2.8 U NA 2.8 U 3.7 J 2.7 U NA 3.2 U NA Alleynia 57 410 1000 2.9 U NA 2.8 U 0.82 J 2.7 U NA 3.2 U NA Ableynia Anleynia Anleynia Anleynia 100 2.30 4.200 0.38 U 0.39 U 18 0.32 U 540 0.02 J 39 J 0.02 J 0.39 U 0.38 U 160 J 0.38 U 100 J 0.38 U 100 J 0.38 U 10.38 U 10.02 J 0.39 U 0.39 U 0.38 U 100 J 0.02 J 0.39 U 0.38 U 100 J 0.02 J 0.02 J 0.02 J 0.02 J 0.02 J 0.02 J 0.00 J <td></td> <td>! ·</td> <td></td> <td></td> <td></td> <td>NA</td> <td> :</td> <td>0.04 U</td> <td>2.7 U</td> <td>NA</td> <td>0.03 U</td> <td>NA</td> <td>2.8 U</td>		! ·				NA	:	0.04 U	2.7 U	NA	0.03 U	NA	2.8 U
Kytene točali B7 410 1000 2.9 U NA 2.8 U 0.82 J 2.7 U NA 3.2 U NA 2.8 U 0.82 J 2.7 U NA 3.2 U 3.0 U 3.3 U 3.2 U 3.0 U 3.2 U <td>Toluene</td> <td>500</td> <td>1000</td> <td>1000</td> <td></td> <td>NA ;</td> <td>2.6 U</td> <td>0,44 3</td> <td>2.7 U</td> <td>NA</td> <td>3.2 U</td> <td>NĂ</td> <td>2.6 U</td>	Toluene	500	1000	1000		NA ;	2.6 U	0,44 3	2.7 U	NA	3.2 U	NĂ	2.6 U
Publyck Avenue Publyck Avenue Publyck Avenue Nachthelene 100 230 4200 0.36 U 0.39 U 0.38 U 18 0.38 U 544 0.002 J 360 J 0.38 U 100 0.002 J 360 J 0.38 U 11 0.38 U 1200 0.002 J 36 J 0.000 J 0.38 U 100 0.002 J 36 J 0.000 J 0.000 J 0.000 J 0.38 U 160 0.38 U 140 J 0.38 U 360 0.000 J 0.000 J 0.38 U 0.38 U 140 J 0.38 U 160 J 0.000 J 0.000 J 0.38 U 0.38 U 140 J 0.38 U 160 J 0.000 J 0.000 J 0.38 U 140 J 0.38 U 160 J 0.000 J 0.000 J 0.38 U 140 J 0.38 U 160 J 0.000 J <	Ethybenzene	100	1000	1000	2.9 U	NĀ	2.5 0	3.7 J	2.7 Ü	NA	3.2 U	NA	2.8 U
Nachthalana 100 230 4200 0.38 U 0.39 U 19 0.38 U 544 0.033 J 560 0.00 2-Matrix/inspir/Machina NLS NLS NLS NLS 0.000 J 0.39 U 0.39 U 11 0.38 U 140 J 0.38 U 96 U 0.000 J 0.39 U 0.38 U 140 J 0.38 U 96 U 0.000 J 0.38 U 0.38 U 140 J 0.38 U 96 U 0.000 J 0.38 U 0.38 U 140 J 0.38 U 96 U 0.000 J 0.38 U 0.38 U 140 J 0.38 U 160 0.38 U 160 J 0.38 U	Xylene (lictal)	87	410	1000	2.9 U	NA	2.6 U	0.82 J	2.7 U	NA	3.2 U	NA	2.0 U
2-Methylinghröhelsene NLS NLS NLS NLS 0.003 J 0.38 U 10 0.38 U 1000 0.003 J 0.38 U 0.38 U 1000 0.002 J 36 J 0.003 J 0.38 U 100 J 0.000 J		· ·	• •	· .	Palyayella A	Vomatic Hydro	cerbons (IA)	ini (mg/Kg)	. I		1		• • • •
Acaraghtinylers NLS NLS NLS 0.003 J 0.39 U 0.39 U 16 0.38 U 140 J 0.38 U 28 U 0.003 J 0.39 U 0.39 U 16 0.38 U 140 J 0.38 U 28 U 0.000 O 0.000 J 0.39 U 0.38 U 140 J 0.38 U 160 O 0.000 J 0.000 J 0.39 U 0.38 U 140 J 0.38 U 160 J 0.000 J 0.000 J 0.39 U 0.38 U 140 J 0.38 U 160 J 0.000 J 0	Naphthelene	100		4200	0.36 U	0.39 U	0.39 U	19	0.38 U	940	L 880.0	560	0.026 J
Accensplittiven 100 3400 10000 0.38 U 0.38 U 0.38 U 0.38 U 140 J 0.38 U 1800 0.00 Ploren 100 2300 10000 0.002 J 0.39 U 0.39 U 7.3 J 0.38 U 360 0.001 J 460 J 0.38 U 160 0.001 J 460 J 0.38 U 160 0.38 U 160 0.38 U 160 0.38 U 160 0.001 J 460 J 0.38 U 160 0.001 J 0.001 J 0.39 U 43 J 0.38 U 160 J 0.001 J 0.001 J 0.38 U 160 J 0.005 J 0.001 J 0.38 U 160 J 0.001 J 0.001 J 0.38 U 44 J 0.000 J 0.001 J 0.001 J 0.38 U 2.35 U 160 J 0.38 U	2-Methylnephthelene	NLS	NLS	NLS	0.003 J	0.39 U	0.39 U	11	່ ວັ3ອີບ	1200	0.02 J	36 J	0.37 U
Filosome 100 2300 10000 0.002 J 0.39 U 0.39 U 7.3 J 0.36 U 360 0.38 U 180 0.0 Phenandvene NLS NLS NLS 0.013 J 0.39 U 0.39 U 0.38 U 1000 0.001 J 450 J 0.38 U 1000 J 0.28 U 160 J 0.38 U 0.38 U 0.38 U 170 J 0.38 U 160 J 0.38 U 17 J	Acenaphihylene	NLS	NLS	NLS	0.003 J	0.39 U	0.39 U	16	0.38 U	140 J	0.38 U	86 U	0.37 Ü
Filosiene 100 2300 10000 0.002 J 0.39 U 7.3 J 0.38 U 360 0.38 U 160 0.0 Premantivene NLS NLS NLS 0.39 U 0.39 U 43 J 0.38 U 1000 0.014 J 440 J 0.0 Anthracane 100 2400 10000 0.004 J 0.39 U 6.1 J 0.38 U 160 J 0.38 U 0.38 U 160 J 0.38 U 180 J 0.38 U	Acenaphthene	100	3400	10000	0.38 U	0.39 0	0.39 U		0.38 U		0.38 มี	330	0.37 U
Pharashtrene NLS NLS NLS NLS NLS NLS 0.013 J 0.39 U 43 J 0.38 U 1000 0.014 J 490 J 0.38 U Anthracene 100 34600 10000 0.004 J 0.38 U 0.38 U 160 J 0.007 J 93 O.00 0.007 J 130 J 0.36 U 140 J 0.38 U 180 J 0.007 J 130 J 0.007 J 130 J 0.36 U 140 J 0.38 U 180 J 0.007 J 130 J 0.007 J 0.38 U 140 J 0.38 U 140 J 0.38 U 190 J 0.38 U 140 J 0.38 U 140 J 0.38 U 19J J 0.000 J 0.38 U 100 J 0	Fluorene	100	2300	10000	0.002 J	0.39 U	0.39 U	7.3 3	0.38 U	350	0.38 U	160	0.37 U
Anthracana 100 3400 10000 0.004 J 0.39 U 6.1 J 0.38 U 160 J 0.006 J 0.38 U 0.39 U 33 J 0.006 J 0.38 U 138 J 0.006 J 0.38 U 138 J 0.006 J 121 J 0.006 J 0.000 J	Phenanchyene	NLS	NLS	NLS	0.013 J	0.39 U	0.39 U	43 J	0.38 U	1000		490 .1	<u>6.01</u>
Huberseithere 1000 2200 10000 0.008 J 0.38 U 0.39 U 33 J 0.006 J 210 J 0.005 J 93 0.0 Benzielanthracene 500 0.9 4 0.006 J 0.39 U 0.39 U 0.39 U 21 J 0.36 U 380 0.007 J 230 J 0.0 Benzielanthracene 500 0.9 4 0.001 J 0.38 U 0.39 U 21 J 0.36 U 140 J 0.38 U 93 0.0 Benzolt/Ituoranthere 500 0.9 4 0.001 J 0.38 U 0.39 U 140 J 0.38 U 97 J 0.0 Benzolt/Ituoranthere 500 0.9 4 0.002 J 0.38 U 16 0.38 U 91 J 0.38 U 97 J 0.38 U 93 J 0.0 Benzolt/Ituoranthere 500 0.6 6.8 0.002 J 0.38 U 0.38 U 91 J 0.38 U 93 J 0.0 93 J 0.38 U 94 J 0.38 U 94 J 0.38 U <td< td=""><td>Anthracane</td><td>100</td><td>3400</td><td>10000</td><td>0.004 J</td><td>0.39 Ú</td><td>0.39 U</td><td>6.1 J</td><td>0.38 U</td><td>160 J</td><td>D.38 U</td><td>1603</td><td>0.37 U</td></td<>	Anthracane	100	3400	10000	0.004 J	0.39 Ú	0.39 U	6.1 J	0.38 U	160 J	D.38 U	1603	0.37 U
Pyrane 100 1700 10000 0.011 J 0.006 J 0.39 U 84 J 0.009 J 380 0.007 J 230 J 0.007 J Sens(s)anthracese 500 0.9 4 0.005 J 0.38 U 27 J 0.38 U 136 J 0.38 U 62 J 0.007 J 230 J 0.007 J 230 J 0.007 J 230 J 0.38 U 136 J 0.38 U 638 U 64 J 0.38 U 638 U 44 J 0.38 U 638 U 44 J 0.38 U 638 U	Ruoranthene	100	2300	10000	L 800.0								L 800.0
Banz(s)anthracese 500 0.9 4 0.065 J 0.38 U 27 J 0.38 U 130 J 0.38 U 500 67 J 0.38 U 500 67 J 0.38 U 71 J 0.38 U 71 J 0.38 U 71 J 0.38 U 71 J 0.38 U 67 J 0.38 U 67 J 0.38 U 67 J 0.38 U 67 J 0.38 U 61 J 0.38 U	Pyrane	100	1700	10000	0.011 J	0.006]	0.39 0	64 3	L 600.0	350	0.007 J		0.005 J
Sód Sód <td>Benz(s)enthracene</td> <td>500</td> <td>··· 0.9</td> <td>·· 4···</td> <td>0.005 J</td> <td>0.39 U</td> <td>0.39 U</td> <td>27 3</td> <td>0.36 U</td> <td>130 J</td> <td>D.38 U</td> <td>62 J</td> <td>0.37 U</td>	Benz(s)enthracene	500	··· 0.9	·· 4···	0.005 J	0.39 U	0.39 U	27 3	0.36 U	130 J	D.38 U	62 J	0.37 U
Benzoltifisionanifiene 500 0.5 4 0.002 J 0.38 U 0.38 U 51 J 0.38 U 25 J 0. Benzoltifisionanifiene 100 0.66 0.66 0.66 0.66 0.36 U 7.1 J 0.38 U \$10 J 0.38 U 34 J 0. Indenol 1, 2, 3-odipymine 500 0.8 0.86 0.36 U 0.38 U 11 0.38 U \$27 J 0.38 U 34 J 0. Dibenxis Atlantimecane 100 0.86 0.86 0.36 U 0.38 U 6.4 J 0.38 U 12 J 0.38 U \$1 J 0. Benzolgiti, it pervise NLS NLS 0.36 U 0.38 U 0.038 U 0.38 U 0.038 U 0.38 U 0.038 U	Chrysens	500		40		i		40 J			-	67 J	0.37 U
Benzoltifüsionalthene 500 0.9 4 0.002 J 0.38 U 0.39 U 16 0.38 U 51 J 0.38 U 25 J 0. Benzoltifüsionalthene 100 0.66 0.66 0.66 0.66 0.36 U 7.1 J 0.38 U 50 U 34 J 0. Indeno(1,2,3-cdpyrene 500 0.8 0.36 U 0.39 U 11 0.36 U 27 J 0.38 U 34 J 0. Dibenz(s,h)ent/meane 100 0.86 0.65 0.36 U 0.39 U 11 0.38 U 27 J 0.38 U 5.1 J 0. Benzoltijhijeerije 0.15 0.38 U 0.38 U 0.39 U 0.38 U 37 J 0.38 U 5.1 J 0. Benzoltijhijeerije 0.36 U 0.39 U 0.39 U 0.39 U 11 J 0.38 U 37 J 0.38 U 5.2 J 0.38 U 5.2 J 0.38 U 37 J 0.38 U 5.2 J 0.38 U 0.39 U 0.39 U 0.39 U 0.38 U 0.38 U 0.38 U <	Benzo(b)fluoranthene	50	0.9	4	0.001 J	0.38 U	0.39 U	14	0.36 U	12 J	0.38 U	10 J	0.37 U
Berrevtalpyrene 100 0.68 0.68 0.002 J 0.38 U 0.36 U 7.1 J 0.38 U 40 J 0.38 U 34 J 0. Indeno(1,2,3-cdpyrnine 500 0.8 4 0.30 U 0.35 U 0.39 U 11 0.36 U 27 J 0.38 U 11 J 0.38 U 12 J 0.38 U 11 J 0.38 U 12 J 0.38 U 51 J 0. 0.38 U 51 J 0.38 U 12 J 0.38 U 51 J 0. 0.38 U 51 J 0.38 U 50 J 51 J 0.38 U 50 J 53 J 0.38 U 53 J 0.38 U 50 J 53 J 0.38 U 53 J 0.38 U 50 J 50 J<	Benzo(k)fivomethene	500	0.9	4	0.002 J	0.38 U	0.39 U	16	0.36 0	51 J			0.37 ปี
Indeno(1,2,3-cdpyrene 500 0.8 4 0.39 U 0.39 U 0.11 0.38 U 27 J 0.38 U 11 J 0. Dibens(a,h)antimoure 100 0.86 0.85 0.36 U 0.33 U 0.39 U 11 0.38 U 12 J 0.38 U 5.1 J 0. Banzotg,fLiperviens NLS NLS NLS 0.38 U 0.39 U 11 J 0.38 U 12 J 0.38 U 5.1 J 0. Dibensofure NLS NLS 0.35 U 0.39 U 11 J 0.38 U 12 J 0.38 U 5.1 J 0. Dibensofure NLS NLS 0.35 U 0.39 U NA 0.38 U 37 J 0.38 U 45 J 0. Dibensofure NLS NLS 0.35 U 0.39 U NA 0.38 U 320 U 0.38 U 45 J 0. Dibensofure 500 5700 100000 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 320 U 0.38 U <	Benzo(a)pyrena	100	0.66	0.66	0.002 J	0.39 U	0.39 u	7.1 1	0.38 U	59 J	0.38 0	34 J	0.37 U
Benzolgini, i perviene NLS NLS NLS O.38 U O.38 U <tho< td=""><td>Indeno(1,2,3-cd)pyrene</td><td>500</td><td>0.9</td><td>4</td><td>0.36 Ú</td><td>0.35 U</td><td>0.39 U</td><td>11</td><td></td><td>27 J</td><td>0.38 U</td><td>11 J</td><td>0.37 U</td></tho<>	Indeno(1,2,3-cd)pyrene	500	0.9	4	0.36 Ú	0.35 U	0.39 U	11		27 J	0.38 U	11 J	0.37 U
Banzotgin, jiperviene NLS NLS NLS O.38 U O.38 U O.38 U O.38 U O.38 U O.38 U 37 J O.38 U 37 J O.38 U 10 J 6. Other Sambalitie Grginit: Centrometers NLS NLS NLS 0.35 U 0.39 U NA 0.38 U 37 J 0.38 U 45 J 6. Discription NLS NLS NLS 0.35 U 0.39 U NA 0.38 U 320 U 0.38 U 45 J 6. Discription 50 10000 10000 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 45 J 6. Discription 1000 5700 100000 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 88 U 6. Discription 100 49 210 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 6. 0. 6. 0. 0.38 U 0.38 U 0.38 U 6. 0.<	Dibenz(a,h)enthrecene	100	0.86	0.66	0.36 0	0.38 U	0.39 U		0.38 U	12 J	0.38 U	6.1 J	0.37 U
Dibensofures NLS NLS NLS 0.36 U 0.39 U NA 0.38 U 58 J 0.38 U 45 J 0. Distry/phthalats 60 10000 10000 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 45 J 0. Distry/phthalats 60 10000 10000 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 85 U 0. Distry/phthalats 100 5700 100000 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 86 U 0. Distry/phthalats 100 49 210 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 88 U 0. Distry/phthalats 100 49 210 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 88 U 0. Aluminum NLS NLS NLS 8290 NA 7840 J 7270 J 11100 J NA 632 U NA	Benzo(g,h,i)perylene	NLS	NLS							37 J	0.38 U	10 J	0.37 U
Distry/phthalata 60 10000 10000 0.36 U 0.39 U 0.39 U NA 0.38 U 320 U 0.38 U 88 U 0. Di-houty/phthalata 100 5700 10000 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 88 U 0. Di-houty/phthalata 100 49 210 0.36 U 0.39 U NA 0.38 U 320 U 0.38 U 88 U 0. MLS NLS NLS NLS S290 NA 7840 J 7270 J 11100 J NA 9630 NA 1010 Amilinony NLS 14 340 0.73 U NA 120 U 28.1 0.80 U NA 632 U3 NA 130 NA Amilinony NLS 14 340 0.73 U NA 120 U 28.1 0.80 U NA 633 U3 NA 335.0 J 2.2 J NA 335.0 J 2.2 J NA 335.0 J 2.2 J NA 335.0 J	Dibenzofuran	NLS	NLS							58 J	0.38 L	45 .1 .	0.37 U
Di-r-butylphthelate 100 5700 1000b0 C.36 U 0.39 U 0.39 U NA 0.38 U 320 U 0.38 U 86 U 0. bis(2-Ethylhenyljphthelate 100 49 210 0.36 U 0.39 U 0.38 U NA 0.38 U 320 U 0.38 U 86 U 0. Autopath Compounds (mg/Rg/ Atomatic MLS NLS NLS S290 NA 7840 J 7270 J 11100 J NA 9630 NA 101 Amilinomy NLS 14 340 0.73 U NA 100 28.1 0.60 U NA 0.32 U3 NA 101 Amilinomy NLS 14 340 0.73 U NA 1.0 U 28.1 0.60 U NA 0.32 U3 NA 13 Amilinomy NLS 20 20 3.1 NA 2.2 42.8 2.1 55.3 J 2.2 J NA 3 Barkim NLS 7000 470000 </td <td></td> <td>0.37 Ü</td>													0.37 Ü
Obj 2-Ethylheinyliphthalata 100 49 210 0.36 U 0.39 U 0.39 U NA 0.38 U 320 U 0.38 U 65 U 0. Advantation NLS NLS </td <td></td> <td>0.37 U</td>													0.37 U
Atompatik Compounds (mp/Ag/ Atompatik Compounds (mp/Ag/ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> 1</td> <td></td> <td></td> <td>0.37 U</td>										1			0.37 U
Aluminum NLS NLS NLS B290 NA 7640 J 7270 J 11100 J NA 9630 NA 1011 Amilimony NLS 14 340 0.73 U NA 1.0 U 28.1 0.60 U NA 0.32 U3 NA 1 1 Amilimony NLS 14 340 0.73 U NA 1.0 U 28.1 0.60 U NA 0.32 U3 NA 1 1 1 1 1 1 0.60 U NA 0.32 U3 NA 1 1 1 1 0.60 U NA 0.32 U3 NA 1 <	······	L									0.30 d		0.37 U
Antimony NLS 14 340 0.73 U NA 1.0 U 28.1 0.80 U NA 5.32 U3 NA 1 Arisenic NLS 20 20 3.1 NA 2.2 42.8 2.1 55.3 J 2.2 J NA 3 Barkum NLS 700 47000 69.3 NA 35.0 J 832 91.3 NA 28.9 J NA 35	Áluminum	NLS	NLS	NLS				-	11100	NA	9630	NA	10100
Armenic NLS 20 20 3.1 NA 2.2 42.8 2.1 55.3 J 2.2 J NA 3 Berkum NLS 700 47000 69.3 NA 35.0 J 832 91.3 NA 26.9 J NA 35			-							- 1			1.1 01
Benfum NLS 700 47000 69.3 NA 35.0 J 832 91.3 NA 26.9 J NA 36	•												3.0 J
									+				39.2 J
Servilium NLS 1 1 0.37 J NA 0.51 J 0.60 J NA 0.54 J NA 0.55 J NA 0.55 NA 0	Servilium												

Page 3 of 8

			1	Soil Boring	Subsurfac	(continued) æ-Soil Ana rmer MGP	lytical Dat	ta				
······································	IGW	RDC	NRDC			Sa	nple ID/Dep	th (lest below	r land surfe			
	Criteria	Criteria	Critoria	, B-16	B-17	B-17	B-18	B-18	B-19	B-19	8-20	B-20
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(8-9)▼	(3.5-4)*	(7-8)▼	(5-5.5)▼	(9 -10)▼	(2-4)	(8-10) ▼	(5-6)	(8-10) ▼
	I	• • • •	I	inorgan	te Compound	s (continued) (mg/Kg)	I		1 4.	•••• • •	
Cadmium	NLS	1	100	R	NA	0.10 U	1.1 J	0.080 U	NĂ	I R I	NA	8
Calcium	NLS	NLS	NLS	22200	NA	806 J	1640	1010		690 J	NA	400 0
Chromium	NLS	NLS	NLS	17.4	NA	10.1	197	16.2	NA	16.3	NA	12.8
Cobelt	NLŚ	NL5	NLS	7.9 8	NA	4.8 J	11.6 J	8.3	NA	9.4	NA	5.5 J
Copper	NLS T	600	600	8.0	NA	11.9	543	17.2	"NA"	10.9	NĂ	13.0
kron	MLS	NLS	NLS	20800	ŇA	13000	14300	19300	NĂ	19000	ŇA .	12500
Lead	NLS	400	600	8.0	NA	6.8 J	648 J	9.4 J	258 J	L 9.6	NA	8.2 J
Megnesium	NLS	NLS	NLS	5360	NA	2290	2190	4530	NA '	5030	NA	3100
Manganasa	NLS	NLS	NLŜ	631	NA	289	136 U	347	NA T	374	NA	102 U
Mercury	NLS	14	270	0.0038 U	NA	L 3800.0	3.6 J	0.0044 U	NA	0.0030 U	NA	0.0074 J
Nickel	NLS	250	2400	18.2	NA	9.0	47.2	19.9	NA	19.1	NA	13.7
Potesekuri	NLS	NLS	NLS	2010 J	NA	770 J	1180 J	1800	NA	1710	NA .	1210
Selenium	NLS	63	3100	0.66 0.1	NA	1.0 U	4.4	0.80 U	NA	0.92 U	NA	i 1.1 U
Silver	NLS	110	4100	0.18 UJ	NA	0.21 U	2.3 J	0.16 U	NA	0.18 W	NA	0.22 U
Sodium	NLS	NLS	NLS	́	NA	105 J	239 J	136 J	NA	243 J	NA	648 J
Thailium	NLS	2	2	0.73 U	NA	1.3 U	1.8 U	0.96 U	NA	1.10	NA .	1.6 U
Vanadium	NLS	370	7100	22.2	NA	17.1	116	20.5	NĂ	20.4 J	NA	19,0 J
Zinc	NLS	1500	1500	42.8 J	NA T	22.9	933	43.3	NA	44.0	NA	32.1
				·	Cyantia	(mp/Kg)		U.				• . • •
Cyanida, Total	NLS	1100	21000	0.540 U	NA	0.584 UJ	717 J	0.511 UJ	NA	0.571 U	NA	0.575 U
Cyarida, Amenable	NLS	NLS	NLS	NA	NA	NA	0.831 U	NA	NA	NA	NA	Ľ NÅ

				Soil	Boring Sub	le 78 (conti surface-Soi eet Former i	il Analytica	l Data					
	IGW	RDC	NRDG				Semple	ID/Depth (fee	t below lend	surface)			
	Critoria	Critaria	Criteria	B-21	B-21	8-21	8-22	B-23	B-29	B-30	8-33	B-33	B-35
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(6-7)	(8-9)	(13-14)▼	(21- <u>22)</u> *	(17-18)*	(16-17)*	(24-25)*	(13-14)*	(20-21)*	(16-18)•
· · · · · · · · · · · · · · · · · · ·		· · · ·	i	L	Volatile Organ	io Compounde	(VOCu) (mg/Kg	<u>↓</u>		l	L	'	I
Benzene	Ţ ī i	3	13	0.15 J	NA	0.03 U	0.43 J	0.03 U	1.2 J	0.23 J	2.6 UJ	0.03 UJ	2.9 UJ
Toluene	500	1000	1000	0.78 J	NA	3.1 U	30	3.5 U	2.8 (1)	3 Ű	2.6 UJ	່ 3.1 ເມື່	2.9 W
Ethylbenzane	100	1000	, 1000	4.9 J	NA	3.1 U	30	3.6 0	0.43 J	3 U	2.6 UJ	3.1 W	2.9 ÜJ
Xylene (total)	67	410	1000	3.7 J	NA	3.1 U	3 U	3.5 U	C.68 J	3 03	2.6 ŬJ	ີ 3.1 ປັງ	2.9 ÜJ
	• •• ·	· · · · · ·		·	biyoyalir Alam	dia Nyekocariko	ni (PAHin) (mg/	l L Kgj				• .	• •
Naphthalene	100	230	4200	20	0.03 J	0.4 U	C.068 J	0.062 J	0.78	0.39 U	0.37 U	0.015 J	0.39 V
2-Mathylnaphthalone	NLS	NLS	NLS	" 8,4 J""	0.88 U	0.4 U	0.03 J	0.39 U	0.13 J	0.39 U	ີ 0.37 ບ	0.036 J	0.39 U
Acenephthylane	- NLS	NLS	NLE	54 J	0.012 J	0.4 0	0.38 U	0.39 U	0.38 0	0.39 U	0.016 J	0.024 J	0.003 J
Acenephthene	100	3400	10000	120	0.032 J	0.4 U	0.004 J	0.39 U	0.38 U	0.39 U Ú	0.011 J	0.025 J	0.39 U
Fluorens	100	2300	10000	56	0.021 J	0.4 U	0.005 J	0.003 J	0.38 U	0.39 U	0.016 J	0.028 J	0.39 U
Thenanthrono	NLS	NLS	NLS	180	0.065 J	0.009 J	0.034 J	0.38 U	0.38 U	0.39 U	0.11 J	Ö.11 J	0.39 U
Anthrecene	100	3400	10000	68	0.02 J	0.4 U	0.002 J	0.39 U	0.38 U	0.009 J	0.026 J	0.029 J	0.39 0
Huoranthene	100	2300	10000	52	0.02 J	0.4 U	0.38 U	0.39 U	0.38 U	0.011 J	0.048 J	0.033 J	0.39 U
Pyrene	100	1700	10000	78	0.025 J	0.005 1	0.38 U	0.39 U	0.38 U	0.018 J	0.072 J	0.045 J	Ö.39 Ú
Banz(a)anthracana	500	0.9	4	24	0.88 U	0.4 U	0.002 J	0.39 U	0.38 U	0.008 J	0.021 J	0.018 J	່ 0.39 ປີ
Chrysene	600	9	40	32	0.88 U	0.4 U	0.002 J	0.39 U	0.38 0	0.39 0	0.031 J	0.016 J	0.39 U
Benzo(b)fluorenthene	50	0.9	4	12 J	0.88 U	0.4 U	0.001 J	0.39 U	0.36 0	0.39 0	0.37 U	0.38 U	0.39 Ú
SenzotiQfiluoranthens	500	ò.s	4	12 J	0.66 0	0.4 U	0.001 J	0.39 U	0.38 U	0.39 U	0.37 U	0.38 U	0.39 V
Banzo(s)pyrene	100	0.66	0.66	18 J	0.88 U	0.4 U	0.001 J	0.39 U	0.38 U	0.a9 U	0.014 J	0.012 J	0.39 U
indeno(1,2,3-od)pyrane	500	0.9	4	8.9 J	0.88 U	0.4 U	0.38 U	0.39 U	0.38 U	0.39 U	0.37 Ŭ	0.38 U	0.39 U
Dibenzia, hlanthracene	100	0.66	0.66	4 J	0.88 0	0.4 U	0.36 U	0.39 U	0.38 U	0.39 U	0.37 U	0.38 U	0.39 U
Banzolg,h,i)perviene	NLS	NLS	NLS	11 J	0.88 U	0.4 U	0.38 U	0.39 V	0.38 U	0.39 U	0.37 U	0.38 U	0.39 V
· · · ·				Ödin	v Semivolatie (Arganic Compos	ada (SVOČu) (i			• •	·	·	·
Dibenzofuran	NLS	NLS	NLS	13 J	NA	0.4 U	0.002 J	0.39 U	0.38 U	0.39 U	0.37 U	Q.38 U	0.39 U
Diethylphthelate	50	10000	10000	28 U	NA	0.4"U""	0.38 U	Ū 9 88.0	0.38 U	0.39 U	0.37 U	ີ່ 0.38 ປັ	Ö.39 Ü
Di-m-butylphthelate	100	5700	10000	26 U	NA	0.4 U	0.36 U	0.39 U	0.38 U	0.38 U	0.37 U	0.38 U	0.39 U
bis(2-Ethylhexyl)phthalate	100	49	210	26 U	NA	0.4 0	0.38 U	0.39 U	0.38 U	0.39 0	0.37 U	0.38 U	0.39 Ű
						ela Cangoounde		••••••••••••••••••••••••••••••••••••••				-	
Aluminum	NLS	NLS	NLS	6550	NA	7700	1 3000	13300	6400	8490	4900	2820	16900
Antimony	NLS	14	340	5.5 J	NA NA	UJ 68.0	1.2 J	1.6 U	1.2 0	1.30 U	1.40 U	1.10 ປ	1.2 U
Arsenio	NLS	20 7		16.2 J	NA	2.8 .	3.4	2.3	2 J	2.4 J	1.9 1	0,84 J	3.7
Berlum	NLS	700	47000	276 J	NA	22.9 1	142	70.1	94.5	176	20.2 J	44.9	93.3
Beryllum	NLS	1		0.40 J	NA NA	0.38 J	0.44 J	0.42 J	0.42 J	0.64 J	0.26 J	0.31 J	0.71 J

Page 5 of 8

				Soil	Boring Su	ble 78 (cont beurface-Sc reet Former	II Analytical	Deta					
	IGW	RDC	NRDC	!			Sample !	D/Depth {fee	t below land	eurísce)	·		
	Criteria	Criteria	Criteria	8-21	8-21	8-21	B-22	B-23	8-29	B-30	B-33	5-33	B-35
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(6-7)	(8-9)	(13-14)*	(21 -22) ▼	(1 7-18) ♥	(16-17) ▼	(24-25)*	(13-14)▼	(20-21)*	(16-18) ▼
	1	i	l	,	inorganic (Compounds (caal	nued (mg/Kg)	L 1	• • • •	I		k	l
Cadanium	NILS	; 1	1 100	0.72 J	NA	Ŕ	0.24 U	R I	0.18 U	0.19 U	0.18 0	0.13 U	A
Calcium	NLS	NLS	NLS	3600	NA T	384 U	24000	1690 J	21200 U	2160 U	439 J	20700	736. J
Chromium	NLS	NLS	NUS	43.8	NÁ	11.8	21.4	22.6	12.1	17.9	5.1	3.5	27.4
Cobelt	NLS	Í NLS	NLS	L 0.3	NA	4.8 J	10.4 J	11.9	7.6 J	10.4	2.5 J	3-2 J	28.9
Copper	NLS	600	800	175	NA	8.3	18.8	16.5	23.2	16.7	15.2	9.4	89.3
iron	NLS	NLS	NLS	22500	NA	13100	26400	29400	15300	23000	6000	3920	28400
ŭaađ	NLS	400	600	678 J	NA	7.7 J	11.2	12.2	8.5 J	^{***} 11.4'J	5	3.9	12.4
Magnasium	NLS	NLS	NLS	3130	NA	3080	7810	6960	4540	5350	1730	2670	7310
Mengenese	NLS	NLS	" NLS '	149 U	NA	203	590 J	641	561 J	682 J	66.7	417	275
Mercury	NLS	14	270	2.4 J	NA	L (600.0	0.0037 U	0.0027 U	0.0097 U	0.0077 U	0.013 U	0.0074 U	0.0099
Nickal	NLS	250	2400	29.2	NA	12.3	23.0	26.0	16.6	23	6.8	6.8	55.1
Potassium	NLS	NLS -	NLS	1340 J	• • • • • • • • • • • • • • • • • • •	1270	3020	2460 J	1170	1460	488 J	693	3610 J
Salenium	NLS	63	3100	1.8 J	NA	0.99 U	0.73 UJ	0.60 🛈	0.89 UJ	0.83 UJ	່ ່ ອໍ.8ຳ ບໍ່ມ	0.63 ÚJ	0.66 UJ
Silver	NLS	110	4100	1.0 J	NA	0.20 UU	0.24 UJ	0.20 ŪJ	0.18 UJ	0.19 W	0.32 Ū	0.25 U	0.22 UJ
Sodium	NLS	I NLS "	NLS	1570	NA	1740	386 J	282. J	"` 214 U"	189 U	132 J	419 J	2460 J
Thellum	NLS	2	2	1. 7 U	NA T	2.0 0	0.97 0	່ 0.79 ບັ	1.8 UJ	1.9 UJ	1.6 U	1.3 U	0.88 U
Vanadium	NLS	370	7100	20.4 J	NA	17.4 3	27.8	27.0	18.5	23.6	8.7	4.8 J	37.2
Zinc	NLS	1500	1500	536	NA '	30.2	60.2 J	B8.7	42 Ü	56.4 U	21.9	20.4	81.9
					·	Cynnide Img/l		······································					
Cyanide, Total	NLS	1100	21000	1.3 3	NA	0.598 U	0.620 U	0.620 U	1.06	0.58 U	0.56 U	0.61 U	0.620 U
Cyanide, Amenable	NLS	NLS	NLS	0.774 U	NA	NA	NA	NA	1.06	NA .	NA	NA -	NĂ

				Sc	oil Boring Sub									
	IGW	RIDĈ	NRDC				Sample	Depth (feet below I	and surface)				
	Criteria	Criteria	Criteria	HB-1	HB-1	HB-3	HB-3	VB-1	VB-1	V5-2	VB-2	VB-3	VB-4	VB-4
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(11.6-13.6)*	[22.4-23.2]*	(6-8)¥	{ 14-16) ▼	{ 17-18} 7	(24-25)*	(16 -17)*	(22-24)¥	(15-18)*	(6.5-7.5)*	(14-15)*
		!	<u>i</u>	Ji	Volstile Örger	to Compound	in MOCal ing	/Kg/	l				······································	
Benzene	1 · 1	3	13	21 J	0.28 J	0.92 J	320	0.03 U	0.03 U	0.03 U	2.6 U	0.03 U	2.70	2.9 U
Toluene	500	1000	1000	6.7]	0.018 J	0,44 J	490	3.2 U	3.1 U	0.018 3	0.017 J	3.1 U	2.7 U	2.9 U
Ethylbenzene	100	1000	1000	940	0,49 J	0.23 J	58 J	0.071 J	3.1 U	- 3.1 Ű	2.6 U	3.1 บ	2.7 U	. 2.9 U
Xylene (total)	87	410	1000	1200	0.12 J	0.43 J	650	0.11 J	3.1 U	3.1 U	2.6 U	3.1 บ	2.7 U	2.9 U
·	•		'	·	Polycyclio Area	tic Hydroon	tone (PAHe)	mg/Xgi	· · ·					
Naphthalena	100	230	4200	2000	0.055 J	0.82	4000	0.4 U	0.39 U	NA	NA	0.30 U	0.39 U	0.37 U
2-Mathyinaphthelene	NLS	NLS	NLS	1900	0.026 J	0.3 J	4500	0.4 U	ີ 0.38 ປີ	NA	NA	Q.39 U	[0.39 U]	0.37 U
Acenephthylene	NLS	NLS	NLS	61 J	0.41 U	0.039 J	1100	0.4 U	0.39 U	NA	NA	0.39 U	0.39 U	0.37 U
Aconspittions	100	3400	10000	840	0.021 J	0.039 J	220 J	0.4 U	🗂 0.39 Ū	NA "	NA	0.39 U	0.39 U	0.37 U
Avorana	100	2300	10000	480	0.41 U	0.063 J	670 J	0.4 U	0.39 U	NĂ	NA	0.39 U	0.39 U	0.37 U
Phonenthrene	NLS	NLS	NLS	1100	0.075 J	0.26 J	1600	0.4 U	0.39 U	NA	NA	ີ 0.39 ປີ	0.39 U	0.37 U
Anthracana	100	3400	10000	360 J	0.016 J	0.059 1	400 J	0.4 U	0.39 U	NA	NA	0.39 U	0.39 U	0.37 U
Fluorenthene	100	2300	10000	420	0.021 J	0.22 J	450 J	0.4 U	0.39 U	ŇĂ T	NA	0.39 0	0.38 U	0.021 J
Рутипе	100	1700	10000	520	0.025 J	0.22 J	590 J		0.39 U	ŇĂ	NA	0.39 0	0.39 U	0.016 J
Benz(s)enthracene	500	0.9	4		0,41 U	0.099 J	` 220 J İ	0.4 U	0.39 U	NA	NA	0.39 Ŭ	0.39 U	0.014 J
Chrysene	600	·	40	210 J	0.41 U	0.12 J	L OLZ	0.4 U	0.39 U	NA	NA	D.39 U	0.39 U	0.009 J
Benzo(b)fluorenthene	50	0.9	4	50 J	0.41 U	0.068 J	52 J	0.4 U	0.39 U	NA	NÀ	0.39 U	0.39 U	0.008 J
Benzo(k)fluorenthene	500	.	4	84 J	0.41 U	0.062 J	L 96	0.4 U	0.39 U	NA	NA	0.39 U	0.39 U	0.014 J
Benzola)pyrone	100	0.66	0.66	140 J	0.4T U	0.085 5	140 J	040	0.39 U	NĂ	NĂ	0.39 U	0.39 U	0.01 J
Indeno(1,2,3-cd)pyrene	500	0.9	- · ·	31 J	0.41 U	0.08 J	800 U	0.4 U	0.39 U	NA	NA	0.39 U	0.39 U	0.37 U
Dibenzis, hienthracene	100	0.66	0.66	380 U	0.41 U	0.39 U	800 U	0.4 U	0.39 U	NA	NA	0.39 U	0.39 U	0.37 U
Benzo(g,h,i)perviene	NLS	NLS	NLS	39 J	0.41 U	U. 860.0	800 U	0.4 U	0.39 U	NA	NA	0.39 U	0.39 U	0.37 U
	1	•••••••	••••	'-· · o	ther Semivolatile (Organic Com	neunde (SVOC	al implicat						
Dibenzofuran	NLS	NLS	NLS	51 J	0.41 U	0.026 J	78 J	0.4 U	0.39 U	NA	NA	0.39 U	0.39 U	0.37 U
Disthylphthelete	. số T	10000 -	10000	390 0	0.41 U	0.019 J	600 U	0.4 U	0.39 U	NA	NĂ	0.39 U	0.39 U	0.37 U
Di-n-bucylph/halete	100	5700	10000	380 U	0.41 U	0.021 1	U 008	0.4 U	0.39 U	NA NA	NA	0.39 Ū	0.39 Ŭ	0.37 U
ble{2-Ethylhexyliphthalate	100	49	210	380 U	0.41 U	0.39 U	800 U	0.39 U	0.39 Ú	NA	NA	0.39 U	0.39 Ū	0.37 Ü
		+	······	4	horge	nio Compoun	de prester	·			-		· · · · · · · · · · · · · · · · · · ·	
Aluminum	NLS	NLS	NLS	5550	7720	7740	5250	6610	7120	NA	NA	7040	9170	6740
Antimony	NLS	34	340	1.0 U	1.0 U	1.0 U	1.1 U	1.2 U	0.96 0	NA	NA	0.90 U	0.85 U	1.0 U
Amenic	NLS	20	20	1.4 J	2.3	2.4	1.8 J	1.3 J	4.0	NA	NA	2.0	4.3	2.5
Berkum	NLS	700	47000	82.8	138	76.8	29.7 J	35,4 J	76.5 J	NA	NA	48.4	66.4	70.5
Beryfilum	NLS	t i	÷	0.22 J	0.6 J	0.49 J	0.31 J	0.39 J	0.60 J	NA	NÁ	0.58 J	0.78 J	0.62 J

				50	bil Boring Sul Erie Str		ioil Analyti or MGP Sit							
·	IGW RDC NRDC Sample ID/Depth (feet below land surface)													
İ	Criterie	Criteria	Criteria		HB-1	H8-3	H8-3	V8-1	VB-1	VB-2	VB-2	VB-3	VB-4	VB-4
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(11. 6 -13.5)▼	(22.4-23.2)*	(6-8)▼	{14-16IT	(17-18)*	(24-25)*	(16-17)*	(22-24)▼	(15-1 6) ▼	(6.5-7.5)▼	(14-15)
					inorgania (A		atinued) (mg/		R	NA	NA	R	B	
dmium	NLS	1	100	R	R	R	A	R	1090 V	NA NA		969	1330	21600
icium	NLS	NLS	NLS	522 Ŭ	2270	12000	1630	210 U	1090 0		NA	12.3	18.2	12.5
woenium	NLS	NLS	NLS	4.7	13.4	12.8	7.6		16.5 9.9	NA	NA	7.3 J	8.4 J	6.2 J
belt	NLS	NLS	NLS	4,4 3	8.5 J	6.3 J	<u>4.4 J</u>	2.9 J		NA NA	NA	11.5 J	14.1 J	- <u>9.0 J</u>
ppor	NËB	800	600	19.7	14.3	32.2	9.6	15.6	13.0		NA NA	14400	20000	12700
ni	NLS	NLS	NLS	5840	16400	14000	8490	9970	20100		NA	8.6	9.8	7.5
ed -	NLS .	400	600	5.2	B.7	34.8	8.0	5.4	11.9	NA			4820	5730
agneelum	NLS	NLS	NLS	2140	4720	4920	2560	1890	4110	NA	NA NA	4240 613	4820	512
	NLS	NLS	NLS	275	461	377	294	55.8	1440	NA		• • • •		0.0042
BICUTY	NLS	14	270	0.003 U	0.0029 U	0.060	0.0033 U	0.01B	0.0032 U	NA	NA	0.0037 0	0.0047 U	19.8
ckel	NLS	250	2400	10.3	18.1	16.4	10.2	6.8 J	21.1	NA	NA	17.9	1	
tassium	NLS	NLS	· · · · · · · · · · · · · · · · · · ·	842 J	1820 J	1610 J	1040 J	1080 J	21B0 J	NA	NA	1740	1340	2160
lenium	NLS	63	1 3100	1.0 U	1.0 U	1.0 Ū	1.1 Ū	1.2 U	0.96 U	NA	NA	0.90 U	0.85 U	1.0 0
	NLS	110	4100	0.21 UJ	0.20 U.	0.21 1	0.22 UJ	0.36 J	0.19 UJ	NA	NA	0.18 00		
	I NLS	NLS	NLS	97.4 J	164 J	230 J	118. J	739 J	1020	NA	NA	1980 J	137 J	190 J
	NUS	2	2	1.2 0	1.4 U	1.3 U	1.3 U	" 1.4 U	1.8 U	NĂ	NA	1.1 U	1.3 0	1.4 U
medium	NLB	370	7100	8.9 J	20.0	18.4	11.1	13.7	23.3	NA	NA	18.4	24.2	17.8
nc	NLS	1500	1500	19.8	45.8	57.1	26.4	20.8	44.5	NA	NA	40.4	44.6	46.1
······································			•*•• ••• 			Cyanide In								1 0.55 L
vanide, Totel	NLS	1100	21000	0.681 0	0.581 U		0.722	0.574 U	0.599 U	NA	NA	0.58 U	0.68 U	
yanide, Amunable	NLS	NLS	NLS	0.5 U	0.5 U	0.5 U	0.574 U	0.5 U	0.5 U	NA	NA	0.5 Ü	0.5 U	0.6 0
the: This table is a summary for	hit compounds	eniv: compaund	is that were not	detected in any sam	ple are not included	in this table.		* Symbol indi	cates that sample	with collocided	below the water	table (1.e., satur	ated).	
IGW - Impact to Groundwal					-			Saturated as	mples are not con	npered to IGW	criteria.			
NRDC - Non-Residential Di NLS - no listed slandard (N Shading indicates compoun Italics indicate lina the Prac	JDEP has not e	stablished orited ve NJDEP RDC n Limit (PQL) is	is for this analy section MRDC	and/or IGUN Cleanur	p Screening Citteria RDC and/or IGW C	i Ioenup Screeni	ng Criteria. The	e PCIL has been	n replaced with 1	ha corrected M	ethod Detection	Limit (MDL).		

Page 8 of 8

Т	-B-0	177	22
	1-0-0	111	~~

Pa	 1	of	6	

					Ti W ell S ubs Erie Street I		-	Data				
	- KGW	RDC	NRDC					ample ID/Dep	th			
	Criteria	Criteria	Criterie			MW-168	MW-168	NW-155			MW-168	MW-178
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(12-13)	(22-24)▼	(6-8) ▼	(10-11)	(14-15)▼	(23-24)*	(8-8.5) ▼	(16-17)*	(18-20)*
		L			itile Organie Ce	mounds (VOC	a inclini			L	<u>.</u>	
enzent	1	3	13	3.4 UJ	1.2 U	0.69 J	11.5 UJ	- 1.1 U	1.3 U	0.38 J	0.04 J	2.8 U
oluene	500	1000		3.4 UJ	1.2 0	0.36 J	11.5 W	1.1 U	1.3 0	1,4 J	1.06 U	2.8 Ü
thylbenzene	100	1000	1000	3.4 UJ	1.2 0	8.3 J	11.6 UJ		1.3 0	7.9 J	1.05 U	2.8 U
viene (total)	67	410	1000	3.4 U	1.2 0		11.5 UJ	••••• 1.1 U	1.3 U	7.3 J	1.05 0	2.8 U
		<u> </u>			cilio Aremanic H			L			L	
laohthalene	100	230	4200	0.087 J	0.38 U	160	1.6 UJ	0.39 U	0.027 J	160 B	0.39 U	0.34 J
-Mathylnaphthalena	NUS	NLS	NLS	0.062 J	0.38 u	140	0.088 J	0.39 0	0.39 U	7.6 J	0.39 U	0.26 J
-Manyinaphinalana	NLS	NLS	NLS	0.009	0.38 U	24 J	0.043 J	0.39 U	0.39 U	12 J	0.39 U	0.12 J
cenachthane	""""""""""""""""""""""""""""""""""""""	3400	10000	0.045 J	0.38 U	42 J	1.6 UJ	0.39 U	0.39 U	99	0.39 1	0.032 J
luorana	100	2300	10000	0.022 J	0.38 U	84	1.6 UJ	0.39 U	0.39 U	43	0.39 U	0.079 J
	NLS	2300 NLS	NLS	0.022 J	0.008 J	78	1.6 U	0.000 J	D.39 U	140	0.005 J	0.24 J
henanthrene			10000	0.019 J	0.36 U		1.6 W	0.39 U	0.39 U	46	0.39 U	0.067 J
nthracene	100	3400	1		0.38 U	517	1.6 W	0.39 U	0.39 U	38	0.002 J	0.039 J
luorenthone	100	2300	10000	0.02 J	0.005 J	B7	0.048 0	0.39 U	0.39 U	64	0.003 J	0.088.0
yrens	100	1700	10000			5/ 29 J	1.6 LU	0.39 U	0.39 U	20 J	0.39 U	0.023 J
enzlatanthracene	600	0.9	4	0.013 J	0.38 U	33J	າ.ອີເມິ 1.ອີເມິ	0.390	0.39 U	21	0.39 U	0.023 J
hrysona	600	9	40	0.44 U		33 J 12 J	1.6 W	0.39 U	0.39 U	8.	0.39 U	0.006 J
Senzolb) Ruoranthane	50	0.9	4	0.44 U	0.38 U	12 J 17 J	1.6 W	0.39 0	0.39 0	10 J	0.39 U	0.009 1
anzo(k)fluoranthene	500	0.9	4	0,44 U	0.38 U 0.38 U	18 J	1.6 W	0.39 0	0.39 U	12 J	0.39 U	0.012 J
Benzola)pyrene	100	0.66	0.66	0.44 U		18 J	1.6 W	0.39 U	0.39 UJ		0.39 U	0.38 U
ndeno(1,2,3-cd)pyrene	500	0.9	4	0.44 U	0.38 W	1.8 J	1.6 W	0.39 00	- 0.39 UJ	1.7 3	0.39 U	0.38 0
Cibenz(a,h)anthracene	100	Q.66	0.66	0.44 U	0.38 W	4.8 J	1.6 0	0.38 00	0.39 UJ	5.3 J	0.39 U	0.38 U
Benzo(g,h,i)perylene	NLS	NLS	NLS	0.44 U	0.38 W	4.0 J ie Compounde			0.00 00			
				0.44 U	0.38 U	13 J	1.6 UJ	0.38 U	0.39 U	13 J	I 0.39 U	0.017 J
Nibenzofuran	NLS	NLS 10000	NLS 10000	0.44 U	0.36 0	52 0	1.6 UJ	0.39 U	0.39 U	22 1	0.003 J	0.008 J
Nethylphthelete	50		10000		0.38 U	52 0	1.8 UJ	0.39 U	0.39 U	22 U	0.39 Ū	0.38 U
Di-n-butylphthalate	100	5700		0.44 0	0.38 U	52 U	1.6 Ü	0.36 U	0.39 U	22 0	0.003 1	0.38 U
Butyloenzylphthelete	100	1100	10000		0.38 0	62 U	1.8 00	0.39 U	0.39 U	22 U	0.39 U	0.01 J
Di-n-octylphthelate	100	1100	10000	0.44 U		62 U		0.38 0	0.28 0	L	L	·
					6630	9750 J	6830 J	10500	8170	18100 J	11200 J	20200
Aluminum	NLS	NLS	NLS	15300			5.2 W	2.3 UJ	2.5 U	3.2 J	0.66 J	2.8 J
Animony	NLS	14	340	1.6 Ú	2.5 UJ	11.7 UJ	4.8 J	2.3 03	2.5 00	16.7	1.2 J	1.9 J
Arsenic	NLS	20	20	445	5.1	29.9 J		68.8	86.1	109	151	119
Barium	" NLS	700	47000	38.1 J	90.3	61.5 J	10.7 J		1		0.24 J	0.75 J
Berylium	NLS	1-1-	[··	0.45 J	0.92 J	0.39 UJ	0.74 UJ	0.37 J	0.59 J	0.54 J	0.24 J	0.73 J

					Table 7(g Well Subs Erie Street		Analytical [)șta				
	TGW	RDC	NRDC				5	ample (D/Cep	th			
	Criteria	Criteria	Criteria	NW-148	" MW-148	NW-158	MW-158	``MW-168 ``	"MW-166 "	MW-16A	WW-168	MW-178
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(12-13)*	{22-24)▼	(6-8)▼	(10-11)*	(14-15)*	(23-24)*	(8-8.5)▼	{16-17)▼	{18-20) *
		L			inganic Compo	inde joontinued	(mg/Kģi		1			
Cadmium	NLS	1	100	0.22 U	0.23 U	0.39 UJ	0.74 UJ	0.2 U	0.21 U	0.24 UJ	0.19 UJ	0.28 V
Celcium	NLS	- NLS	NLS	380 J	15400 J	1260 UJ	4470 W	470 J	22700 1	2960	989	532. J
Chromium	NLS	NLS	NLS	22.9	15.0		12.4 J	17.5	17	40.3	23.6	30.8
Cobelt	NLS	NLS	NLS	10.5 J	13.4	87.5 J	3.3 J	9.6 J	10.2 J	14.8	8.4 J	12.5 J
Copper	NLS	600	600	12.8	8.6 J	305 J	4.9 J	14.2 J	11.9 J	87.1 J	13.9 J	17.5 J
Iron	NLS	NLS	NLS	24800	16200	56400 J	18200 J	23900	18900	29800	16700	29200 J
Lead	NLS	400	600	13 1	11.9 J	88.6 J	5.6 J		10.7 .7	134 J	L 8	15.2 J
Magnesium	NLS	NLS	NLS	5930	9020 J	204 UJ	5060 J	5540 J	6360 J	5700	5140	8300
Manganese	NLS	NLS	NLS "	168 J	1160 J	60.7 J	83.4 J	231 J	656 J	268	139	306 •
Morcury	NLS	14	270	0.011	0.0085 10	0.12 J	0.052 W	0.0081 0.	0.0071 ÛJ	2.1	0.0048 J	0.64 J
Nickel	NLS	250	2400	22.9	28.0	674 J ***	L 8.6	21.2	26.3	39.4	17.4	29.6
Potassium		NLS	NLS	2210	2050 J	31.2 W	989 J	1650 J	Ì ີ 1950 J ́ ∣	3010 1	3040 J	4070 J
Selenium	NLS	63	3100	1.1 UJ	1.2 UJ	4.3 J	3.7 J	1.2 J	A	0.89 J	0.67 UJ	2.2 J
Silver	NLS	110	4100	0.22 UJ	0.46 U	0.39 UJ	0.74 UJ	0.4 U	0.42 U	0.29 J	0.19 UJ	0.28 UJ
Sodium	NLS	NLS	NLS	1620	1470 J	148 UJ	13400 J	2120 J	1730 J	2070 J	2200 J	1890
Thellium	NLS .	2	2	2.2 W	2.3 00	3.9 W	7.4 44	2.0 UJ	21W	0.97 UJ	0.76 Ш	2.8 W
Vanedium	NLS	370	7100	31.3	21.2	50.7 J	20.9 J	26.1	20.4	33.6	16.2	35.1
Zinc	NES	1500	1500	58.8 Ü	57.6	983 J	35.7 UJ	49.1	57.6	302 J	48.8 J	83.9 J
		<u> </u>	· • • • • • • • • • • • • • • • • • • •			ide (mg/Kg)						
Cyanide, Total	NLS	1100	21000	0.66 U	0.670 UJ	1420 J	2.56 UJ	0.530 UJ	0.670 UJ	0.720 U	0.590 U	0.560 U NA
Cyanide, Amenable	NLB	NLS "	NLS	NA	NA	1.22 UJ	2.56 UJ	NA	NA	NÅ.	NA	

