

Administrative Offices: TEVA PHARMACEUTICALS USA 1090 Horsham Road, PO Box 1090 North Wales, PA 19454-1090

Phone: (215) 591 3000 Toll Free: (888) TEVA USA Kirsten E. Bauer, Esquire Director, Legal Affairs

Direct Dial: (215) 591 8628 Direct Fax: (215) 591 8813 kirsten.bauer@tevausa.com

April 14, 2003

Ms. Kedari Reddy, Assistant Regional Counsel Office of Regional Counsel – Region II U.S. Environmental Protection Agency 290 Broadway – 17th Floor New York, New York 10007-1866

> Re: Former Biocraft Laboratories, Inc. (now known as Teva Pharmaceuticals USA, Inc.) facility in Waldwick, New Jersey Lower Passaic River Study Area Response to USEPA Request for Information Pursuant to 42 U.S.C. §§ 9601-9675

Dear Ms. Reddy:

This letter responds to the U.S. Environmental Protection Agency (USEPA) Request for Information, pursuant to 42 U.S.C. §§ 9601-9675, dated February 27, 2003, addressed to both Teva Pharmaceuticals USA, Inc. and Biocraft Laboratories, Inc., in connection with the Lower Passaic River Study Area (the "Request for Information"). In or about June 1996, pursuant to an Agreement and Plan of Merger, Biocraft Laboratories, Inc. ("Biocraft") became a wholly-owned subsidiary of Teva Pharmaceutical Industries Limited, an Israeli public company. In or about July 1996, as part of a reorganization of the parent company's United States operations, TAG Pharmaceuticals, Inc., another subsidiary of Teva Pharmaceutical Industries Limited was merged into Biocraft, with Biocraft being the surviving entity. Thereafter, Biocraft was renamed Teva Pharmaceuticals USA, Inc. ("Teva"). Subsequently, a decision was made to close all pharmaceutical manufacturing operations at Teva's (f/k/a Biocraft) Waldwick, New Jersey plant in or about September 1997, and the plant has been inactive for approximately 6 years.

In a conversation between Teva's outside counsel and Ms. Kedari Reddy on March 5, 2003, Ms. Reddy clarified that although the USEPA's Request for Information was addressed to both Biocraft and Teva, insofar as Biocraft no longer exists, a response is required only from Teva. Accordingly, the responses provided below are provided only by Teva.

Ms. Kedari Reddy April 14, 2003

The scope of the Passaic River Study Area as published on USEPA's website (http://www.epa.gov/region02/superfund/pass_ou2.htm) covers all parts of the Passaic River from one mile south of the Second River Tributary in northern Newark, to the mouth of the Passaic River in Newark Bay. Teva's Waldwick Plant is <u>not</u> located within that Study Area. However, Ms. Reddy clarified that the USEPA's Request for Information in connection with the Passaic River Study Area has been extended to include all tributaries to that stretch of the Passaic River. Teva's Waldwick Plant is located in the vicinity of the Allendale Brook, which feeds into the Ho-Ho-Kus Brook, which feeds into Saddle River, which enters the Passaic River at Garfield-Wallington. Accordingly, based on the oral understandings and clarifications provided by Ms. Reddy, the responses set forth below are only for Teva's plant (Block 154, Lot 46) located at 12 Industrial Park, Waldwick, New Jersey (the "Plant").

Insofar as Teva's Waldwick Plant ceased operations and has been inactive for approximately 6 years, many of the documents associated with that Plant have either been destroyed or stored in multiple locations, which storage locations may not yet have been identified. Moreover, many of the former Biocraft and Teva personnel associated with that Plant no longer work for Teva and their whereabouts are unknown. Nevertheless, Teva is in the process of trying to locate and identify additional documentation that may be responsive to the USEPA's Request for Information. If any such documentation is located and is determined to be responsive, Teva will supplement its responses. Teva's responses to the USEPA Request for Information follow each of USEPA's Requests for Information, and are set forth below.

USEPA Request for Information 1): How long has your company operated at the facility? If your company no longer operates at this facility, during what years did your company operate at the facility?

<u>Response 1)</u>: Biocraft purchased the property (Block 154, Lot 46), built the Plant and associated site improvements, and began operations in or about 1972. See above for a description of the 1996 merger between Biocraft and Teva. Teva ceased operations and closed the Plant in or about 1997.

USEPA Request for Information 2)a): Does your company have or has it in the past had a permit or permits issued pursuant to the Resource Conservation and Recovery Act 42 U.S.C. §§ 6901- et. seq.?

<u>Response 2)a)</u>: Teva is unaware of any permits having been issued to the former Biocraft Waldwick Plant pursuant to the Resource Conservation and Recovery Act.

USEPA Request for Information 2)b): Does your company have or has it had in the past had a permit or permits issued to the Federal Pollution Control Act, 22 U.S.C. § 1251, et. seq.? If "yes" please provide the years that your company held such a permit.

<u>Response 2)b):</u> During the periods specified below, the Plant had the following Federal Pollution Control Act permits:

From	То	Discharge Type & Quantity, if known	Discharge/Disposal Point
1/1/96	12/31/01	Industrial Wastewater Pretreatment Discharge – Approximately 7,800 gpd (Manufacturing Plant)	Works – Northwest Bergen County Utilities Authority (Permit No. 95002)
6/23/93	11/1/97	New Jersey Pollutant Discharge Elimination System (NJPDES) Storm Water Discharge Permit (Manufacturing Plant)	Allendale Brook (Permit No. NJ0088315)

USEPA Request for Information 3): Did your company receive, utilize, manufacture, discharge, release, store, or dispose of any materials containing the following substances:

Response 3):

• •

Former B	iocraft	Waldwick	Plant	Materials	List
----------	---------	----------	-------	-----------	------

· · · · · · · · · · · · · · · · · · ·	Yes	No
2,3,7,8 tetrachlorodibenzo-p-dioxin		X
2,4-Dichlorophenoxy acetic acid (2,4-D)		X
2,4,5-Trichlorophenoxy acetic acid (2,4,5-T)		X
2,4,5-Trichlorophenol (2,4,5-TCP)		X
or other dioxin compounds		<u> </u>
Dichlorodiphenyl-trichloroethate (DDT)		X
Benzene *	X*	
Ethyl Benzene		X
Total Petroleum Hydrocarbons (TPEH)	X	
Poly Aromatic Hydrocarbons (PAH)	X	
If yes please list specified compounds	No. 2	
	Fuel Oil	
Toluene	X	
Xylene	X	
PCBs		X
Antimony *	X*	
Argon		X
Arsenic *	X*	
Cadmium *	X*	
Chlorine		X
Chromium *	X*	
Copper *	X*	
Iron *	X*	
Lead *	X*	
Mercury *	X*	
Nickel *	X*	

3

Silver *	X*	
Sulfur *	X*	
Titanium		X
Vanadium		X
Zinc *	X*	
Cyanide		X
Acetone	X	
Acetylene	X	
Acetylene Tetrabromide		X
2-butoxy ethanol		X
Bis (2-ethyl hexyl) phthalate		X
Chlorodifluoromethane		X
Chloropentafluoromethane		X
Chlorotrifluoromethane		X
Dibutyl phthalate		X
Dichlorofluormethane	X	
Naphtha	X	
Silver Nitrate *	X*	
Sodium Bisulfide		X
Sodium Hydroxide	X	
Sodium Nitrate		X
Tungsten		X

* - Indicates small Laboratory Quantities Only (See Table 1, attached)

4)a): Provide a description of the manufacturing process for which all hazardous substances, including but not limited to, the substances in response to item (3), were a product or by-product.

<u>Response to 4)a</u>): The Waldwick Plant manufactured semi-synthetic penicillin products in bulk form using a proprietary process. In general, the penicillin products were manufactured in separate production runs which would last a minimum of one week for each product. The penicillins were manufactured using batch chemical processes which involved the following key steps: (1) chemical reactions (one or more), (2) batch extraction, (3) crystallization, (4) centrifuging, (5) drying, (6) compaction, (7) milling, and (8) blending.

Most materials used at the Plant were delivered in bulk (tank truck) and drum quantities. Raw materials used in manufacturing generally included methylene chloride, acetone, hydrochloric acid, sodium hydroxide, and liquid nitrogen. Materials stored in drums included triethylamine, dimethyl acetamide, 2,6-lutidine, and pivaloyl chloride. Small quantities of hazardous materials also were used and stored in laboratories located in the Plant.

USEPA Request for Information 4)b): During what parts of the manufacturing processes identified in the response to items 4)a), above, were hazardous substances, including but not limited to, the substances listed in response to item (3), generated?

- i) Describe the chemical composition of these hazardous substances.
- ii) For each process, what amount of hazardous substance was generated per volume of finished product?
- *iii)* Were these hazardous substances combined with wastes from other processes? If so, wastes from what processes?

<u>Response to 4)b</u>: Hazardous substances were part of the following manufacturing process key steps described in response to Request for Information 4)a) above: (1) chemical reactions (one or more), (2) batch extraction, (3) crystallization, (4) centrifuging, and (5) drying.

<u>Response to 4)b)i)</u>: See Response to 4)a) above. Onsite boilers for steam generation were fired using natural gas or No. 2 fuel oil.

<u>Response to 4)b)ii):</u> The Waldwick Plant manufactured semi-synthetic penicillin products in bulk form using a proprietary process over an approximately 25 year period. In general, the penicillin products were manufactured in separate production runs which would last a minimum of one week for each product. The amount of hazardous substances generated per volume of finished products varied depending on the type of penicillin manufactured and the duration of the particular production run. As of the date of this response, Teva has been unable to locate any responsive documents identifying the volume of hazardous substances per volume of finished product. This response letter will be supplemented if responsive documents are located in the future.

<u>Response to 4)b)iii)</u>: Teva does not believe that hazardous substances were combined with wastes from other processes.

USEPA Request for Information 5): Describe the methods of collection, storage, treatment, and disposal of all hazardous substances, including, but not limited to, the substances listed in response item (3) and (4). Include information on the following:

a) Identify all persons who arranged for and managed the processing, treatment, storage and disposal of hazardous substances.

<u>Response to 5)a</u>: As of the date of this response, Teva has been unable to locate responsive documents identifying all persons who arranged for and managed the processing, treatment, storage, and disposal of hazardous substances. This response letter will be supplemented if responsive documents are located in the future.

b) If hazardous substances were taken off-site by a hauler or transporter, provide the names and addresses of the waste haulers and the disposal site locations.

854850005

<u>Response to 5)b</u>: As of the date of this response, Teva has been unable to locate responsive documents identifying the names and addresses of waste haulers and disposal sites used for off site disposal. However, Teva believes that such information may be available on the USEPA Envirofacts web-site (http://www.epa.gov/enviro/) which includes summaries of the hazardous waste inventory forms filed by Biocraft or Teva with the USEPA at various times. We refer you to that web-site for responsive information.

