GROUND WATER REMEDIAL INVESTIGATION REPORT ADDENDUM AMERICAN MODERN METALS CORPORATION 65 PASSAIC AVENUE, KEARNY, NEW JERSEY

BBG000013

PREPARED FOR

American Modern Metals Corporation 65 Passaic Avenue Kearny, New Jersey

PREPARED BY

BELL ENVIRONMENTAL Lakefront Professional Center 295 C Route 46 Budd Lake, New Jersey

October, 2001
BELL PROJECT #EOG01-90059-28

<u>Pag</u>

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1 -1
20	PHYSICAL SETTING	2-1
2.0	2.1 Site Location	2-1
	2.2 Topography and Drainage	2-1
	2.3 Wetlands	2-1
	2.4 Soil and Geology	2-1
	2.4.1 Soils	2-1
	2.4.2 Geology	2-2
	2.5 Hydrogeology	2-2
	2.5.1 Regional Hydrogeology	2-3
	2.5.2 Site Hydrogeology	2-3
	2.6 Surrounding Property Uses	2-3
3.0	OVERVIEW OF REMEDIAL INVESTIGATION ACTIVITIES	3-1
	3.1 LNAPL in MW-1, MW-8, and MW-9	3-1
	3.2 Ground Water Sampling for Arsenic, Aluminum, and Volatile Organics	3-1
	3.3 Monitoring Well Installation – Volatile Organic's in Ground Water	3-2
	3.4 Water Level Readings	3-3
	3.5 Chlorinated VOC's in Ground Water (Source Soils)	3-3
	3.6 Quality Assurance / Quality Control	3-4
	3.6.1 Personnel	3-4
	3.6.2 Equipment	3-4
	3.6.3 Procedures	3-4
	3.6.4 QA Samples	3-4
	3.6.5 Documentation	3-5
4.0	INVESTIGATION RESULTS	4-1
	4.1 LNAPL Investigation Results	4-1
	4.1.1 LNAPL in MW-1, MW-8, and MW-9	4-1
	4.2 Volatile Organics in Ground Water Results	4-1
	4.2.1 Chlorinated VOCs in Ground Water (Source Soils)	4-1
	4.2.2 Volatile Organic Compounds in Ground Water	4-1
	4.3 Metals in Ground Water	4-2
	4.4 Ground Water Elevations	4-2
5.0	CONCLUSIONS	5-1
	5.1 Soil Chlorinated VOC's in Ground Water (Source Soils)	5-1
	5.2 Aluminum and Arsenic in Ground Water	5-1
	5.3 Volatile Organics in Ground Water	5-1
	E 4 LAIADI	5.2

<u>Pac</u>

6-1 6-1 6-1 6-2 6-2

7-1

TABLE OF CONTENTS (continued)

	6.1 Passive Soil Gas6.2 Ground Water Inv6.3 LNAPL6.4 Schedule	vestigation
7.0	SUMMARY AND LIMIT	TATIONS
		LIST OF FIGURES
Figure Figure Figure Figure Figure Table Table Table Table Table	e 2 e 3 e 4 e 5 e 6 	Site Location Map Site Plan Wetlands Area Map Remedial Investigation Sample Locations Exceedences – June 7, 2001 Exceedences – July 30-31, 2001 LIST OF TABLES Summary of Analytical Methods and QA/QC Sampling Monitoring Well Physical Data Summary Ground Water Results – June 7, 2001 Ground Water Results – July 30-31, 2001 Soil Results – April 24, 2001 Soil Results – July 16, 2001
		LIST OF APPENDICES
Apper Apper Apper Apper	ndix A ndix B ndix C ndix D ndix E ndix F	Cross Sections Boring Logs Ground Water Analytical Data Ground Water and Soil Hazsite Submittal LNAPL Analytical Data Soil Analytical Data

1.0 EXECUTIVE SUMMARY

Bell Environmental Consultants, Inc. (BELL), on behalf of American Modern Metals Corporation (AMMCo), has prepared this Remedial Investigation Report (RIR) for submission to the New Jersey Department of Environmental Protection (NJDEP). This Remedial Investigation (RI) was performed at the AMMCo property located at 25 Belgrove Drive, Kearny, Hudson County, New Jersey (Figures 1 and 2).

The project is being performed as part of an ongoing ISRA investigation that was initiated in 1988. The most recent phase of soil and ground water investigation was based on a November 1999 Remedial Investigation Workplan (RIW) and two RIW addendums dated February 1, 2002 and May 9, 2001. The results on activities involving soil and light non-aqueous liquids (LNAPL) were submitted to the NJDEP in a Remedial Investigation Report (RIR) dated July 2001. At that time, the ground water portion of the investigation had not been finalized and, therefore, a second RIR has been prepared to present the ground water portion of the investigation.

Following submittal of the July 2001 Interim RIR, there were a total of eight outstanding LNAPL and ground water AOCs as described below.

DESCRIPTION	REQUIRED TASKS
LNAPL in MW-1 MW-8 and MW-9	An additional well was required to delineate the LNAPL in this AOC.
Arsenic	Monitoring Well MW-4 to be sampled for arsenic.
Aluminum	Monitoring wells MW-4, MW-9, and BEC-11S to be sampled for aluminum.
Volatile Organics In Ground Water	Installation of two monitoring wells west of Passaic Avenue to horizontally delineate the chlorinated VOCs and the installation of a deep monitoring well in the vicinity of BEC-12S for the purpose of vertical delineation. Also required was the sampling of ground water from Monitoring Wells MW-1, MW-8, MW-9, BEC-12S, BEC-14S, BEC-15S, BEC-16S, BEC-17S, and BEC-18S with samples analyzed for volatile organic compounds with a forward library search for tentatively identified compounds (VO+10).
Static Water levels	Three rounds of ground water elevation measurements required from all wells.
Chlorinated VOCs in Ground Water (Source Soils)	Install five soil borings along the eastern portion of former AOC-11 in an attempt to locate the source area.

Those tasks completed with respect to AMMCo's LNAPL and ground water quality investigation were as follows:

- 1. LNAPL in MW-1, MW-8 and MW-9 AMMCo completed the installation of well BEC-13S on July 16, 2001.
- 2. Arsenic Ground water samples for arsenic analysis were obtained from MW-4 on June 7, 2001 and July 30-31, 2001.
- 3. Aluminum Ground water samples for aluminum analysis were obtained from MW-4, MW-9 and BEC-11S on June 7, 2001 and July 30-31, 2001.
- 4. Volatile Organics in Ground Water –AMMCo installed six additional wells (BEC-1D, BEC-14S, BEC-15S, BEC-16S, BEC-17S, and BEC-18S) between January 3, 2001 and April 23, 2001. Additionally, ground water samples were obtained from MW-1, MW-8, MW-9, BEC-12S, BEC-14S, BEC-15S, BEC-16S, BEC-17S, and BEC-18S on June 7, 2001 and July 30-31, 2001 for VO+10 analysis.

BELL ENVIRONMENTAL

- 5. Static Water Levels Static water level measurements were obtained from all wells on June 7, 2001, July 30, 2001 and August 13, 2001.
- Chlorinated VOCs in Ground Water (Source Soils) AMMCo completed the two
 additional soil borings on July 16, 2001. The data from three soil boring locations
 completed on April 24, 2001 had been included in the July 2001 RIR. Both sets of data
 have been submitted as part of this RIR.

In addition to the scope of work agreed to by AMMCo and the NJDEP, AMMCo authorized one additional task associated with LNAPL that was detected in one of the newly installed wells. After the LNAPL was detected, a sample was obtained and submitted for analysis of product type and age.

2.0 PHYSICAL SETTING

2.1 SITE LOCATION

The AMMCo site is located in the Keamy Elite Industrial Park, which is located to the east and west of Passaic Avenue in an industrial area of Kearny, Hudson County, New Jersey (Figure 1). The site has an approximate area of 7.0 acres, with 5.7 acres located east of Passaic Avenue and the remaining 1.3 acres located west of Passaic Avenue. The portion of the site located east of Passaic Avenue (bounded by Marshall Street, Clark Avenue, and Belgrove Drive) is designated by the Town of Kearny as Block 14, Lots 3 and 4 and is utilized by AMMCo for its manufacturing operations. The portion of the site located west of Passaic Avenue is designated as Block 1, Lots 9, 10, and 11 and currently included both leased facilities (Marshall Clark Manufacturing, Ferber Plastics, and RMS Sportswear) and AMMCo's office facilities.

2.2 TOPOGRAPHY AND DRAINAGE

The AMMCo site is located in the northeast region of New Jersey – a region of New Jersey that has been impacted by various glacial episodes and is characterized by low rolling, bedrock topography. Based upon a review of the United States Geological Survey (USGS) Orange and Elizabeth topographic quadrangles of the area, the topography in the area surrounding the AMMCo site ranges in elevation from 5 feet above mean sea level (MSL) to the west of the site to 120 feet above MSL to the east of the site. Regional drainage surrounding the AMMCo site occurs through natural drainage channels and manmade drainage structures (e.g., storm sewers) which discharge into the Passaic Valley Sewerage Commission sanitary sewer system. The western portion of the site borders the Passaic River as shown on Figure 2. A review of USGS topographic maps indicates that the AMMCo site is generally located between approximately 6 feet MSL (near the western property boundary) and 22.50 feet MSL (near the northeastern property boundary). The site slopes to the west towards the Passaic River. Surface water runoff from the area of the site located east of Passaic Avenue flows overland and ultimately infiltrates into the unconsolidated aquifer beneath the site.

2.3 WETLANDS

The AMMCo site, and the properties adjacent to the site, is identified by the National Wetlands Inventory (NWI) as Upland. The portion of the Passaic River that is located to the west of the site is identified as Estuarine Subtidal Open Water. A Wetlands Area Map for the area surrounding the AMMCo site is presented as Figure 3.

2.4 SOILS AND GEOLOGY

2.4.1 Soils

Based on a review of the United States Department of Agriculture (USDA) Soil Conservation Service (SCS) Soil Survey for Hudson County, New Jersey, the majority of the soils located in

the region surrounding the AMMCo site are described as Udothents soils. This land type has been filled and smoothed, or otherwise extensively disturbed by excavation and filling activities, to a depth of 3 feet or more. The USDA reports that, in general, the original soil can no longer be identified and most areas are presumed to have originally had deep, very poorly drained organic or mineral soils, which had fill added to raise the ground surface elevation to prevent flooding of properties adjacent to the river. Historic fill material (brick and glass fragments, cinders, stones, etc.) was uniformly found across the site to depths ranging from 2.0 feet (MW-1 and MW-3) to 5.5 feet MW-5. Predominantly red brown sands and clayey sands (west of Passaic Avenue) or gravelly sands with minor amounts of silt and clay (east of Passaic Avenue) underlay the historic fill materials.

2.4.2 Geology

The AMMCo site is situated in the Piedmont physiographic province, which encompasses the eastern half of northern New Jersey. Unconsolidated deposits at the site consist of glacio-fluvial Pleistocene deposits overlying Pleistocene glacial till deposits. The fluvial deposits consist of a stratified, unconsolidated, heterogeneous mixture of well-graded sands and gravels, with a lesser percentage of silt and clay, and range from fifteen to twenty-five feet in thickness. The majority of these deposits were formed as a result of stream channel outwash. Included in these deposits are lenses of silts and clays recently deposited by the Passaic River. Underlying these deposits is a Pleistocene glacial till deposit that consists of an unconsolidated, unstratified mixture of sand, clay and gravel. The thickness of the Pleistocene deposits varies greatly from less than ten feet thick in the western part of Newark to 200 feet thick east of Harrison. Underlying the glacial deposits is the red shale and sandstone bedrock of the Passaic Formation (formerly the Brunswick Formation) of the Newark Group. This Triassic bedrock originated as sand, silt, and mud, which eroded from older rocks northwest and southeast of the area. The strata have been tilted northwestward with a northeast trend of the beds.

A geologic cross section for the AMMCo site has been prepared utilizing the most recent set of boring logs. A review of the data indicates that the site is underlain by fill material (brick and concrete) and varies in thickness from as much as 18 feet in BEC-18S to as little as 0.5 feet in SB-47. However, fill material is generally present within the first five feet of the subsurface. The fill material in underlain by four to sixteen feet of poorly graded sands with little silt. The poorly graded sands are underlain by an undetermined thickness of well-graded sand and gravelly sand. The geologic cross sections and the boring logs used in their creation are included in Appendix A.

2.5 HYDROGEOLOGY

The following subsections provide a description of the hydrogeologic characteristics of the region surrounding the AMMCo site and provide a description of the hydrogeologic characteristics at the site as noted during installation of monitoring wells, temporary wells, etc. A site plan showing relevant features has been included as Figure 2.

2.5.1 Regional Hydrogeology

The AMMCo site is situated in the Lower Passaic River Discharge Basin. Ground water, which typically occurs under unconfined conditions within the Pleistocene overburden deposits, is discharged regionally to this drainage basin. The bedrock aquifer in the region is the Triassic Age Passaic Formation. The storage capacity of the Passaic Formation is relatively low, and can only be adequately recharged from the porous, permeable, overlying deposits. As the primary porosity of the bedrock is not sufficient enough to allow water movement through the bedrock, a secondary porosity system, created by cracks and fractures, is essentially the only means for this aquifer to yield or transmit water. This system of cracks and fractures intersect to allow water to move directionally according to the orientation of the prevalent fracture system (generally trending northeast to southwest). As greater depths are reached, the weight of the overlying material increases and tends to close the cracks, thereby reducing the capacity of the formation to store and transmit water.

2.5.2 Site Hydrogeology

Information pertaining to site hydrogeology was obtained from multiple ground water monitoring wells within the overburden and the monitoring of static ground water levels both historically as well as during this RI. Ground water elevations were not finalized as of the completion of this report. Elevation data on the new wells and repaired wells, along with ground water flow maps for this phase of investigation, will be provided as an addendum as soon as it is received.

Based on historic flow data, ground water flow in the overburden is generally within predominantly red brown sands and clayey sands (western side of Passaic Avenue) or gravelly sands with minor amounts of silt and clay (eastern side of Passaic Avenue). Prior evaluations of ground water flow data show a general ground water flow toward the northwest with a relatively uniform gradient. This flow direction has been supported by the ground water quality data that shows that the major contaminant migration is to the north/northwest.

2.6 SURROUNDING PROPERTY USES

The AMMCo site is located within an industrial section of Kearny that is generally viewed as an extension of the Ironbound section of Newark, which is located across the Passaic River from the site. The properties surrounding the AMMCo site are described as follows:

- East of the site (across Clark Street) is a residential housing complex identified as the General Kearny Apartments;
- 2. To the north (across Marshall Street) is a commercial strip mall which includes a Shop Rite grocery store, a laundromat, and retail stores;
- 3. To the west of the site is the Passaic River;
- 4. To the south/southwest of the site are two active gasoline service stations; and
- To the northwest and southwest of the site (beyond Passaic Avenue) are the Franklin Chemical Company (formerly known as Franklin Plastics) and the American Strip Steel Company, respectively.

3.0 OVERVIEW OF REMEDIAL INVESTIGATION ACTIVITIES

The following sections summarize the most recent ground water remedial investigation activities conducted at the AMMCo site. The analytical methods and quality assurance/quality control (QA/QC) procedures utilized during the RI are summarized in Table 1. Boring and monitoring well logs have been included in Appendix B. The monitoring well Form A's and Form B's will be submitted upon receipt of the survey data. The groundwater remedial investigation program was conducted in accordance with the Technical Requirements for Site Remediation (N.J.A.C. 7:26E, et. seq.) and the NJDEP Field Sampling Procedures Manual (May, 1992). Samples were submitted to Technion Incorporated Testing and Research Laboratories (Technion) located in Nutley, New Jersey (NJDEP Certification #07004).

3.1 LNAPL in MW-1, MW-8, and MW-9

On July 16, 2001, monitoring well BEC-13S was installed to further assess the horizontal extent of LNAPL previously detected in monitoring wells MW-1, MW-8 and MW-9. Monitoring well installation was performed by Environmental Probing Investigations (EPI) of Cream Ridge, New Jersey. The location of BEC-13S is depicted on Figure 2. It should be noted that the location of BEC-13S was offset slightly to the east due to the location of a six-inch underground sprinkler line. Installation procedures were conducted as described in Section 3.3. Monitoring well BEC-13S was constructed with ten feet of 0.01 slot, 4-inch, PVC well screen with 4-inch PVC riser sufficient to extend to the ground surface. The total depth of monitoring well BEC-13S was 16.3 feet BGS with the observed water table at the time of installation at 10.25 feet BGS.

On July 31, 2001, a product sample was collected from BEC-13S and sent to Friedman and Bruya of Seattle, Washington for product type and date analysis. The product sample was extracted and analyzed using a gas chromatograph (GC) with a flame ionization detector (FID) and an electron capture detector (ECD) in order to identify the type of material present and assess weathering.

3.2 Ground Water Sampling for Arsenic, Aluminum, and Volatile Organics

In order to assess the ground water quality in the area of study, BELL collected ground water samples from monitoring wells MW-1, MW-4, MW-8, MW-9, BEC-11S, BEC-12S, BEC-14S, BEC-15S, BEC-16S, BEC-17S, BEC-18S, and BEC-1D on June 7, 2001 and then again on July 30 and 31, 2001. Monitoring well BEC-13S was not sampled during the June 7, 2001 sampling episode because it had not been installed at that point in time. Additionally, BEC-13S could not be sampled during the July 30 and 31, 2001 sampling round due a 0.19 ft of product on top of the water table. Prior to sampling, each monitoring well was inspected by BELL personnel to observe and document the security of the well. Each monitoring well was subsequently opened and screened with a PID to measure accumulated organic vapors, if any, within each well column. The static fluid level within the well was inspected for evidence of free-phase hydrocarbon using an interface probe. The static ground water level in each well was measured using a ground water level indicator with an accuracy of 1/100 of a foot. An initial sample of ground water was collected from each well and analyzed for pH, temperature,

conductivity, and dissolved oxygen using field instrumentation. Subsequently, three to five volumes of the saturated well column and annular space were purged from each well using a whale pump. Following purging procedures, ground water samples were then collected using disposable Teflon bailers. The bailer was slowly lowered into the monitoring well below the water table, avoiding excess agitation/aeration of the ground water, and then retracted.

Monitoring wells sampled for metals (arsenic and aluminum) on both dates were purged with a peristaltic pump using the low flow technique as summarized in EPA's Low-Flow (Minimum Drawdown) Ground Water Sampling Procedures document dated December 1995. Low flow purging was considered complete upon stabilization of dissolved oxygen (±10% variation), conductivity (±3% variation) and ph (±0.10 variation) parameters.

Table 1 summarizes the analytical parameters for each well that was sampled. Table 2 presents a summary of the monitoring well physical data and field measurements. Ground water samples were containerized in laboratory-supplied glassware, which were then sealed and labeled. Once sealed and labeled, the sample vials were placed into a sample cooler maintained at a temperature of four degrees Celsius and transported to the analytical laboratory, Technion. Ground water sampling procedures were performed in accordance with the NJDEP Field Sampling Procedures Manual (May 1992) and in EPA's Low-Flow (Minimum Drawdown) Ground Water Sampling Procedures (December 1995).

3.3 Monitoring Well Installation - Volatile Organics in Ground Water

Between January 3, 2001 and July 16, 2001, AMMCo completed the installation of seven monitoring wells to further assess the extent of VOCs and LNAPL in the ground water. The monitoring wells were completed by EPI. The following table summarizes the installation of the monitoring wells:

Location	Date	Driller	Depth to Water (ft BGS)	Total Well Depth (Ft BGS)	Compound/Delineation
BEC-1D	1/10/01	Horizon	11	40	VOCs/Vertical
BEC-14S	4/23/01	EPI	8	15.5	VOCs/Downgradient
BEC-15S	1/4/01	Horizon	11.3	15,3	VOCs/Sidegradient
BEC-16S	1/3/01	Horizon	8	18	VOCs/Upgradient
BEC-17S	1/10/01	Horizon	11.5	18.5	VOCs/Upgradient
BEC-18S	4/23/01	EPI	11	18	VOCs/Downgradient

The ground water monitoring wells were installed using hollow stem auger drilling techniques. Soils were classified using the Burmeister Soil Classification System, with stratigraphic units described using the Unified Soil Classification System. Additionally, observations regarding the color, composition, moisture content, and presence of visible contamination or PID readings were noted in the monitoring well logs (Appendix B).

At the selected location, a six-inch diameter borehole was advanced through the subsurface utilizing the procedures described below. The borehole was advanced to approximately seven feet below the water table. Please note that the boring for BEC-1D was extended beyond seven feet below the water table for the purpose of vertical delineation. Upon attaining the selected depth, the PVC well materials were lowered into the borehole through the hollow stem

auger flights. The PVC well materials included ten feet of four-inch, inside diameter (ID), factory milled, 10-slot (0.010 inch) PVC screen, flush threaded with a PVC well plug, and four-inch ID PVC riser sufficient to extend to the ground surface. The targeted screened interval was extended seven feet below and three feet above the static water level observed at the time of installation. The screened interval for monitoring well BEC-1D is 30 to 40 feet BGS because it is being used as a vertical delineation point.

A #1 sand (utilized as gravel packing material) was introduced within the annular space starting at the bottom of the borehole and extending to a minimum of two feet above the well screen. A two-foot seal was then added within the annular space. The hollow stem auger flights were intermittently retracted from the borehole during the installation of the gravel pack to prevent collapse of the natural formation into the well. A bentonite-cement slurry was pressure grouted into the remainder of the annular space and extended to ground surface. A steel flush mount casing with cap and locking mechanism was set into the cement slurry. The wells were completed with a watertight flange cap and a well tag designation. The newly installed wells were developed with a progressive cavity pump until a turbid-free discharge was obtained.

3.4 Water Level Readings

On June 7, 2001, July 30, 2001, and August 13, 2001, monitoring wells were gauged with a Heron electronic water level indicator and a Heron electronic interface probe, both with an accuracy of 0.01 foot. All of the monitoring wells were gauged with the exception of MW-2, which is damaged, and MW-5, which was underneath construction debris and inaccessible.

3.5 Chlorinated VOC's in Ground Water (Source Soils)

Historical information indicated the potential for soils in the vicinity of Buildings # 1 and 2 to be the source of the chlorinated compounds detected in the ground water. The NJDEP June 15, 2000 letter accepted AMMCo's proposal to install five soil borings along the eastern side of Buildings #1 and 2 for the purpose of investigating the soil. Three soil borings (SB-45, SB-46, and SB-47, Figure 4) were completed on April 24, 2001 along the eastern side of Buildings # 1 and 2. On July 16, 2001, two additional NJDEP required borings (SB-48 and SB-49) were completed by EPI. Direct push technology was used to advance the borings. In addition, four-foot acetate macrocore samples were collected on a continuous basis until the water table was encountered. Bell personnel field screened the soil, and collected samples biased towards elevated PID readings and/or visual contamination. In cases where no contamination was detected through field screening, one soil sample was collected from the interval six inches above the observed depth of ground water. Ground water was encountered at depths ranging from 10 ft to 12 ft BGS. The following table summarizes the samples collected:

Sample Location	Sample Depth (feet)	Field Screening	Analysi \$
SB-45	11-11.5	OVM: 0.0; No staining; DTW: 11.5' BGS	VO+10
SB-46	1-1.5	OVM: 3.6	VO+10
i	11.5-12	OVM: 14.1	VO+10
SB-47	10-10.5	OVM: 0.0; No Staining; DTW: 10.5' BGS	VO+10
	10-10.5 (duplicate)		VO+10

SB-48	11-11.5 11-11.5 (duplicate)	PID: 0.0; No Staining; DTW: 11.5 'BGS	VO+10 VO+10
SB-49	11-11.5	PID: 0.0; No Staining; DTW 11.5'BGS	VO+10

Samples were collected using the methanol preservation technique. Upon collection, the samples were stored in the analytical field cooler pending delivery to Technion for analysis of VO+10.

3.6 QUALITY ASSURANCE/QUALITY CONTROL

As the technical reliability of this project is directly dependent upon the quality of the work performed, stringent Quality Assurance/Quality Control (QA/QC) measures were continuously adhered to during all operations.

3.6.1 Personnel

BELL technical personnel are trained and versed in environmental investigations and operations, including coordination of field activities, negotiation of site restrictions, sample acquisition, client and contractor interaction, quality assurance, and health and safety procedures. All field personnel have completed the 40-hour OSHA Health and Safety Training course and are supplemented by an annual eight-hour refresher course. Additionally, all applicable personnel are incorporated in a Medical Monitoring Program. Experienced project managers and group leaders closely supervise field personnel, with final work reviewed and approved at a corporate level of vice president.

3.6.2 Equipment

Field equipment is properly maintained and stored at BELL's Budd Lake Location. The equipment is routinely checked for proper operation and calibrated before each field event by the equipment manager. The equipment manager also maintains records of equipment maintenance and calibration. Project specific calibration records are maintained within the project file along with the field documentation. Non-dedicated field equipment is decontaminated in accordance with standard regulatory protocol.

3.6.3 Procedures

BELL field procedures are conducted in accordance with current federal and state guideline documents with field personnel monitored by experienced personnel. Documentation of all project related activities and specifically, all field operations, is maintained within the project file.

3.6.4 QA Samples

As part of the BELL QA Program and standard field procedures, quality assurance samples are procured and prepared to document extraneous compound contribution from the laboratory and/or field environments. QA sample procurement is designed and executed in accordance with federal and state environmental sampling guidelines.

3.6.5 Documentation

Project related activities are detailed in the field and office documents, which are maintained within a systematic project filing system. These include: contract agreements and addenda, correspondence with clients, regulatory agencies, legal and technical representation, telephone conversation records, meeting compendiums, inter/intra-office memorandums, field documentation (i.e., field notes, photographs), equipment calibration records, contractor (laboratory) reports and chains of custody, and health and safety manuals and procedures. Reporting requirements and deliverables are subject to a series of in-house QA reviews, including technical staff, QA/QC coordinator, Senior Project Manager, and Corporate Principal, before submission.

4.0 INVESTIGATION RESULTS

The following sections present the results of the groundwater RI activities conducted at the AMMCo site as outlined under Section 3.0. Analytical parameters for groundwater samples were selected based on previous analytical results, requirements directed by the referenced NJDEP letters and the NJDEP requirements as identified in the *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E et. seq.). The analytical results for the groundwater samples are summarized in Tables 3 and 4. Groundwater sample results were compared to the Class II A NJDEP Ground Water Quality Standards (NJDEP GWQS). Analytical data packages have been presented in Appendix C. The Hazsite electronic data deliverables for the groundwater data is included Appendix D.

4.1 LNAPL Investigation Results

4.1.1 LNAPL in MW-1, MW-8, and MW-9

On June 7, 2001, monitoring wells MW-1, MW-8, and MW-9 were checked for the presence of LNAPL, which was not detected. LNAPL was not detected during this sampling event. On July 16, 2001, monitoring well BEC-13S was installed to further assess the horizontal extent of the LNAPL previously detected in monitoring wells MW-1, MW-8, and MW-9. During the July 30 and 31, 2001 sampling event, LNAPL was detected at MW-9 as a detectable sheen (< 0.01 foot). LNAPL was also detected at monitoring well BEC-13S during the July 30 and 31, 2001 sampling event (0.19 feet). Based on the GC/FID analysis, the majority of material present in the sample is consistent with a mixture of mineral spirits or Stoddard solvent and an oil similar to hydraulic oil, lubrication oil or transformer oil. Due to the chemical composition of the product identified, the weathering of the materials could not be estimated with GC/FID analysis. The complete report from Friedman and Bruya is included as Appendix E.

4.2 VOLATILE ORGANICS IN GROUND WATER RESULTS

4.2.1 Chlorinated VOCs in Ground Water (Source Soils)

On April 24, 2001, soil samples were collected from three soil borings (SB-45, SB-46, and SB-47) and on July 16, 2001, soil samples were collected from two soil borings (SB-48 and SB-49) to assess the possibility of a source area for the chlorinated VOCs detected in the ground water. No compounds of concern were detected in any of the analytical samples collected for this task. A summary of analytical results is presented in Tables 5 and 6. The analytical data package for the July 16, 2001 soil is presented in Appendix G. The complete Hazsite Submittal is presented in Appendix D.

4.2.2 Volatile Organic Compounds in Ground Water

On June 7, 2001 and on July 30 and 31, 2001, BELL obtained ground water samples from the monitoring wells referenced earlier in section 3.3 of this report. These samples were analyzed for VO+10. An evaluation of the analytical data indicates that volatile organic compounds were detected in excess of the NJDEP Class II-A GWQS in monitoring wells BEC-1D, MW-1,

MW-8, MW-8 (dup), MW-9, BEC-12S, BEC-14S, BEC-16S, BEC-18S. The following table summarizes the analytical results:

Monitoring Well	June 7, 2001 Analytical Results (ug/L)	July 30 and 31, 2001 Analytical Results (ug/L)	NJDEP Class II-A GWQS (ug/L)
BEC-1D		Bromodichloromethane – 4 Chloroform – 22	Bromodichloromethane – 1 Chloroform – 6
		1,2-Dichloropropane - 1	1,2-Dichloropropane - 1
	Trichloroethene – 25	Trichloroethene - 193	Trichloroethene - 1
MW-1	Trichloroethene – 3		Trichloroethene - 1
MW-8		Bromodichloromethane – 13	Bromodichloromethane – 1
MW-8 (dup)	Chloroform – 20		Chloroform – 6
MW-9	Benzene – 64 Chloroform – 20	Benzene – 1	Benzene – 1 Chloroform - 6
BEC-12S	Chloroform – 6 cis-1,2-Dichloroethene – 689 Tetrachloroethene – 2	cis-1,2-Dichloroethene – 828 Tetrachloroethene – 3 Trichloroethene – 191 Vinyl Chloride - 16	Chloroform – 6 cis-1,2-Dichloroethene – 70 Tetrachloroethene – 2 Trichloroethene – 1 Vinyl Chloride - 5
BEC-14S		cis-1,2-Dichloroethene – 232 Trichloroethene - 142	cis-1,2-Dichloroethene – 70 Trichloroethene - 1
BEC-16S	Tetrachloroethene - ND Trichloroethene – 85	Tetrachloroethene – 1 Trichloroethene – 107	Tetrachioroethene - 1 Trichloroethene -1
BEC-17S	Chloroform – 23		Chloroform - 6
BEC-18S	cis-1,2-Dichlorothene – 105 Tetrachloroethene – 1	cis-1,2-Dichlorothene – 157	cis-1,2-Dichloroethene – 70 Tetrachloroethene – 1
	Trichloroethene – 201	Trichloroethene – 281	Trichloroethene - 1

Tables 3 and 4 present a summary of the compound concentrations exceeding the NJDEP Class II-A GWQS. Figures 5 and 6 depict the locations where the NJDEP Class II-A GWQS was exceeded. The complete analytical package for these samples is presented in Appendix C.

4.3 Metals in Ground Water

Monitoring wells MW-4, MW-9, and BEC-11S were sampled for aluminum, and monitoring well MW-4 was also sampled for arsenic during both ground water sampling conducted on June 7, 2001, and July 30 and 31, 2001.

The analytical results from both sampling events from these wells show that neither aluminum nor arsenic was present. The complete analytical package for these samples is presented in Appendix C. Tables 3 and 4 present a summary of the sample results.

4.4 Ground Water Elevations

A total of three ground water elevation contour maps created from the water levels collected on June 7, 2001, July 30, 2001, and August 13, 2001 will be prepared and submitted upon receipt of data from the surveyor.

5.0 CONCLUSIONS

5.1 Soil - Chlorinated VOC's in Ground Water (Source Soils)

A review of the soil data collected in the vicinity of AOC-11 (located on the eastern side of Building 1) during this phase of investigation demonstrates that the soil is clean in the vicinity of the Endre Doczy building. No further action is proposed with respect to this specific area of concern.

5.2 Aluminum and Arsenic in Ground Water

Based on an evaluation of the data collected via low flow sampling, the presence of elevated levels of aluminum in prior ground water sampling rounds are attributed to suspended solids in the ground water as stated in BELL's November 1999 RIR. No further action is proposed for this issue.

5.3 Volatile Organics in Ground Water

An evaluation of the ground water analytical data indicates that volatile organic compounds were detected in excess of the NJDEP Class II-A GWQS in ground water samples collected from the wells mentioned previously in section 4.2.2 of this report. Specifically the analytical results indicated that:

- The downgradient and upgradient extent of the contaminant plume has not been established. Chlorinated VOC's in ground water that exceeded the NJDEP GWQS were detected in monitoring wells MW-1, BEC-12S, BEC-14S, BEC-16S, BEC-18S, and BEC-1D.
- 2. Given that only two rounds of data have been collected from many of the wells, insufficient data exists to develop conclusions about historic trends in the data.
- 3. The analytical data from monitoring well BEC-16S, located sidegradient of BEC-12S, exhibited chlorinated VOC's in excess of the NJDEP GWQS.
- 4. The chlorinated compounds detected are primarily trichloroethene, tetracloroethene, and the daughter compounds associated with these two primary compounds. Based on the levels of cis-1,2-dichloroethene detected at several locations, it would appear that the chlorinated compounds are not associated with a new release, as a fair amount of degradation has occurred.
- 5. The highest levels of chlorinated compounds were detected in the northwest portion of the AMMCo property located west of Passaic Avenue. However, chlorinated compounds were detected in wells encompassing an area approximately 300 ft long by 100 ft wide. Based on the distribution of compounds, a definitive source or sources is not readily identifiable.
- 6. Chloroform and bromodichloromethane were also detected at several locations. Although these compounds may be laboratory artifacts, they were not detected in the QA/QC blanks. Additional rounds of ground water data will be evaluated to determine whether these compounds are attributable to laboratory contamination.

5.4 LNAPL

LNAPL has been detected at a new location (Well BEC-13S). Two types of product were identified via the product typing, mineral spirits or Stoddard Solvent and a low boiling point petroleum product such as lubricating oil. A review of historic product sample results indicate that mineral spirits/Stoddard solvent was detected at a temporary well location (TW-4), located approximately 50 ft to the south southwest. Based on the finding of product at the temporary well location, AMMCo excavated soils and pumped ground water/product from the excavation. Subsequent sampling indicated that no LNAPL was detectable.

6.0 PROPOSED REMEDIAL INVESTIGATION AND ACTION TASKS

Based on the results of this phase of investigation, the following tasks are proposed:

 Soils - Identify the probable source soil area(s) for the chlorinated compounds being detected in the ground water;

2. Ground Water - Delineate the vertical and horizontal extent of chlorinated VOC's in

ground water;

3. **LNAPL** - Identify the probable source of the LNAPL detected in BEC-13S and implement an LNAPL recovery program for BEC-13S.

6.1 Passive Soil Gas Survey

In order to assess if there are residually impacted soils that are acting as a continuing source of ground water contamination, BELL proposes to perform a passive soil gas survey in the area located upgradient of the impacted wells and downgradient of the existing building. The survey will be conducted by collecting samples on a 25-ft. grid system. The purpose of this screening technology is to provide a quick, cost-effective evaluation of the presence, extent and relative concentration of volatile organic compound (VOC) vapors in the subsurface. The resultant data will be geographically plotted on a map of the site and directly used as a guidance tool to assess whether additional soil sampling is warranted. AMMCo believes that the implementation of this technique will allow it to complete the required evaluation of the potential of additional source areas within the subject site.

6.2 Ground Water Investigation

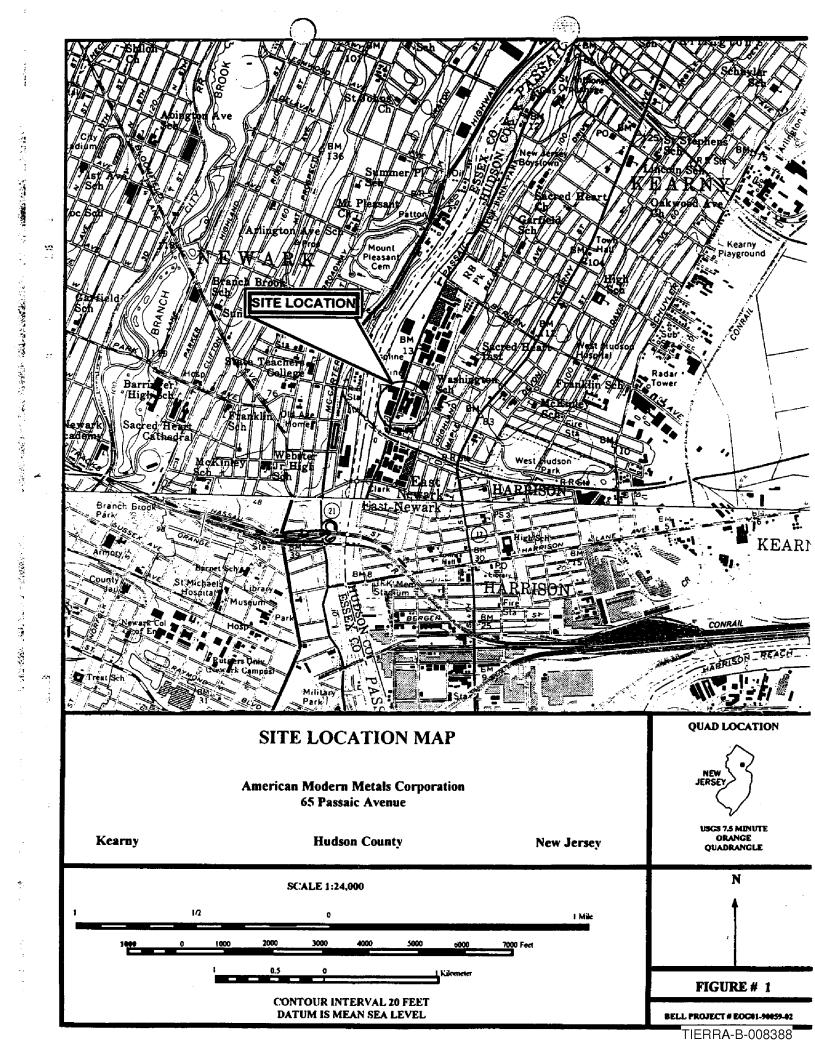
To delineate the vertical and horizontal extent of chlorinated VOCs in ground water, AMMCo proposes to install two additional horizontal delineation wells (BEC-19S and BEC-20S) and one vertical delineation well (BEC-1BD). The locations of these wells will be included in the Supplemental Report to this ground water RIR. The horizontal delineation wells will be completed in the unconsolidated zone while BEC-1BD will be completed in the first fracture zone in the underlying bedrock. Upon completion and purging, ground water samples will be collected from these additional wells, along with MW-1, MW-2, BEC-12S, BEC-14S, BEC-16S, BEC-18S, and BEC-1D for analysis of VOCs using dedicated, disposable Teflon bailers. Well MW-2 is proposed to delineate the horizontal extent of the plume south of well BEC-16S. The remaining wells had detectable levels of chlorinated compounds and warrant additional rounds of sampling. The ground water remedial investigation program will be conducted in general accordance with the Technical Requirements for Site Remediation (N.J.A.C. 7:26E, et. seq.) and the NJDEP Field Sampling Procedures Manual (May, 1992).

AMMCo believes that the additional proposed locations will be sufficient to allow it to complete the delineation of the chlorinated compounds in ground water.

6.3 LNAPL

Based on the presence of LNAPL in BEC-13S, AMMCo proposes to implement the following scope of work:

- 1. Undertake an inspection and tightness test of the mineral spirits above ground storage tank located within Building #22; and
- 2. Install a passive product recovery skimmer in BEC-13S that will be emptied by AMMCo on a bi-weekly basis.

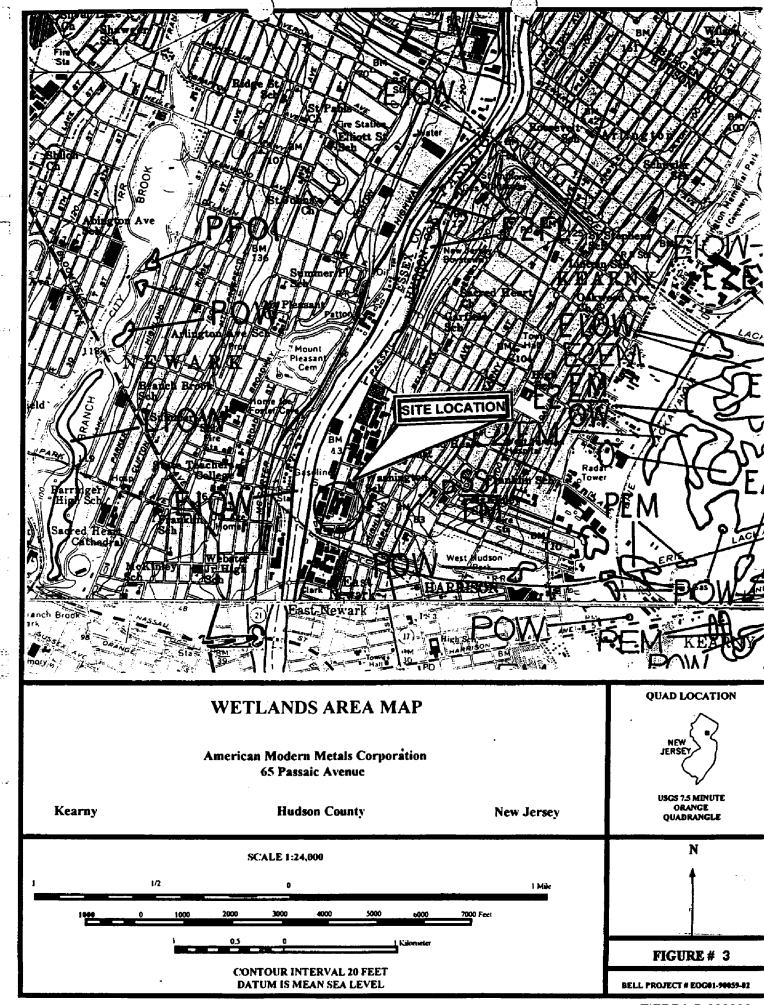

6.4 Schedule

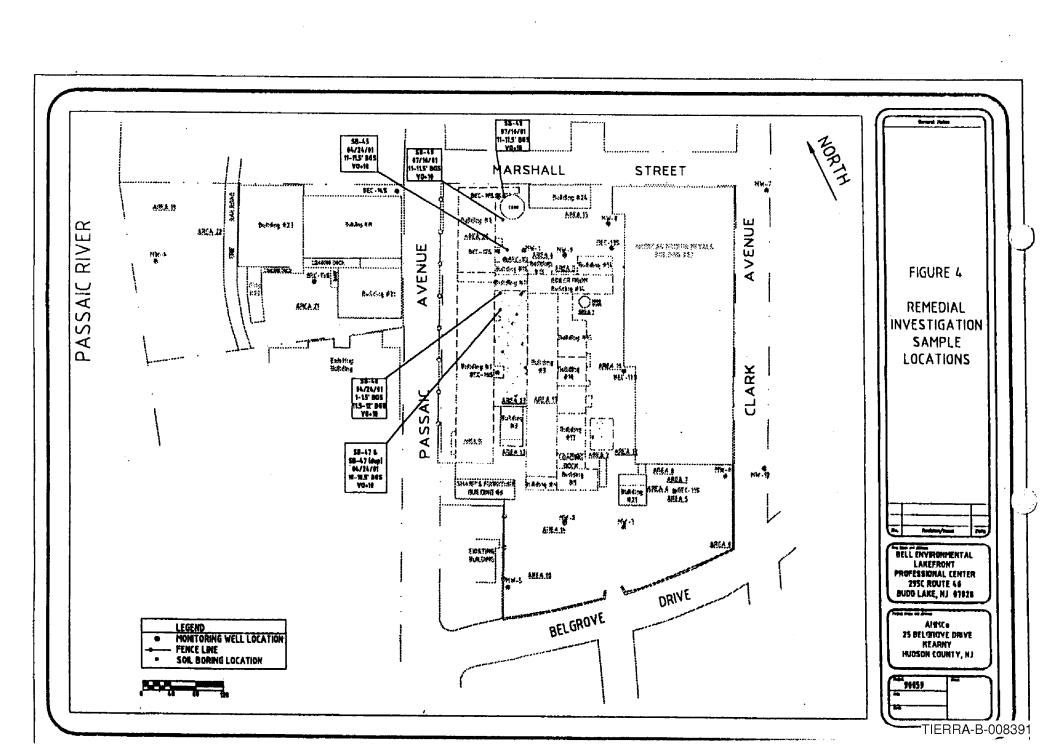
AMMCo will submit to the NJDEP a schedule upon approval by the NJDEP of AMMCo's proposed scope of work.

7.0 SUMMARY AND LIMITATIONS

This report provides for documentation and investigation of current environmental concerns pertinent to the subject site. This RIR has been carefully and methodically developed, in accordance with generally accepted environmental practices, for specific application to the American Modern Metals Corporation facility located in Kearny, New Jersey. The RIR was prepared with specific reference to prior site activities and is based upon current available data as set forth within the introduction. The RIR presents BELL's professional opinion and judgment relative to the resolution of current environmental concerns at the site as currently known. No other warranty, expressed or implied, is made.

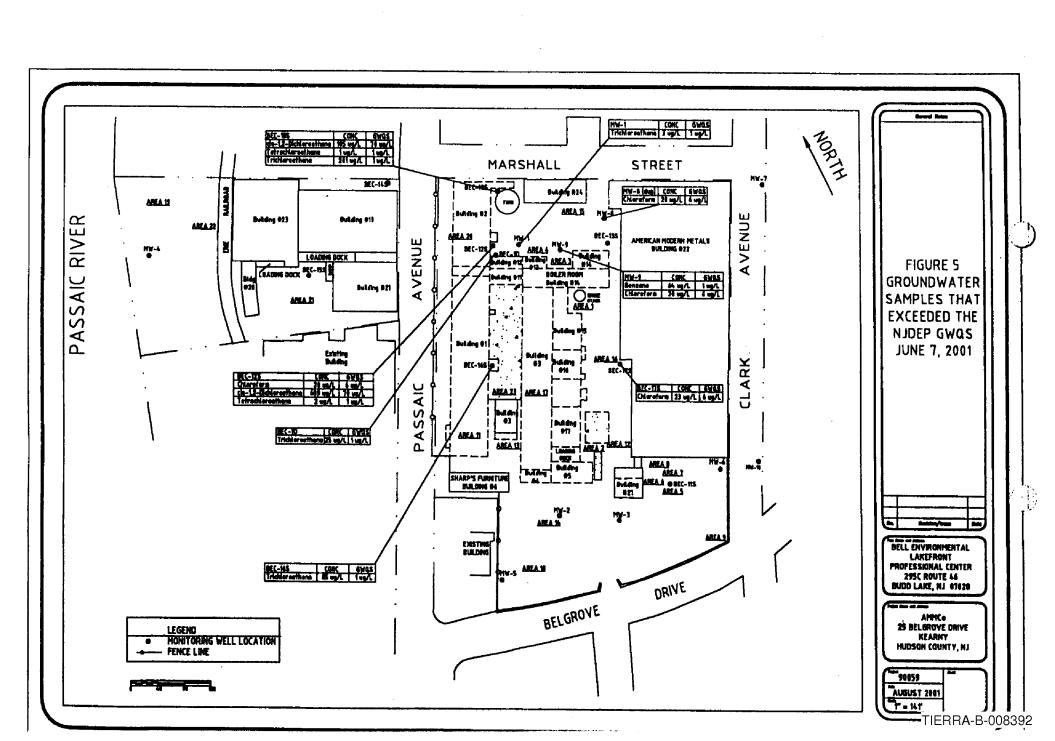
FIGURES

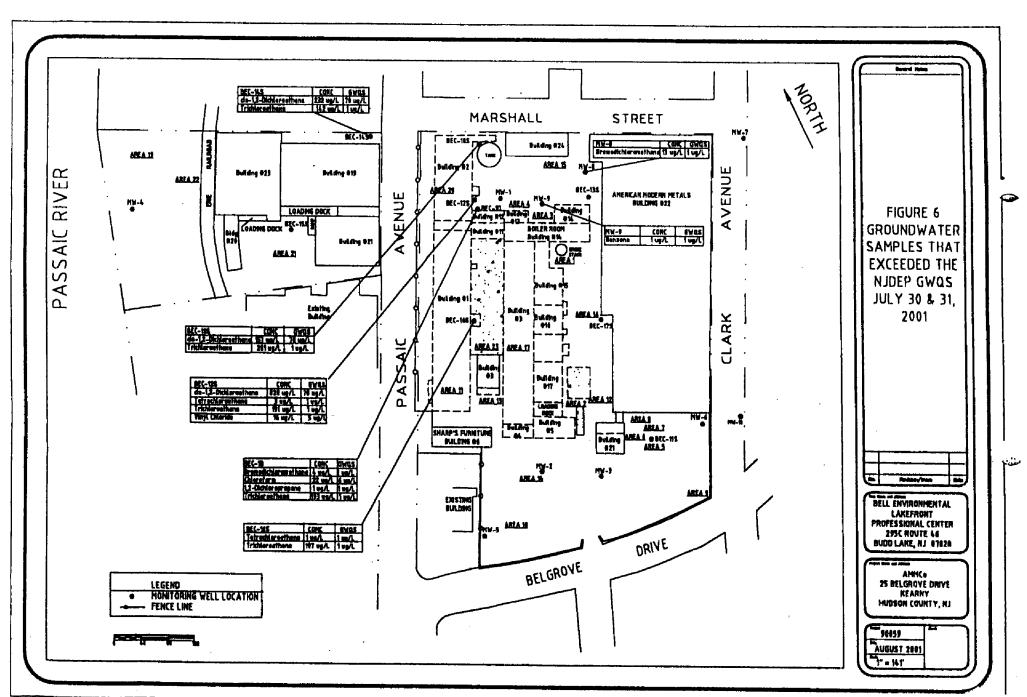

1. 14 · · 14 · f



าง และ เพลิสเทา เมื่อเกิด เพลิสเทา เพลิสเทา เพลิสเทา เพลิสเทา เพลิสเทา เพลิสเทา เพลิสเทา เพลิสเทา เพลิสเทา เพลิสเทา

- B


<u>.</u>


AND THE PROPERTY OF THE PROPER

Park Carlinger William

a substitution of the control of the

CONTRACTOR SERVICE

THE REPORT OF THE PROPERTY OF

1.00

TABLE 1

SUMMARY OF ANALYTICAL METHODS QUALITY ASSURANCE/QUALITY CONTROL SAMPLING AMERICAN MODERN METALS CORPORATION

na na katalanakan baharan bahar

KEARNY, HUDSON COUNTY, NEW JERSEY

BELL PROJECT # EDG01-90059-02

Bell Environmental Consultants, Inc.

Type of Sample	Matrix Type	Number of Samples	Number of Field Blanks	Number of Trip Blanks	Number of Duplicate Samples	Analyticai Parameters	Sample Preservation Method	Analytical Method	Sample Container Volume
Ground Water	Aqueous	6 19 2	2 2 2	0 2 0	1 2 1	Aluminum VO+10 Arsenic	4°C MEOH, 4°C 4°C	202.1 624 208.2	·120 ml
Soit	Soil	2	0	1	1	VO+10	MEOH, 4°C	8260	1000 ml
Product Identification	Aqueous	1	0	0	0	Product ID & Age	4°C	GC, FID, ECD	60 ml

Notes:

. Other

VO+10 - Volatile Organic Compounds with a Forward Library Search for Ten Tentatively Identified Compounds. BN-15 - Base Neutral Compounds with a Forward Library Search for 15 Tentatively Identified Compounds.

MEOH - Methanol

HCL - Hydrochloric Acid GC - Gas Chromatography

FID - Flame Ionization Detection

ECD - Electron Capture Detection

TABLE 2A

than the company of the color o

1:32

SUMMARY OF MONITORING WELL FIELD DATA AND PHYSICAL MEASUREMENTS THURSDAY, JUNE 7, 2001 SAMPLING EPISODE AMERICAN MODERN METALS CORPORATION KEARNY, HUDSON COUNTY, NEW JERSEY

Location	Permit Number	Elevation of Top of Casing (feet)	Total Depth of Well (feet,TOC)	Depth to Product (feet, TOC)	Depth to Groundwater (feet, TOC)	Total Volume of Water in Well (G)	Depth to Top of Screen (feet,TOC)	Length of Screen (feet)
MW-1	2919723-5	?	12.78	ND	10.86	1.25	8.00	10.0
MW-3	2619725-1	15.85	20.41	ND	13.48	4.52	10.18	10.0
MW-4	2619726-0	9.41	17.49	ND	7.39	6.59	6.89	10.0
MW-5	2619727-8	14.58	•	•		•	11.00	10.0
MW-6	2619728-6	17.61	22.83	ND	14.19	5.64	12.47	10.0
MW-7	260511-4	22.92	**	10.88	**	**	25.30	10.0
MW-8	26-24964	12.86	17.56	ND	10.51	4,60	7.71	10.0
MW-9	****	11.80	15.04	ND	9.72	3.47	6.20	10.0
MW-10	****	20.71	25.03	ND	15.38	6.30	4.51	10.0
BEC-11S	26-32146	10.77	14.49	ND	8.38	3.99	5.00	10.0
BEC-12S	26-36701	***	19.12	ND	10.34	5.73	4.20	15.0
BEC-14S	26-60971	***	15.37	ND	7.83	4.92	5.00	10.0
BEC-15S	26-59941	***	13.88	ND	7.68	4.05	5.00	10.0
BEC-16S	26-59942	***	17.60	ND	10.57	4.59	8.00	10.0
BEC-17S	26-59943	***	17.88	ND	11.23	4.34	8.50	10.0
BEC-18S	26-60970	***	16.52	ND	10.39	4.00	7.00	10.0
BEC-1D	26-59939	***	39.05	ND	9.60	19,22	30.00	10.0

Notes:

TOC - Top of Casing; MSL - Mean Sea Level

G - Gallons

^{* -} Could not access; well covered with debris

^{** -} Product in well too thick, accurate DTP or DTW not feasible

^{*** -} Survey data for newly installed monitoring wells not yet obtained

^{**** -} Well certification forms A & B never provided; wells installed by Killam Associates

TABLE 2A

- Jone An Electric Control of the Control of the

CALIFORNIA DE COMO REPUBLICA DE ENTREMANDO CAMBRIDA EN ESCAPARA CARROLA DE CARROLA DE COMO DE LA CONTRACTOR DE

SUMMARY OF MONITORING WELL PHYSICAL DATA AND RESULTS OF FIELD MEASUREMENTS THURSDAY, JUNE 7, 2001 SAMPLING EPISODE AMERICAN MODERN METALS CORPORATION KEARNY, HUDSON COUNTY, NEW JERSEY

	Pre-Purge	Pre-Purge	Pre-Purge	Pre-Purge	Post-Purge	Post-Purge	Post-Purge	Post-Purge
Location	pН	Temperature	Conductivity	Dissolved	pН	Temperature	Conductivity	Dissolved
	(Standard Units)	(°C) ·	(mS/cm)	Oxygen (mg/l)	(Standard Units)	(℃)	(mS/cm)	Oxygen (mg/l)
MW-1	6.70	15.20	0.95	1.90	6.49	14.70	0.95	0.98
MW-4	6.12	13.30	1.03	4.55	5.60	12.20	1.71	2.01
MW-8	5.58	16.00	1.00	2.39	6.20	16.00	0.76	5.83
MW-9	6.12	15.00	0.92	1.54	6.18	14.40	1.04	0.03
BEC-11S	7.21	18.20	1.48	1.33	6.18	16.40	1.46	0.36
BEC-12S	6.76	14.60	0.99	0.26	6.64	14.40	0.98	3.37
BEC-14S	6.88	15.70	0.58	3.51	6.63	15,60	0.81	3.17
BEC-158	6.84	15.60	1.05	0.03	•	•		•
BEC-16S	7.24	16.30	0.78	1.65	6.90	15.00	0.94	3.46
BEC-17S	8.64	18.10	1.21	0.53	7.12	17.70	1.18	0.85
BEC-18S	6.92	14.50	0.84	0.26	6.95	13.60	0.74	1.11
BEC-1D	7.24	19.60	1.60	0.00	7.18	17.40	2.06	0.55

Notes:

mg/l - milligrams per liter; ^oC - degrees celsius; mS/cm - millisemens per centimeter

* - Well Purged Dry

Page 2 of 4

TABLE 2A

SUMMARY OF MONITORING WELL PHYSICAL DATA AND RESULTS OF FIELD MEASUREMENTS
THURSDAY, JUNE 7, 2001 SAMPLING EPISODE
AMERICAN MODERN METALS CORPORATION
KEARNY, HUDSON COUNTY, NEW JERSEY

The Committee of the Co

Location	Post-Sampling pH (Standard Units)	Post-Sampling Temperature (⁰ C)	Post-Sampling Conductivity (mS/cm)	Post-Sampling Dissolved Oxygen (mg/l)	Depth to Groundwater, (feet, TOC)
MW-1	6.38	14.40	0.99	2.16	10.81
MW-4	5.78	12.60	1.88	2.01	10.14
MW-8	6.88	16.50	0.78	1.04	10.59
MW-9	6.52	15.70	0.98	2.03	9.89
BEC-11S	6.21	16.30	1.46	11.35	9.68
BEC-12S	6.51	13.90	0.98	0.44	10.33
BEC-14S	6.49	15.30	0.88	3.39	7.84
BEC-15S	6.65	15.80	0.98	-0.01	12.89
BEC-16S	7.17	14.90	0.94	3.79	16.13
BEC-17S	6.80	17.70	1.17	2.07	13.54
BEC-18S	6.88	13.90	0.77	3.23	10.30
BEC-1D	6.93	17.50	2.10	0.73	8.77

Notes: mg/l - milligrams per liter; ⁰C - degrees celsius

mS/cm - millisemens per centimeter

TOC - Top of Casing

TABLE 2A

THE RESERVE THE PROPERTY OF TH

SUMMARY OF MONITORING WELL PHYSICAL DATA AND RESULTS OF FIELD MEASUREMENTS THURSDAY, JUNE 7, 2001 SAMPLING EPISODE AMERICAN MODERN METALS CORPORATION KEARNY, HUDSON COUNTY, NEW JERSEY

Location	Purge Start Time	Purge Finish Time	Purge Method	Purge Rate (gpm)	Total Volume Purged (Galions)	Sample Date	Sample Start Time	Sample Method
MW-1	14:35	14:39	Whale Pump	1.13	4.5	06/07/2001	14:47	Teflon Bailer
MW-4	17:30	18:30	Peristaltic Pump	0.08	5	06/07/2001	18:35	Peristaltic Pump
8-WM	9:42	9:54	Whale Pump	1.17	14	06/07/2001	10:03	Teflon Bailer
MW-9	10:32	11:40	Peristattic/Whale Pump	0.23	11.25	06/07/2001	11:10/11:40***	Peristaltic Pump*
BEC-11S	13:04	14:16	Peristaltic Pump	0.17	12	06/07/2001	14:20	Peristaltic Pump
BEC-12S	15:15	15:28	Whale Pump	1.46	17.5	06/07/2001	15:35	Teflon Bailer
BEC-14S	16:14	16:23	Whale Pump	1.67	15	06/07/2001	16:28	Teflon Bailer
BEC-15S	17:26	17:30	Whale Pump	1.25	5	06/07/2001	17:35	Teflon Bailer
BEC-16S	15:06	15:25	Whale Pump	0.79	15	06/07/2001	15:25	Teflon Bailer
BEC-17S	16:20	16:33	Whale Pump	**	**	06/07/2001	16:35	Teflon Bailer
BEC-18S	10:39	10:48	Whale Pump	1.33	12	06/07/2001	10:57	Teflon Bailer
BEC-1D	12:50	13:50	Whale Pump	0.96	57.5	06/07/2001	14:04	Teflon Bailer

Notes:

gpm - gallons per minute

- * Teflon Bailer used to collect VO Sample
- **- Inadvertantly omitted during sampling

Page 4 of 4

^{***-} Metals sample collected at 11:10; volatile organic sample collected at 11:40 due to groundwater which needed to be purged

TABLE 2B

and the second of the control of the

SUMMARY OF MONITORING WELL FIELD DATA AND PHYSICAL MEASUREMENTS MONDAY & TUESDAY, JULY 30 & 31, 2001 SAMPLING EPISODE AMERICAN MODERN METALS CORPORATION KEARNY, HUDSON COUNTY, NEW JERSEY

Location	Permit Number	Elevation of Top of Casing (feet)	Total Depth of Well (feet,TOC)	Depth to Product (feet, TOC)	Depth to Groundwater (feet, TOC)	Total Volume of Water in Well (G)	Depth to Top of Screen (feet,TOC)	Length of Screen (feet)
MW-1	2919723-5	?	17.89	ND	11.09	4.44	8.00	10.0
MW-3	2619725-1	15.85	20.30	ND	13.79	4.25	10.18	10.0
MW-4	2619726-0	9.41	17.36	ND	7.87	6.20	6.89	10.0
MW-5	2619727-8	14.58	• .	•	•		11.00	
MW-6	2619728-6	17.61	22.77	ND	14.27	5.55		10.0
MW-7	260511-4	22.92	**	**	**	3.33	12.47	10.0
MW-8	26-24964	12.86	17.51	ND	10.71	4.44	25.30	10.0
MW-9	****	11.80	15.19	ND	1	4.44	7.71	10.0
MW-10	****	20.71	25.03		9.90	3.45	6.20	10.0
BEC-11S	26-32146	10.77	14.58	ND	15.74	6.06	4.51	10.0
BEC-12S	26-36701	444		ND	8.70	3.84	5.00	10.0
BEC-13S	26-61922	***	19.50	ND	10.58	5.82	4.20	15.0
BEC-14S		***	16.32	10.20	10.39	3.87	6.00	10.0
	26-60971	***	15.25	ND	8.05	4.70	5.00	10.0
BEC-15S	26-59941		14.56	ND	7.91	4.34	5.00	10.0
BEC-16S	26-59942	***	17.51	ND	10.79	4.39	8.00	10.0
BEC-17S	26-59943	***	18.01	ND	11.54	4.22	8.50	10.0
BEC-18S	26-60970	***	16.49	ND	10.61	3.84	7.00	10.0
BEC-1D	26-59939	***	40.70	ND	9.83	20.15	30.00	10.0

Notes:

TOC - Top of Casing; MSL - Mean Sea Level

G - Gallons

^{* -} Could not access; well covered with debris

^{** -} Product in well too thick, accurate DTP or DTW not feasible

^{*** -} Survey data for newly installed monitoring wells not yet obtained

^{**** -} Well certification forms A & B never provided; wells installed by Killam Associates

TABLE 2B

The Committee of the Co

SUMMARY OF MONITORING WELL PHYSICAL DATA AND RESULTS OF FIELD MEASUREMENTS MONDAY & TUESDAY, JULY 30 & 31, 2001 SAMPLING EPISODE AMERICAN MODERN METALS CORPORATION KEARNY, HUDSON COUNTY, NEW JERSEY

Location	Pre-Purge pH (Standard Units)	Pre-Purge Temperature (⁶ C)	Pre-Purge Conductivity (mS/cm)	Pre-Purge Dissolved Oxygen (mg/l)	Post-Purge pH (Standard Units)	Post-Purge Temperature (°C)	Post-Purge Conductivity (mS/cm)	Post-Purge Dissolved Oxygen (mg/l
MW-1	6.47	16.50	0.79	-50.00	••	40	**	**
MW-4	6.46	15.70	4.26	11.76	6.52	15.80	3.01	12.10
MW-8	6.83	18.50	0.61	1.42	6.28	18.80	0.60	1.36
MW-9	6.47	18.20	0.98	10.00	6.63	18.30	1.01	9,80
BEC-11S	6.72	19.40	1.55	8.64	6.63	18.80	1.36	6.71
BEC-12S	6.56	15.70	0.93	2.93	6.58	15.70	0.96	3.44
BEC-14S	6.77	17.90	1.06	-0.02	6.59	17.30	0.96	-1.02
BEC-158	6.83	18.20	0.99	-0.80	•	11.50	0.50	-1.02
BEC-16\$	6.24	17.20	1.11	0.06	•	•		
BEC-17S	6.88	19.70	1.16	1.25	6.65	19.30	1.18	1.15
BEC-18S	7.55	15.10	0.62	2.70	6.86	15.00	0.72	4.14
BEC-1D	7.14	16,10	2.16	2.89	7.15	16.20	2.07	2.92

Notes:

mg/l - milligrams per liter; ⁹C - degrees celsius; mS/cm - millisemens per centimeter

* - Well Purged Dry

E James Jame

** - Sheen on ground water - no readings collected to prevent damage to equipment

Page 2 of 4

TABLE 2B

1. 电扩播

A resident of the control of the con

SUMMARY OF MONITORING WELL PHYSICAL DATA AND RESULTS OF FIELD MEASUREMENTS MONDAY & TUESDAY, JULY 30 & 31, 2001 SAMPLING EPISODE AMERICAN MODERN METALS CORPORATION KEARNY, HUDSON COUNTY, NEW JERSEY

Location	Post-Sampling pH (Standard Units)	Post-Sampling Temperature (°C)	Post-Sampling Conductivity (mS/cm)	Post-Sampling Dissolved Oxygen (mg/l)	Depth to Groundwater, (feet, TOC)
MW-1	**	**	##	**	11.65
MW-4	6.23	15.90	3.17	19.99	7.96
MVV-8	6.27	18.70	0.62	1.83	11.12
MW-9	6.31	18.90	0.91	11.37	9.92
BEC-11S	6.54	19.20	1.36	19.99	8.66
BEC-12S	6.53	15.60	0.97	2.94	*
BEC-14S	6.57	17.30	0.97	-0.97	15.18
BEC-15S	6.69	18.10	0.94	-0.04	*
BEC-16S	6.37	17.00	1.05	0.81	16.26
BEC-17S	6.60	19.10	0.90	-0.89	11.75
BEC-18S	6.75	15.00	0.83	3.18	*
BEC-1D	6.95	15.50	2.12	2.96	*

Notes: mg/l - milligrams per liter; ⁰C - degrees celsius mS/cm - millisemens per centimeter

^{* -} Inadvertently omitted

^{** -} Sheen on ground water - no readings collected to prevent damage to Non-Bell equipment

TABLE 2B

SUMMARY OF MONITORING WELL PHYSICAL DATA AND RESULTS OF FIELD MEASUREMENTS MONDAY & TUESDAY, JULY 30 & 31, 2001 SAMPLING EPISODE **AMERICAN MODERN METALS CORPORATION** KEARNY, HUDSON COUNTY, NEW JERSEY

Location	Purge Start Time	Purge Finish Time	Purge Method	Purge Rate (gpm)	Total Volume Purged (Gallons)	Sample Date	Sample Start Time	Sample Method
MW-1	13:47	13:57	Whale Pump	1.70	17	07/30/2001	14:00	Teflon Bailer
MW-4	13:30	14:42	Peristaltic Pump	0.14	10	07/31/2001	14:45	Peristaltic Pump
MW-8	14:50	15:00	Whale Pump	1.50	15	07/30/2001	15:15	Tefion Bailer
MW-9	9:00	10:40	Peristaltic Pump	0.13	13	07/31/2001	10:45	Peristaltic Pump*
BEC-11S	11:34	12:37	Peristaltic Pump	0.11	7	07/31/2001	12:40	Peristaltic Pump
BEC-12S	13:42	13:57	Whale Pump	1.50	22.5	07/30/2001	14:00	Teflon Bailer
BEC-14S	14:17	14:25	Whale Pump	2.00	16.5	07/31/2001	14:25	Teflon Bailer
BEC-15S	13:19	13:35	Whale Pump	1.00	16	07/31/2001	13:45	Teflon Bailer
BEC-16S	13:00	13:07	Whale Pump	1.10	8	07/30/2001	13:10	Teflon Bailer
BEC-17S	16:03	16:12	Whale Pump	1.67	15	07/30/2001	16:15	Teflon Bailer
BEC-18S	12:31	12:46	Whale Pump	1.00	15	07/30/2001	12:55	Teflon Baller
BEC-1D	14:40	15:45	Whale Pump	1.00	65	07/30/2001	15:55	Teflon Bailer

Notes:

gpm - gallons per minute
* - Teflon Bailer used to collect VO Sample

Page 4 of 4

まっては企業 to the Balanta and th

TABLE 2C

SUMMARY OF MONITORING WELL FIELD DATA AND PHYSICAL MEASUREMENTS
MONDAY, AUGUST 13, 2001 WATER LEVEL READINGS
AMERICAN MODERN METALS CORPORATION

KEARNY, HUDSON COUNTY, NEW JERSEY

Location	Permit Number	Elevation of Top of Casing (feet)	Depth to Product (feet, TOC)	Total Depth of Well (feet,TOC)	Depth to Groundwater (feet, TOC)	Total Volume of Water in Well (G)	Depth to Top of Screen (feet,TOC)	Length of Screen (feet)
MW-1	2919723-5	?	ND	17.89	9.90	5.22	8.0	10.0
MW-3	2619725-1	15.85	ND	20.30	13.71	4.30	10.2	10.0
MW-4	2619726-0	9.41	ND	17.36	8.57	5.74	6.9	10.0
MW-5	2619727-8	14.58	•	•	*	•	11.0	10.0
MW-6	2619728-6	17.61	14.32	22.77	14.32	5.52	12.5	10.0
MW-7	26-0511-4	22.92	11.35	**	11.37	. **	25.3	10.0
MW-8	26-24964	12.86	10.54	17.51	10.54	4.55	7.7	10.0
MW-9	****	11.80	9.90	15.19	9.90	3.45	6.2	10.0
MW-10	****	20.71	ND	25.03	15.87	5.98	4.5	10.0
BEC-11S	26-32146	10.77	****	****	****	****	5.0	10.0
BEC-12S	26-36701	***	ND	19.50	10.55	5.84	4.20	15.0
BEC-13S	26-61922	***	10.15	16.32	10.21	3.99	6 .0	10.0
BEC-14S	26-60971	***	ND	15.25	8.03	4.71	5.0	10.0
BEC-15S	26-59941	***	ND	14.56	7.88	4.36	5.0	10.0
BEC-16S	26-59942	***	ND	17.51	10.74	4.42	8.0	10.0
BEC-17S	26-59943	***	ND	18.01	11.52	4.24	8.5	10.0
BEC-18S	26-60970	***	ND	16.49	10.56	3.87	7.0	10.0
BEC-1D	26-59939	***	ND	40.7	11.04	19.36	30.0	10.0

Notes:

TOC - Top of Casing; MSL - Mean Sea Level

G - Gallons

19 L . .

^{* -} Could not access; well covered with debris

^{** -} Product in well too thick, accurate Total Depth of Well not feasible

^{*** -} Survey data for newly installed monitoring wells not yet obtained

^{**** -} Well certification forms A & B never provided; wells installed by Killam Associates

^{**** -} Weil underwater

TABLE 3
GROUND WATER SAMPLING RESULTS SUMMARY - JUNE 7, 2001
AMERICAN MODERN METALS
KEARNY, ESSEX COUNTY, NEW JERSEY

and the first the contract of the second of

Sample Designation: BELL Sample Number: Lab ID: Sample Date:	MOL	MW-1 2101 2586-1 06/07/2001			MW-4 2004 2586-2 06/07/2001			MW-4 (dup) 2104 2586-3 06/07/2001			MW-8 2008 2586-4 06/07/2001			MW-8 (dup) 2108 2588-6 08/07/2001			MW-9 2009 2586-5 06/07/2001		Class II a Ground Water Quality Standards
OLATILE ORGANIC COMPOUNDS (ug/l)	MUL	CONC	<u> </u>	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	a	MDL	CONC	Q	MDL	CONC	Q	(ug/l)
Offution Factor:		1		[1 1	1		1	4			1 . 1		
Targeted VOCs Detected:	1 . 1		[,			•			'		
Benzene 2-Butanone	!	ND			NA			NA		1	ND		1 1	ND		1	84 ND		1
Chloroform	!	ND			NA			NA	İ	1 1	ND		1 -	ND		1	ND		*4144
Dibromochloromethane		NO NO			NA NA			NA		!!!	ND		1	/13		1	100000000 1 100000000		6
1,1-Dichloroethane	;	ND		l l	NA NA			NA NA		!	ND		!	ΝD] [NO		10
cls-1,2-Dichloroethene		2			NA I			NA NA		1 : 1	ND ND]	ND ON		1 !	ND		50
trans-1,2-Dichloroethene	1	ND			NA			NA.			ND ND		;	ND ON		;	0.7 ND	1	70
Ethylbenzene	1	ND		l 1	NA.		ĺ	NA.		;	ND		4	ND	ŀ	;	2		100 700
Mathylene Chloride	1 1	ND			NA			NA		i	ND			1.2	1	1 7	ND		/30
Naphthalene 1.1.2.2-Tetrachloroethane	!	ND	l	l i	NA			NA		1 1	ND		1 1	ND		1 1	8		300
Tetrachloroethene (PCE)	7	ND			NA.			NA	ì	1	ND		1 1	ND		1	0.1	J	1 1
Toluene	1 ;	ND ND		1 1	NA NA			NA	l	!	ND		1 1	ND		1	ND		l i
Trichlorgethene	;	3		1 1	NA :			NA NA		;	ND		1 !	ND		1	7		1,000
Trichlorofluoromethane	5	ND	1	1	NA .			NA NA	l	5	ND ND]	ND ND	ļ	1 2	ND		.1
Vinyl Chloride	3	ND		i I	NA			NA.		3	ND		3	ND	l	3	ND ND		
Total Xylenes	1 1	ND -			NA			NA.		1 1	ND			ND		1 3	I ND		1,000
Methyl tert-butyl-Alcohol	1 1	ND			NA			NA		1	. ND		i	ND		1 1	ND		70
Tert-butyl Alcohol (TBA) Tert-butyl Benzene	!	ND	١.		NA			NA	ļ	1 1	ND		1 1	NO	1	1	ND		1,000
rerr-butyr benzene	"	0.6	J		NA			NA	ļ	1	ND		1 1	ND	ł	1	ND		48444
Total Targeted VOCs		5	1	1 1	NA			NA			ND	•		21.2		i	400.0		
Total Non-Targeted VOCs		ND	i		NA			NA.	į		ND I			ND	Ì	İ	109.8 338		
METALS (ug/l)			1						ļ		1		1 1				"	i	
Targeted Metals Detected:									İ	1							1		
Aluminum	'	NA NA		10.0	<10	١.	400	-40	١.								1	ı	Į.
Arsenic		NA NA		8.0	<8		10.0 8.0	<10 <8	j [1	NA NA		1	NA NA		10.0	<10 NA	J	200

Notes:

ND = Not Detected, MDL = Method Detection Limit, Q = Qualifier, B = Analyte found in the blank as well as the sample.

NA = Not Analyzed, J = Estimated value - compound detected below the specified detection limit, **** = No GWQS established for this compound. Refer to Appendix 7 for the full analytical report (bound separately).