TIFR	RA-R	-017724	L
	10-0		-

Page 3 of 6

					Table 7	C (continued	d)					
				Monitorin	Well Subs	urface-Soll a	Analytical D)ata				
						Former MGF	-					
	KGW	RDC	NADC					ample D/Dep				
	Criteria	Criteria	Criteria	MW-178	WW-185	MW-19A	MW-198	MW-21	WW-21	MW-22	MW-22	MW-22
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(30-32) ^v	(28-28)▼	(4-6)▼	(18-20)▼	(2-4)	(10-12)	(2-4)	(10-12)*	(22-23)▼
]		Vol	tile Organic Co	mpounds (VOC	ai ingiligi		「、、、		· · · · · · · · · · · · · · · · · · ·	
Benzene	1	3	13	0.03 U	1.2 U	0.18 J	1.2 0	0.12 J	3.1 U	6.4 J	88	0.03 U
Toluene	500	1000	1000	310	1.2 U	0.11 J	1.2 0	0.039 J	3.1 U	1.5 J	340	3.4 U
Ethylbonzane	100	1000	1000	310	1.20	0.44 J	1.2 U	0.087 J	3.1 U	54	180	3.4 U
Xylene (total)	67	410	1000	3.1 U	1.2 U	0.22 J	1.2 U	3.3 U	3.1 U	22	650	3.4 U
	+-···	J	L	Malycy		ydrecarbone (Pi						
Naphthaiene	100	230	4200	0.05 J	0.33 U	0.66	0.33 U	0.4 U	0.39 U	270	2500	0.047 J
2-Mothylnaphthalena	NLS	NLS	NLS	0.058 J	0.33 U	0.72	0.33 U	0.4 U	0.39 U	65	960	0.012 J
Acenaphthylene	NLS	NLS	NLS	0.02 J	0.33 U	0.37	0.33 0	0.008 J	0.39 U	13 J	88 J	0.42 U
Acanachthene	100	3400	10000	0.014 J	0.33 U	0.27 J	0.33 U	0.4 U	0.39 U	7.2 J	25 J	0.42 U
Fluorene	100	2300	10000	0.023 J	0.33 U	0.35 J	0.33 Ū	0.4 U	0.39 U	``L 8.8	נול ול	0.42 U
Phonenthrene	NLS	NLS	NLS	0.12 J	0.013 J	1.7 J	0.33 U	0,089 J	0.39 U	45	200 J	0.022 J
Anthrecene	100	3400	10000	0.026 J	0.003	0.37 J	¯ 0.33 U	0.014 J	0.39 U	13 J	44 J	0.003 J
Fluoranthene	100	2300	10000	0.024 J	0.008 J	0.66 J	0.33 ป	0.17 J	0.39 V	42	58 J	0.004 J
Pyrene	100	1700	10000	0.037 J	0.006 J	1,3	0.33 Ú	0.24 J	0.39 Ú	42	96 J	0.009 J
Benzlalanthracone	500	0.9	4	0.012 J	0.33 0	0.35 J	0.33 U	0.068 3	0.39 U	19 3	\$1.5	0.42 U
Chrysene	500	9	40	0.013 J	0.33 U	0.48	0.33 U	0.092 J	0.39 U	18 J	28 J	0.42 U
Benzo(b)fluerenthene	50	0.9	¥ · · ·	0.39 U	0.33 U	0.12 J	0.33 U	0.06 J	0.39 U	52 J	· 11 J	0.42 U
Senzo(k)fluoranthene	500	0.9	4	0.39 U	0.33 U	0.18 J	0.33 Ū	0.067 J	0.39 U	17 J	14 J	0.42 U
Benzolalpyrene	100	0.66	0.66	0.39 U	0.33 U	0.24 J	ີ 0.33 ບໍ່	"0.068 J	0.39 U	19 J	23 J	0.42 U
Indeno(1,2,3-cd)pyrene	500	0.9	4	0.39 U	0.33 U	0.11 J	0.33 U	0.044 J	0.39 W	0.7 J	8 J	0.42 U
Dibenzia, hianthracene	100	0.86	0.66	0.39 U	0.33 U	0.37 W	0.33 U	0.4 U	0.39 W	3.2 J	390 U	0.42 U
Senza(g,h,i)perylene	NLS	NES	NL5	0.39 U	0.33 U	0.13 J	0.33 U	0.069 J	U 96.0	11 J	8 J	0.42 Ü
			······································	Oshir Sa	nivoletile Organ		SVOCal (mg/K				·	· · ·
Dibenzofuran	NES	NLS	NLS	0.39 U	0.33 U	L 60.0	0.33 U	0.4 U	0.39 U	4 J	11 J	0.42 U
Disthylphthalete	50	10000	10000	0.39 U	0.33 Ű	0.37 U	0.33 U	0.4 U	0.39 U	39 U	393 U	0.01 J
Oi-n-butylphthalate	100	6700	10000	0.39 U	0.33 U	0.37 UJ	0.33 U	0.4 U	0.39 U	39 U	393 U	0.42 U
Butylbenzylphthalate	100	1100	10000	0.39 U	0.33 U	U 76.0	0.33 Ŭ	0.4 U	0.39 U	39 U	393 U	0.42 U
Di-n-octylphthelate	100	1100	10000	0.01 J	0.33 U	0.37 Ü	0.33 U	0.4 U	0.39 U	39 U	393 U	0.012 J
						Compounds (reg					40000	
Aluminum	NLS	NLS	NLS	15100	8920 J	8460	12200 J	16000	16900	16400	10600	16400 Z.4 J
Antimony	NLS	14	340	1.8 J	1.8 U	2.8 UJ	1.8 U	25.4 J	1.6 0	1.9 Ü	1.0.0	
Arsenic	"NES	20	20	9.1	1.6 J	0.73 U	2.3	868	1.9 J	20.3	2.5	4.7
Berium	NLS	700	47000	230	42.6	ີ້ 11.9 ມື	69.2	2560	79.6	127	52.1	107
Barylium	NLS	1	· - ·	0.87 J	0.68 J	0.81 3	0.76 J	0.78 J	0.82 J	0.58 J	0.37 J	U 98.0

Г

					Table 74 g Well Subs Erie Street I		Analytical D	Deta				
Perameter	IGW Criteria (mg/Kg)	RDC Criteria (mg/Kg)	NRDC Criteria (mg/Kg)	[™] ₩ ²⁻ 17B (30-32)▼	MW-186 (25-28)	⁻ ₩₩-19A 4-6)¥	S MW-196 (18-20)▼	imple ID/Dep MW-21 {2-4}	ch MW-21 (10-12)7	MW-22 (2-4)	MW-22	`M₩-22 (22-23)*
	L]		vynnie Compou	nds (continued	(mg/Kg)		<u> </u>		<u> </u>	<u>-</u> · · ·
Cadmium	NLS	<u> </u>	100	0.26 U	0.21 U	0.18 V	0.2 UJ	\$Q.\$	0.23 U	0.26 U j	0.14 U	0.25 U
Culcium	NLS	NLS	NLS	3280 J	872 J	2010 J	6610	1580 J	1850 J	10100 J	738 J	3400 1
Chromium	NLS	NLS	NLS	42.7	16.1 J	13.1	22.6 J	24.2	27.0	24.1	14.8	33.8
Cobalt	NLS	NLS	NES	26.2	6.5 J	3.2 J	11.8	10.9	11.7	9.9 J	7.9	16.4
Copper	NLS	600	600	12.6 J	7.4 J	4.3 J	24.3 J	3120 J	18.6 J	34.6 .	15.7 J	21.6 J
Iron	NUS	NLS	NLS	32700 J	16700	9720	26600	69200 J	29900 J	25300 J	17400 J	32700 J
Lead	NLS	400	800	17.8 J	7.2 J	30.4 J	11.6 J	48500 J	19.7 J	269 J	9.0 J	25.3 J
Magnesium	NLS	NLS	NLS	9040	4240	1900 J	7520	3260	7540	5080	3870	8140
Manganese	NLS "	NLS	"""" NLS	555 *	256	30.9 J	661	460 *	382 *	370	526	630 *
Mercury	NLS	14	270	0.29 V	0.0070 U	0.086 J	0.0055 U	0.36	0.014	41.6	L 18.0	1.4
Nickel	NLS	250	2400	41.3	17.2 J	11	27.0 J	14.8	28.5	22.8	16.5	43.2
Potessium	NLS	NLS	NLS	3760 J	2010 J	474 J	2910 J	1310	3620	2370 J	1630 J	3480 J
Selenium	NLS	63	3100	1.8 J	1.0 U	R	1.0 U	14.1 J	1.7 J	R	0.84 1	2.1 J
Silver	NLS	110	4100	0.25 0	0.41 U	0.96 U	0.4 U	82.4 J	0.23 ÜJ	0.26 UJ	0.14 UJ	0.25 UJ
Sodium	NLS	- NLS	NLS	540. J	628 J	669 UJ	1050 J	259	324 J	315 J	206 3	361 J
Thalium	NLS	2	2	26 W	3.70	1.8 UJ	2.0 U	8.8 J	2.3 W	26 W	1.4 UJ	2.5 Ŵ
Vanadium	NLS	370	7100	90.9	17.2	13.4	26.8	26.9	34.3	32.8	21.0	36.8
Zinc	MUS	1600	1500	98.8 J	84.7	27.2	65.1	4390 J	204 J	179 J	61 J	87.2 J
	· · · · · · · · · · · · · · · · · · ·		L		Cynn	ide (mg/Rg)						
Cyanide, Total	NLS	1100	21000	0.580 U	0.580 U	42.7 J	0.580 U	U 008.0	0.590 U	0.610	0.600 U	0.630 U
Cyanide, Amenable	NLS	NLS	NLS	NA	NA	0.530 00	NA	NA	NA	0.570 U	NA	ŊA

Page 4 of 6

			_	Monitor	ing Well S	le 7C (com Subsurface set Former	Soil Analy	tical Data					
		RDC	NRCK					Samole I	D/Decth				
	Criteria	Criteria	Criteria	MW-236	MŴ-238	MW-236	NW-248	MW-248	MW-248	NW-25A	MW-26A	MW-28A	MW-26A
Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(3-4)	(8-10) ▼	(24-25)*	(4-6)	(7-8)▼	(16-17) ▼	(4-5)	(6-7)♥	(3-4)	(9 -10)*
		1		L	Velatilia Organ	ic Compound	VOCal (mp	Kei	i			I	
Benzone		3	13	0.03 U	0.03 U	2.8 U	0.04 U	0.04 0	0.04 U	0.03 U	0.03 U	0.03 U	0.04 U
Toluene	600	1000	1000	3.0 U	3.1 U	2.8 U	3.7 U	3.6 U	3.9 Ü	2.8 U	3.4 U	3.1 U	3.6 U
Ethylbenzene	100	1000	1000	3.0 U	3.1 U	2.8 U	3.7 U	3.6 U	3.9 U	2.8 Ú	"3.4 U	3.1 U	3.6 U
zonyidenzene Xviene (total)	67	410	1000	3.0 U	3.1 U	2.8 U	3.7 U	3.6 U	3.9 Ü		'3.4 U	3.1 U	3.6 U
Xyana (rocal)		410	1000			atie Hydrocard							· · · ·
Nachthalene	100	230	4200	0.39 U	0.38 U	0.35 U	0.41 U	0.4 U	0.38 U	0.37 0	0.42 U	0.38 U	0.39 U
2-Methylnaphthalona	NLS	NLS	NLS	0.39 U	0.38 U	0.38 U	0.41 U	0.4 U	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
	NLS	NLS	NLS	0.39 U	0.38 U	0.36 U	0.41 U	0.4 U	0.36 U	0.37 U	0.42 U	0.38 U	0.39 U
Acenaphthylene	100	3400	10000	0.39 U	0.38 U	0.38 U	0.41 U	0.092 J	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Acenaphthene			10000	0.39 U	0.38 U	0.36 U	0.41 U	0.4 U	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Fluorane	100	2300	NLS	0.39 U	0.38 U	0.36 U	0.41 1	0.009 J	0.38 U	0.006 J	0.42 U	0.38 U	0.39 U
Phenanthrene	NLS	NLS		0.39 U	0.38 Ú	0.36 U	0.41 U	0.005 J	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Ånthracene l	100	3400	10000	0.39 U	0.38 U	0.36 U	0.41 U	0.4 U	0.38 Ü	0.37 U	0.42 U	0.38 U	0.39 U
Fluorenthene	100	2300	10000			0.360	0.41 U	0.006 J	0.005 J	0.37 U	0.42 U	0.38 U	0.39 U
Pyrana	100	1700	10000	0.39 U	0.38 U	1	0.41 U	0.006 J	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Benz(a)anthracene	600	0.9	4	0.39 U	0.38 U	0.36 U 0.36 U		[™] 0.4 U	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Chrysene	500	9	40	0.39 Ŭ	0.38 U	0.36 0	0.41 U	0.4 Ú	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Senzo(b)livorenthene	50	0.9	4	0.39 U	0.38 Ü	1	0.41 U	0.4 U	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Benzo(k)fluoranthane	500	0.9	4	0.39 U	Ö.38 U	0.36 U	0.41 U	0.4 U	0.38 U	0.37 0	0.42 U	0.38 U	0.39 U
Berrzo(#)pyrene	100	0.66	0.66	0.39 U	0.36 U	0.36 U	0.41 U	0.4 U	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Indeno(1,2,3-cd)pyren	500	0.9	4	0.39 U	0.36 U	Ö.38 Ü	0.41 U	0.4 U	0.38 U	0.37 U	0.42 U	0.38 U	0.39 U
Cibenz(a,h)anthracane	100	0.66	0.86	0.39 U	0.38 U	0.36 U	0.41 U	0.4 U	0.38 U	0.37 0	0.42 U	0.38 U	0.39 U
Benzolg,h. Jiperviene	NLS	NLS	NLS	0.39 U	0.38 U	0.36 U	0.41 U		0.38 0	0.37 0	0.42 0	0.360	0.39 0
						Organic Comp	0.41 U	0.4 U	0.38 0	0.37 Ú	0.42 0	0.38 0	0.39 U
Cibenzofuren	NLS	NLS	NLS	0.39 U	0.38 U	0.36 U	0.41 0	0.4 U	0.38 U	0.37 U	0.42 U	0.38 U	0.39 V
Diethylphthalsta	60	10000	10000	0.39 Ú	0.38 U	1			0.38 U	0.37 U	0.42 U	0.36 U	0.39 U
Di-n-butylphthelate	100	5700	10000	0.01 J	0.38 U	0.36 U	0.016 J	0.4 U	0.38 U	0.37 U	0.42 0	0.38 0	0.39 U
Butylbenzylphthelieta	100	1100	10000	0.014 J	0.38 U	0.36 U	0.41 U	0.4 U	1				0.39 U
Di-n-octyiphthelate	100	1100	10000	0.39 U	0.38 U	0.36 U	0.41 U	0.4 Ŭ	0.018 J	0.37 U	0.42 U	0.38 V	0.38 0
			_			unic Compoun				TTANA	1 4960	8490	8020
Aluminum	NLS	NLS	NLS	10100	6800	6810	11200	8400	4890	10300		1.1 W	1.1 U
Antimony	NLS	14	340	Q.85 UJ	1.Õ UJ	1.1 Ŵ	1.2 W	0.94 UJ	1.0 W	1.0 Ü	1.10	1	1
Ansenic	NLS	20	20	3.2 J	1.9 J	2.7 J	3.5 J	1.9 J	L 8.6	2.5 J	1.8 J	2.0 J	2.3 J
Barlum	NLŚ	700	47000	33.9 J	59.6 J	70.5 J	55.1 J	j 81.4 J	75.8 J	40.9 J	32.5 J	32.0 J	85.1 J
Boryllium	NLS	1 1	1 1	Ò.30 J	0.40 J	0.63 J	0.28 J	0.39 J	Ó.98 J	0.45 J	0.37 J	0.39 J	0.74 J

Parsenater (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (3-4) (g-10) ⁷ (q-45) ⁷ (q-5) ⁷ (q-7) ⁷ <th< th=""><th></th><th></th><th></th><th></th><th>Monito</th><th>vring Well</th><th>ble 7C (cor Subsurface rest Forms</th><th>-Soil Anal</th><th>ytical Data •</th><th></th><th></th><th></th><th></th><th></th></th<>					Monito	vring Well	ble 7C (cor Subsurface rest Forms	-Soil Anal	ytical Data •					
Parameter Img/Kg/ Img/		IGW	RDC	NRDC	I		Sample	iD/Depth				Semple ID/	Semple Depi	ih
Link Link <thlink< th=""> Link Link <thl< th=""><th></th><th>Criteria</th><th>Criteria</th><th>Criteria</th><th>MW-238</th><th> MW-236</th><th>MW-238</th><th>MW-248</th><th>MW-248</th><th>MW-248</th><th>MW-25A</th><th>MW-25A</th><th>MW-26A</th><th>MW-26A</th></thl<></thlink<>		Criteria	Criteria	Criteria	MW-238	MW-236	MW-238	MW-248	MW-248	MW-248	MW-25A	MW-25A	MW-26A	MW-26A
Datisum NLS	Parameter	(mg/Kg)	(mg/Kg)	(mg/Kg)	(3-4)	{8-10]▼	(24-25)*	(4-5)	(7-8}▼	(16-17)*	(4-5)	(8-7)▼	(3-4)	(9-10)7
No. No. <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>Inergenie C</td> <td>ompounde (ce</td> <td>ntinued) (mg/</td> <td>Køl</td> <td></td> <td></td> <td></td> <td>d</td> <td>· · · · · · ·</td>		<u> </u>				Inergenie C	ompounde (ce	ntinued) (mg/	Køl				d	· · · · · · ·
Name NLS NLS <td>admium</td> <td>NLS</td> <td>1</td> <td>100</td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td>A</td> <td></td> <td></td>	admium	NLS	1	100		1			-		1	A		
Data NLS NLS <td>Calcium</td> <td>NLS </td> <td>NLS</td> <td>" NLS</td> <td>U`008</td> <td>794 J</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td>	Calcium	NLS	NLS	" NLS	U`008	794 J			1					1
Dyper NLS 600 600 5.0 15.4 8.7 8.8 8.9 6.2 12.1 8.0 12.2 10.2 ren NLS	Chromium	NLS		NLS			15.7					1		
Units Units <th< td=""><td>Cobalt</td><td>NILS</td><td>ŃĹS</td><td>NLS</td><td>4.5 J</td><td>5.8 J</td><td>8.6 J</td><td>3.4 J</td><td>5.7 J</td><td>8.2 J</td><td>1</td><td>3.5 J</td><td></td><td>10.4 J</td></th<>	Cobalt	NILS	ŃĹS	NLS	4.5 J	5.8 J	8.6 J	3.4 J	5.7 J	8.2 J	1	3.5 J		10.4 J
Number Number<	Copper	NL\$	600	600	9.0	15.4	8.7	8.8	8.9	6.2				
Alta NLS NLS <td>ron</td> <td>NLS</td> <td>NLS</td> <td>NLŚ</td> <td>16900</td> <td>14100</td> <td>17100</td> <td>16900</td> <td>12300</td> <td>15200</td> <td>15800</td> <td></td> <td>13300</td> <td>20500</td>	ron	NLS	NLS	NLŚ	16900	14100	17100	16900	12300	15200	15800		13300	20500
Number NLS NLS<	ead	NLS	400	600	9.6 J	7.3 J	9.7 J	10.5 J	9.2 J	8.5 J				11.1 J
Hanganasa NLS NLS NLS NLS NLS NLS NLS NLS 14 270 0.023 J 0.0027 U 0.0014 J 0.0028 J 0.0028 J 0.0028 U 0.0020 U 0.52 U U 0.22 U U 0.22 U 0.22 U 0.22 U 0.22 U 0.22 U U 0.22 U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22 U U 0.22	Viegnosium	NLS	NĽŚ	NLS	2640	3420	5720	2460	2740	4420	1			5640
Name Na 100 10.0 10.3 14.4 20.4 8.6 1 13.2 19.3 18.0 7.4 14.0 24.2 Versamium NLS NLS NLS 0.00 0.85 1 1000 1 1 1 1.2 19.3 18.0 7.4 1 1.0 24.2 Versamium NLS NLS 1.00 0.035 1.00 1.1 1.1 1.2 0.02 0.02 0.20 0.20 0.20 0.22 0.22 0.22 0.22 0.22 0.22 0.20 0.20 0.20 0.22 0.23 1.7 1.4 1.6 1.7 1.4 0.20 0.20 0.20 0.23 0.21 0.21	Manganese	NLS	NLS	NLS	244	371	644	82.2 U	132	788	830	136 U	400	689
HLS HLS LS L	Vercury	NLS	14	270	Q.029 J	0.0027 U	0.0037 U	0.014 J	0.0043 J	0.0026 U	0.0059 J	0.0034 U	0.0026 U	0.0038 U
NLS NLS NLS S96 J 1020 J 2230 1090 J 977 J 2020 1410 J 512 J 1210 1710 Selentum NLS 63 3100 0,85 U 1,0 U 1,1 U 1,2 U 0,84 U 1,0 U 1,0 U 1,0 U 1,0 U 1,0 U 1,0 U 1,1 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 1,2 U 2,2 U 2,2 U 2,3 U 1,4 U 1,6 U 1,4 U <td>Nickel</td> <td>NLS</td> <td>250</td> <td>2400</td> <td>10.3</td> <td>14.6</td> <td>20,4</td> <td>8.8 J</td> <td>13.2</td> <td>19.3</td> <td>16.0</td> <td>7.4 J</td> <td>14.0</td> <td>24.2</td>	Nickel	NLS	250	2400	10.3	14.6	20,4	8.8 J	13.2	19.3	16.0	7.4 J	14.0	24.2
Number NLS Old	otassium	NLS	NLS	NLS	589 J	1020 J	2230	1090 J	877 J	2020	1410	512 J	1210	1710
NLS NLS NLS 166 U 112 U 193 U 267 U 148 U 176 U 216 J 84.7 J 248 U 176 Institution NLS 2 2 1.0 U 2.3 Ø 1.7 U 1.4 U 1.8 U 2.6 Ø 1.2 U 1.7 U 2.0 U 2.9 Paradium NLS 370 7100 24.2 J 18.3 J 20.1 J 20.0 J 15.4 J 16.6 J 18.2 J 13.8 J 16.1 J 22.9 Paradium 46.4 36.6 Z 17.2 U 34.9 63.4 State NLS 1100 21000 0.584 U 0.655 U 0.633 U 0.578 U 0.570 U 0.563 U 0.643 U 0.572	ielenium	NALS	63	3100	0.85 U	1.0 U	1.1 U	1.2 U	0.94 U	1.0 U	1.0 Ü	j τ.† Ü	1.1 U	1.1 U
NLS 2 2 1.0 2.3 0 1.7 1.4 1.9 2.6 0 1.2 1.7 2.0 2.9 Vanadium NLS 370 7100 26.2 1.8.3 20.1 2.0.0 16.4 18.6 18.6 18.2 13.8 16.1 22.8 Vanadium NLS 1500 1600 27.5 33.6 45.9 24.9 27.0 46.4 39.6 21.2 34.8 63.4 State NLS 1100 21000 0.584 0.665 0.653 0.577 0.677 0.657 0.657 0.657 0.643 0.572 0.572 0.572 0.572 0.572 0.572 0.572 0.572 0.572 0.572 0.643 0.572 0.643 0.572 0.643 0.572	Siver	NLS	110	4100	0,17 ÚJ	0.21 UJ	0.22 UJ	0.23 UJ	0.19 UJ	0.20 UJ	0.20 UJ	Ö.22 UJ	0.22 UJ	0.22 U
Instant Inc. Inc. <thinc.< th=""> Inc. <thinc.< th=""> Inc. Inc.</thinc.<></thinc.<>	Sodium	NLS	NLS	NLS	166 U	112 U	193 U	267 U	146 U	176 U	216 J	84.7 J	248 U	176 U
NLS 1500 1500 27.5 33.6 45.9 24.8 27.6 46.4 33.6 21.2 34.8 53.4 Cyanide, Amenable NLS 1100 21000 0.584 U 0.584 U 0.683 U 0.578 U 0.570 U 0.570 U 0.572 U 0.572 U 0.572 U 0.576 Cyanide, Amenable NLS NLS NLS NLS NLS NLS 0.572 U 0.572 U 0.576 0.574 U 0.570 U 0.572 U 0.572 U 0.576 Cyanide, Amenable NLS NLS NLS NLS NLS NLS 0.572 U 0.576 U 0.574 U 0.570 U 0.572 U 0.572 U 0.576 U 0.574 U 0.572 U 0.576 U 0.572 U 0.578 U 0.572 U 0.578 U 0.572 U 0.578 U 0.572 U 0.572 U 0.578 U 0.578 U 0.570 U 0.570 U 0.570 U 0.570 U 0.572 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U 0.578 U	Thelium	NLS	2	2	1.0 U	2.3 Ū	1.7 Ú	1.4 U	1.9 Ü	2.6 U	1.2 U	i.7 U	2.0 U	2.9 U
Cyanida Formula Cyanida	Vanadium	NLS	370	7100	261.2 J	18.3 Ĵ	20.1 J	20.0 j	15.4 J	18.6 J	18.2 J	13.9 J	16.1 J	22.8 J
Syanide, Total NLS 1100 21000 0.548 U 0.658 U 0.638 U 0.678 U 0.578 U	Zinc	NLS	1500	1500	27.5	33.6			27.6	46.4	39.6	21.2	34.9	53.4
Value NLS NLS <th< td=""><td>Tanal Tanal</td><td> AN 0</td><td></td><td>21000</td><td>- 6 2 4 11</td><td>0.646.11</td><td></td><td></td><td>0 579 11</td><td>0571</td><td>0 553 1</td><td>0.643 U</td><td>0.572 U</td><td>1 0.578 U</td></th<>	Tanal Tanal	AN 0		21000	- 6 2 4 11	0.646.11			0 579 11	0571	0 553 1	0.643 U	0.572 U	1 0.578 U
View: View: <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>								1						1
RDC - Residential Direct Contact Soil Cleanup Screening Oriteria NRDC - Non-Rasidential Direct Contact Soil Cleanup Screening Oriteria NL8 - no Ested alandard (NJDEP has not established oriteria for this analytis) Shading indicates compound detected above NJDEP RDC and/or NRDC, end/or NRDC and/or NRDC an	Notes:				<u> </u>		p not included in	ihis labie.				<u> </u>	<u> </u>	
Italics indicate thet the Practical Quantitation Linkt (PQL) is greater than NUDEP RDC and/or NRDC end/or N	This table is a summa IGW - Impact to Groun RDC - Residential Dire NRDC - Non-Rasident NLS - no listed standa	dwater Soll Scre ict Contact Soll C lai Direct Contact nt (NJDEP has n	ening Criteria Xeenup Screenin t Sail Cleanup S not established a	ng Criteria preaming Criteria Necto for this an	ı şiyle)			this lable.						
J - estimated value U - undetected, value shown is detection limit R - rajected result D - result is from divided samples analysis B - (organic compounds) analyte was detected in blank samples	The PCL has been rej	Practical Quanti placed with the c	tation Limit (PQ) orrected Method) is greater than	NUDEP ROC a	ndiar NRDC an	d/or IGW Clean	up Screening C	ileia.					
U - undelected, value shown is detection limit • Symbol (nonceases trust samples was compared to IGW criteria. R - rejected result Strum disuled samples are not compared to IGW criteria. D - result is from disuled sample analysis B - (organic composeds) analyte was detected in blank samples		e enalysis not wi	thin control li mit											
R - najociad result Saturated samples are not compared to IGW criteria. D - result is from divided sample analysis B - (organic compounds) analyte was detected in blank samples		shown is detection	an iimit				رد ،	mooi indigate	a that sample	was conected	below the wa	nter 18018 (I.S.	, saturates).	
D - result is from diluied sample analysis B - (organic compounds) analyte was detected in blank samples								Seturated sam	plea are not co	impered to IG	W criteria.			
8 - (organic composeds) analyte was detected in blank samples		d sample analys							-					
		• •		samples										
				-										

Table Analytical Results for Pro	duct and Groundwater
Collected from MW- Erie Street Form	•
······································	Date Sampled
· · · · · · · · · · · · · · · · · · ·	01/17/01
BTEX (J	
	6600 4000
oluena	
(yiene (total)	3800
	Total BTEX
Semivolatile Organic Com	
Polycyclic Arometic Hy	
leph/helene	1400000
-Methylnephthelene	1100000
Icenaphthylene	260000
luorene	190000
honandrene	610000
Intracene	180000
luoranthene	120000
yrene	160000
lenz(a)anthracene	64000
liysene	78000
lenzo(b)fluoranihene	22000
lonzo(k)fluoranthene	35000
lenzo(a)pyrene	57000 17000
ndenc(1,2,3-cd)oyrene Dibonz(s.h)enthracana	15000
	21000
lenzo(g.h.i)perviene	Total PAHs
Other S	Total PAHs VOCs
Qther St sophorone	Total PAHs VOCe 17000 U
Other 8 sophorone	Total PAHs VOCa 17000 U 37000
Other 8 sophorone Nerzoluran Xi-n-butylphthalete	Total PAHs VOCs 17000 U 37000 14000 U
Other 5 Incphorone Menzoluran X-n-butylphthalete Is(2-Ethylhexyl)phthalate	Total PAHs VOCs 17000 U 37000 14000 U 53000 U
Other 87 Righterone Dibenzoluran Di-n-butylphthalate Is(2-Ethylhexylphthalate Inorganic Comp	Total PAHs VOCs 17000 U 37000 14000 U 53000 U
Other 81 Nonzoluran Ni-honylphthalata Ja(2-Ethylhaxyl)phthalata Inorganic Comp Numinum	Total PAHs VOCs 17000 () 37000 () 14000 () 53000 () 50unds (ug/L)
Other 87 Righterone Dibenzoluran Di-n-butylphthalate Is(2-Ethylhexylphthalate Inorganic Comp	Total PAHs VOCa 17000 (/ 37000 14000 (/ 53000 (/ 53000 (/ sounde (rg/l.) 53.2 B
Other 8 Nonzoluran Di-n-butylphthalata Ja(2-Ethylhoxyl)phthatata Inorganic Comp Numinum Natimony	Total PAHs VOCa 17000 (/ 37000 14000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 5500 (/ 5500 (/ 5500 (/)))))))))))))))))))))))))))))))))))
Other 8 Sopharone Denzoturan Di-n-butyphthalato sis(2-Ethythexyl)phthatato Inorganic Comp Internory Auminum Intimony	Total PAHs VOCs 17000 (37000 (53000 (53000 (5000 5000 (50) (5000))))))))))))))))))))))
Other 81 scphorone Denzoluran D-n-butylphthalate Is(2-Ethylhoxyl)phthalate Is(2-Ethylhoxyl)phthalate Inorganic Comp Numinum Intimony Visenic Servim Servim Servim Servim	Total PAHs VOCa 17000 (37000 (53000 (53000 (5000 (5
Other 87 scphorone Denzosuran Denzosuran Denzosuran No-burlyiphthalate Is(2-Ethylhoxyliphthalate Is(2-Ethylhoxyliphthalate Inorganic Comp Numinum Antimony Vraenic Berlum Berlum Catchum Catchum	Total PAHs VOCs 17000 (J 37000 (J 14000 (J 50000 (J
Other 87 scphorone Denzoduran Denzoduran Disenzoduran No-butylphthalate Na(2-Ethylhexylphthalate Nacionan Inorganic Comp Numinum Antimony Antimony Antimony Caloutylphthalate	Total PAHs VOCa 17000 (/ 37000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 53000 (/ 5000 (/ 53000 (/ 5000 (/ 53000 (/ 5000 (/ 53000 / 53000 (/ 530
Other 87 scphorone Dibenzoluran Dibenzoluran Dis-n-burlyiphthalate sia(2-Ethylhexyliphthalate Natimony Antimony Antimony Servillum Depylilum Dedmium Dedcium Datokum Dobakt	Total PAHs VOCa 17000 (/ 37000 // 14000 (/ 53000 // 5000 //
Other 87 Sopharone Diberzosluran Di-n-burlyiphthalate sia(2-Ethythexyliphthalate Numinum Vntimony Vnsenic Sarium Seryllium Cadmium Cadmium Cadmium Cadmium Consum Cobait Copper	Total PAHs VOCa 17000 (/ 37000 14000 (/ 53000 (/ 5000 (/ 50)
Other 5 scphorone Denzoduran Denzoduran Denzoduran Nentylphthalete Inorganic Comp Numinum Antimony Nasenic Beryllium Dedkum Cakkum Chromiern Cobakt 2000er 100	Total PAHs VOCa 17000 (/ 37000 14000 (/ 53000 (/ 5000 (/ 50)
Other St Schorone	Total PAHs VOCs 17000 (37000 (53000 (53000 (5000 (
Other 61 scphorone Denzoluran Denzoluran Denzoluran Ja-burlyiphthelate Inorganic Comp Jack Inorganic Comp Numinum Inorganic Comp Numinum Servin Servin Servin <td>Total PAHs VOCs 17000 (37000 (50000 50000 50000 (50000 (50000 (50000 (50000)</td>	Total PAHs VOCs 17000 (37000 (50000 50000 50000 (50000 (50000 (50000 (50000)
Other 87 scphorone Denzoskaran Denzoskaran Denzoskaran Siser Singhoski ghahatara Inorganic Comp Numinum Intimony Vraenic Berlum Serlum Serlum Catchum	Total PAHs VOCa 17000 (J 37000 (J 63000 (J 50000 (J
Other 87 scphorone Diberzoduran Diberzoduran Diberzoduran N-n-burlyiphthalate Na(2-Ethythexyliphthalate Norganic Comp Numinum Antimony Antimony Antimony Antimony Cadmium Cadm	Total PAHs VOCa 17000 (J 37000 14000 (J 53000 (J 5000 (J 50
Other 5 Schorone Schorone <td< td=""><td>Total PAHs VOCa 17000 (J 37000 (J 63000 (J 50000 (J</td></td<>	Total PAHs VOCa 17000 (J 37000 (J 63000 (J 50000 (J
Other St Schorone Schorone Schorone Schorone Schorone Schorone Inorganic Completion Auminourn Antimony Antimony <t< td=""><td>Total PAHs VOCa 17000 (/ 37000 // 4000 (/ 53000 // 5000 //</td></t<>	Total PAHs VOCa 17000 (/ 37000 // 4000 (/ 53000 // 5000 //
Other 5 Schorone Schorone <td< td=""><td>Total PAHs VOCs 17000 (37000 (53000 (53000 (53000 (5000 (</td></td<>	Total PAHs VOCs 17000 (37000 (53000 (53000 (53000 (5000 (
Other 51 scphorone 3-n-britylphthalete sla(2-Ethylhoxyl)phthetate Inorganic Comp Antinony Antinony Antinony Antinony Servillum Servilum	Total PAHs VOCs 17000 (37000 (53000 (53000 (5000 (
Other Si Incrition Nonzoluran Johnszoluran Johnszele Johnszele Johnszele Johnszele Johnszele Josofie Josofie <tr< td=""><td>Total PAHs VOCs 17000 (37000 (50000 (500</td></tr<>	Total PAHs VOCs 17000 (37000 (50000 (500
Other Bit Ricphorone Denzoluran Denzoluran Discoluran Ja-burlyiphthelate Inorganic Comp Maninum Inorganic Comp Numinum Inorganic Comp Numinum Inorganic Comp Numinum Inorganic Comp Naminum Inorganic Comp Servit Servit Servit Inorganic Comp	Total PAHs VOCs 17000 (37000 14000 (50000 50000 50000 (50000 (50000 (
Other 81 Sightcrone 3 Siberzośwan 3 Jan-burtylphthalate 3 Jack Stylphosylphthalate 3 Serium 3 Serium 3 Jack Stylphosylphthalate 3 <td>Total PAHs VCCs 17000 (37000 (53000 (53000 (53000 (5000 (</td>	Total PAHs VCCs 17000 (37000 (53000 (53000 (53000 (5000 (
Other 5 scphorone 3i-n-britylphthalete is(2:-Ethylhexyl)phthalete is(2:-Ethylhexyl)phthalete inorganic Comp Auminum Auminum Auminum Auminum Auminum Auminum Auminum Servillum Servillum Cataskum Cataskum Asgenese Angenese Angenese Arcur Silver Solum Chaskum	Total PAHs VCCs 17000 (37000 (53000 (53000 (53000 (53000 (53000 (5000

TIERRA-B-017728

				****************	****			Teble 8		u konte fonte f	alayonararang ang kanada		n na ga ann an tarainn an tao			
					A	natytical R		haracterize A Former M	•	pacted So	4					
			<u> </u>				t is in the tangent of a sume WORKS of	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ser	ngia 104Depih						
	IGW	RDC	MADC						Tee	t Pit Samples	I					
	Criteria	Critoria	Criteria	TP-17A	TP-22	TP-24	TP-33	TP-34	TP-38A	TP-37	77-37	TP-38A	TP-39A	T P-4 5	TP-68	TP-68
Paramotor	(mg/Kg)	long/Kgi	(mg/Kg)	(3)*	(2-2.3)	(8)*	15,514	(10)	(8)	(3-3.5)	(PPE)	(3-6)	141	(5-5.5)	(4-5)₹	3-4 ¥
	7585-78	the states		IFTER BURN	1. S. C. C. S.			i Chinasainata (M	Gel and set		10.562					
2onzene	3	3	13		0.62 44	ા સાલુદા 🗗 😫	1255 19			Nali As tra	Tribility and	的制作常常变得		0.26 J	indiana balling and and	
Toheane	600	1000	1000	0.34 3	1.6 W	36 U	3.2 .)	的问题的 名 234	1.8 2	2.2 J	1.8 J	37.1	0.53	0.15 1	160	. 4.1
Ethylloenzone	100	1000	1000	5.3 J	0.21 J	280	190 J	1. 	100	.6.2	18	71	. 4.6 J	0.93 1	300	260
Xylene itotali	87	410	1000	2.9 J	0.12 J	110	150 J		S. 7 . 84 (19)	6.3	-5.3		5.8 .	L 680.D		280
I HARRES & BARRIER									Print ing the		STREET.		UNCER SALES	SUS CHARGE	THE PROPERTY	
Naphtheiene	100	230	4200	81 18	1.2 J	· 1999年1	5. M			13 8			9,19	0.58 J		Service and the second s
2-Machyinaphthatena	14.S	MLS.	1%LS	39	0.61 J	3100	1100	8300	36000 J	8.8 J	87	5800	18	0.22 J	1500	130
Acenophthylons	84.5	M.S	MLS	8.3	2.5 J	110 J	130 J	3400	3400 J	40	2.7 1	160 J	16	4	73 3	23
Acenepisthene	106	3400	10000	61	51	1100	430	N. P. CAR P.		\$ 6	56	89.1	8	0.46 J	86 J	87 42
Fluorane	100	2300	10000	17	2.1 J	620	330		7700	101	. 20 J		12	0.93 J	170 J 370	210 0 1
Phonentbrane	NLS	MLS.	NIS	78 DJ	11 J	1700	910	8330	22000	15	34 1	520 J	36. 1)	0.54 J 0.64 J	120 3	53
Anivecene	100	3400	10000	22	31	510	240		<u></u>	20	3.1 J			3.5	36 1	41
Fixeranthans	100	2300	10000	14	5.2 4	410 J	170 J	<u> 1. 116 1</u>	1. 160500 A 1	38 88	3.4 J 3.2 J		13	3.1	767 J	93.1
Pyrone	100	1700	10000	31 .	17 J 9-3 8 I.M	960 13.25 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17	220 SNA 560 (18)	1310 1	2700 -				TE: ÓRCHO			STATES AND A
Sercia)antixacena	500	0.9	4	2	4.3.1			3100 1			23			1.8	1	
Citysane	500	9	40		4.3 3	and the second se	L Constanting of the	2000 - Add (2001 - 1			17.4.7 4.1	1900 U	6 10 C 10	.0.67 J	15 5 8 5 5 D m	LISSNE 1
Banzolb/Russanshares	50	0.9	4	Constant of the second	1.1.2.2.1	24 2 C						1900 U	U. Contraction		Contractor Con	
Benzeikläuerantivere	500 100	0.9	0.66	1.12 ² (1.12 ²)	441			1000	1. 1700 /		2. 21. 21. 200 		his see to	4		28.54
Benazialgytene Indeno(1,2,3-cd)systems	500	0.9	3.00			Street Street St	the state of the state	3001	630	ALC: NO CO	0.79.1	1900 1/	10.00	0.6 J	380 U	14 J
Dibenzis hientivacana	100	0.5	0.66		13 0	500 4			10000 U	108 A 41	26 0	7900 U	1.198.4 1816	0.22	360 U	CARLED
Bantoits in Doarviene	NLS	NLS	MLS	5.9.4	31	68	15 J	280 /	880 1	17	0.77 J	1900 U	3.4 1	0.67 J	360 U	19 J
		arrive spr						Sale Candidad	SYNCU Mer	ारमहार नुसुर स	3.3575520233	的时代在这些时代	的图像和平	A BAR BER		Sec. Sec.
Domaska sa	MS	NLS	NLS	2.9 1	0.21 J	150 J	80 J	540 3	1900 J	1.7 J	4.8 1	38 J	2.6 J	0.3 J	31 J	7.5 J
Detiniohinates	50	10000	10000	สบ	3.9 U	500 U	195 U	1858 U	18000 8	12 0	26 U	5 U	ំង ប	i.1 V	360 13	180
Butubenzvizhinalata	100	1100	10000	80	3.9 U	500 U	135 4	1858 U	10000 0	120	28 U	1900 U	8.0	1.1 U	360 U	18 U
Diabusyiphthelate	100	9700	10009	ອນ	3.9 U	800 U	195 V	1858 U	19000 U	12 U	28 U	. 5ม	ទប	1.1 U	380 U	18 U
Biet 2-ethyl hoxyliphthelate		49	210	នយ		500 U	195 V	7858 U	10000 V	12-U	28 U	2900 U	5 U -	1.1 U	360 U	18 W
Ci-n-octvisinthalate	100	1100	10000	ន ឃ	3.9 V	500 U	198 U	7858 U	10000 V	12 U	26 U	50	5 U	1.1 U	350 U	18 (3)
	A Yes			5.5 ST PA	TEN HUMAN	1 4 A 19 A	Contraction Pro-	Structs ing fig.								
Aliminum	I NLS	NES	NLS NLS	5500	7380	1510	11400 J	986 J	4730 J	13403	8750	780	4080	15200	14000	7120
Antimony	MLG	14	340	1.7 U	2.Ż J	2.1 J	7.23	4.1 U	2.8 U	8.1.1	8.2 1	5. A. 12.	2.3 J	6.2 J	1.9 U	1.8 U
Araenic	HLS	20	20	8.4		1.1.1.1.1	19.5	16.8	15.4	- 24.1 (A.			ê J	197 H 8 J		2. 28.2
Barlum	NLS	700	47000	68.6	118	119	180	64.1	37.3 J	303	114	. 30.7 J	53.2	186	90.8	120
Banylium	NL5	1	1	0.28 J	0.17 U	0.19 U	0.278 U	0.28 U	0.43 J	1,	18377 3 30	0.29 U	0.25 U	BELINGS		0.37 J
Cadmium	NLS	. 1	100	0.19 U	HE		0.29 U	0.28 U	0.3 U		250 A.A.A.A		0.25 U	0.28 U	0.21 U	0.57 J
Calcium	MLS	MLS	MAS	3410 J	24000	1390 J	10300 J	1 432 J	646 J	1650	1740	11800	1080 J	2590	1800 J	10000
Chromium	MAS	144.5	88.5	12.9 J	39.5 J	8.2 J	14.70	5.6	8.9	51.7	27.7	249	13.4	31.8	28.0 3	22.2 J
Cebati	NAS	MAS	28.5	4.8 J	8.7	4.4 J	8.8 J	1.8 J	5.5 J	3.8 J	12.4	11.8 J	6.9 J	34.8	3.5.3	9.1.1
້້ຽວເອາະ	NI.5	800	800	47.7 J	53.1 J	55 J	100	58.7	67.9	1,-5% \$23.2.5		till sædere s	139	176.	147 J	i 77.2 J

					A	nalytical Ru	sults to C	e 8 (continu heracterize nt Former N	Visibly im	pacted So	10					
								- 1.	52	npie IC/Copth			r			
	IGW	ROC	NADC						2.03	n Pit Sampias						
	Crimeria	Criteria	Criseria	ŤP-17A	TP-22	TP-24	TP-33	TP-34	7 9-38 A	TP-37	TP-37	TP-39A	TP-39A	TP-49	TP-56	TP-88
Perameter	img/Kg)	(mg/Kg)	img/Kg)	(3)*	(2-2.5)	(\$)*	16.517	(10)	(81	(3-3.5)	(PIPE)	(3-4)	14)	(5-5.5)	(4-5)7	(3-4)*
小说《《法律》 《学校》、在	1. A.	1				STRINE!		ferreisten berg	and an arrive	i hardi 1	MESKING	$e^{-1} = e^{-1}$		P.4. 125		31 32 1
kon	HLS.	14.5	NR.S	13700	29400	18950	50200	7770	18800	25100	25500	223000	19800	35200	81000	39200
Lead	N.S	400	800	134 J	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	79.6 3	1	1-24 A 30	32.0	Directed	1.100	182 .1	82.8	148 J	116 1	825
Magnashan	NLS	N1.5	NLS	2000	6760	389 J (4360	190 J	1340 3	1750	708 /	520 J	L 0001	3280	4280	2730
Manganese	NLS	NIS	NLS	131 J	279 J	41.4 .1	200	36.2 J	117	39.5	78.2	795	109	288	453 🤳	, 154 J
Mercury	NLS	14	270	0.31	18	0.12	0.60 J	0.44	0.0233 J	4.6	3,3	0.094	0.34	0.30	0.39	0.46
Nichsi	MLS	260	2400	14.0	40.8	15.7	29.8	7.7 3	18,1	32.6	58.3	172	28	96.2	38.9	35.1
Potassium	MS	HLS	NLS	868 J	732 J	144 J	1450 J	166 U	572 J	402 U	374 U	143 U	385 U	880 J	1590	766 J
Solonium	84.S	63	3100	24	1.7	4.9	3.2 3	4 UJ	2.7 J	5.5 J	4.7 3	12.9 1	1.5 J	3.7 J	4.5	4.5
Silver	MIS	1 563	4100	0.38 UJ	0.34 UJ	0.38 W	0.55 U	0.28 U	0.61 U	0.59 UJ	0.48 W	0.68 UJ	0.5 W	0.56 W	0.43 W	0.45 UJ
Sodium	NES	NLS	MAS	4913	810 J	292. 3	410 U	i 70 J	150 U	485 U	540 U	449 U	412 U	411 U	274 3	542 3
Thatilium	MS	2	2	1.9 🗤		第二日	4.7 W	1.1 UJ	3.0 W			TOP SEA 1	1. 7. 3 ¹⁰ 3. ¹	San Stranger and Stranger and Stranger	7.0	
Vanadium	M.S.	370	7100	15.3	21.0	13.0	40,8	28	18.1	65.0	27.6	54.0	\$7.6	34.1	37.6	28.0
Zinc .	M.S	1600	1500	123	148 J	<u>50.6 J</u>	252	107	54.5	560 J	300 J .	347 J	1 SD4 J	243 J	108 J	318 J
			242	223126 0234	وجلم موقومه فالوملكم الناشات ال	and the second second second second second second second second second second second second second second second		and and the	13月25月1	MINE STR		巴尼西部市	包括國際的空間			The second second
Cyanida, Tatal	Mis	1100	21000	0.800 U	0.810 U	2.30	0.91C U	0.600 U	0.680 U	3.63	0.820 U	778	2.21	0.860 U	52.4	0.760 U
Cyanida, Amanabia	NLS	MS	2.5	KA	24A	0.710 U	NA	14.5)	NA	0.880 U	MA.	0.860 U	0.730 U	NA	0.690 1)	NA
		16 Mar. 2 3 6				日本の知道するな			429		14 18 201 3				HARE ZERT	
Olessi Range Organica	MAS	MLS	MLS	RNA	na i	NA I	NA	i na	' NA	1 769	NA	NA	NA) NA	<u>NA</u>	MA

Page 2 of 4

,

						Table 8 (continued	l)					
				Ana		ite to Chara			ned Soll				
					6	rie Street Fo	wmer MGI						
					,			Samol	e iD/Depth	r			
	1 69 /1	ROC	NADC			Soli Soring	Anterfan				Monitoris a	Weli Samoles	
	Criteria	Criteria	Criteria	8-18	8-15	8-20	8-21	H8-1	H8-3	1414-158	NOV-10A	MW-22	NW-22
Patamatar	(mg/Kg)	(morKg)	insa/Kai	(28-26)*	(2-4)	(5-8)	(8-7)	111.8-13.517:	(14-16)7	16-8)¥ .	(8-8.5)*	(2-4)	110-1217
THE OF SHE		BALL THE REAL	an the second second	A DE TAME	CENTRAL COM	tall Charles Con	Sales Pocs			Best BRODES	CONSTRUCT 2		891 - V-89
MINI I	1	2000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	13	1 1 1 1 2 3	MA.	i na	0.15 J	21.07	14 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.59 J	0.38 J	0.4i4 12	
pluane	500	1000	1000	19 U	, NA	NA	0.78 🚽	8.73	490	0.36 j	1.4.1	1.5 J	340
thylibenzene	100	1000	1000	11.2	MA	MA	4.9)	940	58 1	.8.3 J	7.9 1	54	180
/iene (totol)	67	410	1000	25	NA	NA			20110 2000	4.1 J	7.3 J	27	630
1、1962 A. Sog 315 单			二大众。 前常			alle Andrews Har	and a sub-super transfer of the set of the	ha has have the					32. A. Mar 1995
ensistitetes	100	Z30	4200				25	19 2 2 10 C		160	150 8	EP 200 M	
Nethylaphthalana	MAS	NLS	NLS	210	1200	38 J	8.4 J	1900	4500	140	7.6 J	55	950
enajohiniane	NL5	NLS	NI.S	18 3	340 J	88 U	14 J	61 J	1100	. 24 J	12 1	13 .	L 88
comphilitions	100	3400	10000	52		330	120	840	220 J	42 .)	89	7.2 J	28.3
UCYARA	100	2300	10000	46		ALC: N.L.P.	56	450	670 J 1600	84	43 140	8.6 J 45	71 J 200 J
von anche sino	NES	NLS	NLG	140	1000	1 490 J FERRI 1880 J	120 58	1100	1600 400 J	78 47 J	48	13 J	44 J
nitropana 🕴	100	3400	10000	40,3		Selander and a second	88 52	360 J 420	400 J 460 J	47J 51J	38	42	L 44 J 58 J
ucrathens	100	2300	10000	42	2. mil.	93 13.255 255 3	52 70	420 520	460 J 690 J	81J - 1877		42	1 36,4 1 95 J
rene stzielenthracene	100 500	1700 0.9	10000	61 	Constant and other	100 2 2 2 1 1 72 1		206 383					
austranau acteria	500	0.9 3	40 40			10/ m. 6 17 / 10	- ST 25 32	1	C. 10 1918 1.		2		IN IN LANS
สารคุณหล	500	ă.	40 6		32.1				1 10 10 10 10 10 10 10 10 10 10 10 10 10				IC
minikilikuristikens	500	0.9	4	1. CP2 12-4		100 C	1.0.11						1. 16 18 3
M2018097608	100	0.60	0.68	You shirts	E list is a la		1.11	tract faith f					12001 89 2
sterost 1, 2, 2-salisvisne	506	0.9	4		27.3.	0.04 570 526		REPORTS IN	800 U	N. Series and	DESIGNES IN MARCH	in all the	
banria,hlenihracene	100	0.65	0.66		LED BORNE		5	380 U	800 U				
snzeig,h,lipssylene	MLS	MLS	NR.S	4.2 J	j 37 1	10 3 1	11 1	39 J	600 U	4.8 J	\$.3 J	1 . 11 J	8.
	1.5	217 A. 4 M	1. 1. 1.		Clear M	al and the Departure	Classication (S	VOLU MARKE		2023年6月前後日		Sector Sector Sector	
Renzoluran	18LS	MLS	MAS	5.35 J		45 2	13 J	. 51 J	78 J	13 J	13 J	43	1 11
ischwichshotese	50	10000	10000	410		88.1	26 U	380 U	605 U	52 U	22 U	39 U	393 U
utykonzylphthelete	100	1100	10000	41 U		86 U	26 U	380 U	805 U	. 82 U	22 U	39 U	393 U
In-bucylohithalaisa	100	6700	10000	41 U	320 U	860	26 V	380 (1	805 U	<u>nz U</u>	22 U	39 U	393 U
bri 2-erhydhawyl)phthalata	100	49	210	41 U	320 1/	85 U	28 U	380 U	805 U	52 U	22 U	39 U 38 U	393 1
-n-ocryiohinalate	100	1100	10000	41 U		86 U	28 U	380 U	805 U	52 U	22 U		383 170867 50
HE ME SHE H			2							9750 J	18100 J	18400	10800
หลางข้อมูลท	NIS	MS	MLS	14400	NA.	HA	8650	5550 1.0 U	\$250 1.1 U	11.7 UJ	3.2 3	1.8 U	1.0 U
atkaony	NLS	.14	340	1.4 U	WET BET	NA NA	5.5 J 15.2 J	1.00	1.10	1.7.0		430036	
raenic	182.5 11 C	20	20 47000	4.4	P25-063 J.	na Na	16.2 J 278 J	82.8	29.7 J	51.5 J	109	127	9 , #.0 52.1
อสัมสุด	MLS	700		0.65 J	1	NA	0.40 J	0.22 J	0.31 J	0.39 W	0.64 1	0.58 .)	0.37
oryikum odmum	MLS	1	1 100	0.06 J R	NA NA	NA NA	0.40 J	V.22 J R	V.31.J R	0.39 UJ	0.24 U	1	0.14 0
admum l	NLS NLS	NLS	NLS	6830 J	1	. NA NA	3500	522 U	1630	1250 W	2960	10100 3	738
alcium Internium	NLS	MLS	NLS	24.3	NA NA	ля. НА	- 43.8	6.7	7200	394 /	40.3	24.1	14.8
abali i	nels Nels	NLS	MLS	12.0	NA NA	NA	. <u>8</u> .0 J	4.4 J	4.4.)	87.5 J	14.8	8.9 3	7.9

				Anah		ta to Cham	(continued) scierize Vis xmer MGP	ibly Impec Site					
								Sample	e 10/Depth				
	KSW	ROC	NROC			Sei Serin	semples					Noll Samples	·
	Criteria	Criteria	Oritoria	8-18	8-19	8-20	8-21	HS-1	HB-3	NW-158	NW-18A	MW-22	WW-22
Patanatar	ing/Kg)	(mgKg)	(mg/Kg)	125-2617	(2-4)	(各名)	(8-7)	(11.6-13.6)*	(14-18)7	(8- 8) ▼	(8-8.5)*	(2-4)	(10-12)7
					ALCONTRACTOR	. Marcula Arres	ining ing the	C. Sector	代码合同的	and sectors in			States and an
and a second state of the	MLS	MLS	MLS	29800	MA I	NA	22500	5540	8490	56400 J	25600	28300 J	17400 1
kon	MLS	400	600	11.9	NA	NA	Part of P	5.2	8.0	88.S J	134 J	259 J	8.0 J
Lend	MLS	MLS	NES	8550	NA	NA	3130	2140	2560	204 UJ	5700	5080	3870
Mognesium	MLS NRS	NLS	182.5	545	SA I	NA	149 U	275	294	60.7 J	255	370 °	525 *
Mangenese	MLS MLS	16	270	0.0038 U	848	NA	241	0.003 14	0.0033 U	0.12 4	2.1	當時的 劇 會行法得	0.61 J
and the second second second second second second second second second second second second second second second	MLS	250	2400	27.5	MA	16A	29.2	10.3	10.2		39.4	22.8	10.5
hickel	NLS	MAS	NLS	3780 J	NA	NA	1340 J	842 J	1040 J	31.2 W	LOICE	2370 1	1830 J
Potestium	MLS	63	3100	0.02 U	56A	NA	1.8 J	1.0 U	1.1 U	4.3 J	0.89 J	R	D.84 J
Selenium	MLS	110	4100	0.21 0.2	NA	NA	1.0.1	0,21 UJ	0.22 W	0.20 14	0.29 J	0.26 U	0.14 UJ
Silven Sociaum	MLS	MLS	NIS	286.3	NA	NA	1570	97.4 J	118. J	148 UJ	2070 J	315 J	206 J
505ium Thailism	NAS	2	3	0.83 U	NA	NA	1.7 U	1.2 U	1,3 U	3.9 W	0.97 W	2.8 W	1.4 W
,	RES	370	7100	30.8	NA	NA	20.4 J	5.8 J	11.1	60.7 J	33.8	32.8	21.0
Vanadium	MLS	1500	1500	90.0 91.4	NA	NA	536	19.8	25.4	L 689	302 J	170 J	01 J
Zinc		13666207						ALC: NOTE			國際國際自己主要的		Selection and a selection of the
Cyanide, Totel	MAS	1 1100	1 21000	0.550 U	NA NA	NA NA	j 1.3 J	0.561 U	0.722			0.810	0.600 U
Cyanida, Amanabia	NLS	NLS	MLS	810	税為	NA	0.774 U	0.5 U	0.574 U	1.22 UJ	RA	0.676 U	NA NA
STARGE SHILL FIRM	TO BE STORE	GRANNESS.	GAMEROP	1			Colorises Staffet	調影潮影彩					
Diesel Renge Organice	NLS	NLS	i MLS	NA	NA NA	1	NA	NA	NA NA	i na	NA	NA	MA