- c) Describe <u>all</u> storage practices employed by your company with respect to all hazardous substances from the time operations commenced until the present. Include all on-site and off-site storage activities.
 - i) If drums were stored outside, were the drums stored on the ground or were they stored on areas that had been paved with asphalt or concrete? Please provide a complete description of these storage areas.
 - *ii)* When drums were stored outside, were empty drums segregated from full drums?

<u>Response 5)c</u>): Hazardous materials and wastes used and generated at the Plant generally were stored in drums and aboveground, below grade (vaulted) storage tanks during the operation of the Plant. The structural integrity testing of tanks Nos. 1 through 10 was last conducted in or about 1995 through visual inspection and static head testing. At that time, tanks Nos. 1 through 10 were found to be in good condition with no indication of product leakage. Heating oil (No. 2 fuel oil) was stored in one underground storage tank located outside the Plant. The storage areas are described below.

- Hydrochloric Acid was stored in one 6,000-gallon, single wall, fiberglass aboveground storage tank. The tank had no internal heating coils. The tank was located within secondary containment constructed of poured reinforced concrete walls and floor. The concrete interior walls and floor were coated with chemically resistant epoxy. All tank piping was aboveground and did not pass through the containment walls. Pipe valves were readily accessible and were close to the tank to permit shut off in the event of a pipe rupture outside of the containment unit. The tank was equipped with a liquid level gauge and a high liquid level alarm. Tank overflow piping was directed to the containment unit. The tank and secondary containment unit were visually inspected daily in accord with SOP #WH-0033. The tank was visually and hydrostatically tested in or about February 1994 and found to be in satisfactory condition.
- Sodium Hydroxide was stored in a 6,000-gallon single wall, stainless steel, aboveground storage tank. The tank had no internal heating coils. The tank was located within secondary containment constructed of poured reinforced concrete walls and floor. The concrete interior walls and concrete were coated with chemically resistant epoxy. All tank piping was aboveground and did not pass

854850006

through the containment walls. Pipe valves were readily accessible and close to the tank to permit shut off in the event of a pipe rupture outside of the containment unit. The tank was equipped with a liquid level gauge and a high liquid level alarm. Tank overflow piping was directed to the containment unit. The tank and secondary containment unit were inspected daily in accord with SOP #WH-0033. The stainless steel tank was installed in or about February 1995 as a replacement/upgrade of the original fiberglass tank.

- No. 2 Fuel Oil was stored in a 6,000-gallon, double wall, fiberglass, underground storage tank. Tank piping was constructed of double wall fiberglass and was equipped with an annular space leak detection system. The tank had no internal heating coils. The tank was equipped with a liquid level gauge, a high liquid level alarm, and an annular space leak detection system. The tank was installed in or about 1991.
- Acetone and Methylene Chloride were stored in four, 10,000-gallon, single wall, fiberglass below grade storage tanks (Tank Nos. 1 through 4). The tanks had no internal heating coils. Two tanks stored virgin acetone and methylene chloride and two tanks stored acetone and methylene chloride recovered from the manufacturing process. The tanks were located in two below grade vaults. The vault walls, floors, and covers were poured, reinforced concrete. The concrete was coated with chemically resistant epoxy. All tank piping was aboveground and did not pass through the containment walls. Pipe valves were readily accessible and close to the tank to permit shut off in the event of a pipe rupture outside of the containment unit. Each tank was equipped with a liquid level gauge, a high liquid level alarm, and a nitrogen blanketing system. The tank vault was equipped with an automatic leak detection system which was installed at the low point of the vault floor. The tanks were installed in or about 1990.
- Hazardous wastes generated from the manufacturing process were stored in six 10,000 gallon, single wall, fiberglas tanks (Tank Nos. 5 through 10). The tanks had no internal heating coils. The tanks were located in three below grade vaults. The vault walls, floors, and covers were poured, reinforced concrete. The concrete was coated with chemically resistant epoxy. All tank piping was aboveground and did not pass through the containment walls. Pipe valves were readily accessible and were close to the tank to permit shut off in the event of a pipe rupture outside of the containment unit. Each tank was equipped with a liquid level gauge, a high liquid level alarm, and a nitrogen blanketing system. The tank vault was equipped with an automatic leak detection system which was installed at the low point of the vault floor. The tanks were installed in or about 1990.
- Liquid nitrogen was stored in a 15,000 gallon, aboveground cryogenic tank. The tank had no internal heating coils. The tank was equipped with a level gauge, a pressure gauge, and a pressure relief valve.

Ms. Kedari Reddy April 14, 2003

- Raw materials stored in drums include triethylamine, dimethyl acetamide, 2,6-Lutidine, and pivaloyl chloride. Hazardous wastes were not stored in the drum storage area. The number of drums stored varied with the product being manufactured, but generally ranged from 150 to 200 55-gallon drums. The drums were stored in one area (approximately 1,800 square feet), on a poured, reinforced concrete slab. The drums were stored on portable containment skids and covered by water repellent tarps. The drum storage pad was sloped to direct runoff to the parking lot. The maximum capacity of the drum storage area was 72 portable containment skids (approximately 280 drums). Empty drums were segregated from full drums.
- Process reactors, centrifuges, and distillation tanks in the manufacturing building were constructed of stainless steel. Secondary containment for these tanks was provided by concrete curbing and the building masonry walls. Except for two floor drains in Production Area 1, all floor drains were sealed. The two floor drains in Production Area 1 were connected to the sanitary sewer which discharged to the Publicly Owned Treatment Works ("POTW"). The drains were covered during manufacturing operations with caps constructed of chemically resistant materials. The caps were removed during housekeeping activities, and hazardous substances were not discharged into the floor drains. The tanks in Production Area 1 were equipped with a sight glass to determine liquid levels; liquid level gauges were not used because of varying reactor temperatures and pressures. The distillation tanks in Production Area 2 were equipped with liquid level gauges. All tanks were equipped with pressure relief valves.
- Small quantities of hazardous materials were stored and used in the research and development, quality control, and microbiology laboratories in the Plant. Glass or plastic containers which held solid materials and non-flammable liquids were stored in metal cabinets. Glass or plastic containers which held flammable solids and liquids were stored in cabinets approved for storing flammable substances. Incompatible materials were stored in separate cabinets. Secondary containment of the laboratories was provided by the building masonry walls.
- The manufacturing building electricity was supplied through one transformer which was mounted on a poured concrete slab. This transformer did not contain dielectric fluid.
- d) What processes do you use to treat your waste? What do you do with the waste after it is treated?

<u>Response 5)d</u>: The Waldwick Plant has been closed and inactive since 1997. Accordingly, no wastes are generated from that Plant. During the Plant's operation, hazardous wastes generated from manufacturing were recovered and sent off-site for disposal or recovered (distillation) onsite. The hazardous waste streams sent for off-site disposal included: process wastewater and still bottoms from methylene chloride distillation. Solvent was recovered and recycled for reuse in manufacturing from crude

8

methylene chloride waste streams and the acetone-water waste stream. Water generated during the manufacturing process was pretreated by a bioreactor system prior to discharge to the POTW, in accordance with the Plant's POTW permit.

USEPA Request for Information 6)a): For process waste waters generated at the facility which contained hazardous substances, including, but not limited to, the substances listed in response to item (3) and (4):

i) Where was the waste water discharged and during what years?

<u>Response 6)a)i):</u> Water generated during the manufacturing process was pretreated by a bioreactor system prior to discharge to the Northwest Bergen County Utilities Authority Publicly Owned Treatment Works between 1972 (when Plant operations began) and 1997 (when Plant operations ceased).

ii) Was the waste water discharged into a sanitary sewer and if so, during what years.

Response 6)a)ii): See response to 6)a)i) above.

iii) Was the waste water treated before being discharged to the sanitary sewer and if so, how?

<u>Response 6)a)iii)</u>: See response to 6)a)i) above.

iv) If the waste waters were not discharged to the sanitary sewer, where were they disposed of and during what years?

Response 6)a)iv): Not applicable.

v) Please provide the results of any analyses performed on any waste process streams generated at the facility?

<u>Response 6)a)v):</u> As of the date of this response, Teva has been unable to locate any responsive documents containing the results of process waste water analyses. This response letter will be supplemented, if responsive documents are located in the future.

USEPA Request for Information 6)b): For floor drains or other disposal drains at the facility:

i) Did the drains connect to a sanitary sewer, and if so, during what years?

<u>Response 6)b)i)</u>: All floor drains in the Plant discharged to the sanitary sewer between approximately 1972 (when Plant operations began) and 1997 (when Plant operations ceased).

9

ii) If the floor drains or other disposal drains at the facility were not discharged to the sanitary sewer, where did they discharge and during what years?

Response 6)b)ii): Not applicable.

USEPA Request for Information 6)c)i): Did any storm sewers, catch basins, or lagoons exist at any time at the facility and if so, during what years?

<u>Response 6)c)i)</u>: Storm water from the parking lots and roof runoff have discharged to storm sewers commencing in or about 1972 (when Plant operations began).

USEPA Request for Information 6)c)ii): If catch basins or lagoons existed, were they lined or unlined?

Response 6)c)ii): There were never any catch basins or lagoons onsite.

USEPA Request for Information 6)c)iii): What was stored in the lagoons?

Response 6)c)iii): Not applicable.

USEPA Request for Information 6)c)iv): Where was the discharge from any of these structures released and during what years? Was this discharge treated before its release and if so, how and during what years? What was the chemical composition of any waste waters released?

<u>Response 6)c)iv):</u> The storm water has been conveyed from the storm sewers to the municipal storm water system through underground concrete pipes commencing in or about 1972 (when Plant operations began). The storm water was discharged in compliance with the New Jersey Department of Environmental Protection ("NJDEP") Storm Water General Industrial Permit No. NJ0088315. Sampling of the storm water runoff was not conducted and was not required under the Plant's General Industrial Permit.

USEPA Request for Information 6)d): Please supply diagrams of any waste water collection, transport, or disposal system on the property.

Response 6)d): A copy of the responsive diagram is attached.

USEPA Request for Information 7)a): For each hazardous substance, including, but not limited to, the substances listed in response to item (3) or identified in the responses to item (4), above, provide the total amount generated during operation of the facility on an annual basis.

<u>Response 7)a):</u> As of the date of this response, Teva has been unable to locate any responsive documents indicating the total amount of hazardous substances generated on

10

an annual basis. However, Teva believes that such information is available on the USEPA Envirofacts web-site (http://www.epa.gov/enviro/). This response letter will be supplemented, if responsive documents are located in the future.