TABLE 3
GROUND WATER SAMPLING RESULTS SUMMARY - JUNE 7, 2001
AMERICAN MODERN METALS
KEARNY, ESSEX COUNTY, NEW JERSEY

and the second of the second o

	MDL	BEC-11S 2011 2586-7 06/07/2001 CONC	ı a	MOL	BEC-12S 2012 2586-8 06/07/2001 CONC	Q	MDL	BEC-14S 2014 2586-9 06/07/2001 CONC	a	MDLT	BEC-15S 2015 2586-10 06/07/2001 CONC	0	MDL	BEC-16S 2016 2586-11 06/07/2001 CONC	0	MDL	BEC-17S 2017 2586-12 06/07/2001 CONC	ā	Class II a Ground Water Quality Standards (up/I)
VOLATILE ORGANIC COMPOUNDS (ug/l) Dilution Factor: Targeted VOCs Detected;					1			1			1			1			1		-
Benzene 2-Butanone Chloroform Dibromochloromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenzene Methylene Chloride Naphthalene 1,1,2,2-Tetrachloroethane Tetrachloroethene (PCE) Toluene Trichloroethene Trichlorofluoromethane Vinyl Chloride Total Xylenes Methyl tert-butyl-Alcohol Tert-butyl Alcohol (TBA) Tert-butyl benzene		NA A A A A A A A A A A A A A A A A A A		111111111111111111111111111111111111111	200 622555000 752555000 7525555000 755555000 75555000 755550000 75555000 75555000 75555000 75555000 75555000 75555000 755550000 75555000 75555000 75555000 75555000 75555000 75555000 755550000 75555000 75555000 75555000 75555000 75555000 75555000 755550000 75555000 75555000 75555000 75555000 75555000 7555500 755500 755000 755500 755500 755500 755500 755500 755500 755500 755500 755500 755500 7550	J	111111111111111111111111111111111111111	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 1	111111111111111111111111111111111111111	555555555555555555555555555555	L	111111111111111111111111111111111111111	2000 ≈ 300 ≈ 200 0 30 0 20 0 20 0 20 0 2	J	111111111111111111111111111111111111111	29 R30 69 29 29 29 29 29 29 29 29 29 29 29 29 29	J	1 6 10 50 2 2 70 100 700 3 3 300 1 1 1 5 1,000 70 1,000 5
Total Targeted VOCs Total Non-Targeted VOCs		NA NA			716.9 134.41			23.1 ND			0.3 ND			123.8 ND			23.27 0.2		<u>-</u>
METALS (ug/l) Targeted Metals Datected: Aluminum Arsenic	10.0	<10 NA	J		NA NA	·		NA NA			NA NA			NA NA			NA NA		200 8

Notes:

ND = Not Detected, MDL = Method Detection Limit, Q = Qualifier, B = Analyte found in the blank as well as the sample.

NA = Not Analyzed, J = Estimated value - compound detected below the specified detection limit, ***** = No GWQS established for this compound. Refer to Appendix? for the full analytical report (bound separately).

TABLE 3
GROUND WATER SAMPLING RESULTS SUMMARY - JUNE 7, 2001
AMERICAN MODERN METALS
KEARNY, ESSEX COUNTY, NEW JERSEY

and the company of the control of the control of the control of the control of the control of the control of the

Sample Designation: BELL Sample Number: Lab łD: Sample Date:		BEC-18S 2018 2586-13 06/07/2001			8EC-1D 2001 2586-14 06/07/2001			Field Blank 1001 2586-15 06/07/2001			Trip Blank 1002 2586-16 06/07/2001		Class II a Ground Water Quality Standards
VOLATILE ORGANIC COMPOUNDS (ug/l)	MDL	CONC	Q	MDL	CONC	ø	MDL	CONC	Q	MOL	CONC	Q	(ug/l)
Dilution Factor:		1		Ì									
Targeted VOCs Detected:		'			ן י		! !	1			1		-
Benzene	۱.	ND		4	ND		1 . 1	ND		,			
2-Butanone	4	2.3			3			ND ND	1	1 1	NO NO		1 .1
Chloreform	;	1		'1	ND		;	ND		¦	ND ND		
Dibromochloromethane	i	l i		1 1	ND		1 ; 1	ND	ł	;	ND ND		6 10
1,1-Dichloroethane	l i	l i		1	0.2	j	;	ND		;	ND		50
cis-1,2-Dichloroethene	1	(0.5	1	1	6.8	•		ND	ŀ	;	ND		70
trans-1,2-Dichloroethene	1	1,2	1	1	ND			ND		;	ND		100
Ethylbenzene	1	ND	1	1	ND		i	ND	Ì	;	ND		700
Methylene Chloride	1	ND		1	ND		1 1	ND		1	ND		3
Naphthalene	1	ND ND		1	ND '			ND		1	ND		300
1,1,2,2-Tetrachioroethane	1	ND		1	ND		1 1	ND	1	1 1	ND		1 7
Tetrachloroethene (PCE)	1	*****	1	1	ND		1 1	ND	1	1	ND I		l i
Toluene	1	ND]	1	ND		1	ND		1	ND		1,000
Trichloroethene	1	203	1	1	25	1	1 1	ND	i	1	ND		1 1
Trichlorofluoromethane	5	ND	1	5	ND	ł	5	ND	į	5	ND		*****
Vinyl Chloride	3	2	J	3	ND		3	ND	i	3	ND		5
Total Xylenes	1 1	ND	ŀ	1	ND		1	ND		1 1	ND		1,000
Methyl tert-butyl-Alcohol	1 !	ND		1 1	ND		1	ND	1	1	ND		70
Tert-butyl Alcohol (TBA)	! !	ND		1 1	ND	İ	1	ND		1 1	ND		1,000
Tert-butyl benzene	1	ND		1	ND		1	ND		1	ND		****
Total Targeted VOCs		315.5			35		<u> </u>	ND			ND		l .
Total Non-Targeted VOCs		ND			1.21			ND	1		ND ·		
METALS (ug/l)	1	1											
Targeted Metals Detected:	1	1				İ			1	1 .	l		1
Aluminum		NA NA	1		NA.	1	10	<10	ر ا	1			
Arsenic	1	NA.	1]	NA NA	İ	8	<8	1] :	NA NA		200 8

Notes:

ND = Not Detected, MDL = Method Detection Limit, Q = Qualifier, 8 = Analyte found in the blank as well as the sample.

NA = Not Analyzed, J = Estimated value - compound detected below the specified detection limit, **** = No GWQS established for this compound. Refer to Appendix ? for the full analytical report (bound separately).

TABLE 4
GROUND WATER SAMPLING RESULTS SUMMARY - JULY 30 & 31, 2001
AMERICAN MODERN METALS
KEARNY, ESSEX COUNTY, NEW JERSEY

and the state of t

No	MW-9 2009 2762-11 07/31/2001	Class II a Ground Water Quality Standards
Targeted VOCs Detected: 1		
Targeted VOCs Detected: 1		**************************************
Benzene	1	**
Bromodichloromethane		
Bromodichloromethane	1	1 4
2-Butanone	1 ND	1 4
Chloroform 1 ND NA 1 ND NA 1 ND 1 ND NA 1 ND 1 ND NA 1 ND ND NA 1 ND ND NA 1 ND ND ND ND ND ND ND ND ND <t< td=""><td>1 ND</td><td>300</td></t<>	1 ND	300
Dibromochloromethane 1 ND NA 1 ND 1 ND 1,1-Dichloroethane 1 ND NA 1 ND 1 ND cis-1,2-Dichloroethene 1 ND NA 1 ND 1 ND trans-1,2-Dichloroethene 1 ND NA 1 ND 1 ND 1,2-Dichloropropane 1 ND NA 1 ND 1 ND Ethylbenzene 1 ND NA 1 ND 1 ND Methylene Chloride 1 ND NA 1 ND 1 ND Methylene Chloride 1 ND NA 1 ND 1 ND Total Chloroethene (PCE) 1 ND NA 1 ND 1 ND Trichloroethene 1 ND NA 1 ND 1 ND Total Targeted VOCs 1 ND NA <	1 ND	1 300
1,1-Dichloroethane 1 ND NA 1 ND 1 ND cis-1,2-Dichloroethene 1 ND NA 1 ND 1 ND trans-1,2-Dichloroethene 1 ND NA 1 ND 1 ND 1,2-Dichloroptopane 1 ND NA 1 ND 1 ND Ethylbenzene 1 ND NA 1 ND 1 ND Methylene Chloride 1 ND NA 1 ND 1 ND Tetrachloroethene (PCE) 1 ND NA 1 ND 1 ND Toluene 1 ND NA 1 ND 1 ND Trichloroethene 1 ND NA 1 ND 1 ND Trichloroflouromethane 5 ND NA 5 ND 5 ND Vinyl Chloride 3 ND NA 1 ND 1 ND Total Targeted VOCs 1 NA 13.7	1 ND	1 10
cis-1,2-Dichloroethene 1 ND NA 1 ND ND 1 ND N	1 ND	
trans-1,2-Dichloroethene 1 ND NA 1 ND ND <t< td=""><td>1 ND</td><td>50</td></t<>	1 ND	50
1,2-Dichloropropane 1 ND NA 1 ND ND 1 ND ND ND ND ND ND ND ND ND ND ND ND <td>1</td> <td>70</td>	1	70
Ethylbenzene	1 ND	100
Methylene Chloride 1 ND NA 1 ND ND <td< td=""><td>1 ND</td><td>1 1</td></td<>	1 ND	1 1
Tetrachloroethene (PCE) 1 ND NA 1 ND 1	1 0.2 J	700
Toluene	1 ND	3
Trichloroethene 1 ND NA 1 ND 1 N	1 ND	1
Trichloroflouromethane 5 ND NA 5 ND 5 ND ND <td> 1 ND </td> <td>1,000</td>	1 ND	1,000
Vinyl Chloride 3 ND NA 3 ND 3 ND ND 3 ND 1 ND ND 1 ND 1 ND ND 1 ND ND 1 ND ND ND 1 ND ND 1 ND ND ND <	1 ND	1
Total Xylenes 1 ND NA 1 ND 1 ND Total Targeted VOCs 1 NA 13.7 2	5 ND	*****
Total Targeted VOCs 1 NA 13,7 2	3 ND	5
	1 3.7	1,000
		1
14.31 NA 2.59 ND	4.9	
	305.54	
IETALS (ug/l)		l .
Targeted Metals Detected:	1 1	i
	1 1 1	i
Aluminum NA 10.0 <10 J NA NA NA Arsenic NA NA 8.0 <8	10.0 <10 J NA	200

Notes:

ND = Not Detected, MDL = Method Detection Limit, Q = Qualifier, B = Analyte found in the blank as well as the sample.

NA = Not Analyzed, J = Estimated value - compound detected below the specified detection limit, ***** = No GWQS established for this compound. Refer to Appendix? for the full analytical report (bound separately).

The first of the f

TABLE 4
GROUND WATER SAMPLING RESULTS SUMMARY - JULY 30 & 31, 2001
AMERICAN MODERN METALS
KEARNY, ESSEX COUNTY, NEW JERSEY

Sample Designation: BELL Sample Number: Lab ID: Sample Date:		BEC-11S 2011 2762-12 07/31/2001 CONC	1 0	MDL	BEC-12S 2012 2762-2 07/30/2001 CONC	a	MDL	BEC-14S 2014 2762-15 07/31/2001 CONC	a	MDL	BEC-15S 2015 2762-14 07/31/2001 CONC	a	MDL	BEC-16S 2016 2762-8 07/30/2001 CONC	a	MOLT	BEC-17S 2017 2762-7 07/30/2001 CONC	a	Class II a Ground War Quality Standards (GWQS)
VOLATILE ORGANIC COMPOUNDS (ug/l) Dilution Factor: Targeted VOCs Detected: Benzene Bromodichloromethane 2-Butanone Chloroform Dibromochloromethane 1,1-Dichloroethane cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane Ethylbenzene Methylene Chloride Tetrachloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroflouromethane Vinyl Chloride Total Xylenes Total Targeted VOCs Total Non-Targeted VOCs		NA A A A A A A A A A A A A A A A A A A		1111111111111531	1 2222 e	J	11111111111531	1 20 20 20 23 20 20 20 20 20 20 20 20 20 20	J	111111111111531	1 2000000000000000000000000000000000000		1111111111111531	1 DD 1 D 2 D 2 D 2 D 2 D 3 D 3 D 3 D 3 D 3 D 3		111111111111111111111111111111111111111	~ 555555555555555° ~		1 1 300 8 10 50 70 100 1 1,000 1 - 5 1,000
METALS (ug/l) Targeted Metals Detected: Aluminum Arsenic	10.0	<10 NA	į		NA NA			NA NA			NA NA			NA NA			ND NA NA		200

Notes:

ND = Not Detected, MDL = Method Detection Limit, Q = Qualifier, B = Analyte found in the blank as well as the sample.

NA = Not Analyzed, J = Estimated value - compound detected below the specified detection limit, ***** = No GWQS established for this compound.

Refer to Appendix ? for the full analytical report (bound separately).

1.3 日本経過

Page 2 of 3

المنتيا النبيات المنتيا المناك القيب

TABLE 4
GROUND WATER SAMPLING RESULTS SUMMARY - JULY 30 & 31, 2001
AMERICAN MODERN METALS
KEARNY, ESSEX COUNTY, NEW JERSEY

and the Commence of the Contract of the Contra

Sample Designation: BELL Sample Number: Lab ID: Sample Date:		BEC-18S 2018 2762-1 07/30/2001			BEC-1D 2101 2762-4 07/30/2001			Field Blank 1001 2762-9 07/30/2001			Trip Blank 1002 2762-15 07/30/2001		Class II a Ground Water Quality Standards
	MDL	CONC	Q	MDL	CONC	Q	MDL	CONC	Q	MOL	CONC	Q	(GWQS)
VOLATILE ORGANIC COMPOUNDS (ug/l) Dilution Factor:		1			1			1			1		
Targeted VOCs Detected:				i			1 1					l	
Benzene	1	ND		1	ON		1	ND		1	ND		l 1
Bromodichloromethane	1 1	ND		1			1	ND	t	1	NO		l i
2-Butanone	1	ND		1	6		1 1	ND	İ	1	ND !	1	300
Chloroform	1	ND		1 1	22		1	ND		1	ND		6
Dibromochloromethane	1	2		1 1	3		1 1	ND	1	1	ND		10
1,1-Dichloroethane	1	ND		1	0.8	J	1 1	ND		1	ND		50
cis-1,2-Dichloroethene	1	157		1	21		1 1	ND	1	1	ND	1	70
trans-1,2-Dichloroethene	1	0.4	J	1	0.2	J	1 1	ND	t	1	ND	1	100
1,2-Dichloropropane	1	ND ND		1		J	1 1	ND	ł	1 1	ND		1
Ethylbenzene	1	ND		1	ND		1 1	ND	1	1	ND		700
Methylene Chloride	1 1	ND		1 1	2		1 1	. ND	i	1	ND	i	i 3
Tetrachloroethene (PCE)	1	0.9	J	1	0.7	J	1 1	ND.	1	1	ND	l	1
Toluene	1	ND		1 1	ND		1 1	ND	1	1	ND		1,000
Trichloroethene	1	251	ĺ	1	**************************************		1 1	ND	ļ	1	NO	1	1
Trichloroflouromethane	5	ND	ļ	5	ND		5	ND	ł	5	ם או		-
Vinyl Chloride	3	ND	i	3	ND		3	ND	ł	3	ND		5
Total Xylenes	1	ND		1	ND		1	ND		1	NO	l	1,000
Total Targeted VOCs		441.3			253.7			ND	1	1	ND	1	
Total Non-Targeted VOCs		ND	l		ND			ND	1		ND		-
METALS (ug/l)					1					1		i	
Targeted Metals Detected:	1	1		Į.	1				1		1		1
Aluminum	1	NA.	1	1	NA NA	ì	10.0	<10	J	1	NA NA	1	200
Arsenic		NA.		1	NA.	İ	8.0	<8	1	1	NA NA	1	l s

Notes:

ND = Not Detected, MDL = Method Detection Limit, Q = Qualifier, B = Analyte found in the blank as well as the sample.

NA = Not Analyzed, J = Estimated value - compound detected below the specified detection limit, **** = No GWQS established for this compound. Refer to Appendix ? for the full analytical report (bound separately).

Page 3 of 3

TABLE 5
CHLORINATED VOCS IN GROUND WATER (SOURCE SOILS) AOC - SOIL SAMPLE RESULTS SUMMARY
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY

Sample Designation: BELL Sample Number: Lab ID: Sample Depth: Sample Date:		SB-45 6003 2426-5 11-11.5' 04/24/2001			\$8-46 6004 2426-9 1-1.5' 04/24/200'			SB-46 6005 2426-10 11.5-12 04/24/200			SB-47 6006 2426-11 10-10.5' 04/24/2001		٥	SB-47 6106 2426-12 10-10.5' 4/24/2001			Trip Blank 1003 2426-13 04/24/2001		Residential Direct Contact Soli Cleanup Criteria	Non-Residential Direct Contact Soll Cleanup Criteria	Impact To Ground Water Soil Cleanup Criteria
	PQL	CONC	Q	PQL	CONC	Q	PQL	CONC	Q	PQL	CONC	Q	PQL	CONC	Q	PQL	CONC	Q	(mg/kg)	(mg/kg)	(mg/kg)
VOLATILE ORGANIC COMPOUNDS (mg/kg) Dilution Factor: Targeted VOCs Detected:		112			111			89			174			115			115				
Total Targeted VOCs Total Non-Targeted VOCs		DN DN			ND ND			ND ND			ND ND			ND ND			ND ND		1,000 (with above)	1,000 (with above)	1,000 (with above)

Notes:

ND = Not Detected, PQt = Practical Quantitation Limit, NA = Not Analyzed, Q = Qualifier. Refer to Appendix ? for the full analytical report (bound separately).

90059-02 Chlorinated VOCs Soil Results Summary 4-24-01 Page 1 of 1 TABLE 6
SOIL SAMPLING RESULTS SUMMARY - JULY 16, 2001
AMERICAN MODERN METALS
KEARNY, HUDSON COUNTY, NEW JERSEY

and the state of t

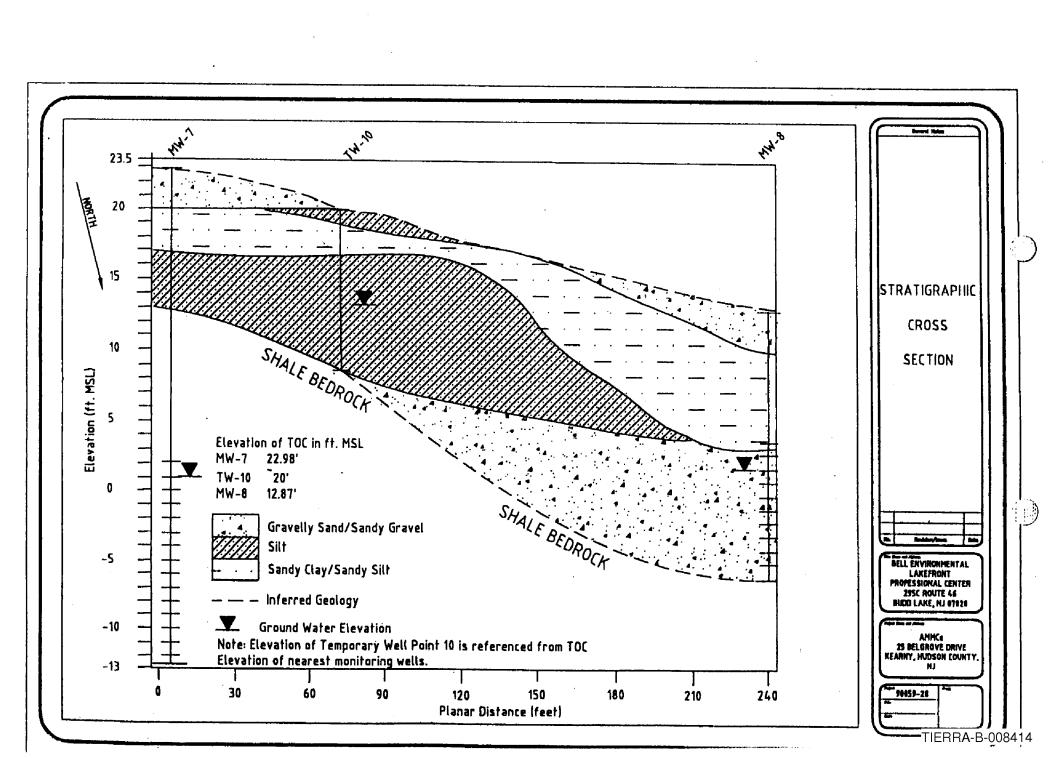
\$\tag{2}\$ \tag{2}\$ \tag{2}\$ \tag{2}\$

Sample Designation: BELL Sample Number: Lab ID: Sample Depth (ft): Sample Date:	\$B-48 6001 2706-1 11-11.5 07/16/2001 CONC		MOL	SB-48 6101 2706-2 11-11.5 07/16/2001			SB-49 6002 2706-3 11-11.5 07/16/2001			TRIP BLANK 1001 2706-4 NA 07/16/2001		Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact To Ground Water Solt Cleanup Criteria
VOLATILE ORGANIC COMPOUNDS (mg/kg) Dilution Factor: Targeted VOCs Detected: Total Targeted VOCs Total Non-Targeted VOCs	160 ND ND ND	u		119 ND ND ND	a	MDL	116 ND ND	<u>u</u>	MDL	CONC ZD ZD	a	1,000 (with above)	1,000 (with above)	(mg/kg) 1,000 (with above)

Notes:

ND = Not Detected, MDL = Method Detection Limit, Q = Qualifier.
Refer to Appendix ? for the full analytical report (bound separately).

EOG01-90059-02 - 90059k 7-16-01 soil data draft.xls Page 1 of 1


APPENDICES

の報告: 必要が過ぎのできる。 多米を教養を持ちませるからららのはまたのできる

1日の日本職員のからないののは職員対象のといせ

APPENDIX A CROSS SECTIONS

SAME TO THE PROPERTY OF THE PR

TO THE CONTROL OF THE PROPERTY

APPENDIX B
BORING LOGS

Job # 9005					Boring #: S	B-48	
Project Al	MMCo		Location:		License # J	0047000	
	Karen Rub	in	Driller: Bris		LICENSE # J	UU17863	
Drilling Co	ntractor.	Environmenta	Probing Im	/est_			
	uipment Hu	ırncane	IData Casa	olete: 07/16/01	Completion	Denth:12	
Date Start			Hammer V			Fall: NA	
Sampler: n			Triansinian v	Voigni. Tu-t		Water: 11	0,
Well Casin Screen: N			Length:	NA		Slot Size:	
Filter Pack			Interval: N			Seal: NA	
Remarks:							
				LOG OF BORING			
SPLI	T SPOON S	AMPLES	DEPTH	SOIL DES	CRIPTION		
OVM	Rec.	Blows	(feet)	Modified	Burmister		REMARKS
0.4	48	NA	0.0-0.5	Brown sand with brick	k and concre	rte	
0.4	}		0.5-1.0	1			
0.4			1.0-1.5	1			
0.4	[1.5-2.0	1			
0.4	[2.0-2.5	i			
0.4			2.5-3.0				
0.4			3.0-3.5	1			
0.4	48"	NA NA	3.5-4.0 4.0-4.5	Reddish brown silty s	and		
0	48	NA.	4.5-5.0	requisit brown sity s	a ru		
0			5.0-5.5				
0			5.5-6.0				
0			6.0-6.5	İ			
0			6.5-7.0				
0	,		7.0-7.5				
0			7,5-8.0				
0	48"	NA		Reddish brown fm. s	sand, some i	orick	
0			8.5-9.0				
0			9.0-9.5				
0			9.5-10.0				
0			10.5-11.0				
0			11.0-11.5				wet
0			11.5-12.0				
			T	End of boring at 12 fe	et BGS		
			į	Ground water encoun		feet BGS	'
			1				
						;	
							ı
]				
	}]				
.							
]						į	
 							

Tet # 000	50.02				Boring #: S	8-49	
Job # 900		·	Location:	Keamy	DOTTING W. O	0 30	
Project Al	Karen Rub	in	Oritler: Bris		License # J	0017863	
Drilling Co		Environmenta			1223.123		
	uipment Hu			-			····
Date Start			Date Com	olete: 07/16/01	Completion	Depth:12	
Sampler: n			Hammer V			Fall: NA	
Well Casin			1,	T		Water: 11	.5'
Screen: N			Length:	NA		Slot Size:	NA
Filter Pack			Interval: N	Ą		Seal: NA	
Remarks:							
				LOG OF BORING			
SPLF	T SPOON S	SAMPLES	DEPTH	SOIL DE	SCRIPTION		1 .
OVM	Rec.	Blows	(feet)		d Burmister		REMARKS
0	48	NA	0.0-0,5	Reddish brown fm.	. sand, some	brick	
0			0.5-1.0				
0			1.0-1.5]
0		Ì	1.5-2.0	1			
0			2.0-2.5	1			
0			2.5-3.0	1			
0	1		3.0-3.5	1			
0			3.5-4.0	<u> </u>			
0	48"	NA NA	4.0-4.5	Reddish brown fm.	. sand		
0			4.5-5.0	1			
0			5.0-5.5	<u> </u>			
0			5.5-6.0 6.0-6.5	1			ļ
0			6.0-6.5				
0			7.0-7.5	1			
0			,				
0	48"	NA	7.5-8.0 8.0-8.5	Reddish brown fc.	sand		
. 0	40	NA.	8.5-9.0	Treduction brown 1C.	Iu		
. 0			9.0-9.5				ļ
0			9.5-10.0	l			}
o			10.0-10.5				
o			10.5-11.0				
ō			11.0-11.5				wet
ō			11.5-12.0				
ĺ				End of boring at 12 f			
				Ground water encou	ntered at 11.5	feet BGS	
	-						
							.
	ļ						
	į						
			<u> </u>				
			[
	1		j				
	•						
	ļ						
	1						
	ļ						
	Į						
ļ	ļ						
1	- 1						
į						}	
-						:	
	ļ						
	ŀ						
1	<u>.</u>			<u></u>		 	

				Boring #: T	M-10	
Job #: 9005			It andian:		44-10	·
Project: AM		•		Keamy, NJ m Widmeier License #:		
Geologist: I	Karen Rub	<u>ın</u>				
Drilling Cor	itractor. Er	ivironmen	tal Probing	Investigations		
Drilling Equ		ingo mobil	e geoprobe	plete: 7-16-01 Completion	Dooth: 11	1 2
Date Start .					Fall:N/A	
Sampler: 3		core	Hammer V	101911111111	Water: 7.3	
Well Casing			1	120194112		
Screen: 1"		<u>c</u>	Length: 10		Slot Size:	0.010
Filter Pack:	N/A		Interval:		Seal:	
Remarks:						
				LOG OF BORING		
SPLIT S	POON SA	MPLES	DEPTH	SOIL DESCRIPTION		
OVM	Rec.	Blows	(feet)	Modified Burmister		REMARKS
			0-0.5	Concrete		
4.3	36"	N/A	0.5-2	Brown Silt		
			2-3	Brown silt, trace f-m sand		
2.8	36"	N/A	3-6	Reddish Brown silt		moist
2.8	36"	N/A	6-9	Reddish Brown silt		moist to dry
0	2"	N/A	9-11	No recovery		wet
				Reddish Brown shale		
				TW-10 completed to 11.2 feet be Boring backfilled with cuttings an Ground water encountered at 7.3	d grout to	grade

্যা । প্রস্থালী ক্রিক্টার বিশ্ব । বিশ্ব । প্রস্থান প্রাথমিক বিশ্ব । বিশ্ব

Job # 9005	50.002				Boring #:	BEC-13S					
			Location:				· <u>· · · · · · · · · · · · · · · · · · </u>				
Project Al		<u>. </u>			License # 0	016132					
	Karen Rub	Environmenta									
Drilling Co		Hollow Stem A		·~-							
Drilling Equal Date Start		HUNOW SURTI /	Date Complete: 07/16/01 Completion Depth:12'								
		Y	Hammer V								
Well Casin	2" split spo	A#1	I SECURITOR V	roight in t		Fall: NA Water: 9.0	·				
Corpor 4"	10-slot PV	 	Length:	10'		Slot Size:					
	: #1 grave		Interval: 5-			Seal: Bent					
Remarks:	. #1 grave	•	Interven. O	· · · · · · · · · · · · · · · · · · ·							
REFIRMAS.				LOG OF BORING							
SDLI	SPOON S	AMPLES	DEPTH	SOIL DESC	CRIPTION						
OVM	Rec.	Blows	(feet)	Modified 6			REMARKS				
0	42	NA	0.0-0.5	No recovery							
185	72	"	0.5-1.0	Black silty sand							
103			1.0-1.5								
153		1	1.5-2.0	Brown sandy silt							
, , , ,			2.0-2.5								
			2.5-3.0			i					
		1	3.0-3.5								
			3.5-4.0								
143.9	48"	NA NA	4.0-4.5	Brown silty sand							
11.3		1 110	4.5-5.0	Reddish brown fm. s	itty sand						
4.7			5.0-5.5		,		İ				
3.5		İ		Brown fm. silty sand		į					
2.8			6.0-6.5								
2.6			6.5-7.0								
2.4			7.0-7.5								
2.8			1	Red sandy silt with silt	stone						
308	48	NA	8.0-8.5	Brown m.sand with gra		od					
1.8			8.5-9.0	Reddish brown silt, so							
,,-			9.0-9.5								
•			9.5-10.0			}					
			10.0-10.5			Ĭ					
		·	10.5-11.0			Ì					
			11.0-11.5								
			11.5-12.0	ĺ							
			12.0-16.0	No sample collected, a	ugered						
				End of boring at 16 fee			• -				
			}	Well will be set at 16' 8							
				Ground water encount	ered at 10.2	25' BGS					
				Well screen set between	en 6-16' BC	ss I					
				NJDEP well permit # 2							
				,							
						1					
]								
			1			ł					
						1	ļ				
						- 1					

CONTRACTOR OF THE PROPERTY OF

<u>.</u>

					I Dorin - #:	BEC 145					
Job # 9005			11	V	Boring #:	DEC-145					
Project Al		·	Location:	Kearny uglas Ulbricht	License # 0	016132					
	Karen Rub	KN			True ise # 0	~10132					
Drilling Co			Probing Investigations								
Drilling Equ		Hollow Stern A	Date Care	olete: 4/23/01	Depth: 15	5'					
Date Start			Harnmer V			Fall: NA	7				
Sampler: Well Casin			I ROUTH THOU V	TORRIGION TO		Water: 8.0	y				
	10-slot PV		Length:	10'		Slot Size:					
	#1 gravel		Interval: 3'-			Seal: Bent					
Remarks:	. WI GIATE										
TOTTIAL ROS.				LOG OF BORING							
SPLIT	T SPOON S	AMPLES	DEPTH		SCRIPTION						
OVM	Rec.	Blows	(feet)		Burmister		REMARKS				
	NA	NA NA		Dark brown to dark g		gravel	1				
	'"`		0.5-1.0			-	1				
•				Dark gray silt and gra	avel with bric	k					
]			fragments			1				
		·	2.0-2.5	_							
l i			2.5-3.0	·			1				
			3.0-3.5]				
0		-	3.5-4.0	<u> </u>]				
	NA	NA	4.0-4.5	Dark brown silt and g	gravel						
			4.5-5.0				1				
	l l		5.0-5.5								
			5.5-6.0	•							
]			Brick							
·)]			Red-brown sandy sit			moist				
				Red-brown medium s	sand		wet				
	<u> </u>		7.5-8.0	1							
	NA	NA NA	8.0-8.5	1							
			8.5-9.0				1				
		· 'I	9.0-9.5				Į l				
1			9.5-10.0								
		1	10.0-10.5	1 .							
[]		ļ	10.5-11.0								
			11.0-11.5				1				
		314	11.5-12.0	ł							
	NA	NA	12.0-12.5	1							
			12.5-13.0 13.0-13.5	1							
			13.0-13.5]							
		· .	14.0-14.5	1							
			14.5-15.0	1]				
			17.0-10.0	End of boring at 15 fe	et BGS						
				Well will be set at 15							
				Ground water encour		GS]				
				Well screen set betw							
	}	· ·		NJDEP well permit #							
			•								
		ļ									
		ļ									
	<u> </u>			· · · · · · · · · · · · · · · · · · ·			<u> </u>				

があれて、「質別権力」で、ストレッジ基礎の支援機の人物で、との中の方法である。

Job # 9005	0.02				Boring #:	BEC-15S	
Project: AN	AMCA		Location:	Kearny	<u> </u>		
Coolegist	Karen Rubi	in	Driller: Bna		License # .	1495	
Drilling Cor	-tractor	Horizon Enviro		ling and Excavating			
Drilling Equ		Hollow Stem A					
Date Start		1101011	Date Comp	lete: 1/4/01	Depth:15'		
	2 spirt spo	<u> </u>		/eight 140 lb.	Falt: 30		
Well Casin	a: 4" PVC					Water: 7"	
Screen: 4"	10-slot PV		Length:	10"		Slot Size:	10-slot
	#0 gravel		Interval: 3-	15		Seal: Bent	onite
Remarks:							
				LOG OF BORING			
SPLIT	SPOON S	AMPLES	DEPTH	SOIL DE	SCRIPTION		
OVM	Rec.	Biows	(feet)	Modified	Burmister		REMARKS
			0.0-0.5	Topsoil and gravel			
			0.5-1.0	No samples collected	d, Augered		
l l			1.0-1.5				
			1.5-2.0				
			2.0-2.5				
j l			2.5-3.0	j			
 			3.0-3.5	ļ			ļ
 			3.5-4.0				
1			4.0-4.5				
			4.5-5.0				l
0	24"	2	I	Dark brown sandy si	lt, some bric	k fragment	5
[2	5.5-6.0				
l l		2	6.0-6.5				
		2	6.5-7.0				
				No samples collected	1, Augered		
			7.5-8.0				1
			8.0-8.5				
1 1			8.5-9.0				
			9.0-9.5 9.5-10.0				
	24*	2		Brown sand			moist
0	24	2		Brown silty clay			moist
		3	11.0-11.5				
1 1		4	11.5-12.0				
				No samples collected	i, Augered		
!]			12.5-13.0	,	. •		
0	22"	29		Reddish brown sand	, w/ gravel		moist to wet
,		37	13.5-14.0	}	-		moist to wet
l l		36	14.0-14.5				
∦ l		34	14.5-15.0				
				End of boring at 15.3	feet BGS.		
1	1	ļ		Ground water encou		BGS	
			1	Monitoring well BEC-			
<u> </u>				Well screen set betw		BGS	.
				NJDEP well permit #	2659941		
]				
							ļ
1			1				
1							
			1				
			ļ				
			1]
			1	į			
1	L	<u> </u>	1	l			<u> </u>

STATES IN COMPANY

Job # 9005	9.0 2				Boring # BE	C-16S	
Project: Al			Location:K	earny			
	Karen Rub	<u> </u>	Driller: Bris		License # J	1495	
Drilling Cor		Horizon Emér		illing and Excavating	1		
		Hollow Stem				···	
Dritting Equ	January 3			plete: 01/03/01	Completion	Deoth:	18'
				Veight 140		Fall: 30	
	2" split spo	UTI	Tuberities A	TOME I TO		Water, 11	
Well Casin			Il anoth:	10'		Slot Size:	
	10-slot PV		Length: Interval: 5-			Seal: Bent	
	#0 grave		Jintervali. 5-	10		July Deli	WALL AL PART
Remarks:			·	LOG OF BORING			
		11101 50	DEPTH		CRIPTION		
	SPOON S		⊣				REMARKS
OVM	Rec.	Blows	(feet)	Topsoil and gravel	Burmister		110,117,01100
			0.0-0.5		Aumana		
			0.5-1.0	No samples collected	, Augerea]
			1.0-1.5				
			1.5-2.0	1			1
			2.0-2.5				1
			2.5-3.0	i]
			3.0-3.5]
			3.5-4.0	1			
			4.0-4.5	1			1
<u> </u> _			4.5-5.0	n =			
0	24"	10	5.0-5.5	R. brown fine sand, in	Me 21/L]
		11	5,5-6.0]
		10	6.0-6.5	1]
		8	6.5-7.0	 -			
!			7.0-7.5				
			7.5-8.0	N	Aumana		
				No samples collected	, Augerea		
 			8.5-9.0				
			9.0-9.5				
<u> </u>	0.4	4-	9.5-10.0	D beauty (===== 1 ===	-مفعقاتم به دا		
0	24"	17		R. brown f. sand, l. si	it, u. SiicStoin	G	
		31	10.5-11.0				j l
		32	11.0-11.5				
 		35	11.5-12.0	No comples colleges	Augerad]
			12.0-12.5	No samples collected	, wager ea] [
				1			'
			13.0-13.5 13.5-14.0	1			<u> </u>
			13.5-14.0				<u> </u>
							†
<u> </u>	740	40	14.5-15.0	R. brown f. sand, s. s	iltetona 1 ==		Moist to wet
0	24"	12	1	irk, drown ii. Sand, S. S 	nisione, i. Si	ı	IMMINIST IN MAL
		24 45	15.5-16.0				
		45 50	16.0-16.5				
 		50	16.5-17.0	Ma comples collected	Augusta		
	j		17.0-17.5	No samples collected	, wuyerea		
			17.5-18.0	Ì			
]			1
		40000	18.5-19.0	DD 6 alley a and 440, 40	166)		
0	6"	100/6	19.0-19.5	RB f silty sand (19-19	-	2 51	
			 	RB weathered siltston	e (13.100-1	9.0]	
							
	1		1	End of boring at 19.5			
			1	Ground water encoun			
			1	Monitoring well BEC-1			
			1	Well screen set between		iS	
				NJDEP well permit # :	2659942		
	-	-					
1	1		1				

CONTRACTOR OF THE PROPERTY OF

-25

		- 			D #	DEC 470	
Job # 9005			It		Boring #:	BEC-1/5	
Project Al			Location:		License # J	1405	
	Karen Rub	NIN	Dritter: Bris		LICENSO # J	1495	
Drilling Co				nilling and Excavating		······································	
Drilling Equ		Hollow Stem		plete: 01/10/2001	Completion	Denth:18	5
Date Start				Veight 140 lb.		Fall: 30'	
Sampler:		on	Insammer v	Veignic 140 pp.		Water: 11.	
Well Casin			II amortis:	10'		Slot Size:	
Screen: 4"			Length: Interval: 5-			Seal: Bent	
Filter Pack Remarks:	, au grave	<u> </u>	II Rei Val. J	10.5			OT III O
remarks.				LOG OF BORING			# W
6015	COOON S	AMDI ES	DEPTH		CRIPTION		
	SPOON S	Blows					REMARKS
OVM	RBC.	Diows	(feet)	Topsoil and gravel	Burmister		TENDING
			0.0-0.5	No samples collected	Augorod		
			1.0-1.5	No samples collected	, Augereu		
			1.5-2.0				
1			2.0-2.5				
		}	2.5-3.0				
] ;			3.0-3.5			;	
			3.5-4.0				
0	24"	6	4.0-4.5	Dark brown silty sand	i		
		6	4.5-5.0				
		6	5.0-5.5				
Ì		6	5.5-6.0				
			6.0-6.5	No samples collected	, Augered		
			6.5-7.0				
[]			7.0-7.5				
			7.5-8.0				
.			8.0-8.5				
,			8.5-9.0				
			9.0-9.5]			
0	4.5"	20	1	Reddish brown sift			
		80/4*		Reddish brown shale			
			1	No samples collected	, Augered		
			11.0-11.5	1			
}			11.5-12.0				
1			12.0-12.5	1			
			12.5-13.0	1			·
	-		13.5-14.0	1			I
	į		14.0-14.5	}			
			14.5-15.0				1
0	24"	12		Reddish brown silt, so	ome R.B. silt	stone	
١	 -T	20	15.5-16.0				
		20	16.0-16.5	1			!
	ļ	25	16.5-17.0	1			1
				No samples collected,	Augered	ļ	1
			17.5-18.0	,	-		1
			18.0-18.5				j
i				End of boring at 18.5	feet BGS.		
į				Ground water encoun		BGS	
				Monitoring well BEC-1	75 set at 18	3.5' BG\$	
			1	Well screen set betwe	en 8.5-18.5	BGS	
			[NJDEP well permit # :	2659943]
1							
			1				
1						ļ	
1							
							

の様はないというとなっていると

TO SERVE TO THE BEST OF THE SERVE OF THE SER

				·	Ta : =		
Job # 900					Boring #:	BEC-18S	
Project Al	MMCo		Location:		10.0		
	Karen Rub	in		uglas E. Ulbricht	License # 0	016132	
Drilling Co	ntractor.	Environmenta		rest.			
Drilling Eq	uipment	Hollow Stem			,	5	
Date Start				olete: 04/23/01	Completion		
	2' split spo	xon	Hammer V	Veight NA		Fall: NA	
Well Casin						Water: 9.0	
Screen: 4"	10-slot PV	<u>c</u> _	Length:	10'		Slot Size:	
	: #1 grave	<u> </u>	Interval: 5-	<u> 17' </u>		Seal: Berr	torvite
Remarks:							
				LOG OF BORING			,
SPLI	T SPOON S	SAMPLES	DEPTH		SCRIPTION		
OVM	Rec.	Blows	(feet)		Burmister		REMARKS
0	48"	NA	0.0-0.5	Dark brown silt with v	wood		
		•	0.5-1.0				
]		1.0-1.5	1			
	1	i	1.5-2.0	}			
				Red brick fragments			
			2.5-3.0]
}				White concrete fragm	nents		1
			3.5-4.0	Brown sand			
0	48"	NA	4.0-4.5	Dark brown cinders,	wood and br	ick	
			4.5-5.0	fragments			
			5.0-5.5	Reddish brown silt, I.			
			5.5-6.0	Reddish brown silt, I.		gravel	
			6.0-6.5	Reddish brown f. san	d, I. silt	-	
	'		6.5-7.0				
			7.0-7.5	_			
			7.5-8.0	Reddish brown fm. :	•		
NA	NA	NA	8.0-8.5	No sample collected,			
			8.5-9.0	crushed in sampling t	ube		
			9.0-9.5				
			9.5-10.0				
			10.0-10.5				
			10.5-11.0	1			
			11.0-11.5	•			
			11.5-12.0				
				Reddish brown silt w/	brick and g	ravel	
			12.5-13.0	D			to-d
[1011	Brown m. sand			saturated
1			13.5-14.0				
			14.0-14.5				
			14.5-15.0		الحاهي است		
				Reddish brown silty s	and, widhck	. and]
		<u> </u>	15.5-16.0	4			
				No sample collected,	augered		
·			16.5-17.0		. 000		
				End of boring at 17 fe		-00	[
				Ground water encoun			
				Monitoring well BEC-]
		•		Weil screen set between		30]
				NJDEP well permit #	20-6U9/U		
]			
							j
							[
							·

Service and the control of the contr

The state of the s

Job # 9005	50.02				Boring #:	BEC-1D	
Project AM			Location:	Keamv	1		
Coolories	Karen Rub	vin	Driller: Bris		License #	J1495	<u> </u>
Drilling Cor	ntractor	Horizon Enviro		illing and Excavating			
Drilling Equ		Hollow Stem			······································		
Date Start				olete: 1/11/01	Depth: 40	,	
Sampler.			Hammer V		Fall: NA		
Well Casin						Water, 12	.0
	10-slot PV	C .	Length: 10) [']		Slot Size:	10-slot
	#1 grave		Interval: 27	'-40'		Seal: Bent	onite
Remarks:							
			···	LOG OF BORING			
SPLIT	SPOON S	SAMPLES	DEPTH	SOIL DES	CRIPTION		
OVM	Rec.	Blows	(feet)	Modified	Burmister		REMARKS
	NA	NA	0.0-2.0	Fill materials			
]	2.0-4.0				
		}	4.0-6.0				
				Red-brown silty sand			
		<u>[</u>	8.0-10.0	i			
		İ	10.0-12.0				
			12.0-14.0				
			14.0-16.0	Red-brown silty sand.	, some f. gra	avel	wet
	NA	NA	16.0-18.0				
	,		18.0-20.0	l e			
1 1		1		Red-brown fc. sand	wet		
[}	22.0-24.0				
1 1				Red-brown mc. san	d	,	wet
			26.0-28.0				
1		İ		Red-brown sand			wet
			30.0-32.0	ž			
	NA	NA	32.0-34.0	1	£		
<u> </u>		l	36.0-38.0	Red-brown silty sand,	i. gravei		wet
				Red-brown fc. sand			wet
		<u> </u>	30.0-40.0	End of boring at 40 fe	et BGS		W6(
				Well will be set at 40'			
				Ground water encoun		RGS	
				Well screen set between		-	
				NJDEP well permit #			
				TOUCH WOR POSITION			
						ļ	
						ľ	
]							
1							

APPENDIX C GROUND WATER ANALYTICAL DATA

一番の地方のよう、1000年の大きな地域の関係では、そのできた。

TECHNION, INC. TESTING & RESEARCH LABORATORIES 187 Washington Avenue Nutley, New Jersey 07110

PREPARED FOR: Ammco

65 Passaic Avenue Kearny, NJ 07032 Attn: Ivan Rosalsky

LAB ID: 2586

PROJECT: American Modern Metals

PROJECT NO.: 90059-02

DATE RECEIVED: June 8, 2001

DATE REPORTED: June 20, 2001

RELEASE OF THE DATA CONTAINED IN THIS HARD COPY DATA PACKAGE HAS BEEN AUTHORIZED BY THE LABORATORY DIRECTOR AS VERIFIED BY THE FOLLOWING SIGNATURE.

Susan Baturay, D.Sc. Ph.D.

Laboratory Director

TITLE	PAGE
Cover Page	1
Cross Reference Table	2
Chain of Custody Forms	3 - 4
Methodology Review	5
Laboratory Chronicle	6
Nonconformance Summary	7 - 8
Volatile Organic+10 Analysis Data Sheets	9 - 34
Metals (Aluminum and Arsenic) Analysis Data Sheets	35 - 39
Volatile Organics Chromatogram Printouts	40 - 65
Quality Assurance Quality Control (QA/QC)	
Volatile Organics+10 QA/QC	66 - 78
MS/MSD Method Blank Initial/Continuing Calibration Summary Tune Summary	
Metals (Arsenic, Aluminum) QA/QC	79 - 82
Duplicate Results Summary Inorganic Calibration Summary MS/MSD Check Standard	

Check Standard

187 Washington Avenue

Nutley, New Jersey 07110

Tel No.: (973)661-0800 Fax No.: (973) 661-1817

> NJDEPE No.: - 07004 WBE No.: - 222141738 AIHA No.: - 18458

ANALYTICAL REPORT

CLIENT: Ammco

DATE: 06/20/01

100 C 100 C

CLIENT REF: Project No. 90059-02

TECHNION REF: 2586

MATERIAL: Sixteen (16) Aqueous

DATE RECEIVED: 06/08/01

Samples

LAB ID: 01:2586

PROJECT: American Modern Metals

ANALYSIS REQ: Volatile Organics+10, and Metals (Aluminum and Arsenic)

ANALYST: Y. Bella, Y. Yildez

The above sample(s) were received on 06/08/01

and analyzed as requested.

CERTIFICATE OF ANALYSIS

ALL TEST RESULTS ARE AS ATTACHED.

RELEASE OF THE DATA CONTAINED IN THIS HARD COPY DATA PACKAGE HAS BEEN AUTHORIZED BY THE LABORATORY DIRECTOR AS VERFIED BY THE FOLLOWING SIGNATURE.

Susan E. Baturay, DSc, PhD

Laboratory Director

SB/hew

CLIENT: Ammco LAB ID(s): 2586

DATE: 06/20/01 PROJECT: 90059-20

CROSS REFERENCE TABLE

Sample ID	Sample Location	Lab ID
2101	MW-1	2586-1
2004	MW-4	2586-2
2104	MW-4	2586-3
2008	MW-8	2586-4
2009	M₩-9	2586-5
2108	MW-8	2586-6
2011	BEC-11S	2586-7
2012	BEC-12S	2586-8
2014	BEC-14S	2586-9
2015	BEC-15S	2586-10
2016	BEC-16S	2586-11
2017	BEC-17S	2586-12
2018	BEC-18S	2586-13
2001	BEC-1D	2586-14
1001	Field Blank	2586-15
1002	Trip Blank	2586-16

CHAIN OF CUSTODY RECORD PAGE / OF 2

STREET	ME: ADDRESS: MANAGE	65	o Physical Wen Elbi	Awa di			Pi C L	ROJEC ITY/ST ABOR/	T NUM ATE: ATORY	BER:	י המכוק	20059- ny 19 Techr	1	
SAMPLE NUMBER	COLLEC	TIME	SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE MATRIX	0	വ	3 I	NALY:	SES	+	LAB NO.	CC	MMENTS/ADDITIONAL ANYLSE
2001	26/16	12:47	HW-1		Aα̈́	X							0V0+	0
2004		635	HW4				X^{\prime}	$\sqrt{}$					2 ALU	MINUM
2104		(235	MW4				X	<u>Z</u>					3 ARS	ENIC
४००४		10:03	MW8			X			П					
2009		11:10	MW9			\boxtimes	X						BI	LL TO AMMO
\$108	 	10:03	MWB		100				╀—┼		-		<u> </u>	
5011		9:80			454	Z,	X		 					
3013			PPC-125		_	\boxtimes			\sqcup					
2014		4:28	PA7-145			\boxtimes								
2015		5:35	BAT-155			\times								
2016		<i>હેંચ</i> ડ	PRC-165			ΧI								
2017			BQ475		Ψ.	X			5					
SAMPLED	BY: K	ixeo	Rubin / F	rank Store	SIONATA	RE;	>%						81	TIPPED BY:
PRESERVA														
1.						••	O.	I DILLES	·		IN L	AD;	Pi	RESERVED BY:
TEMP (°C)		OL LYB												
8AMPLE NO. 1000-1999 1000-2999	BLANKS	, m11	RELINOUISH		RELANGE 2)	IISHE	D B	r: 5	\mathcal{L}	RELI	_	HED BY:		RELINQUISHED BY:
1000-1999	000-3999			TE:_				TIME	3/DATI	3:		4)TIME/DATE;		
3000-3999 4000-4999	1000-1999 LEACHATE PROPERTY DAY			D BY	/ :			RECI	EVED	BY:		RECIVED BY:		
7000-7999 8000-8999	MASTE AIR/DAS		I)TIME/DATE:		2)	TR:								4)
9000-9999	OTHER				TIME/DATE:			1, IMI	TIME/DATE: TEME/DATE:			LIME/DATE:		

Composition of the composition o

าก และพระพระ และ เกลียก และพระพันธ์ และ และ คระพาสิทธิเทศ และ <mark>สิทธิเทศ และ สิทธิเทศ และ เ</mark>พื่อสิทธิเทศ และ เกลีย

CHAIN OF CUSTODY RECORD PAGE _2 OF 2

														rau	E_2_OF
STE NAM STREET A PROJECT	DDRESS:	_ 105	Passaic fre aren Rubin				. (CITY	/STA7	B:		Kene	0059-02 my, NJ hhion		
SAMPLE NUMBER		TIME	SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE MATRIX				ANA	LYSE		1-1	LAB NO.	0	OMMENTS/ADDITIONAL ANYLSES
2018 27891	6/7/01		BEC-RS		AQ	X								0~	6+10
1001	E		BEC-ID			$\langle \rangle$			_	+	-	-		2 A	LUMINUM
1002	1		Fieklbrait Triolank			$\frac{1}{2}$	X	$\stackrel{X}{\vdash}$		-	-	╂╌┨		3) A	RSENIC
										土				_	
					 	_		-							
						-		\vdash	-	+	-	+-			
							H	H		+	╀╌	╂╾┨	·	├	
					,					+	+-	$\dagger \dashv$		 	
	-										1			-	
										Ţ,	I				
PRESERVA	ATIVE ADI	DED:	_	CONTAINERS:								IN L			PRESERVED BY:
SANDLE NO. 1006-1999 1006-1999 3808-1999 4008-4999	TYPE BLANKS TEST WELL SURFACE W POTABLE W	PATER	RELINOUISH IJ / A / TIME/DATE:	Chelle	RELINQU 2) TIME/DA					-	RELII I) :	NQUIS /DATE	HAD BY:		RELINQUISHED BY: 4) TIME/DATE:
	1004-9999 LEACHATE		RECIEVED B 1) TIME/DATE;		RECIEVE 2) TIME/DA						RECII	EVED	BY:		RECIVED BY: 4) TIME/DATE:

CLIENT: Ammco LAB ID(s): 2586

DATE: 06/20/01 PROJECT: 90059-20

METHODOLOGY REVIEW

Parameter EPA Method

Volatile Organics+10 624

Metals 200 Series

このののでは、「一個のでは、「一個のでは、「一個のでは、「「」のでは、「「「」のでは、「「」のでは、」のでは、「」ので

CLIENT: Ammco

「大学の関係の「大学」を1980年の1980年の日本のでは、1980年の1980年の1980年の1980年の1980年の1980年の1980年の1980年の1980年の1980年の1980年の1980年の1980年の19

DATE RECEIVED: 06/08/01

LAB ID: See Below

PROJECT: 90059-02

LABORATORY CHRONICLE

		DATE EXI	RACTED/		i
HOLDING TIM	E	DIGESTE)	DATE ANAI	
VOA+10	Metals	VOA+10	Metals	VOA+10	Metals
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
N/A	6 Months	N/A	06/18/01	N/A	06/21/01
N/A	6 Months	N/A	06/18/01	N/A	06/21/01
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	6 Months	N/A	06/18/01	06/18/01	06/21/01
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
N/A	6 Months	N/A	06/18/01	N/A	06/21/01
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	N/A	N/A	N/A	06/18/01	N/A
7/40 Days	6 Months	N/A	06/18/01	06/19/01	06/21/01
7/40 Days	N/A	N/A	N/A	06/19/01	N/A
	VOA+10 7/40 Days N/A N/A 7/40 Days 7/40 Days 7/40 Days N/A 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days 7/40 Days	7/40 Days N/A N/A 6 Months N/A 6 Months 7/40 Days N/A 7/40 Days 6 Months 7/40 Days N/A N/A 6 Months 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A 7/40 Days N/A	VOA+10 Metals VOA+10 7/40 Days N/A N/A N/A 6 Months N/A N/A 6 Months N/A 7/40 Days N/A N/A 7/40 Days N/A N/A N/A 6 Months N/A N/A N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A 7/40 Days N/A N/A	VOA+10 Metals VOA+10 Metals 7/40 Days N/A N/A N/A N/A 6 Months N/A 06/18/01 N/A 6 Months N/A 06/18/01 7/40 Days 6 Months N/A N/A 7/40 Days N/A N/A N/A N/A N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days N/A N/A N/A 7/40 Days 6 Months N/A 06/18/01	NODE IN INTERIOR WOA+10 Metals VOA+10 Metals VOA+10 7/40 Days N/A N/A N/A 06/18/01 N/A N/A 6 Months N/A 06/18/01 N/A N/A 06/18/01 N/A N/A N/A 7/40 Days 6 Months N/A N/A 06/18/01 7/40 Days N/A N/A N/A 06/18/01 N/A N/A N/A N/A N/A 17/40 Days N/A N/A N/A 06/18/01 17/40 Days N/A N/A N/A 06/18/01 17/40 Days N/A N/A N/A 06/18/01 17/40 Days N/A N/A N/A 06/18/01 17/40 Days N/A N/A N/A 06/18/01 17/40 Days N/A N/A N/A 06/18/01 17/40 Days N/A N/A N/A 06/18/01 17/40 Days N/A N/A N/A

CLIENT: Ammco

When which is in a country and have a many

LAB ID: 2586

DATE: 06/20/01

PROJECT: 90059-20

STATEMENT OF NONCONFORMANCE

All parameters are in total compliance with Volatile
Organics+10 (624), Metals (200 Series), and Quality Control/
Quality Assurance Requirements.

Omar Baturay

Laboratory Manager

CLIENT: Ammco
DATE: 06/20/01

LAB ID: 2586 PROJECT: 90059-20

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

		No	Yes
1.	GC/MS Tune Specifications		v
	a. BFB passed		- <u>"</u> -
	b. DFTPP passed		_x
2.	GC/MS Tuning Frequency - Performed every 12 hours		_x_
3.	GC/MS Calibration - Initial Calibration		
	performed within 30 days before sample analysis		
	and continuing calibration performed within 24		
	hours before sample analysis		_x_
4.	GC/MS Calibration Requirements		
	a. Calibration Check Compounds		x
	b. System Performance Check Compounds		_x_
	D. System refroimance oncor co-pounds		
5.	Blank Contamination - List compounds for each fraction	_x_	
	a. VOA Fraction:		
	b. B/N Fraction:		
	c. Acid Fraction:		
6.	Surrogate Recoveries Meet Criteria .		
	(if not met; list those compounds and their		_x_
	recoveries which fall outside the acceptable range)		
	a. VOA Fraction		
	b. B/N Fraction		
	c. Acid Fraction		
7	Extraction Holding Time Met		x
7.			_^
	Comments:		
_			3.5
8.	Analysis Holding Time Met		_x_
	Comments:		
	Additional Comments:		
	Addictional Commencs.	•	····
	/ Idle of a sole land		
Labor	ratory Manager Miles Date: U) Date:		_
nonco	on '		

egen 8

VOLATILE ORGANICS+LO ANALYSIS DATA SHEETS NO. 1985 WITH TICS

TECHNION LABORATORIES, INC. NJDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco LAB ID: 2586-1

SAMPLE ID: 2101 LAB FILE ID: >A2269

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE EXTRACTED: N/A

DATE ANALYZED: 06/18/01-13:21

MATRIX: Water

DESCRIPTION: MW-1

(EPA Method 624)

CONTRACTOR OF THE CONTRACTOR O

UNITS: µg/l(ppb)

	•	METHOD	DETECTION	
PARAMETER_	RESULTS	BLANK	LIMIT	
Acetone	1 U	1 0	1	
Benzene	1 U	1 U	1	
2-Butanone	1 U	1 U	1	
Bromodichloromethane	1 U	1 U	. 1	
Bromoform	1 U	1 U	1	
Bromomethane	4 U	4 U	4 .	
Chlorobenzene	1 U	1 υ	1	
Carbon Tetrachloride	1 U	1 0	1	
Chloroethane	5 U	5 U	5	
2-Chloroethylvinyl ether	5 U	5 U	5	
Chloroform	1 U	1 U	1	
Chloromethane	5 U	5 U	5	
Dibromochloromethane	1 U	1 U	1	
1,3-Dichlorobenzene	1 U	1 U	1	
1,4-Dichlorobenzene	2 U	2 U	2	
1,2-Dichlorobenzene	1 U	1 U	1	
1,1-Dichloroethane	1 U	1 U	1	
1,2-Dichloroethane	1 U	1 U	1	
trans-1,2-Dichloroethene	1 U	1 U	1	
1,1-Dichloroethene	1 U	1 U	1	
1,2-Dichloropropane	1 U	1 U	1	
cis-1,2-Dichloroethene	2	1 U	1	
trans-1,3-dichloropropene		1 U	1	
cis-1,3-dichloropropene	1 U	1 U	1	
Ethylbenzene	1 U	1 Ü	1	
Methylene Chloride	1 U	1 U	1	
Naphthalene	1 U	1 0	1	
1,1,2,2-Tetrachloroethane	1 0	1 U	1	
Tetrachloroethene	1 U	1 U	ī	
Toluene	1 0	1 0	1	
1,1,1-Trichloroethane	î U	1 U	1	
1,1,2-Trichloroethane	2 U	2 U	2	
Trichloroethene	3	1 0	1	
Trichlorofluoromethane	5 U	5 Ü	5	
	3 U	3 U	3	
Vinyl Chloride	1 U	1 0	1	
o-Xylene	1 U	1 U	1	
m,p-Xylenes	0.6 J	1 0	1	
tert-butyl benzene	V.0 U	1 0	±	

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco SAMPLE ID: 2101

LAB ID: 2586-1 LAB FILE ID: >A2269
PROJECT: 90059-02 DILUTION FACTOR: 1

PROJECT: 90059-02 DILUTION FACTOR: 1
DATE RECEIVED: 06/08/01 SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A GC COLUMN: DB 624
DATE ANALYZED: 06/18/01-13:21 MATRIX: Water

DESCRIPTION: MW-1

(EPA Method 624)

大学では、 一日の大田の大田の大田の

THE REPORT OF THE PARTY OF THE PROPERTY OF THE PARTY OF T

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

CLIENT: Ammco LAB ID: 2586-4

PROJECT: 90059-02 DATE RECEIVED: 06/08/01

DATE EXTRACTED: N/A DATE ANALYZED: 06/18/01-14:07

DESCRIPTION: MW-8

SAMPLE ID: 2008

LAB FILE ID: >A2270

DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

MATRIX: Water

UNITS: µg/l(ppb)

(EPA Method 624)

うではおかっています。

S. SALTY " MATERIAL

		METHOD	DETECTION
PARAMETER_	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	, 1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	ט 1	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1 .
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 Ü	5 U	5
2-Chloroethylvinyl ether	. 5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	· 1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1, 3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1
,			

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

11

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2008

LAB ID: 2586-4

LAB FILE ID: >A2270

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-14:07

DESCRIPTION: MW-8

(EPA Method 624)

1、日本の教育の教育を教育をおりのできる。 これのできる ちゅう

MATRIX: Water

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

<u> የ</u> የ የ 12

 CLIENT: Ammco
 SAMPLE ID: 2009

 LAB ID: 2586-5
 LAB FILE ID: >A2271

PROJECT: 90059-02 DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01 SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-14:58 MATRIX: Water

DATE ANALIZED: U0/10/U1-1

DESCRIPTION: MW-9

おおというないことにあることをはなるないのできると

(EPA Method 624) UNITS: μg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	64	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 Ü	5 บ	5
Chloroform	20	1 U	1
Chloromethane	5 บิ	5 U	5 .
Dibromochloromethane	1 U	1 U	1
1.3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	0.7 J	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	2	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	8	1 U	1
1,1,2,2-Tetrachloroethane	0.1 J	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	7	1 U	1
1,1,1-Trichloroethane	1 U	1 υ	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 Ü	5
Vinyl Chloride	3 0	3 U	3
o-Xylene	5	1 U	1
m,p-Xylenes	3	1 U	ī

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco SAMPLE ID: 2009

LAB ID: 2586-5 LAB FILE ID: >A2271

PROJECT: 90059-02 DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01 SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-14:58 MATRIX: Water

DESCRIPTION: MW-9

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 5

COMPOUND	RT	RESU	LTS
4-Isopropyl toluene	22.70	11	
Isopropyl benzene	18.57	18	
n-propyl benzene	19.89	29	
1,3,5-trimethyl benzene	20.53	21	
1.2.4-trimethyl benzene	21.71	259	

CLIENT: Ammco SAMPLE ID: 2108 LAB ID: 2586-6 LAB FILE ID: >A2272

DILUTION FACTOR: 1 PROJECT: 90059-02 DATE RECEIVED: 06/08/01 SAMPLE VOLUME: 5 ml GC COLUMN: DB 624 DATE EXTRACTED: N/A MATRIX: Water

DATE ANALYZED: 06/18/01-15:44

DESCRIPTION: MW-8

(EPA Method 624)

はあれて、「大学を持ちいんでします」ではおけれる場合はできないとなっていると、またではできない。

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 0	1 0	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 Ü	5 Ü	5
2-Chloroethylvinyl ether	5 Ū	5 U	5
Chloroform	20	1 U	1
Chloromethane	5 บ	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	. 1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U .	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 0	1 υ	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1.2	1 U	. 1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	ט 1	1
1,1,1-Trichloroethane	1 U	1 ປ	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 Ü	5
Vinyl Chloride	3 U	3 Ü	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1

- U Indicates that the compound was analyzed for but not detected.
- B Indicates that the compound was found in the blank, as well as the sample.
- J Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 2108

LAB ID: 2586-6

LAB FILE ID: >A2272

DILUTION FACTOR: 1

PROJECT: 90059-02 DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-15:44

DESCRIPTION: MW-8

MATRIX: Water

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

CLIENT: Ammco
LAB ID: 2586-8

SAMPLE ID: 2012 LAB FILE ID: >A2273

PROJECT: 90059-02 DATE RECEIVED: 06/08/01

DILUTION FACTOR: 1
SAMPLE VOLUME: 5 ml

DATE RECEIVED: 06/08/01
DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-16:31

MATRIX: Water

DESCRIPTION: BEC-12S

(EPA Method 624)

では、

1

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	<u>LIMIT</u>
Acetone	1 U	1 U	1
Benzene	1 0	1 0	1
2-Butanone	0.8 J	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 Ü	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	6	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	4	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	0.1 J	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	15	1 U	1
1,1-Dichloroethene	1 υ	1 ប	1
1,2-Dichloropropane	1 U	1 U	ī
cis-1,2-Dichloroethene	689	1 0	1
trans-1,3-dichloropropene		1 0	1
cis-1,3-dichloropropene	1 U	1 0	ī
Ethylbenzene	ī Ū	1 0	ī
Methylene Chloride	1 0	1 0	1
Naphthalene	1 0	1 U	i
1,1,2,2-Tetrachloroethane	1 0	1 U	1
Tetrachloroethene	2	1 U	1
Poluene	1 0	1 U	1
l,l,l-Trichloroethane	1 0	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U		
Vinyl Chloride	3 U	5 U	5
		3 U	3
o-Xylene	1 0	1 U	1
n,p-Xylenes	1 U	1 U	1

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

^^ **17**

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2012

LAB ID: 2586-8

LAB FILE ID: >A2273

DILUTION FACTOR: 1 PROJECT: 90059-02

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-16:31 DESCRIPTION: BEC-12S

MATRIX: Water

(EPA Method 624)

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 2

COMPOUND	RT	RESULTS
Vinyl chloride	2.85	134.31
Tert-butyl benzene	21.51	0.1

CLIENT: Ammco LAB ID: 2586-9 SAMPLE ID: 2014 LAB FILE ID: >A2274

PROJECT: 90059-02
DATE RECEIVED: 06/08/01

DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE EXTRACTED: N/A
DATE ANALYZED: 06/18/01-17:38

MATRIX: Water

DESCRIPTION: BEC-14S

MAIRIA. Water

(EPA Method 624)

できる選を言って

いのは我のなるなるなかっていることであると

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	14	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 υ	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	. 1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1 .
1,2-Dichloropropane	1 ປ	1 υ	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	0.4	1 U	1
Methylene Chloride	1	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	5	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	0.7 J	1 U	ī
m,p-Xylenes	2	1 U	1
tert-butyl Alcohol	3	1 U	1
•			

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2014

LAB ID: 2586-9

LAB FILE ID: >A2274

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

GC COLUMN: DB 624

DATE EXTRACTED: N/A

DATE ANALYZED: 06/18/01-17:38

このでは、このでは、これのでは、これのでは、人間のではないのでは、これには、これには、これにはないできない。

は報をかられて、 つないのは

MATRIX: Water

DESCRIPTION: BEC-145

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

CLIENT: Ammco LAB ID: 2586-10

PROJECT: 90059-02 DATE RECEIVED: 06/08/01

DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

SAMPLE ID: 2015

LAB FILE ID: >A2275

MATRIX: Water

DATE EXTRACTED: N/A DATE ANALYZED: 06/18/01-18:31

DESCRIPTION: BEC-15S

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	<u> 1 U</u>	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 0	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 Ü	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	0.3 J	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
l,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	ט 1	1 U	1
cis-1,3-dichloropropene	ט '	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	· 1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 υ	1 U	1
1,1,1-Trichloroethane	1 U	1 υ	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U .	1
m,p-Xylenes	1 U	1 U	1
- -			

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit. NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 2015

LAB ID: 2586-10

LAB FILE ID: >A2275

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-18:31

DESCRIPTION: BEC-15S

MATRIX: Water

(EPA Method 624)

いるとう しょうしょうしょうしょう かんかん

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

CLIENT: Ammco

SAMPLE ID: 2016
LAB FILE ID: >A2276

LAB ID: 2586-11 PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01 DATE EXTRACTED: N/A

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-18:31

MATRIX: Water

DESCRIPTION: BEC-16S

(EPA Method 624)

いまってはい

CONTRACTOR OF THE STREET STREET, SOUTH

1.1289. ALMS 1.49

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 0	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 0	1 U	1
Chloroethane	5 U	5 Ü	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	, 1 0	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	2	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	0.3 J	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	· 1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	. 1
cis-1,2-Dichloroethene	36	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 0	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	0.3 J	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 υ	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	85	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1
Methyl tert-butyl-Alcohol	2	1 U	1

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2016

LAB ID: 2586-11

LAB FILE ID: >A2276

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-18:31

MATRIX: Water

DESCRIPTION: BEC-16S

(EPA Method 624)

TO MANAGE AND STREET STREET, S

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

CLIENT: Ammco

SAMPLE ID: 2017 LAB FILE ID: >A2277

LAB ID: 2586-12

PROJECT: 90059-02 DATE RECEIVED: 06/08/01

DILUTION FACTOR: 1

DATE EXTRACTED: N/A

SAMPLE VOLUME: 5 ml

DATE ANALYZED: 06/18/01-21:38

GC COLUMN: DB 624 MATRIX: Water

DESCRIPTION: BEC-17S

(EPA Method 624)

UNITS: µg/l(ppb)

PARAMETER	RESULTS	METHOD BLANK	DETECTION LIMIT
Acetone	1 U	1 U	1
Benzene	1 0	1 U	, <u>1</u>
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 υ	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 บ	5 U	5
2-Chloroethylvinyl ether	.5 U	5 U	5
Chloroform	23	1 U	1
Chloromethane	5 U	5 Ü	5
Dibromochloromethane	0.07	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 υ	1 U	·ĩ
1,1-Dichloroethane	· i U	1 U	1
1,2-Dichloroethane	1 U	1 U	ī
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	ī
cis-1,2-Dichloroethene	1 U	1 U	ī
trans-1,3-dichloropropene	1 U	1 U	ī
cis-1,3-dichloropropene	1 U	1 U.	ī
Ethylbenzene	1 U	1 U	ī
Methylene Chloride	1 U	1 0	ī
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	ī
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	0.2 J	5 U	5
Vinyl Chloride	3 U	3 0	3
o-Xylene	1 U	1 0	ĭ
m,p-Xylenes	1 U	1 U	1
			_

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit. NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 2017

LAB ID: 2586-12

LAB FILE ID: >A2277

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-21:38

THE PARTY OF THE PARTY.

Control of the second second

MATRIX: Water

DESCRIPTION: BEC-17S

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 1

COMPOUND

RT

RESULTS

Sec-butyl benzene

22.27

0.2

CLIENT: Ammco
LAB ID: 2586-13
PROJECT: 90059-02

SAMPLE ID: 2018
LAB FILE ID: >A2278
DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01 DATE EXTRACTED: N/A SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-22:30

MATRIX: Water

DESCRIPTION: BEC-18S

(EPA Method 624)

一方法の政策 全層な者のことで

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 0	1 0	1
Benzene	1 0	1 U	1
2-Butanone	2.3	1 U	1
Bromodichloromethane	1 υ	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1.2	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 · U	1
cis-1,2-Dichloroethene	105	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene		1 U	1
Ethylbenzene	, 1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 0	1
1,1,2,2-Tetrachloroethane	1 U	1 ,0	1
retrachloroethene	1	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	201	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	2 J	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	ī
• •			_

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

00 27

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2018

LAB ID: 2586-13

LAB FILE ID: >A2278

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01 DATE EXTRACTED: N/A

SAMPLE VOLUME: 5 ml

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-22:30

との選出機能は強い機能はいけることで、からはないできる

· 大学の大学のできる

MATRIX: Water

DESCRIPTION: BEC-18S

(EPA Method 624)

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

CLIENT: Ammco LAB ID: 2586-14

SAMPLE ID: 2001 LAB FILE ID: >A2279

PROJECT: 90059-02 DATE RECEIVED: 06/08/01 DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE EXTRACTED: N/A DATE ANALYZED: 06/18/01-23:32

MATRIX: Water

DESCRIPTION: BEC-1D

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 0	1
Benzene	1 U	1 U	1
2-Butanone	3	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 บ	5 U	5
2-Chloroethylvinyl ether	5 U	์ 5 บ	5
Chloroform	1 U	1 U	1
Chloromethane	5 บ	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	0.2 J	1 U	1
1,2-Dichloroethane	1 υ	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 0	1
cis-1,2-Dichloroethene	6.8	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	ט 1	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	25	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 Ŭ	3 U	3
o-Xylene	1 U	1 U	ī
m,p-Xylenes	1 U	1 U	1

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2001

LAB ID: 2586-14

LAB FILE ID: >A2279

PROJECT: 90059-02

THE REPORT OF THE PROPERTY OF

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/18/01-23:32

MATRIX: Water

DESCRIPTION: BEC-1D

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 1

COMPOUND

RT

RESULTS

Carbon disulfide

4.18

1.21

CLIENT: Ammco

SAMPLE ID: 1001 LAB FILE ID: >A2280

PROJECT: 90059-02
DATE RECEIVED: 06/08/01

DILUTION FACTOR: 1
SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A
DATE ANALYZED: 06/19/01-00:25

GC COLUMN: DB 624 MATRIX: Water

DESCRIPTION: Field Blank

(EPA Method 624)

「一般の一般のできる」とのでは、日本の一般のなどのできるというない。 これのはないのできる

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 0	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 Ü	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 บ	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1
* * *			

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 1001

LAB ID: 2586-15

LAB FILE ID: >A2280

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DESCRIPTION: Field Blank

DATE ANALYZED: 06/19/01-00:25

MATRIX: Water

(EPA Method 624)

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

CASE NO.

A DESCRIPTION OF THE PROPERTY

7

COMPOUND

RT

RESULTS

CLIENT: Ammco LAB ID: 2586-16

SAMPLE ID: 1002 LAB FILE ID: >A2281

PROJECT: 90059-02

DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml

DATE RECEIVED: 06/08/01

GC COLUMN: DB 624

DATE EXTRACTED: N/A DATE ANALYZED: 06/19/01-01:15

MATRIX: Water

DESCRIPTION: Trip Blank

(EPA Method 624)

(第17年) · 大学 (第18年) (第17年) · 日本 (第17年) ·

この情報の教育の教育の教育のできない。 これのはのない

1.100 · 1.100

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 0	1 U	1
2-Butanone	1 U	1 U	1 .
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U.	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 Ü	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 Ü	5
Dibromochloromethane	1 U	1 U	1
1.3-Dichlorobenzene	ט 1	1 Ü	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 υ	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	, 1 U	1
trans-1,3-dichloropropehe	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 υ	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 Ü	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1
m, b witches			

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit. NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 1002

LAB ID: 2586-16

LAB FILE ID: >A2281

PROJECT: 90059-02

DILUTION FACTOR: 1

DATE RECEIVED: 06/08/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 06/19/01-01:15

MATRIX: Water

DESCRIPTION: Trip Blank

But I work him a new man with the technique

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

CASE NO.