			Table 9 ring Well F eet Forme	'urge Da			
Purged Gallons (Cumulative Totals)	рН (S.U.)	Conductivity (m\$/cm)	Tu rbidity (NTU)	DO (mg/L)	Temperature (C*)	ORP (mv/s)	Salinity (%)
			itoring Well				
2	6.30	1.06	40.6	0.28	14.7	-10	0.0
5	6.37	1.13	34.2	0.00	14.9	-14	0.1
10	6.62	1.57	21	0.00	15.0	-40	0.1
15	6.78	1.9	15.1	0.00	<u> </u>	<u>-52</u> -58	<u>0,1</u> 0,1
20	6.86	2.06	11.2	0.00		<u>-50</u> -58	0.1
25	6.92	2.13	10.4	0.00	14.9		0.1
30	7.06	2.3	8.3	1.50	14.8	-58	0.1
35	7.04	2.26	5.8	0.00	15.0 15.0	<u>65</u>	0.1
40	7.01	2.32	<u>5.1</u> 4.5	0.00	15.0	-70	0.1
<u>45</u> 50	7.02	2.33	4.5	0.00	15.0	-70	0.1
	7.04	2.35	4.0	0.00	15.0	-70	0.1
<u>55</u>	7.05	2.37	5.8	0.00	15.0	-71	0,1
	7.09	2.31	nitoring Weil				
0	8.37	0.459	96,8	7.3	13.9	-238	0.0
20	8.46	0.420	19.1	NM	14.9	-278	NM
40	8.63	0.410	20.9	NM	15.2	-245	NM
	0.05	0.410	nitoring We				
	7.26	0.486	7.6	2,47	11.7	116	0.0
2	7.12	0.483	7.3	1.52	11.6	111	0.0
5	6.94	0.485	3.8	0.96	11.5	11	0.0
10	6.82	0.513	0.0	0.0	11.9	-50	0.0
15	6.76	0.631	0.0	0.0	12.9	-56	0.0
20	6.83	0.782	0.0	0.0	13.7	-55	0.0
22	6.84	0.792	0.0	0.0	13.8	-53	0.0
			nitoring Well			······································	
0	8.61	2.58	0.0	0.98	13.2	-228	0.1
5	8.47	2.57	0.0	0.0	13.4	-241	0.1
10	8.48	2.56	0.0	0.0	13.5	-249	0.1
	8.53	2.54	0.0	0.0	13.6	-259	0.1
20	9.06	2.19	1.3	0.0	13.7	-310	0.1
25	9.21	2.07	0.6	0.0	13.8	-311	0.1
30	9.23	2.05	0.9	0.0	13.9	-298	0.1
35	9.23	2.04	1.1	0.0	13.9	-291	0.1
40	9.23	2.04	1.8	0.0	13.9	-281	0.1
45	9.24	2.04	3.4	0.0	13.9	-271	0.1
50	9.26	2.03	20.8	0.0	13.4	-235	0.1
55	9.19	2.06	20.9	0.0	13.6	-237	0.1
6D	9.22	2.05	9.5	0.0	13.9	-252	0.1
65	9.21	2.05	13.5	0.0	13.9	-240	0.1
70	9.2	2.07	19.0	0.0	13.8	-236	0.1
75	9.25	2.04	26.7	0.0	13.9	-224	0.1
80	9.36	1.99	26.0	0.0	14.0	-199	0.1
85	9.24	2.09	17.7	0.0	14.1	-115	0.1
90	8.77	2.37	4.9	7.25	14.2	0.1	22.0