USEPA Request for Information 7)b): Were any hazardous substances, including, but not limited to, the substances listed in response to item (3) or identified in the responses to item (4), above, disposed of in the Passaic River or discharged to the Passaic River? If yes, identify the hazardous substances, estimate the amount of material discharged to or disposed of in the Passaic River and the frequency with which the discharge or disposal occurred. Also, please include any sampling of the river which you might have done after the discharge or disposal.

<u>Response 7)b):</u> Hazardous substances were not disposed of or discharged to the Passaic River.

USEPA Request for Information 8: Please identify any leaks, spills, explosions, fires, or other incidents of accidental material discharge that occurred at the facility during which or as a result of which any hazardous substances, including, but not limited to, the substances listed in response to item (3) or (4), were released on the property, into the waste water or storm water drainage system at the facility or to the Passaic River. Provide any documents or information related to these incidents, including the ultimate disposal of any contaminated materials.

a) Please provide the results of any sampling of the soil, water, air or other media after any such incident and before and after clean-up. Please provide in this information all sampling performed for or by NJDEP.

Response 8:

. .

> Surface Water- A 100-foot long underground steel pipe was installed at the Plant in or about 1972 to transfer wastewater from the manufacturing building processing area to an underground wastewater storage tank. The wastewater contained low concentrations of acetone, methylene chloride, n-butyl alcohol, and dimethyl aniline. A leak in the underground transfer line reportedly was discovered in or about 1975 during a NJDEP investigation requested by the Northwest Bergen Regional Health Commission (NWBRHC) to determine the causes of grayish-black algae growth on the surface water of Allendale Brook.

> The NJDEP February 28, 1991 Site Inspection Report indicates that the USEPA collected seven water samples from the storm sewer (at unspecified locations) and two stream samples (at unspecified locations) from Allendale Brook in 1975. Methylene chloride (13 μ g/L, 113 μ g/L, and 114 μ g/L), butyl alcohol (37 μ g/L, 63 μ g/L, and 343 μ g/L), acetone (0.2 μ g/L, 4.2 μ g/L, and 7 μ g/L) were detected in three of the seven storm sewer samples. Butyl alcohol (4 μ g/L), dimethyl aniline (0.1 μ g/L), and phenylacetic acid (23 μ g/L) were detected in one of the stream samples. Methylene chloride and acetone (the contaminants of concern) were below the laboratory minimum detection limits for

11

both samples. The analytical results of surface water samples collected from Allendale Brook in 1975 were well below the Surface Water Standards.

In response to the reported release, Biocraft removed the source of the discharge (the leaking underground lines) and reduced any potential discharges to surface water by installing the biodegradation/biostimulation system to control downgradient migration of VOCs by extracting and treating groundwater.

At the request of NJDEP, a sediment sample (SED-1) was collected by Teva from Allendale Brook below the storm water discharge pipe on November 5, 1999 and analyzed for grain size distribution, aniline, and dimethyl aniline. The sampling indicated that aniline and dimethyl aniline were not detected above the laboratory minimum detection limits ($84 \mu g/kg$ for aniline and $210 \mu g/kg$ for dimethyl aniline). The grain size distribution indicates that the sample consisted of coarse to fine sand and fine gravel with trace fines. The sampling results confirm that the underground transfer line leak had not adversely affected Allendale Brook surface water or sediment quality.

Groundwater – After the leak was discovered in the underground pipe in or about November 1975, Biocraft removed the pipe from service. Monitoring wells were installed and groundwater samples were collected and analyzed to determine whether the underground transfer line leak had impacted groundwater quality. The groundwater sampling showed elevated concentrations of methylene chloride, acetone, and butyl alcohol. The nature and extent of groundwater contamination at the Plant has been documented in extensive groundwater investigations conducted between 1979 and 2002.

Biocraft pumped groundwater from three on-site recovery wells between 1975 and 1981 and disposed of the groundwater off-site. Disposal of the recovered groundwater off-site became cost-prohibitive and, accordingly, with NJDEP's approval, Biocraft undertook an extensive research and development project to develop a process to remove and treat groundwater. The research resulted in the development of a sophisticated biodegradation/biostimulation process which was patented in the U.S.

Biocraft initiated groundwater monitoring to evaluate the progress and effectiveness of the groundwater biodegradation/biostimulation system. The groundwater sampling data indicates that butyl alcohol, acetone, and dimethyl aniline concentrations have been less than the NJDEP Class IIA Groundwater Quality Criteria for the past 25 quarterly monitoring events in all on-site and off-site groundwater monitoring wells. The groundwater sampling data indicates that butyl alcohol, acetone, and dimethyl aniline concentrations have been less than the NJDEP Class IIA Groundwater Quality Criteria for the past 15 quarterly monitoring events in all on-site and off-site groundwater Quality Criteria for the past 15 quarterly monitoring events in all on-site and off-site groundwater monitoring wells. The groundwater data indicates that there are no continuing sources of groundwater contamination at the site.

854850012

USEPA Request for Information 9)a): Was your facility ever subject to flooding. If so, was the flooding due to:

- i) overflow from sanitary or storm sewer backup and/or
- ii) flood overflow from the Passaic River

<u>Response 9)a)i) and 9)a)ii)</u>: There have been no reported flooding incidents at the Waldwick Plant.

USEPA Request for Information 9)b): Please provide the date and duration of each flood event.

Response 9)b): Not applicable.

USEPA Request for Information 10): Please provide a detailed description of any civil, criminal, or administrative proceedings against your company for violations of any local, State, or federal laws or regulations relating to water pollution or hazardous waste generation, storage, transport, or disposal. Provide copies of all pleadings and depositions or testimony given in these proceedings.

Response 10):

Item 1:

- a) Name and address of agency that initiated the enforcement action: New Jersey Department of Environmental Protection, Trenton, New Jersey
- b) Date of Enforcement Action: April 26, 1989
- c) Section of statute, rule, or permit allegedly violated: N.J.A.C. 7:27-8.3(e)1
- d) **Type of enforcement action**: Administrative Order and Notice of Civil Administrative Penalty Assessment
- e) Description of violation: Use of sodium hydroxide not covered under NJDEP Air Permit No. 41930.
- f) How was the violation resolved: Biocraft revised and resubmitted the permit.

Item 2:

- a) Name and address of agency that initiated the enforcement action: New Jersey Department of Environmental Protection, Trenton, New Jersey
- b) Date of Enforcement Action: November 23, 1994
- c) Section of statute, rule, or permit allegedly violated: N.J.A.C. 7:1E-4.6(a) & (b)4
- d) Type of enforcement action: Administrative Order and Notice of Civil Administrative Penalty Assessment
- e) Description of violation: A DPCC/DCR Plan had not been prepared for the Plant
- f) How was the violation resolved: A DPCC/DCR Plan was prepared, submitted, and approved by the NJDEP in June 1995 for the Plant.

Item 3:

a) Name and address of agency that initiated the enforcement action: New Jersey Department of Environmental Protection, Trenton, New Jersey

13

- b) Date of Enforcement Action: September 25, 1980
- c) Section of statute, rule, or permit allegedly violated: N.J.S.A. 13:10-1 et.seq., N.J.S.A. 13:1E-1 et. seq., and N.J.A.C. 7:26-12-1
- d) Type of enforcement action: Administrative Consent Order
- e) Description of violation: Hazardous waste stored in two 10,000-gallon underground storage tanks. Failure to submit a hazardous waste facility permit application
- f) How was the violation resolved: Underground storage tanks were removed according to NJDEP regulations, a contingency plan was prepared, emergency equipment was made available in case of a spill, and an evacuation plan was prepared. NJDEP observed the underground storage tank removal and recommended No Further Action (memo dated April 15, 1992).

Item 4:

- a) Name and address of agency that initiated the enforcement action: New Jersey Department of Environmental Protection, West Orange, New Jersey
- b) Date of Enforcement Action: May 12, 1994
- c) Section of statute, rule, or permit allegedly violated: N.J.A.C. 7:26-7.4(1) 4ii and N.J.A.C. 7:26-7.4(a) 4iii
- d) Type of enforcement action: Notice of Violation
- e) Description of violation: USEPA Identification number, NJ decal number, and correct transporters registration numbers were incorrect or missing on hazardous waste manifest.
- f) How was the violation resolved: Proper paperwork was submitted to the NJDEP within the 15 day time frame.

Item 5:

- a) Name and address of agency that initiated the enforcement action: New Jersey Department of Environmental Protection, Trenton, New Jersey
- b) Date of Enforcement Action: January 12, 1977, December 6, 1978, September 25, 1980, and June 18, 1982
- c) Section of statute, rule, or permit allegedly violated: Various sections related to a discharge from underground storage tank piping
- d) Type of enforcement action: Administrative Consent Orders
- e) Description of violation: The site was subject to a groundwater Administrative Consent Order (ACO) comprised of a NJDEP ACO dated January 12, 1977, as ameneded by an NJDEP Administrative Order dated December 12, 1978, as amended by an NJDEP ACO dated September 25, 1980, as modified by an NJDEP letter dated June 18, 1982 (collectively, the "Groundwater ACO"). The Groundwater ACO stemmed from a discharge in or about November 1975 from underground lines leading to an underground wastewater tank.
- f) How was the violation resolved: The underground lines were removed in or about 1975 and aboveground lines were installed. Subsequently, the underground storage tanks were removed and replaced with vaulted below grade storage tanks with secondary containment and continuous monitoring. Biocraft undertook an extensive research and development project to develop a process to remove and treat groundwater. The research resulted in the development of a sophisticated

854850014

biodegradation/biostimulation process which received a patent from the U.S. Patent Office. The biodegradation/biostimulation system was installed with NJDEP approval and was operated continuously between 1981 and July 2000 (19 years). The analytical data indicates that after the system was turned off in or about July 2000 concentrations of methylene chloride and acetone detected onsite were less than the laboratory minimum detection limit or less than the NJDEP Class IIA Groundwater Quality Criteria.

* * *

There were no pleadings, depositions or testimony associated with any of the enforcement proceedings identified above.

USEPA Request for Information 11): Provide a copy of each document which relates to the generation, purchase, use, handling, hauling, and or disposal of all hazardous substances, including, but not limited to, the substances listed in response to items (3) and (4). If you are unable to provide a copy of any document, then identify the document by describing the nature of the document (e.g., letter, file memo, invoice, inventory form, billing record, hazardous waste manifest, etc.). Describe the relevant information contained therein. Identify by name and job title the person who prepared the document. If the document is not readily available, state where it is stored, maintained, or why it is unavailable.

<u>Response 11</u>): As of the date of this response, Teva has been unable to locate documents which relate to the generation, purchase, use, handling, hauling, and or disposal of all hazardous substances, including, but not limited to, the substances listed in response to items (3) and (4). As stated in Response 1) above, the facility was closed in or about 1997. Some of the records were shipped to off-site storage facilities. Some records were destroyed after they were maintained for the minimum time frames as required by state and federal regulations and permits. This response letter will be supplemented, if responsive documents are located in the future.