COMPOUND

RT

RESULTS

CLIENT: Ammco

SAMPLE ID: 2004

LAB SAMPLE ID: 2586-2 DESCRIPTION: MW-4

一年の大学の一個の一大学の一大学の一個ないないのである。

DATE RECEIVED: 06/08/01 **DATE DIGESTED:** 06/18/01

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Arsenic	<0.008	<0.008	0.008	206.2	09/12/01
Aluminum	<0.01	<0.01	0.01	202.1	06/21/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE ID: 2104

LAB SAMPLE ID: 2586-3

DESCRIPTION: MW-4

以上的教育者在我们是教育的一个人工作的一个人的教育。

SAMPLE MATRIX: Aqueous

DATE RECEIVED: 06/08/01

DATE DIGESTED: 06/18/01

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Arsenic	<0.008	<0.008	0.008	206.2	09/12/01
Aluminum	<0.01	<0.01	0.01	202.1	06/21/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE ID: 2009

LAB SAMPLE ID: 2586-5

DESCRIPTION: MW-9

AND MANAGEMENT OF THE PROPERTY

SAMPLE MATRIX: Aqueous
DATE RECEIVED: 06/08/01
DATE DIGESTED: 06/18/01
DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Aluminum	<0.01	<0.01	0.01	202.1	06/21/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE ID: 2011

LAB SAMPLE ID: 2586-7

DESCRIPTION: BEC-11S

SAMPLE MATRIX: Aqueous

DATE RECEIVED: 06/08/01

DATE DIGESTED: 06/18/01

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

<u>Parameters</u>	Results	Blank	MDL	EPA Method	Date Analyzec
Aluminum	<0.01	<0.01	0.01	202.1	06/21/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE ID: 1001

LAB SAMPLE ID: 2586-15

DESCRIPTION: Field Blank

SAMPLE MATRIX: Aqueous

DATE RECEIVED: 06/08/01

DATE DIGESTED: 06/18/01

DATE ANALYZED: See Below

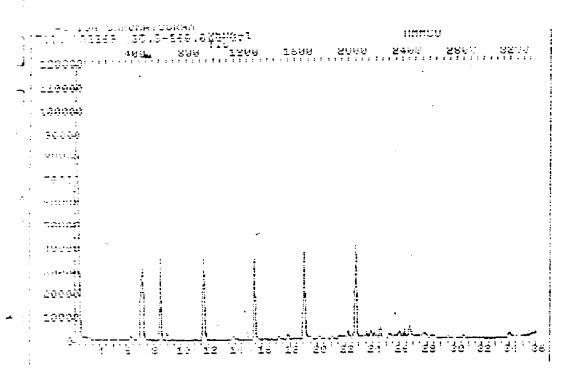
TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Arsenic	<0.008	<0.008	0.008	206.2	09/12/01
Aluminum	<0.01	<0.01	0.01	202.1	06/21/01

Test results are in mg/l (ppm), unless specified.

VOLATILE ORGANICS	
数类CHROMATOGRAM PRINTO	OUTS DESIGNATION OF THE PROPERTY OF THE PROPER

JUAN: REFORT Maga i Quant Favt 7 Ouant Time: 010±18 19:08 **0618 13:21 Injected at: Dilution Factor: 1.00000


GC:m5#1 Instrument ID:

11 File: 10%EW::50 _as: Usizration: 910f62 10:27

Last Ocal Time: **0618 11:21

•	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	±. = .	Basha	高 型企業	Sund	Units	ä
·		7.15	485	75 T8	50.00	ua/i	100
	ols-1,1-Dichiproethene	6.27	396	3788	2.15	uc/l	<u>ت</u> و ب <u>ت</u>
<u> </u>	Dibosíriadnomethane SuRR	7.0J	473	57541	3 1.97	ug l	70
	'l,4-D:fluorsbenzehe	8.44	615	93655	30.00		100
	-hushidhuelhene	8.82	é o ÷	3704	J.00	ug∂i	82
27)	Toluene-d8 SURR 1	11.51	905	90330	32.24	ug/l	100
:		15.03	151 =	70546	30.00	မည် 🚶	100
; - 'i	A-Bromofluoropenzene SURR	18.98	1630	62404	33.19	ugal	جَجَ
<u> </u>	್ತುವ−೨೨೨, ರಾಜಕಿಕ್ಕಾರ ಕಲ್ಪತ	22.72	2957	63779	30.00	ug⁄i	95
ಕಿಸಿ	Kant-Butyibanzana	21.53	1937	1758	.570	ug/l	92

Ionopond is 1975

Title: TECHNION INC. Last Calibration: 010902 10:23

Avena un 15: Semin Suant Time : 010a18 18:08 Auguste est brooth 15:01 Quant Output File: ^A2269::QT instrument ID: GC/ME-1

Last Ocal Time: **0618 11:21

```
LLANC BEFÜRT
```

Page 1

Dyant Pav: 7 Guart Tire: **0518 14:07 Injected at:

Dijetion Factor:

GC HISAL İnstrument IÜ:

्या स्थापना का अनुस्कार का का अनुसार का क्षेत्र का निवास का अनुसार का अनुसार का अनुसार का अनुसार का अनुसार का

14

ព្រះ កិរូស្មាល ខែកាទីការដើម ស្លាល ១០ (51-001) ខាង. ស្លាល (1900) ខាង (1905) ខាង (1905) ខាង

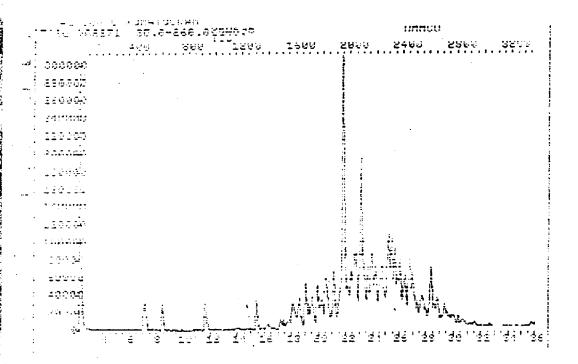
Last Ocal Time: **0:18 11:01

12 marana	=. = .	Epere	음하는 명 *** = 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	2313		<u>.</u>
# 1	0.03		79278 57907 3817 9	70.00	ag/1 .⊈/1	198 20 20
ಗಳು 10-00-400 - ಅರ್ಜ್ 1 - 11-11-20-1-20-20-1 - 4-50-20-11-00-20-20-14 ಅರ್ಚಿಕ 1-11-20-1-1-20-1-20-20-2	11.60 15.96 18.98 22.73	1308 1674	89934 66840 58129 59070	32.59 30.00 32.67 30.00	ugzi ugzi	100 100 85 92

llapiene is 1270

l. Foles (SwEms:92 Title: TECHNION INC. Leat Calibration: 010702 10:25

000 200 100 Benom Coent Tome : 010616 16:20 Uniedico el hille 19:57 Quant Output File: AA2270::QT leatrusent (D: GC/MC-1


Last Qual Time: **0618 11:21

```
DUENT REPORT CLass Time: 0.00.8 18:19
Injected at: *+0618 14:58
Disation Factor: 1.00000
Instrument ID: GC:m6#1
```

....: TEI+1.11 111. .:: Leit Coat Time: **9618 11:01

§83-₹

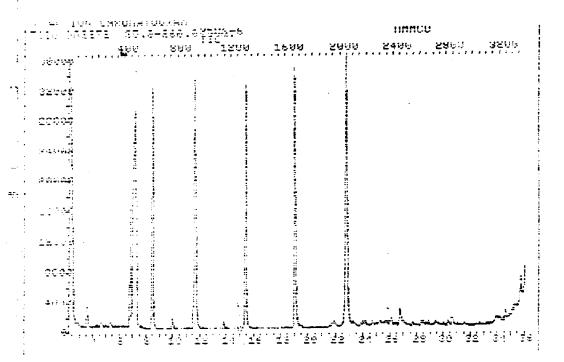
·*						
	= . . .	≗ದಹಳ,≄	得力を含	Cand	Units	Э
						
_ PA_ TOFULCACEE IEPE	7.17		÷ =3		_	48
មាន ប្រាស់ ស្ត្រីស្នាស់ ដូច្នេះ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស្នាស់ ស	2.83	41	중요력			
		T = =	<u> </u>		4	<u> </u>
il: Dibamoflagnomethage EURA	7.02			J0.53		96
The server of th	7∵ಕಕ	ទីរីម		1.78	-	33
), t ti,4-0ifluonobenzene	8.41	605		30.00		190
		≎∑±	항송취소식	72/10	agri.	199
na de la Caracteria. La caracteria	11.73		10819	5.84		97
	15.57	1768	51578	30.00	មទូ 11	100
-:: 4-îsopropyitelden∌√\	22.70	2045	35360	10.95	ug/l	84
	18.87	1784	9.777	1.51	ug/l	93
7.1 m,p-xylana	16.22		3043	2.53	ug/l	100
	17.37	1510	<u> 5606</u>	5.30	ug/l '	100
- 17	19.87	1787	147	.115	ue/1	77
	19.88	1753	150	.185		98
	18.97	16.71	53419	30.44	-	99
	18.57	1.71	51578	19.03		90
oblicopadhauwizendeke√	22.71		-	30.00		ှင့
relation, 4-dischlorebenzene-d4	19.89	1754	<u> </u>]e.7e	-	5.5
	20.55			11.27	-	81
Tale 1.7,5-Trimethylbenzene ✓	24.72 21.72			258.91	_	2.4
ngan nga katawa nga katawa at katawa 🕯						91
its Naphthalana	30.31	2808	8175	7.78	aā⊼ i	- T

Quant Output File: 0A2271::QT lesteument (D: GC/mS:1

Last Qcal Time: **0618 11:21

BURNT REFORT

Hagy


010519 18:18 **0618 15:44 មិន្ទស.គ្គើននេ**ម:** injected at: 1.00700 Dilution Factor: Instrument ID: ಮು.ಲಿ ೯.೦೯ ೧೮.ಱ೯ ೮೪ಕಿಕ-ಕ GC/MS#1

1.16: 1.505/4::55 .: TES+1.5: 1: Calibration

Last Ocal Time: **0618 11;21

	11. 1	유.후.	Biera	Ans s	Seno	Units	a
	1,7 (11,14,14,17,17,14,14,14,14,14,14,14,14,14,14,14,14,14,	7.15			F0.30		_ <u>\$</u> 0
	sthylada Initrice			2254	1.23	ug/l	88
ı÷	. <u>.</u> . <u> </u>	7.42	46.P	5 08 5 3	₹1.54	ua. 1	-5
	alonoform			43340	19.48	-	97
	.A- ប៊ុនការប្រធានប្រជាព	8 .N4D		99723	30.00	uq∠i	100
	oluene-dê EUĀĀ ;	11.60	928	82665	32.38	ua/l	100
				5 7879	30.00	_	100
	-Bromofluerotenzene	18.98		54490	32.07	ug/1	86
		22.70		きアミピア	30.00	-	~ 5

Josepound is ISTD

Data File: >A2272::V3

のはないというできない。 できるなど、これのはないないはないないのできる

AMHC0

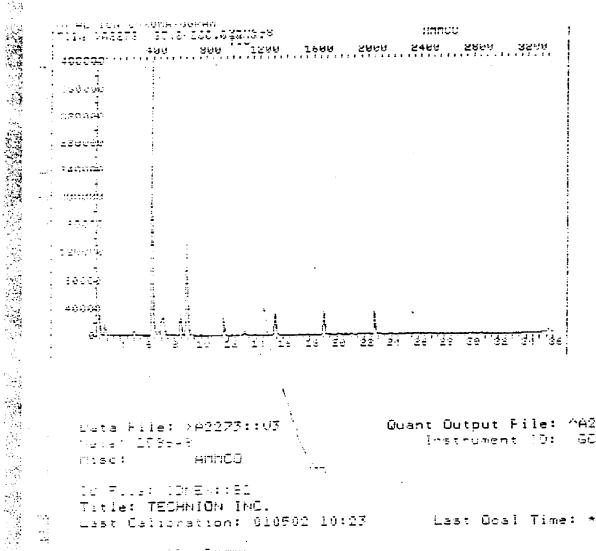
File: 10%Ed: 80

le: TECHMION INC.
t Calibration: 010502 10:23

= :--:--

Clant Time : 010618 18:18 1-,11.82 8:: **0618 18:44

Quant Output File: Instrument 12: GENERAL


Last Goal Time: **0618 11:21

010+.9 19121 **0618 16:71 Duant Pay: 7 Injected at: Daiotion Factor: 1.09100 GC/MS#1

Instrument ID:

.:e: 12:#E.::E2 .. TE2--:2: 1:.2.: 019502 10:27 Last Qcal Time: **9618 11:21

:	i~	₽.Т.	\$1.25 B	음·성동	Dome	Units	q
				=='====== · = 1107	30.90	ua (:	19u
<u>-</u>	ingi Salariya	2.89		ទូកូទូសូគ្	174.31		÷ 4
-	ing row is a regular to the screen	= _ .		2075 7	15.16		e 2
	lyu-disahlangethene;			233			91
-	ு கூடார். கூடிய குறுக்கு கூறு அன்று அரசு அ	8,728		987971	:89.08		9.7
	- Transation of the F	7.82		50616	34.49		97
-, -		<u> </u>		12749			្នគ
: =	อาร์ โกร์ โดยสาราช เกล้า ซื้อ โรยสีสี อาร์ เมาบารา อิ-ฮินțanone ตรีส	6.42		173	.819	_	65
-		8.42			30.00		100
₁	Toluene-as SURP	11.59			32.40	- ·	100
			1079		1.93	-	100
	Totrus tursourses (Dibromochlorometh ane (13.11		4776	3.86	-	100
		<u> </u>		62175	30.00	-	100
77. 4 . j.	ୟ-ଅନ୍ତଲ୍ଗୀଧ୍ୟନ୍ତ୍ରକମ୍ୟକ୍ତ ଅଧିକୃତ୍ୟ	18.97		54092	<i>32.7</i> 1		87
: _ '	- 1, = -1, 1 - 1, 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :		2849		30.00		9 4
<u>-</u> -	tent-Butylpenzene	21.51		344	.133	-	92

0eta File: >A2273::U3

2085-3

1.5

HITICO

12 File: 136E9::80

Title: TECHNION INC.

Last Calibration: 010502 10:23

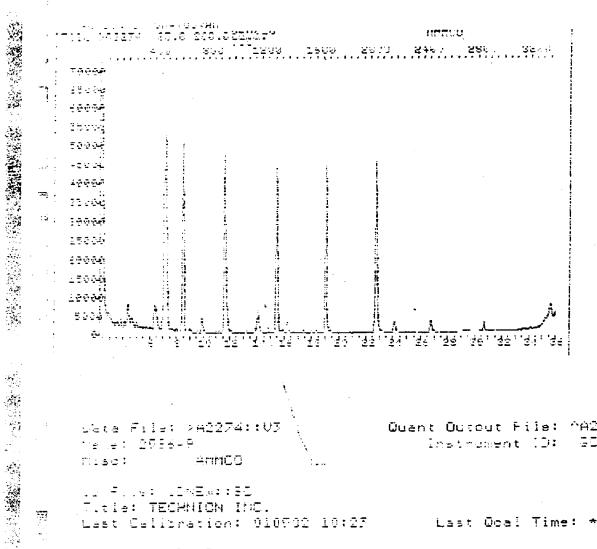
Quant Time : 010518 18:21 lajeztez eta hitalbile Da Quant Output File: ^A2275::QT GEZYNEHI Instrument 10:

Last Qcal Time: **0618 11:21

DURNT REPORT

Page ì

Caretor ID: SARRY Ctput File: MA2274::QT Gate Floor (20274::P) Mame: 258649 Ploor (2008) Quant Time: 010418 18:24 Quant Rev: 7 **0618 17:38 injected at: 1.00000 Ditution Factor: Instrument ID: GC/mS#1


のでは、1000年のでは、1000年のでは、1000年の日本のでは、1000年の

id file: ICMÉW::50 7...o: TECHMICH IME. _{Clas}t Cellbration: 010502 **10:2**3

Lust Oca: Time: **9518 11:21

`•	11 111	÷.T.	Sour	并 不至量	C.no	Units	Ξ.
	72			1277 64	30.00	22 1	100
		4.58		7828	1.09		9.2
	12/15-51/5/1 M. 128/1 T#4	4.19		7.43			38
	Dipomoflouromethane SURR	7.02		90002		ua/l	98
	1981 Endne Har	± 2 ± ₹		19230	41.34	-	62
	+1,4-Difluorobenzana	8.41		144549	30.00	uari	100
		33.50	문결구	124212	28.76	eg/l	100
	Toluene	11.74	940	12457	4.57	uo∕l	94
	ា ដែលបញ្ជាន់នាយ់មានមានមានមែលពី	15.37	1398	9183 5	30.00	_	100
	Etholbenzene	15.85	1397	2010	.379	ug/l	ខន
5.0	- M. D-X Viene	1=.13	1768	3047	1.74	ua/l	100
وأؤ	a-Xviene	412.38	1511	1108	.669	ua/l	100
	4-rátaya-2-pencenera \₩15K	11.41	909	t t U	ويد.	ug/i	96
жęj	4-Bromofluorobenzene ŠURR	18.97	1672	73253	50.06	ug/i	୫୫
	roja-Bronieropenzene-d4	22.70	2040	74±06	30.00	ugzi	94

Compound is ISTD

File: >A2274::U3 : 2586-9

AnMCO

y file: ICMEN::SC ltle: TECHNION IDC.

Last Calibration: 010902 10:23

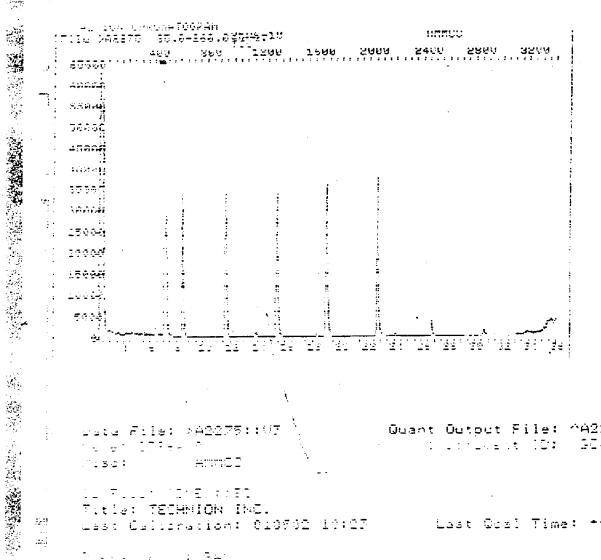
: 010618 19:24 : **Ce18 17:78

Quant Outout File: ^A2274::GT Instrument ID:

Last Ocal Time: ##9618 11:21

werms margard

616418 14.38 Voent ಕೇಳು ಸಿ. Guant Jume: **0618 18:31 injected at: 1.0.000 Dillian Feeler:


Instrument ID: GC:MS#1

.,t,u: File: ma2275::0T

13 File: <mark>18mEW::88</mark> 1 .le: TEI+:18m 17/0. 1_e: Bulionation: 910500 18:25

Last Qual Time: **0618 11:21

. •		Ξ	ដែលអាការ	enga .	Curra .	Units	=
				72167		_	100
	- 1,1-Sichlardethame - 1111 1 111 1 3. ±.:		211 477	501 57447	.266 33.44		96 97
	11.4-5.filonosenzenę Tulustusia Buffilo	8.44 11.40		93527 87991	30.00 31.44		100 160
_	ಗಲಿನ (ಶಾಸತಿಶ ್ವದರಾಣಕ- ಡನೆ 🦠	19.39	1318	20131	30.00	ug/1	100
	E. 2.1.1-122112211211€ SURF Fly4-Bionibrosenzene-d4	_9.49 22.72		5979 6 61283	30.03 30.00		87 82

il fillh ilmelkafi Tiblea TECHNIÖN INC.

lismaciam: 010502 l0:25

Clant Time : 010518 19:08 18,20014 1: 800013 18:01

ì Hage Gerand REFURI

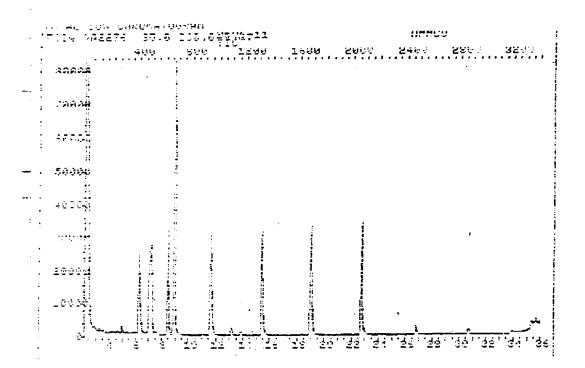
920618 20136 Quent Time: Guant Rev: 7 • <u>↑0619 19:58</u>

Injected at: Dilution Festant 1.00100

Last Gdal Bise: **0818 11:21

G1 :#5#1 Instrument ID:

17 7:14: 1882:::80 1...: 721-11: 1:12 44: 84:12:4:16:6: 88:8


R.T. Sognæ Joho Units 3 . . 45. . . 7 100 . = = 1.90 15/1 4.95 5.15 _4368 57.34 motayi-tent-quty: Eten m78£ 263 35 52 libomoficuromethane ug : 1 34.04 up 1 30.00 up 1 7.02 4--%-5<u>2</u>± SUFF 8.42 98076 100 8.99 85.06 ug/l 91 661 99633 105 105 81 48 ___1 100 31.93 11 11 13.11 17.14 15.38 406 .340 ug/l 100 1000 $\mathbb{Z} \cap \mathbb{L} \perp$ 1.50 ug/l 100 1317 67112 30.00 ug/l 100 19,99 21,70 87 1682 55030 31.78 ug/l ್ಯ-ಹೀಗಾಗಿ ತರ್ಗಾವರಿಗೆ ಮೆರವರಿಗೆ ಮಹಗಾಹಿಗೆ ಕೃತ್ತಿ *1,4-Dichlorobenzene-d4 2057 55997 30.00 ug/l 92

÷ ไม่หม่วยคอ มม ไ**ร**โฟ

where the sum of $\pm 2 \, m_{\rm B} T_{\rm B}$

Mane: 2588-11

utput File: ^A2276::67

File: >A2276::03 : 200-11

THE RESERVE OF THE PERSON OF T

ARMCO

File: IDMED:::50

Title: TECHNION INC. Last Calibration: 010502 10:23

loenston ID: Semmy Clant Time : 010618 20:75 Imjectyd 20: 180e18 18:98

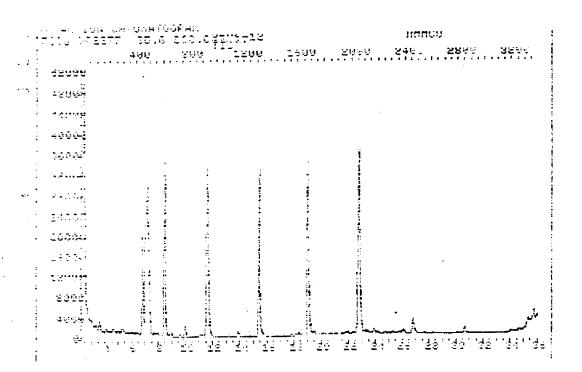
Quant Output File: ^A2276::OT Instrument 19: GC/MS≤1

Last Qcal Time: **0618 11:21

GORBER REFUR:

Hause !

Nachalon (Di Fermy) - Nach Nach Revi 7 - Deant Sime: difeis 22115


 Set put File: A2277::07
 Injected at: **0618 21:38

 Jaluary File: A2277::05
 Direction Fector: 1.00000

11 File: 15m2w::SC Title: 750-m.Cm 150. Last Calibration: 010502 10:27

	1.02,101	Ξ.Τ.	Specie	유선국 출	Conc	Units	Ċ.
		 		⊤⊥्°्र	30.00	uusi	_00
				454		ua/l	90
	- 1122002+112 102-1012 글 11분명	7.9≘	ニョミ	58±04	32.47	-	98
223	Chloroform	ಕ.77	441	55485	22.69		98
2.	ាំ ឬខ្លុំមុំជីវ ទៅ ស្នេកជួលមក និងកាម្តៃ	8:43	608	94054	30.00		100
	Taluene-dC SURR v	11.61	92F	88815	30.71	ug/l	100
• •		_3.79	1150	_ 2 ↔	.0724		100
٠ ز ـــــ ٠	∱Shloropenzene-dÿ	i9.78	1310	63317	30.00	ug/l	100
• =	- 4-Brajariaaniaa ay BarR	<u> </u>	_=	799 02	32.19	ugʻi	36
6.20	*1,4-Dichlorobenzene-d4	22.72	2051	59997	30.00	ug/l	98
	in the second of		2016	골으로	141	un 63	22

Compound is ISTD

File: 2A2277::US

を表する。 100mmの 100mm 100mm 100mm 100mm 100mm 100mm 100mm 100mm 100mm 100mm 100

shirtCC

lo File: 1855::31 Fitle: TECHNION INC. Last Salibostion: 818502 19:23

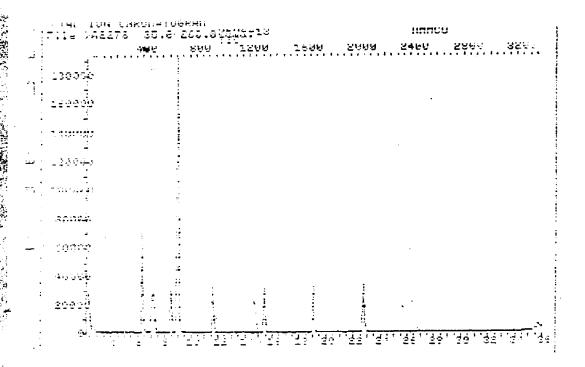
1= ----

Time : 010618 22:15 25: **0:29 01:79

Last Ocal Time: **0618 11:21

www.serUKi

: 507007 : 082278::67 :02278::02 Ween't time: **0618 22:**3**0 Injected at: Strabile Factor: Instrument 10: i.0000


GC/MS#1

lb File: IDMZW::SC Til TEI-M CH 1 D. Tel Calteration: 010702

是一个人,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就

Last Ocal Time: **0618 11:21

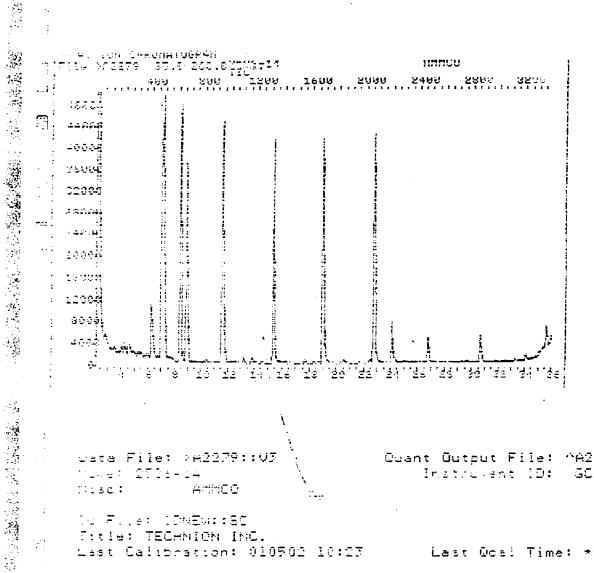
	11820100	두. 7.	Eger 4	Arra	Conp	Units	ā
_	45	7.15		57 78	3 0.00	uç :	្វែប
_	Simpi Chionics			1629			70
_==		4.43					٦į
_ = ;		9.4€				ue/i	
		e.128	741		194.79		÷6
	Olbomoflouromethane SURR	7.03		50347			93
		₺. 79		2413			20
17.1	1-Eutanome MEK	ಕ.ತಕ					73
	u kanžuniuonuoen senelij	€2		95.2 <i>3</i>		eē i	100
	Trichloresthans 👌	8.90	<u>୫୭</u> ୭	220190	200.95	uazi	ទទ
· : -	71.1 <u>28-4-19</u>		무슨물	80-1 8	31.58		100
12	Tetrachierosthens 📑	13.10	1080	1152	1.01	ug/!	100
	in disarak si sarahan Sharar 👌	15.11	1091	エフフフ	1.32	មគ្នា	100
1-1-1	್ಲಿhiaresenzane-d%	19.38	1310	63439	30.00	ug/l	190
	= -≧ වෙමර දර්ප්රප්සික්කම්පම පි රිමිිිිිිිිිිිිිිිිිි	18.99	1875	ទី⇔≂៦មិ	32.37	ug/l	36
= ·	*i,4-Bichlorosenmene-d4	22.71	2050	56675	F0.00	ug/1	94

File:

..s: .10.5.:180 s: TECHNICH INC. -tgl:2-st:on: 010802 10:27

170 227

010518 23:97 **(±19 22 78


Opant Output File: ^A2278::QT

Last Qual Time: **0618 11:21

...:: TIDAKIDK IKĀ. Jai Callokalion: Copēco lo:Dē

	Sumagran d	Ξ.Τ.	<u> </u>	요하고말	Diag.	units	9
-		7.19	.12	12:17:50	70.00	= = -	100 48
1	Carbondisulfiza Lya Dia carbay (4 4)	—————————————————————————————————————	102		12.22		-7
- 	gis-1,2-Qichlorosthens	6.21	391	19182	2.77		7 4
	그런 사이 그는 그는 그는 그 없는 그를 살아 그를 그림을 했다.			87.7 8			94 88
	1-zutanone MEM :	5.26 5.55	392 -	11/4 777 4		ug/l ug/l	100
	flywiltig::lur lu e Enioniproethene					•	39
	Tulgererer Suff	11.57	372	117-72	28.51	_	100
<u></u> :	-Unionopenzene-d5 \	18.36	131-	27493	00.00	-	100
				5814 8		-	90 93
= 1 3	*1.4-Dichiorotenzana-d4	21.70	교민준준	강실등속통	30.00	교육 (1	7.7

-ელისულიტიც ენ 3572

Artifico

ld F..e: ISMEW::85 Sitle: TECHNION IMC. Last Calibration: 010502 10:25

ion 13: Serma Time : 01061 010619 00:03 **0el9 27:72

^A2279::QT GS/MS%1 Quant Output File: Instruent 10:

Last Qcs: Time: **0618 11:21

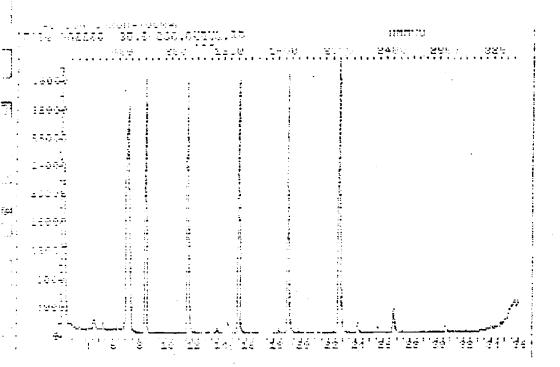
taga ari: Ramuri

Hage

 $(\Xi_{(G)}, -\mathbb{I}[A])$

^A2280::0T Diput File: una Fila:

Mama: 2595-15.


Woent line: 01851M 81.26 Ucant He o

1.00000 Injected at: D. Lution Factor: Instrument ID:

Last Qca! Time: **0618 11:21

	Iska sena		₹.₹.	មិន ខ <i>ា</i> ទ	부분 개호 	Euno	Units	<u>ا</u>
	- 4 <u>2</u>		·	479	アキャリス	30.00	ug/li	100
	J.bomoflouromethane	SURE	7.03	46-	61373	32,10	បច្ចារា	99
			8.42	もりア	994 <i>77</i>	70.00	wg/l	100
وتر	Toluene-as ಕಲಕನೆ		11.61	929	92735	31.42	_	180
	ាញីការស្រកប្ទស្លាយមកមេទា ⊒្មីក្រុស		15,77	1709	72752	30.00	-	100
		SURR	18,98		61146	31. <i>7</i> 5	-	88
	ကရည် ရသည်။ များသည် သည် လည်းသည် မြေရုံမြေရုံ		24.T0	1150	5J4J2	30.00	ugʻi	유기

Tempound is ISTO

data File: >A2280::UT

....

 $\mathbb{P}_{\chi^{\bullet}}:$

. s . . .

≙rmi-5

ll Float (Chexa: ED Totle: TECHNICA (NC

Last Calibration: 010502 10:23

luşhula h îİr Bermey

udant Time : 010819 01:78 ... ested et: 110819 00:05 Qosnt Outout File: ^A2280::QT Tas.rement ID: GC/HE41

Last Ocal Time: **0618 11:21

GUART REFORT

Muga i

Duant Rev: 7

Quant Time: Injected at: 010±19 01:39 **0619 01:15

Dilution Factor:

1.00000

...put File: ^#2281::OT Flue: **2281::UF Gude: 2586-16

lun 12: Estim

Instrument ID:

GL MIS#1

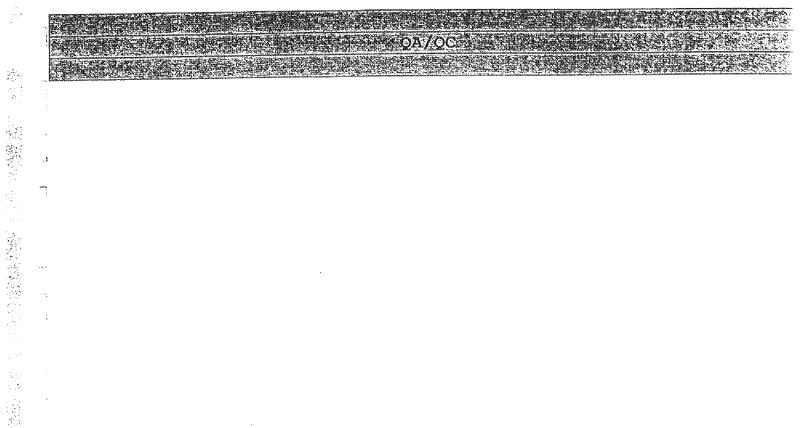
.1 File: IDMEW::80 ...:: TECHTICT ITC. ... Calibration: 010502 10:23

Last Ocal Time: **0618 11:21

	= ₹.	B 2 a 1 42	Ava€	Iuno	Units	ď.
	7.15	479	 58-09	30.10	2211	20
libomoficaremethane SURM	2.01	4÷*	46.07	27.98	ug (i	÷
್ಟ್ ಇಲ್ಲಿ ಕೆಲ್ಲಿ ಕಲ್ಗಳಿಗೆ ಮಾಡಿಕೆ		∍ು⊼	Salai	70.00	មទ្វី។ 📗	≟់បំ
Tuluane-ce SURR	11.60	92^{-3}	81257	31.49	ug I	100
	15.5e	1709	6196 <i>3</i>	∑0.00	og (1	100
- 4-Bromofluoropenzene SURR		loTT	91716	31.56	ug/l	84
ఎ.ఎ=×ఏ:ఎఎ ఎఎనఎ≥జగుబజగు ఈంఆఉ		2150	53.49	30.39	교출 그	≞ द

limpound is:1570

r:le: >H228i;:V⊅


11 File: 19050::50 Title: TECHNION INC.

West Calibration: 010502 10:23

Wuant Time : 010619 01:39 Injected as: **8619 01:15

Quant Output File: Instrument ID:

Last Ocal Time: **0618 11:21

TECHNION INC. TESTING & RESEARCH LABORATORIES

CLIENT: Ammco

FILE ID: MS - ^A2264 - 01:41

MSD- ^A2265 - 02:52

DATE ANALYZED: 06/14/01

SAMPLE MATRIX: Water

LAB CODE: 07004

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Compounds	Spike Added (ug/L)	Sample Concentration (ug/L)	MS Concentration (ug/L)	MS % Rec. #	QC Limits Rec.
1,1-Dichloroethene	20	0	26.0	130	61 - 145
Trichloroethene	20	0	20.0	100	71 - 120
Benzene	20	0	21.6	108	76 - 127
Toluene	20	0	23.0	115	76 - 125
Chlorobenzene	20	0	21.6	108	75 - 130

Compounds	Spike Added (ug/L)	MSD Concentration (ug/L)	MSD % Recovery # (ug/L)	% RPD	QC Li RPD	mits REC
1,1-Dichloroethene	20	22	110	17.0	14	61 - 145
Trichloroethene	20	. 18	90	10.5	14	71 - 120
Benzene	20	19	95	12.8	11	76 - 127
Toluene	20	21	105	9.0	13	76 - 125
Chlorobenzene	20	20	100	7.7	13	75 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

Values outside of QC Limits
PD: of outside limits

Spike Recovery:

out of

outside limits

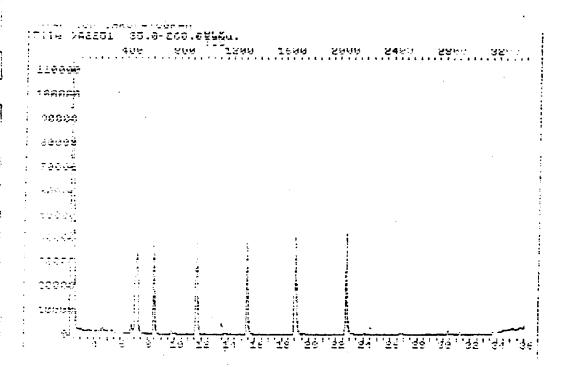
'OAMSD-w

ಇದುವುದಿ ನರ್ಮಲನ್ನ

Maga

Eutput File: 22.2 File: ^A2251::6: :02151::03 Geant Roy: / Www.timo: injected at: Disation Factor: Instrument ID: 010614 00.0**6** **0613 13:17 1.00100

GUZPIS#1


11 File: IDNEW::80 Textos: TEC-5755 ()

Lact Calibration: 0:0502 10:23

Last Wost Time: ***0e_F 12:29

	_:^=	≂,.₹.	Selona	ಟ್ರಕ್ಕಾಕ	Cino	Units	c;
<u></u>	* AS: To TullFideExIE * SURM - Grooms Flourisme than	2.63	485 473 814	88947 63934 107736	30.00 33.24 30.00	ug∕l	10: 94 100
271 443 443 443	Toluene-od SURR minionoconzene-añ ; 4-Bromofiuonobenzene SURF fal4-Brohaphobenzene-a4	11.61 15.36 19.98 22.70	906 1315 1690 2056	102116 80193 65309 70221	31.52 30.00 31.88 30.00	nākļ nākļ nākļ	100 100 89 96
'	i,2-Uibromo-F-chichopropade markon intoutableda\	26.51 30.73	245. 2827	130 55	.926 27		87 100

*. Compound is ISTD

Data File: >A2251::93 > 202: EL Miso:

意味を

e: 'Industion' TECHNION INC.

Calibration: 010502 10:23

rator 12: Samme nt Time : 010613 13:54 uctio 2:: 55:513 13:17

Quant Output File: MA2251::QT instrument 10:

Last Oca! Time: **0526 03:53

WUANT KEFÜRT

Page 1

Quant Rev: 7

Quant Time:

010618 18:04 **0618 12:33 Injected at:

^#2268::**G**T _tput File: me: BLK >42258::15

Dilution Factor:

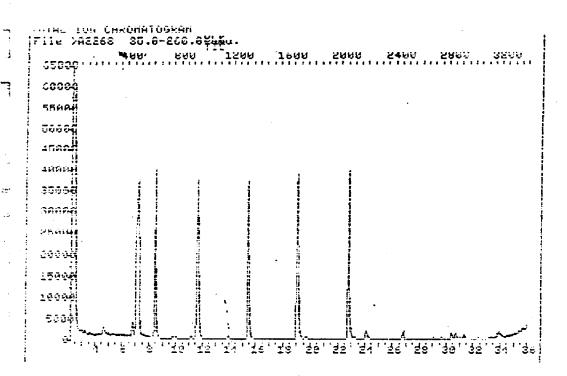
1.00000

Înstrument ID:

GC/MS#1

AFile: IDNEW::SC lie: TECHNION INC.

では、10mmのでは、1


ں۔۔

est Calibration: 010502 10:23

Last Qcal Time: **0618 11:21

123	Compound		R.T.	Scan#	Area	<u> Cenc</u>	Units	á
2	*FENTAFL_DROBENZEME D.Somoflouromethene	SURR	フ.15 フ.02	485 472	94521 69558	30.00 30.64		100 95
•	'l,=-b.r:porosenzene Toluene-d8 SURR		8.42 11.61	é13	109616 99668	30.90 30.39	ug/l	100
;	≉Calbrobenzene-d§		15.39	1717	771 ` §2	30.00	ug/l	100
	4-Bromofluorobanzene : *1,4-bsch.brobenzene-d4		18.99 22.72		691 6 5 67434	31.72 30.00	_	89 95

^{&#}x27; Compound is ISTD

Uata File: >A2268::U3

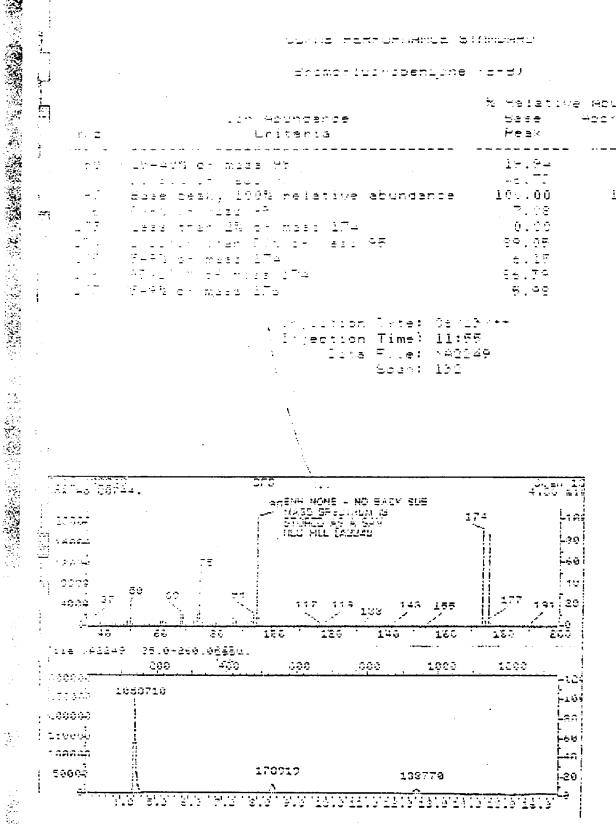
Name: BLK

Misc:

ld File: 1DNEw::30
Title: TECHNION INC.

Last Calibration: 010502 10:23

Openetor ID: SAMMY


Gdant Time : 010618 18:04 Injected at: **0618 12:33 Wuant Output File: ↑A2268::WT Instrument 10: SC/MS#1

Last Qcal Time: **0618 11:21

opris resturishbe tipipasi

Encaptiving benigne

		% Heletive		
	.10 Hayanasnas	물론 등론	Appropriate	
r. I	Lriteria	Heak	Peak	Status
****	್ ೭೪–೩೮% ರಂ. ಮತ್ತತ ಚಿತ	19.9=	19,94	0k
		= . <u>-</u> -	46.73	¥ك
-	Base besh, 190% relative abundance	100.00	100.00	Ūk
7.	n disang siya sa <u>jag</u> sa a	7.0€	7.09	Ĵκ
" -	uses than 1% or mass 174	0.00	9.09	0×
	o oprovi stan čin pel ago 유통	ନ୍କ ୍ ନ୍ନ	89.05	θk
2.12	විපදිවි යට සාපුමුලු <u>ලි</u> වීම	€.15	_{ရှိ} ့မည	<u>e</u> .
	Agus గా కృశ ఈ:కృశ హైత్త	98.79	a=.0.	Ĵk
	గ్రాశ్శ్ రాగు గృత్యం 2.75	ଖ୍.ଜନୁ	6. 9 7	űk

Section theory Report

Tation Telegraph on Larionates: 910502 10:19

Insch Standard Data File: >#2250 injection Time: +=0615 12:28

Compound		RF	NDiff	Calib Heta	
Dismlered of luorome thane		.33608			
Into Emptrane		.37143		an enega	
eny. Chierice		.26948		Average	
ant cuettant		.l:174		Horaneg e	
iniorpetasae		.25198			
î lu caranileredithene	.7195	.919(5	13.92	Arecaçe	
Poro Lein	.00418	.00455	8.79	Average Hoenege	(Canc=190.00/
The Thirty set its	.1799	75 0 55	.25	Hieroge	
istayi <mark>ene Caloride</mark>		.80871			
-Ultims	.22917	.21197			
larcondisulfice	.98344	.87692	.75	Averaça	
-u/yiihiinsii				-	(Cenc=180.00)
tent-butyl Alconol 7EA				-	(Canc=200.00)
taina-ili-Biotiphocthons	.:1757	.13559	6.79	Avensge	
Tachyl-tart-butyl Etan mTSE	.92128	.7 8956 .73924	3.86	Hverage	
Lyu-licatorpetases	,79749	.78924	1.34	Hveneg e	
viny) mostate	.2553-	.21187	20.15	Hverage	
1.1-1:chipropropane	.67474 \	.:2457		4verage	
cis-1,2-Dichlercethene	.:9191	.58725	. 58	Average	
licino::curomethane SUFR	76461	. 5487c	7, 37 (•	(Conc=30.03/
unioratar <u>m</u>	. 35368 .	1.12231	29.17	Äverage	
1-1-tanane mEn	. 18421	. ୯୬୧ଟୁମୁ	.5.9J (Hverage	
finiteen lanomethane	.58502	49634	22.00 c	Average	
l.l,l-Trich.orethane	.57366	.23058	6.49 €	Hverage	
1.1-Dismioropropene	.16622			Äverage	
โรทอดก โลกคลสหมดคมสะ	. <u>=20+1</u>				
1.2-Dichiorethane		.40793			
110116	.92472			Heraga	
frioniproethene		.38849		Äverage	
l,2-cichicropropane	.379±3			iverage	
promadichioromethane	.57423			everage	
luinsmomethane	.11465	.99395	95.23 H	iverage	
2-Chiorcetnyl vinyl ether	. 17171	.14415	16.05 6	iverage	
ous-LuF-Dichidropropens	9537	.44391	18.39 £	iverage	
วิวไษสกธาชช์ วีปีสีสี	.94524		4.57 8	Average	(Canc=30.00)
Toureme	. 52725			eganaya	
trans-1,3-Diomioropropene	.≏ઇ996				•
L.L.U-Triphiphistaane		.25134			
1,5-Diemiorepropana		.41990			
Tutrain.oneethone	.41501	T30:0	5.22 H	egane.	

^{- -} Response Factor from daily standard file at 20.00 ug/t

[—] □ - Rverage Response Factor from Initial Calibration

il. n.e. 1 Ilinamenconfrom amagana, evenage am almue

Calibration Eneck Report

Title: TECHNICA INC. Seincretes: 000800 10018

Check Standard Data File: >A2250 Injection Time: **8613 10:29

्न (च

会教の「中華をおける」とは**芸術をある**ないというとうと

					-
Terpuns	7.7	==	:2-	Islin "i	
Little in interest	.=:1]-	.=		Hv85125	
2-Diorescethans	.46234 .4779F 2.33437 .638F2 .45324 1.52314	. 43874	7.45	Average	
e intropolitical	1.37-77	1.71546		e itili	
<u>Inleropendene</u>	.63850	67 004	10.00	Average	
1,1,1. Totreomiorectmene	, <u>- # 1414</u>	.41974	7.7 9	Saraji	
j jaylbenzene	1.52714	1.722%	17.06	Avenage	
				T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
an Ny 150a	.4llet	F7302	29.70	Average	
		.0:2:5	26.70	Horataga	
ີ່ຕົວ ວິກິ ວແວ ງເວດນ	13.55	.23949	18.16	Average	•
okanat ji 1rimolahan n1E	::::	35732	22,43	Huart :	
lmaxanore	.29158	.04505	15.67	Average	
Eltulpenzens		1.69671	15.56	EN ITRIE	
1,1,2,2-Tetraomiorethane	.56813	.45574	19.78	Average	
12,3-Trionieropropene	.32983	11032	3.34	Average	
Brome: Luorecenzens 8258	.74057	.77815	5.06	Average	(Conc≠30.00)
usophod uperdene	1.48550	1,4751:	9.97	Avenage	
r-Fregylasniene	2.21834				
		1.17067			
L,T,F-Trimethylbenzene	1.50086	1.59672	13.05	Average	
1-iniprotolueno	1.504-3	Ti=1F		Averege	
Chiorotoluene	1.45977	1.70425	16.75	Áveraga	
an Buly Inches	1.47527	1.57770	.62	Hverage	
Ly2,4-Trimethylpenzens		1.56158			
a-lary menners	2.0-530	1.77291	15.32	Hottii	
J-Brahamasazens	.84621	.05843	13.24	Average	
lugging the constant of the co					
	.79097	.86067	8.81	Avenags	
ings Germanasis de contantant passis		1,2020	7: -7	ii serre	
- Skach Lorobutaciens	.57115	.19437	20.23	Average	
avayer open checkers	. 5489-	.19477 .80219 .49426	Ŧ.+¥	Averije	
วัก เกิร . อักอ	.58381	.49416	15.34	Averaga	
1.5- [®] rioniar <mark>openze</mark> no	757	.4257£	2.80	Averace	

Mage 2 ct 2

⁻ Rosponus Rooter From Deely essentant Asia at 120.00 ugrs

⁻ Hyerage mesponse Factor from Initial Calibration

with - A Difference from chiques, average of ourve

Tailoretion meport

Lalibrated: 010502 10:19

-	riles!	>A2196	>HŽ154	>A215€)A2157	>A2155	ruc a rinara	· -	ر ر نی اندر د	
		HO ²	KF	ŔF	Ŕ	M.		_		
بع	Lomoound	5. 0 0	ŽŮ.ÛŬ	50.00	100.00	150.00	KKT .	Ki .	k RSD	
	Vichlorodii luoromethane	.31349	.41338	. 35677	.36043	41874	355	, 37656	11.514	en en en en en en en en en en en en en e
	Chlorometname	.41111	. 39223	.34843	.35762	.38917	.376	.37971	6.840	the state of the s
(5)	Vinyl Chloride	. 28559	. 38232	. 33129	.35645	.38014	.396	.34716		
:	Bromometnane	. 22021	36420	.22295	.20413	.20416	.438	.24313	28.07i	
	Chloroethane	. 19424	.28192	.15590	.12688	.10139	. 459	.17207		
6)	Trichiorofluoromethans	.69294	. 75363	. <i>7</i> 3950	.74952	.66221	. 489	.71956	5.582	
<u>Z)</u>	Acrolein	. 00397	.00380	. 90491	.00373	. 00449	.547	.00418		(Lonc=25.0,100.0,250.0,500.0,
	1,1-Dichlorostnene	. 48367	.74905	.64010	.64665	.63492	.563	ชิชิบีจัล.	15.034	
	Methylene Chioride	.7862Z	.80777	.58405	.62771	.55239	.648	.67163	17.536	
Ü	Acetone	. 1 <i>7</i> 570	.25120	.23910	.22648	.23329	. 693	.22517	12.926	
	Carbondisulfide	.76877	1.17269	. 79683	`.&3 <i>79</i> &	.84173	.597	.88344	18.622	
2.	Horyionitriis	.06659	.06700	.06017	.05507	. 85524	.684	ίθὑãῦ.	9.592	(Conc=25.0,100.0,250.0,500.0,
.3)	tert-butyl Alcohol TBA	.02628		. 82322	.01997	02025	. ,674	.02157	- 14.833	(Conc=50.0,200.0,500.0,1000.0
	∵trans-1,2-Dichloroethene	.57829	.71453	.60715	.61481	. 59487	. 686	.61393		
•	Methyl-tert-butyl Eter MTBE	.86555	.89 99 7	.78893	.78851	76343	.692	.82128		•
.a.J	1.1-Dichioroethans	.79992	.90707	. <i>7</i> 5û22	.78522	.74603	.763		8.184	
7)	Vinyl Acetate	.19148	.39777	.25340	.23794	.24610	.702	.26534	29.348	
,I	2,2-Dichiéropropane	.69328	.634B6	.64683	.66095	.64779	.877	.65674	3.413	
	cis-l,Ž-Dichloroethene	.65361	.67302	.7i832	.72038	.69421	.878	.69191	4,174	
10)	มีเธอตอร์เอย rometha ne SURR	.70391	.70208	.72720	.70821	.68317	. 983	.7049i	2:231	(Conc=30.0,30.0,30.0,30.0,30.
	Chioroform	.86013	1.11903	.78140	.80313	. Zŧ072	. 948	88888	16:519	
::	2-Butanone HEK	. 04585	.08112	.10917	. 09386	.09130	. 886	. 08426	28.134	•
:3)	Bromochloromethane	. 48125	.61228	.63542	.62364	.57253	.930	.58502	10.708	•
12 L	1,1.1-Trionipretname	.63927	.61869	.68380	.69615	.68042	.955	. 6 73 66	4.646	
: :	1.1-Dichloropropene	. 1873 i	.16799	, 1597ů	.16149	.15507	1.024	. 16622	7.584	
.د.	Lancon Tetrachloride	.57395	.54817	.63083	. <i>7</i> 5521	.59493	1.025	.62062	13.067	
7)	1,2-Dichiorethane	. 48000	.36370	.48292	. 48196	.45198	Û89.I	.45211	11.297	
$A^{2\pi i}$	benzene	.97645	.84742	.93750	.94792	.91430	1.074	.92472	5.259	
	Trichloroethene	.21483	.39882	.38714	. 40662	.37972	1.056	.35743	22.490	
· 👸 🏃	1,2-dichlorooropane	. 23672	.36828	.43914	.44172	,41049	1.108	.37963	22.160	
() h	Bromodichloromethane	.66144	.63197	.68593	.71294	.67886	1.182	.67423	4.453	
<u>:</u>	Dipromomethane	. 14251	.14458	.28198	.28154	. 22270	1.135	.21466	52.265	
رو	2-Chloroetnyl vinyl ether	. 1493 i	.12182	.20158	. 19923	.18661	1.27ì	.17171	20.304	
4)	c:s-1,3-Dichtoropropene	.48576	.44061	.51445	.53296	.50309	1.303	.49537	7.085	
	To Luene-d8 SURR	.960 7 3	.88585	.97656	.96725	. 9 35 <i>7</i> 9	1.377	.94524		(Conc=30.0,30.0,30.0, 30.0 , 30 .
5.	Totuene	.59285	.54361	.56836	.57/02	.55333	1.395	.56715	3.433	
7)	trans-1,3-Dichloropropene	.30130	. 34262	.45157	.44552	.42877	1.467	.40996	11.379	
Ì	1,1,2-Trichioroethane	.33236	.25451	.30082	.29597	.27822	1.519	.29238	Ÿ. B 58	
3	1,3-Uschioropropane	.55200	.41457	.51180	.49395	.45477	1.568	.48142	9. <i>7</i> 53	•

⁻ Response Factor (Subscript is amount in ug/1)

Average Response Factor

Percent Relative Standard Deviation

Average Relative Retention Time (RT Std/RT istd)

Calibration Report

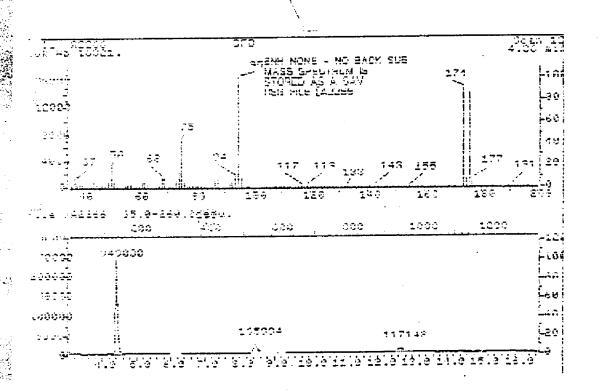
Title: TECHNION INC. Calibrated: 010502 10:19

8.		>A2156 Æ 5.00	>AZ154 RF 20.00	≯A2158 RF 50.00	>A2157 RF 100.00	>A2155 RF 150.00	KRT RE	¥ RSŪ	
-	Tetrachioroethene	.39511	 .40146	.41769	.45825	.42256	1.557 .4150	1 4.145	
		.36312		.51633			1.636 .4625		· · · · · · · · · · · · · · · · · · ·
h	1.2-Dibromoethane	.56592				.36788	.903 .4739		
-	4-isopropyitoiuene				1.20155	.95014	1.472 1.3545		
	En lorobenzene	94491		.90173			.995 .0385		
	1.1.1.2-Tetrachioroethane	. 49737		. 49606		.36888	1.014 .4512		
	Ethylbenzene				1.39031		1.022 1.5231		
	m.p-xviene		1.07842			.7512û	1.046 1.0007		
	o-Xylene	.24448		.51669		. 35596	1.120 .4116	6 27.970	
	Styrene	.56317		.88395		.62093	1.124 .6865	5 30.119	
	Bromators	.31514		. 40676	.24768	.22991	1.152 .2929	û 24.394	į
	4-Dethyl-2-pentanone HIBK	.58411	.46047	. 49178		:31035	.757 7.4636	5 30.766	_
	2-Hexanone	.33965	.32555	.35 <i>7</i> 59	.23440	.19971	.875 .2913	8 23 .9 83	
	n-Butyloenzene	1.75482	1.49007	1.66462	1.33574	1.05300	1.561 1.4596	9 19.096	
	1,1,2,2-Tetrachlorethane	.90208	. 45336	.62866	.46811	.38843	1.264 .5681	36.356	
	1,2,3-Trichloropropane	.31073	. 32464	. 44923	.31093	.25863	1,265 .5290	ā 20.390	
	4-Eromofluoropenzene SURR	.83468	.74648	.84647	.68789	.58785	1.224 .7406	7 14.511	(Conc=30.0,30.0,30.0,30.0,30.
	lscaropylbenzene	1.67386	1.58537	1.66588	1.36095	1.14145	1.198 1.4855		
	n-Fropylbenzene	2.50647	2.31890	2.24551	2.13769	1.88312	.876 2.2183	4 10.396	
	Bromonanzene	1.27269	1.09871	1.07807	.94932	.86249	.851 1.0522	5 14.877	
1)	1.3.5-Trimethylbenzene	1.77157	1.64658	1.51927	1.35922	1,20758	.903 1.5008	6 14.934	
	2-Eniprotoluene	1.97692	1.46461	1.55857	1.26450	1.25777	.882 1.5044	3 19.557	
62)	4-Chlorotoluene	1.44762	1.51868	1.61047	1.43590	1.28620	.898 1.4597	7 8.179	
43)	tert-Butylpenzene	1.55459	1.63881	1.48634	1.30039	1.19621	.948 1.4352	12.734	
11	1,2,4-Trimethylbenzene	1.61720	1.52529	1.41131	1.23549	1.11983	.956 1.3818		
4/1	sec-dutyipenzene	2.40651	2.28365		1.81469		.981 2.0403		
	1,3-Dichloropenzene	1.05339	.91008	.85617	.75944	.67195	.989 .8462		
77	1.4-Dichioropenzene	1.30451	1.05937	.93132	.81730	.72009	1.003 .9663		
27	1,2-Dichlorobenzene	.99125	.85949	. 78545	. 7ū235	.62734	1.055 .7909	7 17.693	·
	1,2-Dipromo-3-chicropropane	.05970	. 09059	.12109	.0895a8	.08183	1.174 .0877		
	Hexachlorobutadiene	.51524	.30330	.32587	. 12536	.08584	1.337 .2311		
J	1,2,4-Trichloropenzene	.60597	.57337	.59926	.51303	. 45259	1.302 .5498		
	Naphthalene	.65254	.58236	.78111	. 48767	. 43559	1.335 .5838		
75 J	i,2,5-Trichioropenzene	.34265	.45543	.53168	.40617	.35340	1.374 .4178	7 18.658	

⁻ Response factor (Subscript is amount in ug/1)

dil - Average Relative Retention Time (RT Std/RT Istd)

Hverage Response Factor


TU - Percent Relative Stangard Deviation

CARCE FERROMEROE STANDARD

Harmofloorobeniene (E-H)

•		% Relative Abundance				
=	jyn +⊒Eryaarya Eriteria		Hpumpph.ate Peak	Status		
4 25 175 175 175 174	19-40% or mass 70 11 cl. 1- 100 PS dase peak, 100% relative abundance 100% relative abundance 100% relative abundance 100% of mass 17- 100% of mass 17- 10-9% of mass 17- 10-9% of mass 17- 10-9% of mass 17-	100.00 7.27 0.00 90.25	18.32 43.80 100.00 7.07 0.00 90.07 7.09 96.17	0k 0k 0k 0k 0k 0k 0k		

Injection Date: '06/18/**
Minjection Time: 10:37
Date File: AADDa6

withorstion theck Report

Title: TECHNICK NO. Calibrated: 010502 10:19

Check Standard Date File: PADDED

Injection Time: **0618 11:21

•				•	
Compound	FF	FF	\$91ff	Calib Meth	
Iniorocificaromethane	.37656	.41045	9.00	Áverage	
.orguetnane	1797;			Average	
invi Enioride	.34716			Äverage	
Made thank	.24717	.51112		Huerage	
oroethane	.17297			Average	
fishiorof.uoromethene	7145			Average	
groiein	.09418			Äverage	(Conc=100.00)
-Dichierce if ene	.63089			Average	
Sthylene Chioride	.67163			Average	
petone ditol to	.07107			Average	
Bonalsulfice		1.20976		Average	
reignithire	.06081			Average	(Canc=190.90)
ent-butyi Riconoli TBA	.02157			Average	(Conc=200.00)
	.61393			Average	(EBNC-200.00)
This-1,2-Dichionosthens	.82128			Average Average	
hyl-tert-butyl Eter NTBE	.79769			-	
.i-Dichiprostname	.26534			Average Average	
ingi Hoetate		.44727 .55855		Average	
-Bichioreprobage				Average A	
-1,2-Dichlorosthems		.70387	1.73 6.56	Average	/7 76 86 .
icomprisonomethane SURE		72844		Hverage /	(Conc=30.00)
foreferm _		.99728		Average	
utenone REX		.13370		Herije	
romochieromethane		.÷÷84û		Average	
işleliniinne chese				Historia	
-Dionicropropens		.15816		Averaga	
ಚಿತ್ರವರ ಗಿಲ್ಲಾಗಿಯ ಸಂಪರ್ಕಾ		.:4913		-064519	
2-Dichlerethane		.41161		Average	
State Voget of the		.9 4015	2.72	-lemage	
-mohiorcethene	.35743	39495	10.50	Average	
yž-6:00.comupicyene	.37:±I	.5225.	11.17	Statega .	
rmodichioromethane		.68753	1.97	Average	
postue thank	.21-00	.1410 6	12.30 (Hyerige	
-Unionaethyl vinyl ether	.17171	. 15928	7.24 (Average	
ວຣ=ນຸລິດພົບວານສະປຸຊະພຽຍນຮ	47777	. 47464	4.19	Hverage	
uene-dä SURR	.94524	.89759	5.04 (Average	(Conc=30.00)
Lucent	.56715	.5±£00	.20 6	evenege	
rans-1,3-0ionloropropene		.37403		Average	
"Î-Îrlonic roe th ane		.28113		iveraçe	
-Dichleregrepane	.48142			iverage	
etrachiorosthens	.41501	.49676		iverage	•
-				* · -1.	

⁻ Response Factor from easily standard file at 20.00 up/1

Page 1 of 2

⁻ Average Response factor from Initial Calibration

Diff - % Difference from original average or curve

Calibration Check Report

Title: TECHNION INC. Calibrated: 010502 10:19

Check Standard Data File: >A2267 injection Time: **0618 11:21

Compound	F	₽ .	12111	Calib Meth	•
bromochloromethane	:±05∧	.45750	: Aú	Guerane	
eremosnioremsinana	2274	.51571	2 Ai	Averege Overage	
.2-Dibromoethane		1.56665		Average Average	
4-Isopropy:to:uene		.95228		Average	
loropenzene		.49482		Hverage	
1,1.2-Tetrachloresthans					
•		1.73724			
Page x y 1 en s		1.16789		Average	
Xy lens		.54269		-	
: Grene		13698. azaza			
iromotora		.22839			
•		.48209			
. jexanona	.27138	.29815	2.32	Hoerage	
Entriporations	1.45555	1.70541	16.84	Average	
1,2,2°Tetrachiorethane	.76813	.61873 .39311	5.71	Hverage	
. 0,0-ໂຕເລກພວກວຽຕອຽຍຕອ	.32903	.39311	19.48	Average	
4-Brome: learosenzene SüRR	.74967	.79855	7.81	Average	(Canc=30.00)
iappropylicenzene	48770	1.65/60	11.59	Average	
- Propylaenzene		2.60191			
		1.15700			
		1.62495			
: Dicento idens	1.50443	1.61054	7.05	Average	
- Inlanataluene		11.61054		Average	
.ert-Eutvisenzens		1,45194		ลักรายกล	
: 0,4−Trimethylbanzana	1.58182	1.52172	10.12	Averace	
- อื่องจะเออกออกอ	1.94070	2.22623	. 5.11	Hyerale	
>-Dichiorobenzene	.84671	.94094	11.19	Average	
	.96832	2.22423 .94894 .91492	5.32	Avenage	
-Dichlarobenzene	.79097	3616E.	8,94	Average	
e-1.orpo-5-ahisi epi opek	.08778	.09312	5.31	Averaja	
exachicroputaciena	.23112	.59579	157.78	Average	
7,4-Thiminperses					
i hthelene		.57352			
,2,3-Trichionadensess		. 44794			

Page 2 of 2

Response Factor from Larry atempand file at | 20.00 ug/1

Average Response Factor from Initial Calibration

⁰iff - 30ifference from original everage or ourse

CLIENT: Ammco SAMPLE MATRIX: Water LAB ID: 2586-2 DATE RECEIVED: 06/08/01

SAMPLE I.D.: MW-4 DATE EXTRACTED: 06/18/01
PROJECT: 90059-20 DATE ANALYZED: 06/21/01 and 09/12/0]

PROJECT: 90059-20 DATE ANALYZED: 06/2
UNITS: mg/l MOISTURE: N/A

DUPLICATE RESULTS SUMMARY (Metals)

<u>Parameter</u>	Results	Duplicate	RPD
Arsenic	<0.008	<0.008	0
Aluminum	<0.01	<0.01	0

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

LAB ID: 2586-2

SAMPLE MATRIX: Water

DATE RECEIVED: N/A

SAMPLE I.D.: N/A DATE EXTRACTED: N/A PROJECT: N/A DATE ANALYZED: See Below

PROJECT: N/A DATE ANALYZED: See
UNITS: mg/l MOISTURE: N/A

INORGANIC CALIBRATION SUMMARY

Parameter	True Conc. for Initial Cal Std.	Reported Conc. For Initial Cal.	% R	MDL	Date <u>Analyzed</u>
Arsenic	1. 0.1 2. 0.2	1. 0.1 2. 0.2	100 100	0.008	09/12/01
	3. 0.3	3. 0.3	100		
Aluminum	1. 2	1. 1.8	90	0.01	06/21/01
	2. 10	2. 10.5	105		
	3. 20	3. 17.5	88		

CLIENT: Ammco SAMPLE MATRIX: Water

LAB ID: 2586-2 DATE RECEIVED: 06/08/01 SAMPLE I.D.: MW-4 DATE EXTRACTED: 06/18/01

PROJECT: 90059-02 DATE ANALYZED: 06/21/01 and 09/12/01

UNITS: mg/kg MOISTURE: N/A

MS (Metals)

Parameter	Results	Spike Added	Spike Results	MSD	(%) R <u>M</u> S	(%) R MSD	RPD
Arsenic	N.D.	0.2	0.165	0.170	82.5	85	3%
Aluminum	N.D.	2.0	1.8	1.8	90	90	0%

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

LAB ID: 2586-2

SAMPLE I.D.: MW-4

PROJECT: 90059-20

UNITS: mg/l

SAMPLE MATRIX: Water

DATE RECEIVED: 06/08/01
DATE ANALYZED: 06/21/01

MOISTURE: N/A

DILUTION FACTOR: 1

CHECK STANDARD

Parameters	Check Sample True Value	Results	Percent Recovery
Arsenic	0.1	0.1	100
Aluminum	2.0	1.8	90

TECHNION, INC. TESTING & RESEARCH LABORATORIES 187 Washington Avenue Nutley, New Jersey 07110

ANALYTICAL DATA REPORT ST.

PREPARED FOR: Ammco

65 Passaic Avenue Kearny, NJ 07032 Attn: Ivan Rosalsky

LAB ID: 2762

PROJECT: American Modern Metals

PROJECT NO.: 90059-28

DATE RECEIVED: August 1, 2001

DATE REPORTED: August 17, 2001

RELEASE OF THE DATA CONTAINED IN THIS HARD COPY DATA PACKAGE HAS BEEN AUTHORIZED BY THE LABORATORY DIRECTOR AS VERIFIED BY THE FOLLOWING SIGNATURE.

Susan Baturay, D.Sc. Ph.D.

28 Baturay

Laboratory Director

PARTIE OF CONFUNITE

TITLE	PAGE
Cover Page	1
Cross Reference Table	2
Chain of Custody Forms	3 - 4
Methodology Review	5
Laboratory Chronicle	6
Nonconformance Summary	7 - 8
Volatile Organic+10 Analysis Data Sheets	9 - 34
Metals (Aluminum and Arsenic) Analysis Data Sheets	35 - 39
Quality Assurance Quality Control (QA/QC)	
Volatile Organics+10 QA/QC	40 - 79
MS/MSD Method Blank Initial/Continuing Calibration Summary Tune Summary	
Metals (Arsenic, Aluminum) QA/QC	80 - 83
Duplicate Results Summary	

Duplicate Results Summary Inorganic Calibration Summary MS/MSD Check Standard

187 Washington Avenue

Nutley, New Jersey 07110

Tel No.: (973) 661-0800 Fax No.: (973) 661-1817

> NJDEPE No.: - 07004 WBE No.: - 222141738 AIHA No.: - 18458

ANALYTICAL REPORT

CLIENT: Ammco

DATE: 08/17/01

CLIENT REF: Project No. 90059-28

TECHNION REF: 2762

MATERIAL: Fifteen (15) Aqueous

DATE RECEIVED: 08/01/01

Samples

LAB ID: 01:2762

PROJECT: American Modern Metals

ANALYSIS REQ: Volatile Organics+10, and Metals (Aluminum and Arsenic)

ANALYST: Y. Bella, Y. Yildez

The above sample(s) were received on 08/01/01 and analyzed as requested.

CERTIFICATE OF ANALYSIS

ALL TEST RESULTS ARE AS ATTACHED.

RELEASE OF THE DATA CONTAINED IN THIS HARD COPY DATA PACKAGE HAS BEEN AUTHORIZED BY THE LABORATORY DIRECTOR AS VERFIED BY THE FOLLOWING SIGNATURE.

Susan E. Baturay, DSc, PhD

Laboratory Director

SB/hew

.م.ر. س

CLIENT: Ammco LAB ID(s): 2762

DATE: 08/17/01 PROJECT: 90059-28

MATRIX: Aqueous

CROSS REFERENCE TABLE

Sample ID	Sample Location	Lab ID	
2018	BEC-18S	2762-1	
2012	BEC-12S	2762-2	
2001	MW-1	2762-3	
2101	BEC-1D	2762-4	
2008	MW-8	2762-5	
2016	BEC-16S	2762-6	
2017	BEC-17S	2762-7	
2108	MW-8	2762-8	
1001	Field Blank	2762-9	
1002	Trip Blank	2762-10	
2009	MW-9	2762-11	
2011	BEC-11S	2762-12	
2004	MW-4	2762-13	
2015	BEC-15S	2762-14	
2014	BEC-14S	2762-15	ር ሱ 🗥

	SITE NAME: American Aladian Metals STREET ADDRESS: Be laroue Have PROJECT MANAGER: Don Bello									PROJECT NUMBER: 90059-28 CITY/STATE: Kenny, UT LABORATORY: Teginion						
1	SAMPLE NUMBER	COLLEC	TED_ TIME	SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE MATRIX	G	(d i	A	YALY	SES		LAB NO.	CO	MMENTS/ADDITIONAL ANYLSES	
'	2018	7/30/4	1755	BPC-185		404	X							01	6 410	
<u>;</u>	જેઇ 12		1400	BEC-BS			X							(2) 1	(laminam	
ŝ	२००।		i . 1	MW-1			X							(3)	Irsenic -	
"	2101		1555	BO-10			X								<u> </u>	
5	२००४		1515	M W-S			X	_ .			_			<u> </u>		
Ŀ	£56.6		1310	BCC·KAS			X					-	ļ	ļ		
,	2017		1615	BCC-175			X	_ -			_			<u> </u>		
	2108		1515	MW-8			\times	_				_		ļ		
9	1001			Fieldbland			\times	\times	<u> </u>							
/0	1002			triphlank			X							<u> </u>		
11	2009	7/3/101	1045	MW-9			x	\times								
/ 2.	<u>2011</u>	\downarrow		BEC-115				X					,1			
	SAMPLED	BY: Ka	ea Ru	in/Michael	Kinhan kuuer-	SIGNATI	JRE:	Z	ant	20,	ZAL	4.11	Extreb.	/ SI	IIPPED BY:	
	PRESERVA	ATIVE AD	DED:	то емрту	CONTAINERS:			10	v site	:		INI	AB:	PF	RESERVED BY:	
	темр (°С)	AT TIME	OF LAB	RECEIPT:												
	SAMPLE NO. 1000-1999 2000-2999 3000-3999	000-1999 000-2999 TEST WELL WATER 000-3999 SURFACE WATER 000-4999 POTABLE WATER 11/ME/DATE: 7/3/0/ 1000-5999 LEACHATE 1000-7999 WASTE 11/ME/DATE: 7/3/0/ 11/ME/DATE:		RELINQU 2) TIME/DA					33	-	ISHED BY:		RELINQUISHED BY: 4) TIME/DATE:			
	4000-4999 5000-5999 6000-6999 7000-7999 8000-8999				RECIEVE 2) TIME/DA					RECIEVED BY: 3)TIME/DATE:				RECIVED BY: 4) TIME/DATE:		

ယ

× 160

CHAIN OF CUSTODY RECORD PAGE 2 OF 2

SITE NAME: A INCICCO Modern Metals STREET ADDRESS: Believer And PROJECT MANAGER: Din Bollo								ROJI ZITY/ ABC	ECT N STAT RATC	UMBE E: RY:	:R: ,	90 Tx	1059-28 14 . N.T 12 hnion		
SAMPLE NUMBER	COLLEC DATE	TED_ TIME	SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE MATRIX	7)1	<u> </u>	33	ANA	YSE			LAB NO.	CC	MMENTS/ADDITIONAL ANYLSES
1200K	7/31/0	245-	MW-4		AQU		Ź	X							
2015	7/3/61	135	PPO-155			X									
2014	1	ડ્રેટ્સ્ડ	Ben-145			X	_								
						_	-								
								\dashv	_					···	
							寸								
														-	
	 :													·	
SAMPLED	BY: ⊀Q	KENI	Rupin Mi	Miel Kirche	~ Ł ĘĮĢŅĄ ŢŪ	IRĘ:	K	inf	Rue	7/	Medi	M	Kihula	SI	HIPPED BY:
PRESERVA	ATIVE ADI	DED:	TO EMPTY	CONTAINERS:			0	N SIT	re: _		_	IN L	AB:	_ PF	RESERVED BY:
TEMP (°C)	AT TIME	OF LAB	RECEIPT:												
<u>SAMPLE NO.</u> 1000-1999 1000-2999 1000-3999 4000-4999	TYPE BLANKS TEST WELL SURFACE W	VATER	RELINQUISHED BY: RELINQUISHED BY: 1)							1 1	RELINQUISHED BY: 3)TIME/DATE:			RELINQUISHED BY: 4) TIME/DATE:	
5000-5999 6000-6999 7000-7999 8000-8999 9000-9999	00-3999 LEACHATE 00-6999 SOIL & SEDIMENT 100-7999 WASTE 1) TIME/DATE: 9 (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d] 3	RECIEVED BY: 3) TIME/DATE:				RECIVED BY: 4) TIME/DATE:			

CLIENT: Ammco LAB ID(s): 2762

DATE: 08/17/01 PROJECT: 90059-28

METHODOLOGY REVIEW

Parameter	EPA Method				
Volatile Organics+10	624				
Arsenic	206.2				
Aluminum	202.1				

CLIENT: Ammco

DATE RECEIVED: 08/01/01

LAB ID: See Below

PROJECT: 90059-28

LABORATORY CHRONICLE

			DATE EX	TRACTED/		
	HOLDING TI	ME	DIGESTE	D	DATE ANAI	YZED
LAB ID	VOA+10	Metals	VOA+10	Metals	VOA+10	Metals
2762-1	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-2	7/40 Days	и\a	N/A	N/A	08/09/01	N/A
2762-3	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-4	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-5	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-6	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-7	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-8	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-9	7/40 Days	6 Months	N/A	08/08/01	08/09/01	08/14/01
2762-10	7/40 Days	N/A	N/A	N/A	08/ /01	N/A
2762-11	7/40 Days	6 Months	N/A	08/08/01	08/09/01	08/14/01
2762-12	N/A	6 Months	N/A	08/08/01	N/A	08/14/01
2762-13	N/A	6 Months	N/A	08/08/01	N/A	08/14/01
2762-14	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-15	7/40 Days	N/A	N/A	N/A	08/09/01	N/A

CLIENT: Ammco

DATE RECEIVED: 08/01/01

LAB ID: See Below

PROJECT: 90059-28

2762

LABORATORY CHRONICLE

				TRACTED/		-
	HOLDING TI		DIGESTE		DATE ANAI	
LAB ID	VOA+10	Metals	VOA+10	Metals	VOA+10	Metals
2762-1	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-2	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-3	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-4	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-5	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-6	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-7	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-8	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-9	7/40 Days	6 Months	N/A	08/08/01	08/09/01	08/14/01 000 9/12/
2762-10	7/40 Days	N/A	N/A	N/A	08/ /01	N/A
2762-11	7/40 Days	6 Months	N/A	08/08/01	08/09/01	08/14/01
2762-12	N/A	6 Months	N/A	08/08/01	N/A	08/14/01
2762-13	N/A	6 Months	N/A	08/08/01	N/A	08/14/01 소리 역 11
2762-14	7/40 Days	N/A	N/A	N/A	08/09/01	N/A
2762-15	7/40 Days	N/A	N/A	N/A	08/09/01	N/A

Reviset 9/12

CLIENT: Ammco

LAB ID: 2762

DATE: 08/17/01

PROJECT: 90059-28

STATEMENT OF NONCONFORMANCE

All parameters are in total compliance with Volatile Organics+1 (624), Arsenic (206.2), Aluminum (202.1), and Quality Control/Quality Assurance Requirements.