•

ŧ

t

1

		Monito	ble 9 (conti ring Well P reet Forme	Purge Da			
Purged Gallons (Cumulative Totals)	рН (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temperature (C°)	ORP (mv/s)	Salinit (%)
		Mor	litoring Well	MW-7D			
0	7.14	35.8	54.5	0.43	14.2	-69	2.3
5	7.16	35.9	50.3	0.0	14.2	-72	2.3
10	7.15	33.5	23.8	0.0	14.3	-89	2.1
15	7.14	29.8	5.6	0.0	14.4	-95	1.8
20	7.14	28.1	1.0	0.0	14.3	- 9 8	1.3
25	8,67	24.7	11.0	0.0	14.3	-331	1.6
30	7.15	26.4	0.0	0.0	14.3	-96	1.6
35	7.12	26.2	0.0	0.0	14.2	-94	1.6
40	7.13	25.6	0.0	0.0	14.3	-78	1.6
45	7.13	25.5	0.0	0.0	14,3	-82	1.5
50	7.13	25.5	0.0	0.0	14.3	-87	1.5
55	7.13	25.6	0.0	0.0	14,3	-90	1.5
60	7.14	25.4	0.0	0.0	14.3	-89	1.5
65	7.14	25.2	0.0	0.0	14.4	-91	1.5
		Mor	nitoring Well				
Ō	8.8	2.01	12.5	8.9	12.8	-188	0.1
20	7.44	2.01	9.7	NM	13.3	-170	0.1
40	7.46	0.169	14.4	NM	13.6	-186	0.1
60	7.41	0.162	7.3	NM	13.8	-183	0.1
80	7.34	1.72	6.1	NM	13.8	-190	0.1
100	7.3	1.79	5.8	NM	13.8	-201	0.1
120	7.28	1.82	5.3	NM	13.8	-213	0.1
140	7.28	1.83	5.3	NM	13.8	-221	0.1
			itoring Well				• • • •
3.5	NM	NM	NM	NM	NM	NM	ŇM
			Itoring Well				
0	7.41	22.7	0.4	0.39	13.9	-163	1.4
0	7.42	22.6	5.4	0.0	14.1	-170	1.4
	7.53	20.9	3.5	NM	13.2	-175	1.2
15	7.52	20.5	0.4	NM	13.4	-154	1.2
20	7.48	21.1	0.0	NM	13.6	-157	1.3
25	7.49	21.5	0.0	NM	13.6	-157	1.3
	7.98	21.5	0.0	NM	13.8	-160	1.3
35	7.44	21.5	0.8	-NM	14.0	-163	1.3
~~~			itoring Well I			- 100	
3.0	NM	NM	NM	NM	ŇM	NM	NM
	14141		itoring Well I		140		1.4141
0	7.26	16.0	29	8.0	10.0	-96	0.9
5	8.75		<u></u> 53.9	<u> </u>	13.2	-299	0.9-
10	8.99	. <u> </u>	52.9	<u>5.1</u>	13.3	-258	0,8
						-229	0.8
15 20	8.63	14.1	52.7	<u>NM</u>	13.4	- <u></u>	-0.8
	8.15	13.9	57.0	NM	13.0		
25	9.18	13.5	42,9	<u>NM</u>	13.2	-245	8
30	9.05	13.5	47.8	NM	13.3	-217	-8.0
35 40	8.81 8.24	<u> </u>	<u>39.3</u> 34.1	<u>NM</u>	<u>13.4</u> 13.4	-179 -15.7	-8.0 -7.0

1

Г

		Monito	ole 9 (cont ring Well F set Forme	[,] urge Da			
Purged Gallons (Cumulative Totals)	рН (S.U.)	Conductivity (m8/cm)	Turbidity (NTU)	DO (mg/L)	Temperature (C*)	ORP (mv/s)	Salinity (%)
		Mon	itoring Well		· .		
0	7.08	3.27	15.1	1.0	7.5	-164	0.2
1 1	7.02	3.04	13.9	0.0	5.5	-153	0.1
-3	6.98	2.98	18.6	1.46	7.6	-160	0.1
7	6.98	3.13	NM	NM	8.4	-123	0.2
			itoring Well				A. 11
0	7.35	35.7	7.2	0.1	9.0	-47	2.2
1 1	7.38	35.5	7.8	0.6	10.6	-66	2,2
5	7.41	35.1	16.2	2.60	11.5	-81	2.2
			itoring Well				
0	13.41	13.4	9.4	1.5	9.8	-192	0.8
5	13.45	13.2	9.1	0.2	14.9	-199	D.8
10	13.45	9,4	27.9	7.16	14.9	-124	0.4
15	13.3	6.18	34.6	6.3	14.7	-116	0.3
20	10.76	2.93	40.8	0.8	15.1	-50	0.1
25	9.78	2.83	62.3	0.7	15.6	-31	0,1
			itoring Well				· · · · · · · · · · · · · · · · ·
0	7.29	1.81	29.7	9.3	15.0	89.0	0.1
10	6.83	2.17	0.0	NM	15.0	0.1	22.0
20	6.94	2.34	0.0	NM	15.0	0.1	21.0
30	7.0	2.43	0.0	NM ····	15.0	0.1	20.0
40	7.0	2.45	0.0	NM	14,9	- 0.1	19.0
50		2.50		NM	14.7	18.0	0.1
<u> </u>	7,04		0.0			10.0	<u>v.</u> 1
0	7.83	1.21	itoring Well 9.7	10.88	13.9	-95.0	0.1
<u> </u>					13.9	0.1	-87.0
	6.65	1.13	58.8	<u>NM</u>			
	6.66	1.16	52.3	<u>NM</u>	13.9	0.1	-84.0
15	6.68	1.18	39.7	NM	14.3	0.1	-89.0
20	6.73	1.39	1.8	NM	14.9	0.1	-97.0
25	6.80	1.51	<u> </u>	0.28	15.3	0.1	-77.0
30	6.79	1.49	23.4	1.40	15.8	0.1	-64.0
35	6,80	1.52	15.0	1,91	15.6	0.1	-57.0
40	6.83	1.52	11.2	1.82	15.7	0.1	-61.0
····			itoring Well				
0	6.66	0.594	6.6	0.71	9.6	0.0	-67
0.5	6.95	0.638	1.0	0.00	9.7	0.0	-91
1	6.95	0.646	0.1	0.00	9.7	0.0	-96
2	6.93	0.684	0.0	0.00	10.0	0.0	-109
3	6.94	0.697	0.0	0.00	10.1	0.0	-116
4	6.94	0.714	0.0	0.00	10.1	0.0	-120
		Mon	itoring Well				
0	7.44	0.457	28	9.52	9.2	66	0.0
	7.30	0.469	12.4	10.22	9.3	89	0.0
2 5	7.25	0.506	8.4	10.11	8.7	64	0.0
10	7.13	0.491	17.4	7.69	8.3	40	0.0
15	7.00	0.606	17.5	5,25	8.6	7	0.0
	6.90	0.563	16.0	3.50	8.6	······	0.0

1

ļ

	Table 9 (continued)         Monitoring Well Purge Data         Erie Street Former MGP Site											
Purged Gallons (Cumulative Totals)	рН (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temperature (C*)	ORP (mv/s)	Salinity (%)					
		Mon	itoring Weil									
0	10.16	0.98	3.3	4.11	12.3	-53	0.0					
2	10.15	1.07	9	1.02	12.8	-62	0.0					
5 .	10.15	1.07	10.7	0.92	13.0	-59	0.0					
10	10.03	1.06	10	0.57	13.9	-48	0.0					
15	9.55	1.05	45.1	0.11	13.9	-36	0.0					
20	7.51	1.25	71.0	0.00	14.5	-103	0.0					
30	Meter inor	erable - bailed re	maining volu	me			0.0					
			itoring Well									
0	9.64	0.264	2,6	19.99	9.4	-156	0.0					
5	9.64	0.224	0.0	19,99	8.7	-13.0	NM					
10	9.94	0.257	0.0	14.28	10.0	-20.0	NM					
15	9.05	0.27	0.0	5.57	10.8	-12.0	NM					
			itoring Well			··· ··						
0	0.53	1.27	0.2	B.1	15.7	-100	0.1					
5	7.22	1.30	10.3	NM	15.2	-164	0.1					
10	7.26	1.28	20.7	NM	15.2	-180	0.1					
15	7.26	1.31	19.4	NM	15.2	-193	0.1					
20	7.3	1.34	14.9	NM	15.2	-201	0.1					
25	7.31	1.35	40.1	NM	15.2	-209	0.1					
30	7.32	1.37	37.0	NM	15.2	-222	0.1					
35	7.33	1.38	30.1	NM	15.2	-228	0.1					
40	7.38	1.38	33.1	NM	15.3	-240	0.1					
			Itoring Well									
Ó	7.17	2.39	0.0	4.14	6.7	78	0.1					
0.5	7.18	2.37	4.6	3.96	6.6	88	0.1					
1	7.11	2.44	12.9	3.25	7.8	103	0.1					
1.5	7.17	2.45	16.6	0.00	8.3	106	0.1					
4	7.32	2.25	9.2	NM	7.0	107	0.1					
			Itoring Well									
5	6.89	0.836	33.9	3.00	15.38	199	0.0					
<u> </u>	7.28	0.812	0.4	0.0	15.8	168	0.0					
7	7.32	0.81	0.9	0.0	15.49	160	0.0					
	7.34	0.607	0.0	0.0	15.86	143	0.0					
9	7.35	0.798	3.8	0.0	15.88	135	0.0					
10	7.35	0.795	12.3	0.0	15.86	133	0.0					
- 10	7.35	0.788	25.1	0.0	15.83	129	0.0					
<u>-11</u>	7.35	0.791	0.0	0.0	15.86	125	0.0					
	1,90		itoring Well			161						
	9.02				6.5	-92	0.2					
0		4,44	12.3	<u>. 6.5</u>	4.6		0.2					
0.5	9.40	4.69	7.4	4.8		-52	0.2					
	7.62	4.64	5.9	1.9	6.4	-9 <u>2</u> -1	0.2					
2	7.14	4.63		0.7	7.9		0.2					
3	6.95	4.45	10.3	0.5	8.5	0.0						

t

ł

.

			ring Well P eet Forme				
Purged Gallons (Cumulative Totais)	рН (S.U,)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	Temperature (C*)	ORP (mv/s)	Salinity (%)
		Мол	Koring Well	WY-24B			·
3	7.31	1.19	004	0.7	14.2	-38	<u>.0.1</u>
4	7.33	1.10	103	0.4	14.3	-49	0.0
5	7.32	1.08	54.5	0.3	14.2	-55	0.0
6	7.32	1.07	41.4	0.1	14.0	-56	0.0
7	7.31	1.07	33.2	0.1	14.2	-68	0.0
8	7.31	1.06	43.1	0.01	14.2	-59	0.0
		Мол	itoring Well	MW-25A			
0	7.32	1.41	20.0	0.94	8.6	136	0.1
0.5	7.23	1.36	22.8	0.01	8.8	157	0.1
1	7.17	1.33	18.8	0.0	9.5	134	0.1
2	7.15	1.32	14.8	0.0	10.2	150	0.1
3	7.15	1.28	15.8	0.0	10.6	129	0.1
	<b>.</b>	Mol	nitoring Weil	MVV-26			
0	6.78	8.51	5.7	7.4	9.5	130	0.5
1	10.48	8.58	30.4	2.3	3.6	22	0.5
2	9.20	7.78	35.3	1.5	5.0	55	0.5
3	8.98	9.25	16.5	5.7	6.8	56	0.5
4	7.90	8.40	11.7	4.2	7.9	65	0.5
5	7.70	8.47	5.2	0.10	9.4	75	0.5

ę

ı

Direction         Out 201         PERE [1]         Other         Direction         Direction <thdirection< th=""> <thdirection< th=""> <thdirec< th=""><th>abananaanaan waxaanada ka daga br/>Anga ka daga ka</th><th>Groui</th><th>ndwater A</th><th></th><th>Table 10A sults From th</th><th></th><th>ion A and B</th><th>Zones</th><th></th><th></th></thdirec<></thdirection<></thdirection<>	abananaanaan waxaanada ka daga br>Anga ka daga ka	Groui	ndwater A		Table 10A sults From th		ion A and B	Zones		
NUDEP Class 8.4         IMM-4.4         MM-4.4         MM 4.4         MM 4.4         MM 4.4         MM 4.4         MM 4.4         <		transferration for the second state		Erie St	met Former			an an an an an an an an an an an an an a	9797576757676767676767676767676767676767	
House C         Pace         11122C1         1922200         11122C1         1112C1					and the second second second second second second second second second second second second second second second	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec				
Direction         O.2         1         200 (192)         1000         5         1000         5         1000         2         1000         4.5         1000         5         0.4         11         1000         4.5         1000         5         0.4         11         22         1000         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         1000         2         10000         2         100000         2         1000000000000000000000000000000000000										01/11/01
Sourcend         0.2         1         Classified State - State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State		<u>I GWQC</u>	Pal	01/12/01		01/11/01	06/25/00	01/16/01	USS & MIND	VIGUNI
Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order         Order <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>VEN CELEVILLE</th><th>Carles &amp; also de reis- 20</th><th>THE AVE</th></th<>								VEN CELEVILLE	Carles & also de reis- 20	THE AVE
Undame         1000         5         0.00         1000         2000         1000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000						CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACT		a second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	and a stand with the second stand and a stand and a stand stand stand stand stand stand stand stand stand stand	Approximation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
Carry per dota         Cod	(okuerne						CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER		CONTRACTOR OF A DATA OF A DATA OF A DATA	4.4
Cryster (olds)         D         Polymologic Anomating (PVCCs) (geb)           Page blaces         Description of the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the process formed and the proces formed and the process formed and the process forme	Elinyibanzene						the subscription of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	<u>110</u> 13
Perjoyabb Alemantic Hydrocantoras (PAHa)           Depthaleme         NLS         1.1         U         Scale         1.1         U         Scale           2:Methynaphthaene         NLS         1.3         U         630         700         1.3         U         1.5         1.3         U           Aconspatitione         0.60         40         0.9         U         900         20         0.9         U         1.8         1.2           Aconspatitione         0.60         40         0.9         U         900         20         0.9         U         1.8         1.2           Procendrome         300         40         0.6         U         200         1.3         U         8.3         8.2           Procendrome         200         1.0         0.1         40         20         U         0.8         U         1.1         1.8         0.3         1.8         U         7.7         2.8         0.4         40         0.8         U         1.8         U         1.9         1.4         0.8         1.1         1.4         1.8         U         1.8         U         1.8         U         1.1         U         1.0	(ylene (totel)	1000	2						15	13
Naghtalane         200         NLS         11 U         Science         11 U         250         980           Abertynsphifthere         NLS         11.3 U         600         7.00         1.3 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U         1.5 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>M.)</td><td></td><td></td><td></td></t<>							M.)			
Name         Oxon         Nucl         1.1         Source         1.2         Source         1.3         U         1.5         1.5         U           Accompatitivere         NL3         1.3         U         800         0.0         1.0         1.0         800         1.0         1.0         800         1.0         1.0         800         1.0         1.0         800         1.0         1.0         800         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0				II. Genterer	Anomalic Hydroc	arbons (PANS)		Ad 1	0.8	10
Crew ery implications         NL3         NL         So         L         So         U         So         So         U         So         So         So         U         So										1.3 U
Construction         No.         No. <t< td=""><td></td><td>Real and a second second second second second second second second second second second second second second se</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Real and a second second second second second second second second second second second second second second se								
Algorithmering         CO         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <tho< th="">         O         O</tho<>					Common or announcements who wanted	A TANK TO THE OWNER OF THE OWNER OF	CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRA	References and the second of the second second second second second second second second second second second s		
Constraints         PALS         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10										<u>8,4</u>
Andreasona         1200         130         130         130         130         130         27           Piorantering         300         10         0.0.0         460         320         1.0.0         0.0.0         1.7.0         1.7.0         1.7.0         1.7.0         1.7.0         1.7.0         3.8           Provide granterization         0.06         10         1.4.0         80.0         44.0         1.4.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0         1.5.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.3</td>										3.3
Distriction         200         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10										1,8
Provide Dencipier         200         200         17 U         86 U         67 U         17 U         18 U         17 U         18 U         18 U           Bencipier         0.06         10         16 U         86 U         64 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         18 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U         10 U										0.8 U
Protection         Org         Org <thorg< th="">         Org         <thorg< th=""> <thorg< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.7 ũ</td></thorg<></thorg<></thorg<>										1.7 ũ
Bin regulation 20 million         1.0 mill										1.6 U
Unit served         D.05         D.05 <thd.05< th=""> <thd.05< th=""> <thd.05< th=""></thd.05<></thd.05<></thd.05<>									and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	1.3 Ŭ
Barlack Differentiation         0.00         0.00         1.1         0         24         0         1.4         1.1         1.1         1.4         1.1         1.4         1.1         1.4         1.1         1.4         1.1         1.4         1.1         1.4         1.1         1.4         1.1         1.1         1.4         1.1         1.4         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1										10
Detrocyclopyme         D.000         20         D.8.U         40         C         S1         D.6.U         0.7.U         D.7.U         D.7.U <thd.7.u< th="">         D.7.U         D.7.</thd.7.u<>							And a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec			1.1 U
Initialization         NLS         20         0.7 U         38 U         28 U         0.7 U         6.7 U         6.7 U           Discretige, hypersize         NLS         20         0.9 U         NA         36 U         NA         0.8 U         NA           Berrad(g, h)persize         NLS         20         0.8 U         40 U         38 U         0.8 U         <			<u>6</u>							0.8 V
Discret(a, h)antinzeme         NLS         20         0.9 U         NA         36 U         NA         0.8 U         0.8 U <th0.8 th="" u<="">         0.8 U         0.8 U</th0.8>										0.7 U
Banzard (), fyperylama         NLS         20         0.8 U         40 4/3         32 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         0.8 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U									NA	0,9 U
Bartlan         Colliner SVOCs (uppL)           Isopherome         100         10         1         80         40         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1								0.8 0	0.8 U	0.8 U
Isophenone         100         10         1         0         40         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         &lt;</th1<>	man in the first of the second						L	an filmananan garan an		
Observation         NLS         NLS         1U         60 U         40 U         1U	800000039	100	10	1 1 1			10			10
Dir butyophthetate         300         20         8 U         4 U         22 U         0.8 U         0.8 U         0.8 U           bist2250yhexy/jptthetate         3         30         6.1 U         160 U         720 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U					60 U	40 U				1.5
bis(2-Eby/rexy/)prithate         3         30         3.1 U         740 U         720 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U         3.1 U		300	20	1 .au	40 U	32 U	0.8 U			0.8 U
Intergrants         Cortigorants         Cortigorants </td <td></td> <td>3</td> <td>30</td> <td></td> <td></td> <td></td> <td>3.1 U</td> <td>3.1 U</td> <td>310</td> <td>3.1 U</td>		3	30				3.1 U	3.1 U	310	3.1 U
Arrimony         2         200         5         0         1.0         0         2.1         5         4.5         1.2           Arrienty         2         200         200         200         200         201         4.6         3.6         3.1         0         3.6         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.8         3.24         30.6         3.24         30.6         3.24         30.6         3.24         30.6         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1         0.2.0         1 <td>anna i seite a' hade 'n i sand en er</td> <td></td> <td></td> <td>lace</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	anna i seite a' hade 'n i sand en er			lace						
Dramoticy         C         CD         <	Akuminan		200							50 U
Artistic         U.X.	Antimony								annual of all and and and and	5 U
Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton         Darton <thdarton< th=""> <thdarton< th=""> <thdarton< td="" th<=""><td>Astendo</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>And a support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the</td><td>3.5 U 234</td></thdarton<></thdarton<></thdarton<>	Astendo								And a support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the	3.5 U 234
Description         Color					A standing street, or a stand street, of a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a street, or a s		www. I dealer stay and bedrafteday			11
Calchins         NLS         NLS         NLS         Status				A		ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL		and an annual second state		10
Lascrip         NLS         NLS         Postor         Discussion         Discussion <thdiscus< th=""> <thdiscus< th=""> <thdiscus< th=""></thdiscus<></thdiscus<></thdiscus<>										47800
United in the second in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second			TO Astronomy & LOD-BORDE A. Au							78
Corposition         Nat.S         Nat.S         Corposition         Corposition <thcorposition< th="">         Corposition         Corpos</thcorposition<>										<u> </u>
Cubper         FOU         FOU         FOU         Cubper         FOU         Cubper         FOU         FOU <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>238</td>										238
Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian         Indian <thindidi< th=""> <thindidi< th=""> <thindidi< td="" th<=""><td>Copper</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>36200</td></thindidi<></thindidi<></thindidi<>	Copper									36200
Lazy         NLS         NLS         NLS         20800         16100 J         128000         128000 J         274000         14700 J         9           Margianese         50         0         22.0.6         0.1 U         NA         0.1 U         0.20 J         274000         14700 J         9           Margianese         50         0         22.0.6         0.1 U         NA         0.1 U         0.20 J         0.1 U         0.22 J         0.6 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J         10.0 J <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Second and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second</td> <td></td> <td>2 U</td>								Second and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		2 U
Harry market         Hu								274000		10300
Marcury         2         0.5         0.1 U         NA         0.1 U         0.20 U         0.1         0.22           Nickel         100         10         8.1 B         0.4 U         2 U         5.1 J         3.1         10.7 J           Nickel         100         10         8.1 B         0.4 U         2 U         5.1 J         3.1         10.7 J           Potosskim         NLS         NLS         1210 B         7270 J         9860         168000 J         1740000         8540 J           Scientum         So         10         4 U         1.7 U         8.3         1.5 U         5         2.4 U           Silver         NLS         2         2 U         0.3 U         2 U         0.3 U         2								S. Vernand V	1 30 10 10 10 10 10 10 10 10 10 10 10 10 10	
Institution         Indiana         Indiana <thindiana< th=""></thindiana<>									0.22	0.1 U
Potosskum         NLS         NLS         1210 B         7270 J         38500         168000 J         174000         6546 J           Selenkum         50         10         4 U         1.7 U         5.3         1.5 U         5         2.4 U           Selenkum         50         10         4 U         1.7 U         5.3         1.5 U         5         2.4 U           Salver         NLS         2         2 U         0.3 U         2         0.3 U         10         5.3 UJ         10         5.4 J         10										<u> 2 U</u>
Soloritum         60         10         4 U         1.7 U         6.3         1.5 U         5         2.4 U           Silver         NLS         2         2 U         0.3 U         2 U         0.3 U         2         0.3 U         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         <th0< th=""> <th10< th=""></th10<></th0<></th0<>										9180
Skiver         NLS         2         2.U         0.3.U         2.U         0.3.U         2         0.4.U           Sockum         Sockum         Sockum         Sockum         34600.J         39000         30600.J         34600.J         2           Sockum         0.5         10         10.U         5.5         U.J         10.U         5.3         U.J         10.         6.3.U         2         0.4600.J         2           Venackum         NLS         NLS         2.U         0.3.U.J         10.         6.3.U.J         10.         5.3.U.J         10.         13.4.J         10.         13.3.S3         411           Zinc         6000         30.         8.B.         13.2.U.J         30.U.J         411						ő,3		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		4 U
Sockum         80000         400         28800         42000 J         39000         288000 J         34800 J         2           Theilfean         0.5         10         10 U         5.5 UJ         10 U         5.3 UJ         10         10.5 U         15.6 J         15.6 J         15.6 J         10.5 U         15.6 U         15.4 U         10.4				20						20
TheMman         0.5         10         10 U         5.5 UJ         10 U         6.3 UJ           Versedkum         NLS         NLS         2 U         0.3 U         2 U         3.6 J         2.0         15.6 J           Zercy         6000         30         8 B         13.2 U         5.U         21.9 U         6         51.2           Zercy         6000         30         8 B         13.2 U         5.U         21.9 U         6         51.2	No Parameter and an Annual An Annual an Andrew of the		400	26900						29000
Versedaur         NLS         NLS         2 U         0.3 U         2 U         3.6 J         2.9         15.6 J           Zinu         6000         30         8 6         13.2 U         5 U         21.0 U         6         61.2           MillS         MillS         MillS         13.2 U         5 U         21.0 U         6         61.2	as a restriction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o			10 U	5.3 UJ			A COLORED AL MOORAGUE AND ADDRESS		10 U
ZER 6000 30 8 13.2 U 5 U 21.9 U 5 51.2 Creatile Broughts All S NUS 101 1 14 10 U 13 33 411					0.3 U					2 U
Constant Barrishin B All S All S BITS E 10 L 11 11 11 11 11 11 11 11 11 11 11 11 1		6000								50
		I NLS	NLS		114	10 Û	13			65
Cyantics, Total 200 40 377 2380 41				3 . 444 .	STATE 62255	A TRANS	1778 300 S	803	27.2200 3	2100

e

赣

			Erio Si	treat Form	or MGP Silu	8			
	B	Woodballandy magnetic monocontractions		naionteore ^a u na di	leverarennen verstaar aan seisen verstaar verstaar verstaar verstaar verstaar verstaar verstaar verstaar verst	Bamole II	Dibate		11070072.10768.00999.00007
	NUDEP	Classs IIA	MW	-158	T MW	-16A	interesting and the second second second	-16B	N/N
	GWQC	POL	05/24/00	01/18/01	05/23/10	01/08/01	05/23/00	01/10/01	0/5/25/00
		an sea an an an an an an an an an an an an an	an a the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	BTEX (Mg	A.)			an an an an an an an an an an an an an a	dar Balli Dibibili Solo Sol
Benzene	0.2	1	0.4 U		112280	0.8 U	0.4 14	0.4 U	C. 070
Tokiana	1000	5	0.5 U	0.5 U	3.8	3.8	1 1	0.6 U	30
Ethylbenzene	780	5	0.4 1	0.4 U	23	20	0.4 U	0.4 U	La nie 22
Xylene (total)	1000	2	1.4.0	1.4.11	24	48	1.4 U	1.4 U	790
			Samivolatão O	reards Corres	navels (SVOCs	1 works	.)		1
			Potycyciła.	Aromatic Hyd	rocarbons IPA	list.	D.001 W.WYW	8 Y Y 10 Y 20 Y 20 Y 10	
Naphthalene	300	MLS	1 120	1.1 U	27 1	230	1.1 U	1.1 U	1-0000
2-Methylnephthalena	NLS	NLS	1.4 U	1.3 U	2.7 J	15	1.3 U	1.3 U	6400
Acenaphenylane	NLS	10	1.1 U	1 U	10	4 U	10	10	CONTRACTOR
Acenaphthone	400	10	10	0.9 บ	3.1.3	43	0.9 U	0.0 U	1 Carlos
Fluorene	300	10	0.8 Ŭ	0.7 U	11	2.8 U	0.80	0.7 U	
Phenortheme	NLS	10	1.1 0	0.7 0		2.8 0	1 10	0.8 U	
Anhracena	2000	10	1.4 0		R R	<u>nezrem1044-c</u> 17	1.3 U	1 U	960 1 960
Fluoranthene	300	10	0.80	1.3 0	R	5.2 U	0.8 U	1.3 U	Poor Medical Control
Pyrens	200	20	1.8 U	0.8 U	R	3.2 U	1.7 U	. <u>1.8 U</u> 0.8 U	
Benz(a)anthracene	0.05	10	1.7 0	1.7 0	R	3.2 U 8.8 U	1.6 U		164.40
Chrysena	5	20	1.7 U		R	8.8 U 8.4 U	1.6 U	1.7 U 1.0 U	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Senzo(b)/kuoranihene	0.05	10	1.4 U		R				
Benzixk)Auszarinene	0.6	2	1.2 0	1.3U 1.1U	- <u>8</u>	<u>8.2 U</u>	10	1.3 U	120
Benzo(a)pyrane	0.005	20	0.8 Ü	1.1 0		40	1.1 U	1 U	160
indeno(1,2,3-cd)pynane	NLS	20			R	4.4 U	0.8 U	1.1 U	2-330
Obenz(a,h)anthracene	NLS	20	0.7 U	0.8 U	R	3.2 U	0.7 U	0.8 U	pi scarst
Benzo(g,h,)perviene	NLS	20	NA 0.8 U	0.7 U 0.9 U	NA R	28 U	NA	0.7 U	NA
an an and the state through the the	II. 198a63					3.6 U	0.8 U	0.9 U	s and a
sophorone	100	10		Other SVOCs			1 65		
Dibenzoluran	NLS	NLS	<u>1.1 U</u>	1 <u>V</u>	<u>R</u>	<u>4 U</u>	2.2	<u>. 1U</u>	110 U
Di-n-bulyiohihalate	300	20	1.1 U 0.8 U		R	44	1 U	<u>ຼຸ່ານ</u>	240
bls(2-Ethylhoxyl)ohthalate	300	30	3.3 U	0.8 U	R	3.2 U	0.8 U	0.8 U	910
A A A A A A A A A A A A A A A A A A A	. B	30		3.1 U Sanic Compou		12 U	3.1 U	- ⁶ .6	350 U
Akumènan	200	200					r	1 - L. monton (Mr. I	
Animony	2	200	04.7 UJ 2.1 U			1400	7.3 W	270 8	153 J
Americ	0.02	жу В	3.1 U	5.0 U	3.8 U	6.0 U	378	5.0 U	4.6 U
Sanun	2000	200	35.8 J	6.6 B 31.9 B	3.1 U	8.8 B 1	184.24		
Bery/tium	0.005	200			322	826.	365	303	130 J
Cadmium	4 4	2	0.2 U	1.0 U	0.2 U	1.0 U	0.2 UU	1.0 U	0.2 Ü
Calcium	NLS	NLS	0.28 U	1.0 U	0.2 U	1.0 U	0.38 U	1.0 U	0.2 0
Shornish	100	10	0.45 U	72800	177000 J	209000	137000 J	136000	61600 1
CobeR	NLS			200	2.6 U	13.5	3.5 U	2.0 U	1.1 U
Sopper	1000	NLS 1000	2.8 U	2.8 8	2.4 U	338	3.2 UJ	4.1 B	0.63 U
Napper Fon	300	1000	3.4 U	6.6 8	5,9 U	25.8	2.1 U	3.2 8	140
	300 S		122947.1		48000 J		1820 3.7		38400 1
ubenesium	NLS	10	1.3 W	3.0 U	6.8 J	· · · · · · · · · · · · · · · · · · ·	1.3 UJ	2.0 U	1.4 W
waginganin Wangenese		MLS	119000 J	132000	45000 J	74000	516000 J	510000	13100 1
vangenese Værcury	50	8	LET THE REAL	1. 1100		an <b>anga</b> an .			2120.3
viercury vickel	2	0.5	0.53	0.10 U	0.50	0.17 B	0.20 U	0.10 U	0.20 U
ocun ³ ofarrium		10	3.1 J	6.3 B	8.3 J	55.3	94 J	7.8 8	0.86 J
waaaum Selenium	NLS	NLS	66300 J	117000	30300 J	\$7300	349000 J	591000	3920 J
	50	10	1.5 U	5.0 U	1.6 U	5.8	48 UJ	4.0 U	1.5 U
Säver	NLS	2	0.3 U	2.0 U	0.3 U	2.0 U	1998年1月1日	2.0 U	0.3 U
	60000	400	1 368000 J		1. L 000084		[] 谢 YORO 谢 ()		28400 1
Sodium Thailium	0.6	10	5.3 W	10.0 U	8.3 W	10.0 U	5.3 W	10.0 U	5.3 V.I
TheMum Amerikan	D.B NLS	NLS	8.6 J	10.2 8	0.7 U	6.6 8	0.86 W	8.2 S	0.45 U
ThatNum	0.6								

le contra

n g

	Groun	dwater A	nalytical Res	sults Fro	ontinued) m the Overb ner MGP Site		d B Zones				
			1			Sample ID/	Öxte			······	
	NOEPC	laas HB	MW-12	na I	MW-1	A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER	MW-1	88	MW-18A		
	GWQC	POL.		01/17/01	08/25/00	01/18/01	05/25/00	01/18/01	05/24/00	01/16/01	
	1 319404	E Righter	B Garden Charles	BTEX				و ب بنبانین که که که که که که که که که که که که که	(iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	NAU CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF	
Benzene	0.2	1	P. 24 3 5 1			28-40 Se	0.4 UJ .	0.4 U	22.1	0.4 U	
Tokena	1000	\$	25	26	32	59	0.5 U	0.5 U	2,3	0.8 U	
Ethylopizone	700	5	11	18	440	690	0.4 U	0.4 U	48	0.4 U	
Xylena (total)	1000	2	48	57	680	1000	1.4 U	1.4 U	6.7	1.4 U	
A PROFESSION (LUNING)	<u>s 1000</u>				pounds (SVOCa)					anna i inni ur	
			Shaherwelle A	Lowersonthe Bits	drocarbons (PA	1983					
Naphinalene	300	NLS	Contraction of the local sector	110	5060	20060	1.1 V	1.1 U	140	1.4 U	
2-Melhylnapithalena	NLS	NLS	140	82	2400	25000	1.3 U	1,3 U	22	1.6 U	
Aconspititition	NLS	10	40	20	ALC: 940. C. d.	Contraction and and	0.1 U	10	210	1.2 U	
Acenaphihana	400	10	8.1	2.7			0.9 U	0.9 U	1.9	1.1 U	
Fluorene	300	10	4.8	1.4 U	230	- 10 M	0.8 U	0.7 U	1.8	0.9 1	
Phenentivene	I NLS	10	<b>ETERED</b>	2.3		27.0002.2	10	0.8 U	2.1 U	1 U_	
Antracens	2000	10	1 5.2 U	7.1	160 6	2842	1.3 U	10	2.5 U	1.2 U	
Faxesahane	300	10	3.2 U	2.6 U	78	1400	0.8 U	1,3 U	1.7 U	1.8 U	
Pyrene	200	20	6.8 Ŭ	1.5 U	140 8	( - 1000 E.S.)	1.7 U	0.8 U	3.6 U	10	
Benz(a)anthracene	0.05	10	6.4 U	3.4 U	80 U	880 U	1.6 U ·	1.7 U	3.4 U	21U	
Cirveene	5	20	5.2 U	3.2 U	65 U	710 U	1.3 U	1.8 U	2.8 U	<u>2 U</u>	
Benzo(b)/kuoranthene	0.08	10	40	2.8 U	50 U	580 U	1 U	1.3 U	2.1 U	1.8 U	
Benzo(k)Buoranthene	0.5	2	6.6 1	2 U	50 U -	800 U	1.1 U	1 U	2.3 U	1.2 U	
Benzo(a)pyrene	0.005	20	3.2 U	2.2 U	40 U	440 8	0.B U	<u>1.1 U</u>	1.7 U	1.4 U	
Indeno(1,2,3-cd)pyrane	MLS	20	2.8 U	1.6 U	35 U	380 U	0.7 U	0.8 U	1.5 U	10	
Olbertz(a,h)anthracene	NLS	20	NA	1.4 U	NA	NA	MA	0.7 U	NA	0.8 U	
Benzo(g,h,i)perviene	NLS	20	3.2 U	1.8 U	40 U	640 V	0.8 U	0.9 U	1.7 U	1.1 U	
				Other SVO					2.1 U	1.2 U	
Isophorona	100	10	40	2 U	50 U	350 U	14	<u>+U</u> 1U	2.1 U	1.2 0	
Dibenzoluran	NLS	MS	40	20	54	750 NA	1 <u>U</u> 0.8 U	0.8 U	1.7 U		
Di-m-taulyiphthalate	300	20	3.2 U	1.6 U	40 U 160 U	1700 U	0.8 U 3.1 U	3.1 U	6.6 U	3.0 U	
ble(2-Ethylhenyl)phthalalo	L <u> </u>	30	120	6.2 U		1700 0	3.1 V		L		
A da	8 444	245			onunde (ug/L)	71.8 B	152 J	50.0 U		2266	
Akuminum	200	200 29	188 J 5	1410, F	8.1 U	5 U	4.2 0	50 U	21U	5.0 U	
Antimony Americ	0.02	<u>8</u>	3.1 U	5.0 U	STOLL T		3.1 U	6.2 8	358.0725	5.0 U	
Barkon	2000	200	241	174. 8	677	798	21.4 J	31.0 B	99,2 J	3218	
Berykan	800.0	200	0.20	1.0 U	0.2 U	10	0.2 U	1.0 U	0.2 W	1.0 U	
Cadmium	4		0.24 U	1.0 U	0.2 0	1 0	0.22 U	1.0 U	0.2 U	1.0 U	
Calskan	-1 - NLS	NLS		158000	84000 .	65200	47400 J	192000	145000 J	24100	
Chromkim	100	10	84,4	49.9	0.97 U	2 U	6 J	20 U	10.6	2,7 8	
Coball	- NLS	NLS	0.43 U	200	7.7 5	2 0	0.95 U	20 U	6.4.3	2.0 U	
Copper	1000	1000	9.3 U	7.5 8	10.0 U	2 0	1.8 U	2.0 U	8.9 U	6.5 B	
iron	300	100		1200	2000 J.7		279 J	69.5 8	4191000 LS1		
Lead	5	10	1.7 03	3.0 U	1.4 W	2 U	1.3 UJ	3.0 U	42 44	6.3	
Magnesium	M.S	NLS	31700 J	56200	23700 ]	18300	8670 J	42100	30000 J	2190 8	
Manganese	60	0	26.62.0.021	00 02 f	1372.1000.1 2	位于111元	Cases 1.5	Same a	26330 151		
Mercury	2	0.5	0.20 U	0.1 U	0.20 U	0.1 U	0.20 U	0.10 U	0.20 U	0.10 U	
Nickel	100	10	1 2 1	18.1 8	8.8 J	28	23 J	20 U	11.1 J	2.0 U	
Potaaskum	NLS	NLS		114000	17900 J	22200	16400 J	10800	94600 J	16900	
Selerium	50	10	1.5 U	\$.0 U	1.5 U	<u>4 U</u>	1.8 U	5.0 U	3.6 LU	5.0 U	
Sher	NLS	2	0.3 U	2.0 U	0.3 U	2 U	0.3 U	2.0 U	0.3 U	2.0 U	
Sodium	80000	400		222000	22. 83400 J. 7	8000	212000.7 1		12. 99900.1		
Thallarn	0.5	10	5.3 W	50.0 U	5.3 W	10 U	6.3 W	10.0 U	8.3 UJ	2.0 U	
Vanacium	NKS	NLS	<u>8.9 J</u>	11.9 B	0.38 U	2 V	0.99 U	208	2.9 J	<u> </u>	
Zhe	8000	30	\$.1 U	21.2	147	8.8 B	21.0 V	5.0 U	25.1 U	115	
Cyankle, Amenable	NLS	NLS	43.4	54.2	115	10 U	NA 10 U	16.3 16.3		10 U	
Cyanids, Total	200	40	43.4	31.2	115	129	10 10	75.3	E T TO BOARD STORE	U U Managarana	

"

	Groundwal	er Analy	Table 10A Ilcal Results F Erie Street Fo		irburden A i	and B Zones		
	1	un an	L.		Şəriqiq	ID/Date		
	NJDEP C	lars IIA	MW.			-20A	MAV-	
	GWQC	POL	05/31/00	01/16/01	05/24/00	01/10/01	05/24/00	01/10/01
				K (µg/L)		5		
Jenzene	0.2	1			14 (000 A)	A Million and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		<u>Ft. 770</u>
Tohana	1000	5	0.6 U	0.5 U	13	13	0.5 U	1.1
Ethylbanzona	700	8	0.4 U	0.4 U	110	130	0.4 V	16
Xylane (total)	1000	2	1.4 U	1.4 U	83	42	1.4 Ú	5.4
			ivolatile Organic C					
			olycycilc Anomalic					
Naphthelene	300	NLS	3.1 U	1.1 U	160	240	1.1 U	1.8
2-Mathyina phthalono	NLS	NLS	1.3 U	1.3 U	36	6.6 U	1.3 U	1.3 U
Acensphiltylene	NLS	10	10	10	<u>4 U</u>	4.2 U	<u>1U</u>	10
Acenophinene	400	10	0.9 U	0.9 U	18	37	0.9 U	5.8
FLATERS	300	10	4	0.7 U	9.1	2.0 U	0.8 U	0.7 U
Photostrany	MLS	10	10	0.8 U	4.2	Contract of the	10	5
Antiracene	2000	10	1.3 U	1.3 U	6.2 U 3.2 U	9.1 3.5 U	1.3 U 0.5 U	2.1 1.3 U
Fluxranihene Pyrene	200	10 20	0.8 U 1.7 U	1,3 U 0,8 U	3.2 U 6.8 U		1.7 U	1.3 U 0.8 U
Benz(a)arkiwacana	0.05	10	1.6 U	1.7 0	6.4 U	7.2 U	1.8 U	1.7 U
Chrysene	6		1.3 0	1.6 0-	5.2 U		1.3 0	1.8 0
Benzo(b)Sucranthane	0.05	10	1.0	1.3 Ú	40	5.5 U	10	1.3 Ŭ
Banzo(k)fluoranthans	0.5	2	1.1 0		4.4 U	4.2 0	1.1 U	
Banzo(a)pyreno	0.005			1.10	3.2 U	4.6 0	0.8 U	1.1 U
Indeno(1,2,3-cd)pyrane	NLS	20	1 0.7 0	a s U	2.8 U	3.4 0	0.7 0	0.8 Ŭ
Disonz(a,h)anthracem	- NLS	20	- NA	0.7 0	NA	2.9 U	NA	0.7 0
Berrzo(g,h,i)perviene	NLS	20	0.8 U	0.9 0	3.2 U	3.8 U	0.6 U	0.9 U
	a			10Cs (ug/L)		were environment of		· . ununurinitien ?**
80phorona	100	10	1 1 4	10	41	4.2 U ]	10	1 U
Dibenzofixan	NLS	NLS	10	10		4.4	1 U	1.4
Ol-n-butyphchalate	300	20	0.8 0	0.8 U	3.2 U	3.4 U	0.8 U	0.8 U
bis(2-Ethylhexyl)phthalate	3	30	3.1 U	3.1 U	12 U	13 U	3.1 U	3.1 U
				mpounds (1997.)				
Alembush	200	200	7.3 U	- :	45.1 UJ	50.0 U	63 W	60.0 U
Antimony	2	20	2.1 U	5.0 U	8.2 U	6.0 U	4.1 U	6.0 U
Arsenic	0.02		11.1	7.8 B	3.1 U	29.2	5.4 J	4.5 8
Bartum	2000	200	57.9 3	61.4 B	62.6 J	50,7 8	90.4 J	78.6 B
Beryllam	0.008	20	0.2.0	1.0 U	0.2 U	1.0 U	0.2 0	1.0 U
Cadmium	4		0.45 U	1,0 U	0.2 U	1.0 U	0.2 U 27500 J	1.0 U
Calcium	NLS	NLS	40800	35700	128000 J	168000	0.58 U	21.50
Chromum	100	10 NLS	0.97 J	5.1 8	6.4 J	4.2 B 3.1 B	1.4 U	
Cobat	M.S 1000	1000	2.3 U	3.2 B 4.5 B	4 J 0.5 U	8.18	0.3 U	2.0 U
Copper	300	100	1.6 UJ 33.5 J	4.0 15		(AS. 48000 SEL	5-20010.2-3	
Lead		10	1.3 J	3.0 U	13 U	20 U	1.3 W	2.0 U
Magnaskim	MLS	NLS	30000	24200	18100 .3	29200	19000 J	18300
kanganese		6	SE 800 3	6430	3531180 2	IV 250 25		. Bole i
Mercury	2	0.5	0.20 U	0.10 U	0.20 U	0.10 U	0.20 U	0.10 U
Nickel	100	10	1.8 U	13.2 B	6.7 J	4.0 8	11	20 U
Potostium	NLS	NLS	30700 J	33800	12400 J	67400	14400 J	23100
Selenium	60	10	1.5 U	5.0 U	1.5 U	4.0 U	1.5 U	4.0 U
Stra	NLS	2	0.82 111	200	0.9 U	2.0 U	0.3 U	20 0
Sodkan	50000	400	50.3400 MH	E 20000	C. COORT	E-00708-2	33800 J	32600
Prolition	0,5	10	8.3 U	10.0 U	5.3 U	10.0 U	5.3 10	10.0 U
/anechun	NLS	MLS	1 1.40	2.8 0	3.9.1	4.2 8	1.7 U	2.0 U
Sec.	5000	30	14.1 U	23.5	8.2 U	8.3 8	8.1 U	8.8 8
Vanida, Amenable	NLS	NLS	10 0	60	1580	1180	482	250
Cyanide, Total	200	40	Test Hear	1490	2940.45	1	12 W - 2000 . 12 Th	P. 13840. 9

å

4

	Groundwate	er Analyl	Table 10A ical Results F Erie Street Fo		erburden A s	ind B Zone	\$	
an an an an an an an an an an an an an a	Τ				Sample I			
	NUDEP C		MW-		MW-3 03/24/00	01/10/01	MW-1 05/24/00	<u>61/17/01</u>
an in the second second second second second second second second second second second second second second se	<u> </u>	PGL	05/24/00	01/10/01	03924900	แปนหมา	0015-01/00	81111145
	8			( (µpA.)	TANK STORE OF COMPANY	0.4 U		
Benzeno	0.2	1	20.1.1		CAR IN			<u>9.5</u> 8.5
Tokuere	1000	5	0.5 U .	0.5 U	1.2	0.5 U	8.9	
Ethykomzene	700	5	0.4 U	2	15	0.4 U	140	8
Xylene (total)	1000	2	1.4 U	1.4	12	1.4 U	220	110
			volatila Organic Co					
in which all a second	300		olycycile Arometic				1.1 U	1.1 U
Vaphihaleno	NLS	NLS	1.1 UJ 1.3 UJ	1.1 U	<u>1.1 U</u> 1.3 U	1.2 U 1.4 U	1.3 U	1,6
2-Methyinaphthalona	- Arte Same	NLS		1.3 U		1.4 U	10	1.1
Aconsphitniene	NLS I	10	1 W	<u> </u>	10		0.8 U	<u>i.</u> 1,8
Acenspittinene	400	10	0.9 W	0.8 0	0.9 U	0.7 U	0.5 U	<u>1.8</u> 0.7 빈
-korens -henantvene	300 NLS	10	0.8 UJ	0.7 U	0.8 U 1 U	0.7 0	10	1.7
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	2000		100	and and an and a summer of	1.3 U	10.00	1.3 U	1 U
Anthracene Fixonanthene	300	10 10	0.8 W	1.0	0.8 U	1.4 U	0.8 U	1.3 ŭ
-KAN RINGERS	- 200	20	1.7 W		1.7 0	0.8 U	1.7 U	1.9
Benz(s)anthracene	0.08	10	1.8 W	1.7 U	1.8 U	1.8 U	1.8 U	3.3
JEYSONO MACTINA	-1	20	1.3 ŬŪ	1.80	130	1.7 U	1.3 U	1.6 U
Benzolb)Auoranthene	0.05	10	1.00	1.3 Ŭ	10	1.4 U	1 10	
Senso(k)/luoranthene	0.5		1.1 1.1	10	1.1 0	10	1.10	10
Serrao(s)pyrene	0.005	20	0.8 W	1.10	0.8 U	1.2 0	0.8 U	1.1 U
ndenci(1,2,3-cd)pyrene	NLS	20	0.7 W	0.0 U	0.7 U	0.8 U	0.7 U	0,6
Disenz(a,h)anityacese	- NLS	20	NA .	0.7 U	NA	0.7 U	NA	0.7 U
Serce(g,h,)perviene	NLS	20	1 0.8 W	0.9 U	0.8 U	10	0.8 U	0.8 U
A Manual Contract of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	- IB · YUMVN	a		OCE (LOVL)			**************************************	
sophorone	1 100	10	10	10	1 U	1 U	1 U	1 U
Dibenzohran	NLS	NLS	10	10	1 U	íÚ	10	1 U
Di-n-butyiphthalate	300	20	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	U 8.0
bis(2-Ethylhonyl)phtholoto	3	30	310	3.t U	3.1 U	3.3 U	3.1 U	3.1 U
			inorganic Co	mpounds (ugil.	}			-
Aluminum	200	200	7.3 U	- Fritiso (201	186 J	- 50 <b>400</b> 7 - 2	a	180 8
Antimony	2	20	30	5.0 U	210	6.0 U	7.8 U	5.0 U
Arsenic	0.02	ő	18.0	3.5 U	3.1 U	3.6 U	88.7	12.0
Sarkim	2000	200	121 J	68.2 8	17.1 ,]	86.6 B	18.4 J	24.2 B
Beryilum	0.008	20	0.2 U	1.0 U	0.2 U	1.0 U	0.2 U	1.0 U
Cadmium		2	0.2 U	1.0 U	0.29 U	1.0 U	0.2 U	1.0 U 38400
Calclum	NLS	NLS	68400	36000	6530 J	119000	43100 J	
Chromken	100	10	10.4	2.4 8	20	2.0 U 2.0 U	<u>รอบ</u> 5.3 บ	3.3 B 2.0 U
Cobol	NLS	NLS	0.39 U	20 U	0.3 U			4.4 B
Copper	1000	1000	5.9 /	13.8 8	2.5 U 299 J	2.8 B	AND ADDRESS OF ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDR	12:00
non	300	100	7.3 /	Short the state of Stranger	2.9 W	20 U	1.3 UJ	3.0 U
lead		10 MLS	2.1 J 4980 J	4810 B	18700 J	30000	1860 J	2210 8
Asgneskim	50			17408		300 438 A	15.4 J	3
Vanganese Vercurv	2	0.5	0.20 U	0.10 U	NA	0.10 U	0.20 U	0.10 U
Vickosi V	100	10	2.9 U	3.8 8	2.2 J	2.2 9	1.4 J	308
Polassien	NLS	MLS	4740 U	4030 8	98800 1	23300	7970 J	7530
n na san na s	60	10	2.4 U	4.0 U	1.5 U	4.0 U	1.5 U	500
Silver .	NLS	2	R	2.0 U	0,3 U	2.0 U	0.3 U	20 0
Socium	50000			2.0 U	3121000 J		10800 J	7360
Pastan	0.5	10	Lau	10.0 U	5.3 UJ	10.0 U	5.3 W	10.0 U
/anadum		NLS	0.38 U	2.5 8	8.3 U	2.0 U	22.2 J	18.1 8
Enc	5000	30	15.3 U	48.8	40.0 V	10.2 8	57.5	5.0 Ŭ
Syanida, Amenable	- MLS	NLS	10 0	NA	105	10 U	50.8	38.1
Syanida, Total	200	40	100	100	109	82.7	50.8	79.3

alalan kana manangangan di kata tang manangan dan s	1					Sample (D/	Date	1.97/mil/1.memory.000979787	X	
	NUDEP (	Ares NA	MRW-22	B	MW-23A	MW-238	MW-24A1	MW-248	MW-254	MW-26A
	GWAC	POL	06/08/00	01/17/01	01/11/01	01/11/01	01/08/01	01/01/01	01/09/01	01/09/01
	***************************************			BTEX (µg/L)						
10 (1220) 10 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (1230) 00 (12	0.2	1	1.16.500.000	S. 2446-55	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4
okena	1000	\$	3	10	0.5 U	0.5 U	0.5 U	0.5 U	0.5 V	0.5
thyloanzone	700	5	42	2.4	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4
(viene (iotai)	1000	2	14	2.8 U	1.4 U	1.4 U	1,4 U	1.4 U	1.4 U	1.4
			Semivotoble Orga Polycyciło Arc							
laphthalene	300	NLS	1.1 W B		1.1 U	1.10	1.1 U	1.1 U	1.1 U	1.2
-Alethanaphthalene	NLS	NLS	1.3 U	170	1.3 U	1.3 U	1,4 Ų	1.3 U	1.3 U	1.4
vconaphilitylene	NLS	10	4.2	su	1 U	1 U	1 U	10	10	1.1
canaphthone	400	10	2.7 J	140	0.8 U	0.9 U	0.9 U	0.9 U	0.9 U	1
LUTON .	300	10	0.8 W	3.5 U	0.7 U	0.7 U	0.7 V	0.7 U	0.7 U	0.8
The least the second second second second second second second second second second second second second second	NLS	10	100	10 C C C C C C	U 8.0	0.8 U	0.8 U	0.8 U	0.8 U	0.9
Vilipacene	2000	10	1.3 J	65		10	1 U 1.4 U	1 U 1.3 U	1.3 U	1.1
Fluoranthene Pyrene	300	10	3.4	15	1.3 U 0.8 U	1.3 U 0.8 U	- <u>- 1.4 U</u>	0.8 U	1.3 U 0.8 U	0.9
gering Gering (8) sinthusceane	0.05	10	2,0			1.7 U	1.8 U	1.70	1.7 0	1.9
City States	5	20	2.4	a ŭt	1.8 U	1.6 U	1.7 U	1.6 U	1.0 U	1.0
Benzo(b) Ruxwanki wane	0.08	10	1.4	8.5 U	1.3 U	1.3 U	1.4 U	1.3 U	1.3 V	1.4
Benzoik)fluoranthene	0.8	2	1. Sec. 5 2 4 4 4	5 U	10	10	10	<u>1 U</u>	<u>1</u> U	1.1
Senzo(a)pyrene	0.005	20	3.5	5.5 U	1.1 U	<u>1.1 U</u>	1.1 U	1.1 U	<u>1.1 U</u>	1.2
ndeno(1,2,3-cd)pyrene	MLS	20	1.4	4 U	0.8 U	0.8 U	0.8 U 0.7 U	0.8 U 0.7 U	0.8 U	0.0 0.8
berz(s,h)erstracene	NLS	20	NA	3.6 U 4.5 U	0.7 U	0.7 U 0.9 U	0.9 U	0.7 0	0.9 U	
lenzo(g,h.)perylene	R PALO			her SVCCs (m		1 0.0 0			L., 9.9	
sophorone	100	10	1 10	6 U I	1 U	1 1 1	10	10	1 U	1.1
Disenzoturan	I NLS	NLS	1 10	8.3	1 Ü	l î Û	10	10	10	1,1
31-n-bulyiphthalats	300	20	0.8	4 U	0.8 U	0.8 U	0.8 U	0.8 U	0.8 U	0.0
ols(2-Ethylheavy))onthatate	3	30	5.3	16 U	3.1 U	3.1 0	3.2 U	3.1 U	3.1 U	3,4
h ann fair ann	1 630	050		NG COMPOREN		50.0 U		<b></b>	103 8	50,0
Akenekan Arkimony	200	200 20	48.6 U 2.1 U	50,0 U 6.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	6.0
kaonic	0.02	#V 8	3.10	6.2 8	3.5 0	3.6 Ŭ	3.8 U	3.5 U	3.5 U	3,6
Savium	2000	200	1220	2070	130 B	65.3 B	150 8	63.4 B	95.5 8	257
BeryMum	0.008	20	0.20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0
Cadmkan	4	2	0.20 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0
Calclum	MLS	NLS	104000	127000	66400	88300	130000	81600	48200	265000
Inomium	100	10	0.30 UJ	2.0 U	200	20 U	22.0 4.2 B	2.0 U 3.2 B	2.0 U 2.0 U	20
Cobell	NLS	NLS 1000	1.5 U 4.4 J	2.4 B 2.0 U	2.6 6	2.0 U	8.3 B	4.6 8	228	7.6
Copper ron	1000	100	11000101	200	0.0 0 194	60.0 U	6.1200 V	1420	111	60.0
	5	10	2.4 J	3.0 U	2.0 U	2.0 0	5.3	2.2 8	20 0	2.0
Angeneration	NLS	NLS	34600	43700	13100	25300	24200	30800	35400	34000
Kanganase	60	8	4200 2213	3840 I	TOP: MUSIC	E BOR	3070,0ph	. 2010	- <b>1460</b>	3 82.4
AMCUTY	1 2	0.5	0.10 U	0.10 U	0.10 V	0.10 U	0.10 U	0.10 U	0.10 U	0.10
Vickel	100	10	0.40 W	2.0 U	2.0 U	2.0 U	6.7 8	4.2 B 3380 B	2.0 U 3440 B	8.5 142000
otaskim	NLS	MLS	6300 J	5980	25600	3490 8 4.0 U	58100 4.0 U	3380 B 4.2 B	3440 B 4.0 U	4.0
ielentum iliver	50 NLS	10	1.6 UJ 0.41 J	<u>5.0 U</u> 2.0 U	40U 20U	2.0 U	200	200	200	2.0
kodum	50000	400	AT J	2.0 0	17000	35000	COMOTO S	32200	609003	344000
nation	0.6	10		10.0 U	19.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0
/anadhum	NLS	NLS	0.30 U	2.0 U	2.0 U	3.1 8	2.0 U	288	2.0 U	2.0
linc	5000	30	9.6 U	5.0 U	10.0 B	9.5 8	25.0	37.5	20.8	9.2
Cyanide, Amenable	NLS	NLS	\$13	200	60.1	NA	10 U	40	NA	NA
Syanida, Total	200	40	A STATE OF	1970	50.1	10 U	30.5	157	10 U	10

I - Estimated value
 I - Estimated value
 I - Estimated value
 R - Rejected result
 8 - Resetts shown is below the contract required detection limit (CRDL), but above the instrument detection limit (iDL).
 NDEP - New Jersey Department of Environmentel Protection
 GWQC - Groundwater Ousility Criteria
 PGL - Pravilical Quantization Limit
 NLS - No Listed Standard
 Shaded values - Result exceeds the higher of NJDEP Class IIA GWQC or PQL.
 Reporting limits in tailos are greater than the higher of NJDEP Class IIA GWQC or PQL.

÷

xundwater		Table 10B I Results Fr	om the S		edrock		
Nilferumrummungumunggyang	1000 APR	eet Former				MW-4	194
NJDEP C		MW-1		NW-2D	MW-50		01/12/01
<u>GAAOC</u>	PQL		unnun j	UBORIOU ]	ncessena T	Public 1100	Q 95 9 22 4 56 E
6.0			0411	and the second second	15.1°-34-27	0.4 U	0.4 U
			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	Conditioned at the state of the		0.6 U	0.5 0
			I CONTRACTOR OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNE	70	34	0.4 U	0.4 U
				230	8.1	1.4 U	1.4 U
Sr	mivolatile Or	ganic Compoun	da (SVOCa	) (µ@/L)	-		
					Aug. 10.000		
300	NLS	1.1 U	1.1 U	180	76		1.1 U
NLS	NLS	1.3 U	1.3 U	and and the second second second second second second second second second second second second second second s		CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONT	1.3 U
NLS	10			A REAL PROPERTY AND A REAL PROPERTY AND A			<u>1 U</u>
one is no country or restored and the second	10				T AND ADDRESS OF TAXABLE ADDRESS	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	0.9 U
				and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the			0.8 U
				C. M. L. Querran moundation			<u>1 U</u> 1.3 U
		the same set of succession	Description   Demonstration			tations is a second research to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	0.8 U
a supervision of the supervision of the					commences and a stratistication on control		1.7 0
		and an an an an an an an an an an an an an					1.6 U
		and all company and the second second					1.3 L
							1 1
		B and the contract in the state					1.1 0
• • • • • • • • • • • • • • • • • • •	commenced and Aphylactust a sec-				antestantestantestantes a s		0.8 U
							0.7 0
		an annual of the trainerestationer area are				a management a set of the television and the	0,9 U
					and the response of the second build		0.8 0
175852		Sher SVOCA In		L			
100		an extension of the two 2"		1 4 U	1 SU	1 U	10
		R			10	10	10
			a rivelation and F Trents		0.8 U	0.8 U	0.8 U
	a cross radial do a meanance.		3.1 U	12 U	3.1 0	3.1 U	3.1 U
	inorga	nic Compounds	(ug/L)	A	Destruction of the second second second second second second second second second second second second second s		
200	200	1. 0000 /SE	1000				214
2	20	2.1 U	5.0 U				5 U
0.02	8	3.1 U	3.5 U				3.5 L
2000	200	29.5 J	52.2 8	Second and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			68.9 8
0.008							<u> </u>
4							11
		Harrison and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Th. 18 (TITITITI II TITITITI II II III		And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		26900
		and an and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec				And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	12.4 4.2 B
And the statement of the statement of the state			successive and an and the successive set of the				4.3 8
				Contraction of the second second second		2.4 J	
A set analysis and a statistical recordence of		Baratamone and an and an and and and and		See international date and the second	State and the second state of the	1498	21
and an and the second second	And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second					18900
		1 20100 J					
Antonio and construction of a site environment	NAME AND ADDRESS OF TAXABLE PARTY.			and the second second second second second second second second second second second second second second second			0.1 L
	The second second second second second	Annesses - proprietory proprietoria		discussion in community	Contraction of a contraction of the		12.4 B
							33700
The second states and the second second	Conception and the second second			a fear of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		LAND ON STREET, STREET,	4 (
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			THE PROPERTY OF A STATE			company of an experimental company	21
						221000	
0.5	10	7.6 /	10 U	6.3 U	5.3 U	5.3 U	10 1
NLS	NLS	0.3 U	20	0.32 U	0.30 U	1.7 U	8.2 1
	30	17:0000	1770	11.7 0	10.5 U	13 U	15.4 1
	destance wanter and an and a state	258		along reserves			
5000 NLS	NLS		20	10 U	j 10 U	18.2	10 1
	300 NLS NLS 400 300 NLS 2000 300 200 0.05 5 0.05 5 0.05 0.5 0.05 0.5 0.05 0.5 0.	0.2         1           1000         5           700         6           1000         2           Semivolatile Or         Polymetik A           300         NLS           NLS         NLS           NLS         NLS           NLS         10           400         10           300         10           NLS         10           400         10           300         10           300         10           2000         20           0.05         10           5         20           0.05         10           0.5         2           0.05         20           NLS         20           NLS         20           NLS         20           NLS         20           300         10           NLS         NLS           2000         200           2         200           0.02         8           2000         200           2         200           0.02         8           2000	BTEX (ugA)           0.2         1         0.4 UJ           1000         5         0.5 U           700         6         0.4 U           1000         2         1.4 U           Sembolastile Organis Company         Polycopelic Aromatics Hydrog           300         NLS         1.1 U           NLS         1.3 U           NLS         1.3 U           NLS         1.3 U           300         10         0.8 U           AUO         10         0.9 U           300         10         0.8 U           2000         10         1.3 U           300         10         0.8 U           200         20         1.7 U           0.05         10         1.6 U           5         20         1.3 U           0.05         10         1.6 U           0.5         2         1.1 U           0.05         10         1.4 U           0.05         10         1.0 U           0.5         2         1.1 U           0.05         20         0.8 U           NLS         20         0.8 U           NLS	BTEX (ug/L)           0.2         1         0.4 U)         0.4 U           1000         5         0.5 U         0.5 U           700         6         0.4 U         0.4 U           1000         2         1.4 U         1.4 U           1000         2         1.4 U         1.4 U           Semivolatile Organic Compounds (SVOCs         Polycyclic Aromatic Hydrocarbons (PA           300         NLS         1.1 U         1.1 U           NLS         1.3 U         1.3 U         1.3 U           NLS         10         1 U         1 U           400         10         0.9 U         0.9 U           300         10         0.8 U         0.8 U           300         10         0.8 U         0.8 U           300         10         1.3 U         1.3 U           300         10         1.4 U         1.4 U           200         20         1.7 U         1.7 U           0.05         10         1.6 U         1.8 U           0.05         10         1.0 U         1.0 U           0.5 2         1.1 U         1.1 U           0.05         20         0.7 U         <	BTEX (ug/L)           0.2         1         0.4 UJ         0.4 U         500 and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	BTEX (ug/L)           0.2         1         D.4 UJ         0.4 U         B400         A400           1000         5         D.5 U         0.5 U         300         0.6 U           1000         2         1.4 U         7.4 U         230         8.1           300         NLS         1.1 U         1.1 U         460         76           NLS         1.3 U         1.3 U         1.0 U         1.0         4.0         1.0           400         10         0.8 U         0.8 U         26         25         1.1 U         4.0         1.0           300         10         0.8 U         0.8 U         1.8 U         1.8 U	BYEX [ug/L]         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.5         0.5         0.4         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5 <th< td=""></th<>

Ł

NJDEP C GWQC 0.2 1000 700 1000 300 NLS NLS	Less HA PCL 1 5 5 2 Sem trotatile	Street Form MW- 95/31/00 BTEX (ug 0.4 U 0.5 U 0.4 U 1.4 U Ornanic Correct	01/11/01	NW- 05/31/00	01/17/01	68/08/00	01/17/01