USEPA Request for Information 12)a): Did you or anyone one else sample the soil, groundwater, surface water, ambient air, or other environmental media at the facility for purposes other than those identified in questions above?

<u>Response 12)a</u>): Extensive soil, groundwater, and Allendale Brook sediment sampling has been conducted as part of the NJDEP Industrial Site Recovery Act (ISRA). ISRA-required activities are being conducted by Teva at the Waldwick Plant under an ISRA Remediation Agreement dated May 30, 1996 (ISRA case #96070).

USEPA Request for Information 12)b): If so, please provide all other documents pertaining to the results of these analyses.

<u>Response 12)b</u>): The following documents were prepared and submitted to NJDEP as part of the ISRA case # 96070:

15

Date	Description or Title	Prepared By
2/1/96	General Information Notice	Eder Associates
3/1/96	Preliminary Assessment	Eder Associates
3/25/96	Letter to Gail Port regarding Preliminary Assessment	NJDEP
3/26/96	Remediation Agreement Application	Eder Associates
5/30/96	Remediation Agreement	NJDEP
6/13/96	Report of Inspection	NJDEP
7/19/96	Response to NJDEP Report of Inspection Received June 13, 1996	Eder Associates
4/97	Remedial Investigation Report	Eder Associates
10/15/97	NJDEP Comment Letter on Eder's July 19, 1996 Response Letter and	NJDEP
	the September 1996 NJPDES Application	
12/15/97	Response to NJDEP 10/15/97 Comment Letter	Eder Associates
7/1/98	NJDEP Comment Letter on Eder's 12/15/97 Response Letter	NJDEP
1/12/99	Remedial Investigation Workplan	Eder Associates division of Gannett Fleming
4/19/99	Remedial Investigation Workplan Addendum	Eder Associates division of Gannett Fleming
5/28/99	NJDEP Comment Letter on 1/12/99 RIW and 4/19/99 RIW addendum	NJDEP
6/30/00	Remedial Investigation Report and NJDPES Discharge to Groundwater Permit Application	Environmental Strategies Corporation
5/13/01	Draft Groundwater Data Summary	Environmental Strategies Corporation
5/30/01	NJDEP Comment Letter on 6/30/01 RIR	NJDEP
12/31/01	Remedial Investigation Report	Environmental Strategies Corporation
2/15/02	Baseline Ecological Evaluation	AMEC Associates
9/5/02	Semi-Annual Groundwater Report	Environmental Strategies Corporation
2/4/03	NJDEP Comment Letter on 12/31/01 RIR, BEE, and Semi-Annual Groundwater Report	NJDEP
3/11/03	Proposed Recovery Well Sampling Procedures Letter	Environmental Strategies Corporation
3/18/03	Memorandum with Comments on Sampling Procedures	NJDEP
3/19/03	Response to NJDEP Memo	Environmental Strategies Corporation

These documents are too voluminous to copy. However, copies of these documents are readily available at the NJDEP's offices in Trenton, New Jersey. Teva will provide copies of select documents, if requested by the USEPA.

USEPA Request for Information 13)a): Has your company owned the facility at the location designated above? If so, from whom did your company purchase the property and in what year? If your company subsequently sold the property, to whom did your company sell it and in what year? Please provide copies of any deeds and documents of sale.

<u>Response 13)a)</u>: Biocraft purchased the Plant in or about 1972 from Paul and Antoinette Nigrito and F. William and Margaret Koestner. As described above in the introduction to these responses, as a consequence of a merger with Biocraft and related reorganization, Teva currently owns the Plant. Copies of the responsive deeds are attached.

USEPA Request for Information 13)b): If your company did not own the facility, from whom did your company rent the facility and for what years? Please provide copies of any rental agreements.

Response 13)b): Not applicable.

USEPA Request for Information 13)c): To the extent that you know, please provide the names of all parties who owned or operated the facility during the period 1940 through the present. Describe the relationship, if any, of each of those parties with your company.

Response 13)c):

.

Owner Name	Operator Name	From	То	Relation to
				Teva
George B. and Adele	Unimproved Land	2/7/17	7/27/20	None
Smith	Portion of Parcel			
Daniel B. and	Unimproved Land	2/7/17	12/18/20	None
Margaretta Smith	Portion of Parcel			
Andrew B. Smith	Unimproved Land	12/18/20	?	None
Elli Steinbuch	Unimproved Land	?	1/25/38	None
(widow) et als				
Alan Investment	Unimproved Land	1/25/38	?	None
Elizabeth S.	Unimproved Land	?	11/20/62	None
Gunderson	_			
Waldwick Industrial	Unimproved Land	11/20/62	6/20/63	None
Park (Nigrito,				
President) and F.				
William and Margaret				
Koestner				
Paul and Antoinette	Unimproved Land	6/20/63	1/11/72	None
Nigrito and F. William				
and Margaret Koestner				
Biocraft Laboratories,	Biocraft Laboratories,	1/11/72	in or	Predecessor to
Inc.	Inc. (Plant constructed	i	about	Teva
	in or about 1972)		6/96	
Teva Pharmaceuticals	Teva Pharmaceuticals	in or	present	Same
USA, Inc.	USA, Inc. (Plant	about		
	ceased operations in or	6/96		
	about 1997)			

USEPA Request for Information 14): Answer the following questions regarding your business or company. In identifying a company that no longer exists, provide all the information requested, except for the agent for service of process. If your company did business under more than one name, list each name.

a) State the legal name of your company:

Response 14)a): Teva Pharmaceuticals USA, Inc.

17

b) State the name and address of the president or the chairman of the board or other presiding officers of your company:

Response 14)b): George Barrett is the President of Teva Pharmaceuticals USA, Inc., 1090 Horsham Road, North Wales, PA 19454-1090.

c) State the number of people employed by your company:

Response 14)c): Approximately 1327.

•

d) Identify the state of incorporation of your company and your company's agent for service of process in the state of incorporation and in New Jersey:

<u>Response 14)d)</u>: Teva Pharmaceuticals USA, Inc. is incorporated in Delaware. CT Corporation is Teva's agent for service of process in New Jersey and Delaware.

e) Provide a copy of your company's "Certificate of Incorporation" and any amendments thereto:

Response 14)e): Copies of the responsive documents are attached.

f) If your company is a subsidiary or affiliate of another company, or has subsidiaries, or is a successor to another company, identify these related companies. For each related company, describe the relationship to your company, indicate the date and manner in which each relationship was established:

<u>Response 14)f)</u>: This Request is overbroad and burdensome. However, responsive information generally can be found on the following websites: http://:www.Tevapharmusa.com and http://:www.Tevapharm.com and in the Form 20-F for fiscal year ended 12/31/02 filed by Teva Pharmaceutical Industries Limited, which can be accessed through the websites listed above.

g) Identify any predecessor organization and the dates that such company became part of your company.

<u>Response 14)g)</u>: This Request is overbroad and burdensome. See responsive information on: http://:www.Tevapharmusa.com.

18

h) Identify any other companies which were acquired by your company or merged with your company.

<u>Response 14)h)</u>: This Request is overbroad and burdensome. See responsive information on: http://:www.Tevapharmusa.com.

 i) Identify the date of incorporation, state of incorporation, agents for service of process in the state of incorporation and New Jersey, and nature of business activity for each company identified in the responses to items (14(e), (f), and (g), above:

<u>Response 14)i)</u>: This Request is overbroad and burdensome. See responsive information on: http://:www.Tevapharmusa.com.

j) Identify all previous owners or parent companies, address(es), and the date change in ownership occurred.

Response 14)j): This Request is overbroad and burdensome. See response 14)f) above.

USEPA Request for Information 15): Provide the name, address, telephone number, title and occupation of the person(s) answering this Request for Information" and state whether such person(s) has personal knowledge of the responses. In addition, identify each person who assisted in any way in responding to the "Request for Information" and specify the question to which each person assisted in responding. Please include the names and addresses of former employees who were contacted to respond to any of the questions.

<u>Response 15</u>): The certification of the responses to the USEPA's Request for Information is being made by:

Kirsten Bauer, Esq. Director, Legal Affairs Teva Pharmaceuticals USA, Inc. 1090 Horsham Road North Wales, PA 19454-1090 Phone: 215-591-3000

Ms. Bauer, an in-house lawyer at Teva, does not have personal knowledge of the responses, but has based the certification on her review of the information provided in

19

these responses and the accompanying documents and inquiries of the persons listed below who assisted in the preparation of Teva's responses. The following people assisted in the preparation of Teva's responses to the USEPA's Request for Information:

> Mark R. Foley Project Director Environmental Strategies Corporation 334 Elizabeth Avenue Suite B Somerset, NJ 08873 Phone: 732-564-0888

> > - and –

•

Gail S. Port, Esq. Senior Counsel Proskauer Rose LLP (outside counsel to Teva) 1585 Broadway New York, New York 10036-8299 Phone: 212-969-3000

Both Mr. Foley and Ms. Port assisted in preparing each of Teva's responses set forth above.

20

CERTIFICATION OF ANSWERS TO REQUEST FOR INFORMATION

State of PENNSYLVANEA :

County of MONTGOMERY :

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document (response to EPA Request for Information) and all documents submitted herewith, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete and that all documents submitted herewith are complete and authentic unless otherwise indicated. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. I am also aware that my company is under a continuing obligation to supplement its response to EPA's Request for Information if any additional information relevant to the matters addressed in EPA's Request for Information or the company's response thereto should become known or available to the company.

KISSTEN & Baver NAME (print or type)

Dicector Legal Affairs TITLE (print or type)

Noti S Baye

Sworn to before me this 14^{-12} day of Arr. 1 2003

Cynthia Wedman Notary Public Signature

Notarial Seal Cynthia J. Weldman, Notary Public Montgomery Twp., Montgomery County My Commission Expires Oct. 20, 2008 Member, Pennsylvania Association Of Noterine

RESPONSE 3)

۰,

854850022

.