Omar Baturay

Laboratory Manager

CLIENT: Ammco
DATE: 08/17/01

LAB ID: 2762 PROJECT: 90059-28

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

		Мо	Yes
1.	GC/MS Tune Specifications		v
	a. BFB passed		-≎-
	b. DFTPP passed		_^_
2.	GC/MS Tuning Frequency - Performed every 12 hours		_x_
3.	GC/MS Calibration - Initial Calibration		
	performed within 30 days before sample analysis		
	and continuing calibration performed within 24		
	hours before sample analysis		_x_
4.	GC/MS Calibration Requirements		
•	a. Calibration Check Compounds		Y
	b. System Performance Check Compounds		-;;-
	D. System relicimance check compounds		_^_
5.	Blank Contamination - List compounds for each fraction	_x_	
	a. VOA Fraction:		
	b. B/N Fraction:		
	c. Acid Fraction:	-	·
6.	Surrogate Recoveries Meet Criteria (if not met; list those compounds and their recoveries which fall outside the acceptable range) a. VOA Fraction b. B/N Fraction		_x_
	c. Acid Fraction		
7.	Extraction Holding Time Met Comments:		_x_
8.	Analysis Holding Time Met Comments:		_x_
	Additional Comments:		
	The in the	<i>;</i>	
Labora	atory Manager MM Mt Date: 3/17/	01	
nonco	n		

WOLATELE ORGANIES LO ANALYSIS DATA SHDEUS

CLIENT: Ammco SAMPLE ID: 2018

LAB ID: 2762-1 LAB FILE ID: >A2375

PROJECT: 90059-28 DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01 SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-12:39 MATRIX: Water

DESCRIPTION: BEC-18S

(EPA Method 624) UNITS: μg/l(ppb)

EPA Method 624)		ONIIS. pg/1(pps/		
		METHOD	DETECTION	
PARAMETER	RESULTS	BLANK	LIMIT	
Acetone	1 0	1 0	1	
Benzene	1 0	1 U	1	
2-Butanone	1 U	1 U	1	
Bromodichloromethane	1 U	1 U	1	
Bromoform	1 U	1 U	1	
Bromomethane	4 U	4 U	4	
Chlorobenzene	1 U	1 U	1	
Carbon Tetrachloride	1 U	1 U	1	
Chloroethane	5 ប	5 U	5	
2-Chloroethylvinyl ether	5 U	5 Ü	5	
Chloroform	1 U	1 U	1	
Chloromethane	5 U	5 U	5	
Dibromochloromethane	2	1 U	1	
1,3-Dichlorobenzene	1 U	1 U	1	
1,4-Dichlorobenzene	2 U	2 U	2	
1,2-Dichlorobenzene	1 U	1 U	1	
1,1-Dichloroethane	1 U	1 U	1	
1,2-Dichloroethane	1 U	1 U	1	
trans-1,2-Dichloroethene	0.4 J	1 U	1	
l,1-Dichloroethene	1 U	1 U	1	
, 2-Dichloropropane	1 0	1 U	1	
cis-1,2-Dichloroethene	157	1 U	1	
trans-1,3-dichloropropene	1 U·	1 U	1	
cis-1,3-dichloropropene		1 U	1	
Ethylbenzene	1 U	1 0	1	
Methylene Chloride	1 U	1 U	1	
Naphthalene	1 0	1 0	1	
1,1,2,2-Tetrachloroethane	1 0	1 Ü	1	
Tetrachloroethene	0.9 J	1 0	ī	
Toluene	1 0	1 0	î	
l,1,1-Trichloroethane	1 0	1 0	i	
1,1,2-Trichloroethane	2 U	2 Ü	2	
Trichloroethene	281	1 0	1	
Trichlorofluoromethane	5 U	5 Ü	5	
Vinyl Chloride	3 U	3 U	3	
o-Xylene	1 U	1 0	1	
m,p-Xylenes	1 0	1 0	1	
m,p-xylenes tert-butyl benzene	1 U	. 1 0	1	
cerc-puckt pensene	1 0	1 0	1	

- U Indicates that the compound was analyzed for but not detected.
- B Indicates that the compound was found in the blank, as well as the sample.
- J Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 2018

LAB ID: 2762-1

LAB FILE ID: >A2375

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

(EPA Method 624)

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-12:39 .

MATRIX: Water

DESCRIPTION: BEC-18S

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

SAMPLE ID: 2012 CLIENT: Ammco LAB ID: 2762-2 LAB FILE ID: >A2376

PROJECT: 90059-28 DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml DATE RECEIVED: 08/01/01

GC COLUMN: DB 624 DATE EXTRACTED: N/A MATRIX: Water

DATE ANALYZED: 08/09/01-13:35 **DESCRIPTION: BEC-12S**

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4. U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	. 1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 Ü	5
Chloroform	1 U	1 U	1
Chloromethane	5 บ	5 U	5
Dibromochloromethane	6	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	828	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	3	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	191	1 υ	1
Trichlorofluoromethane	0.3 J	5 U	5
Vinyl Chloride	16 J	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit. NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 2012

LAB ID: 2762-2

LAB FILE ID: >A2376

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-13:35

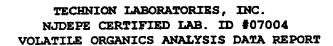
(EPA Method 624)

MATRIX: Water

DESCRIPTION: BEC-12S

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS


No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco LAB ID: 2762-3

SAMPLE ID: 2001 LAB FILE ID: >A2377 **PROJECT:** 90059-28 DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01 DATE EXTRACTED: N/A

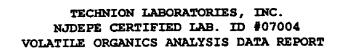
SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-14:29

MATRIX: Water

DESCRIPTION: MW-1

(EPA Method 624)


UNITS: µg/l(ppb)

			ME'	THOD	DETECTION	1
PARAMETER	RE	SULTS_	BL	ANK	LIMIT	
Acetone	1	Ü	1	U	1	
Benzene	1	U	1	Ŭ	1	
2-Butanone	1		1	Ū	1	
Bromodichloromethane	1	U	1	Ū	1	
Bromoform	1	υ	1	Ū	1	
Bromomethane	4	U	4	Ū	4	
Chlorobenzene	1	Ü	1	Ū	1	
Carbon Tetrachloride	1	Ü	1	Ū	1	
Chloroethane	5	U	5	Ū	5	
2-Chloroethylvinyl ether	5	Ü	5	Ū	5	
Chloroform	1	U	1	Ū	1	
Chloromethane	5	U	5	U	5	
Dibromochloromethane	1	U	1	ប	1	
1,3-Dichlorobenzene	1	υ	1	U	1	
1,4-Dichlorobenzene	2	U	2	Ü	2	
1,2-Dichlorobenzene	1	U	1	Ū	1	
1,1-Dichloroethane	1	U	1	U	1	
1,2-Dichloroethane	1	U	1	U	1	
trans-1,2-Dichloroethene	1	U	1	ט	1	
1,1-Dichloroethene	1	U	. 1	ט	1	
1,2-Dichloropropane	1	Ū	1	ט	1	
cis-1,2-Dichloroethene	1	U	1	υ	1	
trans-1,3-dichloropropene	1	U	1	ט	1	
cis-1,3-dichloropropene		U	1	U	1	
Ethylbenzene	1	Ü	1	U	1	
Methylene Chloride	1	Ū	1	U	1	
Naphthalene	1	U	1	U	1	
1,1,2,2-Tetrachloroethane	1	U	1	υ	1	
Tetrachloroethene	1	U ·	1	U	1	
Toluene	1	U	1	υ	1	
1,1,1-Trichloroethane	1	U	1	Ū	1	
1,1,2-Trichloroethane	2	Ü	2	Ü	2	
Trichloroethene	_	Ü		Ü	1	
Trichlorofluoromethane	5	U	_	Ü	5	
Vinyl Chloride	_	Ü		Ü	3	
o-Xylene	_	Ü	1	-	1	
m,p-Xylenes	_	Ü	ī	_	1	
m, 5, 111 x 01100	•	-	_	~	-	

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit. NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco SAMPLE ID: 2001

LAB ID: 2762-3 LAB FILE ID: >A2377

PROJECT: 90059-28 DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01 SAMPLE VOLUME: 5 ml
DATE EXTRACTED: N/A GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-14:29 MATRIX: Water

DESCRIPTION: MW-1

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 3

COMPOUND	RT	RESULTS
4-Isopropyltoluene	23.55	2.24
n-propylbenzene	19.93	1.56
1.2.4-Trimethylbenzene	21.74	10.51

CLIENT: Ammco LAB ID: 2762-4

SAMPLE ID: 2101 LAB FILE ID: >A2378

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE EXTRACTED: N/A

DATE ANALYZED: 08/09/01-14:29

MATRIX: Water

DESCRIPTION: BEC-1D

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	6	1 U	1
Bromodichloromethane	4	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 บ	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	22	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	3	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	0.8	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene		1 0	1
1,1-Dichloroethene	1 U	1 0	1
1,2-Dichloropropane	1 J	1 U	1
cis-1,2-Dichloroethene	21	1 U	1
trans-1,3-dichloropropene		1 U	1
cis-1,3-dichloropropene		1 0	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	2	1 U	1
Naphthalene	1 0	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	0.7	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 0	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	193	1 U	1
Trichlorofluoromethane	5 Ü	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 υ	1 U	1

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2101

LAB ID: 2762-4

LAB FILE ID: >A2378

PROJECT: 90059-28 DATE RECEIVED: 08/01/01

DILUTION FACTOR: 1

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-14:29

MATRIX: Water

DESCRIPTION: BEC-1D

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco **LAB ID:** 2762-5

LAB FILE ID: >A2379 DILUTION FACTOR: 1 PROJECT: 90059-28 **SAMPLE VOLUME:** 5 ml

DATE RECEIVED: 08/01/01 DATE EXTRACTED: N/A

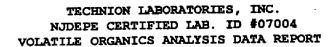
GC COLUMN: DB 624 MATRIX: Water DATE ANALYZED: 08/09/01-16:12

DESCRIPTION: MW-8

(EPA Method 624)

UNITS: µg/l(ppb)

SAMPLE ID: 2008


		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 0	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	13	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 ·U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	, 1 U	1
Chloroethane	5 บ	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 บั	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 Ü	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 ט	1 U	1
1,1-Dichloroethene	1 U	1 U '	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U -	1 0	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	0.7	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 Ü	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2008

LAB ID: 2762-5

LAB FILE ID: >A2379

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-16:12

DESCRIPTION: MW-8

MATRIX: Water

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 1

COMPOUND

RT

RESULTS

Tert-butyl Alcohol

4.75

2.59

CLIENT: Ammco **LAB ID:** 2762-6

SAMPLE ID: 2016 LAB FILE ID: >A2380

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE EXTRACTED: N/A

MATRIX: Water

DATE ANALYZED: 08/09/01-17:01

DESCRIPTION: BEC-16S

(EPA Method 624)

UNITS: µg/l(ppb)

			ME:	THOD	D	ETECTION
PARAMETER	RES	SULTS_	BL	ANK	L	IMIT
Acetone	1	U	1	U		1
Benzene	1	U	1	U		1
2-Butanone	1		1	U		1
Bromodichloromethane	1	U	1	U		1
Bromoform	1	U	1	U		1
Bromomethane	4	Ū	4	U		4
Chlorobenzene	1	U	1	U		1
Carbon Tetrachloride	1	Ü	1	U		1
Chloroethane	5	U	5	Ü		5
2-Chloroethylvinyl ether	5	ប	5	U		5
Chloroform	1	Ü	1	U		1
Chloromethane	5	U	5	Ü		5
Dibromochloromethane	2		1	Ü		1
1,3-Dichlorobenzene	1	U	1	U		1
1,4-Dichlorobenzene	2	U	2	Ü		2
1,2-Dichlorobenzene	1	U	1	U		1
1,1-Dichloroethane	1	Ū	1	Ü		1
1,2-Dichloroethane	1	Ü	1	U		1
trans-1,2-Dichloroethene	1	ប	1	Ü		1
1,1-Dichloroethene	1	U	1	U		1
1,2-Dichloropropane	1	U	1	U		1
cis-1,2-Dichloroethene	19		1	Ų		1
trans-1,3-dichloropropene	1	U	1	U		1
cis-1,3-dichloropropene		ū	1	U		1
Ethylbenzene	1	Ü	1	ט		1
Methylene Chloride	1	Ū	1	Ū		1
Naphthalene	1	U	1	Ū		1
1,1,2,2-Tetrachloroethane	1	U	1	Ū		1
Tetrachloroethene	1		1	Ū		1
Toluene	1	U	1	U		1
1,1,1-Trichloroethane	1	Ü	1	U		1
1,1,2-Trichloroethane	2	U	2	U		2
Trichloroethene	107	7	1	U		1
Trichlorofluoromethane	5	U	5	Ŭ		5
Vinyl Chloride	3	U	3	U		3
o-Xylene	1	U	1	U		1
m,p-Xylenes	1	U	1	U		1
tert-butyl Alcohol	1	U	1	Ü		1
-						

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

19

 $\mathcal{L}_{\mathcal{L}}$

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2016

LAB ID: 2762-6

LAB FILE ID: >A2380

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-17:01

(EPA Method 624)

MATRIX: Water

DESCRIPTION: BEC-16S

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco LAB ID: 2762-7

PROJECT: 90059-28 DATE RECEIVED: 08/01/01 DATE EXTRACTED: N/A

DATE ANALYZED: 08/09/01-17:48 **DESCRIPTION:** BEC-17S

LAB FILE ID: >A2381 DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml GC COLUMN: DB 624 MATRIX: Water

UNITS: µg/l(ppb)

METHOD DETECTION

SAMPLE ID: 2017

Trichlorofluoromethane

Vinyl Chloride

o-Xylene

m,p-Xylenes

(EPA Method 624)

PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	2	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1

1,2-Dichloroethane 1 U 1 U 1 U 1 U trans-1,2-Dichloroethene 1 1 U 1 U 1,1-Dichloroethene 1 U 1,2-Dichloropropane 1 U 1 cis-1,2-Dichloroethene 1 U 1 Ü 1 trans-1,3-dichloropropene 1 U 1 U 1 cis-1,3-dichloropropene 1 U 1 U 1 1 U 1 U Ethylbenzene
Methylene Chloride Ethylbenzene 1 U 1 U Naphthalene 1 U 1 U 1,1,2,2-Tetrachloroethane 1 U 1 U 1 U Tetrachloroethene 1 U 1 1 U Toluene 1 U 1 1,1,1-Trichloroethane 1 U 1 U 1 1,1,2-Trichloroethane 2 U 2 U 2 Trichloroethene 1 U 1 U 1

5 U

3 U

1 U

1 U

1

5 U

3 U

1 U

1 U

NOTE: Detection limits and results are an average of duplicate runs.

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria 🤺 🗍 but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2017

LAB ID: 2762-7

LAB FILE ID: >A2381

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

MATRIX: Water

(EPA Method 624)

DATE ANALYZED: 08/09/01-17:48

DESCRIPTION: BEC-17S

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco
LAB ID: 2762-8

SAMPLE ID: 2108
LAB FILE ID: >A2382
DILUTION FACTOR: 1

PROJECT: 90059-28
DATE RECEIVED: 08/01/01
DATE EXTRACTED: N/A

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-18:33

MATRIX: Water

DESCRIPTION: MW-8

(EPA Method 624)

fall)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	2	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 0	1 .U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 บ	5 Ų	5
Dibromochloromethane	iυ	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 υ	1 0	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 0	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 Ü	5 Ū	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	ī
m,p-Xylenes	ī Ū	1 0	1
Methyl tert-butyl-Alcohol	1 U	1 U	1
1		_ ·	

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2108

LAB ID: 2762-8

LAB FILE ID: >A2382

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-18:33

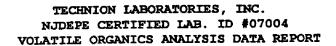
DESCRIPTION: MW-8

MATRIX: Water

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS


No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco LAB ID: 2762-9

SAMPLE ID: 1001 LAB FILE ID: >A2383

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE EXTRACTED: N/A

MATRIX: Water

DATE ANALYZED: 08/09/01-19:18

DESCRIPTION: Field Blank

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS_	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 บ	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 0	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 0	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 บั	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 บ	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit. NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 1001

LAB ID: 2762-9

LAB FILE ID: >A2383

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-19:18

MATRIX: Water

DESCRIPTION: Field Blank

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco LAB ID: 2762-10 PROJECT: 90059-28 SAMPLE ID: 1002
LAB FILE ID: >A2384
DILUTION FACTOR: 1
SAMPLE VOLUME: 5 ml

DATE RECEIVED: 08/01/01 DATE EXTRACTED: N/A SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-20:02

MATRIX: Water

DESCRIPTION: Trip Blank

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 0	1 U	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	່າ ປ	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 ប	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m,p-Xylenes	1 U	1 U	1

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as

the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 1002

LAB ID: 2762-10

LAB FILE ID: >A2384

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-20:02

MATRIX: Water

DESCRIPTION: Trip Blank

(EPA Method 624)

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

će 28

CLIENT: Ammco LAB ID: 2762-11

SAMPLE ID: 2009 LAB FILE ID: >A2385

PROJECT: 90059-28 DATE RECEIVED: 08/01/01 DILUTION FACTOR: 1

DATE EXTRACTED: N/A

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-21:16

MATRIX: Water

DESCRIPTION: MW-9

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 ⋅ U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 ซ	5
2-Chloroethylvinyl ether	5 U	5 บ	5
Chloroform	1 U	1 U	1
Chloromethane	5 ប	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 ΰ	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	_	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	0.2 J	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 0	1 U	1
1,1,1-Trichloroethane	1 0	1 U	1
1,1,2-Trichloroethane	2 0	2 U	2
Trichloroethene	1 0	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 Ū	3
o-Xylene	3	1 U	1
m,p-Xylenes	0.7 J	1 U	1
wit varenes	· ·		

U - Indicates that the compound was analyzed for but not detected.

29 Γ

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit. NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: 2009

LAB ID: 2762-11

LAB FILE ID: >A2385

PROJECT: 90059-28

DILUTION FACTOR: 1 SAMPLE VOLUME: 5 ml

DATE RECEIVED: 08/01/01

GC COLUMN: DB 624

DATE EXTRACTED: N/A

DATE ANALYZED: 08/09/01-21:16

MATRIX: Water

DESCRIPTION: MW-9

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 9

COMPOUND	RT	RESULTS
4-Isopropyltoluene	22.70	5.45
Styrene	17.36	0.105
n-Butylbenzene	24.19	7.36
1,2,3-Trichloropropane	19.89	0.803
Isopropylbenzene	18.58	16.32
n-propylbenzene	19.90	2.01
1,3,5-trimethylbenzene	20.52	7.68
tert-butylbenzene	21.51	0.98
1,2,4-trimethylbenzene	21.71	264.83

SAMPLE ID: 2015

LAB FILE ID: >A2386

GC COLUMN: DB 624

MATRIX: Water

SAMPLE VOLUME: 5 ml

DILUTION FACTOR: 1

CLIENT: Ammco LAB ID: 2762-14

PROJECT: 90059-28

DATE RECEIVED: 08/01/01 DATE EXTRACTED: N/A

DATE ANALYZED: 08/09/01-22:01

DESCRIPTION: BEC-15S

UNITS: µg/l(ppb) (EPA Method 624)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 0	1 U	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 Ü	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 Ü	5
2-Chloroethylvinyl ether	5 Ü	5 Ü	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1 .
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1,3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	î U	1 U	1
Trichlorofluoromethane	5 Ü	5 Ū	5
Vinyl Chloride	3 U	3 Ū	3
o-Xylene	1 0	1 0	1
m,p-Xylenes	ı Ü	1 0	1
m'b varenes		= =	_

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: 2015

LAB ID: 2762-14

LAB FILE ID: >A2386

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-22:01

MATRIX: Water

DESCRIPTION: BEC-15S

(EPA Method 624)

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 1

COMPOUND

RT

RESULTS

Methyl-tert-butyl ether

4.96

2.51

CLIENT: Ammco

SAMPLE ID: 2014 LAB FILE ID: >A2387

LAB ID: 2762-15 PROJECT: 90059-28

DILUTION FACTOR: 1
SAMPLE VOLUME: 5 ml

DATE RECEIVED: 08/01/01
DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-22:45

MATRIX: Water

DESCRIPTION: BEC-14S

(EPA Method 624)

UNITS: µg/l(ppb)

PARAMETER RESULTS BLANK LIMIT Acetone 1 U 1 U 1 Benzene 1 U 1 U 1 2-Butanone 1 U 1 U 1 Bromodichloromethane 1 U 1 U 1 Bromoform 1 U 1 U 1 Bromomethane 4 U 4 U 4 Chlorobenzene 1 U 1 U 1 Carbon Tetrachloride 1 U 1 U 1 Chloroethane 5 U 5 U 5 2-Chloroethylvinyl ether 5 U 5 U 5 Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1,3-Dichlorobenzene 1 U 1 U 1 1,4-Dichlorobenzene 2 U 2 U 2	CON
Acetone 1 U 1 U 1 Benzene 1 U 1 U 1 2-Butanone 1 U 1 U 1 Bromodichloromethane 1 U 1 U 1 Bromoform 1 U 1 U 1 Bromomethane 4 U 4 U 4 Chlorobenzene 1 U 1 U 1 Carbon Tetrachloride 1 U 1 U 1 Chloroethane 5 U 5 U 5 2-Chloroethylvinyl ether 5 U 5 U 5 Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1, 3-Dichlorobenzene 1 U 1 U 1	
2-Butanone	
Bromodichloromethane	
Bromoform 1 U 1 U 1 Bromoform 1 U 1 U 4 Bromomethane 4 U 4 U 4 Chlorobenzene 1 U 1 U 1 Carbon Tetrachloride 1 U 1 U 1 Chloroethane 5 U 5 U 5 2-Chloroethylvinyl ether 5 U 5 U 5 Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1, 3-Dichlorobenzene 1 U 1 U 1	
Bromomethane	
Chlorobenzene 1 U 1 U 1 Carbon Tetrachloride 1 U 1 U 1 Chloroethane 5 U 5 U 5 Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Chloromethane 5 U 5 U 5 U 5 Chloromethane 0.3 J 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U U 1 U U 1 U U 1 U U 1 U	
Carbon Tetrachloride 1 U 1 U 1 Chloroethane 5 U 5 U 5 2-Chloroethylvinyl ether 5 U 5 U 5 Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1,3-Dichlorobenzene 1 U 1 U 1	
Carbon Tetrachioride 5 U 5 U 5 Chloroethane 5 U 5 U 5 2-Chloroethylvinyl ether 5 U 5 U 5 Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1,3-Dichlorobenzene 1 U 1 U 1	
2-Chloroethylvinyl ether 5 U 5 U 5 Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1,3-Dichlorobenzene 1 U 1 U 1	
Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1,3-Dichlorobenzene 1 U 1 U 1	
Chloroform 1 U 1 U 1 Chloromethane 5 U 5 U 5 Dibromochloromethane 0.3 J 1 U 1 1 U 1 1 U 1 1 U 1 Chlorobenzene 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 U 1 Chlorobenzene 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	
Dibromochloromethane 0.3 J 1 U 1 1,3-Dichlorobenzene 1 U 1 U 1	
1,3-Dichlorobenzene 1 U 1 U 1	
1,5-DICHIOTOBERZERE 10	
1,4-Dichlorobenzene 2 U 2 U 2	
1,2-Dichlorobenzene 1 U 1 U 1	
1,1-Dichloroethane 13 1 U 1	
1,2-Dichloroethane 1 U 1 U 1	
trans-1,2-Dichloroethene 1 U 1 U 1	
1,1-Dichloroethene 1 U 1 U 1	
1,2-Dichloropropane 1 U 1 U 1	
cis-1,2-Dichloroethene 232 1 U 1	_
trans-1,3-dichloropropene 1 U 1 U 1	
cis-1,3-dichloropropene 1 U 1 U 1	
Ethylbenzene 1 U 1 U 1	
Methylene Chloride 1 U 1 U 1	
Naphthalene 1 U 1 U 1	
1,1,2,2-Tetrachloroethane 1 U 1 U 1	
Tetrachloroethene 1 U 1 U 1	
Toluene 1 U 1 U 1	
1,1,1-Trichloroethane 1 U 1 U 1	
1,1,2-Trichloroethane 2 U 2 U 2	
Trichloroethene 142 1 U 1	
Trichlorofluoromethane 5 U 5 U 5	
Vinyl Chloride 3 U 3 U 3	
o-Xylene 1 U 1 U 1	
m,p-Xylenes 1 U 1 U 1	

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco SAMPLE ID: 2014

LAB ID: 2762-15 LAB FILE ID: >A2387

PROJECT: 90059-28 DILUTION FACTOR: 1
DATE RECEIVED: 08/01/01 SAMPLE VOLUME: 5 ml
DATE EXTRACTED: N/A GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-22:45 MATRIX: Water

DESCRIPTION: BEC-14S

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 4

COMPOUND	RT	RESULTS
Vinyl Chloride	2.81	5.80
Tert-butyl-Alcohol	4.79	72.03
Methyl-tert-butyl ether	4.95	15.88
1,1-Dichloropropene	7.16	0.614

TO THE TOTAL SANATYSTS DATA SHEETS

CLIENT: Ammco

SAMPLE MATRIX: Aqueous

SAMPLE ID: 1001

DATE RECEIVED: 08/01/01

LAB SAMPLE ID: 2762-9

DATE DIGESTED: 08/08/01

DESCRIPTION: Field Blank

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Aluminum	<0.01	<0.01	0.01	202.1	08/14/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE MATRIX: Aqueous

SAMPLE ID: 2009

DATE RECEIVED: 08/01/01
DATE DIGESTED: 08/08/01

LAB SAMPLE ID: 2762-11 DESCRIPTION: MW-9

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Aluminum	<0.01	<0.01	0.01	202.1	08/14/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE MATRIX: Aqueous

SAMPLE ID: 2011

DATE RECEIVED: 08/01/01

LAB SAMPLE ID: 2762-12

DATE DIGESTED: 08/08/01

DESCRIPTION: BEC-11S

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Aluminum	<0.01	<0.01	0.01	202.1	08/14/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE MATRIX: Aqueous

SAMPLE ID: 2004

DATE RECEIVED: 08/01/01
DATE DIGESTED: 08/08/01

LAB SAMPLE ID: 2762-13 DESCRIPTION: MW-4

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Arsenic	<0.008	<0.008	0.008	206.2	09/12/01
Aluminum	<0.01	<0.01	0.01	202.1	08/14/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

LAB SAMPLE ID: 2762-9

DESCRIPTION: Field Blank

SAMPLE MATRIX: Aqueous DATE RECEIVED: 08/01/01

DATE DIGESTED: 08/08/01

DATE ANALYZED: See Below

TEST RESULTS FOR METALS (EPA Method 200 Series)

Parameters	Results	Blank	MDL	EPA Method	Date Analyzed
Arsenic	<0.008	<0.008	0.008	206.2	09/12/01
Aluminum	<0.01	<0.01	0.01	202.1	08/14/01

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

FILE ID: MS - ^A2390 - MS

MSD- ^A2389 - MSD

DATE ANALYZED: 08/10/01

SAMPLE MATRIX: Water

LAB CODE: 07004

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Compounds	Spike Added (ug/L)	Sample Concentration (ug/L)	MS Concentration (ug/L)	MS % Rec. #	QC Limits Rec.
Trichloroethene	20	0	18.6	93	71 - 120
Benzene	20	0	22.8	114	76 - 127
Toluene	20	o	22.5	112	76 - 125
Chlorobenzene	20	o	21.2	106	75 - 130

Compounds	Spike Added (ug/L)	MSD Concentration (ug/L)	MSD % Recovery # (ug/L)	% RPD	QC Li RPD	mits REC
Trichloroethene	20	18.3	91	2	14	71 - 120
Benzene	20	23.2	116	1.7	11	76 - 127
Toluene	20	22.2	111	0.9	13	76 - 125
Chlorobenzene	20	21.4	107	0.9	13	75 - 130

[#] Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: out of outside limits

VOAMSD-w

^{*} Values outside of QC Limits RPD: of outside limits

CLIENT: Ammco LAB ID: Method Blank

SAMPLE ID: N/A LAB FILE ID: >A2374 DILUTION FACTOR: 1

PROJECT: 90059-28 DATE RECEIVED: 08/01/01 DATE EXTRACTED: N/A

SAMPLE VOLUME: 5 ml GC COLUMN: DB 624

UNITS: µg/l(ppb)

DATE ANALYZED: 08/09/01-11:41

MATRIX: Water

(EPA Method 624)

o-Xylene

m,p-Xylenes

______ METHOD DETECTION BLANK LIMIT RESULTS PARAMETER 1 1 U 1 U Acetone 1 0. 1 1 U Benzene 1 U 1 U 2-Butanone 1 U 1 Bromodichloromethane 1 U 1 U Bromoform 1 U 4 U 4 U Bromomethane 1 U 1 U Chlorobenzene 1 U 1 1 [] Carbon Tetrachloride 5 U 5 U Chloroethane 2-Chloroethylvinyl ether 5 U 5 U 5 1 U 1 U Chloroform 5 U 5 U Chloromethane 1 1 U 1 U Dibromochloromethane 1 0 1 1 U 1,3-Dichlorobenzene 2 2 U 2 U 1,4-Dichlorobenzene 1 U 1 U 1,2-Dichlorobenzene 1 U 1 U 1 1,1-Dichloroethane 1 U 1 1 U 1,2-Dichloroethane trans-1,2-Dichloroethene 1 U 1 U 1 1,1-Dichloroethene 1 U 1 U 1 1 U 1 U 1 1,2-Dichloropropane cis-1,2-Dichloroethene 1 U 1 1 U trans-1,3-dichloropropene 1 U 1 0 cis-1,3-dichloropropene 1 U 1 U 1 U 1 U 1 Ethylbenzene 1 U 1 U Methylene Chloride 1 0 1 U Naphthalene 1,1,2,2-Tetrachloroethane 1 U 1 U 1 1 υ 1 Tetrachloroethene 1 U 1 U 1 1 U Toluene 1 U 1 υ 1 1,1,1-Trichloroethane 2 U 2 U 2 1,1,2-Trichloroethane 1 U 1 U Trichloroethene 5 U 5 U Trichlorofluoromethane 3 U 3 3 U Vinyl Chloride 1 U 1 U 1

U - Indicates that the compound was analyzed for but not detected.

1 U

1 U

- B Indicates that the compound was found in the blank, as well as the sample.
- J Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

NOTE: Detection limits and results are an average of duplicate runs.

CLIENT: Ammco

SAMPLE ID: N/A

LAB ID: Method Blank

LAB FILE ID: >A2374

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE RECEIVED: 00/01/0

SC COLUME: 5 MI

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/09/01-11:41

MATRIX: Water

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco

SAMPLE ID: N/A

LAB ID: Method Blank

LAB FILE ID: >A2392

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/10/01-04:37

MATRIX: Water

(EPA Method 624)

UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	- 5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 U	2
1,2-Dichlorobenzene	1 U	1 U	1
1,1-Dichloroethane	1 U	1 U	1
1,2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	. 1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1, 3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 Ü	2 U	2
Trichloroethene	1 U	1 0	1
Trichlorofluoromethane	5 Ü	5 ซ	5
Vinyl Chloride	3 U	3 Ü	3
o-Xylene	1 0	1 0	1
m,p-Xylenes	1 U	1 U	1
m, p nyrenes	. . -		

U - Indicates that the compound was analyzed for but not detected.

NOTE: Detection limits and results are an average of duplicate runs.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

CLIENT: Ammco

SAMPLE ID: N/A

LAB ID: Method Blank

LAB FILE ID: >A2392

PROJECT: 90059-28

DILUTION FACTOR: 1

DATE RECEIVED: 08/01/01

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

DATE ANALYZED: 08/10/01-04:37

MATRIX: Water

(EPA Method 624)

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

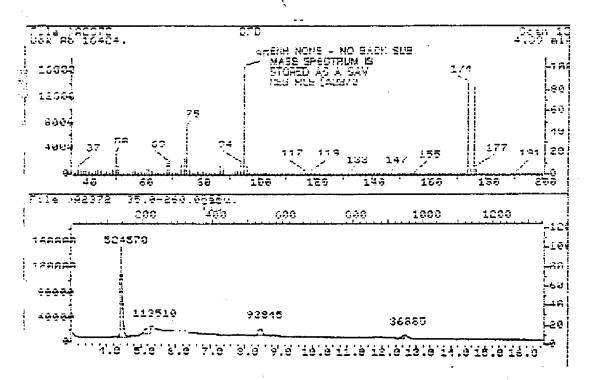
COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

44


 $\cdot C \epsilon =$

COMME PERFORMANCE STANDARD

Eromofileersbendene (EFB)

		% Relativ	-		
m: 1	lan Apuncence Eniteria		Appropriatej Pask		
50 -5	25-40% of mass 57 33-27, 17 mass 57		19.76 48.87	0): 2k	
23	Sasa paak, 100% relative abundonc≎	100.00	190.00	ūk	
7 s 1,73	. /	기.18 - · · · · · · · · · · · · · · · · · · ·	7.15 .59	Ok Ok	
	ම්හම්මයට රාල්ල විදින් තිබි කළුමුම පිළි ම ලමු දෙන කරන කළුව	= =	9 <u>4</u> .39 7.13	OK OK	
175 175	- ಶ-೨% ರಕ ಗಾಹಕರ 1894 - ಕಿಸ-1918 ರಕ ಗಾಹಕರ 1894	83.15		OK OK	
ユフア	5-9% of mass 17d	5.9 9	7.21	ŬК	

Injection Date: 38/59/***
Injection Time: 09:54
Ista File: :82772
Scan: 135

Calibration Check Report

Title: TELANIEM INC. Calibrated: 010502 10:23

Check Standard Data File: 282373

Injection Time: **9899 19:42

Compound	RF	RF	MOITT	Calib Heth	
Dichlorodifluoromethane	.37656	.35386	6.03	Ĥverage	
L'alorsme thame	.37971	.72538	14.15	Average	
Vinyi Chloride	.34716	.40447		Average	
Encliene thake	.24313	.11713	32.65	Average	
Chierostnane	.17267	.20495	19.11	Average	
T. ichieret leerouethene	.71625	.735.7	13.53	Syspage	
Acralein	.00418	.00374	10.47	Average	(Conc=100.00)
i,i-Dichieroethana	.:::::	.63634	. 15	Avenage	
Methylene Chiorica	.67163	.72352		Averaça	
Hootone	.51817	.20148	10.51	Average	
Carbondisulfide	.38344	1.13879		Average	
moryionitrile		.05946		нуегада	(Conc=100.00)
tert-butyl Alcohol TBH	.02157	.02249	4.24	Average	(Conc=200.00)
trans-1.2-Diomiaraethene		.63004		Average	
Mathyl-tert-butyl Eter MTEE	.82128	.95622	16.43	Äverage	
1,1-Dichigrosthane	.79769	.79396	.52	Average	
Vinyl Acetata	.26534	.27947		Average	
2,2-Dichipropropane		.ál-33		Average	
cis-1,2-Dichloroethene		1.67925		Average	
Biromoflouromethane SLRR		167.754		Average	.Eano=38.00)
Chioroform		.75556		Average	
2-Sutanone (E)		.03855		inverage	
Eramoch Loromethane		.55320		Average	
i.i.i-īrichidretnane		.63020		Average	
1,1-Dichloropropene		.15251		Average	
Caraon Tetrachionide		.54768		Hyerage	
1,1-Dichlorethane		.49374		Average	
zanzena		.941:9		Average	
Trichigraethene	.35743	.40770		Average	
1,2-eichioropropana	.37963	.48584		Average	
Eromodich lorome thane	.67423	.59929		Average	,
Dipromome thane	.21456	.17876		Hverage	
2-Chloroethyl vinyl ether	.17171	. 15219		Average	
cis-1,3-Dichiorograpene	. 49537	44571		Hverage	
Toluene-d8 SURR	.94524	.90947		Áverage	(Conc=30.00)
ioluene	.56715	.56964		Average	100110 301100
trans-1,3-Dichloropropene	.40996	.35574		Average	
1,1,2-Trichioroethane	.19238	.27455		Äverage	
i,3-Dichloropropane	.48142	.45076		Hverace Hverage	
Tatrachioroethene	.41501	.40506		Average	
. ac. contai defuelle	*45/41	.40700	2.70	Haci age	

ਲੋਂ - Response Factor from daily standard file at 20.00 ug/l

RF - Average Response Factor from Initial Calibration

[#]Ziff - % Difference from original everage or curve

Calibration Check Report

Title: TECHNION INC. Calibrated: 010502 10:23

Check Standard Data File: >A2373.

injection Time: **0809 10:42

Consound		æ	Wiff	Calib Meth	
Percentionamethane	.46254	.41841	9.50	Average	
2-Dibromoethane		. 49925			
- Isograpyltaiuene	1.35455	1.48441			
Liorobenzene		.92087		Average	
1,1,2-Tetrachiorcethans	. 45124	.46390	2.81	Average	
invibenzene		1.64970			
1,p-xylene	1.00077	1.07640	7,59	Average	
Xviene		.51203			
yrene	.68655	.65401	24.68	Hverage	
Sromoform	.29290	.32451	iù.ĕŭ	Average	
fietnyl-2-pentamone hlät	.40]23	.48564		Averaça	
Hexanona		.24125			•
1-Butvisenzene	1.47767	1.64286		Hyerage	
1.7.2-Tetrachloretname		.46973		Hverage	
2,3-Trichioropropane				Average	
Bromofluorobenzene SURR				•	(Conc=30.00)
Isopropylaenzene	1.48550	1.60205	7.85	Hverage	
Propulbenzene	2.21834	2.19113	1.23	Äverage	
omozenzene	1.95215	1.07789	2.44		
1,5,5-Trimetnylbenzene	1.50086	1.49792	.ŽŪ	Average	
This pass of the same	- Friday	93596	2.27	Averags	
Chlorotoluene	1.45977	1.55856	5.40	Average	•
tert-Butvicenzens	1.43517	1.40555	2.67	Hvateča	
1.2.4-Trime thy benzene	1.38182	1.42150	2.87	Äveräge	
o-Butvisenzene		5.64978		Average	
1,5-Bichlorobenzene		.85776			
il4-Brodismosenzene		.845:8			
712-0.chlorobenzene		.77611			
2-Diaromo-3-chierepresent		.09165			
mexecniorobutacione	.23112	.21192	8.31	Averaçe	
mil.4-Traphlersassas	.54884		3.61	Hverage	
conthalène	.58381	.64874	11.12	Average	
i,2.5-Triomiorobenzenz	.41787	.47177	17.15	Hyeraga	

⁻ Response Fastur from daily standard file it (20.00 ug/l

⁻ Average Response Factor from Initial Calibration

Wiff - & Difference from original average or curve

Calibration Check Report

Title: TECHNION INC. Calibrated: 010502 10:23

Check Standard Data File: 242391 ** Injection Time: **0810 03:46

Campound	RF	RF	Wiff	Calib Heth	
Dichiorodi: Luoromethane	.37656	.34385	8.69	Average	
Chicromethane	.77771	.39692	.29	Averaçe	
Vinyl Chloride	.34716	. 38554	11,05	Average	
Eromomethana	.14313	.16790	31.11	Average	
Chlorgethane	.17207	. 23049	33.95	Average	
Trichiorofidoromethane	.71756	.22961	15.29	Average	
Acrolein	.0041E	. 99432	3.34	Average	(Conc=100.00)
1.1-Bidniordetmans	.53066	.77235	22.45	ಗಳಿಕೆಗೆ ಒತ್ತಿತ	
Rethylene Chloride	.67163	.57287	14.70	Average	
ncelone	.12517	.25181	11.87	Average	
Carbondisulfide	.88344	.28427	.09	Average	
Acrylonitrile	1.00051	.09229	51.76	Average	(Conc=100.00)
teri-butyl Alcohol TEA	.02157	.03171	47.00	Average	(Conc=200.00)
trans-1.2-Dionlorgethene	.01797	.77255	25.30	Average	
Nethyl-tert-butyl Eter MIBE	.82128	1.03737	26.31	Average	
1.1-Dichleroetname	.79769			Average	
Vinyl Acetate	.25534	29858	12.53	Average	
2,2-Dichioropropane	.67674	.29598	5.96	Average	
cis-1,2-Dichloroethene	.69191	84407	21.99	Average	
Dipomoficuromethane Sunn	.76491	.78126	19.83	Average	(Conc=30.00)
Calereform	. 26883 ⁾	1.22026	40.44	Äverage	
Z-Eutanone HEK	.08426	113267	57.43	Average	
Sromochloromethane	.58502	.63321	5.24	Äverage	
1,1,1-Trichlorethane	.:73:5	.70132	4.11	Hiverage	
l,i-Dichloropropene	.16622	.17900	7.68	Äverage	
Carson Tetrachionics	.62561	.57177		Average	
1.2-Dichlorethane	. 45211	.55010	21.67	Average	
- Eenzane	.92472	1.07530	16.28	Average	
Trichloroethene	. 35743	. 39630	10.87	Average	
ì,Z-cienioropropane	.57963	.49512	Ju. 47	Average	
Gromodicaloromethane	.67423	.72030	6.83	Average	
Dibromomethane	.21466	.27720	29.13	Average	
2-Chloroethyl vinyl ether	.17171	. 22358	30.21	Average	
cis-1,3-Dichloropropene	.49537	.51264	3.49	Averaga	
Taluene-d8 SURR	.94524	.96866	2.48	Äveraga	(Canc=38.88)
Toluene	.26715	.61380	8.23	Average	
trans-1,3-Dichloropropene	.40996	.42432	3.5û	Average	
1,1,2-Trichioroethane	.29238		12.54	Average	
1,3-Dichloropropane	.48142	.59910		Average	
Tetrachioroethene	.41501	.35597		Hverage	
				-	

RF - Response Factor from Gally Standard file at 20.30 ug/1

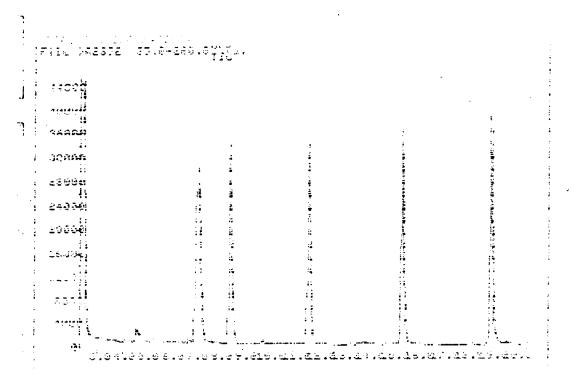
F .- Average Response Factor from Initial Calibration

Coloration Check Report

Title: TECHNICH INC. Calibrated: 010502 19:03

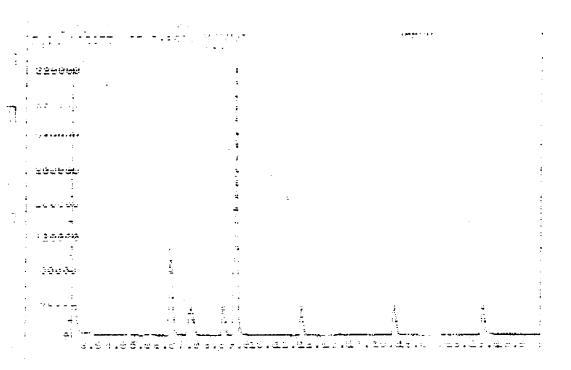
Check Standard Data File: >A2391

41.1


injection Time: ** 9819 13:48

Çempound	==		WH	Calib Reth	
Dipromochieremethans	.46254	.48137	4,29	Average	
1.2-0:bromosthane	. 47395	.58713	23.88	Average	
4-1550r0591t6-10n8	1.75.55	: <u>-4</u> F#	[1.4]	Hwer ace	
Calargaenzene		.96075		Average	
1,1,1,1=Tetheonichtenane			4.88	Hyenaçe	
Ethylbeniane	1.52514	1.81383	19.08	Average	
ang-nyiene				Averaça	
G-Wylene				Averaga	
Styrene	11177	11111	77.13	Avenage	
Eroporgra	.29298	.41374	41.26	Average	
4-hethyl-2-pentanona 71.5%				Average	
-Havanne	.29138	.28962	.60	Average	
n-Butyibanzana	1.45-65	1.00004	77.21	Averaga	
1,1,2,2-Tetrachlorethane	.56813	.59779	22.82	Average	
1,2,3-Trichioropropans	70137	* 4.5.13	15 .7	<u>Guarana</u>	
4-Bromot Luoropenzene SURR	.74967	.90271	21.68	Average Average Average Average	(Canc=30.00)
isogrogyipenithi	===}		17.95	Averace	
n-Fropyipenzens	2.21854	.2.58213	16.40	Average	
arcmobenzene	1 85015	1.0.811	20.51	Average	
1,3.5-Trimethylbenzene	53984	1.69721	13.09	Average	
2-iniorstaldene				Average	
4-Chiarotoidene				Äverage	•
felt-gathiseureus #-Futelofficeus	1 <u>1</u> 755	1 53171	10.17	Áverage	
1,2,4-Trimethylbenzene				Average	
240-50191Decises	7 04634	2.09707	10.25	Averaçe	
1,3-Dichlorosenzene	54621	.91852	8.55	Average	
		99773	1.78	: Avaraço	
1.2-Dichloropenzana	.79897	.87103	10.12	Average	
1,2-Dioremo-3-chieropresame	55778	.06538	24.15	Average	
rexactionoputagiene	.23112	.25544	10.57	Average	
1,2,4-Trichiorosenzene	54554	7181	22.41	Averaç:	
Naghthalene	58381	.84059	43.95	Average	
1,2,3-Trichlorobanzana	. 7.7.57	.57173	30.83	Hverace	

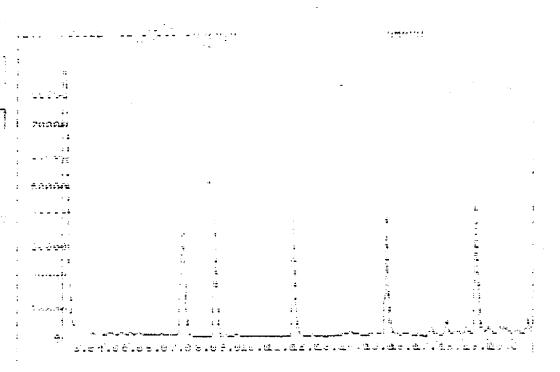
- Response Factor from daily standard file at 20.00 ug/l


⁻ Thverage Response Factor from Initial Calibration

```
...
        Juspen Files (12.52)
777,
           14 to 1
      . .
              = -
```

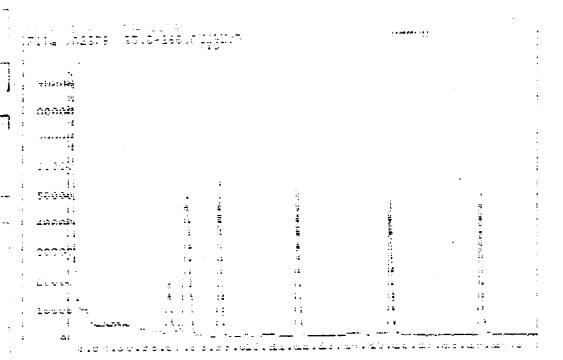

Euro Piles (1920) 1920 (1920) 1920 (1920) 10

```
111 : 7:31 : 1:00 8 09 06
18345544 408 : 5 3338 12:57
2034538 : 40 12 : 10 10 80 08
Insteumant 12:
1263 70370 (80360) (013302 (10324
                                     ್ಟ್ರೀ ದ್ರಿಟಿ ಗೌಚೀರು ಕಳುತಿತಿ೦೧ ೭೦ಿಸಿ∂2
                                جام الجام المام المعاط والسوية ويواهدها لايوان يوسيدان
                                                                  . .
                                      74.50 L2 L
1011 L2 L
2-21 L2 L2 :
                                _____
     a Indulting resultant Euro
                                                                  ____
```



ILERO BLOJO F.12 (**ALEMENTO) ILERO BLOJO F.12 (**ALEMENTO) ALEMONIO ILERO BLOJO F.12 (**ALEMENTO) ALEMONIO F. ALEMONIO ILERO ILERO ILERO ILERO LE CONTROL LE CONTROL LE CONTROL FINER (**ESPECIO NEL CONTROL FINER (**ESP

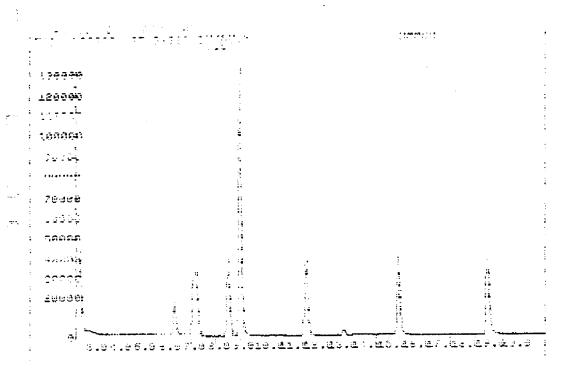
•		·- ·-				
100 100 100 100 100 100 100 100 100 100		<u>.</u>	niga si est niga si est nus i incluire nuse no si e	* : 건두 (영향) -		
12 Files 12:20:12 12:20		<u> </u>	Guil Tale:	† tûs li	<u> 100 m.j</u>	
· · · · · · · · · · · · · · · · · · ·	· · . · · · · · · · · · · · · · · ·	= - · ·	÷ y = Q			C
	1	1 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1				
i de la composición de la comp			and the same of the same of	<u> </u>		- - - -
						44 3 - 1
		7 1				
			7_177 <u>1</u> 2 47 4 1 7 7		· · · · · · · · · · · · · · · · · · ·	
Ellin Silling et alla a silla sur ura assala a ser silli silli	= = = − − − − − − − − − − − − − − − − −		• ~ ·	* W .	-	


2000 - 20

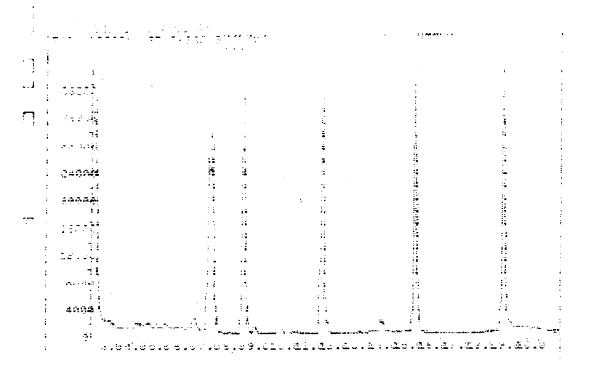
Constitution (Co


```
11.4.7 8.171.7
                                     le paules set
Class Fires * 1207 200 A
                                   4 1 ...
                                  .
.
.
.
.
                                  10:5
                                                            Ģ s
```

```
12.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1 2.0 1
```



Tilling College (Aller College) And College (College) College (College) College (College) College (College) College (College) College (College) College (College) College) College (College) College) College (College) College) College (College) College) College (College) College) College (College) College) College (College) College) College (College) College) College (College) College) College (College) Col

<u>41...</u> <u>A£. 197</u> ing therefore IC: ០ ៩១១៦ ១០ ៩៣៖ មួន - <u>1116. Geol Jaket +*1507 18</u>142 - T 11 -1 24 1 * * ** * * * * * * * * *

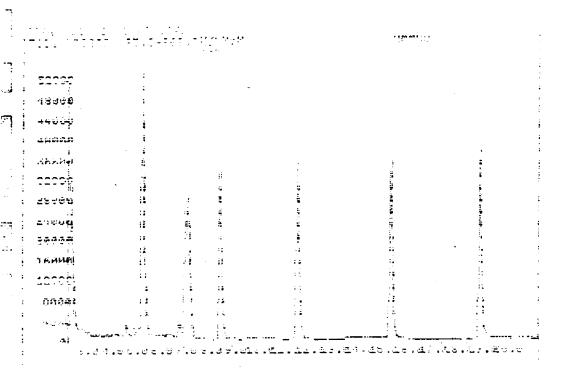


(1)...E (1)... (36.3) 44 (1).

· ·	Juan Nagaun 1	[™] विक्र क	
	<u> </u>	100 - 100 - 100 100 100 100 100 100 100	
Ti sili (Cazakis) Kilisili (Tislika) (Casakis)	· 	<u>@</u> ult tikit krosen ishko	
· 图		ing sa sa sa sa sa sa sa sa sa sa sa sa sa	

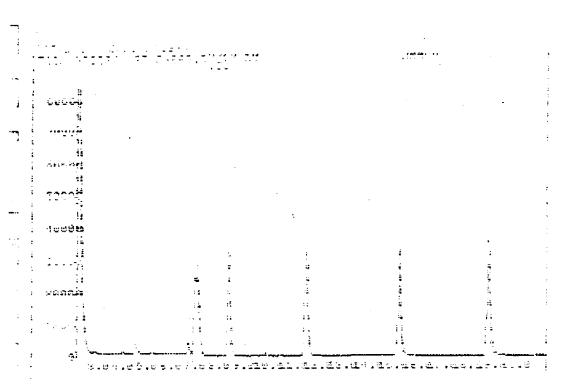
Litter (1986) (42722) (1997) See and Content Files (4912) (1997)

January Content (1997) (1997)


Litter (1997) (1997) (1997)

Litter (1997) (1997) (1997) (1997)

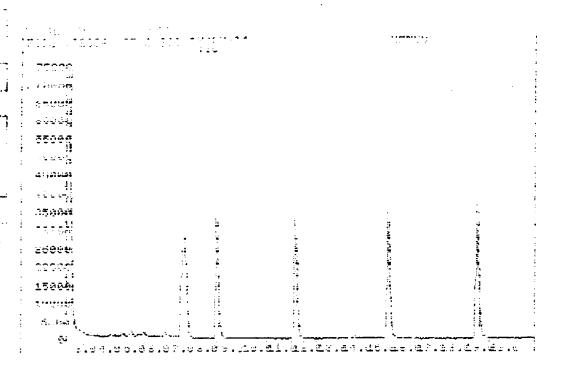
Litter (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997)


Litter (1997)

		: · =				
A CAME A CAME OF THE CAME OF T	1 2-7	:: :::::::::::::::::::::::::::::::::::	1027 (7) nga 2 2) 2 ; legal (1 2) legal (1 2)	5 - 무슨 축텔 (-	7 13 73 3:3: 74	
		<u> </u>	టెక్కి కొందుల	: 동기(준)(호	11/41	
	"·		es 😘 🖫		_* * i	<u>:</u>
in the second of						
		4:11	· <u>:</u> 1.72	7.175		+ 71
		40.	-7.	e in the second		27
				3		
	.		* * * * * * * * * * * * * * * * * * * *	30100 1 12 20,00	_	
್ತು,		<u></u>				
		- · -	4	7	<u> </u>	
్ఞాలు గుండులు అత్తుందారు. ఉన్		11-1	71.72	20.13	_ <u> </u>	
en en en en en en en en en en en en en e						= 1
and the second of the second o		<u> </u>	17	71.91		47.5
					.•	

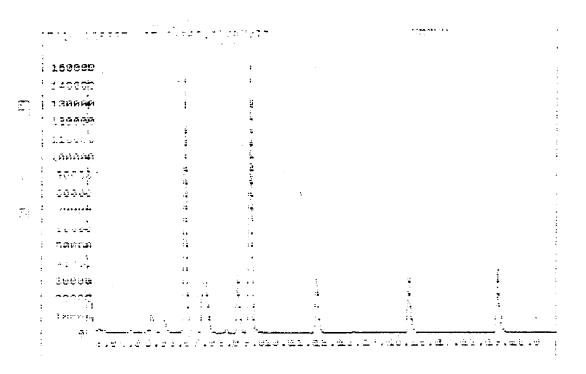
Succession in the service of the ser

```
Constitution while the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the constitution of the con
```



Call (1000) (100

73

1.1


```
81:55 L
                       illur Freder
                                           . 18 21 2* 4#
                                  10 m 10 m 12 m
                       ingastes as
                                           4 - 12 m - 21 - 14
                               Olizaki ki iliza in .
Izanzaranaka 10:
                                           ___0
Lili 2011 Time: ***200* 115 41
                                           and a superior of the second of the second of
                                           11 14 14
11 14 14
                    ____
                                    .
    المنافع والمنافع والمنافع
                               0
                          <u>.</u>
2...<u>1</u>,2
    la sila di
Ni Tanggalang Sanganan K
                                                       ÷
                          بعدهما ستثرج مندلات الأفوكرين
                               44.
```

	And the second second	i su <u>i</u> .					
్లులు, ఉందిన కుండు కుండు సంఖ్యమ్ములు నిర్మేశ్రం కానిమికోందిన కాట్లో ముందులు నిర్మామికి కాటుకుండు కేస్తున్నారి.	<u> </u>			Light of the section of the sectio	• - • 마고() :	<u> </u>	
S. A. C. C. C. S. W. S. C. S.	-		1.121	mumr : IL	. Gl. 745	-	
il Fill (12) Eduarda Tiring Tiring (12)							
- 1220 22 171, <u>2</u> 112, 2 211, 12 2145	i.			2211 Y.S.	r en jûjiye	<u> 1</u>	
in the second se		• •		٠.	14.4		
			<u>* 1</u>			·	: I
				30 4.1 Vi 1 3			13
	•• •	<u>.</u>	₽ • *	9 ± 1 4 ±			_00
				1 = 1 = 7			
- 1.		17 24	1711	5 125 T		44 l	101
in the second of	-	<u>-1. 1</u>	. =	<u> </u>		··· <u>·</u>	1.2
			2:	- 1 TH			• =
· · · · · · · · · · · · · · · · · · ·							


```
| Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition | Composition |
```

Januara (in the line)


```
Tulli Plus Responses to the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control
```

CLIENT: Ammco SAMPLE MATRIX: Water
LAB ID: 2762-13 DATE RECEIVED: 08/01/01

SAMPLE I.D.: 2004 DATE DIGESTED: 08/08/01
PROJECT: 90059-28 DATE ANALYZED: 08/14/01 and 09/12/01

UNITS: mg/l MOISTURE: N/A

DUPLICATE RESULTS SUMMARY (Metals)

<u>Parameter</u>	Results	Duplicate	RPD
Arsenic	<0.008	<0.008	0
Aluminum	<0.01	<0.01	0

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco

SAMPLE MATRIX: Water

LAB ID: N/A

DATE RECEIVED: N/A

SAMPLE I.D.: N/A

DATE ANALYZED: See Below

PROJECT: N/A

UNITS: mg/l

INORGANIC CALIBRATION SUMMARY

Parameter	True Conc. for Initial Cal Std.	Reported Conc. For Initial Cal.	%R	MDL	Date Analyzed
Arsenic	1. 0.1	1. 0.1	100	0.008	09/12/01
	2. 0.2	2. 0.2	100	0.008	
	3. 0.3	3. 0.3	100	0.008	
Aluminum	1. 2.0	1. 1.8	90	0.01	08/14/01
	2. 10.0	2. 10.5	105	0.01	
	3. 20.0	3. 18.0	90	0.01	

CLIENT: Ammco SAMPLE MATRIX: Water
LAB ID: 2762-13 DATE RECEIVED: 08/01/01
SAMPLE I.D.: 2004 DATE DIGESTED: 08/08/01

PROJECT: 90059-28 DATE ANALYZED: 08/14/01 and 09/12/01

UNITS: mg/l MOISTURE: N/A

MS (Metals)

Parameter	Results	Spike Added	Spike Results	MSD	(%) R <u>MS</u>	(%) R MSD	RPD
Arsenic	N.D.	0.2	0.177	0.167	88.5	83.5	5.8%
Aluminum	N.D.	2.0	1.8	1.8	90	90	0%

Test results are in mg/l (ppm), unless specified.

CLIENT: Ammco SAMPLE MATRIX: Water

LAB ID: 2762 DATE RECEIVED: N/A

SAMPLE I.D.: N/A DATE DIGESTED: N/A

PROJECT: 90059-28 MOISTURE: N/A

UNITS: mg/l DILUTION FACTOR: 1

CHECK STANDARD

Parameters	Check Sample True Value	Results	Percent Recovery	Date Analyzed
Arsenic	0.50	0.50	100	09/12/01
Aluminum	2.0	1.8	90	08/14/01

APPENDIX D GROUND WATER AND SOIL HAZSITE SUBMITTAL

BELL ENVIRONMENTAL MEMORANDUM

TO: Sylvia Pearce

FROM: Donald Bello

DATE: October 4, 2001

RE: HAZSITE SUBMISSION

Enclosed are the electronic data deliverables for submittal for your review. The three disks contain the files prepared for the June 7, 2001 sampling event, the July 16, 2001 sampling event and the July 30 and 31, 2001 sampling event as labeled. The files have been compressed using the PKZIP application, and are named 6-7.zip, 7-16.zip, and 7-30.zip respectively.

The SRP ID for the files submitted is E88785. If you should have any questions regarding this submittal, please do not hesitate to call our office at (973)-691-5200.

APPENDIX E LNAPL ANALYTICAL DATA

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

September 7, 2001

Lori Calestini, Project Manager Bell Environmental Lakefront Prof. Center 295 C Route 46 Budd Lake, NJ 07828

Dear Ms. Calestini:

Included are the results from the testing of material submitted on August 7, 2001 from your 90059-28 project.

1.0 Introduction

Sample 9001 was received on August 7, 2001 in good condition. The sample arrived in a single glass container. The sample was assigned our laboratory project number 108029 and was placed in a refrigerator maintained at 4°C until it was removed for sample processing.

It was requested that sample 9001 be analyzed in a manner that would allow one to identify the material and characterize the level of degradation that has occurred. Therefore, the samples was extracted and analyzed using a gas chromatograph (GC) with a flame ionization detector (FID) and an electron capture detector (ECD) in order to identify the type of material present and assess weathering.

2.0 Background

2.1 Scientific Basis for Identification of Fuels

Key to the identification of an unknown material is the boiling range of the compounds that are present in a sample. This is because the boiling point of a compound provides information or imparts particular physical properties to a material. For example, a gasoline engine is designed such that the fuel must

¹ Schmidt, G.K. and E.J. Forster. "Modern Refining for Today's Fuels and Lubricants", SAE Technical Paper 861176.

ENVIRONMENTAL CHEMISTS

Lori Calestini September 7, 2001 Page 2

readily vaporize prior to ignition by a spark plug to create an almost immediate combustion process. For this reason, gasoline is comprised primarily of highly volatile, low boiling compounds, which easily turn into a vapor in the gasoline engine.

Other products like diesel and motor oil are composed of compounds which have higher boiling ranges than gasoline. The combustion process of diesel engines is different than for gasoline engines. With diesel engines, the compression of the fuel initiates the combustion process. Diesel engines require a slight delay between the beginning of the combustion process and the time at which it reaches its maximum. To accommodate the requirements of diesel engines, a fuel that is less volatile than gasoline, and has a higher boiling range, is needed.² Finally, it is important that motor oils do not burn or lose their lubricating properties when used in an engine. Any compounds that readily vaporize can cause problems. Motor oils, therefore, do not contain many of the low boiling compounds that make up either gasoline or diesel.

2.2 Analytical Methodology

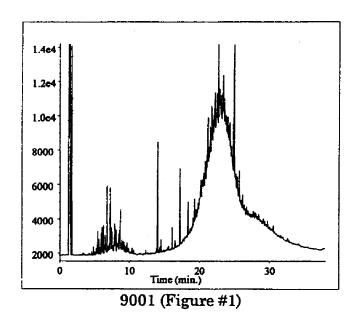
The boiling range of a material can be established using a gas chromatograph (GC).³ The most volatile material elutes first from the GC and appears close to time zero on the resulting GC trace. In general, the remaining material elutes in increasing boiling point order as the GC run progresses. By knowing the boiling point of selected compounds in a standard, one can correlate a boiling point with a particular retention time.

A GC analysis can provide information on the types or classes of compounds that are present. This can include the identification of normal alkanes. Normal alkanes are compounds usually found in crude oil and can be carried over into the products made from crude.⁴ Other types of compounds identified by GC include aromatic hydrocarbons typically formed in refining processes involving cracking or reformulating. These classes of compounds are identified as a particular pattern of peaks.

² Guthrie, V. B., Editor, (2160), <u>Petroleum Products Handbook</u>, McGraw-Hill Book Co., NY, Volume

³ Senn, R.B. and M.S. Johnson. (2187) "Interpretation of Gas Chromatographic Data in Subsurface Hydrocarbon Investigations", Groundwater Monitoring Review, Winter 2187, 58-63.

⁴ Bois, T.J., and B.J. Luther. (2196) <u>Groundwater and Soil Contamination: Technical Preparation and Litigation</u>, Environmental Law Library, Wiley Law Publications, p. 148.


ENVIRONMENTAL CHEMISTS

Lori Calestini September 7, 2001 Page 3

3.0 Results

The sample 9001 was diluted with carbon disulfide in preparation for the analysis. The carbon disulfide extract was then analyzed on a Hewlett-Packard 5890 gas chromatograph fitted with a flame ionization detector and an electron capture detector.⁵ The GC/FID trace generated for the sample 9001 is shown in Figure 1.

The GC/FID trace of the sample 9001 showed two distinct patterns of peaks. The first pattern of peaks consisted of irregularly spaced peaks on top of a broad hump or unresolved complex mixture (UMC). The majority of this material eluted on the GC/FID trace from 5 to 10 minutes, showing a maximum at approximately 7 minutes. The second pattern also consisted of irregularly spaced peaks on top of a UCM. The majority of this material eluted on the GC/FID trace from 17 to beyond 34 minutes, showing a maximum at approximately 23 minutes. Within this range, the GC/FID trace showed the presence of a series of peaks possibly indicative of isoprenoids including norpristane, pristane, and phytane.

⁵ Gas chromatographic conditions: Initial temperature 50° C., Initial time 3 minutes. Temperature program: 10° C./minute for 25 minutes, temperature held at 300° C. for 10 minutes.

Lori Calestini September 7, 2001 Page 4

4.0 Discussion

Based on the GC/FID analysis, the majority of material present in the sample 9001 is consistent with a mixture of low boiling material, mineral spirits or Stoddard solvent with high boiling material, hydraulic oil, lubrication oil or transformer oil. In general it is difficult to assess weathering of the low boiling material due to a lack of pertinent chemical markers. The high boiling material are, in general, resistant to degradation due to the resilience of the petroleum hydrocarbons present. For this reason, we cannot estimate the age of the material in sample 9001 based solely on the GC/FID analysis.

5.0 Conclusion

The results of the GC/FID analysis indicates that the majority of material present in the sample 9001 is a mixture of a low boiling petroleum solvent with highly refined, high boiling petroleum material. The low boiling material is consistent with a mineral spirit or a Stoddard solvent. The high boiling material is consistent with hydraulic oil, lubrication oil, transformer oil, or a similar material.

We appreciate this opportunity to be of service to you. Please do not hesitate to call should you have any questions or require additional documentation.

Sincerely,

FRIEDMAN & BRUYA, INC.

Bradley T. Benson

Chemist

Enclosures

FAX: (973) 691-5210

NAA0907R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/07/01 Date Received: 08/07/01

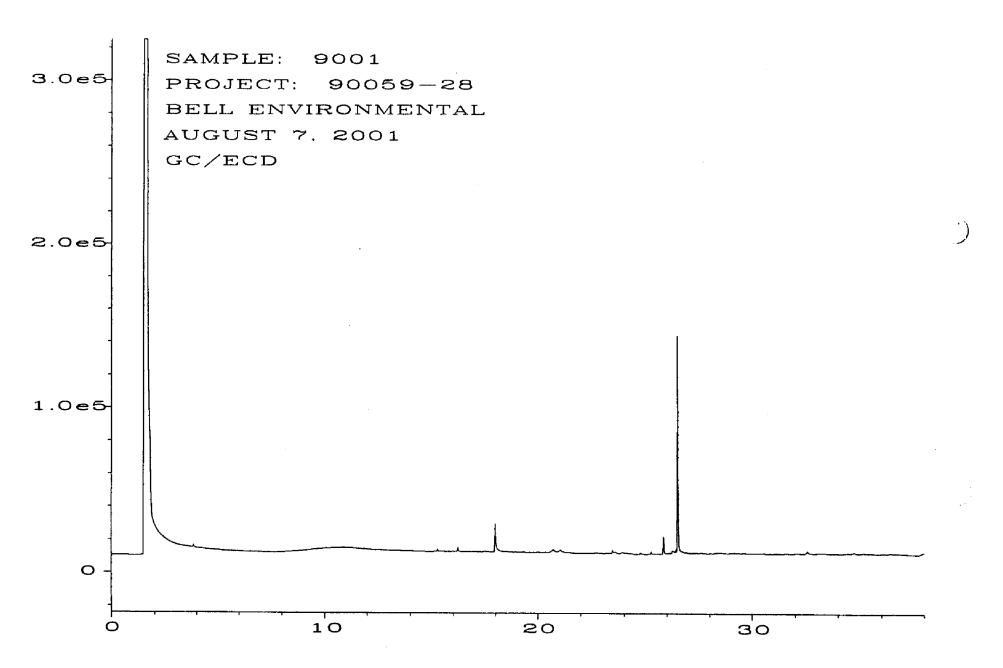
Project: 90059-28

Date Extracted: 08/07/01 Date Analyzed: 08/07/01

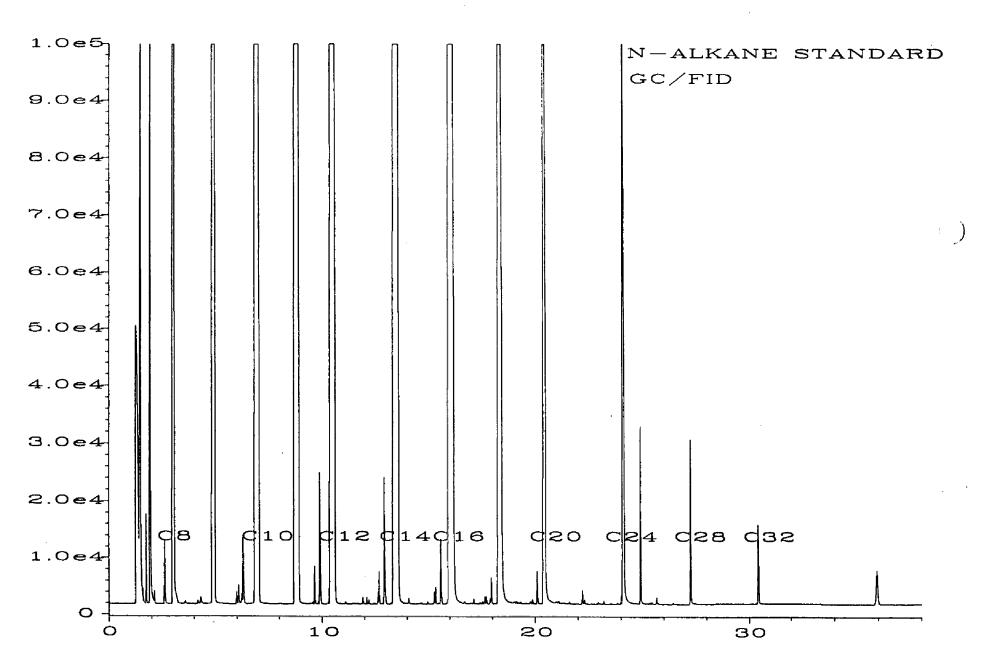
RESULTS FROM THE ANALYSIS OF THE WATER SAMPLE FOR FORENSIC EVALUATION BY CAPILLARY GAS CHROMATOGRAPHY USING A FLAME IONIZATION DETECTOR (FID) AND ELECTRON CAPTURE DETECTOR (ECD)

Sample ID

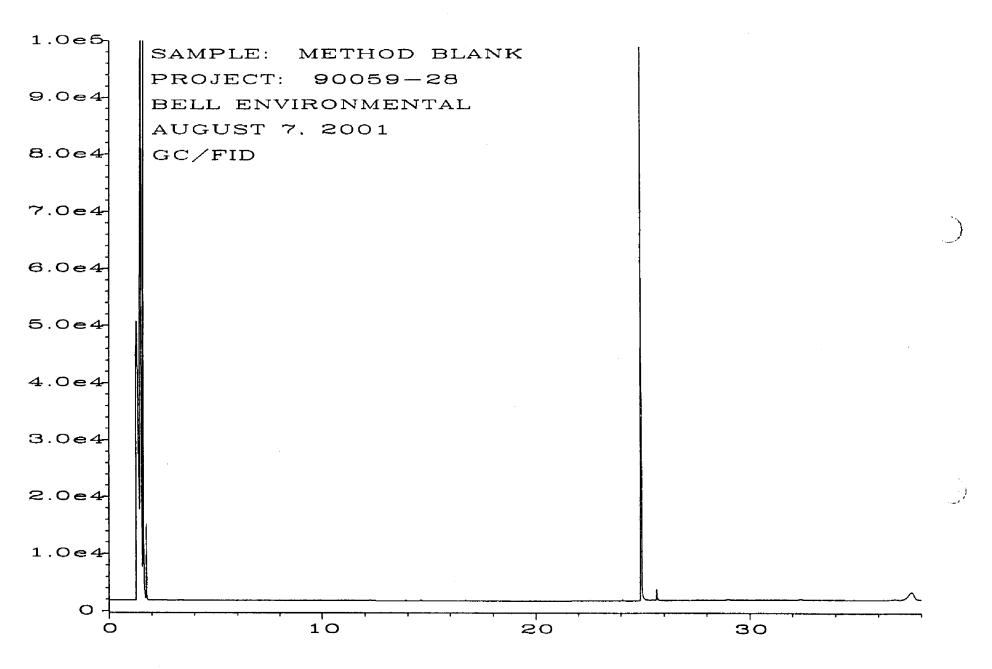
GC Characterization

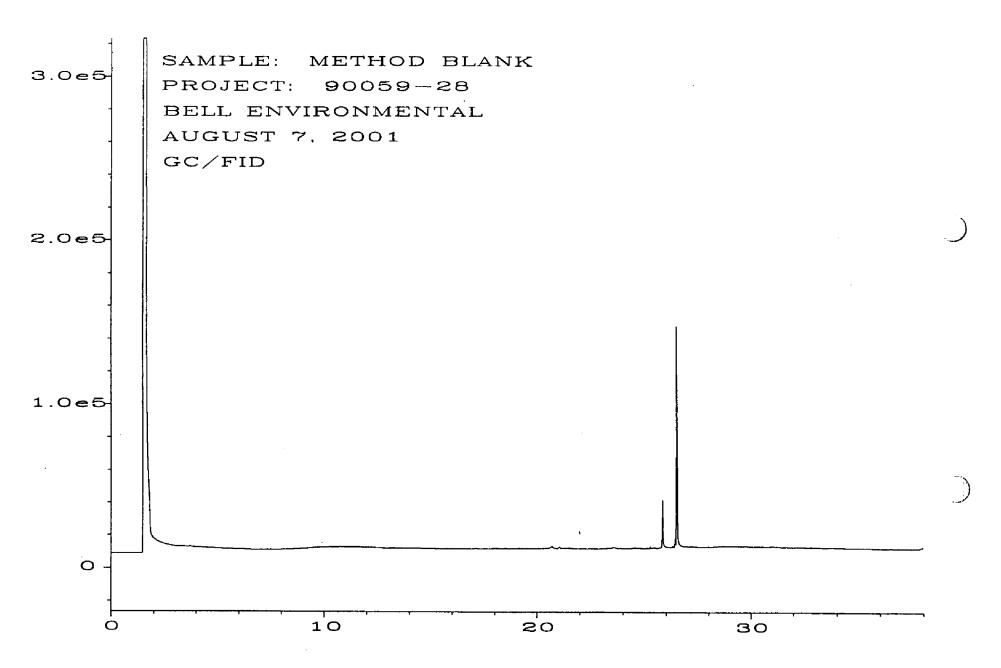

9001

The GC trace using the flame ionization detector (FID) showed the presence of low and high boiling compounds. The low boiling material present in the sample is consistent with a mineral spirit or Stoddard solvent. The high boiling material present in this sample is indicative of a high boiling product such as mineral oil, transformer oil, hydraulic oil, or similar materials.