GWQC 0.2 1000 700 1000 300 NLS	POL 1 5 2 Semivolatile Polycyci	95/31/00 B1EX (µg 0.4 U 0.5 U 0.4 U 0.4 U	01/11/01 A_) D,4 U	Concerning and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	01/17/01	08/08/00	01/17/01
0.2 1000 700 1000 300 NLS	1 5 2 Semivolatile Polycyci	0.4 U 0.5 U 0.4 U 1.4 U	0.4 U	And A real from A real or and a real of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			
1000 700 1000 300 NLS	5 5 2 Semivolatile Polycyci	0.4 U 0.5 U 0.4 U 1.4 U	0.4 U				
700 1000 300 NLS	5 2 Semivotatika Potycyci	0.4 U 1.4 U	6811			- 17000[,	
1000 300 NLS	2 Semivolatik Połycyci	1.4 U	0.4 6	5 V	2.5 U	210	170
1000 300 NLS	Semivolatile Połycyci	1.4 U Ornanic Corres	0.4 U	9.7	10	2.2000 6/2.1	
NLS	Połycyci	Ornanic Comm	1.4 U	14 U .	7 U	7.00	
NLS	Połycyci	while a Strategy of Aug. and while a policy	ounde (SVOC:	a) (ug/L)			outer v
NLS		ic Aromatic Hyd	rocarbons (P/	Altis)			*****
		1.20	1.1 U	2	5.6	28 <b>800</b>	
	NLS	1.6 U	1.3 U	1.4 U	1.3 U	2800	14000
	10	1.1 U	10	1.1 U .	1.4	200 U	287.00
400	10	10	0.9 U	6.3	8.2		13000
300	10	0.9 U	0.8 U	2.1	3.1	240	
NLS	10	1.1 U	10	1.1 U	10		
	* * **********************************	1.5 U	1.3 U	1.4 U	1.3 U		1600
	10	0.0 U	0.8 U	0.9 U	0.8 U		1200
200	20	1.9 0	1.7 U	1.0 U .	1.7 U		1600
	10	1.8 U	1.0 U	1.8 U	1.6 U	A hallowedge in a manager	640
			A CONTRACTOR OF A CARD AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERTY AND A PROPERT	1.4 U	1.3 U		. <b>1</b> .
			10	1.10	10	200 U	400
commenced i are unable to a succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the su			Designment of the statement of the	1.2 U	1.1 U	220 U	440
					0.8 U	160 U	i. 400
						140 0	280
		and a summer of the same of the same		Inter the second second second		NA	390
							320
NLO	<u> </u>			1 0.9 0			
				4 4 11	10	1 200 U	400
						A commenter concerta - an a	400
	a comment of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		many same as ferring ?				320
							1200
3				0.40	ny 1 fts	L	
	A STRATTONY & BUILDING TH			7	50 (1	1 31611	96.3
	a contraction of a second of such as a second	IN IN THE PARTY AND ADDRESS OF ADDRESS					
				the same with party me			8. 1
	As a later and a second second	mail a summer of the statement of the					437
0.008	20						
4			a subtrane a warm the rate of American				34800
NLS	NLS			Restauras management of and IR-D			JACAA
100	10	0.7 J	second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		and the statement of the
NLS	MLS	0.3 U	the support of the state of the support				5.7
1000	1000	18.4 J	20				2.5
300	100	23.7 J	5 3060 S				
	10	1.3 U	2 U	1.3 U			,
	NLS.	339000	385000	81900			2530
60	8	3. 342 15	2490	三 1420 倍量	1261740		-23
		www. Contract of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	0.12 8	0.20 U		0.10 U	Q.'
	0.5	0.20 U		1 8.60 W	0.1 U		destination in the second second second second second second second second second second second second second s
2	0.5	0.20 U	848	1.2 U	0.1 U 2 U	0.40 W	3.4
2 100	10	1.5 U	8.4 B 138000			0.40 UJ 8020 J	3.4 1300
2 100 NLS	10 NLS	1.5 U 111000 J	138000	1.2 U 4920 U	2 U		3.4 1300 4.5
2 100 NLS 60	10 NLS 10	1.5 U 111000 J 1.5 U	138000 4 U	1.2 U 4920 U 1.5 U	2 U 4860 B 4 U	8020 J	3.4 1300 4.3
2 100 NLS 60 NLS	10 NLS 10 2	1.5 U 111000 J 1.5 U 0.39 UJ	136000 4 U 2 U	1.2 U 4920 U 1.5 U 0.84 UJ	2 U 4860 B 4 U 2 U	8020 J 2.6 UJ 0.30 U	3.4 1300 4.5
2 100 NLS 60 NLS 50000	10 NLS 10 2 400	1.5 U 111000 J 1.5 U 0.39 UJ 4434000 j	136000 <u>4</u> U <u>2</u> U <u>2</u> 6300	1.2 U 4920 U 1.5 U 0.84 UJ	2 U 4880 B 4 U 2 U	8020 J 2.6 UJ 0.30 U 34600	3. 1300 4 3940
2 100 NLS 60 NLS 50000 0.5	10 NLS 10 2 400 10	1.5 U 111000 J 1.5 U 0.39 UJ 64582000	138000 <u>4</u> U <u>2</u> U <u>26300</u> <u>10</u> U	1.2 U 4920 U 1.5 U 0.84 UJ 5.3 U	2 U 4850 B 4 U 2 U 1 20 10 U	8020 J 2.6 UJ 0.30 U 34800 5.3 U	3.4
2 100 NLS 60 NLS 50000 0.5 NLS	10 NLS 10 2 400 10 NLS	1.5 U 111000 J 1.5 U 0.39 UJ 4432001 5.3 UJ 0.3 UJ	138000 <u>4</u> U <u>2</u> U <u>26300</u> <u>10</u> U <u>2.1</u> B	1.2 U 4920 U 1.5 U 0.84 UJ 5.3 U 0.41 U	2 U 4660 B 4 U 2 U 66600 10 U 2 U	8020 J 2.6 UJ 0.30 U 34600 5.3 U 0.30 U	3.4 1300 4.1 3940 1
2 100 NLS 60 NLS 50000 0.5	10 NLS 10 2 400 10	1.5 U 111000 J 1.5 U 0.39 UJ 64582000	138000 <u>4</u> U <u>2</u> U <u>26300</u> <u>10</u> U	1.2 U 4920 U 1.5 U 0.84 UJ 5.3 U	2 U 4850 B 4 U 2 U 1 20 10 U	8020 J 2.6 UJ 0.30 U 34800 5.3 U	3.4 1300 4. 3840 1 1 5. 20
	2000 300 200 0.05 6 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 0.05 0.5 0.	2000         10           300         10           200         20           0.05         10           6         20           0.05         10           0.35         10           0.35         10           0.35         20           NLS         20           NLS         20           NLS         20           100         10           NLS         20           300         20           3         30           200         200           2         20           0.02         8           2000         200           2         20           0.02         8           2000         200           2         20           0.02         8           2000         200           2         20           0.02         8           2000         10           NLS         NLS           100         10           NLS         NLS           1000         1000           5         10	2000         10         1.5 U           300         10         0.9 U           200         20         1.9 U           0.05         10         1.8 U           6         20         1.5 U           0.05         10         1.8 U           6         20         1.5 U           0.05         10         1.1 U           0.35         10         1.1 U           0.35         20         0.8 U           NES         20         0.8 U           NES         20         0.8 U           NES         20         0.9 U           Other SVOC           100         10         1.1 U           NLS         NLS         1.1 U           300         20         0.9 U           3         30         3.5 U           Incorpanic Compensity Company         Company           200         20         7.3 U           200         20         0.2 U           4         2         0.3 S U           100         10         0.7 J           NLS         NLS         74700           1000         1000         23	2000         10         1.5 U         1.3 U           300         10         0.9 U         0.8 U           200         20         1.9 U         1.7 U           0.05         10         1.8 U         1.8 U           0.05         10         1.8 U         1.8 U           0.05         10         1.1 U         1.0 U           0.05         10         1.1 U         1.0 U           0.05         10         1.1 U         1.0 U           0.05         20         0.8 U         0.8 U           0.05         20         0.8 U         0.8 U           NKS         20         0.8 U         0.8 U           NKS         20         NA         0.9 U           NKS         20         0.9 U         0.8 U           NKS         20         NA         0.9 U           NKS         1.1 U         1.0           NKS         1.1 U         1.0           300         3.5 U         3.1 U           200         2.0 U         2.1 U         5 U           2         20         2.1 U         5 U           2         20         2.1 U         5 U	2000         10         1.5 U         1.3 U         1.4 U           300         10         0.9 U         0.8 U         0.9 U           200         20         1.9 U         1.7 U         1.9 U           0.05         10         1.8 U         1.7 U         1.9 U           0.05         10         1.8 U         1.8 U         1.8 U           6         20         1.5 U         1.3 U         1.4 U           0.05         10         1.1 U         1.0 U         1.8 U           0.05         10         1.1 U         1.0 U         1.1 U           0.05         20         0.8 U         0.8 U         0.9 U           0.005         20         0.8 U         0.8 U         0.9 U           NLS         20         NA         0.6 U         NA           NLS         20         NA         0.6 U         NA           NLS         1.1 U         1 U         1.1 U         1.1 U           NLS         20         0.9 U         0.8 U         0.9 U           300         20         0.9 U         0.8 U         0.9 U           3         30         3.5 U         3.1 U         3.4 U </td <td>2000         10         1.5 U         1.3 U         1.4 U         1.3 U           300         10         0.9 U         0.8 U         0.9 U         0.8 U           200         20         1.9 U         1.7 U         1.9 U         1.7 U           0.05         10         1.8 U         1.8 U         1.8 U         1.6 U           6         20         1.5 U         1.3 U         1.4 U         1.3 U           0.05         10         1.1 U         1.0 U         1.1 U         1.2 U           0.05         10         1.1 U         1.1 U         1.1 U         1.2 U           0.05         20         0.8 U         0.8 U         0.9 U         0.8 U           0.005         20         0.8 U         0.7 U         0.8 U         0.7 U           NKS         20         NA         0.6 U         NA         0.8 U         0.7 U           NLS         20         NA         0.6 U         NA         0.8 U         0.8 U           100         10         1.1 U         1 U         1.1 U         1 U           NLS         NLS         1.1 U         1 U         1.1 U         1 U           100</td> <td>2000         10         1.5 U         1.3 U         1.4 U         1.3 U         280 U           300         10         0.9 U         0.8 U         0.9 U         0.8 U         160 U           200         20         1.9 U         1.7 U         1.9 U         1.7 U         340 U           0.05         10         1.8 U         1.8 U         1.8 U         1.8 U         1.6 U         320 U           6         20         1.5 U         1.3 U         1.4 U         1.3 U         260 U           0.05         10         1.1 U         1.U         1.1 U         1.U         320 U           0.05         20         1.2 U         1.1 U         1.2 U         1.1 U         220 U           0.005         20         0.8 U         0.8 U         0.9 U         0.8 U         760 U           NKS         20         NA         0.6 U         NA         0.9 U         0.8 U         160 U           NLS         20         NA         0.6 U         NA         0.9 U         0.8 U         160 U           NLS         20         0.9 U         0.8 U         0.9 U         0.8 U         160 U           300         2.5 U</td>	2000         10         1.5 U         1.3 U         1.4 U         1.3 U           300         10         0.9 U         0.8 U         0.9 U         0.8 U           200         20         1.9 U         1.7 U         1.9 U         1.7 U           0.05         10         1.8 U         1.8 U         1.8 U         1.6 U           6         20         1.5 U         1.3 U         1.4 U         1.3 U           0.05         10         1.1 U         1.0 U         1.1 U         1.2 U           0.05         10         1.1 U         1.1 U         1.1 U         1.2 U           0.05         20         0.8 U         0.8 U         0.9 U         0.8 U           0.005         20         0.8 U         0.7 U         0.8 U         0.7 U           NKS         20         NA         0.6 U         NA         0.8 U         0.7 U           NLS         20         NA         0.6 U         NA         0.8 U         0.8 U           100         10         1.1 U         1 U         1.1 U         1 U           NLS         NLS         1.1 U         1 U         1.1 U         1 U           100	2000         10         1.5 U         1.3 U         1.4 U         1.3 U         280 U           300         10         0.9 U         0.8 U         0.9 U         0.8 U         160 U           200         20         1.9 U         1.7 U         1.9 U         1.7 U         340 U           0.05         10         1.8 U         1.8 U         1.8 U         1.8 U         1.6 U         320 U           6         20         1.5 U         1.3 U         1.4 U         1.3 U         260 U           0.05         10         1.1 U         1.U         1.1 U         1.U         320 U           0.05         20         1.2 U         1.1 U         1.2 U         1.1 U         220 U           0.005         20         0.8 U         0.8 U         0.9 U         0.8 U         760 U           NKS         20         NA         0.6 U         NA         0.9 U         0.8 U         160 U           NLS         20         NA         0.6 U         NA         0.9 U         0.8 U         160 U           NLS         20         0.9 U         0.8 U         0.9 U         0.8 U         160 U           300         2.5 U

j,

ą

2

ſ

ł

	•	Table Sediment Sample Erie Street Fe	Summary Table	
Transact	Transact Location	Sediment Vibracore Number	Sample Description	Analytical Sample (feet) ¹
Transeçi 1	Downstream of the 1st Avenue Bridge Approximately 560 feet downstream of the eastern boundary of the Erie Street former MGP site.	#1	0.0-1.0: SEDIMENT 1.0-2.0: SEDIMENT & LEAVES, some sit and line sand. 2.0-3.0: SEDIMENT & LEAVES, some sit and line sand then transitions into Brown, SiLTs, no staining, petrolisum odor noted, 3.0-3.5: Brown, fine, sity-SAND, some roots and leaves. Slight hydrocarbon and organic odor.	TR1#1A (0.0-0.5) TR1#1B (4.5-5.0)
		#2	0.0-0.4: SEDIMENT, no adars, no visual contemination noted. 0.4-4.4: Black, sliby-SEDIMENT and ORGANIC MATTER (LEAVES). 4.4-4.5: Black, SAND, GRAVEL, and SILT, moderate examply odor, no visual impacts noted.	TR1#28 (0.0-0.5) TR1#28 (3.0-4.0)
		#3	0.0-0.3: Black, very fine sity-SAND [SEDIMENT], some leaves. No odors or visual contamination noted. 0.3-0.5: Gray, sity-CLAY. No odors or visual contamination noted. 0.5-2.5: TILL, No odor or visual contamination noted.	TR1#3A (0.0-0.5) TR1#3B (2.0-2.5)
		#4	0.0-0.5: SEDIMENT, no ocars or visual contamination noted. 0.8-1.0: Gray, ally-CLAY. No ocars or visual contamination noted. 1.0-2.0: TILL, no ocar or visual contamination noted.	TR1#4A (0.0-0.5) TR1#4B (1.5-1.9)
Transect 2	ect 2 Approximately 275 feet downstream of the eastern bounder of the Erie Street former MGP site.	*1	0.0-1.0: SEDIMENT, no odor or visual contamination noted. 1.0-1.4: ORGANIC MATTER (leaves), no odor or visual contamination noted. 1.4-4.8: TILL, no odor or visual contamination noted.	TR2#1A (0.0-0.5) TR2#1B (2.8-3.2)
		#2	0.0-0.3: SAND and SILT, no odor or visual contamination noted. 0.3-0.5: Coarse SAND, no edor or visual contamination noted. 0.5-1.3: Fine to medium SAND and GRAVEL, no edor or visual contamination noted. 1.3-2.3: Silly, very fine SAND, no odor or visual contamination noted.	TR2#2A (0.0-0.5) TR2#28 (1.3-1.8)
		#3	2.3.4.6: Dark black, SILT and CLAY, some organic matter (roots and leaves) [0.0-0.5: Black very fine sity SEDIMENT, no odors, no visual contamination. [0.5-2.5: TILL No eder or visual contamination noted.	TR2#3A (0.0-0.5)
		#4	0.0-0.6: SEDIMENT, no odora, no staining. (PID 0.0 ppm). 0.6-3.8: Grayish-black, sity clay with organic matter (roots), no odor, no staining. (PID 0.0 ppm). 3.8-4.1: TiLL, no odor, no staining.	TR2#4A (0.0-0.5) TR2#4B
Transect 3	Adjacent to the eastern boundary of the Erie Street former MGP site and the City of Elizabeth Sewage Treatment Plant.	#1	0.0.0.5: Light brown, fine sity-SAND with fine yellow gravel. No odors or visual contamination noted. 0.5-0.6: GRAVEL, No odor or visual contamination noted. 0.6-1.5: TILL, No odor or visual contamination noted.	TR3#1A (0.0-0.5)
		#2	0.0-1.2: SEDIMENT, no odor or visual contamination noted. 1.2-2.6: Derk brown, very fine sity-SAND, some organic material (leaves, roots, cisy), slight awampy and hydrocarbon odor, visual contamination. 2.8-5.2: Fine sity-SAND, some fine gravel, pieces of physical and glass at 4.9. Slight awampy and hydrocarbon odor.	TR3#28(4.3-4.8)
		<i>C</i> *	0.0.0.8: Silly-Sandy SEDIMENT transitioning into silly decomposed organic matter (leaves) (PID 10-15) 0.8-1.0: ORGANIC MATTER (LEAVES) some black sill. (PID1-5 ppm) 1.0-3.0: Black, very fine silly-SAND, moderale swampy odor and possible hydrocarbon odor, no visual contamination 3.0-3.2: PEAT, no oders or visual contamination. (PID 0.0 ppm) 3.2-5.6: Graytsh-black, fine SAND, some medium sand, trace gravel, silght swampy odor. No visual contamination.	TR3#34(0.0-0.5) TR3#38(3.5-4.0)

٠

	Table 11 Sediment Sample Summary Table Erie Street Former MGP										
Transect	Transect Location	Sediment Vibracore <u>Number</u>	Sample Description								
(reneed)		#4	0.0-1.0: Black, SEDIMENT, organic, very liquidy > 50% liquid), swampy odor, no visual contamination noted. (PID 5.0-20.0 ppm)	TR3#4A (0.0-0.5)							
			1.0-4.0: Black, siky-SEDIMENT and ORGANIC MATTER (leaves and roots) insustioning into light brown, fine ality-SAND, traces of organic matter (leaves and roots), swampy odor, no visual contamination noted. (PID 0.0- 8.0 ppm) 4.0-5.5: Tan-gray, fine SAND, some medium sand and gravel, swampy odor, no								
			visual contamination noted. (PID 0.0-3.0)	TR3#4B (4.0-4.5)							
Transect 4	Adjacent to the central portion of the Erle Street former MGP site and the CRy of Elizabeth Sewege Treatment Plant.	#1	0.D-2.5: Black, SEDIMENT, "liquidy", strong decompositional odor/ sever odor, no visual contamination noted (PID 50 ppm) 2.5-3.5: Black, silly-SEDIMENT and fine to medium SAND, strong decompositional/sever, no visual contamination roted. (PID 12 ppm) 3.5-5.5: Tan-gray, medium SAND, some dark sitt and fine sand, swamp odor, no	TR4#1A (0.0-0.5)							
			visual contamination noted, (PID 3.5 com)	TR4#18 (4.5-5.0)							
		#2	0.0-0.8: Black, SEDIMENT, "liquidy", strong swamp/ sewer odor, no visual contamination noted. (PID 30-70 ppm) 0.8-3.5: Gray, medium SAND, some fine sand, swampy odor, no visual contamination noted.	TR4#2A (0.0-0.5)							
			3.5-4.5: Black, silty-MATERIAL and ORGANIC MATTER (decomposing), swampy odor, no visual contamination notad. (4.8-5.3: Reddish-brown, very fine silty SAND, some clay and fine to medium igravel, swampy odor and no visual contamination.	TR4#26 (4.0-4.5)							
		#3	0.0-1.0: Black, SEDIMENT, "liquidy", some organic matter (40% leaves), some very fine sand, strong decompositing/server odor, slight MGP odor, no visual contamination noted. (PID 15-75 ppm) 1.0-2.0: Black, sity-SEDIMENT, some fine to coarse sand, trace gravel, no odors or visual contamination noted. (PID 15 ppm)	TR4#3A (0.0-0.5)							
			2.0-3.0: Black, SLT and ORGANIC MATTER (leaves), strong decomposing ador, no visual contamination noted. (PID 3-12 ppm) Note: This layer of Peel and Nit (plastic) noted at 3.0. 3.0-3.8: Reddish brown, SILT, some fine sand and gravel, trace clay [TILL], awampy odor noted and slight hydrocarbon odor noted, no visual contamination noted. (PID 0.0-3.5 spm)	TR4#36 (2.5-3.0)							
		#4	0.0-1.0: Black, SEDMENT, "Iquidy", strong sewer odor, possible asphalt type ador. (PID 20-25 ppm) 1.0-2.0: Black, SILT and SAND, some fine to medium gravel, awampy odor, no visual contamination noted. (PID 10-15 ppm)	TR4#4A (0.0-0.5)							
			2.0-3.5; Black, SiLT and CLAY, some fine sand and gravel, strong swampy odor and slight hydrocarbon odor, no visual contamination noted. (PID 0.0-4.0) 0.0-0.5; ORGANIC MATTER (decomposing vegetation, leaves). No odor or	TR4#48(2.0-2.5)							
Trensect 5	Adjacent to the western boundary of the Erie Street former MGP site and the City of Elizabeth Sewage Treatment Plant.	#1	<ul> <li>0.5-1.0: Medium SAND, some fine to coarse sand, ewampy odor, no visual contamination noted. (PID 7 ppm)</li> <li>0.5-1.0: Medium SAND, some fine to coarse sand, ewampy odor, no visual contamination noted. (PID 4 ppm)</li> <li>1.0-1.3: Black, SEDIMENT, organic, muddy, no odor or visual contamination noted. (PID 5 ppm)</li> <li>1.3-2.3: ORGANIC MATTER (decomposing vegetation, Takina, noted.). No odor</li> </ul>	TR5#1A (0.3-0.8)							
1			er visual contamination noted. (PID 5 ppm) 2:3-5.5: Black, SEDIMENT, organic root, muddy, no odor or visual contamination noted. (PID 15 ppm)	TR5#18 (4.5-6.0)							

•

_

-

		Table 11 (co Sediment Sample Erie Street Fo	Summary Table	
Transect	Transect Location	Sediment Vibracore Number	Sample Description	
frameect 5			0.0-0.3: Black, ORGANIC MATTER (decomposing taxves), no odor or visual contamination poted, (PID 12 ppm)	
çonfilmuəd)		#2	0.3-2.5: Black, SEDIMENT (mud), some organic matter (leaves and roots), slight sheen on the leaves (0.0-0.8) and strong decomposition odor. (PID 10-40 ppm) 2.5-5.0: Dark brown to black, medium SAND, some fine to coarse sand, slight hydrocarbon edor, no visual contamination noted. (PID 10-12 ppm)	TR5#1A (0.0-0.5) TR5#28 (2.3-2.8)
		#3	5.0-5.5: Derk brown, organic CLAY, slight to moderate hydrocarbon (possibly MGP type odor. (PID 4 ppm) [0.0-0.4: Bleck, sity-SEDIMENT, strong organic decomposition odor, no visual	
		~	contamination noted. (PID 7 ppm) 0.4-0.6: PEAT( dense root mail), no odors and nor visual contamination noted. (PID 0.0 ppm) 0.6-1.2: Black, SILT and coarse GRAVEL, moderate organic decomposition odor, no visual impacts noted. (PID 0.0 ppm)	TR5#3A (0.0-0.5)
			1.2-2.4: Dark brown to black, coarse GRAVEL and medium SAND, moderate organic decomposition oder, no visual impacts noted. (PID 0 ppm)	TR5#38 (1.0-1.5)
		<b>#4</b>	0.0-0.5: Black, sity-SEDIMENT, some organic matter (leaves), organic decompositional odor and alight sheen on leaves. (PID 15-20 ppm) D.5-1.3: Black, GRAVEL and sitly-SEDIMENT, moderate decompositional odor, no visual contamination noted. 1.3-2.1: Coarse GRAVEL and medium SAND, some fine and coarse sand, moderate organic decomposition and petroleum hydrocarbon odor, no visual contamination roted.	TR5#4A (0.0-0.5) TR5#4B (1.0-1.5)
'ransect 0	Approximately 300 feet upstream of the western boundary of the Erie Street former MGP site.	#1	0.0-0.4: Black, silky-SEDMMENT and pieced of wood, slight sheen and slight hydrocarbon odor. (PID 0-5 ppm) 0.4-5.9: Dark gray to dark brown, silky-CLAY, mottled with veins of organic matter (roots/leaves), slight decomposed odor, no steining. (PID 0 ppm)	TR6#1A (0.0-0.5) TR6#1B (4.0-4.5)
		#2	0.0-0.5: Black, sity-SEDIMENT, very soft. No odor or visual contamination noted. (PID 0 ppm) 0.5-8.0: Dark gray to black dark brown, sity-CLAY, with veine of organic matter (roots/teaves), slight swampy odor, no staining noted. (PID 0 ppm)	TR5#2A (0.0-0.5)
		#3	(0.0.0.5: Black, slity-SEDIMENT, some gravel, slight hydrocarbon odor and swampy odor, nor visual contamination noted. (PID 0-15) 0.6-1.0: Black to gray, slity-CLAY and PEAT, swamp odor, no slaining noted. (PID 6 ppm) 1.0-5.8: Gray to black, slity-CLAY, motified with organic matter (roots), no odorm.	TR6#3A (0.0-0.5) TR5#3B (3.5-4.0)
		#4	no staining. (PID 0 ppm) 0.0-0.5: Black, SEDIMENT, very locee, swampy odor, no sheens or staining. (PID 0-5 ppm) 0.5-3.5: Graytsh black, silty-CLAY with organic matter (roots), no odor, no staining noted. (PID 0 ppm)	TR8#4A (0.0-0.5)
			3.5-4.5: Dark gray to black, clayey-SiLT, no odors or staining noted. (PID 0 ppm) 4.5-5.0: Brown, fine, sity-SAND, some clay and fine gravel, no staining or odor. (PID 0 ppm)	TR6#49 (3.5-4.0)

		Sediment Sample Erle Street Fo	-	
Transact	Transact Location	Sediment Vibracore Number		
ransect 7	Approximately 540 feet upstream of the western boundary of the Erie Street former MGP site, between the NJTP and Atlantic Avenue overpasses.	#1	No visual contamination moted (PID 0-7) 0.8-1.5: Grey, CLAY, some sitta large gravel noted, no staining and no odor. (PID 0-3 ppm)	TR7#1A (0.0- 0.5
		#2	0.0-0.1: Black, SILT and SAND, slight hydrocarbon odor and awarnpy odor. No visual contamination noted. (0-10 ppm) 0.1-1.5: Black, firme sithy-SAND, some organic matter, some firme to medium pravet, heavy sheen [proy metallic], no residual product. Asphalt-like odor (PID	<u>TR7#18 (3.0- 3.5</u> TR7#2A (0.0- 1.5
		M3	0.0-0.5: Fine to coarse SAND and fine GRAVEL, no sheen, slight swampy ador. No visuel contamination. (PID 0-4 ppm) 0.5-0.7: Gray, sitty-CLAY, reastilloning into PEAT, swampy ador, no sheen, no steining. (PID 0-5 ppm) 0.7-1.0: PEAT (PID 0) 1.0-3.0: Sitty, dayay ORGANIC MATTER (leaves and roots), moderate sheen and steining. asphalt odor. (PID 40-200)	TR7#3A (0.0- 0.5
			3.0-3.3: PEAT, no staining or sheen, moderate asphalt-like odor. (PID 0 ppm) 3.3-3.5: Black sitly-SAND and ROOTS, some fine gravel, heavy staining, sheen, asphalt-like odor. (PID 70 ->20). Rock in the tip of the sampler.	TR7#3AB (3.3-3
		84	0.0-0.5: Fina to coarse SAND and fine GRAVEL, no sheen, slight swampy odor. No visual contaminetion. (PID 0-4 ppm) 0.5-0.7: Grey, sity-CLAY, transitioning into PEAT, swampy odor, no sheen, no staining. (PID 0-6 ppm) 0.7-1.0: PEAT (PID 0) 1.0-3.0: Sity, clayey ORGANIC MATTER (leaves and roots), moderate sheen and staining, asphelt odor. (PID 40-200)	TR7#4A (0.0- 0.
			3.0-3.3: PEAT, no staining or sheen, moderate aspheli-like odor. (PID 0 ppm) 3.3-4.1: Black sith-SAND and ROOTS, some fine gravel, heavy staining, sheen, asphalt-like odor. (PID 70->200). Rock in the tip of the sempler.	TR7#4A (3.6-4.

. ·

				Tabl ediment An e Street For	alytical Dat					
						Sample ID/De	main the strate			
	Marine	Marine	TRIA	TRIMB	TRIMA	TR1#28	TR183A	TR183B	TRIPA	TRI
	Sediment	Sediment	(0-0.5)	(4.5-5.0)	(0-0.6)	(3.0-4.0)	(0-0.8)	(2.0-2.5)	(0-0.5)	(1.5-1
Paramater	ERL	ERM	7/9/00	7/1/00	7/1/00	7/1/00	7/1/08	7/1/00	7/1/00	7/1/
	1			i Organic Comp	ounds (VOCs) (		irt anna			
Benzene	MLS	NLS	0.2 J	4.2 UJ	4.9 W .	4.2 UJ	3.8 UJ	0.023 J	4.5 113	9
Tolueno	NLS	NLS	0.53 J	4.2 UJ	4.9 UJ	0.2 J	0.19 J	0.037 j	4.5 UJ	3
Ethylberizane	MLS	NLS	4211	4.2 UJ	i.e uu	1.2 J	3.6 UJ	0.017 J	4.5 W	3
Xylene (total)	NLS	NLS	0.75 J	4.2 UJ	4.9 W	0.78 J	3.8 U j	3.6 W	4.5 UJ	3
Siviene	NLS	NLS	4.2 UJ	4.2 UJ	4.9 W	4.2 UJ	3.8 UJ	0.033 J	4.5 UJ	3
Carbon Disulfide	NLS	NLS	0.74 J	0.49 ]	0.29 J ¹	0.88 J	38 UJ	3.6 W	1.8 J	3
Chicapitorm	NLS	NLS	42 W	4.2 UJ	4.9 W	4.2 UJ	3.8 W	3.6 W	4.5 UJ	3
Trichlorosthera	NLS	NLS	\$2W	4,2 UJ	4.9 UU	4.2 UJ	3.8 W	3.6 UJ	4.5 UJ	3
2-Hexanona	NLS	NLS	4.2 UJ	4.2 U.I	4,9 W.	42 UJ	3.8 UJ	3.6 UJ	4.5 UJ	0.
Teirachiomaihana	NLS	NLS	4.2 UJ	4.2 11	لنا فه	4.2 01	3.8 UJ	0.026 J	4.5 UJ	9.4 4
				Arpmatic Hyde	controns (PA)	(Trickey)				
Naphibalona	0.18	21	0.00	211 1	1 4 4 0 2 U	14238194		0.39 U	14. September 23. September 23. September 24.  6	
2-Methylnaphthalene	0.07	0.87	8 D.34 J	10.1	0.18 1	1.2.91.00	1	0.39 U	See one of	ł
Acenaphtrylene	0.044	0.84	0.68 3	2924-10 02 1 C	S	42200 77 1 S	<b>WHAT AND</b>	0.39 U	20807	0.0
Acenaphthene	0.018	0.5	- Labor 1 2 (1-1	28 J	0.87.1	578k	6 3 <b>. 0.33 .</b> 4 m	0.39 U	SH 038 1	Ģ
Fluorene	0.019	0.54	ومستدميه معادمه	44.442.441		819 30		0.39 U	REFERENCES 13	6
Phonasthrans	0.24	1.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.1		410	<b>10</b>	0.004 J	2 6 1 8 K	0,0
Anthracana	0.0853	1.1	211	24 J	12.1	200 B 20	Mile TEL	0.30 U	0.67 1	0.0
Papranthene	0.6	6.1	2.5		Sec. 2.18		AL 8442 1	0.009 J		0.0
Pyrene	0.665	26	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		01184	201 <b>20</b> 1 10	3868 <b>42</b> X.	0.015 J		0.0
Benz(a)anthracene	0.261	1.8				200 C 17 V 1		0.005 J		6
Chrysena	0.384	2.8			enter a trost	(16)17 (1 <b>6</b> 17)	e e sange	0.005 J	Panet Are.	0.0
Benzo(b)fluoranitrene	NLS	MLS	4.8	281	29	8.5 J	2.4	0.004 J	1.3	0.0
Benzo(k)fluorenthene	NLS	NLS	3.9 J	2.5 J	2.8	8.2 J	2.8	ິ 0.39 ບໍ	1.6	0.0
Benzo(a)oyrana	0.43	, 1.6		38. S.	· 65/ 14	TU	34681 <b>3.5</b> 7	0.005 J	1216-3-34028-3-6	0.0
Indenc(1,2,3-cd)pyrane	NLS	NLS	4.4 1	28 J	3	4.6 J	2.5	0.39 U	1.4	0.0
Dibenz(a,h)antwacene	0.0634	0.26		as Place 7	·加索出来217	P347 1.0 J		0.39 U		6
Banzo(g,h,i)perviene	NLS	NLS	5.4	3.8 J	3.6	6.1 J	3.1	Ö.39 U	1.7	0.0
Total PAHs	4.022	44,79	72.0	<b>642</b> 51			1.1.198.14	0.047		0.0
			Coner Sermi	classie Organio (	Samplines (SV	CCST (month)				
Phenol	NLS	NLS	4.6 U	2.4 UJ	2.7 U	24 U	0.018 J	0.30 U	1.20	•
1.4-Dichlomberizene	NLŚ	NLS	4.8 U	0.056 J	2.7 U	24 U	0.052 J	0.39 U	1.20	
Benzyl alcohol	NLS	NLS	4.6 U	24 UJ	2.7 U	24 U	1.7 U	0.39 U	1.2 U	
4-Methylohanol	NLS	NLS	0.083 J	24 UJ	0.18 3	24 U	0.042 J	0.36 U	0.04 J	
lisophorone	MLS	NLS	4.8 U	24 UJ	2.7 U	24 U	1.7 U	0.39 U	1.2 U	
Benzoic acid	NLS	NLS	22.0	2.4 UJ	13 U	120 U	8.1 U	1.9 U	5.8 U	1
4-Chiomaniine	NLS	NLS	4.8 U	0.34 J	0.084 J	0.47 J	1.7 U	0.39 U	1.2 U	i.
4-Chloro-3-melhylphenol	NLS	NLS	4.6 U	24 UJ	2.7 U	24 U	1.7 U	0.39 U	1.2 U	
2-Chloronaphthelene	NLS	NLS	4.6 U	2.4 W	2.7 U	24 U	1.7 U	0.39 U	1.2 U	1
Dimethylcinhsiate	NLS	NLS	4.6 U	24 11	2.7 U	24 U	1.7 U	0.39 U	1.2 U	

• • •

#### Table 12 (continued) Sediment Analytical Data Erle Street Former MGP Site

				******		Sample ID/D	epth (ft)/Date	acaracontecno horonon con menorona MMA		
	Marine	Marine	TRIPIA	TRIMB	TRIBZA	TR1#28	TRIMA	TRIASB	TRIMA	TR 1#48
	Sediment	Sediment	(0-0.5)	14.5-5.0)	(0-0.5)	(3.0-4.0)	(0-0.5)	(2.0-2.5)	(0-0.5)	(1.3-1.9)
Parameter	ERL	ERM	7/1/00	7/1/00	7/1/00	7/1/00	7/1/00	7/1/00	7/1/00	7/1/00
4-Nitrophenol	NLS	NLS	22 U	2.4 UJ	13 U	120 U ·	8.1 U	1.9 U	5.8 U	1.8 U
Dibenzoluran	NLS	NLS	0.48 J	0.78 J	0.19 J	6.9 J	0.2 J	0.39 U	0.12 J	0.4 U
Diethylohthalata	NLS	NLS	4.6 U	2.4 UJ	2.7 U	24 U	1.7 U	0.39 U	1.20	0.4 U
Carbazole	NLS	NLS	0.52 J	0.38 J	0.4 J	0.68 J	0.22 J	0.39 U	0.18 J	0.4 U
Di-n-buiyiphihalate	NLS	NLS	4.6 U	24 W	2.7 U	24 U	1.7 U	0.39 V	1.2 U	0.4 U
Buivibenzyiohihalate	NLS	NLS	0.82 J	2.4 W	0.58 J	24 U	1,7.U	0.39 U	0.13 J	0.4 U
bis(2-Ethylhen/liphthalate	NLS	MLS	18 J	19 J	13 B	17 J	5.6 8	0.39 U	448	0.4 U
Ol-n-octylphthaiste	MLS	MLS	0.64 J	0.35 J	0.78 J	24 U	1.7 Ü	0.39 U	0.2 J	0.4 U
	SPEED				vis (mg/kg)		ENERGY ESTIMATION	网络新闻教育	Carles Shirt No	
Tetrachlorodibenzo-o-diexin	MLS	NLS	10	0.89 U	1.3 U	0.66 U	0.71 U	0.58 U	1 U	0.57 U
Teinachiorodibenzoluran	NLS	NLS	10	0.89 U	1.3 U	0.68 Ü	0.71 U	0.58 U	10	0.57 U
Hexachlorodibenzoluran	NLS	NLS	10	0.89 U	1.3 U	0.68 U	0.71 U	0.58 U	10	0.57 U
			eense ge	Pesticide	e (morita)	Charles	E TERME		HIS ALLS SI	
alphe-BHC	NLS	NLS	0.018 UJ	0.015 UJ	0.0062 UJ	0.018 UJ	0.004 UU	0.002 UJ	0.003 UJ	0.0022 UJ
delta-8HC	NLS	NLS	0.016 UJ	0.015 UJ	0.0011 J	0.016 UJ	0.004 UJ	0.002 UJ	0.003 UJ	0.0022 UJ
Heptachior	NLS	NLS	0.016 UJ	0.015 UJ	0.0062 UJ	0.016 UJ	0.004 (U	0.002 UJ	0.003 UJ	0.0022 UJ
Akhrin	NLS	MLS	0.011 J	0.015 U	0.0064	0.016 J	0,0059	0.002 U	0.0038 J	0.0022 U
Heptechlor Epoxide	NLS	NLS	0.016 U	0.015 U	0.0052 U	0.016 U	0.004 U	0.002 U	0.003 U	0.0022 U
Endosullan	NLS	NLS	0.016 U	0.015 U	0.0082 U	0.016 U	0.003 J	0.002 U	0.003 U	0.0022 U
Dieldrin	0.00002	0.006	0.032 UJ	0.029 UJ	0.012 UJ	0.031 UJ	0.0077 UJ	ä.6038 UJ	1020.0022.0	0.0042 UJ
4,4'-00E	0.0022	0.027	0.042 NJ	14 65 0.048 NJ	0.025 NJ	AP DOM NO	58 0.014 NU	0.0638 U	2. OO18 NJ	0.0042 U
Endrin	NLS	NLS	0.0068 J	0.024 J	0.0027 J	0.028 J	0.0072 J	0.0038 U	0.0019 J	0.0042 U
Endosullan II	NLS	MLS	0.032 U	0.029 U	0.012 U	0.031 U	0.0077 U	0.0038 U	0.0057 U	0.0042 U
4.4-000	0.002	0.02	0,048 NJ	0.029 UJ	0.032 NJ	0. <b>03</b> 1 UJ	STACKS NU	0.0038 UJ	The source of	0.0042 <i>UJ</i>
Endosulfan Sulfate	NLS	NLS	0.032 UJ	0.029 UJ	0.012 W	0.032 J	0.0077 UJ	UU 8800.0	0.0057 UJ	0.0042 UJ
4,4'-ODT	0,001	0.007	L MODE T	R27	0.0052 J	0.036 J	R27	0.0038 UJ	R27	0.0042 UJ
alphe-Chlordane (s)	0.0005	0.008	0,082 J	. 0.057	0.023 J	0.046 J	10078	0.002 U	1.84000	0.0022 U
gamma-Chiordane (a)	0.0005	0.006	1.512.0.03	1. 1 <b>0.335</b> 🖓	i : Kar <b>10.014</b> .∐	医偏离 医下颌的		0.002 U	10002 J	0.0022 U
			e parte Porte	Nertinsind Stat	anvie (PCBA) (n		開き構成するない	e an mary i	清朝在2007 A	F AP 1
Aroclor-1242	NLS	NLS	0.083 W	0.22 J	0.045 J	0.23 J	0.038 J	0.038 UJ	0.029 J	0.042 UJ
Arodor-1248	NLS	NLS	0.1 J	0.12 U	0.081 U	0.062 U	0.036 U	0.038 U	0.057 U	0.042 U
Arockor-1254	NLS	NLS	0.21	0.12 U	0.051 U	0.25	0.086	0.038 U	0.057 U	0.042 U
Arodor-1260	NLS	NLS	0.36 J	0.68 J	0.11 J	0.27 J	0.048 J	0.036 U	0.029 J	0.042 U
Total PCBs	0.0227	0.18	0.87	0.9	0.185	1. <b>1.7</b>	- <b>17</b> 9 97 3 19	ND		ND
				Morgania Com	oolinde (mg/ng)		CALESCON PRODUCT		en sordial de settemos	
Alexing	NLS	NLS	8160	13200	8900	12600	8170	18000	22200	14800
Antimony	NLS	NLS	1.3 UJ	1.2 UJ	1.1 UJ	0.94 LU	6.6 Ū	0.42 UI	21 J	0.48 W
Arsenic	8.2	70	721	12.3 J	7 J	11.8 J	1.1.2.80A	F C. 41.6	14.0. 328	6.4 J
Barkan	NLS	NLS	128	9志悲	125	168	: 119	80.4	176	40.5 J
Berytlium	NLS	NLS	051 J	077 J	0.52 J	0.87 J	0.49 J	1.2 J	1.3 J	0.74 J
Cadmium	1.2	86	4.8.1	14.2 J	4.3 J	6.8 .	9217	0.4 J	Sept. 1.1	0.23 UJ

Page 2 of 21

				Table 12 ( Sediment Ar le Street Fo	~				<b>Mada</b> anaa ka  **************				
						Sample ID/D	epth (ft)/Data						
	Harine	Marine	TR1#1A	TR1#18	TR1#2A	781828	TRIASA	TRIMB	TRIMA	TR1#48			
	Sediment	Secoment	(0-0.5)	(4.5-6.0)	(0-0.6)	(3.0-4.0)	(0-0.6)	(2.0-2.6)	(0-0.5)	(1.8-1.9)			
Parameter	ERL	ERM	7/9/00	7/1/00	7/1/00	7/1/00	7/1/00	7/1/09	7/1/00	7/1/00			
Celcium	NLS	NLS	4480	6370	3550	4800	3160	873 J	2470	884 J			
Chromken	81	370	- 87.8 J		77.5 J	<u> </u>	48.4 J	31.2 J	48.2 J	24.5 J			
Cobsit	NLS	NLS	8.6 J	0.4 J	7.1 3	8.6 J	6.9 J	13.2 J	11.8 J	8.5 J			
pper 34 270 214 214 226 3 226 3 226 2 1 2 226 2 1 1 1 1 3													
Iron	MLS	NLS	20700	26600	21300	25800	25400	38400	43600	28700			
Lead	48.7	218	1997 <b>438</b> 898	473	300		J. 127	16.8		12.2			
Magnesium	NLS	NLS	4560	5960	5140	6170	3410	8700	7810	6310			
Manganesa	NLS	NLS	171	289	179	216	157	262	295	278			
Mercury	0.15	0.71	enter a j	1. <b></b>	-400.04.1 ⁻² 10	<b>HEALTER</b>	RESERVAN	0.017 J	CALIFIC DATE	0.0087 J			
Nickel	20.9	51.8	42.4	engloine / Alexand	S.S. 2404-F.S.	NUMBER OF				22.23			
Potasskim	NLS	NLS	1370 J	2190	1580 J	2320	1250	3140	3840	2510			
Selenium	NLS	MLS	21J	1.1 W	1,8 J	2.1	4.8 3	0.89 UJ	3.7 J	0.75 UJ			
Silver	1	3.7	5.5 <b>7621</b> 7	3677 <b>137</b> 373		PART 76 1	75.59 <b>6.2</b> 599	0.2 W		0.22 UJ			
Sectium	NLS	MLS	5320	6260	7390	7730	3370	2740	6590	2490			
Thelium	NLS	NLS	1.3 J	1.2 UJ	1.4 W	1.3 UI	1.4 )	0.77 W	7.4 J	0.83 UJ			
Vanadium	NLS	NLS	33.0 J	43 J	33.4 J	45 J	29.4 J	37.7 J	50.5 J	31.3 J			
Zinc	15Ò	410		1. 1. 200	5965 <b>461</b> 77	1. 604 L. 1	<b>DINERS</b> 7		1957 MOU	60.2 U			
Cyanida, Total	MLS	NLS	Rð	Ra	Ra	R8	R8	R8	0,84 J	Ra			
				Tell Orsens (						CANE OF C			
TOC	NLS	NLS	55800	47800	50800	76600	30400	2420	37400	1660			

#### Table 12 (continued) **Sediment Analytical Data** Erie Street Former MGP Site Sample ID/Deoth (ft)/Date TR2#28 TR2838 TR284A TR2848 Marine Marine TR2#1A 182818 TR292A TR2#3A (0-0.5) Sediment Sediment (0-0.5) (2.8-3.2) (0-0.5) (1.3-1.8) (0-0.5) (3.5-6.0) (0-0.5) 07/03/06 07/03/90 07/03/00 07/03/00 Darmanadas ēri ERM 07/03/08 07/03/00 67/03/60 07/03/00 教子 兪 hit. A Voletile Organic Calippounde (VOCs) (mg/ag) 1465 - 1 **R7** R7 Benzene R7 R7 **R7** R7 **R**7 NLS NLS R7R7 Toluene **MLS** NLS 0.21 J 0.069 J 0.1 J 0.093 J 0,12 J 0.65 J R7 Ethylbenzene NLS R7 0.43 J **R**7 R7 R7 0.87 J R7 **R**7 NLS Ŕ7 0.7 J **R**7 R7 **R**7 R7 Xylene (totel) MLS NLS 0.1 J 4.7 W **R**7 87 **R**7 **R**7 R7 **R**7 Styrene NLS NLS R7 **R7** R7 R7 0.79 J R7 Carbon Disulfide NLS 0.92 J 0.12 J NLS 1.1 ] 0.1 J Chiomotom NLS NLS **R**7 R7 87 R R7 R7 R7 R7 Ŕ7 R7 R7 **R**7 Trichlorosthens MLS NLS R7 R7 R7 R 87 Ŕ7 R7 R7 2-Hexanone MLS NLS 87 **R**7 R7 R R7 Tetrachiorosthene **R7 R7** R7 R R7 **R7** R7 MLS NLS 而於 Palveye Indonia (PAHis) い様 0.000 S DOTA Nachthalena A CLARKE 0,16 2.1 0.16 0.4 0.14 J 0.084.3 Eparte Persona J 0.078.95 Nilles **(** ) see a superior 2-Methylnaphthalena No. 20 Man 3.1 0.07 0.67 111 Aconschutylene 0.044 0,64 0.94 5.8-A (1. k.) STR. DE DINE ST SER Acenaohthene 0.016 0.5 170441 ..... Fluorene 0.019 0.54 0.51 E 1 2 0 0 0 1 1 2 2 0 44 1 2 2 2 1 0 46 1 Phonanthrene 0 8 **2 7** 7 14 6 (3.8) The second second second 0.24 1.5 33.84 1.9 26 16 21-231度237 Anthracene 0.0853 1.1 Fluoranthene 0.6 5,1 40.5.5 2.8 计同时点 中国基本的 52/0 1.10 1. 11 1.25 2.1 10 10.1 11 250 4:4 4.1 Pyrene 0.685 2.8 Benzía)anthracena 0.261 1.6 **《中心》,我就** 2.9 2.5.2.6 10.00 Chrysene 0.384 2.8 ALC & US FROM 25.7 10.80 5 23 J NLS NLS 2.7 J 0.44 J 3.9 J 4.1 J 26 J Benzo(b)/luoranthene 3.8 J 1.1 J 0.85 J 6.2 J 2.9 1 NLS MLS 4.2 3 1.5 .1 3 J 34 J 5.3 J Benzo(k)fluoranthena 37 J 291 0.65 1 6.8.9.5 3.8 1 Benzo(a)pyrene 0.43 1.6 2.2 1 3.9 J 3.2 J MLS 1.2 1 0.47 J 28 J 4.6 ] Indeno(1,2,3-cd)pyrene MLS. 271 **399**070 (**12**]) 12. 0.0634 0.28 n a T 0.02 1 5.6 0.141 Olbanz(s,h)anthracene 221 5.1 J 4.8 J 3.8 J MLŚ NLS 3.2 J 1.4 1 0.58 J 291 Banzo(g.h.i)perylene 100.43 52.5 49.7 25 40.95 10.864 30.528 Total PAHs 4.022 44.79 Other Semivolastic Organic Compounds (SVOCs) (mphij) 1 011 4.4 U MLS NLS 7.1 U 0.79 U 4.3.U 0.76 U 1.7 U 4.5 U 6.3 U Phanol 4.4 U i A-Dichiorobenzene NLS MLS. 7.1 U 0.79 U 4.3 U 0.78 U 1.7 U 4.6 U 8.3 U 0.79 U 4.3 U 0.76 U 1.7 U 4.5 0 6.3 U 4.4 U NLS NLS 7.1 U Senzyl alcohol 6.3 U 0.76 U 1.7 U 4.4 U 0.79 U 0.32 J 4.5 U 4-Methybhenol NLS NLS 7.1 U 1.7 U 0.15 J 8.3 U 4.4 U lecohorone NLS NLS 7.1 U 0.79 U 4.3 U 0.78 U 34 UJ 0.077 J 21 UJ 3.7 U 8.3 UI 22 UJ 30 UJ 21 UJ NLS. NLS Benzoic acid 0.78 U Q.46 J 8.3 U 4.4 U 4.3 U 1.7 U 4-Chioroaniline NLS MLS 0,3 J 0.79 U 4.5 U 6.3 U 4.4 U 4-Chloro-3-methylphenol NLS NLS 7.1 U 0.79 U 4.3 U 0.78 U 1.7 U 4.5 U 6.3 U 4.4 U MLS NLS 7.1 Ų 0.79 U 4.3 U 0.78 U 1.7 U 2-Chioronaphthalene 0.79 U 4.3 U 0.76 U 1.7 U 4.5 U 6.3 U 4.4 U 7.1 U Dimethylohthalate MLS MLS

Page 4 of 21

## Table 12 (continued) Sediment Analytical Data Erle Street Former MGP Site

			- Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction			Sample IDA	Ospih (fi)/Osto	an an an an an an an an an an an an an a		an an an an an an an an an an an an an a
	Marine	Marine	TR2#1A	TR2#18 .	TR282A	TR2#28	TR283A	TR2#38	TR284A	TR2848
	Sediment	Sediment	(0-0.5)	(28-3.2)	(0-0.5)	(1.3-1.8)	(0-0.5)	(3.6-4.0)	(0-0.5)	(0-0.5)
Parameter	ERL	ERM	07/03/00	07/03/00	07/03/00	07/03/90	07/03/00	07/03/00	07/03/00	07/03/00
4-Niliophenol	NLS	MLS	34 U	3,8 U	21 U	3.7 U	8.3 U	22 U	1.4 J	21 U
Cibenzofuran	NLS	MLS	0.2 J	0.29 J	0.23 J	0.083 J	0.13 J	1.7 J	0.21 J	1.9 J
Diethylphihalate	NLS	NLS	7.1 U	0.79 U	4.3 U	0.76 U	1.7 U	4.5 U	8.3 U	44 U
Carbazole	NLS	NLS	0.58 J	0.27 J	0.46 J	0.067 J	0.3 J	0.91 J	0.55 J	0.64 J
Di-n-bulyiphthelete	NLS	MLS	7.1 W	່ 0.79 ບໍ່	0.12 J	0.76 U	1.7 U	4.5 U	0.19 J	4.4 U
Butybenzyfonthaiste	NLS.	NLS	0.88 J	0.79 W	0,47 J	0.76 U	0.54 J	0.41 J	0.79 J	4.4 U
bis(2-Elhylhexyl)phthalate	NLS	NLS	37 J	0.64 J	18 J	2.2	6.5 J	30 J	27	12
Di-n-octyphinalate	NLS.	NLS	1.7 J	0.79 UJ	18.3	0.76 UJ	0.65 J	0.49 J	1.3 J	0.17 J
		States -		(Contraction)	he provid					
Tetrachkorodibanzo-p-dioxin	I NLS	NLS	1.5 U	0.59 U	0.76 U	0.00051 J	0.62 U	0.83 U	1.1 U	0.76 U
Tetrachtorodibenzoturan	NLS	NLS	1.5 U	0.59 U	0.78 U	0.00043 J	0.62.0	0.63 U	1.1 0	0.76 U
Hexachlorodibenzofuran	MS	NLS	1.5 U	0.59 U	0.76 U	0.55 U	0.62 U	0.83 U	1.1 0	0.76 U
			CHARLES TO					AT THE PLAN AND A DECIMAL OF A	SHEER BUILDING	
elphe-BHC	N.S.	NLS	0.024 UJ	0.00044 J	0.005 UJ	0.002 LU	0.0047 UJ	0.015 UJ	0.008 UI	0.014 UJ
deita-BHC	NLS	NLS	0.024 W	0.0042 LU	0.005 UJ	0.002 UJ	0.0047 UJ	0.015 UJ	0.008 UJ	0.014 UJ
Heptachior	NLS	NLS	0.024 UJ	0.0042 LU	0.005 UJ	0.002 UJ	0.0047 UJ	0.015 U.J	0.008 111	0.014 LU
Aldrin	NLS	NLS	0.011 J	0.0028 J	0.0059 J	0.002 UJ	0.0027 J	0.0093 J	0.0084 J	0.013 J
Heptechlor Epoxide	NLS	NLS	0.024 UJ	0.0042 UJ	0.005 UJ	0.002 UJ	0.0047 UJ	0.015 UJ	0.003 UJ	0.014 UJ
Endosulfan I	NLS	MLS	0.024 UJ	0.004 J	0.005 UJ	0.002 UJ	0.0047 U	0.015 UJ	LU 800.0	0.014 VJ
Diaidhin	0.00002	0.008	5300 648 J 7	1.U 5300.0	0.0065 J	0.0016.353	10.0054 14		Hadon Ji	0.027 UJ
4,4'-DOE	0.0022	0.027	DOTANI		0.014 NJ	0.0038 UJ	0.009 UJ	HILE BOST NOT	DO FRU	
Endrin	NLS	NLS	0.015 J I	0.0082 UJ	0.0045 J	0.0034 .	0.0019 J	0.0071 J	0.0059 J	0.013 J
Endosultan II	NLS	NLS	0.047 W	0.0082 UJ	0.0097 UJ	0.0038 UJ	0.009 U	0.029 W	0.016 UJ	0.027 UJ
4,4°-DOD	0.002	0.02	<b>REALTNI</b>	Webbel KH	TTO OSCINE			STORE IN	STRUCTURE STOL	THE MONT
Endosulian Suitate	NLS	NLS	0.047 UJ	0.0082 UJ	0.0097 UJ	0.0018 J	0.009 UJ	0.029 UJ	0.016 UJ	0.027 UJ
4,4'-DOT	0.001	0.007	STAGE J	0.0000	6.017.3	0.00003	ALL BARRY	2116868717	TERMONE DAT	
alpha-Chlordane (a)	0.0005	0.008	Formers ?	109 0034 J	5.30.0.28 J	0.0071-31	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.			
gamma-Chlordane (a)	0.0005	0.006		The objection of	0.017 0.1	0.0043 2 3	1 Horace (	1.1.4.0 894.1		
<b>学校的主义的问题</b> 的主义的主义和				hoof here a place					TA SCALL SUP	
Aroclos-1242	NLS	NLS	0.47 W	9.082 UJ	0.097 W	0.038 UJ	i 0.045 UJ	0.29 UJ	0.16 UJ	0.27 W
Aroclos-1248	NLS	NLS	0.3 J	0.082 J	0.13 J	0.035 J	0.055 J	0.3	0.18 J	0.35 J
Aroclor-1254	NLS	NLS	0.47 U	0.05 J	0.097 U	0.038 U	0.045 U	0.29 U	0.16 U	0.27 U
Aroclor-1260	NLS	NLS	0.65 J	0.06 J	0.11 J	0.03 j	L 90.0	0.29 J	0.29 J	0.48 1
Total PCBs	0.0227	0.18	TO DESIGN	85 0.182 <b>·</b>	0.24	0.085			200204782.1	ENER S
		Sale Zeller		the second second second second second second second second second second second second second second second s	ounds (my/kg)	and the second second second second second second second second second second second second second second secon				
Aluminam	NLS	NLS	13900	7940	3320	9100	2310	8820	12200	6830
Antimony	MLS	NLS	24 UJ	0.47 UJ	0.69 (1)	0.34 UJ	1.4 LU	0.63 W	0.78 U	0.66 1.1
Arsenic	8.2	70	1999 <b>17</b> 3	5.0 J	25 1	2.0 J				0.00 UJ 6.1 J
Barium	NLS	NLS	199	80.1	84.5 J	28.5 J	59,9	153	141	0.3 J 107
Beryhum	NLS	NES	0.78 J	0.49 1	0.16 J	0.51 J	0.10 J	0.52 )	0.71 J	0.37 J
Cadmium	1.2	9.6		5 42 C		0.78 J	0.00		0/1J	U.37 J

## Table 12 (continued) Sediment Analytical Data Erie Street Former MGP Site

						Sample 10/D	epth (N)/Date			
	Marine	Marine	TR2#IA	TR2#1B	TR2\$2A	1R2#28	TR2#3A	TR2#38	TR2MA	TR2#48
	Sediment	Sediment	(0-0.5)	(2.8-3.2)	(0-0.5)	(1.3-1.8)	(6-0.5)	(3.5-4.0)	(0-0.5)	(0-0.5)
Parameter	ERL	ERM	07/03/60	07/03/00	07/03/00	07/03/00	97/93/90	07/03/00	07/03/00	07/03/00
Calcium	NLS	NLS	6200	2340	1790	1400	1240 J	3010	5900	2720
Chromium	81	370	14.117	25.7	37.2	17.1	31.5			72.4
Cobalt	NAS	NLS	11.4 J	7.0 J	4.7 J	8.1 J	3.8 J	7.8 J	9.5 J	8.4 J
Copper	34	270	360	1. 1. C. A. C. A. C.			12 <b>54</b> (13		6 S.C. 232	148./
kon	NLS	NLS	31000	18900	9460	14900	7880	19000	24300	14500
Laad	48.7	218	S	28.1	273 1	28.1			10 MU 222 M	ALC: 262
Magneelum	NLS	NLS	8150	3700	2320	4900	1700	3920	6740	3190
Manganese	NLS	NLS	274	216	103	173	74.1	198	295	161
Mercury	0,15	0.71	· 建花的 [1]	0.33	1	0.018				100×042
Nickel	20.9	51.6	185.57.4.4.1	22.6 1	1. 19 20 7 J	27.8 .	<11.122.0 单量			1 1 40 1
Potasalum	NLS	NLS	2340 J	957 J	528 J	1530 J	330 J	1300 J	2380 J	901 3
Selenium	NLS	NLS	0.73 UJ	0.34 UJ	1.1 J	0.24 UJ	0.38 UJ	0.38 W	1.1.1	0,48 U
Silver	1	3.7		0.53 J	0.55 UJ	0.16 UJ	0.40 UJ	Circle 2593	(二)(1)(42.)(1)	APP 7.8 4
Sodium	MLS	NLS	14600	1930	2670	2020	1790	7450	8100	6070
Thelium	NLS	NLS	2.8 UJ	2.1 UJ	1.7 UJ	0.87 UJ	1.3 VJ	1.3 W	24 UJ	1.7 U
Venedium	NLS	NLS	57.1 J	22.7 J	11.1 J	15.3 J	9,4 J	33.6 J	40.8 J	27.9 J
Zinc	150	410	379733 F	101 J	198 .	68.4 J	11. See J. P	G於此時174.9月		() ( <b>) (232 J</b>
Cyanida, Total	NLS	NLS	R8	Rŝ	R8	RØ	RB	Rå	Rð	R8
				Total Organic	Cerbon (Ho/ka)	्य संस्थित स्थल				
TOC	NLS	NLS	90700	38100	17300	3310	8970	51400	52200	41200

				Table 12 (	continued)					
				ediment Ar	alytical Dat	8				
					mer MGP S					
			Shee 2	100 0951 0515 5 101 100		2249				
						Sample ID/De	antin initalian			
	Marine	Maxime	TR361A	TR3#18	TR382A	1783#2B	TRASA	TRASS	TR384A i	TR344B
	Sediment	Sediment	(0-0.5)	(1.0-1.5)	(0-0.5)	(4.3-4.8)	(0-0.5)	(3.5-4.0)	10-0.5)	(4.0-4.5)
Parameter	ERL	ERM	7/3/00	7/3/90	7/3/00	07/03/00	06/30/00	05/30/00	98/30/90	06/30/00
							and the second second second second second second second second second second second second second second second	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	NEW Cold	
herrander der Bergener vorden die Bergener Bergene	NLS	NLS	R7	R7	R7	R7	3.4 UI	4.6 W	6.3 UJ	4.5 UJ
Toluene	NLS	MLS	R7	R7	R7	0.066 J	0.21 J	4.8 UJ	6.3 UJ	0.24 J
Ethylbenzene	NLS	NLS	4.3 UJ	2.9 เม	6.7 UJ	0.079 J	0.27 J	4.6 UJ	6.3 UJ	4.5 UJ
Zviene (totel)	NLS	NLS	4.3 UJ	2.9 UJ	5.7 UJ	0.083 J	0.23 J	4.6 UJ	8.3 UJ	4.5 UJ
	nlo NLS	NLS	4.3 UJ	2.9 UJ	6.7 UJ	R7	3.4 W	4.6 UJ	6.3 11	4.5 UJ
Styrane Carbon Diaulfide	NLS NLS	NLS	9.5 03 R7	2.0 U3 R7	0.38 J	0.085 J	3.4 UJ	0.53 J	0.73 J	4.5 UJ
	NLS	NLS	R7	R7	87	R7	3.4 U	4.6 UJ	6.3 UJ	4.5 W
Chioroform			R7	R7 Ř7	R1	R7	3.4 UJ	4.6 UJ	6.3 UJ	4.5 UJ
Trichloroethens	NLS	MLS		≈7 2.9 UJ	8.7 U	R7 1	3.4 UJ	4.8 UJ	6.3 W	4.5 UJ
2-Hexanone	NLS	NLS	4,3 W 4,3 W	29 UJ 29 UJ	8.7 UJ 8.7 UJ	R7	3.4 UJ	4.6 UJ	6.3 UJ	4.5 W
Tetachionsthene	NLS	NLS			ar us Santair an		3.* 03   31999933339993			TE LORD THE
				0.008 J	0.43			SIGNOR TO		0.84 1
Nephthalene	0.18	2.1	0.12 J	0.005 J	104 10					1-087J
2-Melinyknaphthalene	0.07	0.87		0.009 J 0.041 J		0.84 8.4				
Acanaphthylene	0.044	0,84	<u></u>	0.041 J 0.005 J						101.181
Aconsphinene	0.016	0.5	2000 (1797) 			ter fan ster ster ster ster ster ster ster ster	Control of the second second second second second second second second second second second second second second	n de Reserved. References	and the second second	
Fluorene	0.019	0.54	0.049.1	0.38 U	0.42.1					
Phenenihrene	0.24	1.5	9.21.2	0.013 J		- <b>8</b> .		<u>anti da 65 Anteri</u>	er den se se a de la se	-02101
Antiracene	0.0853	1.1	2027	L ero.o	45.					actoria actoria
Flucranthene	0.6	5.1	3,1.0	0.032 J	17	· [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2				6.913-20-2040-22 616-2-109-12 - 3-5
Pyrene	0.685	2.6	<u>. (parte k</u> i	0.17 J	P STATE OF				1. 1	4-07 <b>91-0-2</b>
Benz(a)anthracene	0.281	1.8		0.056 J		Less Excerning	and the second states and the	a na sana sa		2.
Chrysene	0.384	2.8	in the state	0.049 J			3.3 J	23 J	5.7 J	141
ອີອດຂວ(ຽ)ຂັ້ນວະລາຢາລາອ	NLS	NLS	0.58 J	0.035 J	25 J 3 J	1.2 J 1.7 J	3.2 J	2.6	7.2.3	2.1 J
Banzo(k)huoranihene	NLS	NLS	0.76 J	0.041 J		29.1712				
Benzo(a)pyrene	0.43	1.8		0.062 J 0.03 J	1.8 J	1.2 J	L-16ER1876-1-1 2.5 J	1.6 1	4.7 J	<u>14 0.95 1</u>
Indeno(1,2,3-cd)pyrene	NLS	NLS	0.68 J				085.215			
Dibenz(a,h)enthracene	0,0634	0.26	0.28	0.011 J		1.4 J	2.9 1	1.6 J	5 J	1.58 J
Benzo(g.h.l)perviene	MLS	NLS	0.78 J	0.033 J 0.81	2.1 J	1.4 J Re <b>142,94</b> S	201 1977-1985 AU	1.0.3		7.00 7
Total PAHs	4.022	44.79			Compounds 18					and the second state of the second
		SOCIAL C	Other Seath	0.003 J	8.9 U	1.6 U	3.8 U	2.6 U	6.7 U	2.5 U
Phenol	NLS	NLS	0.84 U	1	6.9 U 6.9 U	1.6 U	3.8 U	2.60	8.7 U	2.5 U
1,4-Dichiorobenzana	NLS	MLS	0.84 U	0.38 U	59U 69U	1.6 U	3.8 U	2.6 U	6.7 U	2.5 U
Benzyl alcohol	NLS	NLS	0.84 U	0.38 U		1.60	3.8 U 3.8 U	260	8.7 U	0.1 J
4-Methylphenol	NLS	NLS	0.020 J	0.38 ()	0.36 J	: 1.6 U 1.8 U	3.6 U	2.6 U	6.7 U	2.5 U
lacphorone	NES	MLS	0.84 U	0.38 U	6.9 U	1.8 U 7.8 W	3.6 U 18 U	13 U	33.0	2.5 U 12 U
Senzoic ackl	NLS	NLS	4.1 U	1.8 UJ	34 U			0.75 J	0.56 J	0.54 J
4-Chiomaniline	NLS	NLS	0.84 U	0.38 U	0.73 J	1.6 U	0.86 J	2.6 U	0.50 J 6.7 U	2.5 U
4-Chioro-3-methylphenol	[ NLS	NLS	0.84 U	0.38 U	6.9 U	1.8 U	38 U	0.094 j	6.7 U	25 U 25 U
2-Chloronaphthelene	NLS	NLS	0.84 U	0.36 U	891	1.6 U	3.8 U	0.094 J 2.6 U	6.7 U	25 U
Dimathylphthalate	NLS	NLS	U 48.0	0.38 U	<u>6.9 U</u>	i 1.6 U	i 3.8 U	1 20 0	C. / U	

Page 7 of 21

## Table 12 (continued) Sediment Analytical Data Erle Street Former MGP Site

	1		[		****	Sample ID/De	epth (R)/Data			
	Marine	Marina	TRIMA	TR3#18	TRISAZA	TR3#28	TRAMA	TRIMIS	TRIMA	TR3MB
	Sectionent	Sediment	(0-0.5)	(1.0-1.5)	(0-0.5)	(4.3-4.5)	(0-0.5)	(3.5-4.0)	10-0.5}	(4.0-4.5)
Parameter	ERL	ERM	7/3/90	7/3/00	7/3/09	07/03/09	08/30/00	04/30/00	06/30/00	06/30/00
4-Nitrophenol	NLS	NLS	4.1 U	1.8 U	34 U :	7.6 U	18 U	13 U	33 U	12 U
Okenzofuran	NLS	NLS	0.045 J	0.38 U	0.6 J	0.48 J	3.2 J	1.8 J	1.7 J	0.74 3
Diethylphthelate	NLS	NLS	0.84 U	0.38 U	8.9 U	1.6 U	3.8 U	26 U	8.7 U	; 2.5 U
Carbazole	NLS	NLS	0.059 J	0.38 U	0.35 J	0.17 J	0.91 j	0.63 J	0.68 J	0.23 J
Di-n-bunylohthalate	NLS	NLS	0.84 U	0.38 U	5.9 U	1.8 U	3.8 U	26 U	6.7 U	2.5 U
Butylonzylonthalate	NLS	NLS	0.088 J	0.35 U	0.68 J	1.8 W	3.8 UJ	0.11 J	1.1 J	0.31 J
bis(2-Eihylicxy)chihalata	NLS	NLS	2.5 6	0.38 U	40 B	3.7 J	15 J	7.3 B	40 j	10 B
Ol-n-octylphihalate	NLS	NLS	0.08 1	0.38 U	1.6 .]	1.0 W	0.4 J	0.23 J	1.5 J	L 8.0
					ha (aspka)				HERICK SHE	
Tetractionocibenzo-o-dioxin	NLS	NLS	0.6 U	0.57 U	1.1 U	0.71 U	0.00071 U	0.00098 U	0.0013 U	0.00088 U
Tetrechlorodibenzofuran	NLS	NLS	0.6 U	0.57 U	1.1 U j	0.71 U	0.00071 U	0.00096 U	0.0013 U	0.00088 U
Haxachiorodibenzoluran	NLS	NLS	0.6 U	0.57 U	1.1 U	0.71 U	0.00071 U	0.0043	0.0013 U	0.00086 U
				Hanna Parata			STE DE BARR		SCHEME 19	
sina-8HC	NLS	NLS	0.0021 W	0.0019 UJ	0.0081 UJ	0.002 UJ	0.0051 UJ	0.0068 UJ	0.0081 UJ	0.0062 UJ
dente-BHC	NLS	NLS	0.00044 J	0.0019 UJ	0.014 J	0.002 UJ	0.0051 W	0.0068 UJ	0.0081 UJ	0.0062 UJ
Haplachlor	NLS	NLS	0.0021 UJ	0.0019 UJ	L 10.0	0.002 UJ	0.0051 UJ	0.0068 U	0.0081 UJ	0.0062 UJ
Aldrin	NLS	NLS	0.0016 J	0.0019 U	0,01 J	0.002 LU	0.0051 U	U 5800.0	0.0081 U	0.0062 U
Heptachlor Epoxide	MLS	NLS	0.0021 U	0.0019 U	0.0081 U	0.002 UJ	0.0051 Ú	0.0068 U	0.0081 U	0.0062 U
Endosullan I	NLS	NLS	0.0021 U	0.0019 U	0.0081 U	0.002 UJ	0.0051 UJ	0.0068 UJ	0.0081 UJ	L 8800.0
Dielarin	0.00002	0.008	0.0041 UJ	0.003a UJ	0.016 UJ	0.0039 (1)	0.0008 W	0.013 UJ	0.018 UJ	0.912 UJ
4.4'-00E	0.0022	0.027	TOMENU	0.0938 (/	10.087 N.I	0.0039 UJ	0.0088 W	CO37 0	0.016 ປມ	0.06 NJ
Encirin	NLS	NLS	0.00051 J	0.0038 Ú	0.018 U	0.0039 UJ	0.0084 J	0.0083 J	L 10.0	0.012 J
Endosullan li	NLS	NLS	0.0041 U	0.0038 U	0.018 U	0.0039 UJ	0.0098 U	0.013 U	0.018 U	0.012 U
4,4'-000	0.002	0.02	FEDDAL NG	0.003e UJ	aons uj	0.0039 UJ	O.038 M.L	i i i o o su	il i sog hu	1 ²⁷
Endosultan Sulfata	NLS	NLS	0.0041 UJ	0.0038 UJ	0.016 LU	0.0039 UJ	0.0098 U	0.013 U	0.016 U	0.012 U
4,4'-DOT	0.001	0.007	R	0.0038 UJ	R	0.0039 UJ	R	R	R	R
alpha-Chlordane (a)	0.0005	0.008	S. Shotes C.	0.0019 V	0.062 J	0.002 UJ	0.0 <b>3</b> 9 J	建物的 40 %	278 8 0.037 J	0.066 J
gamma-Chiordene (a)	0.0005	0,008	A 6020 J	0.0019 U	570,035 J	0.002 UJ	0,023 118	22.0022.1	1 0.024 J	1. 160.0 J
			Patyo	uhlarimatikal Bilat	vénylé (PC8s) (n			和学生法的		
Arodor-1242	I NLS	NLS	0.018 J	0.038 UJ	0.29 J	0.039 UJ	0,098 U	0.13 U	0.16 U	0.41 J
Arockar-1248	NLS	NLS	0.041 U	0.038 U	0.078 U	0.039 U	0.16 J	0.31 J	0.29	0.12 U
Aroclor-1254	NLS	NLS	0.024 J	0.038 U	0.33 J	0.039 U	U 860.0	0.13 U	0.18 U	0.12 U
Arocior-1260	NLS	NLS	0.016 J	0.038 U	0.44 J	0.039 UJ	0.43 J	0.48 J	0.98 J	0,7 J
Totel PCBs	0.0227	0.18	0.087	ND	2001. <b>100</b> 1. //	ND	e response	15.55 Q.72	F-14128	1. S. 1910
A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A	, may in the state	Think the late me	Contractor and the second second of the	horparke Com	çiniçin (mçAq)			and the second second		Constant Con
Alminon	NLS	NLS	4930	2980	17900	5130	7570	9140	9750	13700
Antimony	MLS	NLS	0.51 UJ	0.42 UJ	2 เม	0.48 UJ	1.5 UJ	0.61 UJ		2.3 U.
Arsenic	8.2	70	5.4 J	0.85 J	7.20.210.14	5.1 J	5.6	248210.3P-3	19976244	102
Barlum	NLS	NLS	65.9	5.2 B	251	55.4	108	166	131	240
Beryllium	NLS	NLS	0.3 J	0.18 J	0.97 J	0.45 J	0.82 U	0.87 U	1.1 U	1.2 J
Cadimkum	1.2	9,6		0.12 W		- 636 1. <b>1.4</b>	1. 18 32 7 4 18		131 477	443 8.8 ···

Page 8 of 21

	nona katera na katera  <i>il</i>		ediment A	continued) nalytical Dat rmer MGP S						
#*************************************	1	* }	1			Sample (D/D	epth (RADate			
	Marine	<b>Marine</b>	TRAMA	TR3#16	TR382A	TR3#28	TROPSA	TR383B	TR384A	TR3#48
	Sediment	Sedment	(0-0.5)	(1.0-1.5)	(0-0.5)	(4.3-4.8)	(0-0.5)	(3.5-4.0)	(0-0.5)	(4.0-4.5)
Parameter	ERL	i erm	7/3/00	7/3/00	7/3/00	67/03/00	06/30/00	66/30/00	08/36/00	06/30/00
Calcium	NLS	, NLS	1220	146 J	6720	4140	2190	3740	4710	5000
Chromium	81	370	LOP	4.7 J	216 ]	29.2	\$7.1		79.5	130
Cobsk	NLS	NLS	3.3 J	1.2 1	12.4 J	6.9 J	5.7 J	ð.9 J	7.2 J	9,8 J
Copper	34	270	2 201	28 J	4 <b>20</b> J 🔊	11,62.6	144		(A) 172	Sec. 3.334
Iron	NLS	NLS	11800	5140	37000	13100	16700	22900	26200	28600
Lesd	48.7	218	270	3.7						<b>91, 27, 870</b>
Magnesium	NLS	NLS	1750	266 1	8800	3840	2720	4370	5830	8300
Manganese	MLS	NLS	83.3	16.7	397	148	123	177	201	276
Morcury	0.15	0.71	2. 021	0.0083 J	SS 127	26.979				ing said i
Nickel	20.9	51.6	6.5.6° 27.8° 37.0	3 J	<b>66.8</b> J		US 80.6 (%)	6891 U 197 S 2	(***) <b>:</b>	16 <b>85.8</b> (***