TIERRA-B-008939

FORMER BIOCRAFT LABORATORIES, INC. WALDWICK PLANT WALDWICK, NEW JERSEY

TABLE 1

MATERIAL	S LIST

		Typical Annual Usage *	Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily
Substance Name	CAS Number	Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
	83-32-9	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Acenapthene	60-35-5	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Acetamide	64-19-7	10 L	Bottles or Jugs (glass)	2.5 L & 500 mL	Laboratories	Yes	1 - 10
Acetic Acid	108-24-7	10 L	Bottles or Jugs (glass)	2.5 L & 500 mL	Laboratorics	Yes	1-10
Acetic Anhydride	67-64-1	1,000,000 lbs	Bottles or Jugs (glass), AST	10,000 gal	Laboratories, Production, Tank Farm	Yes	100,001 - 250,000
Acelone	1	200 1.	Bottles or Jugs (glass)	2.51.	Laboratories	Yes	1-10
Acetonitrile	75-05-8	1	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Adipic Acid	124-04-09	50 g 100 lbs	Cylinder	Cylinder	Laboratories	Yes	11 - 100
Ammonia	7664-41-7		Bottles or Jugs (glass)	1 Kg	Laboratories	Yes	Less than 1 lb.
Ammonium Acetate	631-61-8	75 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Ammonium Bicarbonate	1066-33-7	50 g		500 g	Laboratories, Tank Farm	Yes	Less than 1 lb.
Ammonium Chloride	12125-02-9	50 g	Bottles or Jugs (glass), Bag	2.5 L	Laboratories	Yes	1-10
Ammonium Hydroxide	1336-21-6	10 L	Bottles or Jugs (glass)	2.5 L 2.5 L	Laboratories	Yes	1-10
Ammonium Nitrate	6484-52-2	10 L	Bottles or Jugs (plastic)		Laboratories	Yes	Less than 1 lb.
Ammonium Oxalate	1113-38-8	50 g	Bottles or Jugs (glass)	125 g		Yes	Less than 1 lb.
Ammonium Persulfate	7727-54-0	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Ammonium Thiocyanate	1762-95-4	50 g	Bottles or Jugs (glass)	1 Kg	Laboratories		
Aniline	62-53-3	1 11	Bottles or Jugs (glass)	IL	Laboratories	Yes	Less than 1 lb.
Anthracene	120-12-7	50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Antimony	7440-36-0	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Arsenic Trioxide	1327-53-3	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Benzene	71-43-2	4 L	Bottles or Jugs (glass)	500 ml.	Laboratories	Yes	Less than 1 lb.
Benzoic Acid	65-85-0	11.	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Benzoyl Chloride	98-88-4	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Benzyl Chloride	100-44-7	11	Bottles or Jugs (glass)	500 mL	1.aboratorics	Yes	F - 10
Bervllium Sulfate	13510-49-1	50 g	Bottles or Jugs (glass)	25 g	Laboratorics	Yes	Less than 1 lb.
Z-Butanol	78-92-2	10 L	Bottles or Jugs (glass)	1L	Laboratorics	Yes	1 - 10
N-Butanol	71-36-3	10 L	Bottles or Jugs (glass)	1L	Laboratories	Yes	Less than 1 lb.
Butyl Acetate	123-86-4	IOL I	Bottles or Jugs (glass)	1L	Laboratories	Yes	Less than 1 lb.

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams

L - Liters

Kg - Kilograms

lbs - pounds

TABLE 1 Continues...

Substance Name	CAS Number	Typical Annual Usage *	Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily
		Quantity Units	Container Type	Container Size	Destroit reges to Estation map	On-Site	Quantity (lbs.)
Cadmium	7440-43-9	50 g	Botties or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Carbon Disulfide	75-15-0	1 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Carbon Tetrachloride	56-23-5	1 L	Bottles or Jugs (glass)	500 mL	Laboratorics	Yes	Less than 1 lb.
Chlorobenzene	108-90-7	16	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	Yes	Less than 1 lb.
Chloroform	67-66-3	11.	Bottles or Jugs (glass)	1 L & 500 ml.	Laboratories	Yes	1 - 10
Chlorophenol	95-57-8	11	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	Yes	Less than 1 lb.
Chromium	7440-47-3	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Chromium Chloride	10025-73-7	100 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Cupric Acetate	142-71-2	25 g	Bottles or Jugs (glass)	250 g	Laboratorics	Yes	Less than 1 lb.
Cupric Chloride	1344-67-8	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Cupric Sulfate	10380-29-7	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Cyclohexane	110-82-7	11	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1 - 10
1,2-Dichlorobenzene	95-50-1	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Dichloromethane	75-09-2	See Methylene Chloride	Bottles or Jugs (glass), AST, Steel Drum	10,000 gallon tank	Laboratories, Tank Farm, Production	Yes	
N,N Dimethyl Aniline	121-69-7	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	100,001-250,000
Diethylamine	109-89-7	50 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	1-10
Diethyl Ether	60-29-7	50 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb.
Diethyl Phthalate	84-66-2	500 mi.	Bottles or Jugs (glass)	500 mL	Laboratories	1 ·	Less than 1 lb.
Dimethyl Dichlorosilane	75-78-5	500 mL	Bottics or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
1,4 Dioxane	123-91-1	2.5 L	Bottles or Jugs (glass)	500 mL		Yes	1-10
Diphenyl Amine	122-39-4	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Ethyl Acetate	141-78-6	1 I L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Ethyl Chloroformate	541-41-3	50 g	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
Ethylene Dichloride	107-06-2	11.	Hottles of Jugs (glass)	150 ml.	Laboratorics	Yes	11-100
Ethylene Glycol	107-21-1	4,000 lbs	Steel Drum		Laboratorics	Yes	Less than 1 lb.
Ferric Chloride	7783-50-8	200 g	Can	55 gallon	Laboratories, Tank Farm	Yes	10,001-50,000
Ferric Nitrate	10421-48-4	100 Kg	Botties or Jugs (glass)	500 g	Laboratories	Yes	1-10
Ferrous Ammonium Sulfate	10045-89-03	250 g	Bottles of Jugs (glass) Bottles or Jugs (glass)	20 L Carboy/50 g bottle	Laboratories	Yes	1-10
Ferrous Sulfate	7720-78-7	250 g	Bottles or Jugs (glass) Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Notes:		200 g	Courtes of Jugs (glass)	500g	Laboratorics	Yes	1-10

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams L - Liters

Kg - Kilograms lbs - pounds

` .

TABLE 1 Continues ...

4

Formic Acid64-Fucl Oil (#2)1Ilydrazine Sulfate1003-Ilydrochloric Acid7647Hydrogen Peroxide7722Ilydrogen Sulfide7783Ilydroquione123-Isobutanol78-Isobutyl Acetate110-Isopropanol67-Lead7439Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	00-0 18-6 - 4-93-2 -01-0 -84-1 -06-4 -31-9 83-1 -19-0	antity Units 1 L 10 L. 60,000 gal 500 g 60,000 lbs 1 L 10 lbs 25 g	Container Type Bottles or Jugs (glass) Bottles or Jugs (glass) UST Bottles or Jugs (glass) Bottles or Jugs (glass), AST Bottles or Jugs (glass) Cylinder	Container Size I 50 mL I L 6,000 gallon tank 500 g 6,000 gallon tank I L	Location/Keyed to Location Map Laboratories Laboratorics Tank Farm Laboratories Laboratories, Tank Farm, Production	To Remain On-Site Yes Yes Ycs Yes Yes	Maximum Daily Quantity (lbs.) 1-10 Less than 1 lb. 50,001-100,000 Less than 1 lb. 50,001-100,000
Formic Acid 64- Fuel Oil (#2) Hydrazine Sulfate 1003- Hydrochloric Acid 7647 Hydrogen Peroxide 7722 Hydrogen Sulfide 7783 Hydroquione 123- Isobutanol 78- Isobutyl Acetate 110- Isopropanol 67- Lead Acetate 301- Lead Acetate 301- Lead Sulfide 1314 Mercuric Acetate 1600	18-6 - 4-93-2 -01-0 -84-1 -06-4 -31-9 83-1 -19-0	10 L. 60,000 gal 500 g 60,000 lbs 1 L 10 lbs 25 g	Bottles or Jugs (glass) UST Bottles or Jugs (glass) Bottles or Jugs (glass), AST Bottles or Jugs (glass) Cylinder	IL 6,000 gallon tank 500 g 6,000 gallon tank IL	Laboratorics Tank Farm Laboratorics Laboratorics, Tank Farm, Production	Yes Yes Yes	1-10 Less than 1 lb. 50,001-100,000 Less than 1 lb.
Fuel Oil (#2)Ilydrazine Sulfate1003-Ilydrochloric Acid7647Ilydrogen Peroxide7722Ilydrogen Sulfide7783Ilydroquione123-Isobutanol78-Isobutyl Acetate110-Isopropanol67-Lead7439Lead Acetate301-Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	- 4-93-2 -01-0 -84-1 -06-4 -31-9 83-1 -19-0	60,000 gal 500 g 60,000 lbs 1 L 10 lbs 25 g	UST Bottles or Jugs (glass) Bottles or Jugs (glass), AST Bottles or Jugs (glass) Cylinder	6,000 gallon tank 500 g 6,000 gallon tank ł L	Tank Farm Laboratories Laboratories, Tank Farm, Production	Ycs Yes	50,001-100,000 Less than 1 lb.
Hydrazine Sulfate1003-Hydrochloric Acid7647Hydrogen Peroxide7722Hydrogen Sulfide7783Hydroquione123-Isobutanol78-Isobutyl Acetate110-Isopropanol67-Lead7439Lead Acetate301-Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	-01-0 -84-1 -06-4 -31-9 83-1 -19-0	500 g 60,000 lbs 1 L 10 lbs 25 g	Bottles or Jugs (glass) Bottles or Jugs (glass), AST Bottles or Jugs (glass) Cylinder	500 g 6,000 gallon tank 1 L	Laboratories Laboratories, Tank Farm, Production	Yes	50,001-100,000 Less than 1 lb.
Hydrochloric Acid7647Hydrogen Peroxide7722Hydrogen Sulfide7783Hydroquione123-Isobutanol78-Isobutyl Acetate110-Isopropanol67-Lead7439Lead Acetate301-Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	-01-0 -84-1 -06-4 -31-9 83-1 -19-0	60,000 lbs 1 L 10 lbs 25 g	Bottles or Jugs (glass), AST Bottles or Jugs (glass) Cylinder	6,000 gallon tank 1 L	Laboratories, Tank Farm, Production		Less than 1 lb.
Hydrogen Peroxide7722Hydrogen Sulfide7783Hydroquione123-Isobutanol78-Isobutyl Acetate110-Isopropanol67-Lead7439Lead Acetate301-Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	-84-1 -06-4 -31-9 83-1 -19-0	1 L 10 lbs 25 g	Bottles or Jugs (glass) Cylinder	1L		Yes	
Hydrogen Sulfide7783Hydroquione123-Isobutanol78-Isobutyl Acetate110-Isopropanol67-Lead7439Lead Acetate301-Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	-06-4 -31-9 83-1 -19-0	10 lbs 25 g	Cylinder	1L			
Hydroquione123-Isobutanol78-Isobutyl Acetate110-Isopropanol67-Lead7439I.ead Acetate301-Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	-31-9 83-1 -19-0	25 g			Laboratories	Yes	Less than 1 lb.
Isobutanol 78- Isobutyi Acetate 110- Isopropanol 67- Lead 7439 Lead Acetate 301- Lead Nitrate 1009 Lead Sulfide 1314 Mercuric Acetate 1600	83-1 -19-0			Cylinder	Laboratorics	Yes	Less than 1 lb.
Isobutyl Acetate110-Isopropanol67-Lead7439Lead Acetate301-Lead Nitrate1009Lead Sulfide1314Mercuric Acetate1600	-19-0		Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Isopropanol67-1Lead7439Lead Acetate301-Lead Nitrate10099Lead Sulfide1314Mercuric Acetate1600		25 L	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
Lead 7439 Lead Acetate 301- Lead Nitrate 10099 Lead Sulfide 1314 Mercuric Acetate 1600		25 L	Bottles or Jugs (glass)	41.	Laboratories	Yes	Less than 1 lb.
Lead Acetate 301- Lead Nitrate 10099 Lead Sulfide 1314 Mercuric Acetate 1600	63-0	50 L	Bottles or Jugs (glass)	4 L	Laboratories	Yes	1-10
Lead Nitrate 10099 Lead Sulfide 1314 Mercuric Acetate 1600	-92-1	25 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Lead Sulfide 1314 Mercuric Acetate 1600	-04-3	25 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Mercuric Acetate 1600	9-74-8	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
	-87-0	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
	-27-7	25 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb.
	4-48-8	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
	8-53-2	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
	-35-9	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
	-26-7	I L	Bottles or Jugs (glass)	าเ	Laboratorics	Yes	Less than 1 lb.
	-97-6	l Kg	Bottles or Jugs (plastic)	500 g	Laboratories	Yes	1-10
,	-86-4	10 L	Bottles or Jugs (glass)	11	Laboratorics	Yes	Less than 1 lb.
•	56-1	100 L	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
	93-3	4 L	Bottles or Jugs (glass)	4L	Laboratorics	Yes	1-10
	-10-1	1 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
	09-2	2,500,000 lbs	AST	10,000-gallon tank	Tank Farm, Production	Yes	50.001-100.000
	-27-5	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
	20-3	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
	3-54-9	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Nickel Sulfate 7786	-81-4	50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.