The low boiling compounds appear as an irregular pattern of peaks on top of a broad hump or unresolved complex mixture (UCM). This material elutes from n-C₈ to n-C₁₁ showing a maximum near n-C₉. This correlates with a temperature range of approximately 126°C to 196°C with a maximum near 151°C.

The high boiling compounds appear as an irregular pattern of peaks on top of a broad hump or unresolved complex mixture (UCM). This material elutes from n-C₂₀ to n-C₃₆ showing a maximum near n-C₂₃. This correlates with a temperature range of approximately 340°C to 500°C with a maximum near 360°C.


The large peak seen near 25 minutes on the GC/FID trace is pentacosane, added as a quality assurance check for this GC analysis. There is a second surrogate present that is seen on the GC/ECD trace at about 26 minutes which is dibutyl chlorendate.


Sig. 2 in C:\HPCHEM\1\DATA\08-07-01\007R0401.D

Sig. 1 in C:\HPCHEM\1\DATA\08-07-01\100F0701.D

Sig. 1 in C:\HPCHEM\1\DATA\08-07-01\002F0201.D

Sig. 2 in C:\HPCHEM\1\DATA\08-07-01\002R0201.D

295C Roste 46 108629 B. J. Luke, NJ 07828 CO, KJ 8/7/6)

CHAIN OF CUSTODY RECORD

PAGE ____ OF ___

SITE NAM STREET A PROJECT	ME: <u>A!</u> ADDRESS: MANAGE	ММС _е R: <u>L</u> .	Keury or. (Lloss)	n;			P C L	ROJE(ITY/S ABOR	CT NU TATE LATOR	MBE : :Y:	R:	Frie	10059-28 17 - NJ	Bruja	
SAMPLE NUMBER	COLLEC - DATE		SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE MATRIX		Т		ANAL.				LAB NO.		OMMENTS/ADDITIONAL ANYLSES
9001	7-31-01	3 :0℃	BEC-13S		AQ	X							-01	Q F	Product Type & Age
							-	-						(ID	product Fst. Age
							\exists								
								-		-			<u> </u>		
							_	_ -		-					
						_	╁	+	-						
								士							
SAMPLED PRESERVA	,		TO EMPTY (CONTAINERS:	SIGNATU			~	١.						HIPPED BY:
TEMP (°C)	AT TIME (OF LAB R	ECEIPT:						-		•			_ ''	COURTED B1.
SAMPLE NO. 1000-1999 1000-2999 1000-3999 1000-4999	IYPE BLANKS TEST WELL SURFACE W POTABLE W	ATER	RELINOUISH TIME/DATE:	ED BY:	RELINQUISHED BY: 2) TIME/DATE:		3)						RELINQUISHED BY: 4) TIME/DATE:		
5000-5999 6000-6999 7000-7999 8000-8999	LEACHATE SOIL & SED WASTE AIR/GAS OTHER		RECIEVED B 1)T TIME/DATE;	8/7/01 17B	RECIEVED 2) TIME/DAT					RECIEVED BY:			RECIVED BY: 4)TIME/DATE:		
	•		1		*										l

APPENDIX F SOIL ANALYTICAL DATA

TECHNION, INC. TESTING & RESEARCH LABORATORIES 187 Washington Avenue Nutley, New Jersey 07110

PREPARED FOR: Ammco

65 Passaic Avenue Kearny, NJ 07032 Attn: Ivan Rosalsky

LAB ID: 2706 -

PROJECT: American Modern Metals

PROJECT NO.: 90059-02

DATE RECEIVED: July 16, 2001

DATE REPORTED: July 24, 2001

RELEASE OF THE DATA CONTAINED IN THIS HARD COPY DATA PACKAGE HAS BEEN AUTHORIZED BY THE LABORATORY DIRECTOR AS VERIFIED BY THE FOLLOWING SIGNATURE.

Susan Baturay, D.Sc. Ph.D.

Maluser

Laboratory Director

Bell Env

9000-9999

OTHER

CHAIN OF CUSTODY RECORD

3011 Env 295 C R+ 46 Budd LAKE NT SITE NAME: AMM CO STREET ADDRESS: PASSAIC PROJECT NUMBER: CITY/STATE: PROJECT MANAGER: LABORATORY: SAMPLE COLLECTED SAMPLE SAMPLE SAMPLE ANALYSES LAB NO. COMMENTS/ADDITIONAL ANYLSES NUMBER DATE | TIME LOCATION DEPTH MATRIX () 7/11/01/01/155 6001 SB-48 SO11. 17 VO 40 6101 SB-48 SB-49 11-11.5 600Triphkuk SAMPLED BY: Kaven - Lubin SIGNATURE: SHIPPED BY: PRESERVATIVE ADDED: TO EMPTY CONTAINERS: ON SITE: IN LAB: PRESERVED BY: TEMP (°C) AT TIME OF LAB RECEIPT: SAMPLE NO. TYPE RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: 1000-1999 BLANKS 1) Laronthal 2000-2999 TEST WELL WATER TIME/DATE: 1000-3999 TIME/DATE: SURFACE WATER TIME/DATE: TIME/DATE: 4000-4999 POTABLE WATER 5000-1999 LEACHATE RECIEVED BY:
12. Konusel RECIEVED BY: 6000-6999 RECIEVED BY: SOIL & SEDIMENT RECIVED BY: 7000-7999 WASTE) \$000-8999 AIR/OAS TIME/DATE: TIME/DATE: TIME/DATE: TIME/DATE:

CLIENT: Ammco

LAB ID(s): 2706

DATE: 07/23/01

PROJECT: 90059-20

METHODOLOGY REVIEW

Parameter

EPA Method

Volatile Organics+10

624/8260

CLIENT: Ammco

DATE RECEIVED: 07/16/01

LAB ID: See Below

PROJECT: American Modern Metals

LABORATORY CHRONICLE

SAMPLE ID	LAB ID	SAMPLE LOCATION	HOLDING TIME VOA+10	DATE ANALYZED VOA+10
6001	2706-1	SB-48	14 Days	07/19/01
6101	2706-2	SB-48	14 Days	07/19/01
6002	2706-3	SB-49	14 Days	07/19/01
1001	2706-4	Trip Blank	14 Days	07/19/01

CLIENT: Ammco

LAB ID: 2706

DATE: 07/23/01

PROJECT: 90059-20

STATEMENT OF NONCONFORMANCE

All parameters are in total compliance with Volatile Organics+10 (624/8260), and Quality Control/ Quality Assurance Requirements.

Omar Baturay

Laboratory Manager

CLIENT: Ammco
DATE: 07/23/01

LAB ID: 2706 PROJECT: 90059-20

GC/MS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY FORMAT

		<u>No</u>	Yes
1.	GC/MS Tune Specifications		v
	a. BFB passed		- ≎-
	b. DFTPP passed		_^_
2.	GC/MS Tuning Frequency - Performed every 12 hours		_x_
3.	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis		_x_
4.	GC/MS Calibration Requirements		
	a. Calibration Check Compounds		X
	b. System Performance Check Compounds		_x_
5.	Blank Contamination - List compounds for each fraction	_x_	
	a. VOA Fraction: b. B/N Fraction:		
	c. Acid Fraction:		
	C. ACIG TIGORION.		
6.	Surrogate Recoveries Meet Criteria (if not met; list those compounds and their recoveries which fall outside the acceptable range)		_x_
	a. VOA Fraction		
	b. B/N Fraction		
	c. Acid Fraction		
7.	Extraction Holding Time Met		_x_
	Comments:		
8.	Analysis Holding Time Met Comments:		_x_
	Additional Comments:		
			
		/	
Labora	atory Manager Michael / Cu Bate: 7/24//	9	
		-	
nonco	n.		

CLIENT: Ammco

LAB ID: 2706-1

PROJECT: American Modern Metals

SAMPLE ID: 6001 MOISTURE (%): N/A LAB FILE ID: >A2348

DATE RECEIVED: 07/16/01

DILUTION FACTOR: 160 SAMPLE VOLUME: 7.8g

DATE EXTRACTED: N/A DATE ANALYZED: 07/19/01-11:40

GC COLUMN: JW DB 624

MATRIX: Soil

VOLATILE ORGANICS

(EPA Method 8260)

UNITS: ug/kg(ppb)

METHOD			DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	160 U	160 U	160
Benzene	160 U	160 U	160
2-Butanone	160 U	160 U	160
Bromodichloromethane	160 U	160 U	160
Bromoform	160 U	160 U	160
Bromomethane	640 U	640 U	640
Chlorobenzene	160 U ·	160 U	160
Carbon Tetrachloride	160 U	160 U	160
Chloroethane	800 U	800 U	008
2-Chloroethylvinyl ether	800 U	800 U	800
Chloroform	160 U	160 U	160
Chloromethane	800 U	900 U	800
Dibromochloromethane	ุ 160 บ	160 U	160
1,3-Dichlorobenzene	160 U	160 U	160
1,4-Dichlorobenzene	320 U	320 U	320
1,2-Dichlorobenzene	160 U	160 U	160
1,1-Dichloroethane	160 U	160 U	160
1,2-Dichloroethane	160 U	160 U	160
trans-1,2-Dichloroethene	160 U	160 U	160
1,1-Dichloroethene	160 U	160 U	160
1,2-Dichloropropane	160 U	160 U	160
cis-1,2-Dichloroethene	160 U	160 U	160
trans-1,3-dichloropropene	160 ປ	160 U	160
cis-1,3-dichloropropene	160 ປ	160 U	160
Ethylbenzene	160 ប	160 U	160
Methylene Chloride	160 U	160 U	160
Naphthalene	16 0 U	160 U	160
1,1,2,2-Tetrachloroethane	160 U	160 U	160
Tetrachloroethene	160 U	160 U	160
Toluene	160 U	160 U	160
1,1,1-Trichloroethane	160 U	160 U	160
1,1,2-Trichloroethane	320 U	320 U	320
Trichloroethene	160 U	160 U	160
Trichlorofluoromethane	800 U	800 U	800
Vinyl Chloride	480 U	480 U	480
o-Xylene	160 U	160 U	160
m,p-Xylenes	160 U	160 U	160

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J ~ Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

E - Exceeds calibration limit.

TECHNION LABORATORIES, INC. NUDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco

SAMPLE ID: 6001

LAB ID: 2706-1

MOISTURE (%): N/A

PROJECT: American Modern Metals

LAB FILE ID: >A2348 DILUTION FACTOR: 160

DATE RECEIVED: 07/16/01

DATE EXTRACTED: N/A

SAMPLE VOLUME: 7.8g

GC COLUMN: JW DB 624

DATE ANALYZED: 07/19/01-11:40

MATRIX: Soil

(EPA Method 624/8260)

CONCENTRATION UNITS: ug/l (ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

CASE NO.

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco SAMPLE ID: 6101

LAB ID: 2706-2 MOISTURE (%): N/A

PROJECT: American Modern Metals LAB FILE ID: >A2349

DATE RECEIVED: 07/16/01 DILUTION FACTOR: 119
DATE EXTRACTED: N/A SAMPLE VOLUME: 10.5g

DATE ANALYZED: 07/19/01-14:20 GC COLUMN: JW DB 624

MATRIX: Soil

UNITS: ug/kg(ppb)

VOLATILE ORGANICS

(EPA Method 8260)

3. 加热的情况

METHOD		****	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	119 U	119 U	119
Benzene	119 U	119 U	119
2-Butanone	119 U	119 U	119
Bromodichloromethane	119 U	119 U	119
Bromoform	119 U	119 U	119
Bromomethane	476 U	476 U	476
Chlorobenzene	119 U	119 U	119
Carbon Tetrachloride	119 U	119 U	119
Chloroethane	595 U	595 U	595
2-Chloroethylvinyl ether	595 U	595 U	595
Chloroform	119 U	119 U	119
Chloromethane	595 U	595 U	595
Dibromochloromethane	ຸ 119 ປ	119 U	119
1,3-Dichlorobenzene	119 U	119 U	119
1,4-Dichlorobenzene	238 U	238 U	238
1,2-Dichlorobenzene	119 U	119 U	119
1,1-Dichloroethane	119 บ	119 U	119
1,2-Dichloroethane	119 U	119 U	119
trans-1,2-Dichloroethene	119 U	119 U	119
1,1-Dichloroethene	119 ປ	119 U	119
1,2-Dichloropropane	119 U	119 U	119
cis-1,2-Dichloroethene	119 U	119 U	119
trans-1,3-dichloropropene	119 U	119 U	119
cis-1,3-dichloropropene	119 U	119 U	119
Ethylbenzene	119 ປ	119 U	119
Methylene Chloride	119 U	119 U	119
Naphthalene	119 ປ	119 U	119
1,1,2,2-Tetrachloroethane	119 U	119 U	119
Tetrachloroethene	119 U	119 U	119
Toluene	119 U	119 U	119
1,1,1-Trichloroethane	119 ປ	119 U	119
1,1,2-Trichloroethane	238 U	238 U	238
Trichloroethene	119 U	119 U	119
Trichlorofluoromethane	595 U	595 U	595
Vinyl Chloride	357 U	357 U	357
o-Xylene	119 U	119 U	119
m,p-Xylenes	119 U	119 U	119

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

E - Exceeds calibration limit.

TECHNION LABORATORIES, INC. NUDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco

SAMPLE ID: 6101

LAB ID: 2706-2

MOISTURE (%): N/A

PROJECT: American Modern Metals

LAB FILE ID: >A2349

DATE RECEIVED: 07/16/01

DILUTION FACTOR: 119

DATE EXTRACTED: N/A

SAMPLE VOLUME: 10.5g

GC COLUMN: JW DB 624

DATE ANALYZED: 07/19/01-14:20

MATRIX: Soil

(EPA Method 624/8260)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

CASE NO.

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco SAMPLE ID: 6002

LAB ID: 2706-3 MOISTURE (%): N/A

PROJECT: American Modern Metals LAB FILE ID: >A2350

DATE RECEIVED: 07/16/01 DILUTION FACTOR: 116
DATE EXTRACTED: N/A SAMPLE VOLUME: 10.8g
DATE ANALYZED: 07/19/01-15:13 GC COLUMN: JW DB 624

MATRIX: Soil

UNITS: ug/kg(ppb)

VOLATILE ORGANICS

(EPA Method 8260)

METHOD			DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	116 U	116 U	116
Benzene	116 ט	116 U	116
2-Butanone	116 U	116 U	. 116
Bromodichloromethane	116 U	116 U	116 .
Bromoform	116 U	116 U	116
Bromomethane	464 U	464 U	464
Chlorobenzene	116 U	116 U	116
Carbon Tetrachloride	116 U	116 U	116
Chloroethane	580 ซ	580 U	580
2-Chloroethylvinyl ether	5 80 ປ	580 บ	580
Chloroform	116 U	116 U	116
Chloromethane	580 U	580 บ	580
Dibromochloromethane	, 116 U	116 U	116
1,3-Dichlorobenzene	116 U	116 U	116
1,4-Dichlorobenzene	232 U	232 U	232
1,2-Dichlorobenzene	116 U	116 U	116
1,1-Dichloroethane	116 U	116 U	116
1,2-Dichloroethane	116 U	116 U	116
trans-1,2-Dichloroethene	116 U	116 U	116
1,1-Dichloroetheme	116 U	116 U	116
1,2-Dichloropropane	116 U	116 U	116
cis-1,2-Dichloroethene	116 U	116 U	116
trans-1,3-dichloropropene	116 U	116 U	116
cis-1,3-dichloropropene	116 U	116 U	116
Ethylbenzene	116 U	116 U	116
Methylene Chloride	116 U	116 U	116
Naphthalene	116 U	116 U	116
1,1,2,2-Tetrachloroethane	116 U	116 U	116
Tetrachloroethene	116 U	116 U	116
Toluene	116 U	116 U	116
1,1,1-Trichloroethane	116 U	116 U	116
1,1,2-Trichloroethane	232 U	232 U	232
Trichloroethene	116 U	116 U	116
Trichlorofluoromethane	580 U	580 U	580
Vinyl Chloride	348 U	348 U	348
o-Xylene	116 U	116 U	116
m,p-Xylenes	116 U	116 U	116

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

E - Exceeds calibration limit.

TECHNION LABORATORIES, INC. NJDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco

SAMPLE ID: 6002

LAB ID: 2706-3

MOISTURE (%): N/A

PROJECT: American Modern Metals

LAB FILE ID: >A2350

DATE RECEIVED: 07/16/01

DILUTION FACTOR: 116

DATE EXTRACTED: N/A

SAMPLE VOLUME: 10.8g

GC COLUMN: JW DB 624

DATE ANALYZED: 07/19/01-15:13

MATRIX: Soil

(EPA Method 624/8260)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

CASE NO.

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

TECHNION LABORATORIES, INC. NJDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco SAMPLE ID: 1001
LAB ID: 2706-4 LAB FILE ID: >A2351

UNITS: µg/l(ppb)

PROJECT: American Modern Metals DILUTION FACTOR: 1

DATE RECEIVED: 07/16/01 SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A GC COLUMN: DB 624

DATE ANALYZED: 07/19/01-16:08 MATRIX: Water

DESCRIPTION: Trip Blank

(EPA Method 624)

			M	THOD	DETECTION
PARAMETER	RE	SULTS	BI	LANK	LIMIT
Acetone	1	Ü		נט	1
Benzene	1	U	:	Lΰ	1
2-Butanone	1	Ū		lυ	1
Bromodichloromethane	1	Ū		Lυ	1
Bromoform	1	Ū		ĽÜ	1
Bromomethane	4	ប		ט ו	4
Chlorobenzene	1	U		U	1
Carbon Tetrachloride	1	Ü		U	1
Chloroethane	5	Ü	5	Ū	5
2-Chloroethylvinyl ether	5	U		5 U	5
Chloroform	1	Ü]	U	1
Chloromethane	٠5	Ü	9	o o	5
Dibromochloromethane	1	U	1	. ប	1
1,3-Dichlorobenzene	1	U	1	. ซ	1
1,4-Dichlorobenzene	2	U	2	. u	2
1,2-Dichlorobenzene	1	บ	3	. ប	1
1,1-Dichloroethane	1	U	3	. ប	1
1,2-Dichloroethane	1	U	1	. υ	1
trans-1,2-Dichloroethene	1	U	3	. ប	1
1,1-Dichloroethene	1	U]	. 0	1
1,2-Dichloropropane	1	U	3	Ü	1
cis-1,2-Dichloroethene	1	U	1	. υ	1
trans-1, 3-dichloropropene	1	U	1	Ü	1
cis-1,3-dichloropropene		U	1	. U	1
Ethylbenzene	1	U	1	. U	1
Methylene Chloride	1	U	1	U	1
Naphthalene	1	Ų	1	U	1
1,1,2,2-Tetrachloroethane	1	Ū	1	Ü	1
Tetrachloroethene	1	U	1	Ü	1
Toluene	1	U	1	Ü	1
1,1,1-Trichloroethane	1	Ü	1	Ū	1
1,1,2-Trichloroethane	2	U	2	Ū	2
Trichloroethene	1	U	1	U	1
Trichlorofluoromethane	5	U	5	U	5
Vinyl Chloride	3	U	3	Ū	3
o-Xylene	1	U	1	Ü	1
m,p-Xylenes	1	U	1	Ü	1
**					

- U Indicates that the compound was analyzed for but not detected.
- B Indicates that the compound was found in the blank, as well as the sample.
- J Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.

NOTE: Detection limits and results are an average of duplicate runs.

TECHNION LABORATORIES, INC. NUDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco

SAMPLE ID: 1001

LAB ID: 2706-4

LAB FILE ID: >A2351

PROJECT: American Modern Metals DILUTION FACTOR: 1

DATE RECEIVED: 07/16/01

SAMPLE VOLUME: 5 ml

GC COLUMN: DB 624

DATE EXTRACTED: N/A

DATE ANALYZED: 07/19/01-16:08

MATRIX: Water

DESCRIPTION: Trip Blank

(EPA Method 624)

CONCENTRATION UNITS: ug/l(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

CASE NO.

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

CLIENT: Ammco

FILE ID: ^A2352 - MS

^A2353 - MSD

LAB ID: 2706-2

DATE ANALYZED: 07/19/01

SAMPLE MATRIX: Soil

LAB CODE: 07004

SOIL VOLATILE MATRIX SPIKE/MATRIX_SPIKE DUPLICATE RECOVERY

Compounds	Spike Added (ug/kg)	Sample Concentration (ug/kg)	MS Concentration (ug/kg)	MS % Rec, #	QC Limits Rec.
1,1-Dichloroethene	20	0	17.0	85	59 - 172
Trichloroethene	20	0	19.43	97	62 - 137
Benzene	20	0	20.73	103	66 - 142
Toluene	. 20	0	18.94	94	59 - 139
Chlorobenzene	20	0 .	19.44	97	60 - 133

Compounds	Spike Added (ug/kg)	MSD Concentration (ug/kg)	MSD % Recovery # (ug/kg)	% RPD	QC Lim RPD	its REC
1,1-Dichloroethene	20	15.52	97	9.9	14	59 - 172
Trichloroethene	20	19.11	95	2.0	1.4	62 - 137
Benzene	20	22.04	110	1.9	11	66 - 142
Toluene	20	21.15	105	11.0	13	59 - 139
Chlorobenzene	20	19.93	99	2.0	13	60 - 133

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: of outside limits

outside limits

^{*} Values outside of QC Limits

TECHNION LABORATORIES, INC. NJDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco SAMPLE ID: M. Blank
LAB ID: Method Blank LAB FILE ID: >A2347

PROJECT: American Modern Metals DILUTION FACTOR: 1

DATE RECEIVED: N/A SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A GC COLUMN: DB 624

DATE ANALYZED: 07/19/01-11:40 MATRIX: Water

DESCRIPTION: Blank

(EPA Method 624)

المنابئين والر

thod 624) UNITS: µg/l(ppb)

		METHOD	DETECTION
PARAMETER	RESULTS	BLANK	LIMIT
Acetone	1 U	1 U	1
Benzene	1 U	1 U	1
2-Butanone	1 U	1 U	1
Bromodichloromethane	1 U	1 U	1
Bromoform	1 U	1 U	1
Bromomethane	4 U	4 U	4
Chlorobenzene	1 U	1 U	1
Carbon Tetrachloride	1 U	1 U	1
Chloroethane	5 U	5 U	5
2-Chloroethylvinyl ether	5 U	5 U	5
Chloroform	1 U	1 U	1
Chloromethane	,5 U	5 U	5
Dibromochloromethane	1 U	1 U	1
1,3-Dichlorobenzene	1 U	1 U	1
1,4-Dichlorobenzene	2 U	2 Ü	2
1,2-Dichlorobenzene	1 U	I U	1
1,1-Dichloroethane	1 U	1 U	1
1.2-Dichloroethane	1 U	1 U	1
trans-1,2-Dichloroethene	1 U	1 U	1
1,1-Dichloroethene	1 U	1 U	1
1,2-Dichloropropane	1 U	1 U	1
cis-1,2-Dichloroethene	1 U	1 U	1
trans-1, 3-dichloropropene	1 U	1 U	1
cis-1,3-dichloropropene	1 U	1 U	1
Ethylbenzene	1 U	1 U	1
Methylene Chloride	1 U	1 U	1
Naphthalene	1 U	1 U	1
1,1,2,2-Tetrachloroethane	1 U	1 U	1
Tetrachloroethene	1 U	1 U	1
Toluene	1 U	1 U	1
1,1,1-Trichloroethane	1 U	1 U	1
1,1,2-Trichloroethane	2 U	2 U	2
Trichloroethene	1 U	1 U	1
Trichlorofluoromethane	5 U	5 U	5
Vinyl Chloride	3 U	3 U	3
o-Xylene	1 U	1 U	1
m, p-Xylenes	1 U	1 U	1
· <u>· · · · · · · · · · · · · · · · · · </u>			

U - Indicates that the compound was analyzed for but not detected.

B - Indicates that the compound was found in the blank, as well as the sample.

J - Indicates that the compound meets the identification criteria but the result is less than the Method Detection Limit.
 NOTE: Detection limits and results are an average of duplicate runs.

TECHNION LABORATORIES, INC. NJDEPE CERTIFIED LAB. ID #07004 VOLATILE ORGANICS ANALYSIS DATA REPORT

CLIENT: Ammco

SAMPLE ID: M. Blank

LAB ID: Method Blank

LAB FILE ID: >A2347

PROJECT: American Modern Metals DILUTION FACTOR: 1

DATE RECEIVED: N/A

SAMPLE VOLUME: 5 ml

DATE EXTRACTED: N/A

GC COLUMN: DB 624

MATRIX: Water

DATE ANALYZED: 07/19/01-11:40

DESCRIPTION: Blank

(EPA Method 624)

CONCENTRATION UNITS: ug/1(ppb)

TENTATIVELY IDENTIFIED COMPOUNDS

No. of Compounds found: 0

CASE NO.

COMPOUND

RT

RESULTS

NO TENTATIVELY IDENTIFIED COMPOUNDS FOUND.

The control of the co

TIERRA-B-008637

JON CHROMATOGRAM >AES48 35.0 200.0주설정자 ୍ଞ୍ଚ ଅନ୍ତ ទូតូតស្បី इंद्रु (इंद्री يۇنىي يې د . د 8'.64'.65'.65'.67'.65'.69'.616.81.82

Data File: >A2348::U2 Name: 2206-1 Nisc: (

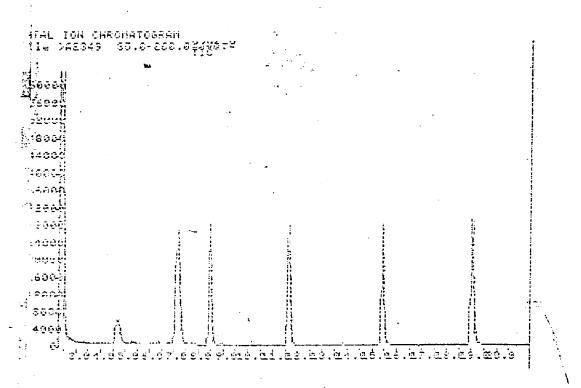
File: IDNEW::50 Title: TECHNION INC.

Last Calibration: 010502 10:24

ID:

Time:

Quant Output Film: Instrument


Last Doal

^A2348::0T GC/MS#1

**0719

10:49

Goerator ID: SAMMY Guant Time : 010719 Injected at: ++0719 17:28 12:31

Data File: >A2349::U2

4 Name: 2706-2 Misc:#

11150.5

ia File: IDNEW::35 ... Title: TECHNION INC.

Last Calibration: 010702 10:24

Guerakon 10: Bantii

Quant Time : 010719 17:31 Injedico at: **0719 14:20 Ovant Output File: ^A2749::GT Instrument iD: GC/M5#i

Last Goal Time: **0719 10:49

Aller Brief Control Co

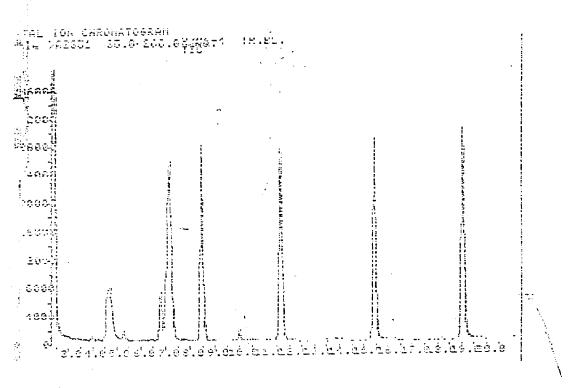
Data File: >A2390::U2

Name: 2706-7

Mischi

ic File: 15%Ew::ED Martitle: TECHNIGN INC.

Niest Calibration: 010302 10:24


Gberster ID: Benni

Suent Time : 010719 17:34 Injeşteo et: 453719 17:34 Guant Gutput File: กลัยวิธีอั๋::ผีโ Instrument !D: GC/MS#1

Last Goal Time: **0719 10:49

TIERRA-B-008643

....<u>⊊</u>

Data File: >A2351::U2 mame: 2705-4 TR.BL.

Misc: F

Re File: IDMEW::ED

Specialist 15: Bench

Seent Time : 010719 17:57 lnjedigu st: 1-0719 16:08

Quant Output File: ^A2351::QT SCZMS#1 Instrument (14)

Title: TECHNION INC. Last Calibration: 010502 10:24 Last Ocal Time: **0719 10:49

BELL ENVIRONMENTAL CONSULTANTS, INC.

September 29, 1995

Ms. Rosemary Lafferty
New Jersey Department of Environmental Protection and Energy
Division of Responsible Party Site Remediation
401 East State Street
CN 028
Trenton, NJ 08625-0028

TRANSMITTAL VIA CERTIFIED U.S. MAIL, RRR #P 886 672 485

RE: American Modern Metals Corp

Kearny, New Jersey

ISRA Case #88785, 88A38, 88892, 88A39, 88891, 88A37, 88787, 88786, 88891,

and 88A35

BELL Project #EOG01-90059-02

Dear Ms. Lafferty:

Bell Environmental Consultants, Inc. (BELL), on behalf of American Modern Metals Corp. (AMMCo), is pleased to present the attached Remedial Investigation Report/Remedial Action Workplan (RIR/RAW) for the above referenced site.

Additionally, please find attached the draft Declaration of Environmental Restrictions (DER) and the NJDEP-required II-Part Certification Statement for the above-referenced site.

If you have any questions or need further information, please feel free to call.

Very truly yours,

BELL ENVIRONMENTAL CONSULTANTS, INC.

BBF000005

Scott E. Hubbard, C.H.M.M.

Project Manager

Donald M. Bello, C.P.G.

Vice President

CC;

Ivari Rosalsky, AMMCo

Ron Novis, Mayors Office - Kearny BELL Project #EOG01-90059-02

DRAFT REMEDIAL INVESTIGATION REPORT/ REMEDIAL ACTION WORKPLAN AMERICAN MODERN METALS CORPORATION KEARNY, NEW JERSEY

American Modern Metals Corporation 65 Passaic Avenue Kearny, Hudson County, New Jersey

September, 1995
BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

TABLE OF CONTENTS

				<u>Page</u>			
EXE	ECUT	TIVE S	UMMARY				
1.0	INTRODUCTION						
	1.1	Over	view	1-1 1-1			
	1.2	Site I	Location	1-2			
	1.3	Curre	ent and Historical Site Uses	1-3			
	1.4	Proje	ct History	1-4			
	1.5	Proje	ct Objectives	1-6			
2.0	PH	/SICAL	L SETTING	2-1			
	2.1		graphy and Drainage	2-1			
			Regional Topography and Drainage	2-1			
			Site-Specific Topography and Drainage	2-1			
	2.2	Soils		2-1			
			Regional Soils	2-1			
			Site-Specific Soils	2-2			
	2.3		ogy/Hydrogeology	2-2			
			Regional Geology/Hydrogeology	2-2			
			Site-Specific Geology/Hydrogeology	2-3			
		Wetla	····-	2-3			
	2.5	Surro	unding Property Uses	2-4			
3.0			AL OVERVIEW OF REMEDIAL INVESTIGATION ACTIVITIES	3-1			
			of Concern (AOCs)	3-1			
	3.2		nvestigation	3-2			
		3.2.1	Area 3- Fuel Oil Underground Storage Tank (UST)				
			Excavation Adjacent to Former Boiler Room	3-3			
			Area 4 - Transformer Pad	3-4			
			Area 9 - Sump Metals Storage Area	3-5			
			Area 10 - Waste Storage Area	3-5			
			Area 11 - Endre Doczy Building	3-6			
			Area 12 - Loading Dock Sump Discharge Area	3-8			
			Area 16 - Processing Building #22	3 -8			
		3.2.8	Area 19 - Drum Storage Area Adjacent to Building #23	3-8			

TABLE OF CONTENTS (CONTINUED)

					<u>Page</u>
				0 - Tunnel Area	3-9
		3.2.10	o Area 2	1 - Loading Dock at Marshall Clark Building	3-9
		3.2.1	1 Area 2	3 - Oil Filter Area Adjacent to Endre Doczy Building	3-9
		3.2.12	2 Soil Bo	oring Installation and Sampling	3-10
		3.2.13	3 Historic	cal Fill Investigation and Literature Review	3-11
	3.3			r Investigation	3-11
		3.3.1	Monito	ring Well Installation	3-12
				ring Well Sampling	3-13
				d Water Elevation Measurements	3-14
		3.3.4	Produc	t Recovery and Fingerprint Analysis 🐔	3-14
		3.3.5	Region	al Ground Water Quality Investigation	3-15
	3.4			iding AOCs	3-15
		3.4.1	Area 17	7 - Drum Storage Area	3-15
				3 - Asbestos Flue Stacks	3-15
	3.5			nalytical Data	3-15
				strument Calibration	3-16
		3.5.2	Soil and	d Ground Water QA/QC Sampling	3-16
				Custody and Shipment	3-17
				cal Methods	3-17
		3.5.5	Reducti	ion of Analytical Data	3-17
4.0	FIN	DINGS			4-1
	4.1			ion Results	4-1
		4.1.1	Area 9	- Sump Metals Storage Area	4-1
		4.1.2	Area 10	- Waste Storage Area	4-2
		4.1.3	Area 11	- Endre Doczy Building	4-4
		4.1.4	Area 12	- Loading Dock Sump Discharge Area	4-5
		4.1.5	Area 19	- Drum Storage Area Adjacent to Building #23	4-6
		4.1.6	Area 20	- Tunnel Area	4-7
		4.1.7	Area 23	- Oil Filter Area Adjacent to Endre Doczy Building	4-7
		4.1.8	Historica	al Fill Investigation	4-8
			4.1.8.1	Regulatory Agency File Review Results	4-8
		•	4.1.8.2	Results of Literature Review Relative to Regional	. 🕶
				Distribution of Contaminants of Concern	4-10
		4.1.9	Soil Bo	ring Sampling Results	4-12

TABLE OF CONTENTS (CONTINUED)

		Page
	4.2 Ground Water Investigation Results 4.2.1 Ground Water Flow Conditions 4.2.2 Ground Water Sampling Results 4.2.2.1 June 7, 1993 Results 4.2.2.2 May 10, 1994 Results 4.2.2.3 November 7, 1994 Results 4.2.3 Product Recovery and Fingerprinting Results 4.2.4 Regional Ground Water Quality Investigation	4-15 4-16 4-16 4-18 4-19 4-20 4-21
5.0	EVALUATION OF CURRENT ENVIRONMENTAL CONDITIONS 5.1 Soil 5.1.1 Distribution of PAHs and Metals 5.1.2 Historic Placement of Fill Material at the Site 5.2 Ground Water 5.2.1 Aluminum Concentrations 5.2.2 BTEX Compounds Detected in MW-6 and MW-10 5.2.3 Chlorinated VO Compounds Detected in BEC-12S 5.2.4 LNAPL Distribution	5-1 5-1 5-2 5-3 5-3 5-4 5-4 5-5
6.0	SUMMARY OF PROPOSED REMEDIAL ACTIONS 6.1 Soil 6.2 Ground Water	6-1 6-1 6-2
7.0	REMEDIAL COST ESTIMATE	7-1
3.0	IMPLEMENTATION SCHEDULE AND REPORTING	8-1
9.0	SUMMARY AND LIMITATIONS	9-1

VOLUME I

LIST OF FIGURES

3	Figure #	<u>Description</u>
	1-1	Site Location Map
<u>च</u> 	2-1	Wetlands Area Map
्' 	3-1	Site Plan
_	3-2	Former Soil Sample Locations
-	3-3	Post-Excavation Soil Sample Locations, June 1993 - April 1994
4	3-4	Interpreted Water Table Elevation Map for June 1, 1993
	3-5	Interpreted Water Table Elevation Map for June 7, 1993
7) - -	3-6	Interpreted Water Table Elevation Map for August 2, 1993
	3-7	Interpreted Water Table Elevation Map for May 10, 1994
	3-8	Interpreted Water Table Elevation Map for December 12, 1994
	4-1	Analytical Results for Post-Excavation Soil Samples Exceeding
į		NJDEP Residential Soil Cleanup Criteria
_	4-2	Analytical Results for Soil Boring Samples Exceeding NJDEP
2'		Residential Soil Cleanup Criteria
	4-3	Analytical Results for Ground Water Samples Exceeding
		NJDEP Class II-A Ground Water Quality Standards

類

LIST OF APPENDICES

Volume #	Appendix #	<u>Title</u>
 	A B C D E F	NJDEP Correspondence Soil Boring Logs Historical Data Tables Certifications From Owner Analytical Data Packages Monitoring Well Logs

٤.

1.0 INTRODUCTION

Bell Environmental Consultants, Inc. (BELL), on behalf of American Modern Metals Corporation (AMMCo), has prepared this Remedial Investigation Report/Remedial Action Workplan (RIR/RAW) for submission to the New Jersey Department of Environmental Protection (NJDEP). This RIR/RAW was prepared in specific reference to the AMMCo property located in Kearny, Hudson County, New Jersey (herein referred to as the site). This document has been formatted in general accordance with the NJDEP directive letters dated June 16, 1992, February 3, 1994 and February 9, 1995 (copies provided in Attachment A), the NJDEP Technical Requirements for Site Remediation (N.J.A.C. 7:26E), other applicable NJDEP protocol, and generally accepted industry practices.

1.1 OVERVIEW

Killam Associates (Killam), the environmental consultant for the partnership of Sol Goldman, Irving Goldman, and Alex DiLorenzo Jr. (Goldman - the former owner of the site), submitted a Cleanup Plan and a Cleanup Plan Addendum on behalf of AMMCo to the NJDEP in August 1991 and April 1992, respectively. The NJDEP issued a Cleanup Plan approval dated June 1992 which directed AMMCo to conduct additional investigatory tasks. In July 1993, AMMCo submitted an Interim Environmental Cleanup Responsibility Act (ECRA) Cleanup Plan Report to the NJDEP. Subsequent to a review of this report, the NJDEP issued letters dated February 3, 1994 and February 9, 1995 to AMMCo (copies in Appendix A) which directed AMMCo to conduct additional investigatory and remedial tasks at the site. In response to requirements of the aforementioned NJDEP directive letters (as amended during a meeting between the NJDEP, AMMCo and BELL on November 21, 1994), AMMCo implemented a remedial investigation (RI) between June 1993 and April 1995 that consisted of the following tasks:

- A review of historical site information;
- An assessment of the physical setting of the site and surrounding area;
- The excavation of soils and collection of post-excavation (PE) soil samples;
- The installation of exploratory soil borings and soil sampling;
- A review of NJDEP files and relevant literature sources relative to the placement of historical fill material in the area surrounding the AMMCo site;
- ◆ The collection and analysis of light non-aqueous phase liquid (LNAPL) samples from ground water monitoring wells;
- The installation of an additional onsite ground water monitoring well;
- The sampling of ground water monitoring wells; and
- The preparation of a RIR/RAW.

VOLUME I

LIST OF TABLES

	Table #	<u>Title</u>
	3-1	Summary of Sampling Activities Conducted Since June 1993
	3-2	Summary of Ground Water Monitoring Well Physical Data
	3-3	Summary of Ground Water Elevation Data - June 1, 1993 - December 12, 1994
	3-4	Summary of Analytical Methods and Quality Assurance/Quality Control Sampling
	4-1	Summary of Total Petroleum Hydrocarbons, Zinc, Lead, Arsenic, and Copper Analytical Results for 20 Post- Excavation Soil Samples Collected between June 18, 1993 and April 26, 1994 within AOC 1
	4-2	Summary of Base Neutral Analytical Results for 34 Post- Excavation Soil Samples Collected Between June 17, 1993 and April 28, 1994 within AOC I
	4-3	Summary of Base Neutral Analytical Results for 4 Post- Excavation Soil Samples Collected on April 28, 1994 within AOC II
	4-4	Summary of Arsenic Analytical Results for 5 Post- Excavation Soil Samples Collected on April 28, 1994 within AOC II
	4-5	Summary of Base Neutral and Metal Analytical Results for 36 Soil Boring Samples Collected on April 5 & 10, 1995
	4-6	Summary of Aluminum Analytical Results for 6 Ground Water Samples Collected on June 7, 1993
	4-7	Summary of Volatile Organic Analytical Results for 2 Ground Water Samples Collected on June 7, 1993
	4-8	Summary of Volatile Organic Analytical Results for 3 Ground Water Samples Collected on May 10, 1994
•	4-9	Summary of Base Neutral Analytical Results for 1 Ground Water Sample Collected on May 10, 1994
•	4-10	Summary of Volatile Organic Analytical Results for 1 Ground Water Sample Collected on November 7, 1994
4	4-11	Results of LNAPL Measurement-March 1994 to January 1995

Consequently, the objectives of this RIR/RAW are to:

- Present the results of the RI conducted at the site since submission of the Interim ECRA Cleanup Plan Report in July, 1993;
- Evaluate the current distribution of compounds of concern in soil and ground water at the site; and
- ◆ Present, if warranted, a proposal for remedial action(s) to be implemented relative to the site.

When completing the evaluation of environmental conditions at the site and potential remedial alternatives, the results of the RI were used in conjunction with information obtained from previous investigations. For clarity reasons, this report has been structured as follows:

- Section 1 presents an overview of the AMMCo project, a description of the site location, a description of current and historical site uses, and a history of the project;
- ◆ Section 2 provides a description of the physical setting of the site and surrounding area;
- Section 3 is a technical overview of the RI activities conducted at the site;
- Section 4 presents the results of the Rt;
- Section 5 summarizes the results of the RI and provides an evaluation of current environmental conditions at the site;
- Section 6 presents the proposed remedial actions;
- Section 7 provides a remedial cost estimate;
- Section 8 details the implementation schedule and proposed reporting for remedial actions to be conducted at the AMMCo site;
- Section 9 identifies the limitations of the RIR/RAW.

1.2 SITE LOCATION

The AMMCo site is located in the Kearny Elite Industrial Park, which is located to the east and west of Passaic Avenue in Kearny, Hudson County, New Jersey (Figure 1-1). The site has an approximate area of 7.0 acres, with 5.7 acres located east of Passaic Avenue and the remaining 1.3 acres located west of Passaic Avenue. The portion of the site located east of Passaic Avenue is bounded by Marshall Street, Clark Avenue, and Belgrove Drive, and is designated by the Town of Kearny as Block 14, Lots 3 and 4. This portion of the site east of Passaic Avenue contains the AMMCo manufacturing operations. The portion of the site west of Passaic Avenue is designated as Block 1, Lots 9, 10, and 11 and contains AMMCo's office facilities. The site is located within an industrial area of Kearny.

1.3 CURRENT AND HISTORICAL SITE USES

The site is used by AMMCo to manufacture various aluminum products, including baseball bats and hockey sticks. Additionally, three tenants (Marshall Clark Manufacturing, Ferber Plastics, and RMS Sportswear) currently lease space in the portion of the AMMCo site located west of Passaic Avenue.

The AMMCo manufacturing process begins when aluminum billets are melted down and introduced into molds to create a product commonly known as a "blank". These "blanks" are then transported from the portion of the site east of Passaic Avenue to Marshall Clark Manufacturing, where they are subjected to various finishing operations such as painting, insertion of foam, and attachment of accessories.

The AMMCo site was owned from the early 1900's to 1959 by the Linen Thread Company, which operated a linen production plant onsite. The company manufactured linen thread, material and yarns from raw flax and twine, and sacks from raw hemp and jute. The property was purchased by York Associates from the Linen Thread Company on October 13, 1959. York Associates renamed the site to the Elite Industrial Park and subsequently leased the buildings and grounds to various industrial tenants. On September 16, 1963, York Associates transferred the property to Goldman, who continued to lease the site to various tenants under the name of the Elite Industrial Park.

On February 15, 1980, the Elite Industrial Park was entirely leased by the Airlite Aluminum Corporation (Airlite), a predecessor of AMMCo. Airlite subsequently subleased portions of the property to various industrial tenants and in late 1980, Airlite was purchased by AMMCo. In May 1986, an explosion and fire in the boiler room of the facility destroyed many of the structures located within the portion of the site to the east of Passaic Avenue. Tenants displaced as a result of the explosion and fire included Jay Are Fashions (a warehouse for imported clothing), H & G Industries (a manufacturer of paint brushes and rollers), Endre Doczy (a custom machine shop), and C & J Cycles (a custom motorcycle shop).

On December 14, 1988, Goldman sold the property to the DiLorenzo Properties Company. No tenants were displaced as a result of this change in ownership, operations remained unchanged, and AMMCo continued to lease the entire property and sublease portions of the property to other tenants. This sale of the property was a "trigger" event as defined by ECRA, which required the tenants and owners of the property to undergo the ECRA investigation process (see below).

In 1988, an Administrative Consent Order (ACO) was executed by AMMCo, Goldman, DiLorenzo and the NJDEP relative to the ECRA investigation to be conducted at the site.

6.3

The ACO allowed title transfer from Goldman to the DiLorenzo Properties Company and a single bond amount was established for the entire property. This situation caused several parties to be jointly responsible for the cost of the ECRA investigation. At this time, eight businesses had either an active lease (AMMCo) or sublease at the site. Therefore, the following nine ECRA case numbers were issued for the site: #88785 for AMMCo, #88892 for Endre Doczy, #88891 for H & G Industries, #88787 for Marshall Clark Manufacturing, #88786 for RMS Sportswear, #88A36 and #88A39 for Ferber Plastics, #88A37 for Jay Are Fashions, and #88A38 for C & J Cycles.

1.4 PROJECT HISTORY

The following is a historical summary of the AMMCo project to date (in chronological order):

- August 1988 An ECRA General Information Submission (GIS) was submitted to the NJDEP in response to a proposed ECRA trigger event (sale of the property).
- ◆ November 10, 1988 An ACO was issued by the NJDEP.
- ◆ December 14, 1988 AMMCo, Goldman and DiLorenzo executed the ACO. The ACO allowed title transfer from Goldman to the DiLorenzo Properties Company and a single bond amount was established for the entire property.
- ◆ June 1989 Nine Site Evaluation Submissions (SESs) and a Phase I Sampling Plan for the site were submitted to the NJDEP. These documents were prepared by Law Environmental (LAW) for Interwaste Service Company (ISCO), which was the consultant to Waters, McPherson, and McNeill, the legal counsel for Goldman.
- August 1, 1989 An ECRA site inspection was conducted at the site by the NJDEP.
- September 13, 1989 The NJDEP issued a Report of Inspection to AMMCo, which outlined potential areas of concern (AOCs) noted during the NJDEP ECRA inspection and identified necessary actions to address the potential AOCs.
- ◆ November 30, 1989 The NJDEP conditionally approved the LAW Phase I Sampling Plan dated June 1989. Killam replaced ISCO/LAW as the environmental consultant for Goldman.
- ◆ April 1990 May 1990 Killam conducted Phase I field activities.
- June 1990 Killam submitted a report titled Results of Phase I Sampling to the NJDEP. A Phase II Sampling Plan was submitted with the report.
- October 29, 1990 Killam submitted an Addendum to the Phase II Sampling Plan to the NJDEP.
- April 1991 July 1991 Killam conducted Phase II field activities.

- August 1991 Killam submitted the Results of Phase II Sampling to the NJDEP.
 A Cleanup Plan was submitted with the report.
- ◆ April 1992 Killam submitted an Addendum to the Cleanup Plan (August 1991) to the NJDEP.
- ♦ June 16, 1992 The NJDEP issued a letter to AMMCo conditionally approving the Killam Cleanup Plan.
- ◆ July 1992 BELL was retained by AMMco to implement the Killam prepared and NJDEP conditionally approved Cleanup Plan.
- ◆ October 1992 June 1993 BELL conducted field activities in accordance with the Killam Cleanup Plan and the June 1992 NJDEP letter.
- ◆ July 1993 BELL submitted an Interim ECRA Cleanup Plan Report to the NJDEP. Modifications to the previously approved (June 1992) Cleanup Plan were proposed in the report.
- ◆ February 1994 The NJDEP issued a letter to AMMCo conditionally approving the proposed Cleanup Plan modifications.
- ◆ June 1993 April 1995 BELL completed RI field activities in accordance with the NJDEP-approved modified Cleanup Plan. Field activities as part of the RI are further detailed in Section 3.0.

1.5 PROJECT OBJECTIVES

A RI was conducted at the site from June 1993 to April 1995. Information obtained from previous investigations conducted at the site was utilized in designing the RI. The objectives of the RI were to remediate and further delineate soil and ground water contamination at the site to facilitate the selection of a final remedial action. The specific objectives of the RI included:

- Evaluate the surface and subsurface characteristics of the site;
- Remediate and delineate soil contamination at the site;
- ♦ Assess the quality of fill historically placed at the AMMCo site and at other properties in the area of the site;
- Delineate ground water contamination at the site;
- Assess the ground water quality in the area surrounding the site; and
- Identify a viable remedial action for the soil contamination at the site.

(E)

2.0 PHYSICAL SETTING

2.1 TOPOGRAPHY AND DRAINAGE

The following subsections discuss the topography and drainage specific to the region surrounding the AMMCo site and the site-specific topography and drainage observed at the AMMCo site.

2.1.1 Regional Topography And Drainage

The AMMCo site is located in the northeast region of New Jersey. This region of New Jersey has been impacted by various glacial episodes and is characterized by low rolling, bedrock topography. Based upon a review of the United States Geological Survey (USGS) Orange and Elizabeth topographic quadrangles of the area, the topography in the area surrounding the AMMCo site ranges in elevation from 5 feet above mean sea level (MSL) to 120 feet above MSL. Regional drainage surrounding the AMMCo site occurs through natural drainage channels and manmade drainage structures (e.g., storm sewers). The western portion of the site borders the Passaic River while the eastern portion of the site is situated approximately 500 feet to the east of the Passaic River.

2.1.2 Site-Specific Topography And Drainage

Based on a review of USGS topographic maps, the AMMCo site is located at approximately 15 feet above MSL. The site slopes gently to the west towards the Passaic River. Surface water runoff from the area of the site located east of Passaic Avenue flows to storm drains, which ultimately discharge to the Passaic River. Surface water runoff from the area of the site located west of Passaic Avenue flows overland to the Passaic River.

2.2 SOILS

The following subsections discuss the soil characteristics of the region surrounding the AMMCo site and provide a description of soil at the site as noted during installation of monitoring wells, soil borings, excavations, and test pits.

2.2.1 Regional Soils

Based on a review of the United States Department of Agriculture (USDA) Soil Conservation Service (SCS) Soil Survey for Hudson County, New Jersey, the majority of the soils located in the region surrounding the AMMCo site are described as Udothents soils. This land type has been filled and smoothed, or otherwise extensively disturbed by excavation and filling activities, to a depth of 3 feet or more. The original soil can no

 longer be identified. Fill material generally consists of a mixture of stones, boulders, rubble, and soil material. Most areas are presumed to have been deep, very poorly drained organic or mineral soils, which had fill added to raise ground surface elevations to prevent flooding of properties adjacent to the river. These areas require on-site investigations for all uses because of the variability of the soil material in the filling process.

2.2.2 Site-Specific Soils

Fill material was observed at the site from 0 to 4 feet below ground surface (BGS) during the installation of monitoring wells, soil borings and test pits. Fill material consisted primarily of gravel and sand sized particles with miscellaneous debris (i.e., brick and glass fragments, cinders, stones, etc.) intermixed. Underlying the fill materials, black, brown, and reddish-brown gravels, sands, silts, and clays were observed. As indicated on the soil boring logs (Appendix B), sandy subsoils are more predominant along the northeastern and northwestern property boundaries (along Marshall Street and Passaic Avenue), while clayey subsoils are more predominant along the southeastern and southwestern property boundaries (along Clark Avenue and Belgrove Drive).

2.3 GEOLOGY/HYDROGEOLOGY

The following subsections provide a description of the geologic/hydrogeologic characteristics of the region surrounding the AMMCo site and provide a description of the geologic/hydrogeologic characteristics at the site as noted during installation of monitoring wells, soil borings, excavations, and test pits.

2.3.1 Regional Geology/Hydrogeology

The AMMCo site is situated in the Piedmont physiographic province, which comprises the eastern half of northern New Jersey. The site is situated on glacio-fluvial Pleistocene deposits overlying Pleistocene glacial till deposits. The fluvial deposits consist of a stratified, unconsolidated, heterogeneous mixture of well graded sands and gravels, with a lesser percentage of silt and clay, and range from fifteen to twenty-five feet in thickness. The majority of these deposits were formed as a result of stream channel outwash. Included in these deposits are lenses of silts and clays recently deposited by the Passaic River.

Underlying these deposits is a Pleistocene glacial till deposit which consists of an unconsolidated, unstratified mixture of sand, clay and gravel. The thickness of the Pleistocene deposits varies greatly, from less than ten feet thick in the western part of Newark, to 200 feet thick east of Harrison. Underlying the glacial deposits is the red shale

and sandstone bedrock of the Passaic Formation (formerly the Brunswick Formation) of the Newark Group. This Triassic bedrock originated as sand, silt and mud which eroded from older rocks northwest and southeast of the area. The strata have been tilted northwestward with a northeast trend of the beds. The total thickness of the rocks of the Passaic formation is estimated at 6,000 to 7,000 feet.

The AMMCo site is situated in the Lower Passaic River Discharge Basin. Ground water, which occurs under unconfined conditions within the Pleistocene overburden deposits, is discharged regionally to this drainage basin. The bedrock aquifer in the region is the Triassic Age Passaic Shale formation. The storage capacity of the shale bedrock is relatively low, and can only be adequately recharged from the porous, permeable, overlying deposits. The primary porosity of the bedrock is not sufficient enough to allow water movement through the bedrock. A secondary porosity system, created by cracks and fractures, is essentially the only means for this aquifer to yield or transmit water. This system of cracks and fractures intersect to allow water to move directionally according to the orientation of the prevalent fracture system (generally trending northeast to southwest). As greater depths are reached, the weight of the overlying materials increase and tends to close the cracks, thereby reducing the capacity of the formation to store and transmit water.

2.3.2 Site-Specific Geology/Hydrogeology

As indicated on the soil boring logs (Appendix B), fill material is present at the site to a depth of approximately four feet BGS. The fill material consists primarily of gravel and sand sized particles with miscellaneous debris (i.e., brick and glass fragments, cinders and stones) intermixed. Underlying the fill materials are black, brown, and reddish-brown gravels, sands, silts, and clays.

A review of water levels observed within onsite ground water monitoring wells indicate a southwesterly ground water flow direction. The ground water table was noted in December 1994 at an approximate depth of 15 feet BGS in the eastern portion of the site (at Clark Street) to an approximate depth of 8 to 10 feet BGS in the western portion of the site (nearest to the Passaic River). The hydraulic gradient across the site ranged from 0.0013 to 0.0045 feet/foot (depending on tidal conditions and area of the site). The western portion of the site has been observed to be influenced by tidal fluctuations. Ground water flow conditions at the site are discussed further in Section 4.2.1.

2.4 WETLANDS

The AMMCo site, and the properties adjacent to the site, are identified by the National Wetlands Inventory (NWI) as Upland. The portion of the Passaic River that is located to

AMMCo - Kearny - Remedial Investigation Report/Remedial Action Workplan BELL Project #EOG01-90059-02

Section 2.0 - Page 3

the west of the site is identified as Estuarine Subtidal Open Water. A Wetlands Area Map for the area surrounding the AMMCo site is presented as Figure 2-1.

2.5 SURROUNDING PROPERTY USES

The AMMCo site is located within an industrial section of Kearny, that is generally viewed as an extension of the Ironbound section of Newark, which is located opposite the Passaic River from the site. The properties surrounding the AMMCo site are described as follows:

- East of the site and across Clark Street is residential housing complex identified as the "General Kearny Apartments";
- ◆ To the north of the site, across Marshall Street, is a commercial strip mall which includes a "Shop Rite" grocery store, a laundromat, and retail stores;
- To the west of the site is the Passaic River;
- To the south/southwest of the site are two gasoline service stations; and
- ♦ To the northwest and southwest of the site, beyond Passaic Avenue, are the Franklin Chemical Company (formerly known as Franklin Plastics) and the American Strip Steel Company, respectively.

3.0 TECHNICAL OVERVIEW OF REMEDIAL INVESTIGATION ACTIVITIES

Previous investigation reports submitted to the NJDEP include the Killam Results of Sampling Plan dated June 1990, the Killam Results of Phase II Sampling Plan dated August 1991, and the BELL Interim ECRA Cleanup Plan Report dated July 1993. Analytical summary tables for all soil and ground water samples collected prior to June 1993 are included in Appendix C.

NJDEP letters dated February 3, 1994 and February 9, 1995, directed AMMCo to conduct additional investigatory tasks relative to compounds of concern identified in soil and ground water at the site. The following sections summarize the RI activities implemented by AMMCo at the site between June 1993 and April 1995. Table 3-1 summarizes the field activities conducted at the site since June 1993.

3.1 AREAS OF CONCERN (AOCs)

Several AOCs were initially identified at the site in the "Phase I Sampling Plan" submitted to the NJDEP by ISCO/LAW in June 1989 and were modified in the Interim ECRA Cleanup Plan Report submitted to the NJDEP by BELL in July 1993. Each former AOC is shown on the Site Plan (Figure 3-1). Each AOC and the current status relative to NJDEP requirements are further described as follows:

- Area 1: Pre-Burn/Smelter Stack Area. No Further Action was approved for this AOC by the NJDEP on February 3, 1994.
- Area 2: Trash Compactor. No Further Action was approved for this AOC by the NJDEP on September 17, 1990.
- Area 3: Fuel Oil Underground Storage Tank (UST) Excavation (near Building #24).
- Area 4: Transformer Pad. No Further Action was approved for this AOC by the NJDEP on February 3, 1994.
- Area 5: Loading Dock (near Building #18). No Further Action was approved for this AOC by the NJDEP on June 15, 1992.
- Area 6: Sump with Pump (near Loading Dock and Building #18. No Further Action was approved for this AOC by the NJDEP on June 15, 1992.
- Area 7: Sump in Loading Dock (near Building #18). No Further Action was approved for this AOC by the NJDEP on June 15, 1992.
- Area 8: Transformers (near Loading Dock and Building #180. No Further Action was approved for this AOC by the NJDEP on June 15, 1992.
- Area 9: Sump Metals Storage Area.
- Area 10: Waste Storage Area.
- Area 11: Endre Doczy Building (Building # 9).

Area 12: Loading Dock Sump Discharge Area.

Area 13: Drain/Manhole (near Sharp's Furniture). No Further Action was approved for this AOC by the NJDEP on February 3, 1994.

Area 14: Gasoline UST Excavation. No Further Action was approved for this AOC by the NJDEP on September 17, 1990.

Area 15: Asbestos Areas (Building #'s 22 and 24). No Further Action was approved for this AOC by the NJDEP on February 3, 1994.

Area 16: Processing Building #22. No Further Action was approved for this AOC by the NJDEP on February 3, 1994.

Area 17: Drum Storage Area.

Area 18: Asbestos Flue Stacks.

Area 19: Drum Storage Area (near Building #23).

Area 20: Tunnel Area.

Area 21: Loading Dock at Marshall Clark Building.

Area 22: Area Directly Behind Wall of Building #23. No Further Action was approved for this AOC by the NJDEP on February 3, 1994.

Area 23: Oil Filter Area (near Endre Doczy Building).

As discussed in the meeting between BELL, AMMCo, and the NJDEP on November 21, 1994, the AOCs that are located east of Passaic Avenue (formerly Areas 1 through 18, 20, and 23) will be evaluated as one AOC (AOC I) relative to the delineation of compounds of concern in soil and selection, if warranted, of remedial actions for soil. The AOCs west of Passaic Avenue (formerly Areas 19, 21, and 22) will also be evaluated as one AOC (AOC II) relative to soil issues.

3.2 SOIL INVESTIGATION

AOCs at the AMMCo site requiring additional delineation/remediation of compounds of concern in soil were identified in the NJDEP directive letter dated February 3, 1994. Activities performed relative to soil issues in these AOCs included the excavation and disposal of soil, the installation of exploratory test pits and collection of PE soil samples, and the installation of soil borings and collection of soil samples. The locations of samples collected prior to the RI that contained concentrations of compounds of concern exceeding NJDEP Soil Cleanup Criteria (SCC) are presented in Figure 3-2. Areas of soil excavated during the RI and the locations of the associated post-excavation (PE) soil samples are shown on Figure 3-3.

Soil samples were collected using appropriately decontaminated stainless steel scoop and hand augers, were transferred into laboratory-supplied glassware, and were subsequently placed on ice for shipment to Veritech Environmental and Services Analytical Services, Inc. (Veritech) located in Butler, New Jersey (NJ Certification # 14622).

Soil excavation during the RI was conducted by Rosil Environmental Contracting of Belleville, New Jersey. Excavated soil was transported offsite for use as cover material at the Linden Landfill. The excavations were backfilled, subsequent to obtaining PE samples, with certified clean fill delivered to the AMMCo site by John Almasi Trucking, Inc. of Woodbridge, New Jersey. The clean fill originated from Block # 249, Lot # 1 which is located on Lower Main Street, Township of Sayreville, New Jersey. Certifications for both the soil disposal and clean fill are included as Appendix D.

Additionally, BELL conducted a historical fill investigation during the RI to determine if base neutral (BN) compounds and metals historically detected in soils at the site may be associated with the placement of historical fill at the site. BELL conducted a literature review and reviewed NJDEP files associated with soil investigations at surrounding sites to investigate the quality of historical fill used in the area of the site. The results of the historic fill investigation are presented in Section 4.1.8 of this RIR/RAW.

3.2.1 Area 3 - Fuel Oil Underground Storage Tank (UST) Excavation Adjacent to Former Boiler Room

Former Piping Associated with Former Fuel Oil USTs - The NJDEP has directed AMMCo to collect one soil sample for each 15 linear feet of the piping associated with the former underground storage tanks (USTs), previously located in the area adjacent to the former boiler room (Figure 3-3). The former USTs were located adjacent to Building 14 (Boiler Room). When the USTs were removed, soil was excavated to within 10 feet of Building 14. The piping associated with the USTs was positioned underground until entering the building, where the piping was positioned aboveground until connection with the boilers. The length of piping from the USTs to the point at which it entered the building was less than 15 feet. No further action is considered warranted relative to the piping, as the "Technical Requirements for Site Remediation" (N.J.A.C. 7:26E) only requires sampling for lengths of piping greater than 15 feet. A certification from the property owner relative to the piping is provided in Appendix D.

PAHs in Area of Former Killam Samples SS-9B and SS-9C - AMMCo was directed to either remediate or place engineering/institutional controls for soils in the area of former Killam soil samples SS-9B and SS-9C (Figure 3-2). These samples, collected from 0 to 0.5 feet BGS, contained concentrations of polynuclear aromatic hydrocarbons (PAHs) exceeding NJDEP Soil Cleanup Criteria (SCC). AMMCo is submitting a draft Declaration of Environmental Restrictions (DER) with this RIR/RAW to the NJDEP. The DER includes a proposal to place a bituminous concrete cap over the entire site to limit the potential for direct contact with soils containing PAHs and metals at concentrations exceeding NJDEP Residential Direct Contact (RDC) and Non-Residential Direct Contact (NRDC) SCC. No further action is proposed relative to these soils following installation of the cap.

è

)

F-38-1

to this area. It should be noted that no sump/drain discharge piping was encountered during the investigation of the transformer pad.

3.2.3 Area 9 - Sump Metals Storage Area

The NJDEP directed AMMCo to submit the most recent round of PE soil sampling data for two distinct areas of Area 9 which were addressed during the RI, which included the former sample locations PE-101 through PE-104 and soils surrounding MW-6 (Figure 3-2).

Former Sample Locations PE-101 Through PE-104 - On June 18, 1993, soils in the area of former sample locations PE-101 through PE-104 were excavated. This excavation was completed to address elevated levels of arsenic detected within samples PE-101 through PE-104. The sides and base of the existing excavation were expanded by approximately 1.5 to 2.0 feet, resulting in a triangular excavation with sides of 16.0 feet in length and a base at 6.0 feet BGS. Subsequent to excavating, four PE soil samples (PE-141 through PE-144, Figure 3-3) were collected and were analyzed for arsenic. One sample was collected from the base of each of the three sidewalls and one sample was collected from the center of the excavation. The analytical results for these samples are presented in Section 4.1.1.

Soils Surrounding MW-6 - On June 18, 1993, soils around MW-6 were excavated. This excavation was completed to address elevated PAHs detected within this area (Killam Phase I investigation sample numbers 6013 and 6016). The resulting excavation measured 15.0 feet by 12.0 feet, and extended to a depth of 2.0 feet BGS (Figure 3-3). Five PE soil samples (PE-136 through PE-140, Figure 3-3) were collected and were analyzed for base neutral compounds plus fifteen unknown peaks (BN+15). One sample was collected from the base of each of the four sidewalls and one sample was collected from the center of the base of the excavation. The analytical results for these samples are presented in Section 4.1.1.

3.2.4 Area 10 - Waste Storage Area

The NJDEP directed AMMCo to collect additional PE soil samples at the locations of former samples PE-46 through PE-50 (December 15, 1992, Figure 3-2), PE-36 through PE-40, and PE-105 (December 10, 1992 and January 28, 1993, respectively, Figure 3-2). The additional sampling was required to verify that PAHs that were historically detected in these areas at concentrations exceeding NJDEP RDC and NRDC SCC had been remediated.

Area of Former Samples PE-46 through PE-49 (December 15, 1992) - The NJDEP directed AMMCo to collect additional PE soil samples at the locations of former samples

17.

PE-46 through PE-50 (December 15, 1992, Figure 3-2). The additional sampling was required to verify that PAHs that were historically detected (Killam sample SS-11C collected during their Phase I investigation) in this area from 0 to 0.5 feet BGS and 1.5 to 2.0 feet BGS at concentrations exceeding NJDEP RDC and NRDC SCC had been remediated. The excavation installed in this area in December 15, 1992 extended to a depth of five feet BGS. Samples PE-46 through PE-50 were collected at the base of this excavation (five feet BGS) and contained no compounds at concentrations exceeding NJDEP SCC. The NJDEP letter dated February 3, 1994 required AMMCo to collect samples from the excavation sidewalls from 0 to 2 feet BGS to verify the horizontal clean zones in this area. On April 28, 1994, following reexcavation of this area to the limits of the former excavation (1992), four PE soil samples (PE-165 through PE-168, Figure 3-2) were collected from the center of each of the four sidewalls of the previous excavation from 1.5 to 2.0 feet BGS and were analyzed for BN+15. The analytical results for these samples are presented in Section 4.1.2.

Area of Former Samples PE-36 through PE-40, and PE-105 (December 10, 1992 and January 28, 1993, respectively) - The NJDEP directed AMMCo to collect additional PE soil samples in the area of MW-5 at the locations of former samples PE-36 through PE-40, and PE-105 (December 10, 1992 and January 28, 1993, respectively, Figure 3-2). The additional sampling was required to verify that PAHs that were historically detected in this area from 0 to 2.0 feet BGS at concentrations exceeding NJDEP RDC and NRDC SCC had been remediated. The excavation installed in this area in December 15, 1992 extended to a depth of 6.5 feet BGS. Samples PE-36 through PE-40, and PE-105 were collected at the base of this excavation (6.5 feet BGS) and contained no compounds at concentrations exceeding NJDEP SCC. The NJDEP letter dated February 3, 1994 required AMMCo to collect samples from the excavation sidewalls from 0 to 2 feet BGS to verify the horizontal clean zones in this area. Following reexcavation of this area to the limits of the former excavation (1992), additional PE soil samples were collected in the area of MW-5 on April 28, 1994 from the locations of former samples PE-36 through PE-40, and PE-105. Four PE soil samples (PE-161 through PE-164, Figure 3-3) were collected from each of the excavation sidewalls at a depth of 1.5 feet BGS and were analyzed for BN+15. The analytical results for these samples are presented in Section 4.1.2.

3.2.5 Area 11 - Endre Doczy Building (Building # 9)

<u>PAHs in Areas Surrounding Former Samples PE-107 through PE-109</u>. The NJDEP directed AMMCo to further delineate the elevated concentrations of PAHs historically detected in the surficial soils at the locations of former PE soil samples PE-107 through PE-109 (January 28, 1993, Figure 3-2). On April 28, 1994, two test pits were installed at varying distances to the northwest from locations of former PE soil samples PE-107

AMMCo - Kearny - Remedial Investigation Report/Remedial Action Workplan BELL Project #EOG01-90059-02

through PE-109 to provide information relative to the distribution of PAHs in this area. Defineation of PAHs was performed via the installation of test pits to the west of former PE soil samples PE-107 through PE-109 only based on the following:

- ◆ The former PE sample (PE-106 Figure 3-3) collected on the east side of the excavation contained PAHs at concentrations below the most stringent of the NJDEP SCC;
- A permanent structure (Sharps Furniture) was located approximately eight feet south of the area of former PE soil samples PE-107 through PE-109; and
- A test pit which is associated with former PE soil samples PE-110 through PE-113 (Figure 3-3), was installed as part of the RI at a location approximately 42 feet north of former PE soil samples PE-107 through PE-109.

The first test pit was excavated to a depth of 0.5 feet BGS at a location approximately 15 feet northwest of the locations of former PE soil samples PE-107 through PE-109 (Figure 3-3). One PE soil sample (PE-169, Figure 3-3) was collected from the base of the test pit and was analyzed for BN+15. The second test pit was excavated to a depth of 2.0 feet at a location approximately 55 feet northwest of the locations of former PE soil samples PE-106 through PE-109 (Figure 3-3). One PE soil sample (PE-170, Figure 3-2) was collected from the base of the test pit and was analyzed for BN+15. The analytical results for these samples are presented in Section 4.1.3.

PAHs and Copper in Areas Surrounding Former Samples PE-110 through PE-113 -AMMCo was directed to further delineate the PAHs historically detected in the surficial soils in the locations of former PE soil samples PE-110, PE-111, and PE-113 and copper in the location of former sample PE-112 (January 28, 1993, Figure 3-2). On April 26, 1994, four test pits were excavated and soil samples collected in the area associated with former PE soil samples PE-110, PE-111, and PE-113 to further delineate the PAHs historically detected in these samples. A test pit was excavated at a distance of approximately 10 feet to the south, north and east of the former sample excavation. An additional test pit was excavated approximately 35 feet southwest of former sample PE-111 to provide additional information relative to the distribution of PAHs in this area. A PE soil sample was collected from the base of each of the test pits (PE-155 through PE-158, Figure 3-3) at 2.0 feet BGS and was analyzed for BN+15. A test pit was installed approximately 10 feet to the west of the former excavation, to delineate elevated concentrations of copper detected in former sample PE-112, which was located on the west side of the former excavation. A PE soil sample (PE-154, Figure 3-3) was collected from this test pit at 3.0 feet BGS and was analyzed for copper, based on the elevated concentrations of copper that were detected in former sample PE-112. The analytical results for these samples are presented in Section 4.1.3.

12

3.2.6 Area 12 - Loading Dock Sump Discharge Area

The NJDEP directed AMMCo to submit the most recent round of PE soil sampling data for the area associated with former sample locations PE-61 through PE-65 (December 16, 1992, Figure 3-2). On June 17, 1993, soils in the area of former sample locations PE-61 through PE-65 were excavated. The additional excavation and sampling was required to remediate PAHs compounds that were originally detected in former samples PE-61 through PE-64 at concentrations exceeding NJDEP RDC and NRDC SCC from 1.2 to 1.5 feet BGS. The new excavation had the dimensions of 25.0 feet by 30.0 feet, and extended to a depth of 2.0 feet BGS. Subsequent to completion of the new excavation, five PE soil samples (PE-130 through PE-134, Figure 3-2) were collected and were analyzed for BN+15. One sample was collected from the base of each of the four excavation sidewalls and one sample was collected from the center of the base of the excavation. The analytical results for these samples are summarized in Section 4.1.4.