Potassium	NLŚ	NLS	484 J	135 U	2970	601 J	1020 J	1560 J	1610 J	1960 J
Selenium	NLS	NLS	0.76 UJ	0.68 UJ	2.6 J	0.74 J	1.6 U	23U	0.75 U	1.5 U
Silver	1	3.7	Sound of the second	0.2 UJ		0.84 J	1.1011		المسمسة فالطواعظ والانتجاز والتجر	唐、 <u>2</u> 学57 北。
Sodium	NLS	NLS	2160	1010	7480	1180	2710 J	6300 J	6260 J	1880 J
Thalkim	NLS	NLS	0.85 UJ	0.76 UJ	1.7 J	1.2 W	1.6 U	1.5 U	4.6 U	2.8 U
Vanadium	NLS	NLS	19.4 J	7.8 J	59.5 J	19.3 J	32.9	35,4	39.0	47.4
Zinc	150	410	- A. 220.1	13.1 W		1. (1991) ISO U		昭也。 <u>)</u> 日	3 679 - S	<b>600</b>
Cyanida, Total	MLS	NLS	RI	R	; R	R	R	R	R	R
				Total Organic	Carbon (mg/kg)			<b>和中的方法</b> 的推荐		
TOC	1 NLS	NLS	1380	1130	51600	28500	38000	63000	57800	61400

Page 9 of 21

					continued)	an na hAnna an hAnna an hAnna an hAnna an hAnna an hAnna an hAnna an hAnna an hAnna an hAnna an hAnna an hAnna		an in an	9469404 <u>4494</u>	
			83 83	iediment Ar	naiytical Dat	3				
			En	ie Street Fo	rmer MGP S	lto				
				****		Sampla ID/D	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			
	Marine	Marine	trasia i	TR4#18	TR452A	TR4#2B	TRARIA	TR4\$38	TR484A	TR4#4B
	Sedment	Sediment	(0-0.5)	(4.5-5.0)	(0-0.5)	(4.0-4.5)	(8-0.5)	(2.5-3.0)	(0-0.5)	(2.0-2.5)
Parameter	ERL	ERM	06/29/00	08/29/00	08/29/60	06/25/60	08/30/00	06/30/00	6/36/00	06/30/00
		44. 44. 81.	A STAND	r Organis Comp	ounds (VQCa) (			(中心)的 法规		
Benzane	MLS	MLS	5.4 W	5 UJ	4.1 W	3 U (	4.7 UJ	3.4 W	5.3 VJ	2.8 U
Toluene	MLS	NLS	0.25 J	0.72 J	0.4 J	0.26 J	4.7 W	0,51 J	5.3 VJ	0.13 <i>J</i>
Ethylbenzene	NLS	NLS	5.4 UJ	5 UJ	4.1 UJ	3 U	4.7 UJ	3.4 UJ	5.3 UJ	2.8 U
Xylene (totat)	NLS	NLS	5.4 W	<u> </u>	4.1 W	30	4.7 UJ	3.4 UJ	5.3 UJ	2.8 U
Styrene	NLS	NLS	5.4 UJ	ទ បរ	4.1 UJ	3 U	4.7 UJ	3.4 UJ	5.3 UJ	2.8 U
Carbon Disulfide	NLS	MLS	1.2 J	5 UJ	4.1 W	3 U	4.7 UJ	0.27 J	0.81 J	2.8 U
Chioroform	NLS	NLS	0.059 J	5 W .	4.1 UJ	30	4.7 UJ	3.4 UJ	5.3 UJ	2.8 U
Trichloroethene	MLS	NLS	- 5.4 W	5 UJ	4.1 UJ	30	0.26 J	3.4 UJ	5.3 W	2.8 U
2-Hexanone	NLS	MLS	5.4 U	<u> </u>	4.1 WJ	ំ នយ	4.7 UJ	3.4 UJ	5.3 W	2.8 U
Tetrachioroethene	NLS	MLS	5.4 U	.ទ បរ	. 4.1 UJ	żυ	0.13 J	3.4 UJ	5.3 W	2.8 U
	34 - E		TO Principal	Arcenide Horis	ocerbone (PAIn	I SHOW DO		Gradiec Sale		和保持公司推荐
Nachthalene	0.18	2.1	0.18 1	2 0 3 1	KOR HIT	11 St. 179-1	<b></b>	12.24.027	HUR DOTH'S	0.54 J
2-Methylasofthalene	0.07	0.67	U.S. D.G	SS 021.1	Selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the select	4.4	C (C P2 (Book odd))	1.000		1-10005 J
Aconopritivieno	0.044	0.84		P 0.83 J		0.81				1. 1. 20.68 12
Acenaphtheme	0.018	0.5		1.8 .	211	38	GEN SAN	Name of Contest		A 9800.38 1
FLORE	0.018	0.54	0.32		1.1.1			10.00		34.0.32.
Phananthrana	0.24	1.5	36.20			Tarahar ang sang		CITES Company	e. 78.9	22
Anhacena	0.0853	1,1		14 21 14						
Fucianthene	0.8	5.1	FOR A STREET	10		572 211		2000 March 1977		Bills Pall St. da.
Pyrene	0.685	2.0	3.0 J		10.2	2	5		6. N. M	1.688.1
Benzis)entivecene	0.261	1.6	1241	38999 <b>46</b> Juli				Success and see	in an President	12.141
Chrysene	0.384	2.8								3.4.1
Sanzo(b)fuoranthane	NLS	NLS	2.5 J	3.4 J	8.3	37.1	4.9 ]	3.5	3.8 .1	1.4 J
Benzo(k)Ruoranthene	NLS	NLS	2.6 J	4.6 J	6.3	6.]	8.2 J		4.4 J	1,8 J
Benzo(a)pyrana	0.43	1.6	<b>BARE T</b>	1.00	THE STREET	2278219		HINGS AND	19. 19. 19	
Indeno(1,2,3-cci)pyrene	NLS	NLS	28 J	4.2 J	7	4.4 1	5.1 J	3.8	3.5 J	
Dibenz(a,n)anthracana	0.0634	0.26	THE							79 0.62 J.Y.
Benzo(g,h,i)perviene	NLS	NLS	. <u>1913</u>	11 5.1 J	ABUTALIA TITLIALA 7.5	5.2 J	5.7 J	4.3	1 8.E	1.7 J
Total PAHs	4.022	44.79	COLUMN TO A						17. 8020 ⁻¹ .	27.24
		L. L.		olatilé Organic		OCe) (mp/hg)		and and the second second second second	an and a second second second second second	LIN THE
ى ئە ئىسىسىنىڭ سىيەل بىلىنىشىنىڭ ئۇلغۇنلىرىكى، قۇلارد مىزىقىز ئۇرىغا سىيەت كە	NLS	NLS	3.2 U	5.2 U	0.18 J	3.3 U	10 U	3.3 U	0.076 J	0.81 U
Phonol	NLS	NLS	3.20	5.2 U	0.48 J	3.3 U	10 U	0.24 J	4.6 UJ	0.81 U
1,4-Dichlorobenzene	1	NLS	3.20	5.2 U 5.2 U	4.7 U	3.3 U	10 U	3.3 U	4.6 W	0.81 U
Benzyl alcohol	NLS	NLS	0.21 J	5.2 U	0.36 J	0.17 J	10 U	3.3 U	0.23 J	D.038 J
4-Methylphanol	NLS		3.2 U	52U	4.7 U	3.3 U	10 U	3.3 U	4.6 UJ	0.81 U
isophorone	NLS	MLS	3.2 U 16 U	5.∡ U 25 U	23 U	3.3 U 16 U	48 U	16 U	22 UJ	0.12 J
Benzoic acid	NLS	NLS	1		. 23 U 4.7 U	0.34 J	1 0.99 J	3.3 U	4.8 UJ	0.12 J 0.81 U
4-Chioroanilma	NLS	NLS	3.2 U	6.2 U		0.34 J 3.3 U	10 U.97 J	3.3 U	4.6 UJ	0.81 U
4-Chloro-3-methylphonol	NLS	NLS	3.2 U	5.2 U	4.7 U			3.3 U 3.3 U	4.6 UJ	0.61 U
2-Chioronaphthalene	NLS	NLS	3.2 U	5.2 U	4.7 U	3.3 U	10 U 10 U	3.3 U	4.6 UJ	0.81 U
Dimethylphthalate	NLS	NLS	3.2 U	5.2 U	4.7 U	3.3 U	10 U	: 3.3 U	, 4.00 UU	1 V.51 U

Page 10 of 21

## Table 12 (continued) Sediment Analytical Data Erie Street Former MGP Site

	1	1				Sample 10/De	pth (ft)/Date			
	Marine	Siarina	TR481A	TRAFIB	1R4#2A	TR482B	TR4#SA	TR4\$38	TRAMA	TR4#48
	Sectment	Sediment	(0-0.5)	(4.5-5.0)	10-0.51	14.0-4.5)	(0-0.5)	(2.5-3.6)	(0-0.5)	(2.9-2.6)
Parameter	ERL.	ERM	08/29/00	08/29/09	06/29/00	06/29/00	08/38/00	06/30/00	6/30/00	06/30/00
4-Nitrophenol	NLS	NLS	16 U	25 U	23 U	18 U	48 U	16 U	22 U	3.9 U
-meoprano: Dibenzoluran	NLS	NLS	0.16 J	0.42 J	1.1 J	1.7 J	7.9 J	0.8 J	0.22 J	0.18 J
Disthylohthalate	NLS	NLS	3.2 U	5.2 U	4.7 U	3.3 U	10 Ü	3.3 U	4.6 U	0.81 U
Carbazola	NLS .	NLS	0.42 J	0.72 J	1.6 .	1.5 J	1.9 J	0.72 J	0.47 J	0.12 J
	NLS	NLS	3.2 U	5.2 U	4.7 U	3.3 U	10 U	3.3 U	4.5 U	0.81 U
Di-n-bulyiphtheiste	NLS	NLS	0.46 J	0.71 J	0.65 J	3.3 UJ	10 U	SSU	0.82 J	0.81 W
Butylbanzylphihelata	NLS	NLS	18 J	21 B	17 J	12 J	16 B	3.3 U	23 8	0.74 J
bis(2-Einylhexyl)phihalate	NLS	MLS	0.91 J	0.78 J	1.5 J	0.21 J	0.41 J	330	. 1.1 J	0.81 UJ
01-n-octylphthalale				NER CONTRACTOR						
		3 to 1 in the line is a summer		0.00094 U	0.00082 U	0.00088 U	0.00077 U	0.00088 U	0.0012 U	0.00062 U
Tetrechlorodlbenzo-p-dioxin	MLS	NLS	0.0013 U		0.00082 U	0.00088 U	0.00077 U	0.00088 U	0.0012 U	0.00082 U
Tetrachlorodibenzofuran	NLS	NLS	0.0013 U	0.00094 U		0.0024 J	0.00077 U	0.0011	0.0012 U	0.00082 U
Hexachiorodibenzofuran	NLS	I MLS	0.0013 U	0.00059 J	0.00082 U	NULL PROPERTY	COUNT O			
	18 A.				alandara and a sufficient of a state a sufficient of	الأقليمير بكري والتحسير بمريد والراري	0.0054 W	0.022 UJ	0.018 W	0.021 U.
alpha-BHC	MS	NLS	0.0012 J	0.0084 UU	0.014 W	0.0045 UJ	0.0054 LU	0.022 UJ	0.018 UJ	0.021 U.
delte-BHC	NLS	j NLS	0.0074 UJ	0.0064 W	0.014 UJ	0.0045 UJ			0.018 UJ	0.021 U.
Haptachlor	NLS	NLS	0.0074 U	0.0084 W	0.014 LU	0.0045 UJ	0.0054 UJ	0.022 UJ	0.016	0.021 U
Akdrin	NLS	NLS	0.0074 U	0.0064 U	0.014 U	0.012 J	0.0054 U	0.0084 J		
Heptachlor Epoxide	I NLS	NLS	0.0074 U	0.0064 U	0.014 U	0.0045 U	0,0054 U	0.022 V	0.018 U	0.021 U
Endosullen I	NLS	NLS	0.0074 UJ	0.0084 UJ	0.014 UJ	0.0045 UJ	0.004 J	0.022 UJ	0.018 U	0.021 U.
Diekdrin	0.00002	0.008	0,0099.1.	. <b>0.0000 J</b> .	(***: <b>901</b> - <b>(</b> **)	131 <b>0.0064</b> , 1		0.042 UJ	0.034 UJ	0.041 U.
4,4-DDE	0.0022	0.027	0.014 UJ	0.012 UJ	0.027 UJ	0.0087 UJ	0.01 UJ		0.0057 J	0.097 U. 0.007 J
Enchin	NLS	NLS	0.0054 J	0.0082 J	0.0065 J	0.0048 J	.0.019 J	0.042 UJ	5	0.007 J 0.041 U
Endosultan II	NLS	NLS	0.014 U	0.012 U	0.027 U	0.0087 U	0.01 U	0.042 U	0.034 U	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
4.4-000	0.002	0.0Z	0.000 NJ		1. 10 . 0. 05 . N. F	S TONS N	الانتفاد المركب المتحمد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع		and a second to a second and a second as	Contraction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the
Endosullan Sulfale	NLS	NLS	0.014 U	0.012 U	0.027 U	0.0087 U	0.01 U	0.042 U	0.034 UJ	0.041 U
4.4'-DDT	0.001	0.007	R	R	8	R	R	R	ilgh able dh	R
siphe-Chlordane (a)	0.0005	0.008	1.4.0.045	3-5-00 <b>46</b> J	1. 200	1 800 B	Sector States and the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector o	0.0145	COURSE AND	0,0005.1
gamma-Chiordane (a)	0,0005	0.006	. 0.026 J	0.020.4	0,0033		<u>, 12, 092</u> , 12,			p 10,0253
			Martin Part	checking and	on As PCBs (		於或自時間的	時期時期時代的時期		
Aroclor-1242	NLS	NLS	0.14 U	0.12 U	0,11 U	0.23 J	0.31 J	0.32 J	U 880.0	0.081 U
Arador-1248	NLŠ	NLS	0.25 J	0.33 J	0.3 J	0.087 U	0.26 U	0.21 U	0.15	0.092
Arocior-1254	NLS	NLS	0.14 U	0.12 U	0.11 U	0.087 U	0.26 U	0.21 U	0.26	0.081 U
Arocior-1280	NLS	NLS	0.39 J	0.54 J	0.37 J	0.19 J	0.66 J	0.071 J	0.35 J	L 800.0
Total PCBs	0.0227	0.18	10.84	H-16. 187	NOT DO	0.42			it is a la factor	
				Mortranic Com	divinds (mà/m			an subbra		
	I NLS	NLS	10000	10800	9730	2900	4590	2140	15400	6350
Aluminum	NLS	NLS	0.74 UJ	1.3 W	1.5 UJ	0.48 UJ	0.64 Ü	0.63 W	1.4 W	9.7 J
Antimony	8.2	70	100		7.5	3.3	7.9	2.7	1965.5128 J.7	5,2
Arsenic	NLS	NLS	120	1.51.50 101075361153	160	62.2	171	55.8	209	94.6
Bartum		NLS	1.10	1.2.1	1.0 U	0.46 U	i 0.87 U	0.38 U	0.85 J	0.59 L
Berylium Cedmium	NLS 1.2	9.6		2 P 1 (MP 14	THE R. O.	when a summer a summer of the summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer summer s	1	ANGNO 2318 NOV	1420 J.2 J	1 0.70 J

ben hennen beren beren beren en state beste b					continued)					
			10 A	lediment Ar	alytical Dat	2				
			Er	le Street Fo	rmer MGP S	Ite				
						Semple ID/D	with (AUT) and		**************************************	
	Marina	Marine	TRAMA	TR4#18	TRABZA	TR4#26	TRACIA	TRASS	TR484A	TR4548
	Sediment	Sediment	(0-0.5)	(4.5-6.0)	(0-0.3)	(4.0-4.5)	(0-0.5)	(2.5-3.0)	(9-0.5)	(2.0-2.5)
	ERL	ERM	08/29/00	06/28/08	06/29/00	06/29/00	08/30/00	06/30/80	8/38/00	08/30/00
Parastelor	NLS	NLS	3260	5300	4930	1890	2200	1120	5120	1250
Celcium	1	370	74.4					42.2		30,9
Chromium	81		6.6 J	8.2 J	7.1 J	3.4 J	4.5 J	2.8 J	10.6 J	3.9 J
Cobalt	NLS	NLS 270	200			5.55 <b>52</b> 5	CONTRACTOR OF A	Solution and		1.1.1
Copper	34		22500	33000	22100	8770	14200	5590	30100	12800
iron	NLS	NLS			500 A					
Lead	48.7	218	- 1 - S ALLER AND ALL RELIA		4840	1480	2640	1030	7560	2180
Magnesium	NLS	NLS	5570	4500	242	75.5	140	64.2	286	129
Manganese	MLS	NLS	172	230	i drie Verstanderskappenskappenskappenskappenskappenskappenskappenskappenskappenskappenskappenskappenskappenskappenska	NULL CONTRACTOR				1. J. 1. 198
Mercury	0.15	0.71								
Nickel	20.9	51.6				405 J	842 J	287 J	2740	851 2
Potassium	NLS	NLS	1690 J	1360 J	1550 J	405 J 0.91 U	1.9 U	0.73 U	1.9.J	1.0 U
Selonium	NLS	NLS	1.7 U	2.9 U	2.4 U			0.86 J		
Silver	1	3.7		1997 <b>69 1</b>			3620 J	1280 J	8480	1870 J
Sodium	NLS	MLS	6970 J	345 J	5760 J	978 J		1.8 U	1.6 UJ	25 U
Thakum	NLS	NLS	5.0 U	2.0 U	1.5 U	1.2 U	1.8 U		52.3 J	16.7
Venedium	NLS	NLS	35.7	40.4	39.1	15.5	21.0	o.o Norr <b>Inge</b> rige	1000	128
Zhc	150	410	1997 <b>- 19</b>			Kerself States			R3	R8
Cyanida, Total	NLS	MLS	RS	1.34 J	R8	j R8	R8	R8	071 101-101	
				Jow One		WERE NOT		20000	58200	27800
TOC	NLS N	MLS	68500	32400	92400	31200	128000	29600	00409	21010

-

-

**NR**-

## Table 12 (continued) Sediment Analytical Data Erle Street Former MGP Site

.

						Sampla 10/Dr	epth (ft)/Date			
	Marine	Martna	TROPIA	TR5#18	TRSRA	TR5#28	TROMA	TRS#JB	TRSMA	TR6#48
	Sediment	Bediment	(0.3-0.8)	(4.3-8.0)	(0-0.5)	(2.3-2.8)	(0-0.5)	(1.0-1.5)	(0-0.5)	(1.8-1.5)
Parameter	ERL	ERM	06/28/80	06/29/00	06/29/00	06/23/00	06/29/00	06/29/09	66/29/00	06/29/00
Photo Million (1987)		-		e Osperio Cóm	Sunda (VOCa) (		1. 1. <b>1. 1. 1</b> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1. <b>2</b> - 1 1 1 1 1 1 1 1		
i <u>alerte de la constance</u> Benzene	NLS	MS	0.38 J	4.6 UJ	5.2 UJ	0.62 J	3.9 W	3.7 UJ	4 UJ	3 UJ
Toluana	NLS	NLS	3.5 W	4.6 LU	5.2 UJ		3.9 ÜJ	0.31 J	4 03	3 UJ
Ethybenzone	NLS	NLS	3.5 U	1.5 J	0.87 J	25 J		37 W	4 4 4 1	3 W
	NLS	NLS	3.5 0.1	2.3 J	0.4 J	14 J	3.9 UJ	3.7 W	4 UJ	3 UJ
Kylene (lotal)	NLS	NLS	3.5 UJ	4.8 UJ	5.2 UJ	9.4 UJ	3.9 UJ	3.7 W	*w	ំ 3 🔱
Slynuxe	MLS	NLS	3.5 W	0.24 J	5.2 UJ	9.4 ÜJ	0.4 J	3.7 W	0.55 J	3 ÜJ
Carbon Disulfide	NLS	MLS	0.053 J	4.6 UJ	5.2 01	9.4 U	3.9 UJ	3.7 UJ	4 UJ	់ 3 🔱
Chloroform		NLS	3.5 U	4.6 UJ	5.2 Uj	9.4 UJ	asw	3.7 UJ	4 ÚJ	់ ១ឃ
Trichloroethene	MLS		3.5 UJ	4.6 (1)	5.2 W	9.4 W	3.8 UJ	3.7 UJ	a UJ	3 (J)
2-Hexanone	NLS	NLS	3.5 W	4.6 UJ	5.2 UJ	8.4 LU	3.9 1	3.7 W	4 ÜJ	3 U.
Telrachioroethene	NLS	NLS					<b>GERREN</b>		THE SAME SHE	
这些方 <b>把</b> 这些济水的。						All a series of the			A REPORT OF A	AND CHEE
Nephthalone	0.16	2.1	Sangerig						and the assessment	September 2
2-Melhyinaphinalene	0.07	0.67	2-1-24 0-1							
Acenaphiliylene	0.044	0.64	1. 95 O. 7		Secondar (a/, se lavi				industria de la companya de la comp Esta de la companya d	SHEPHIA F
Acenephthene	0.010	0.5	3.044 6.430	all filling of the set	and the second second					
Fluorene	0.019	0.54	State 14		-5					
Phenantwone	0.24	1.5								
Anthrecene	0.0853	1.1		2 A 19						
Fkioranthene	0.0	5.1	<b>马和公司和</b> 各国家			ete (Leege Dege				
Pyrene	0.865	2.8	NESS AROSE						an an an an an an an an an an an an an a	
Benz(a)entraceno	0.261	1.6		Bost for the Astro	Shirefind A.e.	2. S. F. F.				- 10 m 17
Chrysene	0.384	28							2 J	0.38 J
Benzo(b)fluoranthene	NLS	NLS	2.1 J	4.1 J	5,3 J	12 J	0.92 .	2.7 J	21 J	0.49
Benzo(k)iluoranihene	NLS	NLS.	2.8 J	5.7 J	7 3	14 .]	1.5 J	4.3 J	Z.7 J	v.++
Banzo(a)oyrene	0.43	1.6	14.283 C 13	a logo a strategy and a strategy and a strategy and a strategy and a strategy and a strategy and a strategy and	PRIME AND P				1.8 J	E.G.I. <b>E.E</b> .B.B 0.42
indeno(1,2,3-co)pyrene	NLS	NLS	2.4 J	4.7 3	4.3 J	9.1 J	1.3 J	3 ]		SAROARV
Dibenz(a.h)antivacena	0.0634	0.26	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	P. 201 3 1	C. William 192 197	Certa 2 Anti	a state and the second second second	CONTRACTOR AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI		<u>0.51</u> 0.51
Benzo(g,h,i)penyiene	NLS	NLS	2.8 J	5.8 J	5.3 J	12 J	1.6 J	3.8 J	1.7 J	
Total PAHs	4.022	44.79		8 . S.	1987 <b>283</b>					and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
		C. MARTS	Other Same	wide their	Competences (\$					0.4 U
Phanol	I NLS	NLS	2.3 U	6.3 U	16 U	29 ()	1.7 U	3.7 U	220	
1.4-Dichiorobenzene	MLS	NLS	2.3 U	6.3 U	16 U	29 U	1.7 U	3.7 U	2.2 U	0.4 L
Senzyl alcohol	NLS	NLS	2.3 U	8.3 Ú	16 U	29 U	1.7 U	3.7 U	220	0.4 L
4-Methylphonol	NLS	NLS	2.3 U	6.3 U	16 U	29 U	1.7 U	3.7 U	0.32 J	0.4 L
isophorone	NLS	NLS	230	6.3 U	16 U	¹ 29 U	1.7 ป	3.7 U	2.2 U	0.4 L
Benzoic acid	NLS	NLS	110	31 U	78 U	140 U	830	18 U	11 UJ	1.9 ไ
<b>1</b>	NLS	NLS	230	1.2 J	0.51 J	1.5 J	1 i.7 u	0.2 J	0.08 J	0.4 L
4-Chioroeniline	NLS	NLS	230	830	15 U	29 U	1.7 U	3.7 U	220	0.41
4-Chioro-3-methylphenol	NLS	NLS	230	830	16 U	29 U	1.7 U	3.7 U	220	j 0.4 L
2-Chioronaphihakana Dimetiwohihalata	NLS	nls	230	63 U	16 U	29 U	1.7 U	3.7 U	2.2 U	0.4 L

-138

## Table 12 (continued) Sediment Analytical Data Erle Street Former MGP Site

	1	<u> </u>				Sample D/O	epth (RYDate			
	hiarine	Narino	TREPIA	TRS#18	TRSSZA	TRS#28	TREASA	TRS#38	TR354A	TR6548
	Sedenent	Sediment	(0.3-0.8)	(4.5-5.0) i	10-0.51	(2.3-2.8)	(0-0.5)	(1.0-1.5)	(0-0.5)	(1.0-1.5)
Parameter	ERL	ERM	08/29/00	08/29/00	06/29/00	06/29/00	06/28/00	66/29/00	08/29/00	08/29/00
4-Nilrophenol	NLS	NLS	11 U	31 U J	78 U	140 U	8.3 U	18 U	11 U	1.9 U
Dibanzofuran	NLS	NLS	0.83 J	1.4 J	3.9 J		0.11 J	0.25 J	2.3	0.1 J
Diethviohthalate	NLS	NLS	230	8.3 U	18 U	29 U	1.7 U	3.7 U	2.2 U	0.4 U
Carbazola	MLS	NLS	0.61 J	1.2 J	0.64 J	1.9 1	0.082 J	0.27 J	0.42 J	0.085 J
	MLS	NLS	230	6.3 U	16 U i	29 U	1.7 U	3.7 Ü	2.2 U	0.4 U
Di-n-butylphthalate	NLS	NLS	0.21 J	0.37 J	18 U	29 U	1.7 U	3.7 Ú	0.23 J	0.4 U
Bulyibenzyiphthelate	NLS	NLS	5.5	21	15 J	28 U	3.2	7.5 8	8.5 J	0.4 U
bis(2-Elhylhexyl)phthalabs	NLS	NLS	0.26 J	0.65 J	1.4 J	0.87 J	1.7 U	3.7 01	0.52 J	0.012 J
Di-n-octylphthalata			0.20 0		ana (mana)				<b>PSI SARA</b>	
		and the second second second second second second second second second second second second second second second		0.00085 U	0.00096 U	U 38000.0	6,00074 U	0.00065 U	0.00098 U	0.00056 U
Tetrechtorodibenzo-p-dioxin	MLS	NLS	0.00078 U	0.00085 U	0.00098 U	0.00088 U	0.00074 U	0.00065 U	U 86000.0	0.00056 U
Tetrachknodibenzokuren	NLS	NLS	0.00075 U	0.00085 U	0.00047 J	0.00086 U	0.00074 U	0.00085 U	0.00098 U	0.00056 U
Heuchlorodibenzokren	NLS	NLS	0.00078 U	0.00050	in the second second second second second second second second second second second second second second second	CONTRACTOR OF		SILVER AND A SHORE		
				0.0669 J	0.0027 J	0.006	0.0034 J	0.002 J	0.0018 J	0.00067 J
alpha-8HC	NLS	NLS	0.004 J	0.032 UJ	0.0027 J	0.015 U	0.0043 UJ	0.0057 W	0.0052 UJ	0.0021 W
Cella-BHC	NLS	NLS	0.0048 UJ	0.032 00	0.0066 U	0.015 U	0.0016 J	0.0057 U	0.0052 U	0.0021 U
Heptachlor	MLS	NLS	0.0048 U		0.0066 U	0.015 U	0.0043 U	0.0057 U	0.0052 U	0.001 J
Akim	NLS	NLS	0.0093 J	0.032 U	0.0066 U	0.015 U 0.015 U	0.0043 U	0.0057 U	0.0052 U	0.0021 U
Heptachlor Epoxide	NLS	NLS	0.0048 U	0.032 U		0.0055 J	0.0043 UJ	0.0057 UJ	0.0052 UJ	0.0021 UJ
Endosullan i	NLS	NLS	0.0048 UJ	0.032 UJ	0,011 J 130,0082 J V	0.000 J 0.029 UJ	0.0045 0.0	0.011 UJ		1278001710F
Dieldrin	0.00002	800.0	0.0093 UJ	الاستياسية فيستحد فيستراك	1 Color and the state in a second state of the	0.029 UJ	0.0084 UJ	0.011 (1)	äm us	0.004 UJ
4,4-DDE	0.0022	0.027	0.0093 UJ	0.063 W	0.02 J	0.045 J	0.0084 UJ	0.0056 J	0.0033 J	0.004 UJ
Endrin	NLS	NLS	0.0084 J	0.026 J		0.029 U	0.0084 U	0.011 U	0.01 U	0.004 U
Endosultan 1	MLS	NLS	0.0093 U	0.063 U	0.013 U	CODEL NU	0.0084 U	CILOBSKI		NI DOI NI
4,4-000	0.002	0.02			1 to the second country of the	0.03 J	0.0098 J	0.0048 J	0.01 U	0.004 U
Endosultan Sulfata	NLS	NLS	U 8900.0	0.063 U	0.02 J			R	R	R
4,4'-DDT	0.001	0.007	R	R	R	R	Hind Core in			States and
alpha-Chiordane (a)	0.0006	0.006	3 <b>6 90,028</b> 9 1			330074				1. 1. 0.00M U
gamme-Chlordane (a)	0.0005	0.006	0.018 4	1944 I 23	1. 18. 18 - 2 - 1 A. 15/2 B. 4 12 - 10 - 10	17 <b>0003</b> -				Line (1997) November 1997
	at a good to all a stand of the State of the		CALL PROPERTY	manter surger and second second second second	ejenyts (PCBs) (		0.084 U	0.11 U	0.1 U	0.081 U
Aractor-1242	NLS	NLS	0.44 J	3.1 J	0.34 J	0.41 J		0.26 J	0,11 J	0.031 J
Arocior-1248	NLS	MLS	0.093 U	0.63 U	0.13 U	0.12 U	0.096	0.20 J	0.1 U	0.081 U
Arockor-1254	NLS	NLS	0.093 U	0.63 U	0.13 U	0.12 U	0.084 U	0.110	0.11 J	0.027 J
Arocior-1280	NLS	NLS	0.41 J	1.5 J	0.32 J	0.46 J	0.12 J	0.20 J		0.00
Total PCBs	0.0227	0.18	0.85	51	0.88	Q 87	0,20ee			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
				in the second second		A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A			9990	8760
Auminum	NLS	NLS	2960	9830	12500	7910	\$340	5730	0.73 UJ	0.50 UJ
Antimony	NLS	NLS	1.5 UJ	20 W	2.1 UJ	2.7 UJ	0.78 W	UU 68.0		2.9 J
Arsenic	8.2	70	4.7	1.5 0.5	129	·公会104.18	અં.	4.7	5.5	2.9 J 11.5 J
Barium	NLS	NLS	69.3	234	203	155	83.1	82.4	43.3 J	1
Servisum	NLS	NLS	0.48 U	1.1 U	! 1.2 J	0.91 U	0.88 U	0.71 U	1.0 U	0.70 J
Cadmium	1.2	9.6	2.1.1.1.4.18	34.8		和通道的4-7	1.5525203	L EXAMPLE	「「「「「「」」」	0.42 J

Page 14 of 21

- 18

	nez kennen konsekter beskelen in einige beskelen in her her her her her her her her her her	damadadadada (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996) (1996)		Sediment A	continued) nalytical Dal mmer MGP 5					
						Samaia 5787	spih (fi)/Date	Manal Cold Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Cont	no novem providence and the manufacture of the	
	Marine	Marino	TRSEA	TR5#18	TRSIZA	TR5#28	TRSEA	1R5#38	TRSHA	TR3548
	Sediment	Secksent	(0.3-0.8)	(4.5-5.0)	(0-0,5)	(2.3-2.8)	(0-0.5)	(1.0-1.5)	(0-0.5)	(1.0-1.5)
Parameter	ERL	ERM	06/29/00	06/29/08	06/29/00	09/29/00	06/29/00	08/28/00	66/29/09	08/29/00
Celdum	NLS	NLS	1220	6360	5310	3120	2050	2590	5880	6090
Oxomium	81	370	36.1	20	<b>REPAIRS</b>		37.7	50.1	28.5	8.0
Coball	Mis	NLS	3.1.1	8.3 J	9.5 J	7.8 J	5.9 J	5.5 J	8.4 J	9.2 J
	34	270	78.8	and less which the			Selectors I			限2月4473年
Copper	NLS	NLS	15800	24700	30000	22100	16800	15800	25300	26900
Lead	46.7	218	S. 1987	37.A <b>1566</b> 84.9	<b></b>	0.01 0.0	100			17.2 J
Magnesium	NLS	NLS	1280	4490	6090	4040	3500	3010	4720	4190
Manganose	NLS	NLS	71.4	238	277	200	153	158	280	188
Mercury	0.15	0.71	CESE 1681	0.50 1	1. 20.15	1571217	0.45.41			0,048 J
Nickel	20.9	51.0	22.2	5 P. 166 P		****** <b>***</b> *	5. S.	1. N.S. 1997		12.2
Polassium	NLS	NLS	347 J	1100 J	1960 J	1200 J	992 J	814 J	936 J	374 J
Selenium	NLS	NLS	0.79 U	3.9 U	220	1.4 U	0.79 U	1.4 U	1.3 U	1.1 U
Siver	1	3.7			I SALAT	· · · · · · · · · · · · · · · · · · ·			0.85 J	0.24 U
Sodium	NLS	NLS	381 J	2060 J	7690 J	3840 J	3150 3	2340 J	4420 J	3040 J
Thelium	NLS	NLS	210	3.4 U	3.9 U	1.8 U	1.7 U	2.8 U	2.5 U	2.5 W
Vanadium	NLS	NLS	13.9	51,9	50.6	38.2	30.5	25.2	62.9	78.4
Zinc	150	410	1. 1. 1. <b>1.</b> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1160	1.8.5	in Sales	11208.44			49.3
Cyanida, Total	NLS	NI.S	0.68 U	R8	R8	R8	R8	R8	R8	Rs
			Territo and	TON OWNER	Carbon (Holled					
HARING CONSCIENCES STREET	MLS	NLS	10600	85000	50300	53100	30600	33700	42500	19200

				Table 12 (	continued)					
			S	ediment Ar	nalytical Data	1				
					mer MGP Si					
	x4,02.44 ( 16.42.01					Sample ID/De	pin (ft)Oate			
	Marine	Marino	TREFIA :	TROPID	TR6#2A	TRe#28	TR6#3A	TROFIS	TROPA	TR8#48
	Sediment	Sectment	10-0.53	(4,0-4.3)	(6-8.5)	(4.0-4.5)	(0-0.5)	(3.5-4.0)	(0-0.5)	(3.54.0)
Parameter	ERL	ERM	07/02/00	07/02/00	7/2/00	7/2/00	7/2/00	7/2/00	7/2/00	7/2/00
		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		Organic Com	sources (VQCs) (x	NAME IN THE				
	NLS	NLS	R	R	0.038 J	R	R	R	R	R
olarm	NLS	NLS	8	R	0.12 J	0.034 J	0.13 J	R	R	R
Univerzene	NLS	NLS	R	0.044 J	0.022 J	E.8 UJ	0.033 J	4.8 W	3.9 UJ	4
(viene (total)	NLS	NLS	R	0.42 J	4.6 UJ	6.8 UJ	8.6 UJ	4.8 W	3.9 UJ	. <b>4</b>
granns (nors)	NLS	NLS	R	R	4.8 W	8.8 UJ	5.5 W	4.8 (1)	3.9 UJ	4
lentron Disulfide	NLS	NLS	0.32 J	R	0.31 J	0.29 J	0.36 J	R	R	R
herken	NLS	NLS	R	R	R	R	8	Rj	8	R
Anceosa m Irichiomathana	NLS	NLS	R	8	R	R	R	Ŕ	R	R
-Henerasis	NLS	NLS	R	R	48 UJ	6.8 UJ	6.5 UJ	لى ھە	3.9 UJ	4
-nexanone Tetrachiomethana	NLS	NLS	R	R	4.6 UJ	8.8 W	5.5 UJ	ä, b UJ	39 UJ	4
	2	I PLO			CONSCISSION (PAN	) (market live	STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,			
		21	1995 S 14 1 1	0.021 J	028 J	0.011 J	0.18.4	0.6 UJ	San (10, 47, 12)	0,5
ischitziene	0.18	0.67	0.67.0	1 U		1.4 U	1.1607061	៤៩ យ	13.3.6.6.1	0.5
Methylosphihelene	0.07	0.64	3 070 3	1 U	Jac. 0.15 J	0.007 J		L 800.0	NP SAME	0.5
censphiliylene	0.044	1		1 U	Contraction of the second second second second second second second second second second second second second s	1.4 U	00000373	0.6 UJ	S192031	0.5
Aconaphinene	0.016	0.6		10	0.91	0.015 J	1. A A A A A A A A A A A A A A A A A A A	0.005 J		0.5
Rucrene	0.019	0.54	0.95	0.025 J		0.058 J	28	0.008 J	55.000	0,005
Transmission	0.24	1.5	83	0.020 J 0.014 J	0.71	0.028 J	5.674.33	0.6 U.I	0000023	Q.5
Anthracene	0.0853	1 1		0.019 J	33	0.072 J	100	0.008 J		0.005
Fluorantinene	0.6	5.1	12 N	0.018 J 0.024 J		0.15 J		0.012 J	100x2	0.009
Pyrene	0.965	2.6		J.J.24 J 1 U	1.5	0.06 J		0.6 UJ	and the second	0,5
Senz(a)anthracena	0.261	1.6		10	1.5	0.057 J	211	0.6 UJ		2.5
Chrysene	0.384	2.8	8,1	10	0.96	0.04 J	1.8 J	0.6 UJ	Server Lamon a surface	0.5
Benza(b)Auoranitiwa w	NLS	MLS	2.2 /	10	1.1	0.04 J	2	0.6 UJ	2.4	0.5
Senzo(k)/kuoranihena	MLS	NUS	-		A STREET	0.04 J		a.6 UJ		0.5
Senzo(a)pyrene	0.43	1.6	A BRITER	0.41 J	0.76	0.035 J	1.6 J	6.6 LU	2.9	0.5
Indeno(1,2,3-od)pyrene	NLS	MLS	2.7	10	0.78	0.030 J 1.4 U		0.0 U	BUILSTOOP 7	0.5
Dibenz(a,h)anthracana	0.0634	0.26	COMPANY.		0.73	0.039 J	1.7 J		3.6	0,5
Benzo(g,h,i)perylene	NLS	NLS	2.9	10	-	0.852		0.039		0.019
Total PAHs	4.022	44.79	1999 <b>1538</b> 7.5							
A PROPERTY OF THE PROPERTY OF			Constant		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		0.032 J	0.6 W	2.1 U	0.6
Phenol	NLS	NLS	2.4 U	10	0.012 J	1,4 U 1,4 U	0.032 J	0.8 00	210	0.5
1.4-Dichlonobenzene	NLS	NLS	240	10	0.53 U	0.026 J	20	0.6 U	210	0.8
Benzyl alcohol	NLS	N.S	2.4 U	10	0.53 U	1.0.20 J	0071 J	0.6 UJ	0.079 J	0.1
4-Methylphenol	NLS	NLS.	24 U	10	0.029 J		20	0.6 UJ	2.1 U	0.6
Isophonome	NLS	NLS	2.4 U	10	0.53 U	1.4 U	10 U	2.9 W	10 0	0.02
Benzolc acid	NLS	NLS	11 UJ	5 U.	1 A A A A A A A A A A A A A A A A A A A	0.048 J		0.6 UJ	0.1 J	0.2
4-Chioroaniina	NLS	MLS	240	1 U	0.53 U	1.4 U	20	0.6 UJ	1	0.4
4-Chioro-3-methylphenol	MLS	NLS	2∢∪	10	0.53 U	1.4 U	20	0.6 UJ	2.10	0.5
2-Chloronaphiltalene	NLS	NLS	540	1 U	0.53 U	1.4 U	20		210	10
Dimethylpithslate	NLS	NLS	240	1 U	0.53 U	1.4 U	<u>, 20</u>	LU 9.0	<u>د.</u> : ۷	,

Page 16 of 21

## Table 12 (continued) Sediment Analytical Data Erie Street Former MGP Site

	1	;				Sample ID/De	oth (ff)/Date			
	Narina	Marine	TREFIA	TREFIB	TR6#2A	TReate	TR8#3A	TR6#3B	TR8#4A	TR6848
	Sediment	Sediment	(0-0.5)	(4.0-4.5)	10-9.5	(4,0-4,5)	(0-0.5)	(3.54.0)	(0-0.5)	(3.5-4.0)
Parameter	ERL	ERM	97/02/08	07/02/00	7/2/00	7/2/00	7/2/00	7/2/00	7/2/00	7/2/00
L-Nikrophenol	MLS	NLS	11 U	5 U	2.6 U	6.8 U	10 U	2.9 UJ	10 U	2.4 U
)ibenzoiuren	NLS	NLS	0.91 J	10	0.17 J	1.4 U	0.11 J	0.6 UJ	0.2 J [']	0.5 U
Xechtohitalsie	NLS	NLS	2.4 U	10	0.53 U	1.4 U	20	0.8 U	210	0.004 J
Sarbazole	NLS	NLS	0.14 J	10	0.073 J	140	0.27 j	0.8 UJ	0.29 J	0.5 U
xarvazue X-n-buixiohthalaite	NLS	NLS	240	10	0.53 U	140	20	0.6 UJ	210	0.5 U
	NLS	NLS	2.4 U	10	0.53 U	1.4 U	0.27 J	0.6 UJ	0.25 J	0,5 U
kúybenzyiphihalata	NLS	NLS	0.075 J	0.034 J	0.53 U	1.4 U	4.4 8	0.6 U	7.7 8	0.5 U
xs(2-Ethylhenyl)phihalata		NLS	0.075 J 2.4 U	101	0.53 U	1.4 U	0.24 J	0.6 W	2.1 U	0.5 U
N-n-octylphihalala	NLS	i rlo						THERE	CARENCE OF	
		<u>, se re</u> k		0.00072	0.00068 U	0.0011 U	0.00066 U	0.00085 U	0.00075 U	0.00077 U
Tetrachiorodibenzo-o-cioxin	NLS	NLS	0.00078 U	0.00072 Ú	0.00068 U	0.0011 U	0.00068 U	0.00085 U	0.00022 J	0.00028 J
letrachkoodibenzoluran	NLŠ	NLS	0.00078 U			· · · · · · · · · · · · · · · · · · ·	0.00066 U	0.00085 U	0.00075 U	0.00077 U
lexechiorodibenzohuren	NLS	N.S	0.00078 U	0.00072 U	0.00068 U	0.0011 U		U COUCCI U	NUMBER OF CONTRACTOR	
					ALL STATES AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI	STORE AND			0.0018 J	0.0024 L
sipha-BHC	NLS	NLS	0.0028 UJ	0.0025 UJ	0.0058 UJ	0.0033 UJ	0.0024 W	0.003 UJ	0.0062 UJ	0.0024 U
toha-BHC	MLS	NLS	0.0028 U	0.0025 UJ	0.0055 UJ	0.0033 UJ	0.0024 W		0.0031 J	0.0024 U
lepiacitor	NES	NLS	0.0 J	0.0025 UJ	UJ 8800.0	0.0033 UJ	0.0024 W	0.003 U		0.0024 U
Vdrin	NLS	NLS	0.00090 J	0.0025 UJ	0.0038 J	0.0033 U	0.0034	0.003 U	0.0086 J	
-ieptachior Epoxide	NLS	NLS	0.0018 J	0.0025 W	0.0056 U	0.0033 U	0.0024 U	0.003 U	0.0052 U	0.0024 U
Enclosulian	NLS	NLS	0.0028 UJ	0.0025 UJ	0.0056 U	0.0033 U	0.0024 U	0.003 U	0.0052 U	0.0024 U
3iektrin	0.00002	0.008	0.0054 UJ	0.0049 UJ	0.011 US	0.0064 UJ	LU 7\$00.0	0.0058 UJ	0.01 UJ	0.0048 L
1.4-DOE	0.0022	0.027	0.0054 UJ	0.0049 [1]	0.011 U		2 CONTROL			0.0048 1
Endrin	NLS.	NLS	0.0054 UJ	0.0049 UJ	0.0037 J	0.0064 U	0.0021 J	0.0058 U	0.0061 J	0.0048 1
Endosulfan II	NLS	MLS	0.0064 UJ	0.0049 UJ	0,0034 J	0.0064 U	0.0047 U	0.0058 U	0.01 U	0.0048 i
4.000	0.002	0.02	- 50.0070 NU	0.0000 (1.1	SEE DOG NUE	0.0084 UJ			Ne la companya (Ug	0.0048 i
Endosulfan Sulfale	MLS	NLS	0.0054 UJ	0.0049 UJ	0.0038 J	0.0064 UJ	0.0047 UJ	0.0058 W	0.01 U.J	0.0048 1
4.4°-DOT	0.001	0.007	R27	0.0049 UJ	0.024	0.0084 UJ		0.0058 UJ		0.0048 (
alpha-Chiordane (a)	0.0005	0.006	0.0028 UJ	0.0025 UJ	140 (0 (d - 1 - 1	0.0033 U		0.003 U	0,028.0.4	0.0024 (
camma-Chlordana (a)	0.0005	0.006	0.0028 UJ	0.0025 UJ	0.0080	0.0033 U		0.903 U	1999 - <b>1</b> 995	0.9024 (
	<b>安全國開</b> 於法		the bit Par	Alexand Division	servite (PCBe) //					
Anclos-1242	I NLS	NLS	0.054 UJ	0.049 W	0.027 J	0.064 W	0.033 J	0.058 VJ	0.13 J	0.048 1
Aroclor-1248	1 NLS	NLS	0.054 U	0.049 U	0.055 U	0.064 U	0.047 U	0.058 U	0.05 U	0.048 1
Arector-1254	NLS	NLS	0.054 U	0.049 U	0.063 J	0.064 U	0.061 J	0.058 U	0.22 J	0.048 (
Arackor-1280	NLS	NLS	0.054 W	0.049 UJ	0.042 J	0.064 LU	0.053 J	0.056 U	0.14 J	0.048
Total PCBs	0.0227	0,18	ND	ND	23.0182 51	ND		ND		ND
			A STREET	descente Con	include (angles)				and the second	
Aluminum	NLS	NLS	11600	8000	6840	24600	7740	18900	11400	8580
Antimory	NLS	NLS	0.70 W	0.59 UJ	0,62 UJ	0.58 UJ	0.85 UJ	0.65 UJ	UU 58.0	0.61
Arsenic	6.2	70	ST STATE	4.6 J		14.1.1.1	4.9 J	<b>HEREISSEE</b>	. e.e J	4
Arsenc Barlum	NLS	NLS	240	222	111	223	82.6	230	115	347
	NLS	NLS	0.70 J	0.48 J	0.42 J	1.3 J	0.42 j	0.87 J	0.62 J	0.5 .
Beryllium Cadmum	1.2	3.6			FTN: 25.1	0.59 J	STRUGE AUT	0.64 J	BPP 331	0.27

Page 17 of 21

闣

- 18

. **.** 

...

## Table 12 (continued) Sediment Analytical Data Erie Street Former MGP Site

-

, us

· 🦓

						Sample ID/D	with (fi)/Dale			
	Marine	Marine	TRESIA	176918	TROPIA	TRanzB	TROFIA	TR8#39	Troma	TR8#48
	Sediment	Sediment	(0-0.5)	(4.0-4.5)	(0-0.5)	(4.0-4.5)	(0-0.5)	(3.5-4.0)	(0-0.5)	(3.5-4.0)
Parameter	ERL	ERM	57/02/04	07/02/00	7/2/90	7/2/00	7/2/00	7/2/00	7/2/00	7/2/00
Calcium	MLS	NLS	3540	2720	2240	5180	3240	3880	3660	2560
honium	81	370	54.3	17.8	- <b>1997</b> - 1	44.1 )	48.6 J	35.3 J	54.8 J	45.3 J
Cobalt	NLS	NLS	9.4 J	6.8 J	5.4.1	13.8 J	5.7 J	10.3 J	7.8 J	5.9 J
lopper	34	270	SEP 672	11.1 J	SCHOOL TO	32.1 J	10044200	15.8 J		7.9 J
709	NLS	NLS	24900	18700	18700	40700	18700	34800	24900	16700
	48.7	218	States 1	9.2		9 <b>7 7 5</b> 3		14.9		7.5
Aagnesium	NLS	NLS	4940	3670	3120	8500	3710	6880	5230	3920
langanese	MLS	NLS	215	154	153	433	144	260	198	103
Mercury	0,15	0.71	2.0.20	<b>1996 199</b>	STE OBI T	0.23,46	(1. SP. 0 2 19	0.038 J		0.015 J
Vickel	20.9	51,8	112 2614	18.2 J	54.4.5.4	<b>3.6</b> J.			· · · · · · · · · · · · · · · · · · ·	14.2 J
Polesium	NLS	MLS	1570 J	913 J	, 1100 J	3560	1210 J	2730	1780	1090 J
Selenium	NLS	NLS	0.50 UJ	0.42 UJ	1.6 J	1.4 W	0.97 UJ	1.8 J	1.3 J	1,8 ,1
Silver	1	3.7	0.33 LU	0.084 UJ	Calendary	0.42 UJ		0.33 J	SCHORE !!	0.29 U
Sodium	NLS	NLS	10000	· 293 U	1900	3220	1190 J	1730	2030	300 U
Reliven	NLS	NLS	1.8 W	1.5 W	1,1 W	1.6 UJ	1.1 UJ	1.2 UJ	1.2 W	1.1 U
/anadium	NLS	NLS	35.7 J	25.4 J	20 J	59.8 J	25.1 J	75.4	32.4 J	43 J
Zinc	150	410	144 3	47.0 J	282 1	114 J	1612 2013U	88.2 U		. 48.8 U
Cyanide, Total	NLS	NLS	Ra	R8	R8	R8	R8	Rê	R8	RS
lyninist, i lant Sandar Sandar an an an an an an an an an an an an an		A STATE			Carbon (mg/kg)	Sector Party			ASSESSMENT SPACE	
FOC	NLS	NLS	66800	24000	28200	39000	19500	34800	24000	51200

				12 (continent nt Analytica					
				at Former N					
					3:000	le ID/Depth (RVD	kaite		, 
	Morine	Marine	TRISIA	TRISIS	TR752A	TRITA	TRTASE	TR7#4A	TR7MB
	Sediment	Sediment	(0-0.5)	(3.0-3.5)	(0-1.5)	(0-0.5)	(3.3-3.8)	(0-0.5)	(3.6-4.1)
	ERL	ERM	07/02/00	07/02/00	07/02/06	07/02/00	07/02/00	07/02/00	67/02/00
Parameter			Visit Otan	(Deservice and a	NOCED IN SANSI			Sec. 2	
	NLS	NLS	6.2 W	32 U	29 J	4.2 W	4 3	28 UJ	0.13 J
912010	NLS	NLS	0.12 J	0.016 J	6.9 J	4.2 UJ	4.2 J	0.28 J	0.25 J
okene	NLS	MLS	8.2 W	ā s ui	80	4,2 UJ	140 J	0.043 J	1.1 J
ihyibenzene		NLS	6.2 W	32 0	79	4.2 W	84 J	0.059 J	0.53 J
yiene (total)	NLS	NLS	6.2 UJ	3.2 UJ	20 UJ	4.2 W	2.1	26 00	42 W
hymene	NLS	1	0.55 3	3.2 00	0.59 J	4.2 UJ	5 J	0.097 J	0.35 J
arbon Disulfide	NLS	NLS NLS	8.2 UJ	3.2 UJ	20 UJ	4.2 W	R	2.6 UJ	4.2 U
Thereform	Nas		0.14	32 00	20 UU 1	4200	R	2.6 UJ	0.09 J
nchioroethene	NLS	NLS	6.2 W	3.2 UJ	20 00	4.2 U	R	28 00	
-Hexanone	NLS	NLS	1	3.2 UJ	20 UJ	4.2 UJ	R	2.8 UJ	0.54 J
erachionosthane	NLS	MLS	0.13 J Olycyczie Arbine	1.2 3.1 1.2 3.1 1.2 4.1				200 - 100 - 452 d	
		and a state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second		0.4 UJ		A CONTRACT OF A CONTRACT OF A			20. an 13
laomhalana	0.16	21	<b>Bescher</b>	0.4 UJ 0.4 UJ					and a star
-Methylnaphthalene	0.07	0.87	5.6 U		1 Contract				
voenaphthylene	0.044	0.64	0.18	0.4 UJ 0.4 UJ		restation and selections.			
vcanapithene	0.018	0.5	102037.1		1. 11 Contract 10 Contract	. een 1		estines en entre e	
Flucinerite	0.019	0.54	0.45.9	0.4 UJ	16-4-16-5-16-6-4-12 				2011-110
henanihrana	0.24	1,5	24,23	0.4 UJ	A CONTRACTOR		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		200.19.27.5
Anthracens	0.0853	1.1	<u>. 07.4.</u> 4	0.4 UJ	1997 (J. 1997) 1997 - Jan Starley (J. 1997)				10.555.57
Fluoranthene	0.8	5.1	[[]]M. (* 6.2.].	0.4 UJ					
Pyrene	0.665	2.6	160.00 4.0.0	0.4 UJ	5 10 200 P				
Benzia)anthracene	0.281	1,8		0.4 UJ	100024	and the second second second second second second second second second second second second second second second			
Chrysene	0.384	2.8	5.24.1	0.4 UJ			85 J	1.8	<u>1997 - 1</u> 7 J
Banzo(b)/lucranihono	NLS	NLS	2.1 J	0.4 LU	21.1	0.82 J		1.7	t ot
Benzo(K)fluorenthane	NLS	NLS	2 J	0.4 W	32 J	0.95 J			
Benzolakoviene	0.43	1.6	A. S. Bark		E IS A CAR		47 J	1.7	6.7
indeno(1,2,3-od)pyrene	NLS	NLS	23.	0.4 W	16 J	0.88 J			12.50
Dibanz(a,h)anthracene	0.0634	0.26	STRATP IN	LU & D		S. of the Area Income the second states	53 J	1-3-0-0-7-6-0-9 1 1.5	7.5
Benzo(g.h.l)perylene	NLS.	NLS	2.6 J	• 0.4 W	17.1	0,89 J			P/2018 2
Total PAHr	4.022	44.78	27 STAR OF	NO	<u>15 9 77 4 6 1</u>				
	er canner	Landing Coll Of	ner Saersvelsele (		14 Martin Barriston			0.78 U	20 I
Phenol	NLS	NLS	5.5 U	0.4 UJ	110 U	1.1 U	440 U	0.76 U	20
1.4-Dichlorobenzene	NLS	NLS	5.6 U	0.4 UJ	110 U	1.1 U	440 U	0.76 U	20
Benzyl akohol	NLS	NLS	5.5 U	0.4 UJ	110 U	1.1 U	440 U		20
4-Methylphonol	NLS	NLS	5.5 U	0.4 UJ	110 U	1.1 U	440 U	0.76 U	20
a-maaringa ka ka	MAS	NLS	5.5 U	0.4 UJ	110 U	1.1 U	440 Ü	0.78 U	1
Benzok edd	NLS	NLS	ີ 27 W	1.9 W	530 W	1	2100 W	3.7 Ш	97
denzok: soc 4-Chiomaniline	NLS	NLS	5.5 U	0.4 W	U 016	1.1 U	440 U	0.78 U	20
	NLS	NLS	5.5 U	0.4 UJ	110 U	0.062 J	440 U	0.78 U	20
4-Chioro-3-methylphenol	NLS	NLS	5.5 U	0.4 UJ	110 U	1.1 U	440 U	0.76 U	20
2-Chloronaphihelene Dimethylphthalaia	NLS	NLS	5.5 U	0.4 U	110 U	1.1 U	440 U	0.027 J	20

Page 19 of 21

-

10

-1

			Sedime	12 (contin nt Analytic et Former &	al Data				
					Samo	ia ID/Depth (fi)A	Jate		
	kiarine	Marina	TRIMA	TR7#18	TR7#ZA	TR7#3A	TR7#38	TRIBA	TR7#48
	Sediment	Sectment	(9-0.5)	(3.0-3.5)	(0-1.5)	(0-0.5)	(3.3-3.8)	(0-0.5)	(1.8-4.1)
Parameter	ERL	ERM	07/02/00	07/02/00	07/02/00	07/02/00	07/02/00	07/02/00	97/92/00
-Nitrophenol	NLS	MLS N	27 U	1,9 UJ	530 U	5.2 U	2100 U	3.7 U	97 U
Hosnzoiuran	NLS	NLS	0.15 J	0.4 W	35 J	0.55 J	99 J	0.092 J	10 J
Diathylphthalale	NLS	NLŠ	6.6 U	0.4 W	110 U	1.1 U	440 U	0.76 U	20 U
Certezole	NLS	NLS	0.34 J	0.4 UJ	4.2 J	0.077 J	21 J	0.18 J	1.6 J
Di-n-bundonthalate	NLS	MLS	0.83 J	0.4 W	110 U 🕴	1.1 U	440 U	0.13 J	20 U
	NLS	NLS	0.28 J	0.4 UJ	110 U	1.1 0	440 U	0.76 U	20 U
Butylbenzylphthalata	NLS	NLS	25	0.4 UJ	110 U	0.36 J	440 U	0.64 J	20 U
nis(2-Ethylhexyl)phthalate	NLS	NLS	0.55 J	0.4 03	110 U	0.021 J	440 U	0.76 U	20 U
Di-n-och/phthalata	ALC: NO. OF CONCERNMENT OF CONCERNMENT	I ITLO							
<u>, a ser a company</u>			0.0014 U	0.00055 U	0.00076 U	0.00085 U	0.00091 U	0.00057 U	0.00074 U
Tetrachlorodibenzo-p-dioxin	NLS	NLS NLS	0.0014 0	0.00055 U	0.90076 U	0.00085 U	0.00091 U	0.00057 U	0.0032
Tetrachlorodibestzofuran	NLS		6	0.00055 U	0.00076 U	0.00085 U	0.00091 U	0.00057 U	0.00074 U
Hexachlorodibenzoluran	MLS	NLS	0.0014 U			MERINA	COMPRESS OF		
				0.002 U	0.0042 J	0.0034 UJ	0.029 UJ	0.002 LU	0.0042 UJ
sipha-8HC	NLS	NLS	0.0067 UJ	0.002 U	0.0044 J	0.0034 UJ		0.002 UJ	0.0042 UJ
della-BHC	NLS	NLS	0.0067 U	0.002 U	0.012 J	0.00084 J	0.024 J	0.002 UJ	0.0017 J
Heptachior	NLS	NLS	0.0067 UU	0.002 U	0.0053 J	0.0034 UJ	0.0064 J	0.002 UJ	0.0018 J
Aktrin	NLS	NLS	0.0087 UJ	0.002 U	0.0055 4	0.0027 J	0.054 J	0.002 W	0.0058 J
Heplachior Epoxide	NLS	NLS	0.0067 UJ	0.002 0	0.0067 (J)	0.0034 UJ	0.029 W	LU 200.0	0.0042 W
Endosulfan I	NLS	NLS	0,0037 J	0.002 U	0.013 14	0.0065 UJ	0.055 UJ	0.004 00	0.0082 U.
Dieldrin	0.00002	0.008	0.013 UJ	0.0039 U	0.013 UJ	0.0065 111	0.056 UJ	0.004 U	0.0082 U.
4.4'-DDE	0.0022	0.027	ST COXES NJ	0.0039 U	0.013 W	0,0066 UJ	0.058 UJ	0.004 UJ	0.0082 U.
Endrin	NLS	MLS	0.013 UJ	0.0039 U	0.013 UJ	0.0085 UJ	0.056 UJ	0.004 W	0.0982 LL
Endosullan I	NLS	NLS	0.013 UJ	0.0000 U	IN NOVE	5.0001 NU		RESIDUAS NA	H 0.0028 N
4.4'-DDD	0.002	0.02		0.0039 U	0.013 UJ	0.0065 UJ	0.056 UJ	0.004 UJ	0.0082 U.
Endosullan Sullate	NLS .	NLS	0.013 UJ		R27	R27	0.058 UJ	<b>R27</b>	R27
4.4'-DDT	0.001	0.007		0.0039 U	0.0067 U.I	0.0034 UJ	0.029 W		0.0042 V.
siphe-Chiordane (a)	0.0005	0.006	245 0018 U	0.002 U	0.0067 UJ	CE Sone La			0.0042 U
gamma-Chiordane (6)	0.0005	0.006	10000000	0.002 U	1				
			1 Papatérén	ALL BILL ALL AND A MARKAN AND AND AND AND AND AND AND AND AND A		0.085 UJ	0.28 LU	0.04 UJ	0.082 U
Arocior-1242	MLS .	MLS	0.13 UJ	0.039 U	0.13 UJ	0.065 U	0.28 U	0.842 J	0.082 U
Aroclor-1248	I NLS	NLS	0.059 J	0.039 U	0.13 U	0.065 U	0.28 U	0.04 U	0.082 U
Aroclos-1254	NLS	NLS	0.13 U	0.039 U	0.13 U	0.085 0	0.28 UJ	0.053 J	0.082 U
Arodor-1260	NLS	NLS	0.064 J	0.039 U	0.074 J	0.021 J	0.20 UJ ND		
Total PCBs	0.0227	0.18	235041856	NO IS OF EACH	120.974 C		Construction of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the lo	STORES STORES	
				and the second second	THE PARTY		7820	2540	8970
ALETICUT	MLS	MLS	2470	5720	7780	8710	6.8 J	0.38 U	3.5 U
Antimony	NLS	NLS	0.88 UJ	0.47 U	6.2 J	0.59 UJ			1111
Arsenic	8.2	70	1.5 J	1.7 J	16.7			19.8 J	169
Barium	NLS	NLS	27.2 J	45.5	231	43.7 J	388 0.48 J	0.16 J	0.52 J
Beryikan	NLS	NLS	0.083 UJ	0.42 J	0.52 J	0.40 J		0.10 J	
Cadmium	1.2	9.6	0.87 J	0.62 J	22.2.2.1	0.96 J	REFERENCE FOR		HER HERE

-

嘲

æ

				nt Analytic					
			Erle Stre	et Former I	AGP Site				
			*****	and an and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta	Samo	le iD/Depth (R)/	Data	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Paramèter	Warine Sediment ERL	Marine Sediment ERM	TR7\$1A (0-0.5) \$7/02/00	TR7#18 (3.0-3.5) 07/02/03	TR7#2A (0-1.5) 07/02/00	TR7#3A (0-0.5) 07/02/00	TR7#38 (3.3-3.8) 07/02/06	TR7#4A (0-0.5) 07/02/00	1R7848 (3.6-4.1) 07/02/00
Calcium	NLS	NLS	3560	525 J	5600	24100	4270	2300	4490
Chromium	81	370	17,6	12.3	63.0			78.2	40.7
Cobelt	NLS	NLS	21 J	8.1 J	7.8 J	4.8 J	7.4 J	3.2 J	8.0 . 1911
Copper	34	270	如果非107.0一下。	7.7 J	5. <b>140</b> - Mil			ALC: A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL P	Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Se
7041	NLS	NLS	8560	17500	26300	15500	23300	9300 	23200
lead	46,7	218	<b>1996 - 19</b> 2	7.5					A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESC
Asgnesium .	NLS	NLS	3420	3100	4870	15900	4840	1870	5360
Venganesa	MLS	NLS	59.5	270	209	162	164	152	192
Mercury	0.15	0.71	0.10	0.0028 J	PATRI I.V.	0.080		ession I ser	
Nickel	20.9	51.6	9.5 J	11.9	1. <b>0.12</b> - 12	15.8 J			
Potassium	NLS	NLS	681 J	853 J	1300 J	2010 J	1070 J	418 J	1350.
Selenium	NLŜ	NLS	0.62 UJ	0.38 J	2.0 J	0.91 J	3.1.)	0.47 J	1.0
Silver	 -	3.7	0.19 UJ	0.067 U	<b>动在新的这些</b> 了	0.092 UJ		0.16 UJ	0.49
Sodium	NLS	NLS	8520	729 J	2470	6410	1950	1150	2390
Thallum	NLS	NLS	2.2 UJ	1.2 UJ	1.6 UJ	1.6 UJ	1.7 W	0.98 UJ	1.6 1
Vanadium	NLS	MLS	18.3 J	24.4	26.3 J	21.9 J	31.7 J	8.8 J	26.6 .
Zinc	150	410	127 J	28.3 J	442.15	67.8 J		117 J	<b>ESTER</b>
Cyanide, Tolal	NLS	NLS	RØ	R8	RØ	RB	Re	Rô	Ra
		NO TENON STATE	Total C	rganic Corbon					
TOC	NLS	NLS	104000	1100	56300	43900	178000	2060	\$1400
Notes:									
ERL - Effects Range Low									
ERM - Effects Range Median									
ERL and ERM from "Sediments C	lassification M	sthods Compor	ickum." Long and	MacDonald 199	2. EPA 823-R-92	406			
(a) ERL and ERM values shown a	re for chlordan	ø							
MLS - No Listed Standard (ERL al	nd ERM values	i heve not been	developed for this	ansiyte)					
U - Not detected at reporting limit									
J - Estimated value									
B - (organic analyted) - Analyte wi	as detected in	plank							
B (inorganic analytes) - Result is I	xeiween instru	ment detection	limit (IDL) and con	lanci required de	Nacion limit (CRC	<b>1_</b> )			
a) Colorated value 196 hoost this	ട ക്രാമര്ദ്ദ് ബ	ality control <b>I</b> m	is)				an lana ikan		
R7 - One or more of the surrogate	atenderd per	art iscoveries	was found outside	ol established c	iouitoi hiunge kor su	നവുള്ള രോഗ്ദറ	936 BANG BANG		
10%, estimate positive resul	is and reject n	n-detects.				فليستعم مالك	1.10 7.10071		
R8 - The mebia spike and makix	spike duplicate	(MS/MSD) per	cent naccivaries wi	wa not wiliw lix	e control Amits for	mis compound.	MONNOU		
WW could see an an internet	All non-deter	results for this	analyte were relex	ded.					
R27 - Percent breakdown of DOT	'was greater U	ian 20% since i	to DDT was prese	ni in lhese samp	xes, but ODE W86	obiected, the C	RLL.		
for DDT is rejected.									
Shaded values exceed ERL and/	ne 22236 i								

-0-

~

-

Table 13         Surface Water Analytical Data         Erie Street Former MGP Site								
	NJDEP SE-3	SW1	SW2	8W3	SW4	\$W5	SW6	SW7
Parameter	SWQC	06/28/00	06/28/00	06/28/00	06/30/00	06/30/00	07/01/00	07/01/00
ចាប់ប្រុងហាស្រួន ដែមម៉ែង	ne en tenter en talen. Et en tenter en talen		en en ger	ويدروا والمستقدم			s require as a	्येल <i>स्ट्रिल्ट् अ</i> ल
Vethylene Chloride	1600 (hc)	12	2 J	8	11	12	10	11
catona	NLS	10 W	10 UJ	10 UJ	10 UJ	4 J	4 J	4 J
Carbon Disulfide	NLS	5 UJ	2 3	5 W	5 UJ	5 W	2 J	3 J
Tetrachloroethene	4.29 (hc)	5 U	5 U	50	5 U	5 U	2 J	5 U
ioluane	200,000 (h)	5 U	0.5 J	5 U	5 U	5 U	0.6 J	5 U
Chlorobenzene	21,000 (h)	5 U	4.1	5 U	5 U	5 U	5 U	5 U
an the second second second second second second second second second second second second second second second Second second			ىتەتتىمىغۇغىي بىرائىتە مەيلىرىنى ئارتېلىرىتىكە	n Hoster y self. Selection to complete				法法律证据
lucranthene	393 (h)	0.08 J	0.06 J	L 60.0	0.1 J	11 U	10 U	10 U
утапа	8,970 (h)	0.1 j	U 80.0	0.1 J	0.1 J	11 U	0.08 J	10 U
		in the second second second second second second second second second second second second second second second			s and d			
Disthylphthalate	111,000 (h)	0.1 J	0.2 j	0.1 J	0.1 J	11 U	10 ป	10 U
Butylbenzylphthalate	416 (h)	10 U	10 บ	11 U	0.2 J	11 U	10 U	10 U
			1997) (1997) 1997 - 1997 1997 - 1997 - 1997	میں میں میں میں میں میں میں میں میں میں				
Silvex	NLS	0.1 U	0.1 U	0.068 J	0.1 U	Q.1 U	0.1 Ų	0.1 U
2,4,5-T	NLS	0.13	0.11	0.13	0.1 U	0.1 U	0,1 U	0.1 U
相關運動的影響			ning <u>and an an an an an an an an an an an an an </u>			Blena - Alfred	territoria de la composición de la composición de la composición de la composición de la composición de la comp Composición de la composición de la comp	l stabilitie
Aluminum .	Reserved	19.0 U	23.6 U	28.9 U	25.5 U	94,4 J	84.5 J	21.8 U
\rsenic	0.136 (hc)	in intra	3.1 UJ	3.1 W	3.1 W	3.1 W	3.1 UJ	3.1 UJ
3 <b>a</b> rium	NLS	51.9 J	49.6 J	52.4 J	42.9 J	45.9 J	47.2 J	48.1 J
Calcium	NLS	115000 J	119000 J	104000 J	138000 J	143000 J	143000 J	137000 J
ron	Reserved	203 U	268	208 U	252	322	374	294
ead	NLS	1.3 UJ	2.3 J	1.3 UJ	1.3 UJ	1.3 UJ	1.5 J	1.3 UJ
Magnesium	NLS	280000 J	301000 J	252000 J	393000 J	396000 J	410000 J	388000 J
Aanganese	100 (h)	79.3	77.3	76.7	81.8	86.4	88.3	86.5
lickel	3,900 (h)	2.4 J	2.5 J	2.3 J	1.8 J	2.2 J	1.9 J	2.0 J
Polassium	NLS	173000	188000	161000	245000	240000	257000	242000
liver	NLS	0.30 UJ	0.30 J	0.30 UJ	0.30 UJ	0.30 UJ	0.30 UJ	0.30 LJ
Sodium	NLS	528000 J	536000 J	495000 J	573000 J	579000 J	574000 J	564000 J
hallium	6.22 (h)	ener office at	5.3 UJ	5.3 W	5.3 UJ	5.3 UJ	5.3 UJ	5.3 LU
/anadium	NLS	0.55 J	1.0 J	0.74 J	0.63 J	1.0 J	1.0 J	1.2 J
Inc	Reserved	26.6 J	25.8 J	32.4 J	14.2 LU	16.2 J	23.7 J	16.0 J
an tha later to a state of the		ene naeto.						
	NLS	6.38		6.53		1.112 P	· · · · · · · · · · · · · · · · · · ·	4

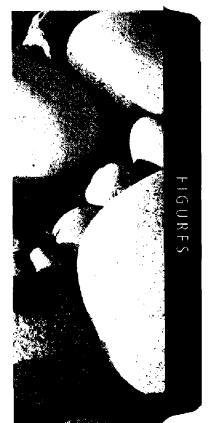
J - Estimated value

NJDEP SE-3 SWQC - New Jersey Department of Environmental Protection saline estuary Class 3 Surface Water Quality Criteria from New Jersey Administrative Code (NJAC) 7:98-1.14(c), April 1988.

Dioxin congenor octachlorodibenzodicum was detected at a concentration of 0.019 m/g/L in the duplicate sample for which SW6 is a primary.

NLS - No listed standard (NJDEP has not developed SE-3 SWQC for this analyte)

(h) - Noncarcinogenic effect-based human health criteria as a 30-day average with no frequency of exceedance at or above the design flows specified in Section NJAC 7:9B-1.5(c)2.

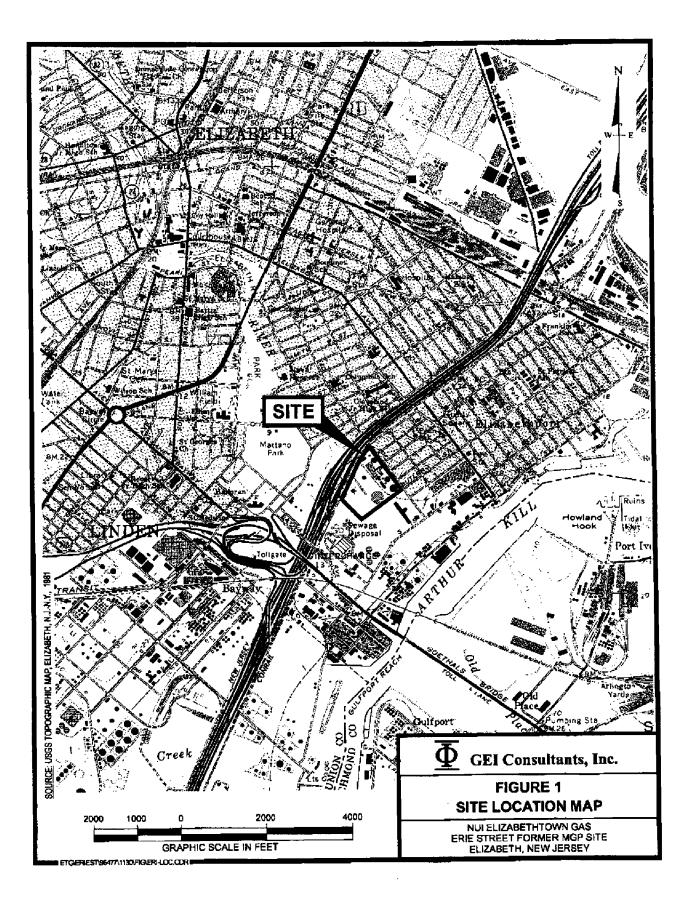

(hc) - Carcinogenic effect-based human health criteria as a 70-year average with no frequency of exceedance at or above the design flows specified in Section NJAC 7:98-1.5(c)2, based on a risk level of one-in-one million.

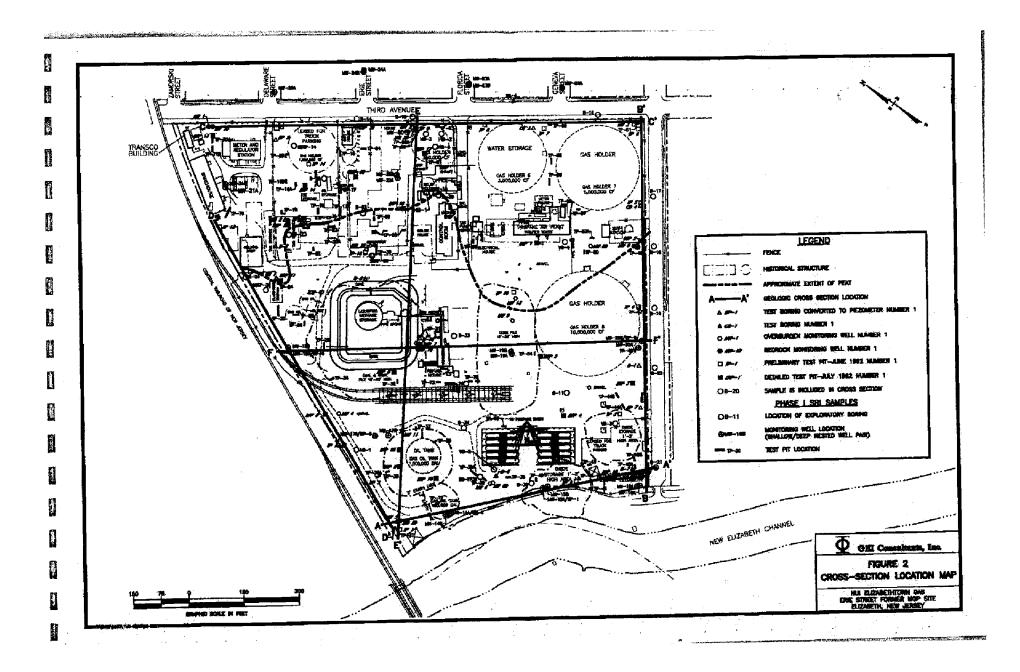
Shaded Values - Result exceeds NUDEP SE-3 SWQC. Reporting limits in italics are greater than NUDEP SE-3 SWQC.



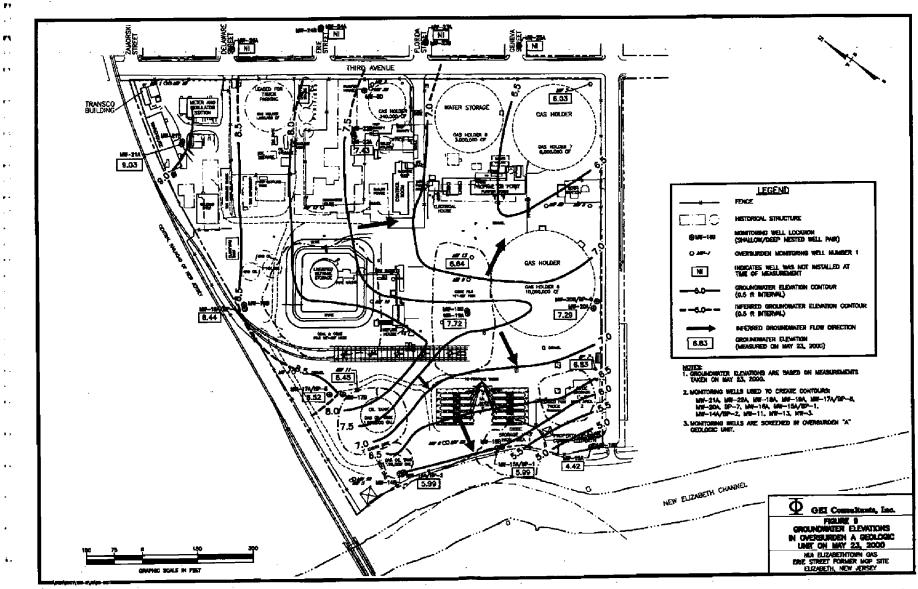
.

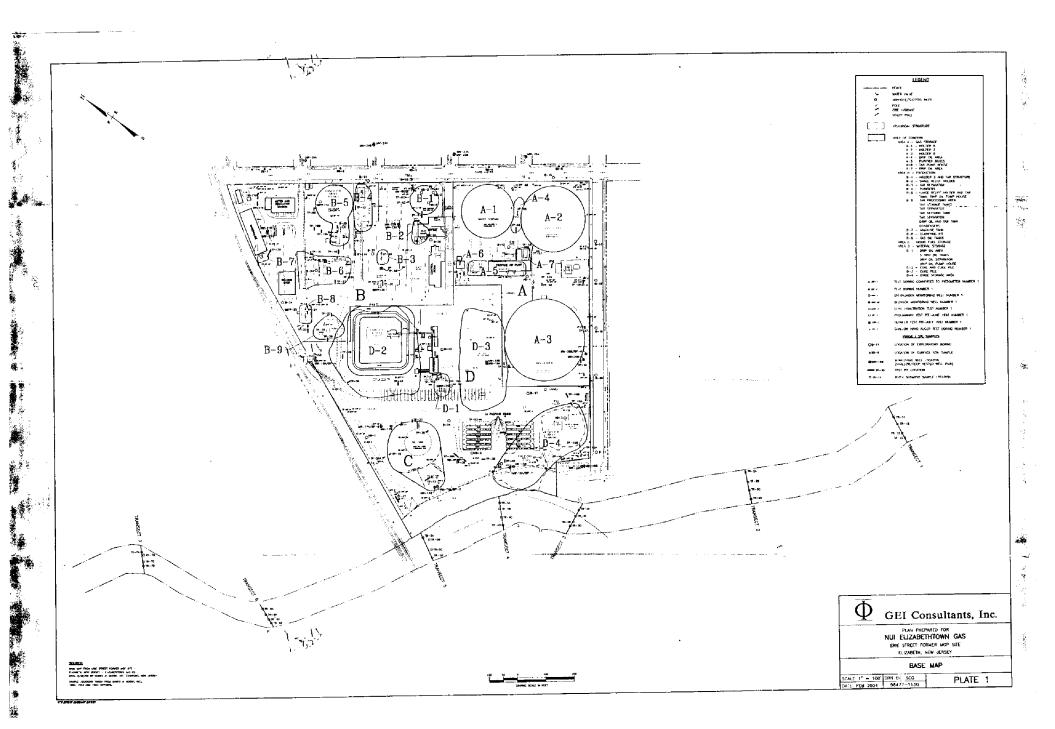
•

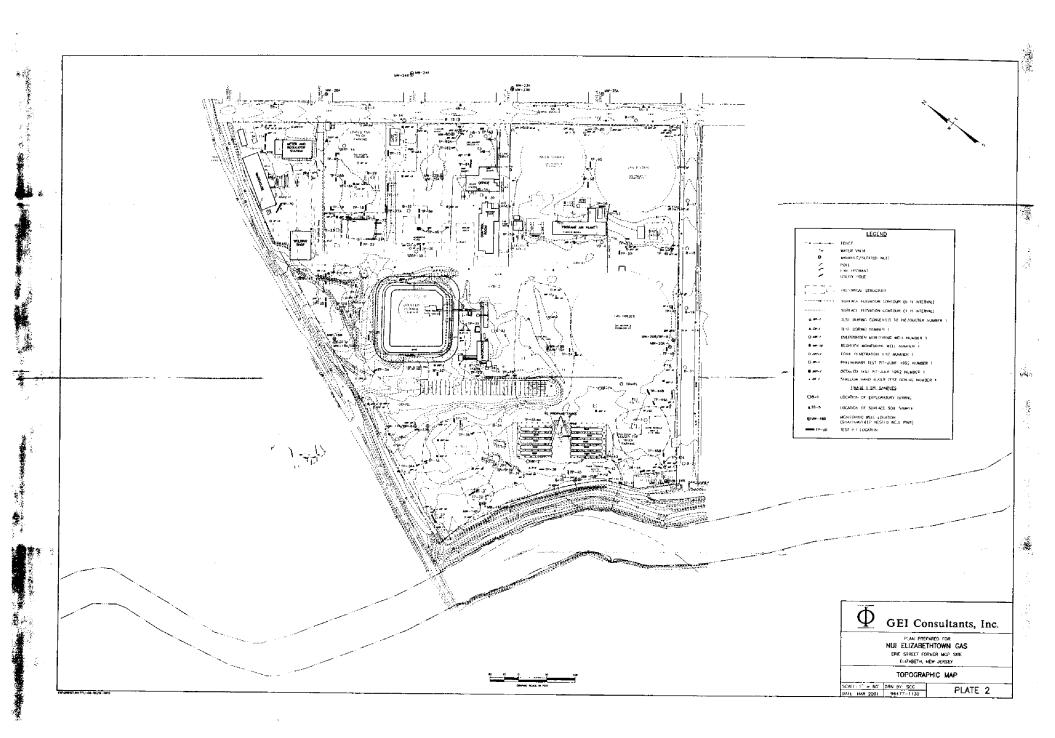


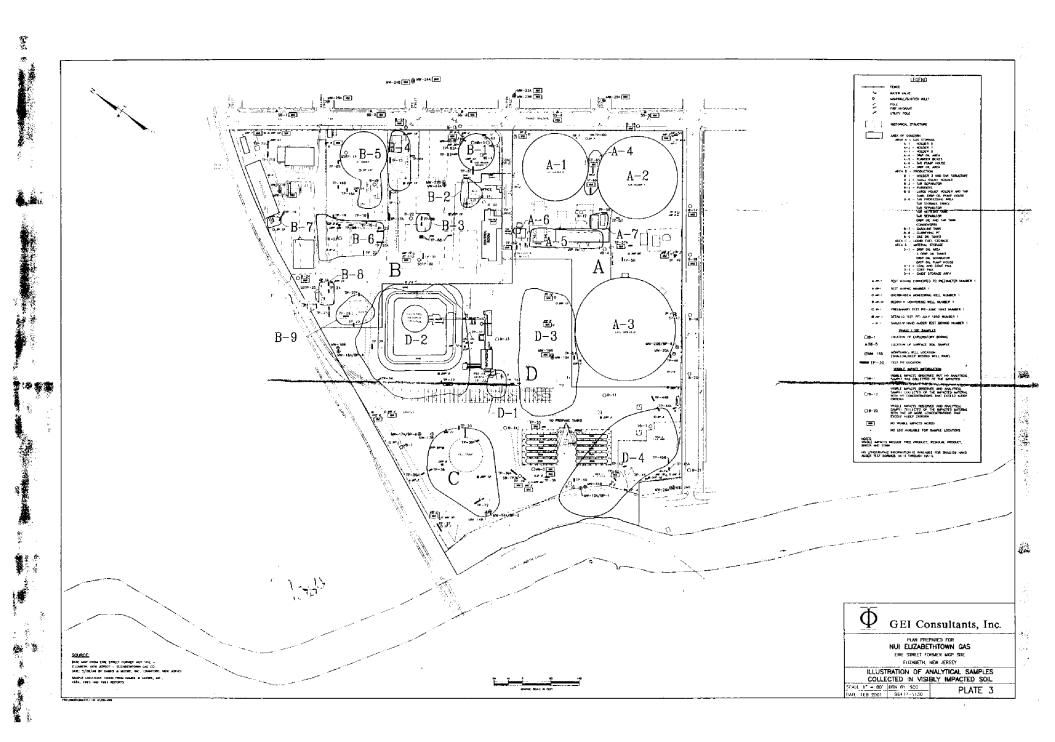


PHASE I SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT NUI ELIZABETHTOWN GAS APRIL 27, 2001

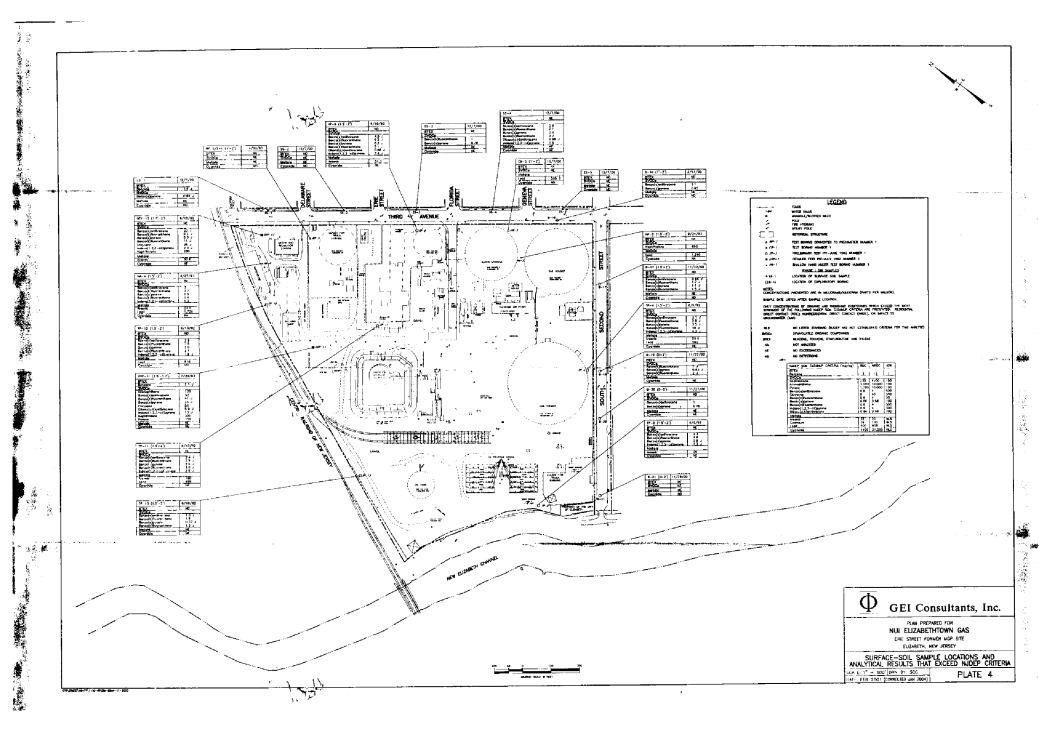
# Figures

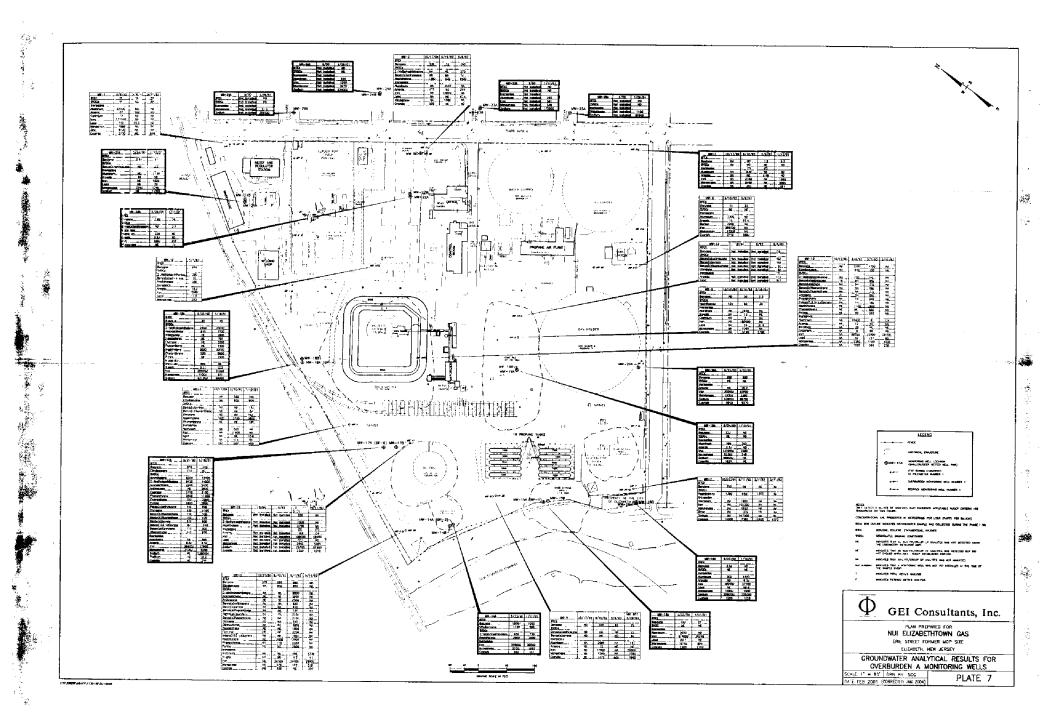


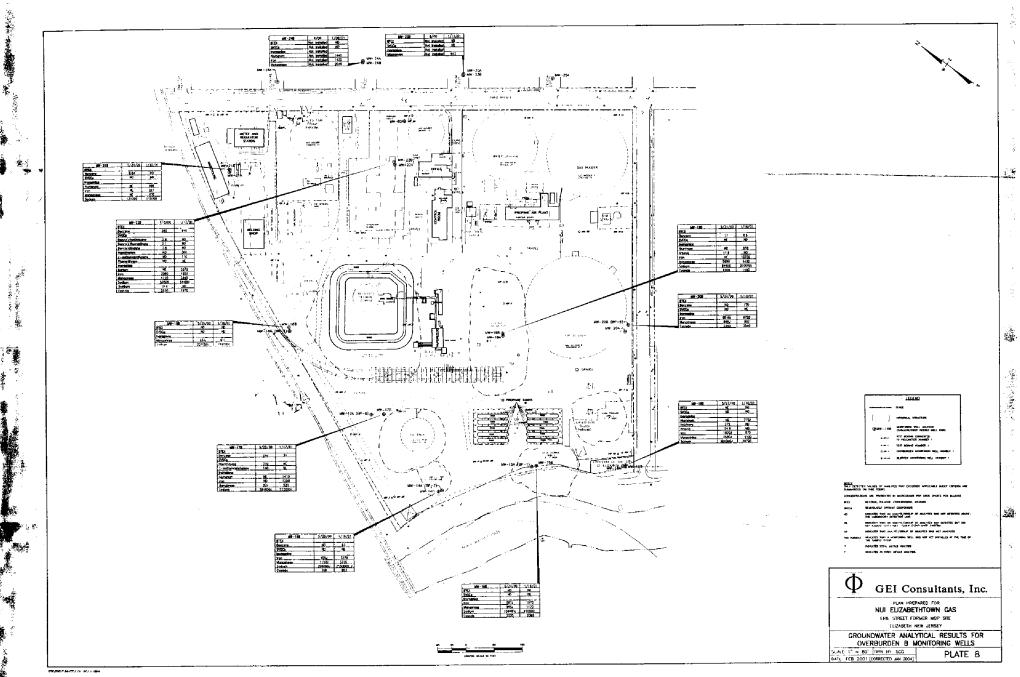


.



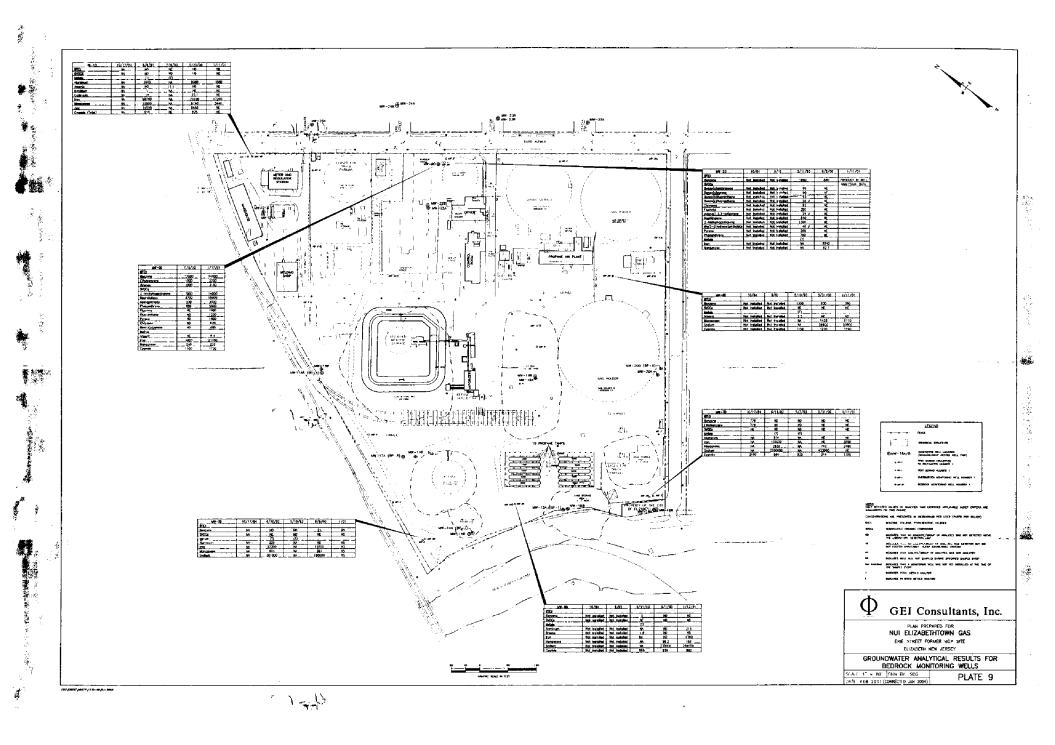





TIERRA-B-017775

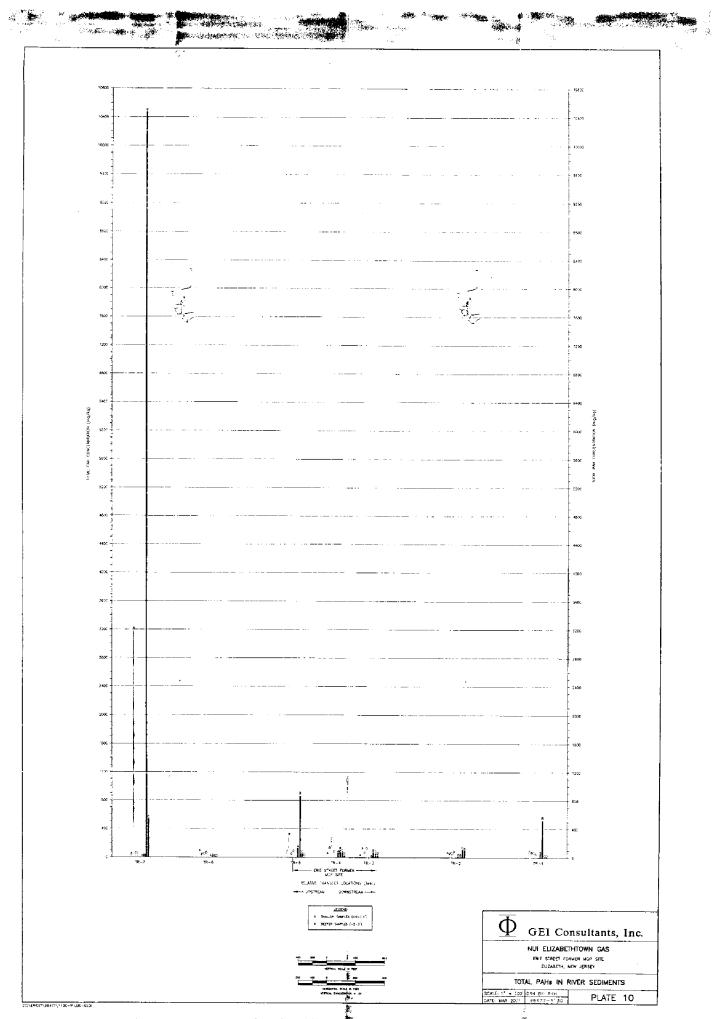









1.15



TIERRA-B-017783



fan en seren fan de fan de skrietere en skrieter fan skrieter 🖁 en een ster een ster se ster en ster een s



## State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF HAZARDOUS WASTE MANAGEMENT

LANCE R. MILLER, DIRECTOR CN 028 Trenton, N.J. 08625-0028 (609) 633-1408 Fax # (609) 633-1454

Mary Patricia Keefe, Vice President Elizabethtown Gas Company One Elizabethtown Plaza Union, New Jersey 07083 APR 9 1991

Dear Ms. Keefe:

Re: Elizabethtown Gas Company, South Street Site Administrative Consent Order (ACO) 406-426 South Street Elizabeth, Union County, New Jersey

Enclosed find one executed original ACO for the referenced site for your records. Please note that the effective date of the ACO is April 9, 1991.

If you have any questions contact David Sweeney at (609) 633-0719.

Sincerely, .

CollewKokas

Colleen Kokas, Acting Section Chief Bureau of State Case Management

New Jersey is an Equal Opportunity Employer Recycled Paper





TIERRA-B-017785



### State of Deby Jersey DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF HAZARDOUS WASTE MANAGEMENT LANCE R. MILLER, DIRECTOR CN 028 Transon N.L. 08625-0028

Trenton, N.J. 08625-0028 (609) 633-1408 Fax # (609) 633-1454

1

2

1

•

## MAR 2.6 1991

ADMINISTRATIVE CONSENT ORDER

Date:

IN THE MATTER OF THE SOUTH STREET COAL GAS SITE AND ELIZABETHTOWN GAS COMPANY

This Administrative Consent Order is issued pursuant to the authority vested in the Commissioner of the New Jersey Department of Environmental Protection (hereinafter "NJDEP" or the "Department") by N.J.S.A. 13:1D-1 et seq. and the Water Pollution Control Act, N.J.S.A. 58:10A-1 et seq., the Solid Waste Management Act, N.J.S.A. 13:1E-1 et seq., and the Spill Compensation and Control Act, N.J.S.A. 58:10-23.11 et seq. and duly delegated to the Assistant Director for the Responsible Party Cleanup Element of the Division of Hazardous Waste Management pursuant to N.J.S.A. 13:1B-4.

#### FINDINGS

Elizabethtown Gas Company (hereinafter "EGC") is a New Jersey 1. Corporation with its principal offices located at 1 Elizabethtown Plaza, EGC owns the property Morris Avenue, Union County, Union, New Jersey. located at 400-426 South Street, Elizabeth, New Jersey, designated as Block 9, Lot 1151 on the municipal tax maps of the City of Elizabeth (hereinafter "the Site"). The Elizabeth River runs through the southwest corner of the Site in a The Site is bordered by residential properties to the concrete channel. northeast, east and southeast, light industry to the north, a storm water retention basin and the concrete bulkheads that contain the Elizabeth River to The Site consists of the southwest and Route 1 and 9 to the west. approximately 2.7 acres enclosed by a fence. There are four buildings on the Site, including one office building and three other buildings that contain debris and construction machinery.

2. EGC leased the property to Vignola Haulage of N.J., Inc., a haulage company.

3. In 1855 Elizabethtown Gas Light Company, a predecessor to EGC, began gas manufacturing operations on the Site for distribution and sale to its customers within the City of Elizabeth. The manufacture of gas was accomplished through several processes which resulted in gas. Coal gas was manufactured through the thermo-decomposition of volatile matter in coal in equipment called retorts, benches and coke ovens. This process produced the

New Jersey is an Equal Opportunity Employer

Recycled Paper



following by-products and/or wastes which may have included, but not be limited to: ash, coke, clinker, tars, spent oxide, spent lime and ammonia liquor. Because of the nature of the by-products and/or wastes generated, handled and/or stored at coal gasification facilities there exists the possibility that these by-products and/or wastes and/or constituents thereof, which are hazardous substances as defined in the Spill Compensation and Control Act, N.J.S.A. 58:10-23.11 <u>et seq</u>. and pollutants as defined in the Water Pollution Control Act, N.J.S.A. 58:10A-1 <u>et seq</u>., are present at the Site.

4. EGC alleges that: (a) the coal gasification process necessarily included the manufacture of certain materials (some or all of which are the subject of this Administrative Consent Order) which, at the time of the coal gasification activities, were neither believed to be hazardous, nor were regulated as hazardous; (b) as a result of subsequent changes in laws and regulations governing environmental matters and based upon a more advanced understanding of the characteristics of the aforementioned materials, it is now recognized that these materials are or may be hazardous; (c) nevertheless, EGC acted in an appropriate manner consistent with their understanding and in accordance with the law at the time the operations took place. The Department neither admits nor denies the above allegations.

5. In 1901 Elizabethtown Gas Light Company ceased gas manufacturing operations at the Site and soon thereafter reorganized and became known as EGC.

6. By letter dated August 22, 1983, the Department notified EGC of the potential presence of hazardous substances as defined in the Spill Compensation and Control Act, and pollutants as defined in the Water Pollution Control Act, at former coal gasification facilities, including the Site resulting from by-products and/or wastes, and/or constituents thereof, from gas manufacturing processes. In this letter the Department also notified EGC that it would be assessing gas manufacturing facilities for contamination.

7. By letter dated September 19, 1983, EGC notified the United States Environmental Protection Agency (hereinafter "USEPA") that pursuant to the Comprehensive Environmental Response, Compensation and Liability Act, EGC was giving notice of the potential existence of hazardous substances and poliutants at the Site.

8. By letter dated September 19, 1983, EGC notified the Department of its intention to fully comply with the New Jersey Spill Compensation and Control Act.

9. Between January 27, 1987 and February 5, 1987, the New Jersey Department of Transportation (NJDOT) performed an environmental Site screening investigation on the portion of the Site which NJDOT plans to purchase for the building of a right-of-way. Data generated from the investigation has revealed the presence of cadmium, lead and cyanide. Polynuclear Aromatic Hydrocarbons (PAH) were the most significant organic contaminants detected in concentrations ranging from 40 parts per million (ppm) to 3090 ppm in eight of twelve samples.

10. The substances referenced in paragraph(s) 3 and 8 above are hazardous substances pursuant to the Spill Compensation and Control Act, N.J.S.A., 58:10-23.11b(k).

۲.,

11. The hazardous substances referenced above were discharged into the waters and onto the lands of the State of New Jersey in violation of the Spill Compensation and Control Act, specifically N.J.S.A. 58:10-23.11c.

12. The substances referenced in paragraph(s) 3 and 8 above are pollutants pursuant to the Water Pollution Control Act, N.J.S.A. 58:10A-3n.

13. The pollutants referenced above were discharged onto the lands and into the waters of the State of New Jersey (without a permit) in violation of the Water Pollution Control Act, specifically N.J.S.A. 58:10A-6.

14. Based on these FINDINGS, the Department has determined (i) that as a result of operations at the site, hazardous substances as defined in the Spill Compensation and Control Act, N.J.S.A. 58:10-23.11 <u>et seq.</u> and pollutants as defined in the Water Pollution Control Act, N.J.S.A. 58:10A-1 <u>et seq.</u> have been and may continue to discharge onto the land and into the waters of the State of New Jersey in violation of the Spill Compensation and Control Act, N.J.S.A. 58:10-23.11 <u>et seq.</u> have 58:10-23.11 <u>et seq.</u> and the Water Pollution Control Act, N.J.S.A. 58:10-23.11 <u>et seq.</u> and the Water Pollution Control Act, N.J.S.A. 58:10-23.11 <u>et seq.</u> and the Water Pollution Control Act, N.J.S.A. 58:10-23.11 <u>et seq.</u> at or about the Site; and, (ii) that EGC is a responsible party, as defined in N.J.S.A. 58:10-23.11g.