Notes: * - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated. g - grams L - Liters Kg - Kilograms lbs - pounds

854850025

ъ

TABLE 1 Continues ...

Substance Name	CAS Number	Typical Annual Usage *	Storage Metho	Storage Method L		To Remain	Maximum Daily
		Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
Nitric Acid	7697-37-2	10 L	Bottles or Jugs (glass)	IL I	Laboratories	Yes	1-10
Nitrobenzene	98-95-3	2 L	Bottles or Jugs (glass)	1L	Laboratories	Yes	1-10
2-Nitrophenol	88-75-5	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Pentachlorophenol	87-86-5	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Peracetic Acid	79-21-0	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Phenacetin	62-44-2	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Phenol	108-95-7	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Phosphoric Acid	7664-38-2	10 L	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	Yes	1-10
Phosphorous Pentachloride	10026-13-8	500 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Phosphorous Trichloride	7719-12-2	25 mL	Bottles or Jugs (glass)	25 mL	Laboratories	Yes	Less than 1 lb.
Picoline	109-06-8	250 mi.	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Potassium Bromate	7758-01-2	50 g	Bottles or Jugs (glass)	500 g	Laboratorics	Yes	1-10
Potassium Chromate	7789-00-6	500 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	1-10
Potassium Cyanide	151-50-8	25 g	Bottles or Jugs (glass)	25 g	Laboratories	Yes	Less than 1 lb.
Potassium Dichromate	7778-50-9	50 g	Bottles or Jugs (glass)	100 g	Laboratorics	Yes	1-10
Potassium Hydroxide	1310-58-3	11.	Bottles or Jugs (glass)	11.	Laboratories	Yes	1-10
Potassium Permaganate	7722-64-7	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Pyrene	129-00-0	11	Bottles or Jugs (glass)	11.	Laboratories	Yes	Less than 1 lb.
Pyridine	110-86-1	10 L	Bottles or Jugs (glass)	11	Laboratorics	Yes	1-10
Quinoline	91-22-5	I L	Bottles or Jugs (glass)	1 1L	Laboratories	Yes	Less than 1 lb.
Rancy Nickel	7440-02-0	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Saecharin	81-07-2	100 lbs	Bottles or Jugs (glass)	30 gallon containers	Laboratories	Yes	11 - 100
Semicarbazide Hydrochloride	563-41-7	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Silver Nitrate	7761-88-8	25 g	Botties or Jugs (glass)	30 g	Laboratories	Yes	Less than 1 lb.
Sodium	7740-23-5	I Kg	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sodium Arsenate	7631-89-2	25 g	Bottles or Jugs (glass)	250 g	Laboratorics	Yes	Less than 1 lb.
Sodium Azide	26628-22-8	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.

Notes: * - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams L - Liters

Kg - Kilograms Ibs - pounds

854850026

.

.

.

TABLE | Continues

Substance Name	ance Name CAS Number Typical Annual Usage * Storage Method			Location/Keyed to Location Map	To Remain	Maximum Daily	
Jubstance Hanne	0.10 11010	Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
Sodium Chlorate	7775-09-9	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sodium Dichromate	10588-01-9	1 Kg	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Sodium Fluoride	7681-49-4	50 g	Bottles or Jugs (glass)	500 g	Laboratorics	Yes	Less than 1 lb.
Sodium Hydride	7646-69-7	50 g	Can	500 g	Laboratories	Yes	1-10
Sodium Hydroxide	1310-73-2	60,000 lbs	Bottles or Jugs (glass), Steel Drum, AST	6,000 gal	Laboratorics	Yes	11-100
	7681-52-9	10 L	Plastic Drum	11	Laboratories	Yes	11-100
Sodium Hypochlorite	124-41-4	500 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	1-10
Sodium Methoxide	1313-82-2	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sodium Sulfide	7664-93-9	50 g	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
Sulfuric Acid	127-18-4	1L	Bottles or Jugs (glass)	500 mL	Laboratorics	Yes	1-10
Tetrachloroethylene	109-99-9	11	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
Tetrahydrofuran	62-55-5	500 g	Bottles or Jugs (glass)	125 g	Laboratorics	Yes	1-10
Thioacetamide	62-55-5	50 g	Bottles or Jugs (glass)	125 g	Laboratorics	Ycs	Less than 1 lb.
Thiourca		50 L	Bottles or Jugs (glass)	4L	Pilot Plant Laboratories, Tank Farm	Yes	1,001-10,000
Tolucne	108-88-3	11.	Bottles of Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Trichloroethylene	79-01-6	30,000 lbs	Bottles or Jugs (glass), Steel Drum	55 gallons	Laboratories, Tank Farm, Production	Yes	1,001-10,000
Triethylamine	121-44-8	50,000 lbs	Bottles of Jugs (glass), Steel Diam Bottles or Jugs (glass)	50 g	Laboratorics	Yes	1-10
Triethylchlorosilane	75-77-4		Bottles of Jugs (glass)	500 g	Laboratories	Yes	1-10
Uranyl Acetate	541-09-3	50 g		500 g	Laboratories	Yes	Less than 1 lb.
Uranyl Nitrate	10102-06-4	50 g	Bottles or Jugs (glass) Steel Drum	55 gallons	Tank Farm, Boiler Room	Yes	11-100
Waste Oil		500 gal			Laboratories, Tank Farm, Production	Yes	50,001-100,000
Waste Waters (acetone)	67-64-1	70,000 lbs	Bottles or Jugs (glass)	10,000 gallon tank	Laboratories	Yes	Less than 1 lb.
Zinc Acetate	557-34-6	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Zinc Chloride	7446-85-7	50 g	Bottles or Jugs (glass)	500 g			Less than 1 lb.
Zinc Sulfate	7733-02-0	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams

L - Liters

Kg - Kilograms Ibs - pounds

RESPONSE 6)d)

8548500**28**

وستعاصبون معادية ويراجع والمنافي المراجع

THIS MAP CAN BE FOUND IN THE SITE FILE LOCATED AT: U.S. EPA SUPERFUND RECORDS CENTER, 290 BROADWAY, 18TH FLOOR, NY,NY 10007

Tectonic, Associates Engineers Engineers Boling Boling PLULIDING PLAN

TIERRA-B-008946

THIS MAP CAN BE FOUND IN THE SITE FILE LOCATED AT: U.S. EPA SUPERFUND RECORDS CENTER, 290 BROADWAY, 18TH FLOOR, NY,NY 10007

TOPOGRAPHICAL SURVEY BOSWELL ENGINEERING CO. of ____` LOT 46 BLOCK 154 BOROUGH OF WALDWICK BERGEN COUNTY, N.J. HOWARD L. BOSWELL N.J. P.E&L.S.7613 mode for WALDWICK,N.J. BIOCRAFT LABORATORIES RIDGEFIELD PARK N JOB Nº 76-258 SHEET Nº I OF I DEC.1978

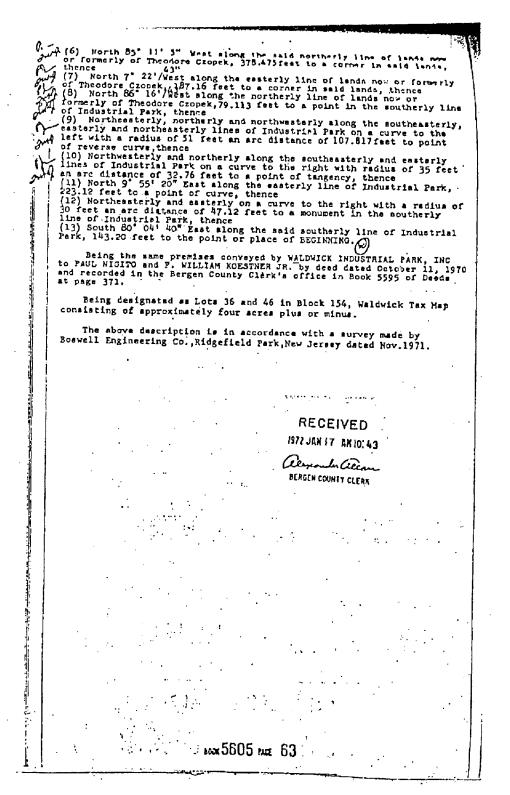
÷ .

854850029A

...................