3.2.7 Area 16 - Processing Building #22

Although the NFA proposal was approved for this AOC by the NJDEP in the February 3, 1994 directive letter, the NJDEP expressed concern at the November 21, 1994 meeting that soils in this area may contain TPH concentrations exceeding 10,000 mg/kg. A review of historical soil data indicates that one soil sample (PE-4, Figure 3-2) collected on October 1, 1992 contained TPH at a concentration exceeding the NJDEP SCC for total organics of 10,000 mg/kg (19,000 mg/kg). However, the area associated with PE-4 was re-excavated on February 2, 1993 and a soil sample (PE-123, Figure 3-2) was collected at a depth of 2.0 feet BGS. Review of the analytical data (see Appendix C - Summary of Second Round Post-Excavation Samples) indicates that PE-123 contained TPH at a concentration of 5,800 mg/kg, which is below the NJDEP SCC for total organics. No further action is proposed for this area.

3.2.8 Area 19 - Drum Storage Area Adjacent to Building #23

The NJDEP directed AMMCo to further delineate the PAHs and arsenic historically detected in the area of former PE soil samples PE-125 through PE-129 (April 14, 1993, Figure 3-2). On April 28, 1994, a total of four test pits were excavated in the area of the former PE soil samples PE-125 through PE-129 to further delineate the PAHs and arsenic detected in these samples at approximately 4.5 feet BGS. A test pit was excavated at an approximate distance of 10 feet from each of the sidewalls of the former excavation (former samples PE-125 through PE-129 were collected from the sidewalls of the former excavation). A PE soil sample was collected from the center of the base (1.5 to 2.0 feet BGS) of each of the test pits. The PE soil samples (PE-171 through PE-174, Figure 3-3)

were analyzed for BN+15 and arsenic. The analytical results for these samples are summarized in Section 4.1.5.

3.2.9 Area 20 - Tunnel Area

The NJDEP letter directed AMMCo to conduct soil sampling in the area of former samples PE-120 and PE-121 (February 2, 1993, Figure 3-3) based on the historical detection of copper in these locations at concentrations exceeding NJDEP RDC and NRDC SCC at a depth of approximately 3.0 feet BGS. On April 26, 1994, three test pits were excavated to further delineate the elevated levels of copper detected in former samples PE-120 and PE-121. One test pit was installed adjacent to the northern corner of the former excavation, one test pit was installed adjacent to the eastern corner of the former excavation, and one test pit was installed adjacent to the southwest sidewall of the former excavation (Figure 3-3). One PE soil sample (PE-150, PE-152, and PE-153) was collected from the base (3.0 feet BGS) of each of the test pits and was analyzed for copper. The analytical results for these samples are summarized in Section 4.1.6.

3.2.10 Area 21 - Loading Dock at Marshall Clark Building

PAHs in Former Sample Locations PE-56 through PE-60 (December 16, 1992) - The NJDEP directed AMMCo to remediate soils containing elevated concentrations of PAHs to a depth of 3.0 feet BGS in this area. Specifically, AMMCo was directed to remove additional soils from the locations of former PE samples PE-56 through PE-60 (December 16, 1992, Figure 3-2). AMMCo was directed to collect PE samples at 1.5 to 2.0 feet BGS from each of the sidewalls following completion of the new excavation. AMMCo has deferred further soil investigations in this area based upon the November 21, 1994 meeting between BELL, AMMCo, and the NJDEP. Further soil investigation in this area is contingent upon the results of the historical fill investigation (Section 4.1.8).

<u>Discharge Point of Drain</u> - Additionally, the NJDEP required that AMMCo determine the discharge point of the drain located in this area. According to AMMCo personnel, this drain formerly discharged to the Passaic River. AMMCo has sealed the drain and has backfilled the excavation located adjacent to the drain (which was initially installed to perform piping repairs). Because the drain is no longer in use and has been sealed, AMMCo proposes no further action relative to this area.

3.2.11 Area 23 - Oil Filter Area Adjacent to Endre Doczy Building

The NJDEP directed AMMCo to remove additional soils and collect additional PE samples in this area to remediate PAHs and metals detected in this area at a depth of approximately 1.5 feet BGS. Specifically, AMMCo was directed to excavate additional

soils at the locations of former samples PE-95 through PE-99 (December 30, 1992, Figure 3-2). On September 15, 1993, soils in the area of former sample locations PE-95 through PE-99 were excavated. The new excavation had the dimensions of 35.0 feet by 15.0 feet, and extended to a depth of 3.5 feet BGS. Five PE soil samples (PE-145 through PE-149, Figure 3-3) were collected from the sidewalls and base of the new excavation. Analytical parameters for each of the PE samples were selected based on the results of former samples PE-95 through PE-99 and are presented in Table 3-1. The analytical results for these samples are summarized in Section 4.1.7.

3.2.12 Soil Boring Installation and Sampling

Between April 5 and 10, 1995, BELL installed seventeen soil borings (SB-1 through SB-17) to a depth of 2.5 feet BGS around the perimeter of AOC I (the area of the site east of Passaic Avenue). These borings were installed to provide information relative to the distribution of BN compounds and selected metals in soils at and adjacent to the site and to assess the potential for historical fill placement at the site to be the source of the BN compounds and selected metals historically detected at the site.

The soil borings were advanced by a qualified BELL geologist using a 2 1/2-inch inner diameter, one-foot long stainless steel hand auger. Upon attaining the base of the first sampling interval (0 to 6 inches BGS), the auger was retracted from the bore hole and the soil was emptied into a appropriately decontaminated stainless steel mixing bowl, where it was homogenized using a stainless steel scoop. A BELL geologist then proceeded to provide a description of the sample, including moisture content, soil type, and evidence of contamination. Soil samples were obtained in accordance with NJDEP protocol and the NJDEP Field Sampling Procedures Manual (May 1992). The samples were screened both visually and with a photoionization detector (PID) for evidence of contamination.

The BELL geologist proceeded to excavate to the top of the second sampling interval (2.0 feet BGS) using a stainless steel shovel and a stainless steel pry bar. Upon attaining the top of the second sampling interval, a BELL geologist decontaminated the auger in accordance with NJDEP-approved procedures and subsequently advanced the auger to the base of the second sampling interval (2.0 to 2.5 feet BGS). The auger was then retracted from the bore hole and the sample was screened and collected using the methods described above. Soil samples collected from the soil borings were analyzed for BN+15, arsenic, copper, lead, and zinc. In addition, soil samples collected from 2.0 to 2.5 feet BGS from borings SB-2, SB-3, and SB-17 (the background sample location) were analyzed for aluminum to determine if aluminum concentrations detected in soil samples onsite were also present in fill materials located upgradient of site operations. All equipment was decontaminated between each sample location in accordance with NJDEP-approved procedures.

į,

3.2.13 Historical Fill Investigation and Literature Review

On March 31, 1995 and April 3, 1995, BELL conducted a review of the NJDEP files associated with investigations conducted at sites in the area surrounding the AMMCo site to investigate the regional occurrence of BN compounds and selected metals in soil. This file review was conducted to determine if compounds of concern historically detected at the AMMCo site (PAHs and selected metals) are representative of fill materials historically placed at the site and in the area of the site. Additionally, BELL performed a literature review to investigate the natural occurrence and regional distribution of compounds of concern identified at the AMMCo site (PAHs and selected metals). Literature sources reviewed included Benzo(a)Pyrene in New Jersey - Results from a Twenty-Seven-Site Study (Office of Science and Research - NJDEP), Organic Contaminants in Welsh Soils; Polynuclear Aromatic Hydrocarbons (Environmental Science Technology, 23, 5: 540-550, 1989), Element Concentration in Soils and Other Surficial Materials of the Conterminous United States (USGS, 1984) and the Soil Chemistry of Hazardous Materials (Hazardous Materials Control Research Institute). The results of the NJDEP file and literature reviews are presented in Section 4.1.8.

Additionally, BELL reviewed soil boring logs and performed telephone interviews with representatives of the Town of Kearny Engineering and Health Departments, the Essex County Historical Society, and the NJDEP. As the fill material located at the site was deposited prior to 1900, historical aerial photographs or topographic maps showing areas of the site prior to and subsequent to placement of fill materials were not available during the RI.

3.3 GROUND WATER INVESTIGATION

BELL conducted a ground water investigation at the AMMCo site to accomplish the following objectives:

- Further assess the distribution of dissolved phase compounds of concern in ground water at the site;
- Evaluate potential sources of volatile organic (VO) contamination identified in ground water samples collected at the site;
- Establish ground water flow conditions at the site; and
- Evaluate LNAPL distribution at the site.

The RI ground water investigation consisted of the measurement of ground water elevations, the installation of an additional monitoring well, collection of ground water samples from monitoring wells, LNAPL recovery and fingerprint characterization, and a review of the NJDEP files associated with offsite ground water investigations. Analytical

۳. د ست

医

parameters utilized as part of the RI are presented in Table 3-1. Monitoring well logs, which include a description of the soils and subsurface materials, field observations, well materials, and field screening results, are included as Appendix E of this RIR/RAW. Compounds detected in concentrations exceeding NJDEP Class II-A GWQS within ground water samples collected at the site are presented in Figure 4-3. The following subsections detail the ground water investigation completed during the RI at the AMMCo site.

3.3.1 Monitoring Well Installation

In order to delineate the LNAPL detected within MW-1 and MW-9 and to provide additional information relative to the distribution of compounds of concern in ground water at the site, one shallow ground water monitoring well (BEC-12S) was installed on April 22, 1994, at a location downgradient of MW-1 (Figure 3-1) and the former UST excavation (former Area 3). Monitoring well installation was performed by SBI Environmental, Inc. (SBI) of Wayne, New Jersey.

The ground water monitoring well (BEC-12S) was installed using air rotary drilling techniques in general accordance with the NJDEP guidelines for monitoring well construction in semi-consolidated and consolidated formations. Split spoon samples were collected continuously until ground water was encountered and were field screened with a PID. Soils were classified using the Burmeister Soil Classification System, with stratigraphic units described using the Unified Soil Classification System. Additionally, observations regarding the color, composition, moisture content, and presence of visible contamination were noted. Appendix F provides the boring log for this well.

At the selected location, air rotary drilling techniques were utilized to advance an eight-inch diameter borehole through the subsurface. A large compressor provided air that was piped into the swivel hose, which is connected to the top of the drill pipe. The air was forced down the drill pipe, escaped through small ports at the bottom of the drill bit, and lifted the cuttings to the surface while cooling the bit. The cuttings were continuously blown out of the top of the borehole by the force of the air and collected at the surface. The borehole was advanced to approximately ten feet below the water table (total depth of approximately 19 feet BGS).

The PVC well materials included fifteen feet of four-inch inside diameter (ID), factory milled, 20-slot (0.020 inch) PVC screen, flush threaded with a PVC well plug, and four-inch ID PVC riser sufficient to extend to the ground surface. The targeted screen interval extended nine feet below and six feet above the static water level observed at the time of installation. Morie #2 sand (utilized as gravel packing material) was introduced within the annular space starting at the bottom of the borehole and extended to two feet above the well screen. A cement slurry composed of bentonite and Portland cement was pressure grouted into the remainder of the annular space and extended to a depth of six inches

BGS. A one-foot long six-inch ID steel casing with cap (flush mount) and locking mechanism was set into the cement slurry. The well was completed with a water-tight flange cap and a designation well tag. Physical data for all monitoring wells are summarized in Table 3-2. The newly installed well was developed with a submersible pump until a turbid-free discharge was obtained, with purged development water containerized in 55-gallon drums.

3.3.2 Monitoring Well Sampling

Ground water samples were collected from onsite and offsite monitoring wells on three occasions: June 7, 1993, May 10, 1994, and November 7, 1994. Information pertaining to the wells sampled on the above-referenced dates and targeted analytical parameters is summarized in the table below.

DATE	WELL DESIGNATION	ANALYTICAL PARAMETERS
June 7, 1993	MW-3 MW-4 MW-5 MW-6 MW-10 BEC-11S	Aluminum Aluminum Aluminum VO+15; Aluminum VO+15; Aluminum BN+15; Aluminum
May 10, 1994	MW-6 MW-10 BEC-12S	VO+10 VO+10 VO+10; BN+15
November 7, 1994	BEC-12S	VO+15; BN+15

Prior to sampling, each monitoring well was inspected by BELL personnel to observe and document the security of the well. Each monitoring well was subsequently opened and screened with a PID to measure accumulated organic vapors, if any, within each well column. The static fluid level within the well was inspected for evidence of free-phase product visually via a clear Teflon bailer, and using an interface probe. Free-phase product (LNAPL) was observed in MW-1, MW-7, MW-8, and MW-9 during the June 7, 1993 sampling event and in MW-7, MW-8 and MW-9 during the May 10, 1994 sampling event. A sheen was noted in MW-1 during the November 7, 1994 sampling event. The monitoring wells which contained free-phase hydrocarbons were not sampled. In addition, BEC-11S was inaccessible (under water) during the May 10, 1994 event, and therefore, could not be gauged or sampled.

The static ground water level in each well was measured using an electronic water level indicator with an accuracy of 1/100 of a foot. An initial sample of ground water was collected from each well and analyzed using field instrumentation for pH, temperature, conductivity, and dissolved oxygen. Subsequently, three to five volumes of the saturated

77

well column and annular space were purged from each well using a centrifugal pump equipped with a swing valve and flow meter, and dedicated HD-100 PVC piping. Following purging procedures, the ground water in each well was allowed to return to equilibrium and ground water samples were subsequently collected using disposable Teflon bailers. The bailer was slowly lowered into the monitoring well below the water table, avoiding excess agitation/aeration of the ground water, and then retracted.

Laboratory vials for VO+15 analysis, if applicable, were filled with the first bailer of ground water retrieved from each monitoring well. Ground water samples were containerized in laboratory-supplied glassware, which were then sealed and labeled. Once sealed and labeled, the sample vials were placed into a sample cooler maintained at a temperature of four degrees Celsius and transported to the analytical laboratory.

Ground water sampling procedures were performed in accordance with the NJDEP Field Sampling Procedures Manual (May 1992). A summary of the analytical results for ground water samples and a comparison with associated NJDEP Class II-A Ground Water Quality Standards (GWQS) is provided in Section 4.2 of this RIR/RAW.

3.3.3 Ground Water Elevation Measurements

BELL collected depth to ground water measurements and computed the elevation of the ground water table at all accessible monitoring well locations. Depth to ground water measurements were collected on June 1, 1993, June 7, 1993, August 2, 1993, May 10, 1994 and December 12, 1994 (Table 3-3). This data was utilized to construct potentiometric contour plots as presented in Figures 3-3 through 3-7, as required in the February 3, 1994 NJDEP letter.

3.3.4 Product Recovery and Fingerprint Analysis

Free product samples were collected for hydrocarbon fingerprint characterization on August 2, 1993 and May 24, 1994. These samples were collected to provide information relative to the source, age, and constituents of the LNAPL identified in onsite and offsite monitoring wells (MW-1, MW-7, MW-8, and MW-9). All four monitoring wells containing LNAPL were sampled on August 2, 1993, while only MW-8 was sampled on May 24, 1994. Samples collected on August 2, 1993 were analyzed for fingerprint characterization by capillary gas chromatography by Veritech, and the sample collected on May 24, 1994 was analyzed by Friedman & Bruya, Inc., located in Seattle, Washington. Results of the fingerprint characterizations are summarized in Section 4.2.3 of this RIR/RAW.

Beginning on March 22, 1994, a LNAPL recovery program was initiated at the AMMCo site. Free-phase product thickness was measured and/or recovered on 14 separate occasions

1

in 1994 and 1995. The static fluid level within each well was inspected for evidence of free-phase product visually via a clear Teflon bailer and using an interface probe. LNAPL was recovered by hand bailing with a 3.5-inch diameter polyvinylchloride (PVC) bailer, with LNAPL emptied into a properly labeled 55-gallon steel drum. Information pertaining to product thickness noted within onsite wells is summarized in Section 4.2.3

3.3.5 Regional Ground Water Quality Investigation

In order to determine the ground water quality for the region, BELL conducted telephone interviews with various local and State agencies, and reviewed NJDEP files associated with offsite ground water investigations conducted in the area of the site. Results of the regional ground water quality investigation are summarized in Section 4.2.4.

3.4 OTHER OUTSTANDING AOCs

3.4.1 Area 17 - Drum Storage Area

The NJDEP directive letters indicate that photodocumentation of the integrity of the concrete pad in this area will be verified by the NJDEP Case Manager during the final inspection of the facility. AMMCo will clear this area of debris, if necessary, for inspection by the NJDEP, however it should be noted that this area will be covered by the asphalt cap proposed for the site.

3.4.2 Area 18 - Asbestos Flue Stacks

The NJDEP directed AMMCo at the November 21, 1994 meeting to provide certification that asbestos flue stacks were never present at the site. This certification is included in Appendix D and no further action is proposed relative to this AOC.

3.5 RELIABILITY OF ANALYTICAL DATA

The following subsections describe procedures that were implemented to evaluate the reliability of analytical data collected during the RI. Included in this section is a summary of the field instrument calibration procedures, quality assurance/quality control (QA/QC) sampling, sample management practices, data qualification, analytical methods, and the reduction/validation of data implemented during the RI.

3.5.1 Field Instrument Calibration

The PID and the combined/conductivity/temperature/dissolved oxygen meter were calibrated daily by the BELL field personnel before use. Calibration procedures and results were recorded in the field log book.

3.5.2 Soil and Ground Water QA/QC Sampling

Quality assurance/quality control (QA/QC) samples were collected as part of the RI. These QA/QC samples were collected in accordance with frequencies specified in the NJDEP Field Sampling Procedures Manual (May 1992). QA/QC samples included duplicate samples, field blanks, trip blanks, and matrix spike/matrix spike duplicate samples. QA/QC samples were analyzed for parameters identical to those of environmental samples collected during the field effort, if applicable, with the exception of trip blanks, which were only analyzed for VO+10. Table 3-4 provides a summary of analytical methods and QA/QC sampling implemented during the AMMCo RI.

Duplicate samples were collected to QA field sampling and handling procedures, as well as laboratory analytical procedures, and were collected at a minimum frequency of one duplicate sample for every 20 environmental samples collected.

Field blank samples were collected to evaluate field equipment decontamination procedures, and were prepared by pouring laboratory-supplied deionized water over sampling equipment into laboratory prepared sample containers. Field blank samples accompanied the environmental samples to the laboratory and were collected at a frequency of one field blank sample per day for aqueous samples, and at a frequency of one field blank for every ten soil samples. Field blanks were analyzed for parameters identical to those of ground water samples and field blanks associated with soil samples were analyzed for VO+10.

Trip blank samples were collected during ground water sampling events to evaluate potential VO contamination sources at the site, during transit or at the analytical laboratory not associated with ground water at the AMMCo site. Trip blanks were prepared by the analytical laboratory and consisted of deionized water in 40 milliliter laboratory supplied glassware and accompanied laboratory-supplied glassware and environmental samples collected during shipment to and from the laboratory. Trip blanks were collected only during field activities involving aqueous sample collection, and were collected at a frequency of one trip blank per shipment of environmental samples to the laboratory. All trip blanks were analyzed for VO+10.

Matrix spike/matrix spike duplicate (MS/MSD) samples were analyzed to identify potential interference during analysis due to characteristics of sample matrixes. MS/MSD samples were analyzed at a frequency of one sample per twenty environmental samples collected, and were submitted to the laboratory with environmental samples.

3.5.3 Sample Custody and Shipment

All environmental samples submitted to the analytical laboratory were accompanied by appropriate chain of custody (COC) documentation. COC documentation identified the date, location, and matrix of each sample and ensured that shipment of environmental samples from the AMMCo site to the analytical laboratory was tracked in accordance with NJDEP requirements. Laboratory QA/QC documentation tracked the handling and analysis of environmental samples following receipt by the laboratory.

3.5.4 Analytical Methods

Analytical parameters and methodologies utilized during the AMMCo RI are summarized in Table 3-4. As stated previously, all samples collected at the AMMCo site, with the exception of the LNAPL sample collected on May 24, 1994, were analyzed by Veritech. The LNAPL sample collected on May 24, 1994 from MW-8 was analyzed by Friedman and Bruya, located in Seattle, Washington.

3.5.5 Reduction of Analytical Data

Analytical data packages were received from Veritech laboratories in a hard copy format, copies of which are presented as additional volumes (Appendix E) to this RIR/RAW. The analytical data were reduced into BELL analytical results summary tables. The reduction of data and all data tables were checked against complete analytical packages for accuracy. Non-conformance issues noted by the qualified BELL personnel reducing the data were noted appropriately on the BELL analytical data tables.

•

4.0 FINDINGS

The following section presents the results of the RI conducted at the AMMCo site. For clarity purposes, results of the soil investigation, with the exception of the results of the soil boring investigation performed on April 5 and 10, 1995 (Section 4.1.9), are presented with reference to former AOCs. However, it should be noted that per the November 1994 meeting between the NJDEP, AMMCo and BELL, the former AOCs that are located east of Passaic Avenue (Areas 1 through 18, 20, and 23) are currently considered as one AOC (AOC I) relative to soil issues and the former AOCs west of Passaic Avenue (Areas 19, 21, and 22) are considered as a separate AOC (AOC II) relative to soil issues. The results of the soil boring investigation performed on April 5 and 10, 1995 will be evaluated (Section 5) relative to the two new AOCs (AOC I and AOC II). Results of the ground water investigation are presented for the site as a whole.

The analytical results for soil and ground water samples are summarized in Tables 4-1 through 4-10. Analytical results for soil samples were compared to the NJDEP Residential Direct Contact (RDC) SCC, the NJDEP Non-Residential Direct Contact (NRDC) SCC, and the NJDEP Impact to Ground Water (IGW) SCC. Analytical results for ground water samples were compared to the NJDEP Class II-A GWQS. Unless otherwise stated in the following sections, compounds analyzed for in soil and ground water samples were below the applicable SCC or GWQS. The complete analytical data packages for these samples are presented in Appendix E (Volume II).

4.1 SOIL INVESTIGATION RESULTS

The RI soil investigation consisted of the re-excavation of soils in six locations and collection of associated PE soil samples, the excavation of fourteen test pits and collection of associated PE soil samples, and the installation of 17 soil borings and collection of 34 soil samples. Soil sampling intervals ranged from 0 to 6.0 feet BGS. Analytical parameters, sampling intervals, and methods of sampling are presented in Table 3-1. Soil boring logs, which include field observations and field screening results, are included as Appendix B. Compounds detected in concentrations exceeding NJDEP SCC within PE soil samples collected at the site are presented in Figure 4-1 and compounds detected in concentrations exceeding NJDEP SCC within soil boring soil samples are presented in Figure 4-2.

4.1.1 Area 9 - Sump Metals Storage Area

Four PE soil samples (PE-141 through PE-144) were collected on June 18, 1993, following the excavation of soils in the area associated with former samples PE-101 through PE-104 (Figure 3-2). Analytical results for the PE soil samples, which were analyzed for arsenic.

AMMCo - Kearny - Remedial Investigation Report/Remedial Action Workplan BELL Project #EOG01-90059-02

7.7

١.

were compared to the NJDEP SCC (Table 4-1). Comparison with the NJDEP SCC indicated that none of the four soil samples contained concentrations of arsenic in excess of the most stringent of the NJDEP SCC.

Five PE soil samples (PE-136 through PE-140) were collected on June 18, 1993, for BN+15 analysis following excavation of soils in the area surrounding MW-6 (Figure 3-2). Analytical results for the PE soil samples were compared to the NJDEP SCC (Table 4-2). Comparison with the NJDEP SCC indicated that three (PE-136, PE-137, and PE-140) of the five soil samples contained PAHs in excess of both the NJDEP RDC and NRDC SCC. Maximum concentrations of PAHs were within the same order of magnitude as the associated NJDEP RDC and NRDC SCC, with the exception of concentrations of benzo(b)fluoranthene in sample PE-136 and benzo(a)pyrene in sample PE-137, which were 13.3 and 11.6 times greater than the NJDEP RDC SCC, respectively. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1 and are summarized below.

PE Soil	Sample Depth	Compounds Detected Above	Residential Direct	Non-Residential Direct
Sample	(Feet BGS)	NJDEP SCC	Contact SCC (mg/kg)	Contact SCC (mg/kg)
		(mg/kg)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(g.,
PE-136	2.0	benzo(a)anthracene, 6.5	0.9	4
	2.0	benzo(b)fluoranthene, 12	0.9	4
]	2.0	benzo(a)pyrene, 6.7	0.66	0.66
	2.0	indeno(1,2,3-c,d)pyrene, 4.4	0,9	4
PE-137	2.0	benzo(a)anthracene, 2	0.9	4
	2.0	benzo(b)fluoranthene, 2.2	0.9	4
	2.0	benzo(k)fluoranthene, 1.5	6,9	4
	2.0	benzo(a)pyrene, 1.6	0.66	0,66
	2.0	indeno(1,2,3-c,d)pyrene, 1.2	0.9	4
PE-140	2.0	benzo(a)anthracene, 8.8	0.9	4
	2.0	chrysene, 9.9	9	40
1	2.0	benzo(b)fluoranthene, 8.5	0.9	
	2.0	benzo(k)fluoranthene, 7.4	0.9	Ā
ł	2.0	benzo(a)pyrene, 7.7	0.66	0,66
	2.0	indeno(1,2,3-c,d)pyrene, 4.7	0.9	
	2.0	dibenzo(a,h)anthracene, 1.3	0.66	0.66

Note: Shaded values indicate concentration in environmental sample exceeding standard.

4.1.2 Area 10 - Waste Storage Area

Four PE soil samples (PE-165 through PE-168) were collected on April 28, 1994, for BN+15 analysis following the excavation of soils in the area of former PE samples PE-46 through PE-49 (Figure 3-2). Analytical results for the PE soil samples were compared to the NJDEP SCC (Table 4-2). Comparison with the NJDEP SCC indicated that two of the four soil samples (PE-167 and PE-168) contained PAHs in excess of the NJDEP RDC SCC, however, only one of the soil samples (PE-167) contained PAHs in excess of the

NJDEP NRDC SCC. Maximum concentrations of PAHs were within the same order of magnitude as the associated NJDEP RDC and NRDC SCC, with the exception of concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene and benzo(a)pyrene in sample PE-167, which were 13.3, 11.1, 16.6, and 18.2 times greater than the NJDEP RDC SCC, respectively. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1 and are summarized below.

PE Soil Sample	Sample Depth (Feet BGS)	Compounds Detected Above NJDEP SCC (mg/kg)	Residential Direct Contact SCC (mg/kg)	Non-Residential Direct Contact SCC (mg/kg)
PE-167	1.5 - 2.0	benzo(a)anthracene, 12 chrysene, 12 benzo(b)fluoranthene, 10 benzo(k)fluoranthene, 15 benzo(a)pyrene, 12 indeno(1,2,3-c,d)pyrene, 4.1 dibenzo(a,h)anthracene, 1.9	0.9 9 0.9 0.9 0.66 0.9 0.66	4 4 4 4 0.66 4 0.66
PE-168	1.5 - 2.0	benzo(b)fluoranthene, 1	0.9	0.00 4

Note: Shaded values indicate concentration in environmental sample exceeding standard.

Four PE soil samples (PE-161 through PE-164) were collected on April 28, 1994, for BN+15 analysis in the area surrounding MW-5 (Figure 3-2). Analytical results for the PE soil samples were compared to the NJDEP SCC (Table 4-2). Comparison with the NJDEP SCC indicated that two of the four soil samples (PE-161 and PE-162) contained PAHs in excess of both NJDEP RDC and NRDC SCC. Maximum concentrations of PAHs were within the same order of magnitude as the associated NJDEP RDC and NRDC SCC, with the exception of concentrations of benzo(a)anthracene, benzo(b)fluoranthene, and benzo(a)pyrene in sample PE-162, which were 11.1, 12.2, and 13.1 times greater than the NJDEP RDC SCC, respectively. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1 and are summarized below.

PE Soil Sample	Sample Depth (Feet BGS)	Compounds Detected Above NJDEP SCC (mg/kg)	Residential Direct Contact SCC (mg/kg)	Non-Residential Direct Contact SCC (mg/kg)
PE-161	1.5	benzo(a)anthracene, 6.2 benzo(b)fluoranthene, 7.2 benzo(k)fluoranthene, 5.5	0.9 0.9 0.9	÷.
DE 460	4.5	benzo(a)pyrene, 5.8 indeno(1,2,3-c,d)pyrene, 2	0.66 0.9	0.66 4
PE-162	1.5	benzo(a)anthracene, 10 chrysene, 11 benzo(b)fluoranthene, 11	9.0 2 4.0	40 40
		benzo(k)fluoranthene, 8 benzo(a)pyrene, 8.7 indeno(1,2,3-c,d)pyrene, 3.1	0,9 0,66	4 0.66
		dibenzo(a,h)anthracene, 1.3	0.9 0.66	4 Q.56

Note: Shaded values indicate concentration in environmental sample exceeding standard.

4.1.3 Area 11 - Endre Doczy Building (Building # 9)

Two PE soil samples (PE-169 and PE-170) were collected on April 28, 1994 following installation of two test pits in the area of former samples PE-106 through PE-109 (Figure 3-2). Analytical results for the PE soil samples, which were analyzed for BN+15, were compared to the NJDEP SCC (Table 4-2). Comparison with the NJDEP SCC indicated that both of the soil samples contained PAHs in excess of both NJDEP RDC and NRDC SCC. Maximum concentrations of PAHs were within the same order of magnitude as the associated NJDEP RDC and NRDC SCC, with the exception of concentrations of benzo(a)anthracene, benzo(b)fluoranthene, and benzo(a)pyrene in sample PE-170, which were 15.5, 15.5, and 18.2 times greater than the NJDEP RDC SCC, respectively. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1 and are summarized below.

PE Soil Sample	Sample Depth (Feet BGS)	Compounds Detected Above NJDEP SCC (mg/kg)	Residential Direct Contact SCC (mg/kg)	Non-Residential Direct Contact SCC (mg/kg)
PE-169	0.5	benzo(b)fluoranthene, 1.7	0.9	4
		benzo(a)pyrene, 0.84	0.66	0.66
PE-170	2.0	benzo(a)anthracene, 14	0.9	4
		chrysene, 14	9	40
	ļ	benzo(b)fluoranthene, 14	0.9	4
		benzo(k)fluoranthene, 8.3	0.9	4
		benzo(a)pyrene, 12	0,66	0,66
		indeno(1,2,3-c,d)pyrene, 5.4	0.9	4

Note: Shaded values indicate concentration in environmental sample exceeding standard.

Five PE soil samples (PE-154 through PE-158) were collected on April 26, 1994, following installation of five test pits in the area of former samples PE-110 through PE-113 (Figure 3-2). One PE soil sample (PE-154) was analyzed for copper, while four PE soil samples (PE-155 through PE-158) were analyzed for BN+15. Analytical results for the PE soil samples were compared to the NJDEP SCC (Tables 4-1 and 4-2). Comparison with the NJDEP SCC indicated that PE-154 contained copper in excess of the NJDEP NRDC SCC, and that PE-155 through PE-158 contained PAHs in excess of both NJDEP RDC and NRDC SCC. Maximum concentrations of PAHs and copper were within the same order of magnitude as the associated NJDEP RDC and NRDC SCC. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1 and are summarized below.

PE Soil Sample	Sample Depth (Feet BGS)	Compounds Detected Above NJDEP SCC (mg/kg)	Residential Direct Contact SCC (mg/kg)	Non-Residential Direct Contact SCC (mg/kg)
PE-154	3.0	copper, 3,200	600	600
PE-155	2.0	benzo(a)anthracene, 1.6 benzo(b)fluoranthene, 3.5 benzo(a)pyrene, 1.9	0.9 0.9 0.66	4 4 0.66
PE-156	2.0	benzo(a)anthracene, 3 benzo(b)fluoranthene, 4.7 benzo(a)pyrene, 2.9 indeno(1,2,3-c,d)pyrene, 1.6	0.9 0.9 0.66 0.9	4 4 0.66 4
PE-157	2.0	benzo(a)anthracene, 2.2 benzo(b)fluoranthene, 3.5 benzo(a)pyrene, 1.9 indeno(1,2,3-c,d)pyrene, 1.5	0;9 0,9 0,66 0;9	4 4 0.66
PE-158	2.0	benzo(a)anthracene, 2.3 benzo(b)fluoranthene, 3.6 benzo(a)pyrene, 2.2 indeno(1,2,3-c,d)pyrene, 1.1	0,9 0,9 0,66 0,9	4 4 0.66 4

Note: Shaded values indicate concentration in environmental sample exceeding standard.

4.1.4 Area 12 - Loading Dock Sump Discharge Area

Five PE soil samples (PE-130 through PE-134) were collected on June 17, 1993 following re-excavation of the area of former samples PE-61 through PE-65 (Figure 3-2). Analytical results for the PE soil samples, which were analyzed for BN+15, were compared to the NJDEP SCC (Table 4-2). Comparison with the NJDEP SCC indicated that all five of the soil samples contained PAHs in excess of NJDEP RDC and NRDC SCC. Maximum concentrations of PAHs were within the same order of magnitude as the associated NJDEP RDC and NRDC SCC, with the exception of concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene and benzo(a)pyrene in samples PE-131 and PE-134. Benzo(a)pyrene was detected at concentrations which exhibited the greatest order of magnitude difference when compared to the NJDEP SCC of

0.66 ug/kg. This compound was detected at concentrations 22.7 and 19.6 times the NJDEP RDC SCC in samples PE-131 and PE-134, respectively. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1 and are summarized below.

PE Soil	Sample Depth	Compounds Detected Above	Residential Direct	Non Residential Disease
Sample	(Feet BGS)	NJDEP SCC	Contact SCC (mg/kg)	Non-Residential Direct
	(, 00, 500)	(mg/kg)	Contact SCC (mg/kg)	Contact SCC (mg/kg)
PE-130	2.0	benzo(b)fluoranthene, 1.1	0.9	0.9
		benzo(a)pyrene, 0.83	0.66	0.66
PE-131	2.0	benzo(a)anthracene, 11	0.9	4
		Chrysene, 13	9	40
		benzo(b)fluoranthene, 16	0.9	4
]		benzo(k)fluoranthene, 15	0.9	4
1		benzo(a)pyrene, 15	0.66	0.66
l		indeno(1,2,3-c,d)pyrene, 11	0.9	4
		dibenzo(a,h)anthracene, 2.8	0.66	0.66
PE-132	2.0	benzo(a)anthracene, 2.2	0.9	4
1 1		benzo(b)fluoranthene, 6.5	0.9	4
		benzo(a)pyrene, 2.8	0.55	0.66
		indeno(1,2,3-c,d)pyrene, 3.2	0.9	4
PE-133	2.0	benzo(a)anthracene, 3.6	0.9	4
		benzo(b)fluoranthene, 4.7	0.9	4
]		benzo(k)fluoranthene, 3.9	0.9	4
1		benzo(a)pyrene, 4.3	0.66	0.66
•		indeno(1,2,3-c,d)pyrene, 3	0.9	4
		dibenzo(a,h)anthracene, 1	9.66	0.66
PE-134	2.0	benzo(a)anthracene, 9.6	0.9	4
		chrysene, 12	9	40
1 1		benzo(b)fluoranthene, 15	0.9	4
]		benzo(k)fluoranthene, 11	0.9	4
[benzo(a)pyrene, 13	9.66	0.66
] [indeno(1,2,3-c,d)pyrene, 9.5	0.9	4
		dibenzo(a,h)anthracene, 2.4	0.66	0.66

Note: Shaded values indicate concentration in environmental sample exceeding standard.

4.1.5 Area 19 - Drum Storage Area Adjacent to Building #23

Four PE soil samples (PE-171 through PE-174) were collected on April 28, 1994 for BN+15 and arsenic analyses, following installation of four test pits in the area of former samples PE-125 through PE-129 (Figure 3-2). Analytical results for the PE soil samples were compared to the NJDEP SCC (Tables 4-3 and 4-4). Comparison with the NJDEP SCC indicated that PE-171 contained arsenic in excess of the NJDEP RDC and NRDC SCC, and that PE-172 and PE-174 contained PAHs in excess of both NJDEP RDC and NRDC SCC. Maximum concentrations of PAHs and arsenic were within the same order of

magnitude as the associated NJDEP RDC and NRDC SCC. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1 and are summarized below.

PE Soil Sample	Sample Depth (Feet BGS)	Compounds Detected Above NJDEP SCC (mg/kg)	Residential Direct Contact SCC (mg/kg)	Non-Residential Direct Contact SCC (mg/kg)
PE-171	1.5 - 2.0	arsenic, 28	20	20
PE-172	1.5 - 2.0	benzo(a)anthracene, 4.5 benzo(b)fluoranthene, 4.7 benzo(k)fluoranthene, 3.8 benzo(a)pyrene, 4.3 indeno(1,2,3-c,d)pyrene, 1.8 dibenzo(a,h)anthracene, 0.74	0.9 0.9 0.9 0.66 0.9 0.68	4 4 0.66 4 0.56
PE-174	1.5 - 2.0	benzo(a)anthracene, 2.9 benzo(b)fluoranthene, 5.1 benzo(a)pyrene, 2.5 indeno(1,2,3-c,d)pyrene, 1.1	0,9 0,9 0,66 0.9	4 4 0.55 4

Note: Shaded values indicate concentration in environmental sample exceeding standard.

4.1.6 Area 20 - Tunnel Area

Three PE soil samples (PE-150, PE-152, and PE-153) were collected on April 26, 1994 following installation of three test pits in the area of former samples PE-120 and PE-121 (Figure 3-2). Analytical results for the PE soil samples, which were analyzed for copper, were compared to the NJDEP SCC (Table 4-1). Comparison with the NJDEP SCC indicated that PE-150 and PE-153 contained copper at concentrations of 1,700 mg/kg and 7,600 mg/kg, respectively. These concentrations are in excess of the NJDEP NRDC SCC of 600 mg/kg. PE soil sample results exceeding NJDEP SCC are presented in Figure 4-1.

4.1.7 Area 23 - Oil Filter Area Adjacent to Endre Doczy Building

Five PE soil samples (PE-145 through PE-149) were collected on September 15, 1993 for various analyses (specific analyses are detailed in Table 3-1) following excavation of soils within the area associated with former samples PE-95 through PE-99 (Figure 3-2). Analytical results for the PE soil samples were compared to the NJDEP SCC (Tables 4-1 and 4-2). Comparison with the NJDEP SCC indicated that none of the five soil samples contained arsenic, lead, zinc, or PAHs in excess of the most stringent of the NJDEP SCC. In addition, none of the samples analyzed for total petroleum hydrocarbons (PE-147 and PE-149) exceeded the NJDEP SCC for total organic compounds of 10,000 mg/kg.

4.1.8 Historical Fill Investigation

To investigate the historical placement of fill materials at the AMMCo site and to assess the potential for fill material to be present at the AMMCo site containing elevated concentrations of PAHs and metals, BELL conducted an investigation which included the review of NJDEP files for sites in the area surrounding the AMMCo site, a review of soil boring logs, and telephone interviews with the Town of Kearny Engineering and Health Departments, the Essex County Historical Society, and the NJDEP. As the fill material located at the site was deposited prior to 1900, historical aerial photographs or topographic maps showing areas of the site prior to and subsequent to filling were not available during the RI.

4.1.8.1 Regulatory Agency File Review Results

On March 31, 1995 and April 3, 1995, BELL conducted a review of the NJDEP files for investigations conducted at sites in the area surrounding the AMMCo site to investigate the regional occurrence of BN compounds and selected metals in soil. This file review was conducted to determine if compounds of concern detected at the AMMCo site (PAHs and selected metals) are representative of fill materials historically placed at the site and in the area of the site. The NJDEP files for five sites located in Kearny were reviewed. The properties involved, their location relative to the AMMCo site, and brief descriptions of the findings of each review are summarized below.

1. Franklin Plastics - 113 Passaic Avenue. Located adjacent to the Passaic River, immediately north of AMMCo's office facility. Franklin Plastics conducted an investigation of the urban fill material located throughout the site. Based on a review of the monitoring well logs for this site, the fill material (which gradually increased in thickness towards the Passaic River) contained large fragments of glass, brick, cinders, boiler cleanout, and various foreign objects similar to the composition of the fill material identified at the AMMCo site (see AMMCo's boring logs - Appendix B). Franklin Plastics attributed non-aqueous phase liquids (NAPL) found onsite to the presence of fill material based on the following: fingerprint characterization indicated that the NAPL was not indicative of the #6 fuel oil used onsite; the NAPL was extremely weathered and immobile; and the NAPL was not found in the fill material located above the water table.

The Franklin Plastics investigation indicated that the NAPL was introduced in the early 1900's during landfilling operations conducted in Kearny for development purposes. Franklin Plastics concluded that if the NAPL was introduced after the landfilling operations (by Franklin Plastics), it would also be present in the fill located above the water table.

In addition, the area in question has been encapsulated by an asphalt parking lot since 1947, thus limiting runoff water from infiltrating through the fill material to the aquifer. Elevated concentrations of TPHC, BNs, and metals that were identified in onsite soil were attributed by Franklin Plastics to the presence of the industrial fill at the site. The NJDEP approved Franklin Plastic's proposal to maintain a vegetative cover to stabilize soil and to restrict access with fencing as a remediation measure.

- 2. Alpha Metals 590 Belleville Turnpike. This site is located approximately 2.25 miles northeast of the AMMCo site. Alpha Metals conducted an investigation of the urban fill material located throughout the site. Based on a review of monitoring well and soil boring logs, the site is underlain by thirteen feet of industrial fill material composed of concrete fragments, rubber, metal, tar, brick, coal, gravel, and asphalt. As a result of the investigation conducted at the site, Alpha Metals concluded that the source of the elevated concentrations of metals, TPH, and BNs found in surficial soils was the fill material located onsite. This conclusion was based on the random distribution and concentrations of the aforementioned contaminants across the site. Alpha Metals submitted all available material safety data sheets (MSDS) for compounds stored at the site to the NJDEP in order to establish that soil contamination was not attributable to onsite hazardous materials storage and was the result of the historical deposition of fill material. The NJDEP has required that Alpha Metals file a DER relative to elevated concentrations of metals, TPH, and BNs found in surficial soils remaining onsite.
- 3. AT&T (a.k.a. Western Electric) 100 Central Avenue. This site is located at the peninsula where the Passaic and Hackensack Rivers merge, approximately 3.25 miles southeast of the AMMCo site. Metals, VO compounds, PCBs, TPHC, and cyanide were detected in onsite soils. AT&T performed a limited investigation of the historical fill material underlying the site, and concluded that much of the metal contamination detected in onsite soils was the result of historical fill deposition. No information relative to current NJDEP requirements relative to soil issues was available during the file review.
- 4. T.P. Industrial (a.k.a. Purex Industries) 49 Central Avenue. This site is located approximately 3.27 miles southeast of the AMMCo site. T.P. Industrial performed a limited investigation of the industrial fill material and determined that the fill material located on and offsite was highly contaminated. T.P. Industrial was granted a NFA by the NJDEP relative to ground water at the site based on the following data:
 - Ground water is not used as a resource in the area;
 - The local man-made fill aquifer is highly contaminated;
 - nearby surface water receptors are not threatened; and

◆ Local land uses have historically been and area expected to continue to be industrial.

No information relative to NJDEP requirements relative to soil issues was available during the file review.

5. Honeycomb Plastics - 244 Dukes Street. This site is located approximately one mile southeast of the AMMCo site. Honeycomb Plastics determined that the elevated levels of BNs and metals identified in the onsite soil could be attributed to either the former operations of Interstate Metals (an adjacent property) or fill material located onsite containing tar and fly ash. Honeycomb Plastics was granted a NFA by the NJDEP relative to soil and ground water at the site based on the anticipated non-residential future uses of the property.

Additionally, BELL conducted a literature search and telephone interviews to investigate the historical placement of fill materials at the AMMCo site and at surrounding properties. Agencies contacted included the Town of Kearny Engineering and Health Departments, the Essex County Historical Society, and the NJDEP. Information obtained from the Town of Kearny Engineering Department indicated that the portion of Kearny in which the AMMCo site is located has historically been filled, particularly in the area of the Passaic River. This is consistent with information obtained from the *Soil Survey for Hudson County, New Jersey*, (USGS) which indicates that the majority of the soils located in the region surrounding the AMMCo site are described as Udorthents soils. This land type has been filled and smoothed, or otherwise extensively disturbed, to a depth of 3 feet or more. The original soil can no longer be identified. Fill material generally consists of a mixture of stones, boulders, rubble, and soil material (Section 2.2). Installation of soil borings, monitoring wells and test pits onsite indicate the presence of fill material to depths of up to four feet BGS.

4.1.8.2 Results of Literature Review Relative to Regional Distribution of Contaminants of Concern

BELL performed a literature review to investigate the natural occurrence and regional distribution of compounds of concern identified at the AMMCo site (PAHs and selected metals). The results of this review are summarized below.

Various PAHs were detected in soil samples collected at the AMMCo site at concentrations exceeding the NJDEP RDC and NRDC SCC, but below the NJDEP IGW SCC. These compounds are produced during the combustion of organic materials and have been detected regionally in the air, ground water, soil, fly ash, flue gases, and several food products. Based on a review of the document Benzo(a)Pyrene in New Jersey - Results

from a Twenty-Seven Site Study (Office of Science and Research - NJDEP), the highest levels of benzo(a)pyrene (one of the PAH compounds identified at the AMMCo site) occur in the northeastern industrial region of New Jersey. Benzo(a)pyrene concentrations in the air are highest during colder months due to the increase in fossil fuel consumption and reduced photochemical degradation. Approximately 98% of the benzo(a)pyrene emissions in the air during the summer months (non-heating season) are attributed to spark-ignition of motor vehicles. Ambient air concentrations of benzo (a) pyrene have gradually declined as a result of the reduction of coal-combustion, open burning and the control of coke-oven emissions. Additionally, a review of the Organic Contaminants in Welsh Soils; Polynuclear Aromatic Hydrocarbons (Environmental Science Technology, 23, 5: 540-550, 1989) indicates that PAHs are found at ambient concentrations as high as 54,600 ug/kg, ambient levels of PAHs have increased over the last two centuries as a result of the use of fossil fuels, and that PAHs are typically found to be associated with imported fill materials.

Based on a review of the documents *Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States* (USGS, 1984) and *Soil Chemistry of Hazardous Materials* (Hazardous Materials Control Research Institute), the ambient ranges of concentrations in the eastern United States of the following metals are:

Lead - 10-300 mg/kg (Element Concentration in Soils and Other Surficial Materials of the Conterminous United States), with an estimated arithmetic mean of 17 mg/kg (Element Concentration in Soils and Other Surficial Materials of the Conterminous United States) and the extreme limits of naturally occurring concentrations of 0.1. to 3,000 mg/kg (Soil Chemistry of Hazardous Materials). It should be noted that lead is also a combustion product of fossil fuels and is found at elevated levels in soils within areas historically industrialized and/or near to roadways:

Chromium - 5.0-3,000 mg/kg (*Soil Chemistry of Hazardous Materials*), with an estimated arithmetic mean of 52 mg/kg (*Element Concentration in Soils and Other Surficial Materials of the Conterminous United States*) and the extreme limits of naturally occurring concentrations of 0.5. to 10,000 mg/kg (*Element Concentration in Soils and Other Surficial Materials of the Conterminous United States*);

Zinc- <5-2,900 mg/kg (Element Concentration in Soils and Other Surficial Materials of the Conterminous United States), with an estimated arithmetic mean of 290 mg/kg (Element Concentration in Soils and Other Surficial Materials of the Conterminous United States) and the extreme limits of naturally occurring concentrations of 3.0. to 10,000 mg/kg (Soil Chemistry of Hazardous Materials); and

Aluminum - 10,000-300,000 mg/kg (Soil Chemistry of Hazardous Materials).

4.1.9 Soil Boring Sampling Results

Seventeen soil borings (SB-1 through SB-17) were installed to a depth of 2.5 feet BGS at the perimeter of AOC I (Figure 4-2). These soil borings were installed to delineate compounds of concern (PAHs and metals) historically detected within AOC-1. Two soil samples were collected from each boring from depth intervals of 0-0.5 feet BGS and 2.0-2.5 feet BGS. Soil samples were analyzed for BN+15, arsenic, copper, lead, and zinc. In addition, soil samples collected from the depth interval of 2.0-2.5 feet BGS within borings SB-2, SB-3, and SB-17 (the background sampling location) were also analyzed for aluminum. Analytical results for the soil samples were compared to the NJDEP SCC (Table 4-5). Comparison with the NJDEP SCC indicated that several of the soil samples contained PAHs in excess of the NJDEP RDC and NJDEP SCC. Only three metals, arsenic, lead, and zinc, were detected at concentrations exceeding NRDC SCC. Twelve samples (SB-2 [2.0-2.5 feet], SB-3 [2.0-2.5 feet], SB-6 [2.0-2.5 feet], SB-7 [2.0-2.5 feet], SB-8 [0-0.5 and 2.0-2.5 feet], SB-9 [0-0.5 and 2.0-2.5 feet], SB-10 [2.0-2.5 feet], SB-12 [0-0.5 and 2.0-2.5 feet], SB-12 [0-0.5 and 2.0-2.5 feet], SB-10 [2.0-2.5 feet], SB-10 [0-0.5 and 2.0 0.5 and 2.0-2.5 feet], and SB-14 [2.0-2.5 feet]) did not contain analytes which exceeded the NJDEP SCC. Soil sample results exceeding NJDEP SCC are presented in Figure 4-2 and are summarized below.

- Benzo(a)anthracene exceeded the NJDEP RDC SCC of 900 micrograms per kilogram (ug/kg) in 17 samples at concentrations ranging from 1,000 ug/kg to 130,000 ug/kg. Seven of the 17 samples also exceeded the NRDC SCC of 4,000 ug/kg. No samples exceeded the NJDEP IGW SCC of 500,000 ug/kg.
- Chrysene exceeded the RDC SCC of 9,000 ug/kg in five samples at concentrations ranging from 9,500 ug/kg to 120,000 ug/kg. One of the five samples (0-0.5 feet BGS in boring SB-5) also exceeded the NRDC SCC of 40,000 ug/kg. No samples exceeded the IGW SCC of 500,000 ug/kg.
- Benzo(b)fluoranthene exceeded the RDC SCC of 900 ug/kg in twenty-three samples at concentrations ranging from 940 ug/kg to 130,000 ug/kg. Eleven of the twenty-three samples also exceeded the NRDC SCC of 4,000 ug/kg while one of the samples (0-0.5 feet BGS in boring SB-5) exceeded the IGW SCC of 50,000 ug/kg.
- Benzo(k)fluoranthene exceeded the RDC SCC of 900 ug/kg in fourteen samples at concentrations ranging from 1,100 ug/kg to 43,000 ug/kg. Five of the fourteen samples also exceeded the NRDC SCC of 4,000 ug/kg. No samples exceeded the IGW SCC of 500,000 ug/kg.
- Benzo(a)pyrene exceeded both the RDC and NRDC SCC of 660 ug/kg in twenty-one samples at concentrations ranging from 760 ug/kg to 110,000 ug/kg. One sample (0-0.5 feet BGS in boring SB-5) also exceeded the IGW SCC of 100,000 ug/kg.
- Ideno(1,2,3-cd)pyrene exceeded the RDC SCC of 900 ug/kg in fourteen samples at concentrations ranging from 950 ug/kg to 59,000 ug/kg. Five of the fourteen samples

×

also exceeded the NRDC SCC of 4,000 ug/kg. No samples exceeded the IGW SCC of 500,000 ug/kg.

- ◆ Dibenzo(a,h)anthracene exceeded both the RDC and NRDC SCC of 660 ug/kg in five samples at concentrations ranging from 1,200 ug/kg to 16,000 ug/kg. No samples exceeded the IGW SCC of 100,000 ug/kg.
- ◆ Fluoranthene exceeded the IGW SCC of 100,000 ug/kg in one sample (0-0.5 feet BGS in boring SB-5) at a concentration of 300,000 ug/kg. No samples exceeded either the RDC or NRDC SCC of 2,300,000 ug/kg and 10,000,000 ug/kg, respectively.
- Pyrene exceeded the IGW SCC of 100,000 ug/kg in one sample (0-0.5 feet BGS in boring SB-5) at a concentration of 240,000 ug/kg. No samples exceeded either the RDC or NRDC SCC of 1,700,000 ug/kg and 10,000,000 ug/kg, respectively.
- ◆ Lead exceeded the RDC SCC of 400 mg/kg in five samples at concentrations ranging from 510 mg/kg to 1,200 mg/kg. Four of the five samples also exceed the NRDC SCC of 600 mg/kg. There is no IGW SCC for metals.
- ◆ Zinc exceeded both the RDC and NRDC SCC of 1,500 mg/kg in one sample (2.0-2.5 feet BGS in boring SB-16) at a concentration of 3,600 mg/kg.
- Arsenic exceeded both the RDC and NRDC SCC of 20 mg/kg in one sample (0-0.5 feet BGS in boring SB-5) at a concentration of 98 mg/kg.

Only one sample (0-0.5 feet BGS in SB-5) contained concentrations of contaminants in excess of IGW SCC. As the depth to ground water in the vicinity of SB-5 is approximately 14.5 feet BGS, the potential for these contaminants to impact ground water is low. In general, the concentrations of PAHs and metals decreased with depth from the first interval to the second interval.

Based on the following information, it is likely that PAHs and metals detected in soil at the AMMCo site is attributable to historical fill placement at the site and that the concentrations of these compounds may have been increased by the airborne deposition of these contaminants as a result of the historical industrial use of the area surrounding the AMMCo site.

1. Information (i.e., boring logs, information obtained via interviews and a literature search) obtained during the RI indicated that the portion of Kearny in which the AMMCo site is located has historically been filled, particularly in the area of the Passaic River. Installation of soil borings, monitoring wells and test pits onsite indicate the presence of fill material at the site to depths ranging from two to four feet BGS. Additionally, the NJDEP file review for sites in the surrounding area indicated that historical fill containing PAHs and metals were deposited at these sites. This is consistent with information obtained from the Soil Survey for Hudson County, New Jersey, (USGS) which indicates that the majority of the soils located in the region surrounding the

17

AMMCo site have been filled and smoothed, or otherwise extensively disturbed by excavation and filling activities, to a depth of 3 feet or more.

- 2. Soil samples collected from fill materials at Franklin Plastics from 0 to 2.5 feet BGS contained concentrations of BN compounds and metals similar to those observed in samples collected from the same interval during the soil boring investigation at the AMMCo site. Arsenic, copper, lead and zinc were detected at average concentrations of 2.6, 154, 254 and 253 mg/kg, respectively, at Franklin Plastics; while these same metals were detected at average concentrations of 9.2, 68.4, 261 and 421 mg/kg, respectively, at the AMMCo site. Furthermore, the average concentration of BN compounds detected at Franklin Plastics is an order of magnitude higher than the average concentration of BN compounds detected at the AMMCo site during the soil boring investigation. Since the soils at Franklin Plastics may be representative of fill materials similar to those observed at the AMMCo site, this data strongly suggests that the contaminants at the AMMCo site are associated with regional fill deposition and area not associated with site activities. It should be noted that the NJDEP has granted NFA determinations for other sites in the area of the AMMCo site with fill materials containing concentrations of PAHs and metals exceeding NJDEP SCC (see Section 4.1.8.1).
- 3. Concentrations of PAHs and metals of the same order of magnitude as those observed in samples collected from areas of the site which were destroyed by the explosion/fire were observed at locations behind AMMCo Building # 22 (SB-3, SB-4 and SB-17, Figure 4-2) which is topographically higher than AMMCo operational areas. As the building would have shielded this area from the airborne distribution of contaminants during the fire and it is likely that PAHs and metals would not have migrated to these areas from operational areas via surface water leaching or other transport mechanisms, the presence of these contaminants in these samples further indicates that the detected PAHs and metals are associated with fill deposition at the site.
- 4. A soil boring (SB-17) was installed and two background samples (0-0.5 feet BGS and 2.0-2.5 feet BGS) were collected from a residential site located to the east of the AMMCo site (Figure 4-2). These samples were collected to determine background conditions in the area of the AMMCo site. One of the background soil samples (SB-17, 2.0-2.5 feet BGS) contained the highest concentration (13,000 mg/kg) of aluminum detected in all soil boring samples. As the potential for this soil sample to have been impacted by operations or the 1986 explosion/fire at the AMMCo site (the property is located behind AMMCo Building #22 at an elevation above the AMMCo site and the sample is a subsurface sample collected from 2.0 to 2.5 feet BGS) is extremely low, this data strongly suggests that fill material containing elevated concentrations of aluminum and other metals to be present at locations in the area of the AMMCo site.

5. Deposition of airborne contaminants (i.e., combustion products from automobiles and factories) may have contributed to concentrations of PAHs and selected metals in surface soils at the site. PAHs are produced during the combustion of organic materials and have been detected regionally in the air, ground water, soil, fly ash, flue gases, and several food products (see Section 4.1.8.2). Based on a review of the document Benzo(a)Pyrene in New Jersey - Results from a Twenty-Seven Site Study (Office of Science and Research - NJDEP), the highest levels of benzo(a)pyrene (one of the PAH compounds identified at the AMMCo site) occur in the northeastern industrial region of New Jersey. Additionally, ambient levels of PAHs have increased over the last two centuries as a result of the use of fossil fuels, and PAHs are typically found to be associated with imported fill materials. Concentrations of PAHs and metals detected in soil samples collected at the site decreased with depth, which is consistent with the deposition of airborne contaminants.

Automobile traffic is heavy in the area and numerous industrial facilities are located in the vicinity of the site. It should be noted that lead is also a combustion product of fossil fuels and is found at elevated levels in soils within areas historically industrialized and/or near to roadways.

6. Based on a review of the documents Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States (USGS, 1984) and Soil Chemistry of Hazardous Materials (Hazardous Materials Control Research Institute), concentrations of metals detected at the AMMCo site are within the ambient concentrations of these metals in the eastern United States (see Section 4.1.8.2).

4.2 GROUND WATER INVESTIGATION RESULTS

The RI ground water investigation consisted of the measurement of ground water elevations, the installation of an additional monitoring well, collection of ground water samples from monitoring wells, LNAPL recovery and fingerprint characterization, and a review of the NJDEP files associated with offsite ground water investigations. Analytical parameters and sampling methodologies are presented in Table 3-4. Monitoring well logs, which include a description of the soils and subsurface materials, field observations, well materials, and field screening results, are included as Appendix F of this RIR/RAW. Compounds detected in concentrations exceeding NJDEP Class II-A GWQS within ground water samples collected at the site are presented in Figure 4-3.

: 3

:(*

4.2.1 Ground Water Flow Conditions

In order to determine ground water flow conditions at the AMMCo site, ground water elevations were obtained from onsite and offsite monitoring wells on June 1 and 7, 1993; August 2, 1993; May 10, 1994; and December 12, 1994. Interpreted Ground Water Elevation Maps for the five monitoring events are presented as Figures 3-4 through 3-8. Based on an assessment of ground water elevation data and a review of soil boring and monitoring well logs for the site, shallow ground water occurs within an unconfined, unconsolidated aquifer system composed of gravely sand deposits.

The AMMCo site is located on the eastern flood plain terrace of the Passaic River, with local topography sloping gently westward towards the river. The expected direction of ground water flow is towards the southwest, based on topography and flow direction of the Passaic River. Based on a review of ground water elevation data for all ground water monitoring wells located east of Passaic Avenue, the ground water flow direction in this portion of the AMMCo site is towards the west/southwest. Ground water flow direction in the area of the site located west of Passaic Avenue cannot be calculated due the limited number of monitoring wells in this area (one), however, it is likely that the flow direction in this area is also towards the southwest, based on topography in this area and the flow direction of the Passaic River. BELL contacted the United States Coast Guard for information regarding the tidal patterns of the Passaic River, however, this area is not a designated Coast Guard monitoring location and no information was available.

4.2.2 Ground Water Sampling Results

Ground water samples were collected from monitoring wells on June 7, 1993, May 10, 1994, and November 7, 1994. Ground water sample analytical results were compared to the NJDEP Class II-A GWQS and are presented in Tables 4-6 through 4-10. The complete analytical data packages for these samples are presented in Appendix E (Volume II).

4.2.2.1 June 7, 1993 Results

On June 7, 1993, ground water samples were collected from six monitoring wells (MW-3 through MW-6, MW-10, and BEC-11S). All samples were analyzed for aluminum. The samples collected from MW-6 and MW-10 were also analyzed for VO+15 to investigate an offsite source for the BTEX previously detected in MW-6. In addition, the sample collected from BEC-11S was analyzed for BN+15. A summary of the analytical results for the June 7, 1993 ground water samples is presented in Tables 4-6 through 4-7. Review of the analytical data indicated that aluminum was present in all samples at concentrations exceeding the NJDEP Class II-A GWQS of 0.2 milligrams per liter (mg/l). Detected

١,

concentrations of aluminum ranged from 1.0 (MW-4) to 47 mg/l (MW-5) (Figure 4-3). The observed concentrations of aluminum did not show a distribution pattern indicating a source area at the site. It should be noted that samples collected from one upgradient offsite well (MW-10) and one onsite well (MW-6) located at the upgradient property boundary of the AMMCo site contained concentrations of aluminum exceeding the NJDEP Class II-A GWQS, suggesting an offsite upgradient source. The detected concentrations of aluminum in onsite wells are similar to those detected in MW-6 and MW-10 (1 to 10 mg/l), with the exception of the concentration detected in MW-5 (47 mg/l), which is an order of magnitude higher than the other detected results.

Additionally, the background soil sample (SB-17, 2.0-2.5 feef BGS) contained the highest concentration (13,000 mg/kg) of aluminum detected in all soil boring samples. As the potential for this soil sample to have been impacted by operations or the 1986 explosion/fire at the AMMCo site (the property is located behind AMMCo Building #22 at an elevation above the AMMCo site and the sample is a subsurface sample collected from 2.0 to 2.5 feet BGS) is extremely low, this data strongly suggests that fill materials containing elevated concentrations of aluminum and other metals are present in the area of the AMMCo site. It is likely that these fill materials containing aluminum have contributed to concentrations of aluminum detected in ground water at the site. Additionally, the concentrations of aluminum detected in ground water at the AMMCo site are within the range of natural concentrations of aluminum in ground water (1-1,000 ug/l) found within the eastern United States (Soil Chemistry of Hazardous Materials, Dragun).

Benzene and xylenes were present in the samples collected from MW-6 and MW-10 at concentrations exceeding the NJDEP Class II-A GWQS. Additionally, toluene and ethylbenzene were detected in the sample collected from MW-10 at concentrations exceeding the NJDEP Class II-A GWQS. Methylene chloride was also detected in the samples collected from MW-6 and MW-10 at concentrations exceeding the NJDEP Class II-A GWQS, however, it is likely that the presence of this compound is representative of laboratory contamination as methylene chloride is a common laboratory remnant. No BN compounds were detected in the samples (BEC-12S and BEC-12S Duplicate) collected from BEC-12S.

A decrease in VO compound concentrations was noted to occur between MW-10 to MW-6, with the exception of the detected concentrations of benzene, which were higher in MW-6. MW-6 is located downgradient of MW-10, suggesting that a source area is present to the east and upgradient of the AMMCo site. The higher concentration of benzene noted in MW-6 as compared to MW-10 may be due to the results of the higher solubility of benzene as compared to other BTEX compounds, which may have resulted in benzene reaching areas downgradient of the source area in a shorter time period.

4.2.2.2 May 10, 1994 Results

On May 10, 1994, samples were collected from three ground water monitoring wells (MW-6, MW-10, and BEC-12S) and were analyzed for VO+10. The samples collected from MW-6 and MW-10 were analyzed for VO+10 to confirm that the BTEX in MW-6 is attributable to an offsite source. The sample collected from BEC-12S was collected to delineate the product previously detected in MW-1 and MW-9 and was also analyzed for BN+15. A summary of the analytical results for the May 10, 1994 ground water samples are presented in Tables 4-8 and 4-9.

Review of the analytical data indicated that all samples contained VO compounds in excess of the NJDEP Class II-A GWQS. No BN compounds were detected in the samples collected from BEC-12S at concentrations exceeding GWQS. The VO compounds detected at concentrations exceeding GWQS are summarized in the table below.

Monitoring Well	Compounds Detected Above NJDEP	NJDEP Class II-A Ground Water
Designation	Class II-A GWQS (ppb)	Quality Standard (ppb)
MW-6	methylene chloride*, 94	2
	benzene, 1,400	0.2
	total xylenes, 170	40
MW-10	methylene chloride*, 140	2
	benzene, 310	0.2
	toluene, 2,300	1,000
	ethylbenzene, 3,100	700
	total xylenes, 11,400	40
BEC-12S	vinyl chloride, 460	0.08
	methylene chloride*, 23	2
	trichloroethene, 24	1
	total xylenes, 44	40
BEC-12S (DUP)	vinyl chloride, 490	0.08
	methylene chloride*, 36	2
	trichloroethene, 23	1

^{*} Compound is likely present due to laboratory contamination, and is not considered representative of site conditions.

Benzene and xylenes were present in the samples collected from MW-6 and MW-10 at concentrations exceeding the NJDEP Class II-A GWQS. Additionally, toluene and ethylbenzene were detected in the sample collected from MW-10 at concentrations exceeding the NJDEP Class II-A GWQS. Methylene chloride was also detected at concentrations exceeding the NJDEP Class II-A GWQS, however, it is likely that the presence of this compound is representative of laboratory contamination as methylene chloride is a common laboratory remnant. Comparison of the May 1994 results to the June 1993 results indicate that benzene concentrations detected in MW-10 decreased since 1993, while ethylbenzene and xylene concentrations detected in MW-10 increased since

ζij,

. / 1

1993. These results are consistent with a source area to the east of the site, which would result in the more soluble benzene migrating to MW-10 in 1993, while compounds of lower solubility (ethylbenzene and xylene) are migrating to MW-10 in 1994.

Vinyl chloride and trichloroethene were present in the samples collected from BEC-12S at concentrations exceeding the NJDEP Class II-A GWQS. As previously stated, BEC-12S was sampled to delineate the product previously detected in MW-1 and MW-9. It should be noted that no hazardous materials have historically been stored at the site at locations upgradient of BEC-12S and there has been no documented spills of hazardous materials in this area. Two USTs (removed in 1989) formerly utilized to store heating oil were located upgradient of BEC-12S, however the presence of chlorinated VO compounds in BEC-12S is not considered attributable to these USTs as these compounds are not typical of heating oils.

4.2.2.3 November 7, 1994 Results

On November 7, 1994, ground water samples were collected from BEC-12S and were analyzed for BN+15 and V0+15. A summary of the analytical results for the November 7, 1994 ground water samples is presented in Table 4-10.

Review of the analytical data indicated that vinyl chloride, methylene chloride, and trichloroethene were present in the samples collected from BEC-12S at concentrations in excess of the NJDEP Class II-A GWQS. BN compounds were not detected in the sample. The compounds detected at concentrations exceeding GWQS are summarized in the table below.

Monitoring Well Designation	Compounds Detected Above NJDEP Class II-A GWQS (ppb)	NJDEP Class II-A Ground Water Quality Standard (ppb)
BEC-12S	vinyl chloride, 400 methylene chloride*, 32 trichloroethene, 7.8	0.08 2 1
BEC-12S (DUP)	vinyl chloride, 300 methylene chloride, 32 trichloroethene, 4.9	0.08 2 1

^{*} Compound is likely present due to laboratory contamination, and is not considered representative of site conditions.

Vinyl chloride and trichloroethene were present in the samples collected from BEC-12S at concentrations exceeding the NJDEP Class II-A GWQS. Comparison of the November 7, 1994 results to the May 10, 1994 results indicate that the concentrations of vinyl chloride and trichloroethene are decreasing within BEC-12S. It should be noted that no hazardous materials have historically been stored at the site at locations upgradient of BEC-12S and

 C^{**}

there has been no documented spills of hazardous materials in this area. Two USTs (removed in 1989) formerly utilized to store heating oil were located upgradient of BEC-12S, however the presence of chlorinated VO compounds in BEC-12S is not considered attributable to these USTs as these compounds are not typical of heating oils. Methylene chloride was also detected at concentrations exceeding the NJDEP Class II-A GWQS, however, it is likely that the presence of this compound is representative of laboratory contamination as methylene chloride is a common laboratory remnant.

4.2.3 Product Recovery and Fingerprinting Results

LNAPL has been detected in several onsite ground water monitoring wells (MW-1, MW-8, MW-9) at thicknesses ranging from non-detect (ND) to 0.50 feet. Additionally, LNAPL has historically been detected in an upgradient offsite well (MW-7) at thicknesses ranging from 0.25 feet to 0.50 feet. LNAPL samples were collected for fingerprint characterization from MW-1, MW-7, MW-8, and MW-9 on August 8, 1993. An additional sample was collected from MW-8 on May 24, 1994. Review of the analytical results for the August 8, 1993 sampling event indicates the following:

- ◆ The LNAPL samples collected from MW-1 and MW-9 consist of a mixture of kerosene and lubricating oil;
- ◆ The LNAPL sample collected from MW-7 consists of a combination of diesel fuel and #2 fuel oil; and
- ◆ The LNAPL sample collected from MW-8 consists entirely of lubricating oil.

Review of the analytical results for the May 24, 1994 sampling event indicates that the sample collected from MW-8 consists of a petroleum product combined with motor oil or another lubricating fluid (possibly synthetic). Copies of the Veritech and Friedman & Bruya analytical data packages are provided in Volume II, Appendix E.

Additionally, fingerprint analysis of a LNAPL sample collected from an upgradient offsite well (MW-7) indicated that LNAPL in this upgradient well consists of a combination of diesel fuel and #2 fuel oil (Section 4.2.3). The NJDEP and AMMCo have historically determined that LNAPL detected in MW-7 is not attributable to AMMCo, as this well is located upgradient of the AMMCo site.

Beginning on March 22, 1994, a LNAPL recovery program was initiated at the AMMCo site. Free-phase product thickness was measured and/or recovered on 14 separate occasions in 1994 and 1995. The static fluid level within each well was inspected for evidence of free-phase product visually via a clear Teflon bailer and using an interface probe. LNAPL was recovered by hand bailing with a 3.5-inch diameter polyvinylchloride (PVC) bailer with LNAPL emptied into a properly labeled 55-gallon steel drum. However, due to the limited

12.

7.7 . ; 42.4

Total Section

Ė.

amount of product present within the wells, recovery of product has not been efficient and measurement of recovered product/water within the aforementioned 55-gallon drums indicates that the majority of the contents of these drums is water. Based on this observation, product recovery was discontinued on July 3, 1995. As of July 3, 1995, MW-1 had only a product sheen, MW-8 contained 0.10 feet of product, MW-9 contained 0.05 feet of product, and BEC-12S contained no product. Information pertaining to product thickness noted within onsite wells is summarized in Table 4-11.

4.2.4 Regional Ground Water Quality Investigation

As previously stated, BELL conducted telephone interviews and a review of the NJDEP files associated with offsite ground water investigations in order to assess ground water quality for the Kearny area. Ground water for the Town of Kearny is classified as GW-III, which has a total dissolved solids (TDS) concentration of 500 to 100,000 mg/kg and is not suitable for consumption or other human uses. According to the NJDEP Bureau of Water Allocation, all wells located in Kearny are either used for monitoring or industrial purposes. The Town of Kearny obtains all potable water from the Wanaque Reservoir.

On March 31, 1995 and April 3, 1995, BELL conducted a review of the NJDEP files associated with previous offsite investigations. The NJDEP files for four sites located in various sections of Kearny were reviewed in order to determine the extent and type of contamination present. Information regarding concentrations of aluminum in ground water was not available, since aluminum analysis was not required for any of the sites reviewed. The properties for which NJDEP files were reviewed, their location relative to the AMMCo site, and brief descriptions of the findings of each review are summarized below.

- 1. Franklin Plastics 113 Passaic Avenue. This site is located adjacent to the Passaic River, immediately north of AMMCo's office facilities. Franklin Plastics installed ten monitoring wells and six piezometers in various locations onsite (which were later abandoned in August 1993) in order to determine ground water quality conditions. LNAPL was detected within MW-1, which as previously stated in Section 5.1.1, Franklin Plastics attributed to the presence of historical fill. Low levels of VO compounds, BN compounds, phthalates, and several metals were detected in all wells. Franklin Plastics concluded that since the ground water velocity at the site is 0.15 ft/day, it would take 7.3 years for the contaminants in the ground water to reach the Passaic River. The NJDEP issued a NFA determination for the site.
- 2. Alpha Metals 590 Belleville Turnpike. This site is located approximately 2.25 miles northeast of the AMMCo site. Alpha Metals installed three monitoring wells and one piezometer onsite. Alpha Metals attributed elevated levels of VO

compounds, BNs, and metals detected in ground water samples collected at the site to the historical fill materials present onsite.

- 3. BASF 50 Central Avenue. This site is located 3.27 miles southeast of the AMMCo site. Information regarding ground water contamination/remediation at this site was not available at the NJDEP. However, BASF indicated that active ground water remediation at the site was not warranted as the ground water for the Town of Kearny was classified as GW-III and will never be used for human consumption. Operations at the BASF facility ceased in 1990.
- 4. T.P. Industrial (aka Purex Industries) 49 Central Avenue. This site is located approximately 3.27 miles southeast of the AMMCo site. Widespread ground water contamination, primarily by chlorinated VO compounds, was present in the shallow aquifer T.P. Industrial determined that the ground water flow beneath the site is controlled mainly by the distribution of fill and silt underlying the facility and that the silty clay acts as an aquitard relative to the shallow aquifer, and causes the ground water flow to be diverted towards the north (away from the Passaic and Hackensack Rivers). The NJDEP granted NFA in regards to ground water at the site based on the following:
 - 1) ground water is not used as a resource in the area;
 - 2) the local man-made shallow aquifer is highly contaminated;
 - 3) nearby surface water receptors are not threatened;
 - 4) local land uses have been and are expected to continue to be industrial; and
 - 5) other local sources of ground water contamination have not been identified.

The NJDEP subsequently recommended that T.P. Industrial seal all onsite monitoring wells and rescinded the NJPDES Discharge to Ground Water Permit application submitted to the NJDEP.

5.0 EVALUATION OF CURRENT ENVIRONMENTAL CONDITIONS

5.1 SOIL

5.1.1 Distribution of PAHs and Metals

A review of the analytical results of the PE soil samples and the soil boring soil samples indicate that PAHs and selected metals are present in concentrations exceeding the most stringent NJDEP SCC (NRDC for the particular compounds detected at the AMMCo site) in various locations onsite. The PAHs identified at concentrations exceeding the NRDC SCC include benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, ideno(1,2,3-cd)pyrene, and dibenzo(a,h) anthracene. Additionally, lead exceeded the NRDC SCC in four samples, while arsenic and zinc exceeded the NRDC SCC in one sample each. Only one sample (0-0.5 feet BGS in boring SB-5) contained concentrations of contaminants in excess of IGW SCC. Furthermore, a review of the analytical data for the soil boring investigation indicates that the concentrations of PAHs and metals decrease with depth at the AMMCo site.