15. Historical records reveal the likelihood that other possible sources of pollution exist proximate to the site.

16. To determine the nature and extent of the problem presented by the discharge of pollutants and hazardous substances at the site and to develop environmentally sound remedial actions, it is necessary to conduct a remedial investigation and feasibility study of remedial action alternatives (hereinafter "RI/FS") for the site. To correct the problems presented by the discharge, it may be necessary to implement a remedial action plan, the scope of which will be based on the results of the RI/FS.

17. To resolve this matter without the necessity for litigation, EGC has agreed to conduct an RI/FS and to design and implement a remedial action alternative for the site.

18. Notwithstanding the provisions of paragraph 14, EGC enters into this Administrative Consent Order without trial or adjudication of any of the facts or issues contained herein. The execution of this Administrative Consent Order by EGC and EGC's subsequent compliance with its terms, does not constitute, and shall not be construed as; an admission of liability of any kind or an admission of any fact or conclusion of law or the applicability of any law.

ORDER

NOW, THEREFORE, IT IS HEREBY ORDERED AND AGREED THAT:

I. Reimbursement of Prior Costs

f 3

19. Within thirty (30) calendar days after receipt from the Department of a written summary of all costs incurred by the Department to date, in connection with the investigation of, and response to, the matters described in the FINDINGS hereinabove, including the costs associated with the preparation of this Administrative Consent Order, EGC shall submit to the Department a cashier's or certified check payable to the "Treasurer, State of New Jersey" for the full amount of the Department's oversight costs. Payment shall be submitted to the contact listed in paragraph 44 below.

#### II. <u>Remedial Investigation and Cleanup</u>

### A. <u>Remedial Investigation</u>

20. Within sixty (60) calendar days after the effective date of this Administrative Consent Order, EGC shall submit to the Department a detailed draft Remedial Investigation Work Plan (hereinafter the "RI Work Plan") in accordance with the scope of work set forth in Appendices B, C and D, which are attached hereto and made a part hereof.

21. Within one hundred (100) calendar days after receipt of the Department's written comments on the draft RI Work Plan, EGC shall modify the draft RI Work Plan to conform to the Department's comments and shall submit the modified RI Work Plan to the Department. The determination as to whether or not the modified RI Work Plan, as resubmitted, conforms to the Department's comments and is otherwise acceptable to the Department shall be made solely by the Department in writing.

22. Upon receipt of the Department's written final approval of the RI Work Plan, EGC shall conduct the remedial investigation in accordance with the approved RI Work Plan and the schedule therein.

23. EGC shall submit to the Department a draft Remedial Investigation Report (hereinafter "RI Report") in accordance with Appendix B and the RI Work Plan and the schedule therein.

24. If upon review of the draft RI Report the Department determines that additional remedial investigation is required, EGC shall conduct additional remedial investigation as directed by the Department and submit a second draft RI Report.

25. Within one hundred (100) calendar days after receipt of the Department's written comments on the draft or second draft (if applicable pursuant to the preceding paragraph) RI Report, EGC shall modify the draft or second draft RI Report to conform to the Department's comments and shall submit the modified RI Report to the Department. The determination as to whether or not the modified RI Report, as resubmitted, conforms with the Department's comments and is otherwise acceptable by the Department shall be made solely by the Department in writing.

B. <u>Feasibility Study</u>

26. Within sixty (60) calendar days after receipt of the Department's written final approval of the RI Report, or as otherwise directed by the Department, EGC shall submit to the Department a detailed draft Feasibility Study Work Plan (hereinafter, "FS Work Plan") in accordance with the scope of work set forth in Appendix E, which is attached hereto and made a part hereof.

1 1

27. Within one hundred (100) calendar days after receipt of the Department's written comments on the draft FS Work Plan, EGC shall modify the draft FS Work Plan to conform to the Department's comments and shall submit the modified FS Work Plan to the Department. The determination as to whether or not the modified FS Work Plan, as resubmitted, conforms to the Department's comments and is otherwise acceptable to the Department shall be made solely by the Department in writing.

28. Upon receipt of the Department's written final approval of the FS Work Pian, EGC shall conduct the feasibility study in accordance with the approved FS Work Plan and the schedule therein.

29. EGC shall submit to the Department a draft Feasibility Study Report (hereinafter "FS Report") in accordance with Appendix E and the approved FS Work Plan and the schedule therein.

30. Within one hundred (100) calendar days after receipt of the Department's written comments on the draft FS Report, EGC shall modify the draft FS Report to conform to the Department's comments and shall submit the modified FS Report to the Department. The determination as to whether or not the modified FS Report, as resubmitted, conforms to the Department's comments and is otherwise acceptable to the Department shall be made solely by the Department in writing.

#### C. Remedial Action

31. The Department will designate the remedial action alternatives that meet the criteria set forth in Appendix E, Section I.D. Within forty-five (45) calendar days after receipt of the Department's designation, EGC shall notify the Department which of these remedial action alternatives it will implement

32. Within ninety (90) calendar days after EGC's written notification of selection of the remedial action alternative it will implement, EGC shall submit to the Department a detailed draft Remedial Action Plan in accordance with the scope of work set forth in Appendix F, which is attached hereto and made a part hereof.

33. Within one hundred (100) calendar days after receipt of the Department's written comments on the draft Remedial Action Plan, EGC shall modify the draft Remedial Action Plan to conform to the Department's comments and shall submit the modified Remedial Action Plan to the Department. The determination as to whether or not the modified Remedial Action Plan, as resubmitted, conforms to the Department's comments and is otherwise acceptable to the Department shall be made solely by the Department in writing.

34. Upon receipt of the Department's written final approval of the Remedial Action Plan, EGC shall implement the approved Remedial Action Plan in accordance with the schedule therein.

35. The Department and EGC hereby acknowledge and, where relevant, will take into account that certain activities, e.g. field sampling and analysis, could take more than 30 calendar days to complete.

## D. Additional Remedial Investigation and Remedial Action

1 1

36. If at any time prior to EGC receipt of written notice from the Department pursuant to paragraph 88, the Department determines that the criteria set forth in Appendix E (Section I.D.) are not being achieved or that additional remedial investigation and/or remedial action is required to protect human health or the environment, EGC shall conduct such additional activities as directed by the Department and in accordance with this Administrative Consent Order.

#### E. Progress Reports

37. EGC shall submit to the Department quarterly progress reports; the first progress report shall be submitted on or before the 30th calendar day of the month following the first full quarter after the effective date of this Administrative Consent Order. Each progress report thereafter shall be submitted on or before the 30th calendar day of the month following the quarter being reported. Each progress report shall detail the activities taken to comply with this Administrative Consent Order and shall include the following:

- a. Identification of site and reference to this Administrative Consent Order;
  - b. Identify specific requirements of this Administrative Consent Order (including the corresponding paragraph number or schedule) which were initiated during the reporting period;
  - c. Identify specific requirements of this Administrative Consent Order (including the corresponding paragraph number or schedule) which were initiated in a previous reporting period, which are still in progress and which will continue to be carried out during the next reporting period;
  - d. Identify specific requirements of this Administrative Consent Order (including the corresponding paragraph number or schedule) which were completed during this reporting period;
  - e. Identify specific requirements of this Administrative Consent Order (including the corresponding paragraph numbers or schedule) which should have been completed during the reporting period and were not;
  - f. An explanation of any non-compliance with any approved work plan(s), schedule(s) or Remedial Action Plan, and actions taken or to be taken to rectify non-compliance;
  - g. Identify the specific requirements of this Administrative Consent Order (including the corresponding paragraph number or schedule) that will be initiated during the upcoming reporting period.

#### III. Permits

38. This Administrative Consent Order shall not be construed to be a permit or in lieu of a permit for existing or former activities which require permits and it shall not relieve EGC from obtaining and complying with all applicable Federal, State and local permits necessary for any future activities which EGC must perform in order to carry out the obligations of this Administrative Consent Order.

12

39. EGC shall submit complete applications for all Federal, State and local permits required to carry out the obligations of this Administrative Consent Order in accordance with the approved time schedules.

40. Within sixty (60) calendar days of receipt of written comments concerning any permit application to a Federal, State or local agency, or as otherwise required by the permitting agency, EGC shall modify the permit application to conform to the agency's comments and resubmit the permit application to the agency. The determination as to whether or not the permit application, as resubmitted, conforms with the agency's comments or is otherwise acceptable to the agency shall be made solely by the agency in writing.

41. This Administrative Consent Order shall not preclude the Department from requiring that EGC apply for any permit or permit modification issued by the Department under the authority of the Water Pollution Control Act, N.J.S.A. 58:10A-1 <u>et seq</u>., the Solid Waste Management Act, N.J.S.A. 13:1E-1 <u>et seq</u>., and/or any other statute for the matters covered herein. The terms and conditions of any such permit or permit modification shall not be preempted by the terms and conditions of this Administrative Consent Order even if the terms and conditions of any such permit or permit modification are more stringent than the terms and conditions of this Administrative Consent Order. To the extent that the terms and conditions of any such permit or permit modifications are substantially equivalent with the terms and conditions of this Administrative Consent Order, EGC waives any rights it may have to a hearing on such terms and conditions during any such permit process.

#### IV. Project Coordination

42. EGC shall submit to the Department all documents required by this Administrative Consent Order, including correspondence relating to <u>force</u> <u>majeure</u> issues, by certified mail, return receipt requested or by hand delivery with an acknowledgement of receipt form for the Department's signature. The date that the Department executes the receipt or acknowledgement will be the date the Department uses to determine EGC compliance with the requirements of this Administrative Consent Order and the applicability of stipulated penalties and any other remedies available to the Department.

43. Within seven (7) calendar days after the effective date of this Administrative Consent Order, EGC shall submit to the Department the name, title, address and telephone number of the individual who shall be the EGC contact for the Department for all matters concerning this Administrative Consent Order. The individual identified in the following paragraph shall be the Department's contact for the EGC for all matters concerning this Administrative Consent Order.

44. EGC shall submit four (4) copies of all documents required by this Administrative Consent Order, unless otherwise directed by the Department, to:

15

New Jersey Department of Environmental Protection Bureau of State Case Management Division of Hazardous Waste Management 401 East State Street - Fifth Floor CN-028 Trenton, NJ 08625 Attention: David Sweeney, Section Chief

45. EGC shall notify, both verbally and in writing, the contact person listed above at least two weeks prior to the initiation of any component identified in any submittals relating to field activities required under this Administrative Consent Order and as soon as practicable following any schedule change.

## V. <u>Financial Requirements</u>

#### A. Financial Assurance

46. Within thirty (30) calendar days after the effective date of this Administrative Consent Order, EGC shall obtain and provide to the Department financial assurance in the form of either an irrevocable letter of credit or a performance bond in the amount of \$700,000.00. EGC shall also establish an irrevocable standby trust fund, with an initial deposit of One Thousand dollars (\$1,000.00) or as otherwise required by the financial institution. The irrevocable letter of credit, the performance bond and the irrevocable trust fund agreement shall meet the following requirements:

i. Letter of credit

- a. Is identical to the wording specified in Appendix G for letters of credit, which is attached hereto and made a part hereof;
- b. Is issued by a New Jersey State or Federally chartered bank, savings bank, or savings and loan association, which has its principal office in New Jersey, unless otherwise approved by the Department; and
- c. Is accompanied by a letter from EGC referring to the Letter of Credit by number, issuing institution and date and providing the following information: the name and address of the facility and/or site which is the subject of the Administrative Consent Order and the amount of funds securing the EGC performance of all its obligations under the Administrative Consent Order.

#### 11. Performance Bond

- a. Is identical to the wording specified in Appendix I for performance bonds, which is attached hereto and made a part hereof;
- b. The surety company issuing the performance bond shall, at a minimum, be among those listed as acceptable sureties on Federal bonds in the most recent version of Circular 570 issued by the U.S. Department of

the Treasury, which is published annually on July 1 in the Federal Register; and

- c. Is accompanied by a letter from EGC referring to the Performance Bond by number, issuing institution and date and providing the following information: the name and address of the facility and/or site which is the subject of the Administrative Conset Order and the amount of funds securing the company's performance of all its obligations under the Administrative Consent Order.
- iii. Standby Trust
  - a. Is identical to the wording specified in Appendix H, which is attached hereto and made a part hereof;
  - b. The irrevocable standby trust fund may, at the discretion of the Department, be the depository for all funds paid pursuant to a draft by the Department against the letter of credit or payments made under the performance bond as directed by the Department;
  - c. The trustee shall be an entity which has the authority to act as a trustee and whose trust operations are regulated and examined by a Federal or New Jersey agency;
  - d. Is accompanied by an executed certification of acknowledgement that is identical to the wording specified in Appendix H.

47. EGC shall establish and maintain the standby trust fund until terminated by the written agreement of the Department, the trustee and EGC, or of the trustee and the Department if EGC ceases to exist. EGC shall maintain the letter of credit or performance bond until the Department provides written notification to EGC that the financial assurance is no longer required for compliance with this Administrative Consent Order. In the event that the Department determines that EGC has failed to perform any of its obligations under this Administrative Consent Order, the Department may proceed to have the financial assurance deposited into the standby trust; provided, however, that before the Department draws on the letter of credit or makes a claim against the performance bond, the Department shall notify EGC in writing of the obligation(s) which it has not performed, and EGC shall have a reasonable time, not to exceed thirty (30) calendar days, unless approved in writing by the Department, to perform such obligation(s).

48. At any time, EGC may apply to the Department to substitute other financial assurances in a form, manner and amount acceptable to the Department.

### B. Project Cost Review

49. Beginning three hundred sixty-five (365) calendar days after the effective date of this Administrative Consent Order and annually thereafter on that same calendar day, EGC shall submit to the Department a detailed review of all costs incurred by EGC in conjunction with the investigations and remediation of the Site. This cost review shall also include a detailed summary of all monies spent to date pursuant to this Administrative Consent Order, the estimated cost of all future expenditures required to comply with

170

this Administrative Consent Order (including any operation and maintenance costs), and the reason for any changes from the previous cost review submitted by EGC.

50. At any time after EGC submits the first cost review pursuant to the preceding paragraph, EGC may request the Department's approval to reduce the amount of the financial assurance to reflect the remaining costs of performing its obligations under this Administrative Consent Order. If the Department grants written approval of the request, EGC may amend the amount of the then existing letter of credit or performance bond.

51. If the estimated cost of meeting EGC obligations in this Administrative Consent Order at any time increases to an amount greater than the financial assurance, EGC shall, within fourteen (14) calendar days after receipt of written notice of the Department's determination, increase the amount of the then existing letter of credit or performance bond so that it is equal to the estimated cost as determined by the Department. The Department shall consider KGC's comments concerning costs of future actions into its determination. EGC shall provide the amended financial assurance to the Department within seven (7) calendar days after it has been obtained.

#### C. Oversight Cost Reimbursement

52. Within thirty (30) calendar days after receipt from the Department of a written summary of all costs incurred in connection with its oversight functions of this Administrative Consent Order for a fiscal year, or any part thereof, EGC shall submit to the Department a cashier's or certified check payable to the "Treasurer, State of New Jersey" for the full amount of the Department's oversight costs.

#### D. Stipulated Penalties

53. Upon a demand made by the Department, EGC shall pay stipulated penalties to the Department for its failure to comply with any of the deadlines or schedules required by this Administrative Consent Order including those established and approved by the Department in writing pursuant to this Administrative Consent Order. Each deadline or schedule not complied with shall be considered a separate violation. Payment of stipulated penalties shall be made according to the following schedule, unless the Department has modified the compliance date pursuant to the force <u>majeureprovisions</u> hereinbelow and other provisions which may have been established:

<u>Calendar Days After Due Date</u>	Stipulated Penalties		
1 - 7	\$ 1,000 per calendar day		
8 - 14	\$ 2,000 per calendar day		
15 - 21	\$ 3,000 per calendar day		
22 - 28	\$ 5,000 per calendar day		
29 - over	\$10,000 per calendar day		

54. Any such penalty shall be due and payable thirty (30) calendar days following receipt of a written demand by the Department. Payment of stipulated penalties shall be made by a cashier's or certified check payable to the "Treasurer, State of New Jersey".

10

55. All penalties paid pursuant to this Administrative Consent Order shall be considered civil and/or civil administrative penalties.

 $\cap$ 

1

56. Payment of stipulated penalties does not alter EGC responsibility to complete any requirement of this Administrative Consent Order.

#### VI. Force Majeure

57. If any event as specified in the following paragraph occurs which EGC believes or should believe may cause delay in the compliance or non-compliance with any provision of this Administrative Consent Order, EGC shall notify the Department in writing no later than seven (7) calendar days after the delay or the date the anticipated delay became known to EGC. The notification referenced in this paragraph shall describe the anticipated length of the delay, the precise cause or causes of the delay, any measures taken or to be taken to minimize the delay, and the anticipated time required to take any such measures to minimize the delay. EGC shall take all necessary action to prevent or minimize any such delay.

58. If the Department finds that: (a) EGC has complied with the notice requirements of the preceding paragraph (b) that any delay or anticipated delay has been or will be caused by fire, flood, riot, strike or other circumstances beyond the control of EGC; and (c) EGC has taken all necessary action to prevent or minimize any such delay the Department shall extend the time for performance hereunder for a period no longer than the delay resulting from such If the Department determines that, (i) EGC has not complied circumstances. with the notice requirements of the preceding paragraph, (ii) the event causing the delay is not beyond the control of EGC, or (111) EGC has not taken all necessary actions to prevent or minimize the delay, this paragraph shall not be applicable and failure to comply with breach of the requirements of this Administrative Consent Order. The burden of proving that any delay is caused by circumstances beyond the control of EGC and the length of any such delay attributable to those circumstances shall rest with EGC. Increases in the cost expenses incurred by EGC in fulfilling the requirements of this or Administrative Consent Order shall not constitute a force majoure. Delay in an interim requirement shall not automatically justify or excuse delay in the attainment of subsequent requirements. Force majeure shall not include nonattainment of the goals, standards, guidelines and requirements set forth in the appendicies attached hereto. Force majeure shall not include contractor's breach unless such breach falls under (a), (b) and (c) of this paragraph.

# VII. <u>Reservation of Rights</u>

59. The Department reserves the right to unilaterally terminate this Administrative Consent Order in the event EGC violates the terms or fails to meet the obligations of this Administrative Consent Order.

60. Nothing in this Administrative Consent Order shall preclude the Department from seeking civil or civil administrative penalties or any other legal or equitable relief against EGC.

61. This Administrative Consent Order shall not be construed to affect or waive the claims of federal or State natural resources trustees against EGC for damages for injury to, destruction of, or loss of natural resources.

62. The Department reserves the right to require EGC to take or arrange for the taking of any and all additional measures if the Department determines that such actions are necessary to protect human health or the environment. Nothing in this Administrative Consent Order shall constitute a waiver of any statutory right of the Department to require EGC to undertake such additional measures should the Department determine that such measures are necessary.

63. Nothing in this Administrative Consent Order, including the Department's assessment of stipulated penalties, shall preclude the Department from seeking civil or civil administrative penalties or any other legal or equitable relief against EGC for violations of this Administrative Consent Order. In any such action brought by the Department under this Administrative Consent Order for injunctive relief, or civil, civil administrative or stipulated penalties, EGC may raise among other defenses, a defense that EGC failed to comply with a decision of the Department, made pursuant to this Administrative Consent Order, on the basis that the Department's decision was If EGC is successful in establishing arbitrary, capricious or unreasonable. such a defense, EGC shall not be liable for stipulated penalties for failure to comply with that particular requirement of the Administrative Consent Order. Although EGC may raise such defenses in any action initiated by the Department for injunctive relief or stipulated penalties, EGC shall not otherwise seek review of any decision made or to be made by the Department pursuant to this Administrative Consent Order and under no circumstances shall EGC initiate any action or proceeding challenging any decision made or to be made by the Department pursuant to this Administrative Consent Order.

64. Paragraphs 59, 60, 61, 62 and 63 notwithstanding, EGC reserves whatever rights it may have, if any, to contest, after implementation of the remediation for which the financial assurance was used by the Department, that the Department's use of the financial assurance provided pursuant to this Administrative Consent Order was arbitrary, capricious or unreasonable. The Department reserves its rights to contest any such action.

#### VIII. General Provisions

65. This Administrative Consent Order shall be binding on EGC, its agents, successors, assignees and any trustee in bankruptcy or receiver appointed pursuant to a proceeding in law or equity.

66. EGC shall perform all work conducted pursuant to this Administrative Consent Order in accordance with prevailing professional standards.

67. EGC shall conduct all site operations in accordance with the Health and Safety plan developed for this site (as set forth in Appendix B). All site activities shall be conducted in accordance with all general industry (29 CFR 1910) and construction (29 CFR 1926) standards of the federal Occupational Safety and Health Administration (OSHA), U.S. Department of Labor, as well as any other State or municipal codes or ordinances that may apply. 68. In accordance with N.J.S.A. 45:8-45, all plans or specifications involving professional engineering, submitted pursuant to this Administrative Consent Order, shall be submitted affixed with the seal of a professional engineer licensed pursuant to the provisions of N.J.S.A. 45:8-1 <u>et seq</u>.

69. EGC shall conform all actions pursuant to this Administrative Consent Order with all applicable Federal, State, and local laws and regulations.

70. All appendices referenced in this Administrative Consent Order, as well as all reports, work plans and documents required under the terms of this Administrative Consent Order are, upon approval by the Department, incorporated into this Administrative Consent Order by reference and made a part hereof.

71. Each field activity to be conducted pursuant to this Administrative Consent Order shall be coordinated by an onsite professional(s) with experience relative to the particular activity being conducted at the site each day, such as experience in the area of hydrogeology, geology, environmental controls, risk analysis, health and safety or soils.

72. Upon the receipt of a written request from the Department, EGC shall submit to the Department all data and information, including technical records and contractual documents, concerning pollution at and/or emanating from the site, or which has emanated from the site, including raw sampling and monitor data, whether or not such data and information, including technical records and contractual documents, was developed pursuant to this Administrative Consent Order.

73. EGC shall preserve, during the pendency of this Administrative Consent Order and for a minimum of six (6) years after its termination, all data, records and documents in their possession or in the possession of their divisions, employees, agents, accountants, contractors, or attorneys which relate in any way to the implementation of work under this Administrative Consent Order, despite any document retention policy to the contrary. After this six year period, EGC shall notify the Department within thirty (30) calendar days prior to the destruction of any such documents. If the Department requests in writing that some or all of the documents be preserved for a longer time period, EGC shall comply with that request. Upon receipt of a written request by the Department, the EGC shall submit to the Department all non-privileged records or copies of any such records.

74. Obligations and penalties of the Order are imposed pursuant to the police powers of the State of New Jersey for the enforcement of the law and the protection of the public health, safety and welfare and are not intended to constitute debt or debts which may be limited or discharged in a bankruptcy proceeding.

75. In addition to the Department's statutory and regulatory rights to enter and inspect, EGC shall allow the Department and its authorized representatives access to the site at all times for the purpose of monitoring EGC compliance with this Administrative Consent Order and/or to perform any remedial activities EGC fails to perform as required by this Administrative Consent Order.

13

76. EGC shall not construe any informal advice, guidance, suggestions, or comments by the Department, or by persons acting on behalf of the Department, as relieving EGC of its obligation to obtain written approvals as required herein, unless the Department specifically relieves EGC of such obligations, in writing in accordance with the following paragraph.

77. No modification or waiver of this Administrative Consent Order shall be valid except by written amendment to this Administrative Consent Order duly executed by EGC and the Department.

78. EGC hereby consents to and agrees to comply with this Administrative Consent Order which shall be fully enforceable as an Order in the New Jersey Superior Court upon the filing of a summary action for compliance pursuant to N.J.S.A. 13:1D-1 at seq., the Water Pollution Control Act, N.J.S.A. 58:10A-1 at seq. and/or the Solid Waste Management Act, N.J.S.A. 13:1E-1 at seq.

79. In the event that the Department determines that a public meeting concerning the cleanup of the site is necessary at any time, EGC shall ensure that the EGC appropriate representative is prepared, available, and participates in such a meeting upon notification from the Department of the date, time and place of such meeting.

80. EGC waives its rights to an administrative hearing concerning the entry of this Administrative Consent Order pursuant to N.J.S.A. 52:14B-1 <u>et seq</u>. and N.J.S.A. 58:10A-1 <u>et seq</u>.

81. EGC agrees not to contest the authority or jurisdiction of the Department to issue this Administrative Consent Order; EGC further agrees not to contest the terms or conditions of this Administrative Consent Order, except as to interpretation or application of such terms and conditions in any action brought by the Department to enforce the provisions of this Administrative Consent Order.

82. EGC shall provide a copy of this Administrative Consent Order to each contractor and subcontractor retained to perform the work required by this Administrative Consent Order and shall condition all contracts and subcontracts entered for the performance of such work upon compliance with the terms and conditions of this Administrative Consent Order. EGC shall be responsible to the Department for ensuring that their contractors and subcontractors perform the work herein in accordance with this Administrative Consent Order.

83. EGC shall give written notice of this Administrative Consent Order to any successor in interest within 90 calendar days prior to transfer of ownership of EGC facilities which are the subject of this Administrative Consent Order, and shall simultaneously verify to the Department that such notice has been given. This requirement shall be in addition to any other statutory or regulatory requirements arising from the transfer of owership of EGC facilities.

84. Within sixty (60) calendar days after the effective date of this Administrative Consent Order, EGC shall record a copy of this Administrative Consent Order with the Register of Deeds, Union County, State of New Jersey and submit a letter to the Department which shall include the deed book and page number on which the Administrative Consent Order was recorded. 85. The Site that is the subject of this Administrative Consent Order may be freely alienated provided that:

1 1

a. At least ninety (90) calendar days prior to the date of such alienation, EGC shall notify the Department in writing of the proposed alienation, the name of the grantee, and a description of the grantor's obligations, if any, proposed to be performed by such grantee.

£ %

- b. Any contract to alienate the Site shall require the grantee to allow and provide access for the implementation, continuation and oversight of all activities and obligations pursuant to this Administrative Consent Order. EGC obligations under this Administrative Consent Order shall continue unless the grantee agrees to assume EGC obligations and unless the Department in its sole discretion agrees to permit the grantee to assume the obligations of EGC.
- c. Any deed, title or other instrument of conveyance regarding the Site shall contain a notice that the Site is the subject of this Administrative Consent Order. Any such deed, title or other instrument of conveyance shall be subject to the requirements set forth in paragraph 86 below regarding the use of the Site and deed restrictions.
- d. Nothing herein shall relieve EGC of the obligation to comply with all applicable statutes and rules relating to the alienation of the Site.

66. EGC agrees not to make any use of the Site or take any actions inconsistent within this Administrative Consent Order. EGC agrees to impose such use and/or access restrictions regarding the Site as may be reasonably deemed necessary by the Department. The use and access restrictions shall run with the land, shall be for the benefit of and enforceable by the Department and the citizens of the State of New Jersey and shall provide actual and constructive notice of such restrictions to any subsequent grantee. EGC shall record the restrictions with the Union County Register of Deeds immediately upon request of the Department that EGC do so.

87. It is the mutual intention of EGC and the Department that the investigatory and cleanup requirements of this Administrative Consent Order shall be in conformity with and shall satisfy the applicable requirements of the statutes and regulations which form the basis for this Administrative Consent Order, i.e., the Water Pollution Control Act, N.J.S.A. 58:10a-1 <u>et seq</u>.; the Solid Waste Management Act, N.J.S.A. 13:1e-1 <u>et seq</u>.; and the Spill Compensation and Control Act, N.J.S.A. 58:10-23.11 <u>et seq</u>. Where the requirements conflict, the more stringent requirement shall apply.

88. The requirements of this Administrative Consent Order shall be deemed satisfied upon the receipt by EGC of written notice from the Department that EGC has demonstrated, to the satisfaction of the Department, that the obligations imposed by this Administrative Consent Order have been completed by EGC.

89. EGC shall submit to the Department, along with the executed original Administrative Consent Order, the appropriate documentary evidence (such as a

 $\bigcirc$ 

corporate resolution) that the signitory for EGC has the authority to bind EGC to the terms of this Administrative Consent Order.

90. This Administrative Consent Order shall become effective upon execution by the Department.

DEPARTMENT OF ENVIRONMENTAL PROTECTION

9 1991 Date: <u>Apil</u>

By: Dennis Hart, Acting Assistant Director

Responsible Party Cleanup Element Division of Hazardous Waste Management

ELIZABETHTOWN GAS COMPANY

1994 Date: April 8,

By: 🗧

Name: Frederick W. Sullivan

Title: President & CEO

ATTEST:

Kenneth G. Sěcr

# LIST OF APPENDICES

 $\langle \gamma \rangle$ 

APPENDIX	TITLE	PAGE
A	INTERIM REMEDIAL MEASURES SCOPE OF WORK	A-18
B	REMEDIAL INVESTIGATION SCOPE OF WORK	B-21
C	QUALITY ASSURANCE REQUIREMENTS	C-35
D	MONITOR WELL SPECIFICATIONS	D-37
E	FEASIBILITY STUDY SCOPE OF WORK	E-38
F	REMEDIAL ACTION SCOPE OF WORK	F-43
G	LETTER OF CREDIT WORDING DOCUMENT	G-45
H	STANDBY TRUST WORDING DOCUMENT	H-48
I	PERFORMANCE BOND WORDING	I <b>-</b> 58

.

.

.

# APPENDIX A

4 .

.

## INTERIM REMEDIAL MEASURES SCOPE OF WORK

•

## INTERIM REMEDIAL MEASURES

#### I. Requirements of Interim Remedial Measures

13

. A. [List, with as much detail as possible, all interim remedial measures that the company is to take immediately, such as:

providing a fence or other security

securing spilled or damaged drums/containers that have or threaten to discharge hazardous substances

covering or removing waste piles

providing water treatment, bottled water, or extension of water lines

initiate non-aqueous phase liquid recovery

begin pumping and proper disposal of contaminated ground water

upgrade existing treatment facility

increase above-ground storage

retrofit leaking lagoon

cap or cover solid waste management unit]

- II. Contents of Interim Remedial Measures Plan
  - A. A statement of requirements for the interim remedial measures plan pursuant to Section I. above
  - B. A report on all activities undertaken pursuant to all Directives and Administrative Orders issued by the Department concerning this site.
  - C. A detailed schedule for all interim remedial measures required by this Administrative Consent Order and in this Scope of Work, including:
    - 1. dates for submission of all permit applications
    - 2. dates for start and ending of all field activities
  - D. A detailed engineering design for each interim remedial measure including:
    - 1. a description of appropriate new or additional containment, treatment and/or disposal technologies
    - 2. a description of special engineering considerations required to upgrade existing facilities

- 1 ⁻
- 3. a description of operation, maintenance and monitoring requirements of each interim remedial measures
- 4. offsite disposal needs and transportation plans
- 5. additional temporary or permanent storage requirements
- 6. safety requirements for interim remedial measures
- 7. a description of ability of each measure to be phased into individual operable units
- 8. a review of each measure to ensure compliance with applicable statutes and regulations
- 9. a list of all Federal, State and local permits required for each measure
- 10. a discussion of any limits or constraints each measure may place on final remedial alternatives
- E. Curriculum vitae of all key personnel who will participate in the implimentation of the approved Interim Remedial Measures Plan.
- F. A detailed performance evaluation program

.

# APPENDIX B

# REMEDIAL INVESTIGATION SCOPE OF WORK

#### REMEDIAL INVESTIGATION SCOPE OF WORK

- I. Requirements of Remedial Investigation
  - A. Fully characterize all waste and other materials which are, or may be the source(s) of air, soil, surface water and ground water pollution at the site

, [`]"

- B. Fully determine the nature, type and physical states of air, soil, surface water and ground-water pollution at the site, emanating from the site or which has emanated from the site
- C. Fully determine the horizontal and vertical extent of pollution at the site, emanating from the site or which has emanated from the site
- D. Fully determine migration paths of pollutants through air, soil, ground water, surface water and sediment
- E. Fully determine impact of the air, soil, surface water and ground water pollution on human health and the environment
- F. Collect, present and discuss all data necessary to adequately support the development of a feasibility study and the selection of a remedial action alternative that will remedy the adverse impacts of the pollution on human health and the environment
- G. Fully analyze present production methodologies for manufacturing, waste generation and environmental control at the site in order to ascertain if any change to such methodologies will decrease the threat to health or environment posed by operations at the site.
- II. Contents of Remedial Investigation Work Plan
- IMPORTANT NOTE: All of the following items shall be included in the RI Work Plan. If any of the items have previously been submitted or completed, it shall be so stated in the RI Work Plan. For these items, the following shall be included in the RI Work Plan:
  - description of items submitted and/or summary of investigation completed
  - date(s) of submission or completion
  - any known changes or new information developed since submission or completion

The Department will determine the extent to which prior submissions or completions may satisfy specific items required by this Scope of Work.

A. A statement of requirements for the remedial investigation pursuant to Section I., above

- B. A complete site history including:
  - 1. an operational and ownership history of the site since 1940, including for each owner/operator:

 $\ell \geq$ 

- a. type of operation conducted,
- b. start and end dates of ownership/operation, and
- c. current address for owner/operator
- a list of all raw materials used and products made, past and present, including all pertinent dates
- 3. a description, including dates, of all past and present disposal practices as well as the location of all known and suspected pollution sources
- 4. all historical site plans and facility as-built construction drawings available to or in EGC possession
- 5. all aerial photographs of the site in possession of or available to EGC
- 6. a site water budget: input, use, distribution and discharge
- 7. a background of site and surroundings, including but not limited to the following:
  - a. ground water use in area, including well logs and records, and
  - b. boring logs for onsite and nearby construction
- 8. the identification of any previous ECRA submission for any part of the site, including:
  - a. ECRA Case No.,
  - b. Date of submission, and
  - c. Current Status
- 9. a list of all federal and state environmental permits, registrations, licenses, or other approvals applied for, or received or both, at the site, since 1960 including:
  - a. issuing agency,
  - b. permit number,
  - c. certificate number,
  - d. date of submission,
  - e. date of approval or denial,
  - f. reason for denial (if applicable), and
  - g. expiration date
- 10. summary of all civil and criminal enforcement actions for violation of environmental laws, including:

- $\cap$
- a. name and address of agency that initiated action,
- b. date of action,
- c. section of statute, rule or permit violated,
- d. type of enforcement action,
- e. description of violations, and
- f. resolution or status of violation
- 11. a description of all containers, tanks, surface impoundments, landfills, septic systems and any other structure, vessel, contrivance or unit that contain or previously contained hazardous substances or wastes, including:
  - a. type,
  - b. age,
  - c. dimension,
  - d. location, and
  - e. chemical content
- 12. a complete and current inventory, description and location of hazardous substances and wastes generated, manufactured, refined, transported, treated, stored, handled or disposed at the site, above or below ground
- 13. a detailed description of any known discharge of hazardous substances or wastes that occurred during current or past operations of the site and a detailed description of any remedial actions undertaken to handle any such discharge
- 14. a list of all current or previously developed data and information concerning pollution at and/or emanating from the site, or which has emanated from the site, including raw sampling and monitor data
- 15. a summary, review and evaluation of all existing environmental data concerning pollution at the site, emanating from the site or which has emanated from the site
- 16. a list of all events which have occurred at the site, including but not limited to fires, spills, and discharges which have had or potentially may have had an adverse impact on human health or the environment
- C. A detailed schedule for all remedial investigation activities set forth in this Administrative Consent Order and in this Scope of Work including:
  - 1. dates for submission of all required permit applications
  - 2. dates for start and ending of all field investigations
  - 3. dates for submission of all reports
- D. Curriculum vitae of all key personnel who will participate in the remedial investigation

## E. A field sampling plan including:

- 1. Waste characterization
  - a. specify number, type and frequency of samples required to accurately characterize all solid waste in tanks, drums, lagoons/impoundments, piles or otherwise at the site
  - b. explain the type of data which will be collected, justification for collection, and intentions for use of the data
  - c. specify location (on site map) and depths of proposed soil borings, test pits and other sampling points
  - d. specify EPA analytical procedures, including test parameters for waste analyses
  - e. specify chain-of-custody procedures
  - f. specify the name of the State certified laboratory EGC will use for analysis of all samples
  - g. specify which quality assurance deliverable requirements will be submitted in accordance with Appendix C, which is attached hereto and made a part hereof
  - h. specify all Federal, State and local permits required
  - i. specify investigation procedures in accordance with the following:
    - i. obtain drilling permits for all soil borings pursuant to N.J.A.C. 58:4A-14
    - ii. install soil borings under direct supervision of a New Jersey licensed well driller and a qualified geologist
    - iii. decontaminate soil boring and sampling equipment between individual samples and borings according to the approved decontamination plan
    - iv. classify waste according to N.J.A.C. 7:26-1 et seq.
      - v. use field instrumentation (PID, FID) to analyze soil samples in the field
    - vi. analyze waste samples to quantify and determine type of pollutants
    - vii. permanently seal all soil borings using a certified well sealer, within 12 hours of completion of each boring

- viii. provide for proper disposal of all materials (eg., cuttings) generated during the soil boring program.
- 2. Soil investigation
  - a. specify number, type and frequency of samples required to accurately define the horizontal and vertical extent of soil pollution at the site, emanating from the site or which has emanated from the site
  - b. explain the type of data which will be collected, justification for collection and intentions for use of the data
  - c. specify location (on site map) and depths of proposed soil borings, test pits and other sampling points
  - d. specify EPA analytical procedures, including test parameters for soil analyses
  - e. specify chain-of-custody procedures
  - f. specify the name of the State certified laboratory EGC will use for analysis of all samples
  - g. specify which quality assurance deliverable requirements will be submitted pursuant to Appendix C
  - h. specify all Federal, State and local permits required
  - 1. specify investigation procedures in accordance with the following:
    - i. obtain drilling permits for all soil borings pursuant to N.J.A.C. 58:4A-14
    - ii. install soil borings under direct supervision of a New Jersey licensed well driller and a qualified geologist
    - iii. decontaminate soil boring and sampling equipment between individual samples and borings according to the approved decontamination plan
    - iv. classify soil according to a standard approved system, e.g. Burmeister, Unified, USDA
    - v. analyze particle size in laboratory on representative samples to confirm field identification
    - vi. use field instrumentation (PID, FID) to analyze soil samples in the field

- vii. analyze soil samples to quantify and determine type of pollutants
- viii. permanently seal all soil borings using a certified well sealer, within 12 hours of completion of each boring
  - ix. provide for proper disposal of all materials (eg., cuttings) generated during soil boring program
- 3. ground-water and potable well investigation
  - a. specify number, locations (on site map) and designs of existing and proposed piezometers, monitor wells, industrial wells, potable wells, and other sampling points required to accurately define the horizontal and vertical extent of ground-water pollution at the site, emanating from the site or which has emanated from the site
  - b. explain the type of data which will be collected, justification for collection, and intentions for use of the data
  - c. specify number, type and frequency of ground-water and potable well samples required to accurately define the horizontal and vertical extent of ground-water pollution at the site, emanating from the site, or which has emanated from the site
  - d. specify EPA analytical procedures, including test parameters for ground-water analyses
  - e. specify chain-of-custody procedures
  - f. specify the name of the State certified laboratory EGC will use for analysis of all samples
  - g. specify which quality assurance deliverable requirements will be submitted in accordance with Appendix C
  - h. specify frequency of synoptic static water level measurements
  - i. specify all Federal, State and local permits required
  - j. specify investigation procedures in accordance with the following