TIERRA-B-008947

RESPONSE 13)a)

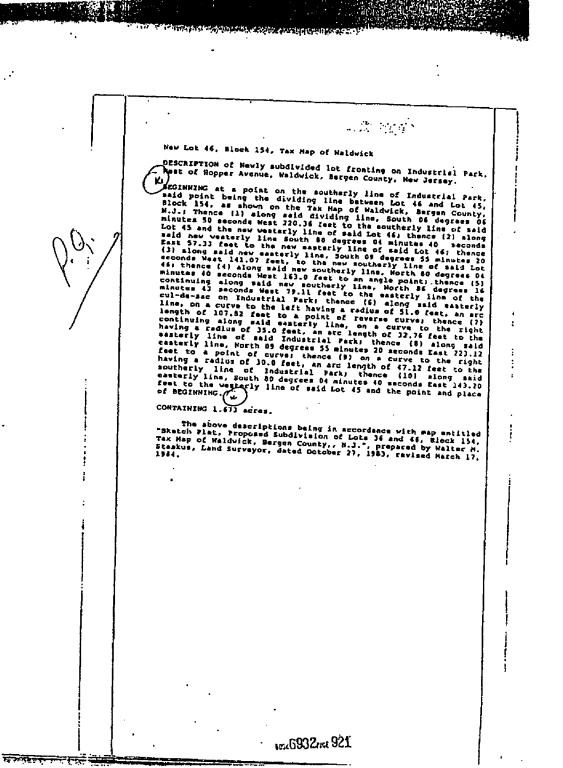

÷

854850030

TIERRA-B-008948

1551 Hander Mitter opt ELEVENTH-Mode the In the year of our Lord One Thousand Nine Hundred and eventy-two. PAUL NIGITO and ANTOINETTE HIGITO, his wife, residing at 936 Fifth Avenue, in the Borough of River Edge, Bergen County, New Jersey Wettmeen . AND P. WILLIAM KOESTNER JR and MARGARET E. KOESTNER, his wife residing at 27 Kramer Drive o/ Paramus County of Bergen in the Borough and State of New Jersey party of the first part; And BIOCRAPT LABORATORIES, INC. a Corporation of the State of New Jersey with its principal office at 92 Route \$46County of in the of EastStaterson Bergen Borough New Jersey and State of party of the second part; Witnesseth, That the said party of the first part, for and in consideration of One hundred 164N - A 6 1.43 Sixty-five thousand (\$165,000) dollars lawful money of the United States of America, to them In bend well and truly paid by the sold party of the second part, at or before the scaling and delivery of these presents, the seccipt whereaf is hereby acknowledged, and the said party of the first part being therewith fully satisfied, contented and paid, he we given, granted, bargained, sold, allened, released, enleoffed, conveyed and confirmed and by these presents do ... give, grant, bargain, sell, allan, release, saleaff, touvey and confirm unto the said patty of the second part, and to its successors and assigns, forever. 95 (I that tract or parcel of land and premises, hereinsteer particularly described, altuate, lying and being In the Borough of Waldwick County of Bergen and State of New Jersey end State of New Jersey BEGINNING at a point in the southerly line of a road known as Industrial Park, which point is distant 365.00 feet westerly from a point formed by the intersection of the southerly line of Industrial Park, if produced, with the new westerly line of Hopper Avenue, if produced, as shown on map entitled "Pinal Plat, Waldwick Induatrial Park, located in the Borough of Waldwick, Bergen County, New Jersey", dated March 10, 1964 and filed in the office of the Clerk of the County of Bergen on May 26, 1964 as Map No., 6150, which point is in the northwesterly corner of lands now or formerly of Werner & Pfleiderer Corporation, and from thence running (1) South 6° 06' 50" West along the westerly line of lands now or formerly of Wormer & Pfleiderer Corporation, 220.36 feet to a corner formerly of Werner & Friedderer Corporation, 200-30 ists to - contain of said lands, thence (2) South 80.041 40" East along the southerly line of lands now or formerly of Werner & Pfleiderer Corporation, 170 feet, thence (3) South 81° 071 50", East still along the said southerly line of lands now or formerly of Werner & Ffleiderer Corporation, 170 feet to a point in the said new westerly line of Hopper Avenue, thence: (4) South 12° 40' West along the said new westerly line of Hopper Avenue. 30.566 feet Lo.a bend in same. thence: Q, (4) South 12 40, West slong the sale new westerly line of hopper Avenue, 39.566 feet 24 a bend in same, thence
 (5) South 12 28 / East stillalong the new westerly line of Hopper Avenue, 249.919 feet to a point in the northerly line of lands now or formerly of Theodore Czopek, thence 216 14 Ju (cont'd) (men)

854850031


羽

Courther with all and singul referer, with the opportunences to the passe belonging of in s Miso, all the estate, right, title, interest, property, cloim and demand where 147. **H** party of the first part; of, in and to the same, and af, in and to every part and parted thereof, We habt and is Holl all and singular the above described land and premises, with the apputenances, unto the said party of the second part, _ 1to successors heirs and assigns, to the only proper use, benefit and behoof of the sold party of the second part, " bairs, and assigns forever: its successors 1 gind the seld PAUL NIGITO and ANTOINETTE NIGITO, his wife, and F.WILLIAM KOESTNER JR. and MARGARET E. KOESTNER, his wife, こうせい たい 日本 いたい far their beirs, executers and administrators, do covenant. promise and agree to and with the sold party of the second part, its successors and assigns that they have not made, done, committed, executed of suffered any act or acts, thing or things whatsoever, whereby or by means whereof the above mentioned and described premises, or any part or pareel thereof, now are, of at any time beseafter shall or may be impeached, charged or encumbered, in any manner or way whatsnever. In Witness Withereof, the part iss of the first part de ve attheir hand a and 1 seal & or caused these presents to be signed by its proper corporate officers and caused its proper corwithin porate scal to be hereunto offixed, the day and year first abov and the second second second Signed, Bealeb and Belibereb in the Presence of :,* geli. C 1 WALL AFALLOS er predic of nev nasci VIIIIA Franz hay an: Hile 🗧 ÷ . 🗸 Deed Prepared by F. William Koestner Jr. . 100x 5605 MAR. 64 ÷

1-5 78 11th مدر مه before me, the subscriber, a Mobary Public of New Jarasy presending appeared Faul Higito, and Antoinette Higito, his wife P. William Kowstner Jr. and Margaret E. Kowatner, hiswife the granter membroed in the within De signed, sealed and delivated the some as who, I am satisfied. A.F.C Who, a am servance, are a standard of the some of the set and deed, reality evidenced 0.9. fel Yores di WELK ROTTAY PUBLIC OF NEW JERSEY My Commission Explored July 20, 1078 STATE OF NEW JERSEY, {*** COUNTY OF BE IT REMEMBERED, that on this day of 19 before me, the subscriber, a personally appeared who, being by me duly sworn on h that each, doth depose and make proof to my satisfaction, that — he is the the grantor named in the within Deed, that is the that of said corporation; that the execution as well as the making of this Deed, has been duly authorized by a proper resolution of the Board of well knows the corporate said of and corporation; and the seal affared to said Deed is such corporate said and was there is affared, and said Deed signed and delivered by said and was there is affared, and said Deed signed and delivered by said as and for the voluntary set and deed of said corporation, in presence of deponent, who thereupon sub-scribed h name thereto as winerss. The full and actual consideration paid or to be paid for the transfer of this to the train by the within deed, as such consideration is defined in P.L. 1868, c. 49, Sec. 1(c), is \$ n to and subscribed before me, the date aforessid. And Cohen, P.A. KOESTNER, his wife ·X. /-PAUL NIGITO and ANTOINETTE NIGITO, MAR. wife, 17 DEce of bos and a DEEDS for 163.00 17325 To P. WILLIAM KOESTNER, JR. And 2 ٩, BIOCRAFT LABORATORIES, INC. Boulevard Jersey 07102 New Jersey Corporation man,Frenzblau & New Jersey ц, Deter. JANUARY elock, la the uid County, on page 2 , Kertheb In the day Recorded in Book Raymond 2433 10.25 ы the Councy of MARGARET . . REWTER, L180 t -5 211170 ----Max 5605 max 65 UP DOCUMENT

and the second second

ALL-STATE LEGAL BUTTLY CO. MIS Blue. Cranbrel M.J. BODIS Allen Y 11.5 DEED This Deed is made on APRIL 17 - ¹⁹85 3 BETWEEN BIOCRAFT LABORATORIES, INC., A DELAWARE CORPORATION 5 õ 8 影 92 ROUTE 46, Elmwood Park, New Jazaay referred to as the Granter, AND 3 5 BIOCRAFT LABORATORIES, INC., A DELAWARE CORPORTION 12021 ie post office address is \$2 ROUTE 46, ELKNOOD PARK, NEN JERSEY, " Х rds "Granter" and "Grante" shall mean all Grantors and all Grantets listed above. ransfer of Ownership. The Greater granic and curveys firansfers aumership ofs the property below to the Granize. This transfer is made for the sum of One (\$1-00) DOLLAR The Grantur acknowledges receips of this NY. Tas Map Reference. (N.J.S.A. 46:13-2.1) Municipality of Bluck No. 154 Los No. 46 No property too kensification number is available on the date Maldwick Arrount N کر the date of this deed, sthest Freperty. The property coasins of the land and all the buildings and structures of the BOROUGH of MALDWICK County of BERGEN and State of New Jerry. The kyst description is: Description of Newly subdivided lot fronting on Hopper Avenue, South of Industrial Park, Waldwick, Bergen County, New Jersey. A Section of the state of and servenues on the lund in Description of Newly source and the set of t Avenus, The stand of the second RECEIVED く Prepared by: . GARY C. FALK Attornsy of How Jersey 101.6932mit 920

. · · · . . • ÷ • • • **"*** Promises by Grantas. The Grantae promises that the Grantae had done no act to encumber the property. This promise is earled a "covernment as so granter's acts" (NJ.S.A. 464-8). This promise means that the Grantae has not allowed anyone clus to obtain any legal eights which a Next the property (such as by making a morigage or allowing a judgment to be entered against the Grantae J. Signatures. The Granese signs this Deci as of the sale at the top of the first page. XXXXXXXXXXXX Attest: BJOCRAFT_LABORATORIES, INC. ISeni) A DELMARE CORFORMATION HELLING CONFORMATION BY HELLING CONFORMATION HAROLD SNYDER, PRESIDENT Better Jogel BEATRICE SNYDER, Secretary TATE OF DEW JEASEY, COUNTY OF SS.: . 19 . I CERTIFY that an before me • . programme and tak infer operates . . • · · in: 6932 at 922 .

٠. :

Ę

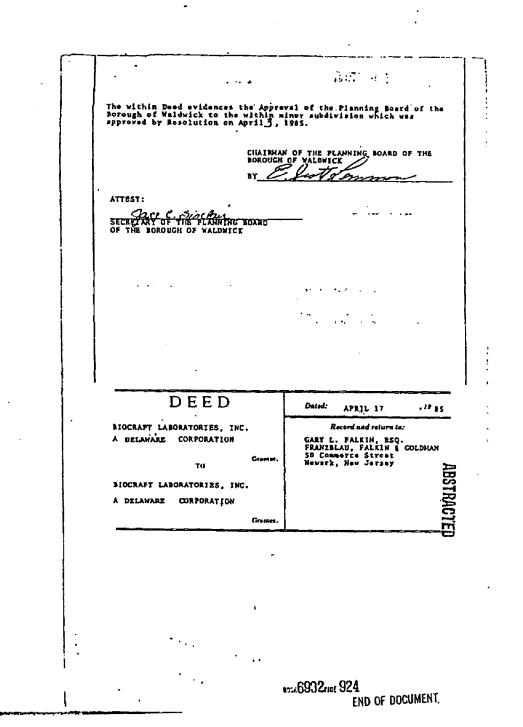
.