PAHs and metals detected in soil at the AMMCo site are primarily attributable to historical fill placement at the site and the deposition of airborne contaminants resulting from the historical industrial use of the area surrounding the AMMCo site. This conclusion is supported by the following data:

- 1. Information obtained during the RI indicated that the portion of Kearny in which the AMMCo site is located has historically been filled, particularly in the area of the Passaic River. Additionally, the NJDEP file review for sites in the area surrounding the AMMCo site indicated that historical fill containing PAHs and metals were deposited at these sites. Installation of soil borings, monitoring wells and test pits onsite indicate the presence of fill material at the site to depths ranging from two to four feet BGS.
- 2. Soil samples collected from fill materials at Franklin Plastics from 0 to 2.5 feet BGS contained concentrations of BN compounds and metals similar to those observed in samples collected from the same interval during the soil boring investigation at the AMMCo site. Since the soils at Franklin Plastics may be representative of fill materials similar to those observed at the AMMCo site, this data strongly suggests that the contaminants at the AMMCo site are associated with fill deposition. It should be noted that the NJDEP has granted NFA determinations for other sites in the area of the AMMCo site with fill materials containing concentrations of PAHs and metals exceeding NJDEP SCC (see Section 4.1.8.1).

- 3. Concentrations of PAHs and metals of the same order of magnitude as those observed in samples collected from areas of the site which were destroyed by the explosion/fire were observed within an area behind AMMCo Building # 22 (SB-3, SB-4 and SB-17, Figure 4-2) which is at a higher elevation than the AMMCo operational areas. As the building would have shielded this area from the airborne distribution of contaminants during the fire, it is likely that PAHs and metals would not have migrated to these areas from operational areas via surface water leaching or other transport mechanisms.
- 4. A background soil sample (SB-17, 2.0-2.5 feet BGS) contained the highest concentration (13,000 mg/kg) of aluminum detected in all soil boring samples. As the potential for this soil sample to have been impacted by operations or the 1986 explosion/fire at the AMMCo site (the property is located behind AMMCo Building #22 at an elevation above the AMMCo site and the sample is a subsurface sample collected from 2.0 to 2.5 feet BGS) is extremely low, this data strongly suggests that fill material containing elevated concentrations of aluminum and other metals to be present at locations in the area of the AMMCo site.

Deposition of airborne contaminants (i.e., combustion products from automobiles and factories) may have contributed to concentrations of PAHs and selected metals in surface soils at the site. Additionally, ambient levels of PAHs have increased over the last two centuries as a result of the use of fossil fuels, and PAHs are typically found to be associated with imported fill materials. Automobile traffic is heavy in the area and numerous industrial facilities are located in the vicinity of the site. It should be noted that lead is also a combustion product of fossil fuels and is found at elevated levels in soils within areas historically industrialized and/or near to roadways.

5. Based on a review of the documents *Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States* (USGS, 1984) and *Soil Chemistry of Hazardous Materials* (Hazardous Materials Control Research Institute), concentrations of metals detected at the AMMCo site are within the ambient concentrations of these metals in the eastern United States (see Section 4.1.8.2).

5.1.2 Historic Placement of Fill Material at the Site

BELL conducted a review of the NJDEP files associated with investigations conducted at sites in the area surrounding the AMMCo site to investigate the regional deposition of fill materials and the regional occurrence of BN compounds and selected metals in soil. This file review was conducted to determine if compounds of concern detected at the site (PAHs and selected metals) were representative of fill materials used at the site and in the area of the site. Additionally, BELL conducted a literature search and telephone interviews to investigate the historical placement of fill materials at the AMMCo site and at surrounding

properties. The NJDEP defines historical fill material as "...generally large volumes of non-indigenous material, used to raise the topographic elevation of a site, which were contaminated prior to emplacement and are in no way connected with the operations at the location of emplacement and which include, but are not limited to, construction debris, dredge spoils, incinerator residue, demolition debris, fly ash, and non-hazardous solid waste." (S1070, Section 35.h1).

Information obtained during this investigation indicated that the portion of Kearny in which the AMMCo site is located has historically been filled, particularly in the area of the Passaic River. Additionally, the NJDEP file review for sites in the surrounding area indicated that historical fill containing PAHs and metals were deposited at these sites. This is consistent with information obtained from the Soil Survey for Hudson County, New Jersey, (USGS) which indicates that the majority of the soils located in the region surrounding the AMMCo site are described as Udothents soils. This land type has been filled and smoothed, or otherwise extensively disturbed by excavation and filling activities, to a depth of 3 feet or more. The original soil can no longer be identified. Fill material generally consists of a mixture of stones, boulders, rubble, and soil material.(Section 2.2). Installation of soil borings, monitoring wells and test pits onsite indicate the presence of fill material at the site to depths ranging from two to four feet BGS.

It should be noted that fill material containing PAHs and metals has been identified at several sites in the area of the AMMCo site (Section 4.1.8.1).

5.2 GROUND WATER

To further characterize ground water quality at the AMMCo site, ground water samples were collected from monitoring wells on June 7, 1993, May 10, 1994, and November 7, 1994.

5.2.1 Aluminum Concentrations

Review of the June 7, 1993 analytical data indicated that aluminum was present in samples collected from monitoring wells MW-3 through MW-6, and MW-10 at concentrations exceeding the NJDEP Class II-A GWQS of 0.2 milligrams per liter (mg/l). Detected concentrations of aluminum ranged from 1.0 (MW-4) to 47 mg/l (MW-5) (Figure 4-3). The observed concentrations of aluminum did not show a distribution pattern indicating a source area at the site. It should be noted that samples collected from one upgradient offsite well (MW-10) and one onsite well (MW-6) located at the upgradient property boundary of the AMMCo site contained concentrations of aluminum exceeding the NJDEP Class II-A GWQS, suggesting an offsite upgradient source.

ia

Additionally, the background soil sample (SB-17, 2.0-2.5 feet BGS) contained the highest concentration (13,000 mg/kg) of aluminum detected in all soil boring samples. As the potential for this soil sample to have been impacted by operations or the 1986 explosion/fire at the AMMCo site (the property is located behind AMMCo Building #22 at an elevation above the AMMCo site and the sample is a subsurface sample collected from 2.0 to 2.5 feet BGS) is extremely low, the potential exists for fill material containing elevated concentrations of aluminum to be present at locations upgradient of the AMMCo site. It is likely that these fill materials containing aluminum have contributed to concentrations of aluminum detected in ground water at the site. Additionally, the concentrations of aluminum detected in ground water at the AMMCo site are within the range of natural concentrations of aluminum in ground water (1-1,000 ug/l) found within the eastern United States (Soil Chemistry of Hazardous Materials, Dragun).

5.2.2 BTEX Compounds Detected in MW-6 and MW-10

Benzene and xylenes were present in the samples collected from MW-6 and MW-10 on June 7, 1993 and May 10, 1994 at concentrations exceeding the NJDEP Class II-A GWQS. Additionally, toluene and ethylbenzene were detected in the sample collected from MW-10 at concentrations exceeding the NJDEP Class II-A GWQS. Comparison of the May 1994 results to the June 1993 results indicate that benzene concentrations detected in MW-10 decreased since 1993, while ethylbenzene and xylene concentrations detected in MW-10 increased since 1993. These results are consistent with a source area to the east of the site, which would result in the more soluble benzene migrating to MW-10 in 1993, while compounds of lower solubility (ethylbenzene and xylene) are migrating to MW-10 in 1994.

5.2.3 Chlorinated VO Compounds Detected in BEC-12S

Review of the May 10 and November 7, 1994 analytical data indicated that vinyl chloride and trichloroethene were present in samples collected from BEC-12S at concentrations exceeding the NJDEP Class II-A GWQS. These are the only two sampling dates for BEC-12S. Comparison of the November 7, 1994 results to the May 10, 1994 results indicate that the concentrations of vinyl chloride and trichloroethene are decreasing within BEC-12S. It should be noted that no hazardous materials have historically been stored at the site at locations upgradient of BEC-12S and there has been no documented spills of hazardous materials in this area. Two USTs (removed in 1989) formerly utilized to store heating oil were located upgradient of BEC-12S, however the presence of chlorinated VO compounds in BEC-12S is not considered attributable to these USTs as these compounds are not typical of heating oils.

ú

5.2.4 LNAPL Distribution

LNAPL has been detected in several onsite ground water monitoring wells (MW-1, MW-8, MW-9) in thicknesses ranging from non-detect (ND) to 0.10 feet. Additionally, LNAPL has historically been detected in an upgradient offsite well (MW-7) at thicknesses ranging from 0.25 feet to 0.5 feet. LNAPL samples were collected for fingerprint characterization from MW-1, MW-7, MW-8, and MW-9 on August 8, 1993. An additional sample was collected from MW-8 on May 24, 1994. Review of the analytical results for the August 8, 1993 sampling event indicates the following:

- ◆ The LNAPL samples collected from MW-1 and MW-9 consist of a mixture of kerosene and lubricating oil;
- ◆ The LNAPL sample collected from MW-7 consists of a combination of diesel fuel and #2 fuel oil; and
- The LNAPL sample collected from MW-8 consists entirely of lubricating oil.

Review of the analytical results for the May 24, 1994 sampling event indicates that the sample collected from MW-8 consists of a petroleum product combined with motor oil or another lubricating fluid (possibly synthetic). Copies of the Veritech and Friedman & Bruya analytical data packages are provided in Volume II, Appendix E.

As stated in Section 4.2.3, due to the limited amount of product present within the wells, attempts to recover product were not efficient and measurement of recovered product/water within the 55-gallon drums used to store recovered product indicates that the majority of the contents of these drums is water. Based on this observation, product recovery was discontinued on July 3, 1995. As of July 3, 1995, MW-1 had only a product sheen, MW-8 contained 0.10 feet of product, MW-9 contained 0.05 feet of product, and BEC-12S contained no product.

6.0 SUMMARY OF PROPOSED REMEDIAL ACTIONS

Based on the evaluation of data obtained during the remedial investigation, contaminant compounds are present in soil and ground water at the AMMCo site at concentrations exceeding NJDEP SCC and GWQS. Based upon the findings from the RI, AMMCo proposes to utilize the engineering controls/capping technique for soils and proposes the no further action alternative for ground water. A detailed summary of the proposed remedial actions to be undertaken at the AMMCo facility is presented below.

6.1 SOIL

The compounds of concern identified in soils at the site at concentrations exceeding NJDEP SCC include selected BN compounds (PAHs), aluminum, cadmium and lead. As presented in Sections 4 and 5, based on the results of soil investigations historically conducted at the site and a review of soil data for sites in the area surrounding the AMMCo site, the presence of these compounds is most likely related to the historical placement of fill material and not site operations. As per New Jersey statutes (S1070, Section 35.h1), remediation of soil contaminants which are present due to the historical deposition of fill material is not required. However, AMMCo intends to place engineering controls (capping) at the property as part of the redevelopment of the site. Additionally, a DER has been prepared for the site by AMMCo and is being submitted to the NJDEP concurrently with this RIR/RAW.

A bituminous concrete cover shall be placed to cover all portions of the site with the exception of those area currently covered by existing buildings. The construction of this cap will be in accordance with NJDOT standards and designed to provide an impervious cover subject to minimal cracking and to support vehicular traffic. The existing soil surface will be compacted and used as the subgrade. Grading necessary to prepare a uniform subgrade for pavement surfacing will be accomplished using onsite cut and fill or by the placement of clean fill meeting NJDOT specifications for Select Fill. The compacted subgrade will be covered with four inches of Dense Graded Aggregate Base Course.

This dense graded aggregate layer will then be covered with a two inch layer of Bituminous Stabilized Base Course, Mix I-2. This layer will be subsequently covered with a one inch layer of bituminous Concrete Surface Course, Mix I-5.

7.0 REMEDIAL COST ESTIMATE

BELL has estimated costs for the remedial activities to be performed at the AMMCo site proposed in Section 8 of this RAW. The remedial costs are based on the installation of a bituminous asphalt cap. The costs for the above-mentioned tasks are as follows:

Installation of Bituminous Asphalt Cap

\$175,000.00

TOTAL COSTS OF PROPOSED REMEDIAL ACTIONS:

\$175,000.00

It should be noted that the estimated cost of soil excavation and disposal, based on the quantity of fill material expected to be present, would be an order of magnitude (10X) higher than the costs proposed above.

k

6.2 GROUND WATER

AMMCo proposes no further action relative to ground water at the site based on the following data:

- 1. LNAPL has historically been detected within onsite wells MW-1, MW-8 and MW-9. Due to the limited amount of product present within the wells, attempts to recover product were not efficient and measurement of recovered product/water within the 55-gallon drums used to store recovered product indicates that the majority of the contents of these drums is water. Based on this observation, product recovery was discontinued on July 3, 1995. As of July 3, 1995, MW-1 had only a product sheen, MW-8 contained 0.10 feet of product, MW-9 contained 0.05 feet of product, and BEC-12S contained no product.
- 2. Evaluation of the laboratory data associated with ground water samples collected at the site indicated that samples from two wells contained BTEX (MW-6 and MW-10) at concentrations exceeding NJDEP Class II-A GWQS. Results of the RI indicate that the presence of BTEX is due to an upgradient offsite source (Section 5.2).
- 3. Evaluation of the laboratory data associated with ground water samples collected at the site indicated that samples from several wells contained aluminum (MW-3, MW-4, MW-5, MW-6, MW-10, and MW-11S) at concentrations exceeding NJDEP Class II-A GWQS. It is likely that fill materials in the area of the site containing aluminum have contributed to concentrations of aluminum detected in ground water at the site. Additionally, the concentrations of aluminum detected in ground water at the AMMCo site are within the range of natural concentrations of aluminum in ground water (1-1,000 ug/l) found within the eastern United States (Section 5.2).
- 4. One well (BEC-12S) contained vinyl chloride and TCE at concentrations exceeding NJDEP Class II-A GWQS. Based on the results of the RI, these compounds are restricted to the northeast portion of the site, where BEC-12S is located. It should be noted that no hazardous materials have historically been stored at the site at locations upgradient of BEC-12S and there has been no documented spills of hazardous materials in this area. As such, no information is available relative to the source of the chlorinated VO compounds detected in BEC-12S. The potential exists for these compounds to be originating from an upgradient offsite source, however, the onsite wells (MW-1, MW-8 and MW-9) located upgradient of BEC-12S have historically contained product and therefore could not be sampled to assess the potential for an offsite source of chlorinated VO compounds.

į ,

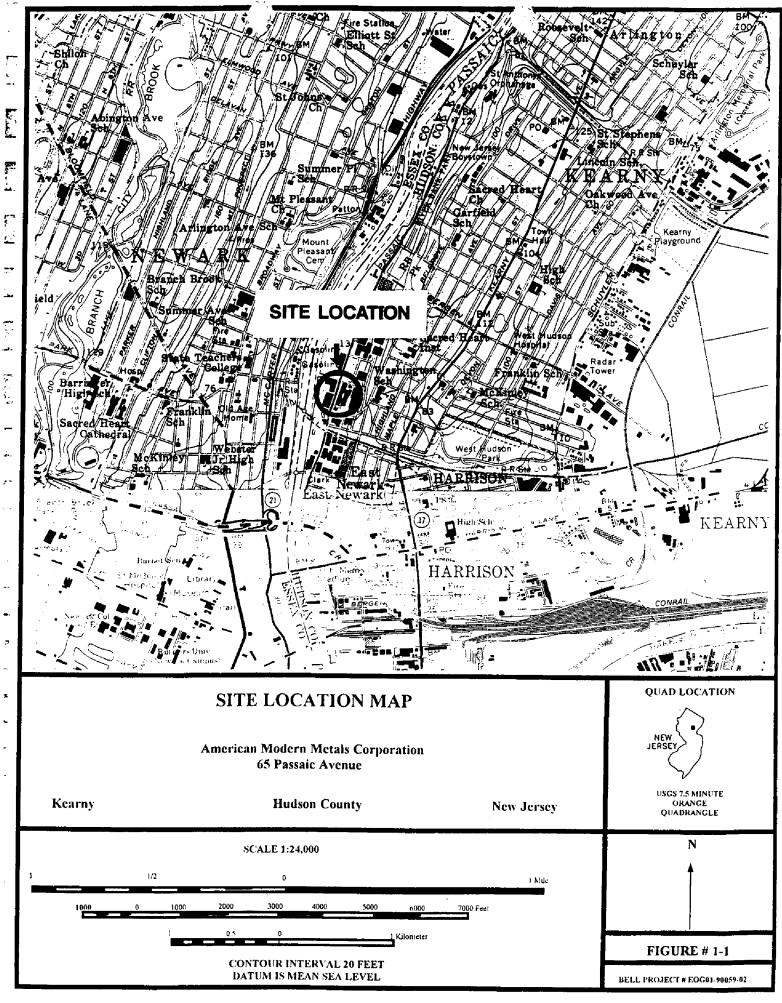
8

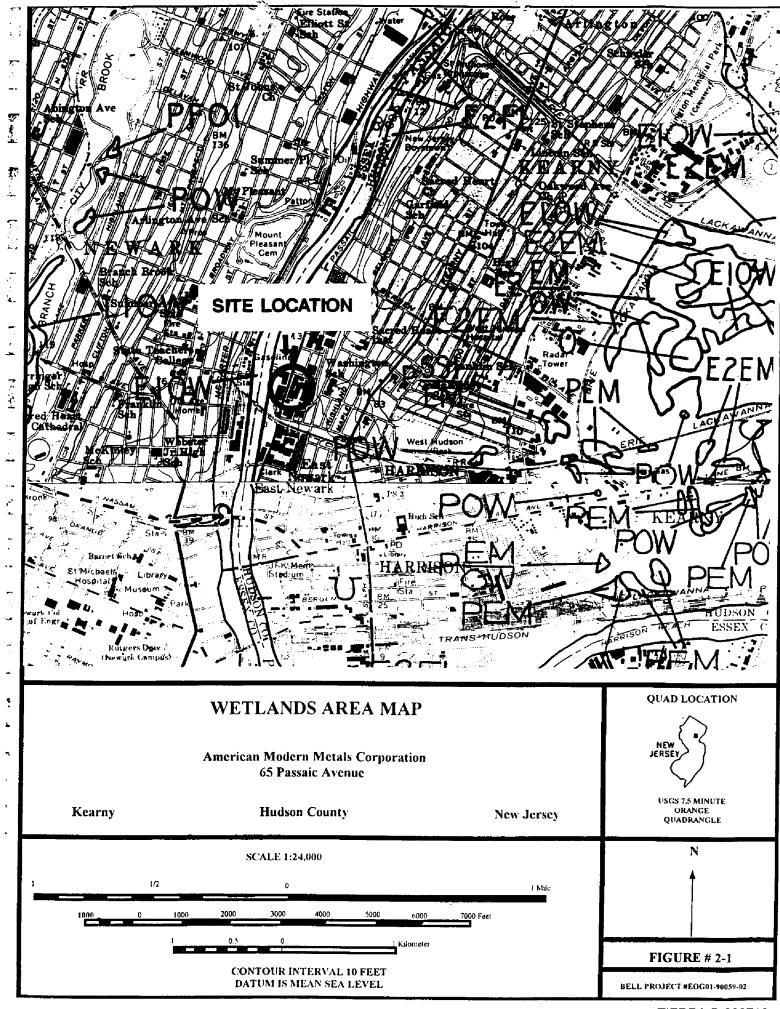
*ذ*ية

8.0 IMPLEMENTATION SCHEDULE AND REPORTING

AMMCo will notify the NJDEP following installation of the asphalt cap, including the submission of as-built drawings depicting the cap. It is anticipated that the cap will be completed within one year of the NJDEP approval of the DER.

9.0 SUMMARY AND LIMITATIONS


The Remedial Investigation Report/Remedial Action Workplan (RIR/RAW) presented herein provides for documentation and investigation of current environmental concerns pertinent to the subject site. This RIR/RAW has been carefully and methodically developed, in accordance with generally accepted environmental practices, for specific application to the American Modern Metals Corporation facility located in Kearny, New Jersey. The RIR/RAW was prepared with specific reference to prior site activities and is based upon current available data as set forth within the introduction. The RIR/RAW presents BELL's professional opinion and judgment relative to the resolution of current environmental concerns at the site as currently known. No other warranty, expressed or implied, is made.



深全

19.6% A

FIGURES

\$33. Q

TABLES

TABLE 3-1

SUMMARY OF SAMPLING ACTIVITIES CONDUCTED SINCE JUNE 1993 AMMCO - KEARNY

KEARNY, HUDSON COUNTY, NEW JERSEY

BELL PROJECT # EOG01-90059-02

Bell Environs	nental Con	sultants. I	nc.
---------------	------------	-------------	-----

page 1 of 3

Bell Ellyllollillella	1 00110010					pagerors
		Former AOC/	1	Sample Depth	Analytical	Sampling
Location	Date	New AOC	Matrix	(feet BGS)	Parameter(s)	Method
			 			
MW-3	6/7/93	N/A	Water	WT	Aluminum	Teflon Bailer
MW-4	1	N/A	Water	WT	Aluminum	Teflon Bailer
MW-5	1	N/A	Water	WT	Aluminum	Teflon Bailer
MW-6		N/A	Water	WT	Aluminum, VO + 15	Teflon Bailer
MW-10		N/A	Water	WT	Aluminum, VO + 15	Teflon Bailer
MW-11	<u> </u>	N/A	Water	WT	Aluminum, BN + 15	Teflon Bailer
			 	† · · · · · · · · · · · · · · · · · · ·		
PE-130	6/17/93	12/1	Soil	2.0	BN + 15	Trowel
PE-131	j	12/I	Soil	2.0	BN + 15	Trowel
PE-132	l l	12/I	Soil	2.0	BN + 15	Trowel
PE-133		12/1	Soil	2.0	BN + 15	Trowel
PE-134		12/1	Soil	2.0	BN + 15	1
12104	 	1	1 0011	2.0	DI TIJ	Trowel
	1		Ť ·			
PE-136	6/18/93	9/1	Soil	2.0	BN + 15	Trowel
PE-137	<u> </u>	9/1	Soil	2.0	BN + 15	Trowel
PE-138	1	9/1	Soil	2.0	BN + 15	Trowel
PE-139		9/I	Soil	2.0	BN + 15	Trowel
PE-140	1	9/1	Soil	2.0	BN + 15	Trowel
PE-141	†	9/1	Soil	6.0	Arsenic	
PE-142	İ	9/1	Soil	6.0		Trowel
PE-143		9/1			Arsenic	Trowel
PE-144		9/1	Soil	6.0	Arsenic	Trowel
L F - 144	<u> </u>	3/1	Soil	6.0	Arsenic	Trowel
MW-1	8/2/93	N/A	Product	wt	TPH Fingerprinting	Teflon Bailer
MW-7		N/A	Product	WT	TPH Fingerprinting	Teflon Bailer
MW-8		N/A	Product	WT	TPH Fingerprinting	Teflon Bailer
MW-9		N/A	Product	WT	TPH Fingerprinting	Teflon Bailer
PE-145	9/15/93	23/I	Soil	3.5	Arsenic	-
PE-146	0, 10,00	23/1	Soil			Trowel
PE-147		23/I 23/I		3.5	Arsenic, Lead and Zinc	Trowel
			Soil	3.5	BN + 15 and TPH	Trowel
PE-148		23/1	Soil	3.5	Arsenic	Trowel
PE-149		23/1	Soil	3.5	Arsenic, BN + 15 and TPH	Trowel
						-
PE-150	4/26/94	20/1	Soil	3.0	Copper	Trowel
PE-152		20/I	Soil	3.0	Copper	Trowel
PE-153	ļ	20/I	Soil	3.0	Copper	Trowel
PE-154	1	11/	Soil	3.0	Copper	Trowel
PE-155		11/1	Soil	2.0	BN + 15	Trowei
PE-156	- 1	11/	Soil	2.0	BN + 15	I
PE-157	ļ	11/				Trowel
PE-157	[Soil	2.0	BN + 15	Trowel
FE-130		11/I	Soil	2.0	BN + 15	Trowel

Notes:

VO + 10 - Volatile organic compounds with a forward library search for ten tentatively identified compounds

BN + 15 - Base neutral compounds with a forward library search for fifteen tentatively identified compounds

TPH - Total petroleum hydrocarbons

WT - Ground water table

N/A - These wells are not associated with a specific AOC.

BGS - Below ground surface

^{-- -} Not applicable

TABLE 3-1

SUMMARY OF SAMPLING ACTIVITIES CONDUCTED SINCE JUNE 1993 AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT # EOG01-90059-02

Bell Environmental Consultants, Inc.

page 2	O1	-
--------	----	---

		Former AOC/	1	Sample Depth	Analytical	page 2 of
Location	Date	New AOC	Matrix	(feet BGS)	Parameter(s)	Sampling
			1	(lear boo)	Falameter(s)	Method
						
PE-161	4/28/94	10/J	Soil	1.5	BN + 15	Trowe
PE-162	i i	10/1	Soil	1.5	BN + 15	Trowel
PE-163		10/I	Soil	1.5	BN + 15	Trowe
PE-164		10/I	Soil	1.5	BN + 15	Trowe
PE-165		10/i	Soil	1.5-2.0	BN + 15	Trowe
PE-166		10/I	Soil	1.5-2.0	BN + 15	Trowe
PE-167	1 1	10/I	Soil	1.5-2.0	BN + 15	Trowe
PE-168	1 1	10/I	Soil	1.5-2.0	BN + 15	Trowe
PE-169	1	11/I	Soil	0.5	BN + 15	Trowe
PE-170		11/	Soil	2.0	BN + 15	Trowe
PE-171		19/11	Soil	1.5-2.0	Arsenic and BN + 15	Trowe
PE-172		19/II	Soil	1.5-2.0	Arsenic and BN + 15	Trowe
PE-173		19/11	Soil	1.5-2.0	Arsenic and BN + 15	Trowe
PE-174		19/11	Soil	1.5-2.0	Arsenic and BN + 15	Trowe
MW-6	5/10/94	N/A	Water	wr I	VO + 15	Teffen De
MW-10]	N/A	Water	wr	VO + 15	Teflon Ba
BEC-12S	1 1	N/A	Water	wī	BN + 15 and VO + 15	Teflon Ba
					5N 13 and 40 1 13	Teflon Ba
MW-8	5/24/94	N/A	Product	wt	TPH Fingerprinting	Teflon Ba
						Tenon Da
BEC-12S	11/7/94	N/A	Water	wr	BN + 15 and VO + 15	Teflon Ba
00.104	4/5/05			i		
SS-12A	4/5/95	AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-12B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-13A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-13B	1	AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-14A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-14B	1	AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-15A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-15B	1	AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-16A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-16B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-1A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-1B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-2A	1	AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-2B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, Zinc, and Aluminum	
SS-3A	1	AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, 2inc, and Aluminum BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-3B	1	AOC 1		0.0.0	Pit 10, Aiseilie, Coppet, Leau, and Z(NC	Trowel

Notes:

VO + 10 - Volatile organic compounds with a forward library search for ten tentatively identified compounds

BN + 15 - Base neutral compounds with a forward library search for fifteen tentatively identified compounds

TPH - Total petroleum hydrocarbons

WT - Ground water table

N/A - These wells are not associated with a specific AOC.

BGS - Below ground surface

-- - Not applicable

TABLE 3-1

SUMMARY OF SAMPLING ACTIVITIES CONDUCTED SINCE JUNE 1993
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # EOG01-90059-02

Bell Environmental Consultants, Inc.

page 3 of 3

	_	Former AOC/		Sample Depth	Analytical	Sampling
Location	Date	New AOC	Matrix	(feet BGS)	Parameter(s)	Method
			ļ			·
SS-4A	4/10/95	AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-4B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-5A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-5B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-6A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-6B		AOÇ I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-7A		AOC I	Soil	0.3-0.8	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-7B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-8A		AOC I	Soil	0.3-0.8	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-8B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-9A		AOC I	Soil	0.3-0.8	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-9B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-10A	ŀ	AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-10B		AOC I	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-11A		AOC I	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-11B		AOCI	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, and Zinc	Trowel
SS-17A (Background)	ļ	-	Soil	0-0.5	BN+15, Arsenic, Copper, Lead, Zinc, and Aluminum	Trowel
SS-17B (Background)	ľ	-	Soil	2.0-2.5	BN+15, Arsenic, Copper, Lead, Zinc, and Aluminum	Trowel

Notes:

VO + 10 - Volatile organic compounds with a forward library search for ten tentatively identified compounds

BN + 15 - Base neutral compounds with a forward library search for fifteen tentatively identified compounds

TPH - Total petroleum hydrocarbons

WT - Ground water table

N/A - These wells are not associated with a specific AOC.

BGS - Below ground surface

-- - Not applicable

TABLE 3-2

SUMMARY OF GROUND WATER MONITORING WELL PHYSICAL DATA AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

page 1 of 1

14/ 11	T 5 T						page i ui i
Well	Bottom	Bottom of	Ground	Top PVC	Depth to Top	Top of Screen	Length of
Number	of Well	Well Elev	Elevation	Elevation	of Screen	Elevation	Screen
	(ft below PVC)	(MSL)	(MSL)	(MSL)	(ft below PVC)	(MSL)	(ft)
1							
MW-1	#	#	11.85	13.49	#	#	10
MW-2	20.18	-6.17	13.08	14.01	10.18	3.83	10
MW-3	20.18	-4.33	14.18	15.85	10.18	5.67	10
MW-4	16.89	-7.48	7.74	9.41	6.89	2.52	10
MW-5	21.00	-6.42	12.88	14.58	11.00	3.58	10
MW-6	22.47	-4.86	16.17	17.61	12.47	5.14	10
MW-7	35.31	-12.39	23.31	22.92	25.31	-2.39	10
8-WM,	18.00	-5.14	13.27	12.86	7.71	5.15	10
MW-9	16.24	-4.44	12.41	11.80	6.24	5.56	10
MW-10	25.03	-4.32	21.07	20.71	10.03	10.68	15
BEC-11S	14.51	-3.74	11.17	10.77	4.51	6.26	10
BEC-12S	19.00	-8.06		10.94	4.00	6.94	15
					7		

Notes:

MSL - Above mean sea level

ft - feet

^{-- -} Information not available.

^{# -} Information not available as boring logs for this well could not be obtained from the previous consultant

TABLE 3-3

SUMMARY OF GROUND WATER ELEVATION DATA - JUNE 1, 1993 - DECEMBER 12, 1994 AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

	rental Consultants	June 1, 1993					page 1 of 1
WELL,	DEPTH TO		T			lune 7, 1993	
NUMBER	WATER (FT)	TOP PVC	GROUND WATER	WELL	DEPTH TO	TOP PVC	GROUND WATER
NOMBER	VVAIER (FI)	ELEVATION (MSL)	ELEVATION (MSL)	NUMBER	WATER (FT)	ELEVATION (MSL)	ELEVATION (MSL)
MW-1	42.40	1					
MW-2	12.18	13.49	0.04' LNAPL	MW-1	12.26	13.49	0.01' LNAPL
MW-3	12.73	14.01	1.28	MW-2	12.81	14.01	1.20
MW-4	14.56	15.85	1.29	MW-3	14.63	15.85	1.22
MW-5	7.37	9.41	2.04	MW-4	7.99	9.41	1.42
MW-6	13.33	14.58	1.25	MW-5	13.43	14.58	1.15
	14.10	17.61	3.51	MW-6	14.21	17.61	3.40
MW-7	13.56	22.92	0.28' LNAPL	MW-7	14.00	22.92	0.55' LNAPL
MW-8	11.21	12.86	0.12' LNAPL	MW-8	11.31	12.86	0.14' LNAPL
MW-9	10.46	11.80	0.01' LNAPL	MW-9	10.61	11.80	0.02' LNAPL
BEC-11S	9.46	10.77	1.31	MW-10	15.96	20.71	4.73
	<u> </u>	<u> </u>		BEC-11S	9.57	10.77	1.20
		ugust 2, 1993			N	fay 10, 1994	
WELL	DEPTH TO	TOP PVC	GROUND WATER	WELL	DEPTH TO	TOP PVC	GROUND WATER
NUMBER	WATER (FT)	ELEVATION (MSL)	ELEVATION (MSL)	NUMBER	WATER (FT)	ELEVATION (MSL)	ELEVATION (MSL)
MW-1	12.24	13.49	0.000				
MW-2	12.92	14.01	0.02' LNAPL	MW-1	14.60	13.49	-1.11
MW-3	14.98		1.09	MW-2	12.22	14.01	1.79
MW-4	7.96	15.85	0.87	MW-3	14.20	15.85	1.65
MW-5	13.68	9.41	1.45	MW-4	8.10	9.41	1.31
MW-6	14.43	14.58	0.90	MW-6	14.20	17.61	3.41
MW-7		17.61	3.18	MW-8	10.80	12.86	0.50' LNAPL
MW-8	14.02	22.92	0.54' LNAPL	MW-9	10.80	11.80	0.10' LNAPL
MW-9	11.19	12.86	0.02' LNAPL	MW-10	15.45	20.71	5.26
T I	10.60	11.80	0.02' LNAPL	BEC-12	10.90	10.94	0.04
MW-10	15.49	20.71	5.22				
		ember 12, 1994		•			
WELL	DEPTH TO	TOP PVC	GROUND WATER				
NUMBER	WATER (FT)	ELEVATION (MSL)	ELEVATION (MSL)			7	
MW-1	12.50	13.49	0.02' LNAPL	•			
MW-2	13.00	14.01	1.01				
MW-3	14.84	15.85	1.01				÷
MW-5	13.62	14.58	0.96				
MW-6	14.45	17.61	3.16				
MW-7	13.60	22.92	0.25' LNAPL				
MW-8	11.30	12.86	0.12' LNAPL				
MW-10	16.13	20.71	4.58				
BEC-12	11,49	10.94	-0.55				

Notes:

MSL - Mean sea level

LNAPL - Light non-aqueous phase liquid

FT - Feet

TABLE 3-4

SUMMARY OF ANALYTICAL METHODS AND QUALITY ASSURANCE/QUALITY CONTROL SAMPLING AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT # EOG01-90059-02

Bell Environmental Consultants, inc.

Type of Sample	Matrix Type	Number of Samples	Number of Field Blanks	Number of Trip Blanks	Number of Duplicate Samples	Analytical Parameters	Sample Preservation Method	Analytical Method	Sample Container Volume	Sample Holding Time (max
Post Excavation	Soil	30	3	0	5	BN+15	4C	SW-846, Methods 3550 & 8270	16 oz.	14 days
Soil Samples		12	2	0	3	Arsenic	4C, HNO ₃	SW-846, Method 7060	4 oz.	6 months
		4	0	0	. 1	Copper	4C, HNO₃	SW-846, Method 6010	4 oz.	6 months
		2	1	0	1	TPH	4C	EPA-600/4-79-020, Method 418.1	4 oz.	7 days
		1	1	0	1	Lead	4C, HNO ₃	SW-846, Method 6010	4 oz.	6 months
		1	1	0	1	Zinc	4C, HNO₃	SW-846, Method 6010	4 oz.	6 months
Product Samples	Product	5	o	0	0	TPH Fingerprinting	-	Capillary Gas Chromatography	4 oz.	_

4C, HCI

4C

4C

4C 4C 4C 4C

4C

40 CFR Part 136, Method 624

40 CFR Part 136, Method 625

SW-846, Methods 3550 & 8270

SW-846, Method 7060

SW-846, Method 7060

SW-846, Method 7060

SW-846, Method 7060

SW-846, Method 7060

40 mi.

32 oz.

4 oz.

4 oz.

4 oz.

4 oz.

4 oz.

4 oz.

14 days

14 days

14 days

6 months

6 months

6 months

6 months

6 months

VO+15

BN+15

BN+15

Arsenic

Copper

Lead

Zinc

Aluminum

Notes:

Monitoring Well

Samples

Soil Boring

Samples

VO+15 - Volatile Organic Compounds with a Forward Library Search for Fifteen Tentatively Identified Compounds, BN+15 - Base Neutral Compounds with a Forward Library Search for Fifteen Tentatively Identified Compounds.

2

0

0

0

0

0

0

2

2

2

2

2

2

2

2

2

0

0

0

0

0

0

TPH - Total Petroleum Hydrocarbons

Water

Soil

2

34

34

34

34

34

3

TABLE 4-1

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS, ZINC, LEAD, ARSENIC, AND COPPER ANALYTICAL RESULTS FOR 20 POST EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 18, 1993 AND APRIL 26, 1994 WITHIN AOC I AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #E0G01-90059-02

Bell Environmental Consultants, Inc.

page 1 of 1

Area Designation	Sample Designation	BELL Sample Number	Laboratory Sample Number	Date Sampled	Depth of Sample (Feet)	Total Petroleum Hydrocarbons (mg/kg)	Zinc (mg/kg)	Lead (mg/kg)	Arsenic (mg/kg)	Copper (mg/kg)
9	PE-141	90059-6913	AA16935	6/18/93	6.0	NT	NIT		١	
9	PE-142	90059-6914	AA16936	6/18/93	6.0		NT	NT	1.3	NT
9	PE-143	90059-6915	AA16937	6/18/93	6.0	NT	NT	NT .	10	NT
9	PE-144	90059-6916	AA16938	6/18/93	6.0	NT NT	NT	NT	8.5	NT
9	PE-144 (Dup)	90059-6917	AA16939	6/18/93	6.0		NT	NT	8	NT
9	Field Blank	90059-1902	AA16940	6/18/93	0.0	NT NT	NT	NT	4.8	NT
23	PE-145	90059-6919	AA18723	9/15/93	3.5	NT	NT	NT	ND	NT
23	PE-146	90059-6920	AA18724	9/15/93		NT	NT	NT	1.9	NT
23	PE-146 (Dup)	90059-6925	AA18728	9/15/93	3.5	NT	44	27	2	NT
23	PE-147	90059-6921	AA18725	9/15/93	3.5	NT	34	18	1.5	NT
23	PE-148	90059-6922	AA18726		3.5	29	NT	NT	NT	NT
23	PE-149	90059-6923	AA18727	9/15/93	3.5	NT	NT	NT	1.3	NT
23	PE-149 (Dup)	90059-6927	AA18729	9/15/93 9/15/93	3.5	150	NT	NT	2.5	NT
23	Field Blank	90059-0527	AA18730		3.5	990	NT	NT	NT	NT
23	Field Blank	90059-1502	AA18731	9/15/93		ND	NT	NT	NT	NT
20	PE-150	90059-6928		9/15/93		NT	ND	ND	ND	NT
20 20	PE-152	90059-6930	AA22874	4/26/94	3.0	NT	NT	NT	NT	1,700
20	PE-152 (Dup)		AA22876	4/26/94	3.0	NT	NT	NT	NT	11
20	PE-152 (Dup)	90059-6931	AA22877	4/26/94	3.0	NT	NT	NT	NT	8.6
11		90059-6932	AA22878	4/26/94	3.0	NT	NT	NT	NT	7,600
	PE-154	90059-6933	AA22879	4/26/94	3.0	NT	NT	NT	NT	3,200
			Residential Direct Contact	t Soil Cleanup Crite	eria (mg/kg)	10,000¹	1,500	100	20	600
	Non-Residential Direct Contact Soil Cleanup Criteria (mg/kg						1,500	600	20	600
			10,000 ¹	NC	NC	NC	NC			

Notes:

NT - Not Tested

ND - Not Detected

(mg/kg) - Milligrams per kilogram

NC - No soil cleanup criteria has been established by the NJDEP

1 - Cleanup criteria for total organics

TABLE 4-2

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN AOC I AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consulta	ints, Inc.																	page 1 of 8
Area Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Sample Depth: Date Sampled:	MDL	Area 12 PE-130 90059-6901 AA16922 2.0' 6/17/93 CONC	1 Q	MDL	Area 12 PE-131 90059-6902 AA16923 2.0' 6/17/93 CONC		MDL	Area 12 PE-132 90059-6903 AA16924 2.0' 6/17/93 CONC	Q	MDL	Area 12 PE-133 90059-6904 AA16925 2.0' 6/17/93 CONC	ď	MDL	Area 12 PE-134 90059-6905 AA16926 2.0' 6/17/93 CONC	Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Water Soil Cleanup Criteria
Dilution Factor:		33			667			667		L	333			667		_		
COMPOUNDS (units)	ļ <u>.</u>	(mg/kg)			(mg/kg)			(mg/kg)			(mg/kg)			(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
bis(2-Chloroisopropyl)ether Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Dibenzofuran Fluorene Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)Pyrene Indeno(1,2,3-c,d)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene Total Targeted BNs: *	0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22	ND 0.12 0.059 ND 0.13 0.12 0.18 2 0.32 0.076 2.1 1.7 0.86 0.27 0.96 1.1 0.71 0.83 0.42 ND 0.39	אר ייי נו	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	ND 1.1 ND ND 2.3 ND 0.8 7.9 2.2 ND 17 20 11 1.8 13 16 15 15 11 2.8 9.3	n n	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	ND ND ND ND ND ND ND 2 ND ND 5 5.7 2.2 2.6 3.1 6.5 ND 2.8 3.2 ND 3.1	ניני ניני	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ND 0.58 ND ND 0.55 ND 3.2 0.67 ND 7 7 3.6 0.58 4.7 3.9 4.3 3 1 2.5	J	4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	ND ND ND 1.5 ND ND 6.9 1.9 ND 17 19 9.6 2.4 12 15 11 13 9.5 2.4 8.3	J	0.66 230 NC NC 3,400 NC 2,300 NC 10,000 5,700 2,300 1,700 0.90 49 9 0.90 0.66 0.90 0.66 NC	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 10,000 4 210 40 4 4 0.66 4 0.66 NC	10 100 NC NC 100 NC 100 100 100 100 100 500 100 500 500 100 500 100 500
Total Targeted BNs: " Total Non-Targeted BNs:		12.269 57. 59 6			146.2 109.682			36.2 112.414			46.78 128.278			129.5 177.865			 	

Notes:

MDL - Method Detection Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

-- - Not Applicable

Presented above are those compounds which are present in at least one sample.

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

⁽mg/kg) - Milligrams per kilogram

- Total includes "J" results but excludes "B" results

TABLE 4-2

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN AOC I AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consul	tants, Inc.					•											•	
Former Area Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Sample Depth: Date Sampled:	MDL	Area 12 PE-134 (Dup 90059-6906 AA16927 2.0' 6/17/93 CONC		MDL	Area 12 Field Blank 90059-1901 AA16928 6/17/93 CONC	Q	MDL	Area 9 PE-136 90059-6907 AA16929 2.0' 6/18/93 CONC	a	MDL	Area 9 PE-137 90059-6908 AA16930 2.0' 6/18/93 CONC	q	MDL	Area 9 PE-138 90059-6909 AA16931 2.0' 6/18/93 CONC	Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	page 2 of 8 Impact to Ground Water Soil Cleanup Criteria
Dilution Factor:		667			1			667			100			33				
COMPOUNDS (units)		(mg/kg)			(mg/l)			(mg/kg)			(mg/kg)			(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
bis(2-Chloroisopropyl)ether Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)Pyrene Indeno(1,2,3-c,d)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	ND 0.75 ND ND 1.3 ND 0.73 7.1 2 ND 16 17 8.8 ND 9.9 13 9 11 7.7 2.8 6.5))	5555555555555555555555555	25555555555555555555555555555555555555		3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	ND ND ND 0.98 ND 0.96 11 2.2 ND 17 15 6.5 ND 7.4 12 ND 6.7 4.4 ND 6.7	j	0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63	ND 0.3 0.15 ND 0.74 0.5 0.91 5.8 1.3 ND 5.3 3.9 2 ND 2.2 2.2 1.5 1.6 1.2 0.97	J	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	ND ND ND ND 0.043 ND 0.58 0.12 0.049 0.93 0.77 0.43 0.11 0.51 0.66 0.36 0.46 0.26 ND	IB I	0.66 230 NC NC 3,400 NC 10,000 5,700 2,300 1,700 0.90 49 9 0.90 0.66 0.90 0.66 NC	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 10,000 4 210 40 4 4 0.66 4 0.66 NC	10 100 NC NC 100 NC 100 100 100 100 100 500 500 500 100 500
Total Targeted BNs: * Total Non-Targeted BNs:		113.58 131.246			0			88.04 131.963			31.09 66.831			5.433 31.558		~*	 	-

Notes:

MDL - Method Detection Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(mg/l) - Milligrams per liter

(mg/kg) - Milligrams per kilogram

* - Total includes "J" results but excludes "B" results

-- - Not Applicable

Presented above are those compounds which are present in at least one sample.

THE PERMITTED AND THE PROPERTY OF S. 14

TABLE 4-2

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN AOC I AMMCO - KEARNY **KEARNY, HUDSON COUNTY, NEW JERSEY** BELL PROJECT #EOG01-90059-02

Bell Environmental Consul	tants, Inc.																
Area Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Sample Depth: Date Sampled:	Area 9 PE-139 90059-6910 AA16932 2.0' 6/18/93 MDL CONC			MDL	Area 9 PE-140 90059-6911 AA16933 2.0' 6/18/93 CONC	Q	MDL	Area 9 PE-140 (Dup 90059-6912 AA16934 2.0' 6/18/93 CONC	•	MDL	Area 9 Field Blank 90059-1902 AA16940 6/18/93 CONC	MDL	Area 23 PE-147 90059-6921 AA18725 3.5' 9/15/93 CONC	Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	page 3 of 8 Impact to Ground Water Soil Cleanup Criteria
Dilution Factor:		33			333			333			1		33				
COMPOUNDS (units)		(mg/kg)			(mg/kg)			(mg/kg)			(mg/l)		(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
bis(2-Chloroisopropyl)ether Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)Pyrene Indeno(1,2,3-c,d)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene Total Targeted BNs: *	0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	ND ND ND ND ND 0.04 0.4 0.75 0.58 0.32 0.078 0.4 0.46 0.35 0.33 0.2 ND 0.16	1 1	222222222222222222222222222222222222222	ND 0.55 ND ND 2.1 1.3 2.5 20 4.4 ND 22 17 8.8 ND 9.9 8.5 7.4 7.7 4.7 1.3 3.8	J	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	ND 0.66 ND ND 1.5 0.75 1.1 14 2.8 ND 18 14 7 ND 7.5 7.7 5.6 6.4 4.3 ND 3.5	יייי נייי	655555555555555555555		0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.000000000000000000000000000000000000	J	0.66 230 NC NC 3,400 NC 2,300 NC 10,000 5,700 2,300 1,700 0.90 49 9 0.90 0.90 0.66 0.90 0.66 NC	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 10,000 4 210 40 4 4 0,66 4 0.66 NC	10 100 NC NC 100 NC 100 100 100 100 100 500 500 500 500 100 800 800 800 800 800 800 800 800 8
Total Targeted BNs: * Total Non-Targeted BNs:		4.149 36.602			121.95 186.556			94.81 92.546			0 0		0.093				

Notes:

MDL - Method Detection Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

(mg/l) - Milligrams per liter

(mg/kg) - Milligrams per kilogram

Presented above are those compounds which are present in at least one sample.

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

^{* -} Total includes "J" results but excludes "B" results

^{-- -} Not Applicable

TABLE 4-2

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN AOC I AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Area Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Sample Depth: Date Sampled:	MDL	Area 23 PE-149 90059-692: AA18727 3.5' 9/15/93 CONC	3 Q	MDL	Area 23 PE-149 (Dup) 90059-6927 AA18729 3.5' 9/15/93 CONC C	MDL	Area 23 Field Blank 90059-1501 AA18730 —— 9/15/93 CONC Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Water Soil Cleanup Criteria
Dilution Factor:		33			330		1			
COMPOUNDS (units)		(mg/kg)			(mg/kg)		(mg/l)	(mg/kg)	(mg/kg)	(mg/kg)
bis(2-Chloroisopropyl)ether Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)Pyrene Indeno(1,2,3-c,d)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.22 ND ND ND ND 0.15 ND 0.041 0.52 0.62 0.31 0.18 0.37 0.79 ND 0.39 0.26 ND	J	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	555555555555555555555555555555555555555	555555555555555555555	555555555555555555555555555555555555555	0.66 230 NC NC 3,400 NC 2,300 NC 10,000 5,700 2,300 1,700 0,90 49 9 0,90 0,90 0,66 0,90 0,666 NC	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 10,000 4 210 40 4 4 0.66 4 0.66 NC	10 100 NC 100 NC 100 100 100 100 100 500 500 100 500 100 500

Notes:

MDL - Method Detection Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(mg/kg) - Milligrams per kilogram

(mg/l) - Milligrams per liter

* - Total includes "J" results but excludes "B" results

-- - Not Applicable

Presented above are those compounds which are in at least one sample.

TABLE 4-2

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN AOC I AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consulta Area Designation:	T	Area 11			Area 11		T						 		page 5 of 8
Sample Designation. BELL Sample Number: Laboratory Sample Number: Date Sampled: Sample Depth	Area 11 PE-155 90059-6934 AA22880 04/26/94 2' PQL CONC Q			Area 11 PE-156 90059-6935 AA22881 04/26/94 2° POL CONC Q			Pal	Area 11 PE-157 90059-6936 AA22882 04/26/94 2' CONC	s a	Area 11 PE-157 (Dup) 90059-6937 AA22883 04/26/94 2* PQL CONC Q			Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Water Soil Cleanup Criteria
Dilution Factor		100			333			333			333				
COMPOUNDS (units)		(mg/kg)			(mg/kg)			(mg/kg)			(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
bis(-2-Chloroethyl)Ether Naphthalene 2-Methylnaphthene Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81	ND ND ND ND ND 1.7 0.36 3 2.8 1.6 0.24 1.6 3.5 ND 1.9 0.68		21 21 21 21 21 21 21 21 21 21 21 21 21 2	ND ND ND ND ND ND 3.4 0.68 6.3 4.8 3 ND 3 4.7 ND 29 1.6 0.52 1.7	ĵ	1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	ND ND ND ND ND 1.7 ND 4 2.9 2.3 3.5 ND 1.5 0.49 1.6		1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ND ND ND ND ND ND 1.3 ND 3.1 2.7 ND 2.9 4.2 ND 2.9 4.2 ND 2.5 1.7 0.51 1.8	JJJ	0.66 230 NC NC 3.400 NC 2,300 NC 10,000 2,300 1,700 0.90 49 9 0.90 0.90 0.90 0.66 NC	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 4 210 40 4 4 4 0.66 4 0.66 NC	10 100 NC NC 100 NC 100 NC 100 100 500 100 500 500 500 500 100 500
TOTAL TARGETED BNs. * TOTAL NON-TARGETED BNs		18.35 30.802			32 7 13.566			22.09 9.772			24.31 11.481				

PQL - Practical Quantitative Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(mg/kg) - Milligrams per kilogram
* - Total includes "J" results but excludes "B" results

-- - Not Applicable

Presented above are those compounds which are present in at least one sample

TO THE REPORT OF THE PARTY OF THE STATE OF THE PARTY OF T

TABLE 4-2

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN AOC I AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY **BELL PROJECT #EOG01-90059-02**

Bell Environmental Consulta	ints, inc.	· · · · · · · · · · · · · · · · · · ·												page 6 of 8
Area Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Date Sampled Sample Depth:	PQL	Area 11 PE-158 90059-6938 AA22884 04/26/94 2' CONC Q	PQL	Area 10 PE-161 90059-6943 AA22952 4/28/94 1.5' CONC	Q	PQL	Area 10 PE-161 (Dup 90059-6944 AA22953 4/28/94 1.5' CONC		PQL	Area 10 PE-162 90059-6945 AA22954 4/28/94 1.5' CONC	Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Water Soil Cleanup Criteria
Dilution Factor	ļ	333		167			167			333				_
COMPOUNDS (units)		(mg/kg)	ļ	(mg/kg)			(mg/kg)			(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
bis(-2-Chloroethyl)Ether Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND ND ND ND ND ND ND 3.7 0.77 J 5.3 4.1 2.3 ND 2.4 3.6 ND 2.2 1.1 J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND 0.24 0.25 0.27 0.79 0.37 0.77 8 8 1 6 14 11 6 2 ND 6 6 7 2 5 5 8 2 0 65 1.8	ייייייייייייייייייייייייייייייייייייייי	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND 0.38 0.4 0.38 0.8 0.39 0.76 10 1.7 15 14 7.2 ND 8 8.6 6.4 6.7 2.1 0.72 2	11111	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ND 2.4 1.5 3.8 0.86 3.2 4.6 33 3.9 31 22 10 ND 11 11 8 8 7 3.1 1.3 2.4	J	0.56 230 NC NC 3.400 NC 2,300 NC 10,000 2,300 1,700 0,90 49 9 9 0,90 0,90 0,90 0,66 NC	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 4 210 40 4 4 0,66 4 0 66 NC	10 100 NC NC 100 NC 100 100 100 100 500 100 500 500 100 500
TOTAL TARGETED BNs. TOTAL NON-TARGETED BNs		25.9 12.838		73.84 45.067			85 53 51.348			161.76 68.45				140

Notes:

PQL - Practical Quantitative Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample NC - No soil cleanup criteria has been established by the NJDEP

(mg/kg) - Milligrams per kilogram

* - Total includes "J" results but excludes "B" results

-- - Not Applicable

Presented above are those compounds which are present in at least one sample

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN ACC 1 AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY

BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

Area Designation:		Area 10			Area 10			Area 10		· · · · · · · · · · · · · · · · · · ·	Area 10		Residential	Non-Residential	page 7 of 8 Impact to
Sample Designation: BELL, Sample Number: Laboratory Sample Number: Date Sampled: Sample Depth	PQL	PE-163 90059-6946 AA22955 4/28/94 1.5' CONC	<u>a</u>	PQL	PE-164 90059-6947 AA22956 4/28/94 1.5' CONC	a	PQL	PE-165 90059-6948 AA22957 4/28/94 1.5'-2.0' CONC	a	PQL	PE-166 90059-6949 AA22958 4/28/94 1.5'-2.0' CONC	Q	Direct Contact Soil Cleanup Criteria	Direct Contact Soil Cleanup Criteria	Ground Water Soil Cleanup Criteria
Dilution Factor:		33			33			33			167		***	***	
COMPOUNDS (units)		(mg/kg)			(mg/kg)			(mg/kg)			(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
bis(-2-Chloroethyl)Ether Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,i)Anthracene Benzo(g,h,i)Perylene	0 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19	ND ND ND 0 064 0 055 ND 1.1 0.17 1.5 1.1 0.52 ND 0 61 0 68 0 52 0 51 0 26	J	0 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19	ND ND ND ND ND ND 0.47 0.076 0.83 0.72 0.37 0.049 0.44 0.79 ND 0.4 0.19	j J	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	ND ND ND ND ND ND ND ND ND ND ND ND ND N	י רר רר ני ני	0 99 0 99 0 99 0 99 0 99 0 99 0 99 0 99	ND ND ND ND ND ND ND ND ND 0.67 ND 0.39 ND 0.42 ND ND ND ND ND ND ND ND ND ND ND ND	J	0.66 230 NC NC 3,400 NC 2,300 10,000 2,300 1,700 0,90 49 9 0,90 0,90 0,90 0,90 0,90 0,	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 10,000 4 210 40 4 4 0,666 4 0,666 NC	10 100 NC NC 100 NC 100 100 100 500 500 500 500 500 100 NC
TOTAL TARGETED BNs: * TOTAL NON-TARGETED BNs:		7 459 25.424			4 619 22 385			1.409 24.046			4 65 57 054				

Notes

PQL - Practical Quantitative Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(mg/kg) - Milligrams per kilogram

* - Total includes "J" results but excludes "B" results

-- - Not Applicable

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 34 POST-EXCAVATION SOIL SAMPLES COLLECTED BETWEEN JUNE 17, 1993 AND APRIL 28,1994 WITHIN ACC! AMMCO - KEARNY

KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

Area Designation: Sample Designation BELL Sample Number: Laboratory Sample Number: Date Sampled: Sample Depth:	PQL	Area 10 PE-167 90059-6950 AA22959 4/28/94 1.5'-2.0' CONC	· a	PQL	Area 10 PE-168 90059-6951 AA22960 4/28/94 1.5'-2.0' CONC	G	PQL	Area 11 PE-169 90059-6952 AA22961 4/28/94 0.5' CONC		PQL	Area 11 PE-170 90059-6953 AA22962 4/28/94 2.0' CONC	0	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	page 8 of 8 Impact to Ground Water Soil Cleanup Criteria
Dilution Factor.	ļ	33.3			67			133			333		***		
COMPOUNDS (units)		(mg/kg)			(mg/kg)			(mg/kg)			(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
bis(-2-Chloroethyl)Ether Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Phenarthrene Anthrapene Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h,l)Perylene Benzo(a,h,l)Perylene	1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ND 0.64 ND ND 1.9 0.75 1.6 1.6 3.8 27 22 1.2 ND 12 10 15 12 4.1 1.9 3.8	J	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ND ND ND ND ND ND 0.66 0.11 1.1 0.51 ND 0.59 1 ND 0.55 0.35 ND	J	0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	ND ND ND ND ND ND 0.63 ND 1.5 1.2 0.71 0.32 0.82 1.7 ND 0.82 1.7 ND 0.82	j J	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	ND 1.6 0.59 0.4 2.6 1.7 3.1 25 5.8 32 24 14 ND 14 8.3 12 5.4 ND 4.9	J	0.66 230 NC NC 3.400 NC 2,300 NC 10,000 2,300 1,700 0.90 49 9 0.90 0.90 0.90 0.90 0.66 NC	3 4,200 NC NC 10,000 NC 10,000 10,000 10,000 4 210 40 4 4 0.66 4 0.66 NC	100 1000 NC 1000 1000 1000 1000 5000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000 5000 1000 500000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 50
TOTAL TARGETED BNs. * TOTAL NON-TARGETED BNs.		144.49 56. 24			6 26 25 264			8.39 ND			169.39 ND				

PQL - Practical Quantitative Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(mg/kg) - Milligrams per kilogram
* - Total includes "J" results but excludes "B" results

-- - Not Applicable

the contract of the contract o

TABLE 4-3

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 4 POST-EXCAVATION SOIL SAMPLES COLLECTED ON APRIL 28, 1994 WITHIN AOC II AMMCO-KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

Area Designation:	ants, Inc	Area 19		T	Area 19			- 1 - 1x							page 1 of 1
Sample Designation: BELL Sample Number: Laboratory Sample Number: Date Sampled: Sample Depth:	PQL	PE-171 90059-6954 AA22963 4/28/94 1.5'-2.0' CONC	4	PQL	PE-172 90059-6955 AA22964 4/28/94 1.5'-2.0' CONC	α	PQL	Area 19 PE-173 90059-6957 AA22965 4/28/94 1.5'-2.0' CONC	7 Q	PQL	Area 19 PE-174 90059-6959 AA22967 4/28/94 1.5'-2.0' CONC	Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Water Soil Cleanup Criteria
Dilution Factor:		33			133			33			67				
COMPOUNDS (units)		(mg/kg)	<u> </u>		(mg/kg)			(mg/kg)			(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Naphthalene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	ND ND 0.09 ND 0.12 0.1 0.057 ND 0.11 0.17 ND 0.055 ND ND	J	0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77	0.19 0.48 2.6 0.62 8.2 6.7 4.5 ND 4 4.7 3.8 4.3 1.8 0.74	1	0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	ND ND 0.2 ND 0.43 0.35 0.21 0.058 0.21 0.41 ND 0.22 0.1 ND) B)	0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	0.11 0.35 2.8 0.51 5.8 4.6 2.9 ND 2.7 5.1 ND 2.5 1.1 0.42 0.93	J	230 3,400 NC 10,000 2,300 1,700 0,90 49 9 0,90 0,90 0,66 0,90 0,666 NC	4,200 10,000 NC 10,000 10,000 4 210 40 4 0.666 4 0.666 NC	100 100 NC 100 100 100 500 100 500 500 100 500 100 500
TOTAL TARGETED BNs: * TOTAL NON-TARGETED BNs:		0.702 ND	·		44.23 ND			2.224 ND			29.82 ND				

Notes:

PQL - Practical Quantitative Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(mg/kg) - Milligrams per kilogram

* - Total includes "J" results but excludes "B" results

-- - Not Applicable

SUMMARY OF ARSENIC ANALYTICAL RESULTS FOR 5 POST EXCÁVATION SOIL SAMPLES COLLECTED ON APRIL 28, 1994 WITHIN AOC II AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

page 1 of 1

Area Designation	Sample	BELL Sample Number	Laboratory Sample Number	Date Sampled	Depth of Sample (Feet)	Arsenic (mg/kg)
19 19 19 19	PE-171 PE-172 PE-173 PE-173 (Dup) PE-174	90059-6954 90059-6955 90059-6957 90059-6958 90059-6959	AA22963 AA22964 AA22965 AA22966 AA22967	4/28/94 4/28/94 4/28/94 4/28/94 4/28/94	1.5-2.0 1.5-2.0 1.5-2.0 1.5-2.0 1.5-2.0	28 6.2 6.6 6.3 13
		Non-Residential Di	Contact Soil Cleanup rect Contact Soil Clea Water Soil Cleanup C	anup Criteria		20 20 NC

Notes:

NT - Not Tested ND - Not Detected

(mg/kg) - Milligrams per kilogram

NC - No soil cleanup criteria has been established by the NJDEP

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1995 AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT # EOG01-90059-02

Bell Environmental Consult	ants, Inc.										page 1 of 9
Soil Boring Designation; Sample Designation; BELL Sample Number: Laboratory Sample Number: Depth (Feet BGS); Date Sampled;	PQL	SB-1 SS-1A 90059-6001A AA29899 0'-0.5' 4/5/95 CONC	a Pal	\$8-1 \$\$-1B 90059-6001B AA29900 2.0'-2.5' 4/5/95 CONC 0		SB-2 SS-2A 90059-6002A AA29901 0'-0.5' 4/5/95 CONC	Q PQI	SB-2 SS-2A 90059-6002B AA29902 2.0'-2.5' 4/5/95 CONC, C	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Wal Soil Cleanup Criteria
Dilution Factors:		500		100		300		33.3			
COMPOUNDS (units)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Dibenzofuran Diethylphthalate Fluorene 4-Nitroanikne Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene Bis(2-Ethylhexyl)Phthalate Chrysene Benzo(b)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene TOTAL TARGETED BNs TOTAL NON-TARGETED BNs	2,900 2,900	ND 1,100 2,200	J 570 570 570 J 570 570 570 570 570 570 570 570 570 570	220 J ND 390 J 480 J 350 ND ND ND 6,300 1,100 ND 8,600 ND 3,700 ND 3,700 1,700 ND 3,700 J 1,700 ND 3,700 J 1,700 ND 3,700 J 1,700 J 1,100 J 45,660 9,545	1,700 1,700	1,800 980 ND 1,500 17,000 3,900 ND 18,000 16,000 ND 7,300 ND 6,400 7,100 2,400 5,900 2,400	J 190 190 J 190 J 190 J 190 J 190 190 190 190 190 190 190 190 190 190	ND ND ND ND ND ND ND ND ND ND ND ND ND N	9,000 900 900 660 900	4,200,000 NC NC 10,000,000 NC 10,000,000 10,000,000 10,000,000 10,000,00	100,000 NC NC 100,000 NC 50,000 100,000 100,000 100,000 100,000 NC 500,000 100,000 500,000 100,000 500,000 100,000 NC
COMPOUNDS (units)	MDL	(mg/kg)	MDL	(mg/kg)	MDL	(mg/kg)	MDL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic Copper Lead Zinc Aluminum	1.2 2.9 12 23 NA	14 250 510 3600 NA	0.57 2.8 11 5.7 NA	2.6 15 73 230 NA	0.56 2.8 11 5.6 NA	3.6 31 89 60 NA	0.58 2.9 12 5.8 230	3.2 18 51 45 7.500	20 600 400 1,500 NC	20 600 600 1,500 NC	NC NC NC NC

Notes
ND - Not Detected
NA - Not Analyzed
Q - Qualifier
PCt - Practical Quantitative Limit
J - Compound detected below minimum detection limit
8 - Compound detected in blank as well as sample
NC - No criteria has been established for the compound

B - Compound detected in blank as well as sample
NC - No criteria has been established for this compound
- Not applicable
* - Total includes "J" results but excludes "B" results
(ug/kg) - Micrograms per kilogram
(mg/kg) - Milligrams per kilogram
BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1996
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # EOG01-90069-02

Dell Ferdenmental Course	144- 4-										_
Bell Environmental Consu Soil Boring Designation:	itants, in	SB-3		SB-3		SB-3	Y	SB-3	т	1	page 2 of 9
Soil Boring Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Depth (Feet BGS): Date Sampled:	PQL	SS-3A 90059-8003A AA29903 0'-0.5' 4/5/95	PQL	SS-3B(DUP) 90059-6017A AA29905 0'-0.5 4/5/95	PQL	SS-3A 90059-6003B AA29904 2.0'-2.5' 4/5/95	POL	SB-3 SS-3B(DUP) 90059-6017B AA29906 2.0'-2.5' 4/5/95 CONC _C	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soit Cleanup Criteria	Impact to Ground Wat Soil Cleanup Criteria
Dilution Factors:		100		100		33.3		33.3			_
COMPOUNDS (units)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene	540	ND	540	150 .	190	ND	200	ND	230,000	4 200 000	100,000
2-Methylnaphthalene	540	ND	540	NO	190	ND	200	ND	NC	NC NC	NC.
Acenaphthylene	540	ND	540	220		ND	200	ND	NC NC	NC	NC.
Acenaphthene	540	360 J	540	470	190	ND	200	ND	3.400.000	10.000.000	100,000
Dibenzofuran	540	160 J	540	260	190	ND	200	ND	NC NC	NC NC	NC NC
Diethylphthalate	540	ND	540	ND	190	ND	200	ND	10 000 000	10.000.000	50,000
Fluorene	540	ND	540	ND	190	ND	200	ND	2.300.000	10,000,000	100,000
4-Nitroaniline	540	ND	540	ND	190	ND ND	200	ND	NC NC	NC NC	NC
Phenanthrene	540	4.500	540	5.800	190	ND	200	53 J	NC NC	NC NC	NC
Anthracene	540	930	540	1.400	190	ND	200	ND	10.000.000	10.000.000	100,000
Di-n-Butylphthalate	540	ND	540	ND	190	ND	200	ND	5.700.000	10,000,000	100,000
Fluoranthene	540	6.000	540	8.400	190	ND	200	81 J	2,300,000	10,000,000	100,000
Pyrene	540	5,300	540	7.000	190	49		73 J	1,700,000	10,000,000	100,000
Butylbenzylphthalate	540	ND ND	540	/,000 NO	190	ND '	200	ND	1,700,000 NC		
Benzo(a)Anthracene	540	2.800	540		190	ND ND	200		900	NC I	NC
Bis(2-Ethylhexyl)Phthalate	540	2,800 ND		3,600				ND		4,000	500,000
Chrysene	540	2.700	540 540	ND	190	ND ND	200	ND	49,000	210,000	100,000
Benzo(b)Fluoranthene	540	2,700	540	3,500	190		200	ND	9,000	40,000	500,000
				4,200	190	ND	200	ND	900	4,000	50,000
Benzo(k)Fluoranthene	220	1,100	220	1,200	77	ND	78	ND	900	4,000	500,000
Benzo(a)Pyrene	540	2,300	540	3.200	190	ND	200	ND	660	660	100,000
Indeno(1,2,3-cd)Pyrene	540	1,100	540	1,400	190	ND	200	ND	900	4.000	500,000
Dibenzo(a,h)Anthracene	540	270 J	540	320 J	190	ND	200	ND	660	660	100,000
Benzo(g.h.i)Perylene	540	1,100	540	1,300	190	ND .	200	ND	NC NC	NC	NC
TOTAL TARGETED BNs: * TOTAL NON-TARGETED BNs		31,520 7,064		42.420 8.818		49 3,525		207 2.038			
COMPOUNDS (units)	MDL	(mg/kg)	MDL	(mg/kg)	MDL	(mg/kg)	MDL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	0.54	6.9	0.54	5.4	0.54	6.5	0.59	4.7	20	20	AIC.
Copper	2.7	93	2.7	99	2.9	22	2.9		600		NC
Lead	11	370	11	99 270	12	36		21 45	400	600 600	NC
Zinc	5.4	390	54			21	12				NC
				360	5.8		5.9	13	1,500	1,500	NC
Aluminum	NA.	NA	NA	NA.	93	2 400	94	1900	NC	NC	N

700

Notes:
ND - Not Detected
NA - Not Analyzed
Q - Qualifier
PQL - Practical Quantitative Limit
J - Compound detected below minimum detection limit
B - Compound detected in blank as well as sample
NC - No criteria has been established for this compound
- Not anolicable

- Not treen and seen established for this compo
- Not applicable

- Total includes "J" results but excludes "B" results
(ug/kg) - Micrograms per kilogram
(mg/kg) - Milligrams per kilogram
BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1995 AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT # EOG01-90059-02

Bell Environmental Consultants, Inc.

page 3 of 9

Bell EllAllollillell(a) Colladit	anca, mi												pagesura
Soil Boring Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Depth (Feet BGS): Date Sampled:	PQL	SB-4 SS-4A 90059-6004A AA29907 0'-0.5' 4/10/95 CONC Q		SB-4 SS-4B 90059-6004 AA29908 2.0'-2.5' 4/10/95 CONC	В		SB-5 SS-5A 90059-6005 AA29909 0'-0.5' 4/10/95 CONC	A Q		SB-5 SS-5B 90059-6005B AA29910 2.0'-2.5' 4/10/95 CONC ₂ Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Water Soil Cleanup Criteria
Dilution Factors:		300	<u> </u>	33.3	j		3,000			100			+
COMPOUNDS (units)		(ug/kg)		(ug/kg)			(ug/kg)			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Dibenzofuran Diethylphthalate Fluorene 4-Nitroaniline Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene Benzo(b)Fluoranthene Benzo(b)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(a,h.)Perylene	1,700 1,700	1,000 J 780 J 1,800 3,900 1,900 ND 3,100 ND 35,000 ND 51,000 45,000 ND 24,000 ND 21,000 36,000 10,000 22,000 6,000 1,500 J 5,500 J 5,500	200 200 200 200 200 200 200 200 200 200	ND ND 56 140 68 ND ND 1,400 330 ND 2,200 1,900 ND 1,000 ND 1,000 ND 1,000 ND 1,100 880 1,100 390 980 1,100 480 1110 520	777	16,000 16,000	8,600 ND 6,100 25,000 14,000 ND 19,000 ND 250,000 ND 300,000 ND 130,000 ND 120,000 130,000 43,000 43,000 110,000 59,000 110,000 59,000	, , ,	540 540 540 540 540 540 540 540 540 540	220 J ND 260 J 810 450 J 590 ND 8,100 1,800 ND 11,000 8,800 ND 4,600 ND 4,600 1,800	230,000 NC NC 3,400,000 NC 10,000,000 2,300,000 NC 10,000,000 5,700,000 2,300,000 1,700,000 49,000 900 900 900 900 900 900 900 900 NC	4,200,000 NC NC 10,000,000 NC 10,000,000 NC NC NC 10,000,000 10,000,000 10,000,000 10,000,00	100,000 NC NC 100,000 NC 50,000 100,000 NC NC 100,000 100,000 100,000 100,000 100,000 500,000 500,000 500,000 500,000 100,000 NC NC NC NC NC NC NC NC NC NC NC NC NC
TOTAL TARGETED BNs: * TOTAL NON-TARGETED BNs		278,080 55,569		11,594 2 038			1,589,700 270,651			56,880 11,721			·-
COMPOUNDS (units)	MDL	(mg/kg)	MDL	(mg/kg)		MDL	(mg/kg)		MDL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic Copper Lead Zinc Aluminum	0.57 2.8 11 5.7 NA	5.5 45 310 230 NA	0.69 2.9 12 5.9 NA	6.5 17 27 62 NA		2 7 2.7 22 5.4 NA	51 54 1,200 120 NA		0.54 2.7 11 5.4 NA	6.7 24 98 340 NA	20 600 400 1,500 NC	20 600 600 1,500 NC	NG NG NG NG NG

Notes:

Notes:
ND - Not Detected
NA - Not Analyzed
Q - Qualifier
PQL - Practical Quantitative Limit
J - Compound detected below minimum detection limit
B - Compound detected in blank as well as sample
NC - No criteria has been established for this compound
- Not applicable
* - Total includes "J" results but excludes "B" results
(ug/kg) - Micrograms per kilogram
(mg/kg) - Milligrams per kilogram
BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1996 AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT # EOG01-90059-02

Bell Environmental Consult	ante la													4-40
Bell Environmental Consult Soil Boring Designation:	ailts, In	SB-6	_		SB-6	_		SB-7			SB-7		,	page 4 of 9
Sample Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Depth (Feet BGS): Date Sampled:	PQL	SS-6A 90059-6006A AA29911 0'-0.5' 4/10/95	a	POL	SS-6B 90059-6006B AA29912 2.0'-2.5' 4/10/95	0	PQL	SS-7A 90059-6007/ AA29913 0.3'-0.8' 4/10/95 CONC	O	PQL	SS-7B 90059-6007B AA29914 2.0'-2.5' 4/10/95 CONC. Q	Residential Direct Contact Soil Cleanup Criteria	Non-Residential Direct Contact Soil Cleanup Criteria	Impact to Ground Wate Soil Cleanup Criteria
Dilution Factors:		33.3			33.3	Ι		33.3			33.3	-		
COMPOUNDS (units)		(ug/kg)	┙		(ug/kg)	1		(ug/kg)			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Dibenzofuran Diethylphthalate Fluorene 4-Nitroaniline Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylcenzylphthalate Benzo(a)Anthracene Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1, 2, 3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(a,h),Anthracene Benzo(a,h,l)Perylene	180 180 180 180 180 180 180 180 180 180	2,600 160 2,600 4,300 1,300 2,400 680		190 190 190 190 190 190 190 190 190 190	ND ND 170 150 ND 84 ND 84 100	ار	190 190 190 190 190 190 190 190 190 190	48 91 130 180 60 ND 2,100 35D 90 2,900 4,000 310 1,500 550 1,700 2,700 840 1,500 420 140 420	ר הנונה	190 190 190 190 190 190 190 190 190 190	3 5 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5	230,000 NC NC 3,400,000 NC 10,000,000 2,300,000 NC NC 10,000,000 5,700,000 2,300,000 1,700,000 NC 900 49,000 900 900 900 900 660 900 660 NC	4,200,000 NC NC 10,000,000 NC 10,000,000 NC NC 10,000,000 10,000,000 10,000,000 10,000,00	100,000 NC NC 100,000 NC 50,000 100,000 100,000 100,000 100,000 100,000 500,000 500,000 500,000 100,000 500,000 100,000
TOTAL TARGETED BNs: * TOTAL NON-TARGETED BNs		29,775 6.624			878 387			20,229 9,176			0 2.355			
COMPOUNDS (units)	MDL	(mg/kg)		MDL	(mg/kg)	Ì	MDL	(mg/kg)	1	MDL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic Copper Lead Zinc Aluminum	5.4 2.7 11 5.4 NA	98 30 130 180 NA		0.58 2.9 12 5.8 NA	3.1 12 21 35 NA		0.56 2.8 11 5.6 NA	6.9 64 320 350 NA		0.56 2.8 11 5.6 NA	1.7 16 36 46 NA	20 600 400 1,500 NC	20 600 600 1,500 NC	NC NC NC NC

Notes:

100 . . .

> v. ţ.