    - i. have a qualified hydrogeologist with substantial experience in ground-water pollution investigations oversee all site activities
    - ii. obtain well drilling permits pursuant to N.J.S.A. 58:4A-14

- iii. drill all wells under the direct supervision of a New Jersey licensed well driller and a qualified hydrogeologist
- iv. install wells in accordance with the monitor well specifications in Appendix D, which is attached hereto and made a part hereof

IMPORTANT NOTE: Improperly constructed monitor wells can compound a pollution problem. Therefore, particular attention shall be given to the details of these specifications. The Department has the authority to shut down a drilling operation which is not adhering to the approved procedures. Data derived from improperly constructed wells shall not be accepted by the Department.

- v. collect split-spoon samples during drilling through the overburden according to ASTM Standard Penetration Methods, ASTM D1586-67, at five-foot intervals, at changes in soil strata, and at all zones which show obvious signs of pollution; with a specific number of drilling locations including continuous split spoon samples to fully define subsurface stratigraphy
- vi. collect sufficient rock core, according to ASTM Diamond Core Drilling Methods, ASTM 2113-70, during the drilling of bedrock monitor wells to obtain a thorough understanding of fracture patterns beneath the site
- vii. rock core run lengths shall be five feet, the core size shall be of "NX" diameter and the following items, at a minimum, shall be included in the log of the core:
  - a. lithology
  - b. fracture frequency
  - c. degree of weathering of rock and fractures
  - d. fracture fit
  - e. fracture spacing
  - f. orientation of fractures
  - g. odors and stains present in rock core
  - h. % recovery
  - 1. % RQD
- viii. retain all soil and rock samples for future reference and/or analysis
- ix. decontaminate drilling and sampling equipment after each drilling and sampling event according to the approved decontamination plan
- x. survey all well casings, to the nearest hundredth (0.01) foot above mean sea level and horizontally to

an accuracy of one-tenth of a second latitude and longitude by a New Jersey licensed land surveyor

- xi. a permanent water-level measurement mark shall be etched onto the well casing to allow for accurate, reproduceable water-level measurements over time
- xii. obtain synoptic static water levels to the nearest hundredth (0.01) foot in each monitor well on a regular basis
- xiii. collect all ground-water samples pursuant to N.J.A.C. 7:14A-6.12 and NJDEP field procedures manual for water data acquisition
- xiv. ground-water samples shall not be collected within 14 calendar days of installation and development of the wells
- xv. complete sufficient pumping and packer tests to adequately define aquifer characteristics and develop recovery well design for aquifer restoration
- xvi. complete borehole and surface geophysical surveys and/or ground-water modeling as appropriate for the site
- 4. surface water and sediment investigation
  - a. specify number and type of samples required to accurately determine the horizontal and vertical extent of surface water and sediment pollution at the site, emanating from the site or which has emanated from the site
  - b. explain the type of data which will be collected, justification for collection, and intentions for use of the data
  - c. specify location (on site map) of surface water and sediment sampling points
  - d. specify EPA analytical procedures, including test parameters, for surface water and sediment analyses
  - e. specify chain-of-custody procedures
  - f. specify the name of the State certified laboratory EGC will use for anlaysis of all samples
  - g. specify which quality assurance deliverable requirements will be submitted in accordance with Appendix C
  - h. specify all Federal, State and local permits required

- i. specify investigation procedures in accordance with the following
  - i. analyze surface water and sediment samples to determine the presence of pollutants in the surface water and sediment according to the approved sampling plan
  - ii. decontaminate sampling equipment between sampling events according to the approved decontamination plan
  - iii. collect surface water and sediment samples in accordance with Field Procedures Manual for Water Data Acquisition, Division of Water Resources, New Jersey Department of Environmental Protection, 1983
- 5. ambient air monitoring investigation
  - a. characterize baseline air quality conditions on and in the vicinity of the site, and identify present air quality hazards related to the site
  - b. develop a field screening protocol including:
    - i. wellhead monitoring and soil sample emissions analyses
    - ii. any specific air quality concerns in the ultimate selection of a remedial alternative
    - iii. any adverse air quality impacts that may be associated with the selected remedial action
    - iv. enable the implementation of measures to control any adverse air quality impacts that may occur during the course of remedial activities (for example, to design and implement a construction related air program to monitor ambient levels)
    - v. specify all Federal, State and local permits required
    - vi. specify investigation procedures
- G. A site-specific health and safety plan (HASP) based on EPA protocols and in compliance with the requirements of 29 CFR 1910.120 for on-site personnel to minimize the risk of personal injury, illness and potential environmental impairment associated with the site investigation. The HASP shall address those aspects specified in paragraph(i) of 29 CFR 1910.120 entitled "Informational Programs" and shall include:
  - 1. listing of personal protective equipment (including respiratory protection) to be used and guidelines for their use, including manufacturer, model, duration of safety period, and any required certification documentation

30 ·

- 2. listing of safety equipment (including manufacturer, expiration date and model) to be used, such as fire extinguishers, portable eye wash stations, air monitoring equipment, gamma survey instrument, etc. (equipment shall meet OSHA standards or other acceptable industrial standards)
- 3. contingency plans for emergency procedures, spill prevention/response, and evacuation plans
- 4. onsite monitoring for personnel safety (e.g. PID, FID)
- 5. criteria for selecting proper level of personal protection
- 6. medical surveillance program for all onsite personnel involved in remedial investigation
- 7, personal hygiene requirements
- 8. training program including training protocol
- 9. special medical procedures to be available at site
- 10. telephone numbers of emergency medical facility and personnel
- H. An equipment decontamination plan including:
  - 1. list the items to be decontaminated
    - a. drilling equipment, paying particular attention to down hole tools, back of drilling rig and drilling rod racks
    - b. sampling equipment including split spoons, shelby tubes, trowels, spatulas, etc.
    - c. bailers, pumps, hoses, etc.
    - d. personnel clothing
  - 2. procedures for decontamination
    - a. all field sampling equipment shall be laboratory cleaned, wrapped and dedicated to a particular sampling point, unless written permission for field cleaning is obtained from the Department prior to the collection of any samples
    - b. field cleaning of well casing, well screening and drilling equipment shall consist of a manual scrubbing to remove foreign material and steam cleaning inside and out until all traces of oil and grease are removed; these materials shall then be stored in such a manner to preserve it in this pristine condition
    - c. split spoons, bailers, pumps, etc.

- non-phosphate detergent

- tap water rinse
- distilled/deionized water rinse
- 10% nitric acid rinse*
- distilled/deionized water rinse*
- acetone (pesticide grade) rinse
- total air dry or nitrogen blow out
- distilled/deionized water rinse

*only if sample is to be analyzed for metals

- d. hoses
  - steam cleaning
  - alconox scrub
  - alconox flushing
- e. the chain of custody for sampling events shall begin with the cleaning of the sampler; wherever possible samplers should be numbered in a manner that will not affect their integrity, wrapped in a material (i.e. aluminum foil) that has either been autoclaved or cleaned in the same manner as the sampler
- f. the use of distilled water commercially available in 5 gallon polyethylene carboys is acceptable for sampler decontamination provided that it is also deionized; use of this water is unacceptable for field and trip blanks unless it has been demonstrated to be analyte free by laboratory analysis

IMPORANT NOTE: Use of dedicated sampling equipment is recommended

III. Contents and Format of Remedial Investigation Report

- A. Presentation of data
  - 1. results of all analyses on data sheets supplied by the Department, laboratory data sheets and the required quality assurance documentation
  - 2. summary table(s) of all analyses

- 3. stratigraphic logs including grain size and field instrument readings detected during drilling for each soil boring and monitor well
- 4. stratigraphic cross section
- 5. as-built construction diagrams for each soil boring and monitor well
- 6. well casing elevations to the nearest hundredth (0.01) foot above mean sea level, taken at the top of casing with locking cap removed
- 7. depth to ground water to the nearest hundredth (0.01) foot above mean sea level, taken at the top of well casing prior to sampling with cap removed
- 8. all support data including graphs, equations, references, raw data, etc.
- B. Maps
  - 1. site map
    - a. property boundaries
    - b. structures and improvements
    - c. surface water bodies
    - d. site and adjacent land use
    - e. topography indicating two-foot contours
    - f. all underground piping and utilities
    - g. all underground tanks, associated piping, lagoons, seepage pits, dry wells, etc.
    - h. scale and orientation
  - 2. sample location map(s)
    - a. monitor well locations and casing elevations
    - b. sample collection locations
    - c. soil boring locations
  - 3. soil quality contour map and cross section(s)
  - 4. ground-water elevation contour maps for each aquifer on multiple dates
  - 5. ground-water quality contour map(s) and cross section(s)
  - 6. bedrock contour map
- C. Discussion of data
  - 1. waste characterization, including degree of hazard and probable quantities of waste, by type

.

- 2. description of site/regional hydrogeology and its relation to migration of pollutants
- 3. direction and rate of ground-water flow in the aquifer(s), both horizontally and vertically
- 4. levels of soil, surface water and ground-water pollution as compared to applicable standards pursuant to N.J.A.C. 7:14A, 7:9-4, 7:9-6, and guidelines, or background levels where pertinent
- 5. extent of soil, surface water and ground-water pollution both on and offsite
- 6. pollutant behavior, stability, biological and chemical degradation, mobility and any other relevant factors pertinent to the investigation
- 7. projected rate(s) of pollution movement
- 8. identification of all pollution sources
- 9. identification of critical pollutants
- D. Assessment of impact of pollution on human health and the environment
  - 1. identification of human receptors in the paths of pollution migration; mobility of pollutants and specific routes to target organs (e.g., liver)
  - identification of the receiving media and/or ecological groups and migration pathways of critical pollutants
  - 3. toxicology of each critical pollutant (acute and chronic toxicity for short- and long-term exposure, carcinogenicity, mutagenicity, teratogenicity, synergistic and/or antagonistic associations, aquatic toxicity, ecological impacts on flora and fauna, etc.)
  - 4. migration potential and environmental fate of each critical pollutant in site-specific terms (e.g., attenuation, dispersion and biodegradation are factors in the ground-water pathway)
  - 5. evaluation of potential for biomagnification and/or bioaccumulation of critical pollutants in the food chain
- E. Recommendations for additional investigations
  - 1. waste
  - 2. soil
  - 3. ground water
  - 4. surface water and sediment
  - 5. air

# APPENDIX C

.

<u>___</u>

.

QUALITY ASSURANCE REQUIREMENTS

# 1

#### QUALITY ASSURANCE DELIVERABLE REQUIREMENTS

There are three parts to this Appendix. The first part outlines, according to sample/data type, frequency and use, the approximate percentage of samples for which the Tier I and Tier II quality assurance deliverables are required. The second part is a copy of the Tier I Quality Assurance Deliverable Requirements. The third part is a copy of the Tier II Quality Assurance Deliverable Requirements.

TIER I

100%

100%

#### CRITERIA FOR QUALITY ASSURANCE DELIVERABLE REQUIREMENTS

- A. <u>Remedial Investigation</u>:
  - 1. initial RI phase

2. subsequent RI phases

10%, or minimum 90% of one monitor well, or one sample per sampling event

TIER II

#### B. <u>Remedial Action</u>:

- 1. monitoring of decontamination effectiveness
  - a. initial sampling 100%
  - b. subsequent sampling 25%
- 2. sampling to support proposal to terminate decontamination system
- 3. post cleanup/removal soil sampling to determine 100% if any additional cleanup/ removal is required

#### C. Other Site Specific Considerations:

- 1. potable water
  - a. initial sampling 100% b. subsequent sampling 25%
- 75%

75%





## State of Reb Jersey DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF HAZARDOUS WASTE MANAGEMENT LANCE R. MILLER, DIRECTOR CN 028 Trenton, N.J. 08625-0028 (609) 633-1408

Fax # (609) 633-1454

001 3 1

MEMORANDUM

TO: Linda Grayson, Chief Bureau of State Case Management

FROM: Nate Byrd, Case Transfer Coordinator 36 Bureau of Site Assessment

DATE: October 29, 1991

SUBJECT: PRELIMINARY ASSESSMENTS/SITE INSPECTIONS

Attached please find copies of the narrative portion of Preliminary Assessments (PA) and/or Site Inspections (SI) which have recently been completed by the Bureau of Planning and Assessment or the U.S. EPA. Available information indicates that these sites are being handled by your program; thus, reports are attached for your information. The complete files are available at BSA.

Should you have any questions or comments, please call me at (609) 584-4291.

NB:ap Attachments (2):

> SI: Elizabeth Coal Gas Site #2 - 911032 Bayonne Gas Works - 911031

> > New Jersey is an Equal Opportunity Employer Recycled Paper



BBA000032

TIERRA-B-017822

	<b>.</b>		ATION			
	PAR 1.	T I: SITE INFORM	IA I I UN zabeth Coal Gas Site	#2		
		Street 406 South St				
						Zip <u>07202</u>
		City <u>Elizabeth</u>			State <u>New Jersev</u>	
	2.	County Union			County Code <u>039</u>	Cong. Dist. <u>07</u>
	3	EPA ID No. <u>NJ0981</u>	082902			
	4.	Black No. 9			Lat No. <u>1151</u>	
	5.	Latitude <u>40° 39' 29</u>	" N		Longitude <u>74° 12' 3</u>	2" W
		USGS Quad. Elizab	eth, New Jersey			
	6a.	Owner Elizabethto	wn Gas Light Comp	any	Tel. No. <u>(201) 289-</u> 5	5000
		-	Plaza			
					State <u>New Jersey</u>	Zip <u>07207</u>
				<u> </u>	31014 [[[[]] 76[34]]	
		Northern portion o				
	6b.	Owner Union Cou	nty Dept. of Parks ar	nd Rec.	Tel. No. (201) 527-	4814
		Street <u>Administra</u>	tive Building, County	<u>v of Union</u>	1	
<b>.</b>		City Elizabeth			State <u>New Jersev</u>	Zip <u>07207</u>
		Southern portion o	ofsite. ,			
	7.	Operator No curr	ent operator		Tel. No	
		Street				
		City			State	Zip
	_	•		·		
	8.	Type of Ownershi	P []] Federa <b>i</b>	🗖 Sta	ta	
		🔀 Privata	Municipal			] Other
			_			
	9.	-	Notification on File			Date <u>Sept. 19, 1983</u>
		RCRA 3001			🖾 CERCLA 103c*	Vate <u>3401, 17, 1793</u>
•		□ None			to und annitable . This	information is based on

the letter enclosed in Ref. No. 14.

.

.

•••

#### **Permit Information** 10.

1

÷

	Permit I	Permit No.	Date issued	Expiration Date	Comments
	<u>N/A</u>	-			
11.	Site Status				
	Active	🔀 Inactive	🗍 Uni	known	
12.	Years of Operation	1855	to	1901	

Identify the types of waste sources (e.g., landfill, surface impoundment, piles, stained soil, 13. above- or below-ground tanks or containers, land treatment, etc.) on site. Initiate as many waste unit numbers as needed to identify all waste sources on site.

Waste Sources (a)

Waste Unit No.	Waste Unit Type	Facility Name for Unit
1	Unlined Pits	Wast <u>e Pits</u>

#### Other Areas of Concern **(b)**

Identify any miscellaneous spills, dumping, etc. on site; describe the materials and identify their locations on site.

TAMS Consultants, Inc. (TAMS) reported after an initial site visit on December 16, 1986 that there was surface water present in the catch basin located adjacent to the South Street Pumping Station and that this water had a strong odor of raw sewage and spots of oil sheen in places. These substances were assumed to have origins other than coal gasification wastes. TAMS also reported that quantities of retort slag were scattered about open areas of the site both under the viaduct and in areas disturbed by construction of flood control facilities. This initial site visit also revealed a number of locations near the viaduct where waste oil appeared to have been dumped in small quantities (Ref. No. 3).

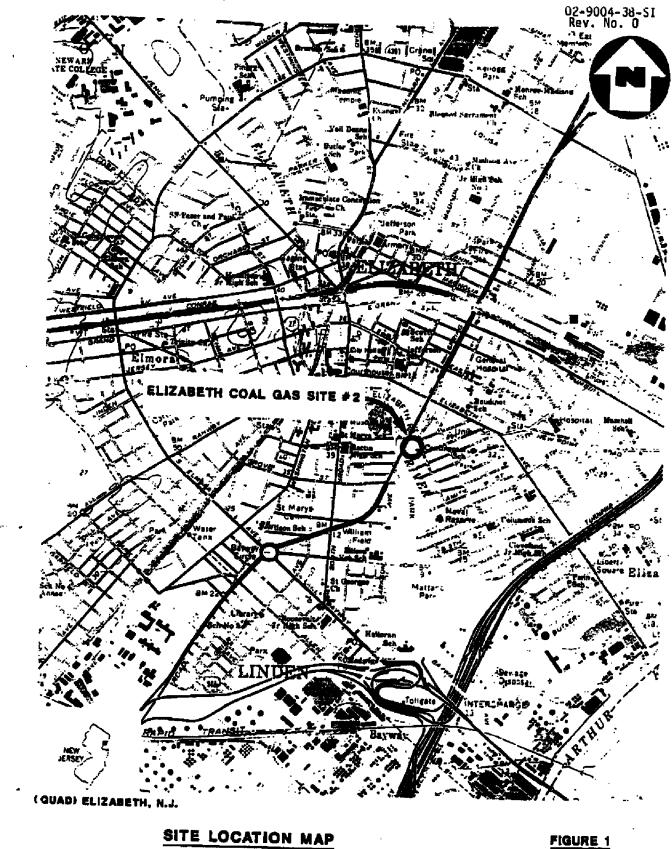
Information available from 14.

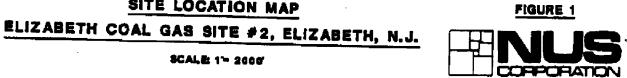
Contact_	Amy Brochu	Agency_U.S. EPA	Tel. No. (201) 906-6802
Preparer	Richard M. Settino	Agency NUS Corp. Region 2 FIT	Date September 14,1990

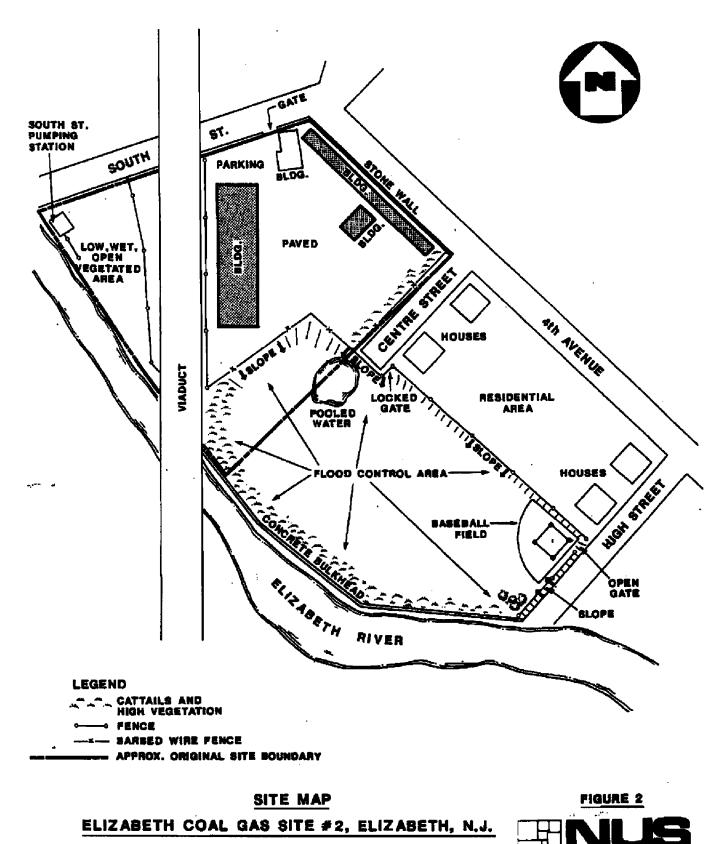
02-9004-38-5i Rev. No. 0

# PART II: WASTE SOURCE INFORMATION

The site was used for the production of coal gas from 1855 to approximately 1901. The uses of the site from 1901 until its present uses by a salvage company and for flood control are unknown. Wastes produced on site were the result of the gasification processes. These wastes typically include ammonia, amonium sulfate, sulfur, coke, coal tar, coal tar pitch, clinker, and light oils. The coal tar may contain significant concentrations of pyrene, anthracene, and other polynuclear aromatic hydrocarbons (PAHs), including known or suspected carcinogens (Ref. No. 1, p.4 and Attachment 8). Actual waste handling practices that occurred at the plant are largely unknown. Wastes were reported to be disposed of in unlined pits primarily on the northern portion of the site and most likely extended into the southern portion also. Low grade tar and tar-water mixtures along with spent oil were most likely dumped on site. During an NUS Corp. Region 2 FIT site inspection a substance assumed to be coal was discovered in on- site soils, and a substance assumed to be solidified coal tar was encountered while collecting a subsurface soil sample (Ref. No. 2). It is reported that some remedial action was taken by the Elizabethtown Gas Light Company; however, the time and extent of remediation are unknown (Ref. No. 26).

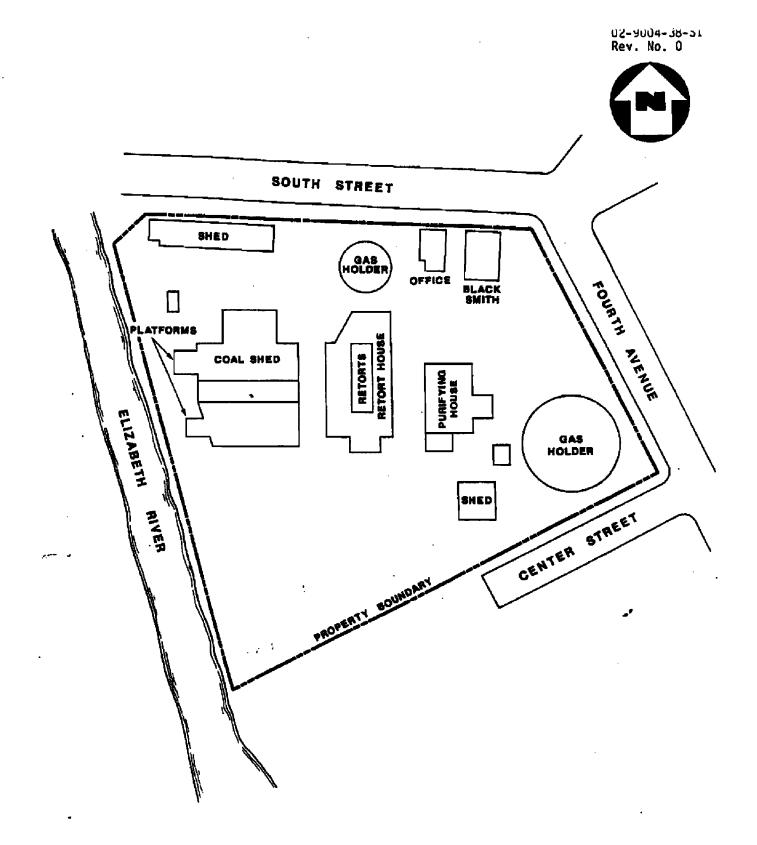

The structures that existed on site in 1903 are as follows: two gas storage tanks of unknown size, two sheds, a blacksmith shop, a purifying house, a retort building, two coal sheds, an engine house, and an office building (Ref. No. 1, p. 9). Aerial photographs show that most of the structures were removed from the site between 1959 and 1966 (Ref. No. 10). The retort house and office building still exist on site (Ref. No. 1). Figures 1 and 2 provide a Site Location Map and a present day Site Map, respectively. Figure 3 shows a Site Map of the former facility as it existed in 1903. There is no known containment associated with the waste pits. Potential for direct contact is high since there is a public-access baseball field located on the southern portion of the site (Ref. No. 2). The exact quantity of wastes deposited, as well as the size or exact location of any pits that currently exist or formerly existed on site, is unknown.


# PART III: PRE-EXISTENT ANALYTICAL DATA


. . . .

From January 27 to February 5, 1987, eight soil borings were drilled and nine test pits were excavated on site by TAMS Consultants, Inc. (TAMS). Soil samples were collected from the borings and pits at this time for chemical analysis. All samples were analyzed for U.S. EPA Priority Pollutants plus 40 peaks (or selected fractions) and provided with NJDEP Tier III deliverables by Weston Analytics of Lionville, Pennsylvania Analytical parameters included heavy metals, cyanide, phenolics, polynuclear aromatic hydrocarbons (PAHs), and volatile organic compounds. The area investigated was only in the northern portion of the site immediately under the viaduct. This area was to be used by the New

· · · · · ·







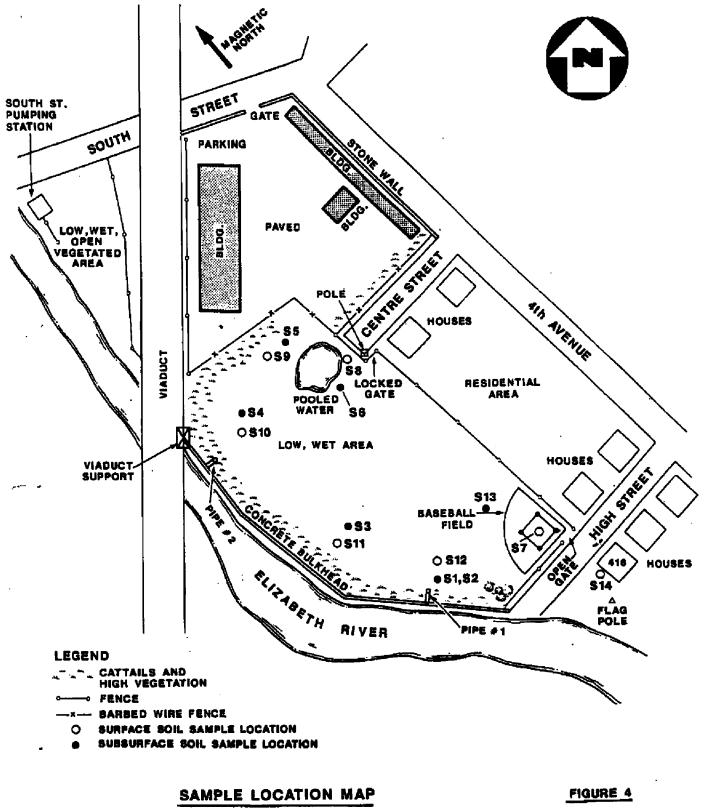

NOT TO SCALE

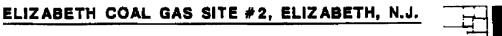
COFFORATION





Jersey Department of Transportation (NIDOT) to widen the viaduct. The TAMS investigation did not include screening of the entire site. Refer to Reference No. 3, Figure 2 for the locations of the borings and test pits.


TAMS reported little visual evidence of coal gasification wastes to be present in these borings and test pits, with the exception of some subsurface retort slag. However, every soil sample tested exceeded the New Jersey Department of Environmental Protection informal action levels for at least one parameter. The inorganics exceeding action levels included cadmium, lead, and cyanide. Inorganic analyses are presented in Reference No. 3, Table 1. The most significant concentrations of organic contaminants detected were for PAHs, ranging from over 40 parts per million (ppm) to 3,090 ppm in eight of the twelve samples taken. High concentrations of other semivolatile organic (dibenzofuran and naphthalenes) and inorganic (lead) compounds were detected in association with the high PAH concentrations. Reference No. 3, Table 2 presents organic analysis results (Ref. No. 3).


# PART IV: SITE INSPECTION SAMPLE RESULTS

1

The NUS Corporation Region 2 FIT (FIT) conducted a sampling site inspection at the Elizabeth Coal Gas Site #2 on June 12, 1990, during which seven surface and seven subsurface soil samples were collected (Ref. No. 2). The soil samples were collected to determine if any soil contamination or waste exists that can be attributed to previous coal gasification operations and to assess the potential for direct contact with contaminants present. The samples were analyzed under the Contract Laboratory Program(CLP) for Target Compound List (TCL) organic and inorganic constituents, including cyanide. All NUS Corporation Region 2 FIT analytical data sheets are provided in Ref. No. 27 of this report. Refer to Figure 4 for all sample locations and to Table 1 for a summary of the organic compounds detected in the soil samples. In the following discussion, all soil sample numbers are preceded by NIGA.

The site can be divided into two sections: the northern portion of the site occupied by Vignola Salvage Corp. and the southern portion owned by Union County. The northern portion of the site was previously sampled by TAMS Consultants, Inc and the data are summarized above. The FIT collected 13 surface and subsurface soil samples (S1 to S13), including a duplicate, from the southern portion of the site, and one surface soil sample (S14) from a residential property, located on the south side of High Street, to serve as a background sample. Sample locations were determined by using a thin-walled tube sampler at random subsurface locations around the site and marking the areas where waste was encountered and/or where readings significantly above background were registered on the HNU or OVA air monitoring instruments. No visual waste was encountered while using the tube sampler to determine the actual sample locations; however elevated readings





NOT TO SCALE

CORPORATION

#### TABLE 1: SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES COLLECTED AT THE ELIZABETH COAL GAS SITE #2 BY THE NUS CORP. REGION 2 FIT ON JUNE 12, 1990

COMPOUND														
VOLATHES	<u>51</u>	<u>52</u>	<u>53</u>	<u>54</u>	<u>\$5</u>	<u>56</u>	<u>\$7</u>	50	<u>59</u>	<u>510</u>	<u>\$11</u>	<u>512</u>	<u>\$13</u>	<u>514</u>
Carbon Disulfide	L	L	NĎ	ND	10,000E	ND	ND	ND	ND	ND	ND	ND	ND	ND
Senzene	ND	ND	ND	L	82,000E	ND	7	ſ	L	ND	ND	ND	NĎ	ND
Toluene	ND	NĎ	ND	ND	59,000E	ND	NĎ	ND	ND	ND	ND	ND	ND	NÐ
Styrene	ND	ND	ND	. ND	14,000E	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	ND	ND	ND	¹¹ 25	68,000£	ND	ND	ND	ND	ND	ND	ND	ND	ND
					. •									
SEMMOLATILES														
Naphthalene	L	L	L	2,200	270,000E	ND	L	950	1,300	L	J	L	ND	L
2-Methyinaphthalene	J	ſ	L	L	3,300,000E	ND	ND	L	ſ	L	Ł	۲	NĎ	L
Acenaphthylene	L	ſ	L	3,600	2,600,000E	ND	L	2,300	3,700	2,100	990	I	ND	L
Acenaphthene	L	850	٤	1,100	450,000E	ND	i.	1	L	r	, <b>J</b>	L	ND	ذ
Dibenzofuran	t	L	ſ	ND	2,300,000E	ND	ND	r	860	L	ł	ſ	ND	ł
Phenanthrene	2,900	5,300	3,600	44,000	220,000E	ND	740	11,000	20,000	7,900	5,200	3,700E	ND	10,000
Anthracene	1,300	2,800	1,300	7,600	2,900,000E	ND	L	3, <b>80</b> 0	5,200	1,700	1,300	1,200E	ND	1
Flouranthene	7,700	11,000	8,400	140,000	140,000E	ND	2,300	27,000	34,000	12,000	12,000E	7,900E	1	9,600
Pyrene	7,800	10, <b>000</b>	8,600	140,000	140,000E	NO	2,900	26,000	32,000	9,200	8,400	5,700E	ND	8,800
Fluorene	L	L	ſ	2,200	2,500,0008	ND	ND	1,400	1,700	J.	L	L	ND	L

#### Notes:

.

All results reported in ug/kg. E = Estimated Value % ND = Not Detected J = Estimated value, compound present below CRQL but above IOL

02-9004-38-SI Rev. No. 0

# TABLE 1: SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLESCOLLECTED AT THE ELIZABETH COAL GAS SITE #2BY THE NUS CORP. REGION 2 FIT ON JUNE 12, 1990 (CONT'D)

A

COMPOUND														***
SEMINOLATILES (CONT'D)	<u>\$1</u>	<u>\$2</u>	53	<u>54</u>	<u>\$5</u> .	<u>56</u>	<u>57</u>	<u>58</u>	<u>59</u>	<u>510</u>	<u>511</u>	<u>512</u>	<u>513</u>	<u>\$14</u>
Benzo(a)anthracene	5,900	7,200	5,600	74,000	2,50 <b>0,000</b> E	ND	1,600	14,000	16,000	12, <b>00</b> 0	7,100	3,500E	ND	3,600
·	5,400	7,800	5,800	140,000	2.800.000E	NO	1,500	22,000	27,000	12,000	9,200	4,400E	ND	5,400
Chrysene		-	4,600	82,000	t,500,000E	ND	1,700	14,000	16,000	16,000E	8,400	5,100E	ND	5,000
Benzo(b)fluoranthene	4,900	5,300	•	•		ND	ND	7,600	ND	ND	3,800	2,500E	ND	NĎ
Benzo(k)fluoranthène	2,900	3,600	3,200	. ND	1,400.000E						6,100	3,600E	ND	3,300
Benzo'alpyrene	3,700	3,700	3,100	94,000	1,900,000E	ND	1,200	9,600	4,100	9,000	-			
ndenor*,2,3-cd)pyrene	3,200	3,200	2,800	73,000	1,000,000E	ND	1 <b>,00</b> 0	8,700	8,900	8,260	5,200	2,700£	ND	2,500
Dibez(a,h)anthracene	1,900	1,700	1,700	11,000	570,000E	ND	J	6,000	5,100	3,500	2,200	1,100E	ND	940
Benzo(g,h,i)perylene	2,800	2,800	2,500	57,000	870,000E	ND	830	8,400	8,000	8,400	3,900	2,1 <b>00E</b>	ND	3,000
reancides					•								ND	
4,4'-DDT	ND	ND	ND	ND	NĎ	ND	ND	230	220E	I	1	ND	ND	•

Notes:

All results reported in ug/kg.

٠

E = Estimated Value

ND = Not Detected

J = Estimated value, compound present below CRQL but above IOL

Υ.

Het No 27

02-9004-38-SI Rev. No. 0 registered on the OVA in every hole made with the tube sampler at depths ranging from 0 to 48 inches. Samples were collected in pairs at each location: one surface soil sample and one subsurface vertical composite soil sample (Ref. No. 2).

A substance assumed to be solidfied coal tar was encountered in soil sample 55 at a depth of approximately 18 to 36 inches. Analytical results from a sample of this material show elevated concentrations of volatile organic compounds associated with coal gasification. Estimated concentrations of carbon disulfide (10,000 micrograms per kilogram (ug/kg)), benzene (82,000 ug/kg), toluene (59,000 ug/kg), styrene (14,000 ug/kg), and total xylenes (68,000 ug/kg) were detected in this sample. Acetone was detected in sample 52 at an estimated concentration of 150 ug/kg. Benzene was detected in sample 57 at a concentration of 7 ug/kg and total xylenes were detected at 25 ug/kg in sample 54 (Ref. Nos. 2, 27).

Semivolatile organic analyses indicate that on-site soils contain notable concentrations of anthracene (12,000 ug/kg [estimated] to 2,900,000 ug/kg) in comparison to the background level (which was below the Contract Required Quantitation Limit [CRQL] of 388 ug/kg). Several soil samples contained notable concentrations of chrysene, which ranged from 22,000 ug/kg to an estimated 2,800,000 ug/kg, (compared to a background concentration of 5,400 ug/kg), and of numerous other semivolatile organic compounds, including several PAHs. The highest concentrations of these compounds, which include fluoranthenes, pyrenes, naphthalenes, and dibenzofuran, were detected in soil sample S5, ranging from an estimated 140,000 ug/kg to an estimated 3,300,000 ug/kg. PAHs were found in the intended background sample S14 at concentrations ranging from 940 ug/kg to 10,000 ug/kg (Ref No. 27).

The only pesticide detected was 4,4'-DDT, which was found in soil samples 58 and 59 at concentrations of 230 ug/kg and an estimated 220 ug/kg, respectively. No other pesticides and no polychlorinated biphenyls (PCBs) were detected in any soil samples. Cyanide was detected only in soil sample 58, at a concentration of 2.2 milligrams per kilogram (mg/kg).

Various inorganic constituents were detected in all soil samples, including notable concentrations of arsenic in soil samples \$1 (29.2 mg/kg) and \$2 (22.5mg/kg), chromium in soil sample 514 (estimated 489 mg/kg), and copper in soil sample \$11 (estimated 269 mg/kg). Lead was also detected at concentrations ranging from an estimated 9.3 mg/kg to 362 mg/kg. These inorganic constituents cannot be directly attributed to coal gasification processes (Ref. Nos. 1, 2, 27), although the levels of arsenic and copper in on-site soils are over 3 and 4 times higher, respectively, than those found in the background sample. All other inorganic constituents were present in on-site soils at levels comparable to each other and/or to the background level.

ļ

#### PART V: HAZARD ASSESSMENT

#### GROUNDWATER ROUTE

 Describe the likelihood of a release of contaminant(s) to the groundwater as follows: observed, alleged, potential, or none. Identify the contaminant(s) detected or suspected, and provide a rationale for attributing the contaminant(s) to the facility.

There is a very high potential for a release of contaminants to groundwater to occur at the facility. Soil samples from the facility show that elevated concentrations of volatile and semivolatile organic compounds exist on site. These compounds include benzene, toluene, styrene, xylenes, and a number of PAHs including known and suspected carcinogens, all of which are related to the coal gasification process. In soil sample S5, a substance assumed to be solidified coal tar was encountered at a depth of approximately 18 to 36 inches. This and other wastes associated with coal gasification are reported to be buried in unlined pits on site. Contaminants contained in these pits could leach through the soil and enter groundwater below the site.

Ref Nos. 1, 2, 3, 27

2. Describe the aquifer of concern; include information such as depth, thickness, geologic composition, permeability, overlying strats, confining layers, interconnections, discontinuities, depth to water table, groundwater flow direction.

The aquifer of concern is the Passaic Formation, which was formerly known as the Brunswick Formation. The Passaic Formation is the most extensive and important aquifer in Union County. The formation is composed of thin-bedded shales, mudstones, and sandstones which range in thickness from 6,000 to 8,000 feet. Groundwater in this formation occurs along joints and fracture zones which decrease in volume with depth. Groundwater in the area exists under confined and unconfined conditions resulting in both artesian and water table aquifers, respectively. The confining layers generally consist of silt and clay beds. On-site borings show that the red-brown Brunswick Shale of the Passaic Formation exists at a depth ranging from 8 to 18 feet below the ground surface. The upper 1 to 3 feet of the shale is reported to be decomposed. The permeability of the shale is approximately 10" cm/sec. Overlying a majority of the Passaic Formation is a stratum of unconsolidated glacial sediments consisting of clay, silt, sand, gravel, and boulders. The overburden beneath the site ranges in thickness from approximately 11 to 19 feet. Borings completed in a limited area near the viaduct indicate that locally bedrock is immediately overlain by medium dense to dense slit 2 to 5 feet thick. Above that lies a 4- to 10-foot-thick layer of silty clay, clayey silt, and organic silt. This deposit, however, is not continuous in the northernmost portion of the site, where overburden consists of silty clay, sand and gravel, and clayey sand and gravel, in ascending order. The uppermost deposit throughout the site consists of fill materials including earth fill and debris. The permeability of these unconsolidated deposits beneath the site is 10⁻⁵ to 10⁻⁷ cm/sec. There is direct hydraulic connection between the glacial deposits and the bedrock and also with adjacent surface waters. Groundwater levels at the site range from 7 to 10 feet below the ground surface. A perched water zone exists in the northern portion of the site. Depth to groundwater in this perched zone ranges from 1 foot to 5.5 feet. Near the site groundwater is assumed to flow southwest toward the Elizabeth River.

Ref. Nos. 2, 3, 8, 9, 12

3. Is a designated sole source aquifer within 3 miles of the site?

A sole source aquifer has not been designated within 3 miles of the site. Ref. No. 25 4. What is the depth from the lowest point of waste disposal/storage to the highest seasonal level of the saturated zone of the aquifer of concern?

During the NUS Corp. Region 2 FiT site inspection, readings above background were observed on the OVA and HNu air monitoring instruments when a substance assumed to be solidified coal tar was encountered from a depth of approximately 18 to 36 inches. Analytical data indicates that soil contamination exists across the site at depths ranging from 0 to 48 inches. Groundwater exists under water table conditions 7 to 10 feet below the ground surface. Therefore, the depth to the aquifer of concern ranges from 3 to 6 feet.

Ref. Nos. 2, 3, 8, 9

5. What is the permeability value of the least permeable continuous intervening stratum between the ground surface and the aquifer of concern?

The permeability value for the silts and clays overlying the Brunswick Shale is 10⁻⁵ to 10⁻⁷ cm/sec.

Ref. No. 12

6. What is the net precipitation for the area?

The net precipitation for the area is 12 inches.

Ref. No. 12

 Identify uses of groundwater within 3 miles of the site (i.e., private drinking source, municipal source, commercial, industrial, irrigation, unusable).

Groundwater within 3 miles of the site is used only for commercial and industrial purposes. There are no known wells used for drinking or irrigation purposes within 3 miles of the site. All wells used for potable water supply that exist within 3 miles of the site are reported to be closed.

Ref. Nos. 7, 16-24

8. What is the distance to and depth of the nearest well that is currently used for drinking or irrigation purposes?

There are no known wells currently used for drinking or irrigation purposes within 3 miles of the site. All wells used for potable water supply that exist within 3 miles of the site are reported to be closed.

Ref. Nos. 7, 16-24

9. Identify the population served by the aquifer of concern within a 3-mile radius of the site.

There are no people known to be served by the aquifer of concern within 3 miles of the site. All public supply water is supplied by the Elizabethtown Water Company and the City of Newark Water Department. These utilities receive water from reservoirs not located within 3 miles of the site.

Ref. Nos. 7, 16-24

#### SURFACE WATER ROUTE

10. Describe the likelihood of a release of contaminant(s) to surface water as follows: observed, alleged, potential, or none. Identify the contaminant(s) detected or suspected, and provide a rationale for attributing the contaminants to the facility.

There is a high potential for a release of contaminants to surface water to occur at the site. Groundwater is in direct hydraulic connection with adjacent surface waters. Since there is a high potential for groundwater contamination to occur, surface water, in turn may be impacted. Analytical data from soil samples collected at the site indicate that wastes associated with coal gasification exist in surface and subsurface soils in the southern portion of the site. This portion of the site is a closed basin used for flood control. It is lower than surrounding topography and is separated from the river by a manmade concrete bulkhead which is approximately 8 to 10 feet higher than the site. This bulkhead has a floodgate that bisects its base at each end of the site. This creates a high potential for surface water contamination because in the event of a flood, water would contact contaminants in on-site soils. This contaminated water from the site would be mixed with river water once the flood water was allowed to return to the river through the flood gates.

Ref Nos. 1, 2, 3, 27

 Identify and locate the nearest downslope surface water. If possible, include a description of possible surface drainage patterns from the site.

The nearest downslope surface water is the Elizabeth River. The river is bulkheaded at this point and the bulkhead extends approximately 8 to 10 feet above the site where it borders the river. However, there are potential drainage paths through two flood gates which penetrate the bulkhead at each end of the site. In the event of a flood, the gates could be opened and contaminated floodwater from the site and water in the river could be mixed, allowing for contaminant migration. The Elizabeth River empties into the Arthur Kill approximately 2.3 miles downstream from the site.

Ref. Nos. 2, 4

12. What is the facility slope in percent? (Facility slope is measured from the highest point of deposited hazardous waste to the most downhill point of the waste area or to where contamination is detected.)

The facility slope is less than 3 percent.

- 28

Ref. Nos. 2, 4

13. What is the slope of the intervening terrain in percent? (Intervening terrain slope is measured from the most downhill point of the waste area to the probable point of entry to surface water.)

The slope of the intervening terrain is less than 3 percent.

Ref. Nos. 2, 4

#### 14. What is the 1-year 24-hour rainfall?

The 1-year 24-hour rainfall for the region is approximately 2.75 inches.

Ref. No. 12

## 15. What is the distance to the nearest downslope surface water? Measure the distance along a course that runoff can be expected to follow.

The Elizabeth River borders the site to the west and southwest. However, the river is bulkheaded along the site. The bulkhead extends approximately 8 to 10 feet above the site, which would prevent runoff from entering the river, except in the case of a flood.

Ref. Nos. 1, 2, 3

Identify uses of surface waters within 3 miles downstream of the site (i.e., drinking, irrigation, recreation, commercial, industrial, not used).

The designated uses of the Elizabeth River and the Arthur Kill within 3 miles downstream of the site include secondary contact recreation, maintenance and migration of food populations, migration of diadromous fish, maintenance of wildlife, and any other reasonable uses. There are no surface water intakes within 3 miles downstream of the site.

Ref. Nos. 5, 7, 19, 20, 23, 24

17. Describe any wetlands, greater than 5 acres in area, within 2 miles downstream of the site. Include whether it is a freshwater or coastal wetland.

A 5-acre, tidally influenced coastal wetland is located approximately 1.4 miles downstream of the site. This wetland is classified as an emergent, intertidal, estuarine wetland.

Ref. No. 6

18. Describe any critical habitats of federally listed endangered species within 2 miles of the site along the migration path.

There are no critical habitats of federally listed endangered species located within 2 miles of the site. However, the federally endangered peregine falcon (Falco peregrinus) may use the area for feeding and nesting and the federally endangered baid eagle (Haliaeetus leucocephalus) makes transient appearances there.

Ref. No. 11

19. What is the distance to the nearest sensitive environment along or contiguous to the migration path (if any exist within 2 miles)?

A tidally influenced coastal wetland is located approximately 1.4 miles downstream of the site. This wetland is classified as an emergent, intertidal, estuarine wetland.

Ref. No. 6

20. Identify the population served or acres of food crops irrigated by surface water intakes within 3 miles downstream of the site and the distance to the intake(s).

There are no known surface water intakes used for drinking or irrigation within 3 miles of the site. All public supply water is supplied by the Elizabethtown Water Company and the City of Newark Water Department. These utilities use reservoirs located outside of a 3-mile radius around the site.

Ref. Nos. 7, 19, 20, 23, 24

TIERRA-B-017837

## 21. What is the state water quality classification of the water body of concern?

The Elizabeth River and the Arthur Kill are both classified as SE3 waterways in the vicinity of the site.

Ref. No. 5

22. Describe any apparent biots contamination that is attributable to the site.

During an NUS Corp. Region 2 FIT site inspection, no apparent blota contamination attributable to the site was observed.

Ref. No. 2

#### AIR ROUTE

. . .

23. Describe the likelihood of a release of contaminant(s) to the air as follows: observed, alleged, potential, none. Identify the contaminant(s) detected or suspected, and provide a rationale for attributing the contaminant(s) to the facility.

During the NUS Corp. Region 2 FIT site inspection no wastes were noted to be present on the site surface. No readings above background were detected in the ambient air by the Organic Vapor Analyzer (OVA) or the HNu photoionization detector (HNu) prior to the disturbance of soil. However, readings above background were detected on at least one of the air monitoring instruments in all subsurface soil sample auger holes and above the disturbed soil at sample location NJGA-S12. Subsurface soil samples were collected at depths ranging from 6 inches to 48 inches. These readings ranged from 0.4 opm to greater than 1,000 ppm. Therefore, there is a potential for volatile contaminants to migrate through cover soils and release to air. There have been no reported releases to air associated with the facility. There were no readings above background on either of the air monitoring instruments within the breathing zone at any time during the sample collection event.

Ref. Nos. 1, 2

## 24. What is the population within a 4-mile radius of the site?

. :

The population within a 4-mile radius of the site is approximately 296,200.

Ref. No. 13

#### FIRE AND EXPLOSION

25. Describe the potential for a fire or explosion to occur with respect to the hazardous substance(s) known or suspected to be present on site. Identify the hazardous substance(s) and the mathod of storage or containment associated with each.

The potential for a fire or explosion to occur with respect to hazardous substances present on site is low. Coal and coal tar have a moderate potential for fire and explosion. However, during the NUS Corp. Region 2 FiT site inspection all wastes on site were noted to be buried. Part of the site is used for storage and part is used for public recreation and flood control. There have been no reported fires or explosions associated with the facility.

Ref. Nos. 1, 2, 3

1

26. What is the population within a 2-mile radius of the hazardous substance(s) at the facility?

The population within a 2-mile radius of the site is approximately 109,200.

Ref. No. 13

#### DIRECT CONTACT/ON-SITE EXPOSURE

27. Describe the potential for direct contact with hazardous substance(s) stored in any of the waste units on site or deposited in on-site soils. Identify the hazardous substance(s) and the accessibility of the waste unit.

There is a very high potential for direct contact with hazardous substances which occur in onsite soils. A substance assumed to be coal tar was encountered in on-site soils in the southern portion of the site at a depth of 18 inches. The site is easily accessible and part of it is used as a public baseball field. Numerous volatile and semivolatile organic compounds were detected in both surface and subsurface soil samples collected by the NUS Corporation Region 2 FIT in the southern portion of the site, including the baseball field. The site is located in a heavily populated urban area and is bordered by residences to the east. Children were observed on the site during the site inspection.

Ref. Nos. 2, 3, 27

28. How many residents live on a property whose boundaries encompass any part of an area contaminated by the site?

There is no known documentation that states that any nearby residential property boundaries encompass any part of an area contaminated by the site.

Ref. Nos. 1, 3, 10

## 29. What is the population within a 1-mile radius of the site?

:

The population within a 1-mile radius of the site is approximately 49,600.

٠

Ref. No. 13

د مربع

.*

## PART VI: ACTUAL HAZARDOUS CONDITIONS

Analysis of samples collected during the NUS Corporation Region 2 FIT site inspection revealed the presence of numerous volatile and semivolatile organic compounds in on-site surface and subsurface soil samples. These compounds included various polynuclear aromatic hydrocarbons (PAHs), many of which are known or suspected carcinogens. These contaminants were found at depths ranging from 0 to 48 inches at various locations across the site. The area is easily accessible to the public and is used as a baseball field. Children were observed to be present during the NUS Corporation Region 2 FIT site inspection. No other actual hazardous conditions pertaining to human or environmental contamination have been documented. Specifically:

- Contamination has not been documented either in organisms in a food chain leading to humans or in organisms directly consumed by humans.
- There have been no documented observed incidents of direct physical contact with hazardous substances at the facility involving a human being (not including occupational exposure) or a domestic animal.
- There have been no documented incidents of damage to flora (e.g., stressed vegetation) or to fauna (e.g., fish kill) that can be attributed to the hazardous material at the facility.
- A fire marshall has not certified that the facility presents a significant threat of fire or explosion and there is no demonstrated threat based on field observation.
- There is no documented contamination of a sewer or storm drain.

. . .

There is no direct evidence of release of a substance of concern from the facility to the groundwater.

Ref. Nos. 1, 2, 3

#### PART VII: SITE SUMMARY AND RECOMMENDATIONS

The Elizabeth Coal Gas Site #2 is an inactive former coal gasification site located in a mixed urban residential and industrial area between South Street, High Street, Fourth Avenue, and the Elizabeth River under the U. S. Routes 1 and 9 Viaduct in Elizabeth, New Jersey. The site is comprised of approximately 2 acres and can be divided into two sections. The northern section of the site is an active salvage area while the southern portion is inactive and is used for flood control and as a public-access baseball field

The site has been owned by Elizabethtown Gas Light Company since 1855 and was used to manufacture coal gas until approximately 1901. Coal gas operations took place primarily in the northern portion of the site but most likely extended into the southern portion also. Presently, the northern section of the property is still owned by Elizabethtown Gas Light Company but is operated by Vignola Salvage Corp. as a storage and light industrial facility. The sourthern half of the property was donated to the Union County Department of Parks and Recreation by the City of Elizabeth in 1953. This part of the property is part of a flood control project. A small rectangular parcel of property, which encompasses the baseball diamond itself, is owned by the Church of Saint Anthony (Ref. No. 28).

Actual waste handling practices used at the plant during the time of coal gas production are largely unknown. It is very likely that coal and coke were stored on site in large piles. Waste materials which were not marketable, such as poor quality tars and oils, were probably deposited in unlined pits on site. Analytical results of surface and subsurface soil samples taken during the NUS Region 2 FIT site inspection indicate the presence of elevated concentrations of compounds associated with coal gas manufacturing wastes. A substance assumed to be solidified coal tar was encountered at sample location S5, and elevated levels of various organic compounds including high levels of polynuclear aromatic hydrocarbons (PAHs) were detected in a sample of the material. Although levels of 'PAHs were generally higher than those found in the sample that was intended to represent the background conditions, in many instances "background" levels for other compounds detected were comparable to or higher than those found in some on-site soil samples. This indicates that either those on-site samples are unaffected by facility wastes or that the residential area where the "background" sample was collected has been impacted by the site. Some remedial action has been reported to have occurred at the site along with the removal and/or addition of unknown amounts of soil during the flood control basin construction (Ref Nos. 1, p. A-1; 26).

The site is completely fenced with a locked gate along Centre Street. However, there is an open gate along High Street which permits access to the site. There is a high potential for a release of contaminants to both groundwater and surface water from the facility; however, groundwater and

#### PART VII: SITE SUMMARY AND RECOMMENDATIONS (Cont'd)

surface water in the area are used for industrial and commercial purposes only. A portion of the site is used as a baseball field and children were observed on site. Because of the high potential for direct contact with on-site wastes and contaminated surface soils to occur, a LISTING SITE INSPECTION is recommended for the Elizabeth Coal Gas Site #2. Recommendations for further work should include a soil boring program to determine the quantity and extent of the waste deposited, and soil sampling of nearby residential properties to determine whether or not contaminants have migrated off site. Due to the elevated concentrations of PAH compounds and other compounds generally associated with coal gas wastes that were detected in surface soils, it is also recommended that emergency action be taken to prevent access to the site by unauthorized personnel (i.e., children who pass through or use the ballfield on site).