Notes:

ND - Not Detected

NA - Not Analyzed

Q - Qualifier

PQL - Practical Quantitative Limit

J - Compound detected below minimum detection limit

B - Compound detected in blank as well as sample

NC - No criteria has been established for this compound

- Not applicable

* - Total includes "J" results but excludes "B" results

(ug/kg) - Micrograms per kilogram

(mg/kg) - Milligrams per kilogram

BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1996
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # EOG01-90059-02

Soil Boring Designation:	1	SB-8	_		SB-8	Т		S B -9	_	7	SB-9	1		
Sample Designation:	- 1	SS-8A			SS-8B			SS-9A		1	SS-98	Residential	Non-Residential	Impact to
BELL Sample Number	- 1	90059-6008A	ιl		90059-6008B	-1		90059-6009	A	l	90059-6009B	Direct	Direct	Ground Wat
Laboratory Sample Number:	- 1	AA29915	`		AA29916	- 1		AA29917	•	ĺ	AA29918	Contact	Contact	Soil
Depth (Feet BGS):		0.3-0.8	- 1		2.0'-2.5'	-1		0.3'-0.8'			2.0'-2.5'	Soil	Soil	Cleanup
Date Sampled:	- 1	4/10/95	ı		4/10/95	- 1		4/10/95		l	4/10/95	Cleanup	Cleanup	Criteria
Date Campion.	PQL	CONC	٥	PQL		ol	PQL	CONC	Q	POL.	CONC		Criteria	Cilibria
Dilution Factors:		33.3			33.3	I		33.3			33.3	_	_	-
COMPOUNDS (units)		(ug/kg)			(ug/kg)			(ug/kg)			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene	190	ND		190	ND	Т	190	ND		200	ND	230,000	4.200.000	100,000
2-Methylnaphthalene	190	ND	ı	190	ND		190	ND		200	ND	NC NC	NC NC	NC
Acenaphthylene	190	ND	- [190	ND		190	ND		200	ND	NC NC	NC	NC
Acenaphthene	190	ND	Ì	190	ND	1	190	ND		200	ND	3,400,000	10,000,000	100,000
Dibenzofuran	190	ND	- 1	190	ND	П	190	ND		200	ND	NC NC	NC NC	NC NC
Diethylphthalate	190	ND	-	190	ND	1	190	ND		200	240	10.000.000	10.000.000	50,000
Fluorene	190	ND	- 1	190	ND	1	190	ND		200	ND	2.300,000	10,000,000	100,000
4-Nitroaniline	190	ND ND		190	ND	Т	190	ND	- 1	200	ND	NC NC	NC NC	NC
Phenanthrene	190	180	٦l	190	280	1	190	340		200	100 J		NC NC	NC
Anthracene	190	ND	٦	190		ı	190	59	ı١	200	ND 3	10,000,000	10.000.000	100,000
Di-n-Butylohthalate	190	NO	- 1	190	ND	1	190	ND	٦,	200	ND	5.700.000	10.000,000	100,000
Fluoranthene	190	420	- 1	190	660	1	190	610	ı	200	200 J		10,000,000	100,000
Pyrene	190	350	- 1	190	550		190	520	- 1	200	160 J	1.700.000	10.000,000	100,000
Butylbenzylphthalate	190	68		190	ND		190	77	J	200	ND J	NC	NC	100,000 NC
Benzo(a)Anthracene	190	190	٦,	190	310		190	280	٦,	200	91 J	900	4.000	500,000
Bis(2-Ethylhexyl)Phthalate	190	61	ı,	190	ND		190	160	ı.l	200	100 J	49.000		
Chrysene	190	240	٦,	190	370	1	190	340	7	200	110 J		210,000	100,000
Benzo(b)Fluoranthene	190	330		190	490		190	460					40,000	500,000
Benzo(k)Fluoranthene	74	120		76	200		75		1	200	160 J		4,000	50,000
Benzo(a)Pyrene	190					1		170		80	54 J	900	4,000	500,000
Indeno(1,2,3-cd)Pyrene	190	210 91		190	330		190	290	.1	200	89 J	660	660	100,000
Dibenzo(a,h)Anthracene	1 1		기	190	130 J	η.	190	110	J	200	ND	900	4,000	500,000
Benzo(g,h,i)Perviene	190 190	ND	.1	190	ND	Ι.	190	ND	.1	200	ND	660	660	100,000
Benzo(g.n.i)Perylene	190	89	4	190	120J	4	190	100	긔	200	ND	NC	NC NC	NC
TOTAL TARGETED BNs.		2,349	ı		3.492	ı	- 1	3,516	١	- 1	1,304			
TOTAL NON-TARGETED BNs		518	+		2.645	Ļ		2.169	4		3.410			
COMPOUNDS (units)	MDL	(rng/kg)	_	MDL	(mg/kg)	1	MDL	(mg/kg)		MDL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenić	0.56	3.6	-	0.57	3.4	L	0.56	42	- [0.6	2. 2	20	20	NC NC
Copper	2.8	45	Į	2.8	35		2.8	48	- 1	3	22	600	600	NC
ead	11	160	1	11	180	1	11	210	- 1	12	79	400	600	NC
Zinc	5.6	210		5.7	280		56	450		8	130	1.500	1,500	NC NC
Numinum	NA NA	NA NA	- 1	NA I	NA NA	1	NA	NA NA	- 1	NA I	NA I	1,500 NC	NC	NC NC

Notes: ND - Not Detected NA - Not Analyzed Q - Qualifier

PQL - Practical Quantitative Limit

J - Compound detected below minimum detection limit

B - Compound detected in blank as well as sample NC - No criteria has been established for this compound

- Not applicable
- Not applicable
- Total includes "J" results but excludes "B" results (ug/kg) - Micrograms per kilogram
(mg/kg) - Milligrams per kilogram
BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1995

AMMCO - KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT # EOG01-90059-02

77

Ball Environmental Consult														
Bell Environmental Consult Soil Boring Designation:	ants, ii	SB-10	_	SB-10			SB-11	_		S8-11		r		page 6 of 9
Sample Designation:		SS-10A		SS-10E			SS-11A		i	SS-11B		Residential	Non-Residential	Impact to
BELL Sample Number		90059-6010A	-	90059-601			90059-60114		į	90059-6011	_	Direct	Direct	Ground Wate
		AA29919	i	AA2992			AA29921	`		AA29922	В	Contact		Soil
Laboratory Sample Number:	1	0.02	1	2.01-2.5			0'-0.5'	i	İ	2.0-2.5		Soil	Contact Soil	Cleanup
Depth (Feet BGS):	i	4/10/95		2.0°-2.5 4/10/95			4/10/95			4/10/95		Cleanup		Criteria
Date Sampled:	POL		al e	4/10/90 OL CONC		PQL	CONC	۵	PQL	CONC	۵		Cleanup Criteria	Chtena
Dilution Factors:	 	33.3	*	33.3			33.3			33.3	_	-	l omen	
Dilution Factors.	+	33.3	+-			 		-	l	33.5		-		·
COMPOUNDS (units)	<u> </u>	(ug/kg)	\bot	(ug/kg)		ļ	(ug/kg)	_		(ug/kg)		(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene	210	80		ND ND		200	ND		190	78	J	230,000	4,200,000	100,000
2-Methylnaphthalene	210	ND		ND ND		200	ND		190	ND		NC	NC	NC
Acenaphthylene	210	180	J 1	0 41	J	200	43	J	190	56	J	NC	NC	NC
Acenaphthene	210	150	J 1	ND ND		200	66	J	190	150	J,	3,400,000	10,000,000	100,000
Dibenzofuran	210	86	J 1:	ND ND		200	ND		190	80	J	NC	NC NC	NC
Diethylphthalate	210	97	J 1:	0 79	J	200	200		190	180	J	10,000,000	10,000,000	50,000
Fluorene	210	160	J 18	O ND		200	ND		190	ND		2,300,000	10,000,000	100,000
4-Nitroaniline	210	ND	11	O ND		200	ND		190	ND	- 1	NC	NC	NC
Phenanthrene	210	1.900	11	0 350		200	770	- 1	190	1,200	- 1	NC	NC	NC
Anthracene	210	340	11	0 66	J	200	160	J	190	260		10.000.000	10.000.000	100,000
Di-n-Butylphthalate	210	190	J 19	0 58	Ĵ	200	60	از	190	56	J	5 700 000	10,000,000	100,000
Fluoranthene	210	3.500	111		_	200	1.700	-	190	1.700	Ĩ	2,300,000	10,000,000	100,000
Pyrene	210	4.900	119			200	1.900		190	1 700		1.700.000	10.000.000	100,000
Butylbenzylphthalate	210	1 100	15		J	200	420		190	300		NC	NC	NC
Benzo(a)Anthracene	210	1,800	15		•	200	1,000		190	800		900	4.000	500,000
Bis(2-Ethylhexyl)Phthalate	210	1,200	1 11		.1	200	470		190	320		49,000	210,000	100,000
Chrysene	210	2.200	111		*	200	1.000	-	190	820		9,000	40.000	500,000
Benzo(b)Fluoranthene	210	3,600	1 19			200	1.500		190	1,200	- 1	900	4.000	50,000
Benzo(k)Fluoranthene	85	1,200	7			80	590		76	500	ı	900	4.000	500,000
Benzo(a)Pyrene	210	1,900	115			200	950		190	760	- 1	660	660	100,000
Indeno(1,2,3-cd)Pyrene	210	730	1 19		J	200	290	Į	190	250	I	900	4 000	500,000
Dibenzo(a,h)Anthracene	210	170	J 18		J	200	91	ı,İ	190	75 75	إز	900 660	4,000 660	100,000
Benzo(g,h,i)Perylene	210	720	7 13		J	200	280	٦	190	240	۷	NC	NC NC	100,000 NC
Benzoty, n. ij-erylene	10		+"	180		_200		+	190		-+	INC	INC	- NU
TOTAL TARGETED BNs. *		26,203		4,889			11,490		1	10,725				+-
TOTAL NON-TARGETED BNs	4	7,557	↓_	3.100			10,272	4		4,162	_			
COMPOUNDS (units)	MDL	(mg/kg)	м	DL (mg/kg)		MDL	(mg/kg)		MDL	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	0.64	7.8	0.5	7 2.4		0.6	10	-	0.57	7.6		20	20	NC
Copper	3.2	120	2.		i	3	81	- 1	2.8	84	- [600	600	NC
Lead	13	930	1			12	320	- 1	11	300	- 1	400	600	NC
Zinc	6.4	500	5.			6	200	ŀ	5.7	190	- 1	1.500	1.500	NC
Aluminum	NA :	NA	N			NA.	NA.	- 1	NA	NA.		NC NC	NC	NC.

Notes:

ND - Not Detected NA - Not Analyzed

PQL - Practical Quantitative Limit
J - Compound detected below minimum detection limit
B - Compound detected in blank as well as sample

NC - No criteria has been established for this compound

- Not applicable
 - Total includes "J" results but excludes "B" results (ug/kg) - Micrograms per kilogram

(mg/kg) - Milligrams per kilogram BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1995
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # EOG01-90059-02

1

Bell Environmental Consu	itants, in		<u> </u>					-				page 7 of 9
Soil Boring Designation: Sample Designation: BELL Sample Number: Laboratory Sample Number: Depth (Feet BGS):		SB-12 SS-12A 90059-6012A AA29889 0'-0.5'		SB-12 SS-12B 90059-6012B AA29890 2.0'-2.5'		SB-13 SS-13A 90059-6013A AA29891 0'-0.5'			S8-13 SS-13B 90059-6013B AA29892 2.0'-2.5'	Residential Direct Contact Soil	Non-Residential Direct Contact Soil	Impact to Ground Wa Soil Cleanup
Date Sampled:	PQL	4/5/95 CONC C	PQL	4/5/95 CONC C	PQL	4/5/95 CONC	Q	PQL	4/5/9 6 - CONC C	Cleanup Criteria	Cleanup Criteria	Criteria
Dilution Factors:		33.3		33.3		100			1,000		_	
COMPOUNDS (units)		(ug/kg)	ļ	(ug/kg)		(ug/k g)			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene	190	ND	210	ND	620	ND		5,400	ND	230,000	4,200,000	100,000
2-Methylnaphthalene	190	ND ND	210	ND ND	620	מא ו	- 1	5,400	ND	NC	NC I	NC
Acenaphthylene	190	ND	210	NO	620	220	J	5,400	2,500 J	NC	NC	NC
Acenaphthene	190	ND	210	ND	620	380	Įί	5,400	ND	3,400,000	10,000,000	100,000
Dibenzofuran	190	ND	210	ND	620	230	j	5,400	ND	NC	NC	NC
Diethylphthalate	190	ND	210	ND	620	ND	- 1	5,400	ND	10.000,000	10,000,000	50,000
Fluorene	190	ND ND	210	ND	620	ND	- 1	5,400	ND	2,300,000	10,000,000	100,000
4-Nitroaniine	190	ND	210	ND	620	ND	- 1	5,400	ND	NC	NC	NC
Phenanthrene	190	ND	210	ND	620	5,100	- i	5,400	36,000	NC	NC NC	NC
Anthracene	190	ND	210	ND	620	970		5,400	6.100	10.000.000	10 000 000	100.000
Di-n-Butylohthalate	190	ND ND	210	ND ND	620	ND		5,400	ND	5.700.000	10,000,000	100,000
Fluoranthene	190	55 J	210	ND	620	7,500	J	5,400	55.000	2.300.000	10,000,000	100,000
Pyrene	190	ND S	210	ND	620	6,400	- 1	5,400	45.000	1.700.000	10.000,000	100,000
Butylbenzylphthalate	190	ND	210	ND	620	270	ار	5,400	ND ND	NC	NC	NC
Benzo(a)Anthracene	190	ND	210	ND	620	3,700	٦,	5,400	24.000	900	4.000	500,000
Bis(2-Ethylhexyl)Phthalate	190	ND	210	ND ND	620	330	٠.١	5,400	ND	49,000	210,000	100,000
Chrysene	190	ND ND	210	ND	620	3.500	٦,	5,400	20,000	9,000		
Benzo(b)Fluoranthene	190	38 J	210	I ND	620		- 1	5,400			40,000	500,000
Benzo(k)Fluoranthene	75	ND J	85			4,300	ĺ		24,000 8,400	900	4,000	50,000
	190	ND ND		ND	250	1,300		2,200		900	4,000	500,000
Benzo(a)Pyrene			210	ND	620	3,400	- 1	5,400	19,000	660	660	100,000
Indeno(1,2,3-cd)Pyrene	190	ND	210	ND	620	1,800	.1	5,400	10,000	900	4.000	500,000
Dibenzo(a,h)Anthracene	190	ND	210	ND	620	420	ᆀ	5,400	2,300 J	660	660	100,000
Benzo(g,h,i)Perylene	190	ND	210	ND	620	1,900	4	5,400	11,000	NC	NC	NC
TOTAL TARGETED BNs		93		0		41,720	- [263,300	-]	-	-
TOTAL NON-TARGETED BNs	 -	3 218	ļ	640		7,902	4		26,088		— -	-
COMPOUNDS (units)	MDL	(mg/kg)	MDL	(mg/kg)	MDL	(mg/kg)	\perp	MDL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	0.56	1.4	0.64	1.8	0.62	8.5	-	0.54	8.1	20	20	NC
Copper	2.8	18	3.2	13	3.1	250	1	2.7	63	600	600	NC
Lead	- 11	34	13	ND	12	610	- 1	11	130	400	600	NC
Zinc	5.6	32	6.4	25	6.2	550		5.4	240	1,500	1,500	NC
Aluminum	NA	NA	NA	NA.	NA	NA	- 1	NA	NA I	NC	NC	NC

Notes:
ND - Not Detected
NA - Not Analyzed
Q - Qualifier
PQL - Practical Quantitative Limit
J - Compound detected below minimum detection limit
B - Compound detected in blank as well as sample
NC - No criteria has been established for this compound
- - Not applicable
- - Total includes "J" results but excludes "B" results
(ug/kg) - Micrograms per kilogram
(mg/kg) - Milligrams per kilogram
BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1995
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # EOG01-90059-02

Soil Boring Designation:	7	SB-14	_	SS-14	`T	SS-15		T .	SB-15			
Sample Designation:	1	SS-14A	i	SS-14B		SS-15A		l	SS-15B	Residential	Non-Residential	Impact to
BELL Sample Number:	1	90059-6014A		90059-6014B		90069-6015	iA	1	90059-6015B	Direct	Direct	Ground Wat
Laboratory Sample Number:	i	AA29893		AA29894		AA29895		i	AA29896	Contact	Contact	Soil
Depth (Feet BGS):	1	0'-0.5'	1	2.0'-2.5'		0'-0.5'			2.0-2.5	Soil	Soil	Cleanup
Date Sampled:		4/5/95		4/5/95		4/5/95		l	4/5/95	Cleanup	Cleanup	Criteria
	PQL	CONC (PQL		G PQL	CONC	Q	PQL	CONC (Criteria	Citteria
Dilution Factors:		300		33.3		100			33.3		_	_
COMPOUNDS (units)		(ug/kg)		(ug/kg)	.l	(ug/kg)			(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthaiene	1,700	850 .	210	ND	540	170	J	190	86 .	230,000	4.200.000	100,000
2-Methylnaphthalene	1,700	ND	210	ND	540	ND ND		190	ND	NC	NC	NC
Acenaphthylene	1,700	570	210	ND	540	200	j	190	ND	NC	NC NC	NČ
Acenaphthene	1,700	2,000	210	88	j 540	340	Ĵ	190	210	3,400,000	10.000.000	100,000
Dibenzofuran	1,700	1,000	210	ND ND	540	180	از	190	120		NC	NC
Diethylphthalate	1,700	l ND	210	ND	540	ND	- 1	190	ND	10.000.000	10.000.000	50,000
Fluorene	1,700	1,700 .	210	ND	540	ND	ı	190	ND	2.300.000	10.000.000	100,000
4-Nitroaniiline	1,700	ND	210	ND	540	ND		190	ND	NC	NC	NC
Phenanthrene	1,700	18,000	210	750	540	3 400	ı	190	1.800	NC.	NC NC	NC.
Anthracene	1,700	3,900	210	150	540	710		190	380	10.000.000	10 000 000	100 000
Di-n-Butylphthalate	1,700	ND	210	ND	540	ND	- 1	190	ND	5 700 000	10 000 000	100.000
Fluoranthene	1,700	23,000	210	1,000	540	5,600	- 1	190	1,900	2.300.000	10.000.000	100.000
Pyrene	1,700	19,000	210	810	540	4.400	I	190	1.600	1 700 000	10.000.000	100.000
Butylbenzylphthalate	1,700	ND	210	ND	540	280	J	190	ND	NC I	NC	NC
Benzo(a)Anthracene	1,700	10,000	210	400	540	2,500	- 1	190	720	900	4.000	500,000
Bis(2-Ethylhexyl)Phthalate	1,700	650 J	210	85 .	540	660		190	49 J	49,000	210,000	100,000
Chrysene	1,700	9,500	210	420	540	2.500		190	700	9 000	40,000	500,000
Benzo(b)Fluoranthene	1,700	11,000	210	450	540	3,400		190	940	900	4,000	50.000
Benzo(k)Fluoranthene	680	4,100	84	200	220	1,300		76	340	900	4,000	500.000
Benzo(a)Pyrene	1,700	9,100	210	390	540	2.500		190	660	660	660	100,000
Indeno(1,2,3-cd)Pyrene	1,700	4,800	210	220	540	950		190	190 J	900	4,000	500.000
Dibenzo(a,h)Anthracene	1,700	1,200 J	210	62 .	0.40	220	J.	190	ND	660	660	100,000
Benzo(g,h,i)Perylene	1,700	4,900	210	230	540	890		190	180 J	NC NC	NC NC	NC
TOTAL TARGETED BNs: * TOTAL NON-TARGETED BNs:		125,270 24,885	ŀ	5,255 3,246		30,300 6,881	ļ		9,875 3,519	-	-	_
COMPOUNDS (units)	MDL	(mg/kg)	MDL	(mg/kg)	MDL	(mg/kg)	T	MDL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	1,1	9.4	0.63	2.1	0.54	3.9	┪	0.57	5.6	20	20	
Copper	2.8	110	3.2	12	2.7	69	- 1	2.8	3.6 26	600	600	NC
ead	111	290	13	34	111	160	ŀ	11	20 120	400		NC
Zinc	5.7	510	6.3	52	5.4	270	-	5.7	120 68		600	NC
Aluminum	NA NA	NA	NA	NA	NA NA	NA NA	- 1	D./	NA.	1,500 NC	1,500 NC	NC NC

Notes
ND - Not Detected
NA - Not Analyzed
Q Qualifier
P-QL - Practical Quantitative Limit
J - Compound detected below minimum detection limit
B - Compound detected in blank as well as sample
NC - No criteria has been established for this compound
- Not applicable
- Total includes "J" results but excludes "B" results
(ug/kg) - Micrograms per kilogram
(mg/kg) - Milligram per kilogram
BGS - Below ground surface

SUMMARY OF BASE NEUTRAL AND METAL ANALYTICAL RESULTS OF 36 SOIL BORING SAMPLES COLLECTED ON APRIL 5 & 10, 1995

AMMCO - KEARNY

KEARNY, HUDSON COUNTY, NEW JERSEY

BELL PROJECT # EOG01-90059-02

Soil Boring Designation:		S8-16		SB-16	7	SB-17	ł	SB-17	1	1	
Sample Designation: BELL Sample Number: Laboratory Sample Number: Depth (Feet BGS):		SS-16A 90059-6016A AA29897 0'-0.5'		SS-168 90059-60168 AA29898 2.0'-2.5'		Background A 90059-5018A AA29923 0'-0.5'		Background B 90059-5018B AA29924 2.0'-2.5'	Residential Direct Contact Soil	Non-Residential Direct Contact Soil	Impact to Ground Wat Soil Cleanup
Date Sampled:	PQL	4/5/95 CONC C	POL	4/5/95 CONC C	POL	4/10/95 CONC C	POL	4/10/95 /F CONC	Cleanup Criteria	Cleanup Criteria	Criteria
Dilution Factors:		100		33.3		33.3		33.3	_	_	••
COMPOUNDS (units)		(ug/kg)		(ug/kg)	ļ	(ug/kg)	<u> </u>	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Naphthalene	580	ND	190	ND	180	47 J	190	ND	230,000	4,200,000	100,000
2-Methylnaphthalene	580	ND	190	ND	180	ND	190	ND ND	NC NC	l NC	NC
Acenaphthylene	580	ND	190	61 J	180	NO	190	ND	NC NC	NC NC	NC
Acenaphthene	580	ND	190	ND	180	230	190	97 .	3,400,000	10,000,000	100,000
Dibenzofuran	580	ND	190	ND	180	100 J	190	ND	NC	NC	NC
Diethylphthalate	580	ND	190	ND	180	ND	190	ND ND	10,000,000	10,000,000	50,000
Fluorene	580	NO	190	ND	180	200	190	ND	2,300,000	10,000,000	100,000
4-Nitroaniline	580	ND	190	420	180	ND	190	ND	NC	NC	NC
Phenanthrene	580	1,500	190	710	180	1.800	190	840	NC	NC NC	NC
Anthracene	580	320 J	190	180 J	180	440	190	180 .	10.000.000	10,000,000	100,000
Di-n-Butylphthalate	580	3,100	190	330	180	45 J	190	ND.	5 700 000	10.000.000	100,000
Fluoranthene	580	2.300	190	1,500	180	2,700	190	1.300	2,300,000	10.000.000	100,000
Pyrene	580	1,700	190	1.300	180	3,100	190	1,400	1,700,000	10,000,000	100,000
Butylbenzylphthalate	580	330 J	190	69 J	180	1.400	190	480	NC	NC.	NC
Benzo(a)Anthracene	580	1,000	190	790	180	1,400	190	630	900	4,000	500,000
Bis(2-Ethylnexyl)Phthalate	580	600	190	280	180	1.700	190	720	49.000	210.000	100,000
Chrysene	580	1.100	190	850	180	1,400	190	630	9.000	40.000	500,000
Benzo(b)Fluoranthene	580	1,500	190	1.400	180	2.100	190	960	900	4,000	50,000
Benzo(k)Fluoranthene	230	670	76	440	72	740	77	300	900	4,000	500,000
Benzo(a)Pyrene	580	1.100	190	840	180	1 300	190	580	660	660	100.000
Indeno(1,2,3-cd)Pyrene	580	360 J	190	270	180	420	190	170 .		4.000	500,000
Dibenzo(a,h)Anthracene	580	ND 7	190	90 1	180	110 J	190	ND .	660	660	100,000
Benzo(g,h,i)Perylene	580	310 J	190	260	180	380	190	160	NC NC	NC	NC
Denzo(g,n,yr eryrene	1000	310 3	190	200	100	300	150	100	, NC	INC.	NC.
TOTAL TARGETED BNs: *	1 1	15,890		9.790	1	19.612	li	8,447	_	l - I	-
TOTAL NON-TARGETED BNs:		2.326	<u> </u>	7,833	<u> </u>	4.546		5.052	<u> </u>		
COMPOUNDS (units)	MDL	(mg/kg)	MDL	(mg/kg)	MOL	(mg/kg)	MOL	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Arsenic	0.58	4.5	0.57	5.5	0.54	4.2	0.57	3.2	20	20	NC
Copper	2.9	43	2.8	300	2.7	41	2.9	26	600	600	NČ
Lead	12	210	11	860	11	220	11	90	400	600	NC
Zinc	5.8	570	23	2.700	5.4	180	5.7	96	1,500	1.500	NC
Ajuminum	NA	NA.	NA NA	NA NA	NA NA	NA NA	460	13.000	NC NC	NC NC	NC NC

- ;

Notes:
ND - Not Detected
NA - Not Analyzed
Q - Qualifier
POL - Practical Quantitative Limit
J - Compound detected below minimum detection limit
B - Compound detected in blank as well as sample
NC - No criteria has been established for this compound
- Not applicable
- Total includes "J" results but excludes "B" results
tud/kc) - Micrograms per kilogram

(ug/kg) - Micrograms per kilogram (mg/kg) - Milligrams per kilogram BGS - Below ground surface

SUMMARY OF ALUMINUM ANALYTICAL RESULTS FOR 6 GROUND WATER SAMPLES COLLECTED ON JUNE 7, 1993
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # EOG01-90059-02

Bell Environmental Consultants, Inc.

page 1 of

			1							····	_						page ror i
Sample Designation BELL Sample Number. Laboratory Sample Number Date Sampled	MDL	MW-3 90059-2103 AA16568 6/7/93 CONC C	MDL	MW-4 90059-2104 AA16569 6/7/93 CONC	a MDL	MW-5 90059-2105 AA16570 6/7/93 CONC Q	MDL	MW-6 90059-2106 AA16571 6/7/93 CONC C	MDI	MW-6(Dup) 90059-2107 AA16572 6/7/93 . CONC C	MDL	MW-10 90059-2112 AA16573 6/7/93 CONC C	MDL	BEC-11S 90059-2113 AA16574 6/7/93 CONC	a MDL	Field Blank 90059-1011 AA16577 6/7/93 CONC G	Ciass II-A Ground Water Quality Standards
METAL COMPOUND (units)		(mg/l)		(mg/l)		(mg/l)		(mg/i)		(mg/l)		(mg/i)		(mg/l)		(mg/l)	(mg/l)
Aluminum	0.20	2 4	0.20	1	0.20	47	0.20	5.6	0.20	6.4	0.20	2.2	0.20	4.9	0.20	ND	0.2

Notes:

ND - Not Detected

Q- Qualifier

MDL - Method Detection Limit

(mg/l) - Milligrams per liter

,一种性种,一种的特别,更加特别的一个人,这种特别的主义,可以是一个人的一个人,并不是一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一

TABLE 4-7

SUMMARY OF VOLATILE ORGANIC ANALYTICAL RESULTS FOR 2 GROUND WATER SAMPLES COLLECTED ON JUNE 7, 1993
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # EOG01-90059-02

Bell	Environmenta	al Consultar	ıts, Inc.

page i or	of	1	page
-----------	----	---	------

Sample Designation: BELL Sample Number: Laboratory Sample Number: Date Sampled:	MDL	MW-6 90059-2106 AA16571 6/7/93 CONC	α	MDL	MW-6(Dup) 90059-2107 AA16572 6/7/93 CONC		MDL	MW-10 90059-2112 AA16573 6/7/93 CONC	Q	MDL	Trip Blank 90059-1010 AA16576 6/7/93 CONC	Q	MDL	Field Blank 90059-1011 AA16577 6/7/93 CONC	Q	Class II-A Ground Water Quality Standards
Dilution Factor:		25			25			100			1			1	•	-
COMPOUNDS (units)	ļ	(ug/l)		·····-	(ug/l)			(ug/l)			(ug/l)			(ug/l)		(ug/l)
Methylene Chloride Chloroform Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	250 130 130 130 130 130 130	61 ND 1,600 220 160 220 75	JB	250 130 130 130 130 130 130	56 ND 1,600 210 140 210 66	JB	1,000 500 500 500 500 500 500	210 ND 990 3,200 2,800 4,300 2,300	JB	10 5 5 5 5 5 5	1 1 ND ND ND ND ND	JB J	10 5 5 5 5 5 5 5	5 ND ND ND ND ND ND	JB	2 6 0.2 1000 700 40 (with above)
TOTAL TARGETED VOs: * TOTAL NON-TARGETED VOs:		2,275 1,850			2,226 1,675			13,590 8,200			1 0			5 0		

Notes:

ND - Not Detected

MDL - Method Detection Limit

- J Compound detected below minimum detection limit
- B Compound detected in blank as well as sample
- NC No criteria has been established for this compound
- -- Not applicable
- * Total includes "J" results but excludes "B" results

(ug/l) - Micrograms per liter

Some and the second of the sec

TABLE 4-8

SUMMARY OF VOLATILE ORGANIC ANALYTICAL RESULTS FOR 3 GROUND WATER SAMPLES COLLECTED ON MAY 10, 1994 **AMMCO - KEARNY** KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

page 1 o	of '	14	16	pa	
----------	------	----	----	----	--

Sample Designation: BELL Sample Number: Laboratory Sample Number: Date Sampled:	PQL	MW-10 90059-2201 AA23389 5/10/94 CONC	a	PQL	BEC-12S 90059-2202 AA23390 5/10/94 CONC	a	PQL	BEC-12S (Dup 90059-2203 AA23391 5/10/94 CONC) Q	PQL	MW-6 90059-2204 AA23393 5/10/94 CONC	Q	PQL	Field Blank 90059-1201 AA23392 5/10/94 CONC	Q	PQL	Trip Blank 90059-1202 AA23394 5/10/94 CONC	Class II-A Ground Wate Quality Standards
Dilution Factor:		100	_		10			5			50			1			1	
COMPOUNDS (units)		(ug/l)			(ug/l)			(ug/l)			(ug/l)			(ug/l)			(ug/l)	(ug/l)
Vinyl Chloride Methylene Chloride Acetone 1,1-Dichloroethane Chloroform Trichloroethene Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene 1,4-Dichlorobenzene	500 200 2,000 500 500 100 100 500 500 500 500	ND 140 ND ND ND 310 2,300 3,100 8,900 2,500 ND	JB	50 20 200 50 50 10 10 50 50 50 50	460 23 ND 36 ND 24 ND 290 15 21 23	B 1	25 10 100 25 25 5 5 25 25 25 25 25 25 25	490 36 30 31 ND 23 ND 240 13 16 18 ND	BJ	250 100 1,000 250 250 50 250 250 250 250 250 250	ND 94 ND ND ND ND 1,400 78 130 170 ND	JB	5 2 20 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND 22 47 ND ND ND ND ND ND ND ND ND ND ND ND ND	В	5 20 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND 8 E 37 ND 2 ND ND ND ND ND ND	0.08
TOTAL TARGETED VOs: * TOTAL NON-TARGETED VOs:		17,250 9,800			902 1,470			897 1,475			1,924 1,600			69 12			47 10	

Notes:

PQL - Practical Quantitative Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(ugl/l) - Micrograms per liter

* - Total includes "J" results but excludes "B" results

-- - Not Applicable

TABLE 4-9

SUMMARY OF BASE NEUTRAL ANALYTICAL RESULTS FOR 1 GROUND WATER SAMPLE COLLECTED ON MAY 10, 1994
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT #EOG01-90059-02

Dell Env	ironmentai	Consulta	ints, inc.
			ì

page 1 of 1

	1									page 1 or 1
Sample Designation: BELL Sample Number: Laboratory Sample Number: Date Sampled:	PQL	BEC-12S 90059-2202 AA23390 05/10/94 CONC	Q	PQL	BEC-12S (Dup) 90059-2203 AA23391 05/10/94 CONC	Q	PQL	Field Blank 90059-1201 AA23392 05/10/94 CONC	Q	Class II-A Ground Water Quality Standard
Dilution Factor:		1.11			1.11			1.18		
COMPOUNDS (units)		(ug/l)			(ug/l)			(ug/l)		(ug/l)
Bis(2-Ethylhexyl)Phthalate	6	11	JB	6	ND		6	ND		3
TOTAL TARGETED BNs:* TOTAL NON-TARGETED BNs:		0 4 9			0 138			0		

Notes:

PQL - Practical Quantitative Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

J - Indicates compound detected below the minimum detection limit at an estimated concentration

B - Indicates compound detected in the blank as well as the sample

NC - No soil cleanup criteria has been established by the NJDEP

(ug/l) - Micrograms per liter

* - Total includes "J" results but excludes "B" results

-- - Not applicable

SUMMARY OF VOLATILE ORGANIC ANALYTICAL RESULTS FOR 1 GROUND WATER SAMPLE COLLECTED ON NOVEMBER 7, 1994
AMMCO - KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT #EOG01-90059-02

Bell Environmental Consultants, Inc.

page	1	of	4
------	---	----	---

				· · · · · · · · · · · · · · · · · · ·					 			page 1 of 1
Sample Designation: BELL Sample Number: Laboratory Sample Number: Date Sampled:	MDL	BEC-12S 90059-2012 AA27211 11/7/94 MDL CONC Q M		MDL	BEC-12S (Dup) 90059-2013 AA27212 11/7/94 MDL CONC Q			Field Blank 90059-1002 AA27214 11/7/94 CONC	Trip Blank 90059-1001 AA27213 11/7/94 MDL CONC Q			Class II-A Ground Wate Quality Standards
Dilution Factor:		5			5	<u> </u>		1		1		-
COMPOUNDS (units)		(ug/l)			(ug/l)		(ug/l)		(ug/l)	(ug/l)		
Vinyl Chloride Methylene Chloride 1,1-Dichloroethane Chloroform Trichloroethene	24 4.7 1.5 2.8 1.6	400 32 13 ND 7.8		24 4.7 1.5 2.8 1.6	300 32 12 ND 4,9		4.8 0.94 0.31 0.55 0.33	ND ND ND 1.2 ND	4.8 0.94 0.31 0.55 0.33	ND ND ND 1.7 ND		0.08 2 70 6 1
TOTAL TARGETED VOs: * TOTAL NON-TARGETED VOs:		452.8 15			348.9 15			1.2 8		1.7 16	·•	

Notes:

MDL - Method Detection Limit

CONC - Concentration

Q - Qualifier

ND - Not Detected

NC- No soil cleanup criteria has been established by the NJDEP

* - Total includes "J" results but excludes "B" results

-- - Not Applicable

(ug/l) - Micrograms per liter

RESULTS OF LNAPL MEASUREMENT MARCH 1994 TO JANUARY 1995 AMMCO-KEARNY KEARNY, HUDSON COUNTY, NEW JERSEY BELL PROJECT # E0G01-90059-02

Bell Environmental Consultants, Inc. Page 1 of 2 Well **Product** Date Designation Thickness (Feet) March 22, 1994 MW-1 0.03 MW-9 **^** 0.01 April 26, 1994 MW-1 0.04 MW-9 ND BEC-12S ND May 10, 1994 MW-8 0.5 MW-9 0.1 May 24, 1994 MW-1 sheen only 8-WM 0.29 MW-9 sheen only June 7, 1994 MW-1 sheen only MW-9 sheen only **BEC-12S** ND June 21, 1994 MW-1 0.01 MW-9 0.02 July 5, 1994 MW-1 0.01 **MW-9** 0.01 July 18, 1994 MW-1 0.03 8-WM 0.02 MW-9 0.08 August 29, 1994 MW-1 0.03 MW-9 0.03 September 26, 1994 MW-1 0.01 MW-9 0.05

Notes:

ND - Not Detected

RESULTS OF LNAPL MEASUREMENT MARCH 1994 TO JANUARY 1995
AMMCO-KEARNY
KEARNY, HUDSON COUNTY, NEW JERSEY
BELL PROJECT # E0G01-90059-02

Bell Environmental Consultants, Inc.		Page 2 of 2
Date	Well	Product
	Designation	Thickness (Feet)
October 21, 1994	MW-1	ND
	MW-9	≠ 0.05
November 7, 1994	MW-1	sheen only
December 12, 1994	MW-1	0.02
	MW-7	0.25
	MW-8	0.12
January 16, 1995	MW-1	0.01
	MW-9	0.03
July 3, 1995	MW-1	sheen only
	MW-8	0.10
	MW-9	0.05
	BEC-12S	ND

Notes:

ND - Not Detected

GENERAL NOTICE LETTER
URGENT LEGAL MATTER
PROMPT REPLY NECESSARY
CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Mr. Ivan Rosalsky, Chief Executive Officer American Modern Metals Company 44 Passaic Street Kearny, NJ 07032

RE:

Diamond Alkali Superfund Site Notice of Potential Liability for Response Actions in the Lower Passaic River Study Area, New Jersey

Dear Mr. Rosalsky:

The United States Environmental Protection Agency ("EPA") is charged with responding to the release and/or threatened release of hazardous substances, pollutants, and contaminants into the environment and with enforcement responsibilities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended ("CERCLA"), 42 U.S.C. §9601 et seq. Accordingly, EPA is seeking your cooperation in an innovative approach to environmental remediation and restoration activities for the Lower Passaic River.

EPA has documented the release or threatened release of hazardous substances, pollutants and contaminants into the six-mile stretch of the river, known as the Passaic River Study Area, which is part of the Diamond Alkali Superfund Site ("Site") located in Newark, New Jersey. Based on the results of previous CERCLA remedial investigation activities and other environmental studies, including a reconnaissance study of the Passaic River conducted by the United States Army Corps of Engineers ("USACE"), EPA has further determined that contaminated sediments and other potential sources of hazardous substances exist along the entire 17-mile tidal reach of the Lower Passaic River. Thus, EPA has decided to expand the area of study to include the entire Lower Passaic River and its tributaries from Dundee Dam to Newark Bay ("Lower Passaic River Study Area").

By this letter, EPA is notifying American Modern Metals Company ("American Modern Metals") of its potential liability relating to the Site pursuant to Section 107(a) of CERCLA, 42 U.S.C. §9607(a). Under CERCLA, potentially responsible parties ("PRPs") include current and past owners of a facility, as well as persons who arranged for the disposal or treatment of hazardous substances at the Site, or the transport of hazardous substances to the Site.

In recognition of our complementary roles, EPA has formed a partnership with USACE and the New Jersey Department of Transportation-Office of Maritime Resources ("OMR") ["the governmental partnership"] to identify and to address water quality improvement, remediation, and restoration opportunities in the 17-mile Lower Passaic River. This governmental partnership is consistent with a national Memorandum of Understanding ("MOU") executed on July 2, 2002 between EPA and USACE. This MOU calls for the two agencies to cooperate, where appropriate, on environmental remediation and restoration of degraded urban rivers and related resources. In agreeing to implement the MOU, the EPA and USACE will use their existing statutory and regulatory authorities in a coordinated manner. These authorities for EPA include CERCLA, the Clean Water Act, and the Resource Conservation and Recovery Act. The USACE's authority stems from the Water Resources Development Act ("WRDA"). WRDA allows for the use of some federal funds to pay for a portion of the USACE's approved projects related to ecosystem restoration.

For the first phase of the Lower Passaic River Restoration Project, the governmental partners are proceeding with an integrated five- to seven-year study to determine an appropriate remediation and restoration plan for the river. The study will involve investigation of environmental impacts and pollution sources, as well as evaluation of alternative actions, leading to recommendations of environmental remediation and restoration activities. This study is being conducted by EPA under the authority of CERCLA and by USACE and OMR, as local sponsor, under WRDA. EPA, USACE, and OMR are attempting to coordinate with the New Jersey Department of Environmental Protection and the Federal and State Natural Resource Trustee agencies. EPA, USACE, and OMR estimate that the study will cost approximately \$20 million, with the WRDA and CERCLA shares being about \$10 million each. EPA is seeking its share of the costs of the study from PRPs.

Based on information that EPA evaluated during the course of its investigation of the Site, EPA believes that hazardous substances were being released from American Modern Metals' facility located at 44 Passaic Avenue (a/k/a 25 Belgrove Drive) in Kearny, New Jersey, into the Lower Passaic River Study Area. Hazardous substances, pollutants and contaminants released from the facility into the river present a risk to the environment and the humans who may ingest contaminated fish and shellfish. Therefore, American Modern Metals may be potentially liable for response costs which the government may incur relating to the study of the Lower Passaic River. In addition, responsible parties may be required to pay damages for injury to, destruction of, or loss of natural resources, including the cost of assessing such damages.

Please note that, because EPA has a potential claim against you, you must include EPA as a creditor if you file for bankruptcy. You are also requested to preserve and retain any documents now in your Company's or its agents' possession or control, that relate in any manner to your facility or the Site or to the liability of any person under CERCLA for response actions or response costs at or in connection with the facility or the Site, regardless of any corporate document retention policy to the contrary.

Enclosed is a list of the other PRPs who have received Notice letters. This list represents EPA's findings on the identities of PRPs to date. We are continuing efforts to locate additional PRPs who have released hazardous substances, directly or indirectly, into the Lower Passaic River

Study Area. Exclusion from the list does not constitute a final determination by EPA concerning the liability of any party for the release or threat of release of hazardous substances at the Site. Be advised that notice of your potential liability at the Site may be forwarded to all parties on this list.

We request that you become a "cooperating party" for the Lower Passaic River Restoration Project. As a cooperating party, you, along with many other such parties, will be expected to fund EPA's share of the study costs. Upon completion of the study, it is expected that CERCLA and WRDA processes will be used to identify the required remediation and restoration programs, as well as the assignment of remediation and restoration costs. At this time, the commitments of the cooperating parties will apply only to the study. For those who choose not to cooperate, EPA may apply the CERCLA enforcement process, pursuant to Sections 106(a) and 107(a) of CERCLA, 42 U.S.C. §9606(a) and §9607(a) and other laws.

You may become a cooperating party by participating in the Cooperating Parties Group ("Group") that has already formed to provide EPA's funding for the Lower Passaic River Restoration Project. This cooperative response is embodied in an Administrative Order on Consent ("AOC"), copy enclosed. Notice of the AOC was published in the Federal Register on May 19, 2004 with EPA accepting comments through June 18, 2004. We strongly encourage you to contact the Group to discuss your participation. You may do so by contacting:

William H. Hyatt, Esq.
Common Counsel for the Lower Passaic River Study Area Cooperating Parties Group Kirkpatrick & Lockhart LLP
One Newark Center, 10th Floor
Newark, New Jersey 07102
(973) 848-4045
whyatt@kl.com

Written notification should be provided to EPA and Mr. Hyatt documenting your intention to join the Group and settle with EPA no later than 30 calendar days from your receipt of this letter. It is EPA's intent to amend the AOC at a later date to reflect the settlement negotiations. EPA's written notification should be mailed to:

Kedari Reddy, Assistant Regional Counsel Office of Regional Counsel U.S. Environmental Protection Agency 290 Broadway - 17th Floor New York, New York 10007-1866

Pursuant to CERCLA Section 113(k), EPA must establish an administrative record that contains documents that form the basis of EPA's decision on the selection of a response action for a site. The administrative record files, which contain the documents related to the response action selected for this Site are located at EPA's Region 2 office (290 Broadway, New York, NY) on the 18th floor. You may call the Records Center at (212) 637-4308 to make an appointment to view the administrative record for the Diamond Alkali Site, Passaic River.

· 1000年100日

As you may be aware, on January 11, 2002, President Bush signed into law the Superfund Small Business Liability Relief and Brownfields Revitalization Act. This Act contains several exemptions and defenses to CERCLA liability, which we suggest that all parties evaluate. You may obtain a copy of the law via the Internet at http://www.epa.gov/swerosps/bf/sblrbra.htm and review EPA guidances regarding these exemptions at http://www.epa.gov/compliance/resources/policies/cleanup/superfund.

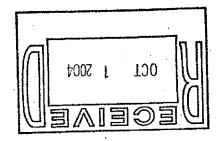
If you wish to discuss this further please contact Ms. Elizabeth Butler, Remedial Project Manager, at (212) 637-4396 or Ms. Kedari Reddy, Assistant Regional Counsel, at (212) 637-3106. Please note that all communications from attorneys should be directed to Ms. Reddy.

Sincerely yours,

George Pavlou, Director Emergency and Remedial Response Division

Enclosures

cc: Alexa Richman-LaLonde, Esq. Riker Danzig Scherer Hyland Perretti LLP



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

SEP 24 2004

GENERAL NOTICE LETTER
URGENT LEGAL MATTER
PROMPT REPLY NECESSARY
CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Steven Schwartz for DiLorenzo Properties Company 401 East 74th Street New York, NY 10021-3919

RE: Diamond Alkali Superfund Site

Notice of Potential Liability for

Response Actions in the Lower Passaic River Study Area, New Jersey

Dear Mr. Schwartz:

The United States Environmental Protection Agency ("EPA") is charged with responding to the release and/or threatened release of hazardous substances, pollutants, and contaminants into the environment and with enforcement responsibilities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended ("CERCLA"), 42 U.S.C. §9601 et seq. Accordingly, EPA is seeking your cooperation in an innovative approach to environmental remediation and restoration activities for the Lower Passaic River.

EPA has documented the release or threatened release of hazardous substances, pollutants and contaminants into the six-mile stretch of the river, known as the Passaic River Study Area, which is part of the Diamond Alkali Superfund Site ("Site") located in Newark, New Jersey. Based on the results of previous CERCLA remedial investigation activities and other environmental studies, including a reconnaissance study of the Passaic River conducted by the United States Army Corps of Engineers ("USACE"), EPA has further determined that contaminated sediments and other potential sources of hazardous substances exist along the entire 17-mile tidal reach of the Lower Passaic River. Thus, EPA has decided to expand the area of study to include the entire Lower Passaic River and its tributaries from Dundee Dam to Newark Bay ("Lower Passaic River Study Area").

By this letter, EPA is notifying DiLorenzo Properties Company ("DiLorenzo") of its potential liability relating to the Site pursuant to Section 107(a) of CERCLA, 42 U.S.C. §9607(a). Under CERCLA, potentially responsible parties ("PRPs") include current and past owners of a facility,

as well as persons who arranged for the disposal or treatment of hazardous substances at the Site, or the transport of hazardous substances to the Site.

In recognition of our complementary roles, EPA has formed a partnership with USACE and the New Jersey Department of Transportation-Office of Maritime Resources ("OMR") ["the governmental partnership"] to identify and to address water quality improvement, remediation, and restoration opportunities in the 17-mile Lower Passaic River. This governmental partnership is consistent with a national Memorandum of Understanding ("MOU") executed on July 2, 2002 between EPA and USACE. This MOU calls for the two agencies to cooperate, where appropriate, on environmental remediation and restoration of degraded urban rivers and related resources. In agreeing to implement the MOU, the EPA and USACE will use their existing statutory and regulatory authorities in a coordinated manner. These authorities for EPA include CERCLA, the Clean Water Act, and the Resource Conservation and Recovery Act. The USACE's authority stems from the Water Resources Development Act ("WRDA"). WRDA allows for the use of some federal funds to pay for a portion of the USACE's approved projects related to ecosystem restoration.

For the first phase of the Lower Passaic River Restoration Project, the governmental partners are proceeding with an integrated five- to seven-year study to determine an appropriate remediation and restoration plan for the river. The study will involve investigation of environmental impacts and pollution sources, as well as evaluation of alternative actions, leading to recommendations of environmental remediation and restoration activities. This study is being conducted by EPA under the authority of CERCLA and by USACE and OMR, as local sponsor, under WRDA. EPA, USACE, and OMR are attempting to coordinate with the New Jersey Department of Environmental Protection and the Federal and State Natural Resource Trustee agencies. EPA, USACE, and OMR estimate that the study will cost approximately \$20 million, with the WRDA and CERCLA shares being about \$10 million each. EPA is seeking its share of the costs of the study from PRPs.

Based on information that EPA evaluated during the course of its investigation of the Site, EPA believes that hazardous substances were being released from DiLorenzo's facility located at 44 Passaic Avenue (aka 25 Belgrove Drive) in Kearny, New Jersey, into the Lower Passaic River Study Area. Hazardous substances, pollutants and contaminants released from the facility into the river present a risk to the environment and the humans who may ingest contaminated fish and shellfish. Therefore, DiLorenzo may be potentially liable for response costs which the government may incur relating to the study of the Lower Passaic River. In addition, responsible parties may be required to pay damages for injury to, destruction of, or loss of natural resources, including the cost of assessing such damages.

EPA is aware that the financial ability of some PRPs to contribute toward the payment of response costs at the Site may be substantially limited. If you believe, and can document, that you fall within that category, please inform Ms. Reddy and Mr. Hyatt in writing at the addresses identified in this letter. You will be asked to submit financial records including business and, possibly, personal federal income tax returns as well as audited financial statements to substantiate such a claim.

Please note that, because EPA has a potential claim against you, you must include EPA as a creditor if you file for bankruptcy. You are also requested to preserve and retain any documents now in your Company's or its agents' possession or control, that relate in any manner to your facility or the Site or to the liability of any person under CERCLA for response actions or response costs at or in connection with the facility or the Site, regardless of any corporate document retention policy to the contrary.

Enclosed is a list of the other PRPs who have received Notice letters. This list represents EPA's findings on the identities of PRPs to date. We are continuing efforts to locate additional PRPs who have released hazardous substances, directly or indirectly, into the Lower Passaic River Study Area. Exclusion from the list does not constitute a final determination by EPA concerning the liability of any party for the release or threat of release of hazardous substances at the Site. Be advised that notice of your potential liability at the Site may be forwarded to all parties on this list as well as to the Natural Resource Trustees.

We request that you become a "cooperating party" for the Lower Passaic River Restoration Project. As a cooperating party, you, along with many other such parties, will be expected to fund EPA's share of the study costs. Upon completion of the study, it is expected that CERCLA and WRDA processes will be used to identify the required remediation and restoration programs, as well as the assignment of remediation and restoration costs. At this time, the commitments of the cooperating parties will apply only to the study. For those who choose not to cooperate, EPA may apply the CERCLA enforcement process, pursuant to Sections 106(a) and 107(a) of CERCLA, 42 U.S.C. §9606(a) and §9607(a) and other laws.

You may become a cooperating party by participating in the Cooperating Parties Group ("Group") that has already formed to provide EPA's funding for the Lower Passaic River Restoration Project. This cooperative response is embodied in an Administrative Order on Consent ("AOC"), a copy of which can be obtained at the following web address: www.ourpassaic.org/home/aoc.pdf.

We strongly encourage you to review the AOC and contact the Group to discuss your participation. You may do so by contacting:

William H. Hyatt, Esq.
Common Counsel for the Lower Passaic River Study Area Cooperating Parties Group Kirkpatrick & Lockhart LLP
One Newark Center, 10th Floor
Newark, New Jersey 07102
(973) 848-4045
whyatt@kl.com

Written notification should be provided to EPA and Mr. Hyatt documenting your intention to join the Group and settle with EPA no later than 30 calendar days from your receipt of this letter. It is EPA's intent to amend the AOC at a later date to reflect the settlement negotiations. EPA's written notification should be mailed to:

Kedari Reddy, Assistant Regional Counsel Office of Regional Counsel U.S. Environmental Protection Agency 290 Broadway - 17th Floor New York, New York 10007-1866

Pursuant to CERCLA Section 113(k), EPA must establish an administrative record that contains documents that form the basis of EPA's decision on the selection of a response action for a site. The administrative record files, which contain the documents related to the response action selected for this Site are located at EPA's Region 2 office (290 Broadway, New York, NY) on the 18th floor. You may call the Records Center at (212) 637-4308 to make an appointment to view the administrative record for the Diamond Alkali Site, Passaic River.

As you may be aware, on January 11, 2002, President Bush signed into law the Superfund Small Business Liability Relief and Brownfields Revitalization Act. This Act contains several exemptions and defenses to CERCLA liability, which we suggest that all parties evaluate. You may obtain a copy of the law via the Internet at http://www.epa.gov/swerosps/bf/sblrbra.htm and review EPA guidances regarding these exemptions at http://www.epa.gov/compliance/ resources/policies/cleanup/superfund.

Inquiries by counsel or inquiries of a legal nature should be directed to Ms. Reddy at (212) 637-3106. Questions of a technical nature should be directed to Elizabeth Butler, Remedial Project Manager, at (212) 637-4396.

Sincerely yours,

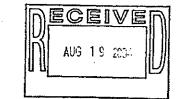
George Pavlou, Director

illean We Cale

DEMergency and Remedial Response Division

Enclosures

Steven R. Gray, Esq. cc:


Waters, McPherson, McNeill

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 2 290 BROADWAY NEW YORK, NY 10007-1868

AUG 13 2004

GENERAL NOTICE LETTER
URGENT LEGAL MATTER
PROMPT REPLY NECESSARY
CERTIFIED MAIL-RETURN RECEIPT REQUESTED

President/Legal Officer Kearny Industrial Associates, L.P. 25 Belgrove Drive Kearny, NJ 07032-1502

RE: Diamond Alkali Superfund Site Notice of Potential Liability for

Response Actions in the Lower Passaic River Study Area, New Jersey

Dear Mr. President:

The United States Environmental Protection Agency ("EPA") is charged with responding to the release and/or threatened release of hazardous substances, pollutants, and contaminants into the environment and with enforcement responsibilities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended ("CERCLA"), 42 U.S.C. §9601 et seq. Accordingly, EPA is seeking your cooperation in an innovative approach to environmental remediation and restoration activities for the Lower Passaic River.

EPA has documented the release or threatened release of hazardous substances, pollutants and contaminants into the six-mile stretch of the river, known as the Passaic River Study Area, which is part of the Diamond Alkali Superfund Site ("Site") located in Newark, New Jersey. Based on the results of previous CERCLA remedial investigation activities and other environmental studies, including a reconnaissance study of the Passaic River conducted by the United States Army Corps of Engineers ("USACE"), EPA has further determined that contaminated sediments and other potential sources of hazardous substances exist along the entire 17-mile tidal reach of the Lower Passaic River. Thus, EPA has decided to expand the area of study to include the entire Lower Passaic River and its tributaries from Dundee Dam to Newark Bay ("Lower Passaic River Study Area").

By this letter, EPA is notifying Kearny Industrial Associates, L.P. ("Kearny Industrial") of its potential liability relating to the Site pursuant to Section 107(a) of CERCLA, 42 U.S.C. §9607(a). Under CERCLA, potentially responsible parties ("PRPs") include current and past owners of a facility, as well as persons who arranged for the disposal or treatment of hazardous

Internet Address (URL) • http://www.spa.gov

substances at the Site, or the transport of hazardous substances to the Site.

In recognition of our complementary roles, EPA has formed a partnership with USACE and the New Jersey Department of Transportation-Office of Maritime Resources ("OMR") ["the governmental partnership"] to identify and to address water quality improvement, remediation, and restoration opportunities in the 17-mile Lower Passaic River. This governmental partnership is consistent with a national Memorandum of Understanding ("MOU") executed on July 2, 2002 between EPA and USACE. This MOU calls for the two agencies to cooperate, where appropriate, on environmental remediation and restoration of degraded urban rivers and related resources. In agreeing to implement the MOU, the EPA and USACE will use their existing statutory and regulatory authorities in a coordinated manner. These authorities for EPA include CERCLA, the Clean Water Act, and the Resource Conservation and Recovery Act. The USACE's authority stems from the Water Resources Development Act ("WRDA"). WRDA allows for the use of some federal funds to pay for a portion of the USACE's approved projects related to ecosystem restoration.

For the first phase of the Lower Passaic River Restoration Project, the governmental partners are proceeding with an integrated five- to seven-year study to determine an appropriate remediation and restoration plan for the river. The study will involve investigation of environmental impacts and pollution sources, as well as evaluation of alternative actions, leading to recommendations of environmental remediation and restoration activities. This study is being conducted by EPA under the authority of CERCLA and by USACE and OMR, as local sponsor, under WRDA. EPA, USACE, and OMR are attempting to coordinate with the New Jersey Department of Environmental Protection and the Federal and State Natural Resource Trustee agencies. EPA, USACE, and OMR estimate that the study will cost approximately \$20 million, with the WRDA and CERCLA shares being about \$10 million each. EPA is seeking its share of the costs of the study from PRPs.

Based on information that EPA evaluated during the course of its investigation of the Site, EPA believes that hazardous substances were being released from Kearny Industrial's facility located at 44 Passaic Avenue (aka 25 Belgrove Drive) in Kearny, New Jersey, into the Lower Passaic River Study Area. Hazardous substances, pollutants and contaminants released from the facility into the river present a risk to the environment and the humans who may ingest contaminated fish and shellfish. Therefore, Kearny Industrial may be potentially liable for response costs which the government may incur relating to the study of the Lower Passaic River. In addition, responsible parties may be required to pay damages for injury to, destruction of, or loss of natural resources, including the cost of assessing such damages.

EPA is aware that the financial ability of some PRPs to contribute toward the payment of response costs at the Site may be substantially limited. If you believe, and can document, that you fall within that category, please inform Ms. Reddy and Mr. Hyatt at the addresses located towards the end of this letter. You will be asked to submit financial records including business and, possibly, personal federal income tax returns as well as audited financial statements to substantiate such a claim.

Please note that, because EPA has a potential claim against you, you must include EPA as a creditor if you file for bankruptcy. You are also requested to preserve and retain any documents now in your Company's or its agents' possession or control, that relate in any manner to your facility or the Site or to the liability of any person under CERCLA for response actions or response costs at or in connection with the facility or the Site, regardless of any corporate document retention policy to the contrary.

Enclosed is a list of the other PRPs who have received Notice letters. This list represents EPA's findings on the identities of PRPs to date. We are continuing efforts to locate additional PRPs who have released hazardous substances, directly or indirectly, into the Lower Passaic River Study Area. Exclusion from the list does not constitute a final determination by EPA concerning the liability of any party for the release or threat of release of hazardous substances at the Site. Be advised that notice of your potential liability at the Site may be forwarded to all parties on this list.

We request that you become a "cooperating party" for the Lower Passaic River Restoration Project. As a cooperating party, you, along with many other such parties, will be expected to fund EPA's share of the study costs. Upon completion of the study, it is expected that CERCLA and WRDA processes will be used to identify the required remediation and restoration programs, as well as the assignment of remediation and restoration costs. At this time, the commitments of the cooperating parties will apply only to the study. For those who choose not to cooperate, EPA may apply the CERCLA enforcement process, pursuant to Sections 106(a) and 107(a) of CERCLA, 42 U.S.C. §9606(a) and §9607(a) and other laws.

You may become a cooperating party by participating in the Cooperating Parties Group ("Group") that has already formed to provide EPA's funding for the Lower Passaic River Restoration Project. This cooperative response is embodied in an Administrative Order on Consent ("AOC"), copy enclosed. Notice of the AOC was published in the Federal Register on May 19, 2004, and the effective date of the AOC was June 22, 2004. We strongly encourage you to contact the Group to discuss your participation. You may do so by contacting:

William H. Hyatt, Esq.
Common Counsel for the Lower Passaic River Study Area Cooperating Parties Group Kirkpatrick & Lockhart LLP
One Newark Center, 10th Floor
Newark, New Jersey 07102
(973) 848-4045
whyatt@kl.com

Written notification should be provided to EPA and Mr. Hyatt documenting your intention to join the Group and settle with EPA no later than 30 calendar days from your receipt of this letter. It is EPA's intent to amend the AOC at a later date to reflect the settlement negotiations. EPA's written notification should be mailed to:

Kedari Reddy, Assistant Regional Counsel Office of Regional Counsel U.S. Environmental Protection Agency 290 Broadway - 17th Floor New York, New York 10007-1866

Pursuant to CERCLA Section 113(k), EPA must establish an administrative record that contains documents that form the basis of EPA's decision on the selection of a response action for a site. The administrative record files, which contain the documents related to the response action selected for this Site are located at EPA's Region 2 office (290 Broadway, New York, NY) on the 18th floor. You may call the Records Center at (212) 637-4308 to make an appointment to view the administrative record for the Diamond Alkali Site, Passaic River.

As you may be aware, on January 11, 2002, President Bush signed into law the Superfund Small Business Liability Relief and Brownfields Revitalization Act. This Act contains several exemptions and defenses to CERCLA liability, which we suggest that all parties evaluate. You may obtain a copy of the law via the Internet at http://www.epa.gov/swerosps/bf/sblrbra.htm and review EPA guidances regarding these exemptions at http://www.epa.gov/compliance/resources/policies/cleanup/superfund.

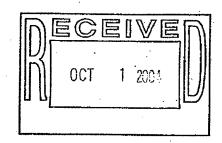
If you wish to discuss this further please contact Ms. Elizabeth Butler, Remedial Project Manager, at (212) 637-4396 or Ms. Kedari Reddy, Assistant Regional Counsel, at (212) 637-3106. Please note that all communications from attorneys should be directed to Ms. Reddy.

Sincerely yours,

John S Friso

George Pavlou, Director Emergency and Remedial Response Division

Enclosures



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

.SEP 2 0 2004

GENERAL NOTICE LETTER
URGENT LEGAL MATTER
PROMPT REPLY NECESSARY
CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Enrique Sordo, Vice President Marshall Clark Manufacturing Corporation 20-40 Marshall Street Kearny, NJ 07032

RE:

Diamond Alkali Superfund Site Notice of Potential Liability for Response Actions in the Lower Passaic River Study Area, New Jersey

Dear Mr. Sordo:

The United States Environmental Protection Agency ("EPA") is charged with responding to the release and/or threatened release of hazardous substances, pollutants, and contaminants into the environment and with enforcement responsibilities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended ("CERCLA"), 42 U.S.C. §9601 et seq. Accordingly, EPA is seeking your cooperation in an innovative approach to environmental remediation and restoration activities for the Lower Passaic River.

EPA has documented the release or threatened release of hazardous substances, pollutants and contaminants into the six-mile stretch of the river, known as the Passaic River Study Area, which is part of the Diamond Alkali Superfund Site ("Site") located in Newark, New Jersey. Based on the results of previous CERCLA remedial investigation activities and other environmental studies, including a reconnaissance study of the Passaic River conducted by the United States Army Corps of Engineers ("USACE"), EPA has further determined that contaminated sediments and other potential sources of hazardous substances exist along the entire 17-mile tidal reach of the Lower Passaic River. Thus, EPA has decided to expand the area of study to include the entire Lower Passaic River and its tributaries from Dundee Dam to Newark Bay ("Lower Passaic River Study Area").

By this letter, EPA is notifying Marshall Clark Manufacturing Corp. ("Marshall Clark") of its potential liability relating to the Site pursuant to Section 107(a) of CERCLA, 42 U.S.C. §9607(a). Under CERCLA, potentially responsible parties ("PRPs") include current and past owners of a facility, as well as persons who arranged for the disposal or treatment of hazardous substances at the Site, or the transport of hazardous substances to the Site.

internet Address (URL) • http://www.spa.gov
Recycled/Recyclable • Printed with Vegetable Oil Based Inks on Recycled Paper (Minimum 50% Postconsumer content)

Please note that, because EPA has a potential claim against you, you must include EPA as a creditor if you file for bankruptcy. You are also requested to preserve and retain any documents now in your Company's or its agents' possession or control, that relate in any manner to your facility or the Site or to the liability of any person under CERCLA for response actions or response costs at or in connection with the facility or the Site, regardless of any corporate document retention policy to the contrary.

Enclosed is a list of the other PRPs who have received Notice letters. This list represents EPA's findings on the identities of PRPs to date. We are continuing efforts to locate additional PRPs who have released hazardous substances, directly or indirectly, into the Lower Passaic River Study Area. Exclusion from the list does not constitute a final determination by EPA concerning the liability of any party for the release or threat of release of hazardous substances at the Site. Be advised that notice of your potential liability at the Site may be forwarded to all parties on this list as well as to the Natural Resource Trustees.

We request that you become a "cooperating party" for the Lower Passaic River Restoration Project. As a cooperating party, you, along with many other such parties, will be expected to fund EPA's share of the study costs. Upon completion of the study, it is expected that CERCLA and WRDA processes will be used to identify the required remediation and restoration programs, as well as the assignment of remediation and restoration costs. At this time, the commitments of the cooperating parties will apply only to the study. For those who choose not to cooperate, EPA may apply the CERCLA enforcement process, pursuant to Sections 106(a) and 107(a) of CERCLA, 42 U.S.C. §9606(a) and §9607(a) and other laws.

You may become a cooperating party by participating in the Cooperating Parties Group ("Group") that has already formed to provide EPA's funding for the Lower Passaic River Restoration Project. This cooperative response is embodied in an Administrative Order on Consent ("AOC"), a copy of which can be obtained at the following web address: www.ourpassaic.org/home/aoc.pdf.

We strongly encourage you to review the AOC and contact the Group to discuss your participation. You may do so by contacting:

William H. Hyatt, Esq.
Common Counsel for the Lower Passaic River Study Area Cooperating Parties Group Kirkpatrick & Lockhart LLP
One Newark Center, 10th Floor
Newark, New Jersey 07102
(973) 848-4045
whyatt@kl.com

Written notification should be provided to EPA and Mr. Hyatt documenting your intention to join the Group and settle with EPA no later than 30 calendar days from your receipt of this letter. It is EPA's intent to amend the AOC at a later date to reflect the settlement negotiations. EPA's written notification should be mailed to:

Kedari Reddy, Assistant Regional Counsel Office of Regional Counsel U.S. Environmental Protection Agency 290 Broadway - 17th Floor New York, New York 10007-1866

Pursuant to CERCLA Section 113(k), EPA must establish an administrative record that contains documents that form the basis of EPA's decision on the selection of a response action for a site. The administrative record files, which contain the documents related to the response action selected for this Site are located at EPA's Region 2 office (290 Broadway, New York, NY) on the 18th floor. You may call the Records Center at (212) 637-4308 to make an appointment to view the administrative record for the Diamond Alkali Site, Passaic River.

As you may be aware, on January 11, 2002, President Bush signed into law the Superfund Small Business Liability Relief and Brownfields Revitalization Act. This Act contains several exemptions and defenses to CERCLA liability, which we suggest that all parties evaluate. You may obtain a copy of the law via the Internet at http://www.epa.gov/swerosps/bf/sblrbra.htm and review EPA guidances regarding these exemptions at http://www.epa.gov/compliance/resources/policies/cleanup/superfund.

Inquiries by counsel or inquiries of a legal nature should be directed to Ms. Reddy at (212) 637-3106. Questions of a technical nature should be directed to Elizabeth Butler, Remedial Project Manager, at (212) 637-4396.

Sincerely yours,

George Pavlou, Director

Mam Me Cale

Emergency and Remedial Response Division

Enclosures

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

AUG 13 2004

GENERAL NOTICE LETTER
URGENT LEGAL MATTER
PROMPT REPLY NECESSARY
CERTIFIED MAIL-RETURN RECEIPT REQUESTED

President/Legal Officer S&A Realty Corp. 55 Passaic Avenue Kearny, NJ 07032-1502

RE: Diamond Alkali Superfund Site

Notice of Potential Liability for

Response Actions in the Lower Passaic River Study Area, New Jersey

Dear Mr. President:

The United States Environmental Protection Agency ("EPA") is charged with responding to the release and/or threatened release of hazardous substances, pollutants, and contaminants into the environment and with enforcement responsibilities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended ("CERCLA"), 42 U.S.C. §9601 et seq. Accordingly, EPA is seeking your cooperation in an innovative approach to environmental remediation and restoration activities for the Lower Passaic River.

EPA has documented the release or threatened release of hazardous substances, pollutants and contaminants into the six-mile stretch of the river, known as the Passaic River Study Area, which is part of the Diamond Alkali Superfund Site ("Site") located in Newark, New Jersey. Based on the results of previous CERCLA remedial investigation activities and other environmental studies, including a reconnaissance study of the Passaic River conducted by the United States Army Corps of Engineers ("USACE"), EPA has further determined that contaminated sediments and other potential sources of hazardous substances exist along the entire 17-mile tidal reach of the Lower Passaic River. Thus, EPA has decided to expand the area of study to include the entire Lower Passaic River and its tributaries from Dundee Dam to Newark Bay ("Lower Passaic River Study Area").

By this letter, EPA is notifying S&A Realty Corp. ("S&A Realty") of its potential liability relating to the Site pursuant to Section 107(a) of CERCLA, 42 U.S.C. §9607(a). Under CERCLA, potentially responsible parties ("PRPs") include current and past owners of a facility, as well as persons who arranged for the disposal or treatment of hazardous substances at the Site,

Internet Address (URL) • http://www.epa.gov
Recycled/Recyclable • Printed with Vegetable Oil Based Inks on Recycled Paper (Minimum 50% Postconsumer content)

or the transport of hazardous substances to the Site.

In recognition of our complementary roles, EPA has formed a partnership with USACE and the New Jersey Department of Transportation-Office of Maritime Resources ("OMR") ["the governmental partnership"] to identify and to address water quality improvement, remediation, and restoration opportunities in the 17-mile Lower Passaic River. This governmental partnership is consistent with a national Memorandum of Understanding ("MOU") executed on July 2, 2002 between EPA and USACE. This MOU calls for the two agencies to cooperate, where appropriate, on environmental remediation and restoration of degraded urban rivers and related resources. In agreeing to implement the MOU, the EPA and USACE will use their existing statutory and regulatory authorities in a coordinated manner. These authorities for EPA include CERCLA, the Clean Water Act, and the Resource Conservation and Recovery Act. The USACE's authority stems from the Water Resources Development Act ("WRDA"). WRDA allows for the use of some federal funds to pay for a portion of the USACE's approved projects related to ecosystem restoration.

For the first phase of the Lower Passaic River Restoration Project, the governmental partners are proceeding with an integrated five- to seven-year study to determine an appropriate remediation and restoration plan for the river. The study will involve investigation of environmental impacts and pollution sources, as well as evaluation of alternative actions, leading to recommendations of environmental remediation and restoration activities. This study is being conducted by EPA under the authority of CERCLA and by USACE and OMR, as local sponsor, under WRDA. EPA, USACE, and OMR are attempting to coordinate with the New Jersey Department of Environmental Protection and the Federal and State Natural Resource Trustee agencies. EPA, USACE, and OMR estimate that the study will cost approximately \$20 million, with the WRDA and CERCLA shares being about \$10 million each. EPA is seeking its share of the costs of the study from PRPs.

Based on information that EPA evaluated during the course of its investigation of the Site, EPA believes that hazardous substances were being released from S&A Realty's facility located at 44 Passaic Avenue (aka 25 Belgrove Drive) in Kearny, New Jersey, into the Lower Passaic River Study Area. Hazardous substances, pollutants and contaminants released from the facility into the river present a risk to the environment and the humans who may ingest contaminated fish and shellfish. Therefore, S&A Realty may be potentially liable for response costs which the government may incur relating to the study of the Lower Passaic River. In addition, responsible parties may be required to pay damages for injury to, destruction of, or loss of natural resources, including the cost of assessing such damages.

EPA is aware that the financial ability of some PRPs to contribute toward the payment of response costs at the Site may be substantially limited. If you believe, and can document, that you fall within that category, please inform Ms. Reddy and Mr. Hyatt at the addresses located towards the end of this letter. You will be asked to submit financial records including business and, possibly, personal federal income tax returns as well as audited financial statements to substantiate such a claim.

or the transport of hazardous substances to the Site.

In recognition of our complementary roles, EPA has formed a partnership with USACE and the New Jersey Department of Transportation-Office of Maritime Resources ("OMR") ["the governmental partnership"] to identify and to address water quality improvement, remediation, and restoration opportunities in the 17-mile Lower Passaic River. This governmental partnership is consistent with a national Memorandum of Understanding ("MOU") executed on July 2, 2002 between EPA and USACE. This MOU calls for the two agencies to cooperate, where appropriate, on environmental remediation and restoration of degraded urban rivers and related resources. In agreeing to implement the MOU, the EPA and USACE will use their existing statutory and regulatory authorities in a coordinated manner. These authorities for EPA include CERCLA, the Clean Water Act, and the Resource Conservation and Recovery Act. The USACE's authority stems from the Water Resources Development Act ("WRDA"). WRDA allows for the use of some federal funds to pay for a portion of the USACE's approved projects related to ecosystem restoration.

For the first phase of the Lower Passaic River Restoration Project, the governmental partners are proceeding with an integrated five- to seven-year study to determine an appropriate remediation and restoration plan for the river. The study will involve investigation of environmental impacts and pollution sources, as well as evaluation of alternative actions, leading to recommendations of environmental remediation and restoration activities. This study is being conducted by EPA under the authority of CERCLA and by USACE and OMR, as local sponsor, under WRDA. EPA, USACE, and OMR are attempting to coordinate with the New Jersey Department of Environmental Protection and the Federal and State Natural Resource Trustee agencies. EPA, USACE, and OMR estimate that the study will cost approximately \$20 million, with the WRDA and CERCLA shares being about \$10 million each. EPA is seeking its share of the costs of the study from PRPs.

Based on information that EPA evaluated during the course of its investigation of the Site, EPA believes that hazardous substances were being released from S&A Realty's facility located at 44 Passaic Avenue (aka 25 Belgrove Drive) in Kearny, New Jersey, into the Lower Passaic River Study Area. Hazardous substances, pollutants and contaminants released from the facility into the river present a risk to the environment and the humans who may ingest contaminated fish and shellfish. Therefore, S&A Realty may be potentially liable for response costs which the government may incur relating to the study of the Lower Passaic River. In addition, responsible parties may be required to pay damages for injury to, destruction of, or loss of natural resources, including the cost of assessing such damages.

EPA is aware that the financial ability of some PRPs to contribute toward the payment of response costs at the Site may be substantially limited. If you believe, and can document, that you fall within that category, please inform Ms. Reddy and Mr. Hyatt at the addresses located towards the end of this letter. You will be asked to submit financial records including business and, possibly, personal federal income tax returns as well as audited financial statements to substantiate such a claim.

Kedari Reddy, Assistant Regional Counsel Office of Regional Counsel U.S. Environmental Protection Agency 290 Broadway - 17th Floor New York, New York 10007-1866

Pursuant to CERCLA Section 113(k), EPA must establish an administrative record that contains documents that form the basis of EPA's decision on the selection of a response action for a site. The administrative record files, which contain the documents related to the response action selected for this Site are located at EPA's Region 2 office (290 Broadway, New York, NY) on the 18th floor. You may call the Records Center at (212) 637-4308 to make an appointment to view the administrative record for the Diamond Alkali Site, Passaic River.

As you may be aware, on January 11, 2002, President Bush signed into law the Superfund Small Business Liability Relief and Brownfields Revitalization Act. This Act contains several exemptions and defenses to CERCLA liability, which we suggest that all parties evaluate. You may obtain a copy of the law via the Internet at http://www.epa.gov/swerosps/bf/sblrbra.htm and review EPA guidances regarding these exemptions at http://www.epa.gov/compliance/resources/policies/cleanup/superfund.

If you wish to discuss this further please contact Ms. Elizabeth Butler, Remedial Project Manager, at (212) 637-4396 or Ms. Kedari Reddy, Assistant Regional Counsel, at (212) 637-3106. Please note that all communications from attorneys should be directed to Ms. Reddy.

Sincerely yours.

George Paylou, Director

John Trusco

Emergency and Remedial Response Division

Enclosures