.....

12. LECOMPACT, Corporate Address Microsoft Plants & COPY • . . ٠ . \$. ļ. STATE OF NEW JERSEY, COUNTY OF BERGEN \$5.: I CERTIFY that on APRIL . 19 85 BEATRICE SHYDER prisonally cannot before me and this period actnowledged under oath, to my minifaction, that: (a) this person is the corporation activerency of BIOCRAFT LABORATORIES, INC.
 (b) this person is the stretching witness to the signing of this document by the proper corporate offices who is HAROLD SNYDER.
 (c) this document was signed and delivered by the corporation is its valueary set duty authousing by a proper modulion of his Board of Directors;
 (d) this person ignored this proper total of the corporation is its valueary set duty authousing by a proper modulion of his Board of Directors;
 (d) this person signed this proof to atta to the truth of these faces,
 (f) this document by signed and delivered by the truth of these faces,
 (f) this document to balance me on (2) mode chils Deed for \$1.00 of Signed and Juwen to before me on Signed and Juwen to before me on Struct 13. 19 gs A HOTARY PUBLIC OF NEW JERSEY MY, COMM. EXPIRES Transform JERSEY PALODO AND TRANSFORMED TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A STRUCTURE TO A STRUCTURE TO A STRUCTURE A STRUCTURE TO A <u>Autuin</u> Land-BEATRICE SNYDER, SECRETARY All ic 100.6932 111 922 A

854850038

TIERRA-B-008956


	5 ,	
•		

•	
	:
	•
	• #• • • • • •
AFFIDAVITO AFFIDAVITO CON	OF NEW JERSEY ALL-BIATELEBAL BLOVLY CD SIDERATION OR EXEMPTION One Constants Drug Conduct & J & Biels ABADY 1-1 ABADY 1-1 ABADY 1-1
	49, P.L. 1994) AD489 3-1 of IAL EXEMPTION
ia. 1	176, P.L. 1973) mt.es. 47, P.L. 1946 (M.J.S.A. 46:15-3 et seq.)
	A second pro-
COUNTY OF ESSEX	Reality Typerky Figes
(I) PARTY OR LEGAL REPRESENTATIVE (See Law	"Use symbol "C" to indista that has is enclosively for eventy use. Inuctions #3, 4 and 2 an excess side?
Department, GARY L. FALKIN	beine dule sugge seraedine to has used his thes such descent of
LEGAL REPRESENTAT	TIVE 🗄
	a und Lucastante, Caracter Million and Professional and a state of the
	Ustrial Way, Waldwick, New Jersey
	the time time to and
(2) CONSIDERATION (Set leuracies 64)	and some sed herrie.
remaining annound of any price mensagers to being being on any public of the second se	
PURPOSE OF DEED IS TO RE	
LATEGORT MUST BE CHECKED, Fallers in the second sec	All boass behave apply to generately only. ALL BOXES IN APPROPRIATE big chains for particle correstors. (Lee Instruction 62) the instigued particle of the Reality Terrular Per Imposed by c. 176, P.L. 1935
a) SENIOR CITIZEN (See (Intruction P)) Granioriti 62 yrs. af 250 or bruz."	P
La. One ar two-femily residential premises.	Owned and secupied by granadis as time of sale. Ne John sweets what then appears we ether specified exempt ow nert. To
b) BLIND (See Instruction #2) Generacy, hyany bind.*	Trend and percepted by granin(s) as time of sale.
One or two-family periodenial prominet.	Owned and secopied by granizers) as time of sole. No joins owners abor than sponse or ather gatifiers as emprowers.
4) DISABLED (See Instruction 52) Cromon(s) permanently and intuity disabled.*	Owned and accupied by groundstat at firms of sole.
A One or two family residential promises.	Durind and accupied by grounderfit at time of sole. How gelofulty simplayed. No Joint conservation than spouse or other yes hilled sampt owners. 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
THE THE CASE OF MUSEAND AND WIPE, BALLY GAL GRANTER WEED DUGLETY.	
u) MEW CONSTRUCTION (See Insuranipe 28)	¢.
2 La Nat previously used for any purpose,	6
	or Register of Doeds to ecourd the defit and secart the fee submined berewith
Subscribed and Swarn to balans me this 20 t.b	R
Macane C. Furnar	GARY L. FACTN Attorney at Lay of New Jersey
PHARGARET C. FIRMAN	Time of Papers
NOTARY PUBLIC OF NEW JE KY COMM, EXPIRES 4/18/8	
FOR OFFICIAL USE ONLY THE	pees for use of County Clerk or Register of Dends.
Deci Number	
Doud Dated	LEASE RECORDED ON THE REVEASE GLOC HEREON.
Web family and the second s	he Coperances of the Trickburg, og speadred by iow, and meg net be skered ar

1756 ft932au 923

854850039

.

A HEALTH ALTERNA

14

4

RESPONSE 14)e)

8548500**41**

Delaware

The First State

I, HARRIET SMITH WINDSOR, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY THE ATTACHED ARE TRUE AND CORRECT COPIES OF ALL DOCUMENTS ON FILE OF "TEVA PHARMACEUTICALS USA, INC." AS RECEIVED AND FILED IN THIS OFFICE.

THE FOLLOWING DOCUMENTS HAVE BEEN CERTIFIED:

CERTIFICATE OF INCORPORATION, FILED THE TWENTY-EIGHTH DAY OF JANUARY, A.D. 1985, AT 3 O'CLOCK P.M.

CERTIFICATE OF OWNERSHIP, FILED THE THIRTIETH DAY OF JANUARY, A.D. 1985, AT 10 O'CLOCK A.M.

CERTIFICATE OF AMENDMENT, FILED THE TEIRTIETH DAY OF OCTOBER, A.D. 1986, AT 9 O'CLOCK A.M.

CERTIFICATE OF MERGER, FILED THE THIRTY-FIRST DAY OF MAY, A.D. 1996, AT 11 O'CLOCK A.M.

CERTIFICATE OF AGREEMENT OF MERGER, FILED THE TWENTY-SIXTH DAY OF JULY, A.D. 1996, AT 1:01 O'CLOCK P.M.

CERTIFICATE OF OWNERSHIP, CHANGING ITS NAME FROM "BIOCRAFT LABORATORIES, INC." TO "TEVA PHARMACEUTICALS USA, INC.", FILED THE TWENTY-SIXTH DAY OF JULY, A.D. 1996, AT 1:02 O'CLOCK P.M.

AND I DO HEREBY FURTHER CERTIFY THAT THE AFORESAID CERTIFICATES ARE THE ONLY CERTIFICATES ON RECORD OF THE

2053734 8100H 030231803

Iarriet Smith Windson, Secretary of State

AUTHENTICATION: 2355018

DATE: 04-08-03

Delaware

The First State

AFORESAID CORPORATION.

2053734 8100H

030231803

PAGE

Harriet Smith Windson, Secretary of State

AUTHENTICATION: 2355018

DATE: 04-08-03

1.725028100

CERTIFICATE OF INCORPORATION OF BIOCRAFT LABORATORIES, INC. FILED JUN 20 105 Pm Michael Herkins Secretary of Atom

The undersigned, a natural person, for the purpose of organizing a corporation pursuant to the provisions of the General Corporation Law of the State of Delaware, does make and file this Certificate of Incorporation and does hereby certify as follows:

FIRST: The name of the corporation is Biocraft Laboratories, Inc. (hereinafter referred to as the "Corporation").

<u>BECOND</u>: The address of the Corporation's registered office in Delaware is Corporation Trust Center, 1209 Orange Street, City of Wilmington, County of New Castle. The name of its registered agent at such address is The Corporation Trust Company.

THIRD: The nature of the business and purposes to be conducted or promoted by the Corporation is to engage in any lawful act or activity for which corporations may be organized under the General Corporation Law of the State of Delawars.

FOURTH: I. The aggregate number of shares which the Corporation shall have authority to issue is twenty two million {22,000,000} shares, of which twenty million (20,000,000} shares

shall be common stock of the par value of \$.01 each (the "Common Stock") and two million (2,000,000) shares shall be preferred stock of the par value of \$1.00 each (the "Preferred Stock").

II. The Board of Directors of the Corporation is authorized, subject to limitations prescribed by law and the provisions of this Article FOURTH, to provide for the issuance from time to time in one or more series of any number of shares of Preferred Stock, and, by filing a certificate pursuant to the Corporation Law of the State of Delaware, to establish the number of shares to be included in each such series, and to fix the designation, relative rights, preferences, qualifications and limitations of the shares of each such series. The authority of the Board of Directors with respect to each series shall include, but not be limited to, determination of each of the following:

A. The number of shares constituting that series and the distinctive designation of that series;

B. The dividend rate on the shares of the series, whether dividends shall be cumulative, and, if so, from which date or dates, and whether they shall be payable in preference to, or in another relation to, the dividends payable on any other class or classes or series of stock;

C. Whether that series shall have voting rights, in addition to the voting rights provided by law, and, if so, the terms of such voting rights;

D. Whether that series shall have conversion or exchange privileges, and, if so, the terms and conditions of such conversion or exchange, including provision for adjustment of the conversion or exchange rate in such events as the Board of Directors shall determine;

-2+

E. Whether or not the shares of that series shall be redeemable, and, if so, the terms and conditions of such redemption, including the manner of selecting shares for redemption if less than all shares are to be redeemed, the date or dates upon or after which they shall he redeemable, and the amount per share payable in case of redemption, which amount may vary under different conditions and at different redemption dates;

F. Whether that series shall be entitled to the benefit of a sinking fund to be applied to the purchase or reismption of shares of that series, and, if so, the terms and amounts of such sinking fund;

G. The right of the shares of that series to the banefit of conditions and restrictions upon the creation of indebtedness of the Corporation or any subsidiary, upon the issue of any additional stock (including additional shares of such series or of any other series) and upon the payment of dividends or the making of other distributions on, and the purchase, redemption or other acquisition by the Corporation or any subsidiary of any outstanding stock of the Corporation;

H. The right of the shares of that series in the event of any voluntary or involuntary liquidation, dissolution or winding up of the Corporation and whether such rights shall be in preference to, or in another relation to, the comparable rights of any other class or classes or series of stock; and

I. Any other relative, participating, optional or other special rights, qualifications, limitations or restrictions of that series.

III. Shares of any series of Preferred Stock which have been redsemed (whether through the operation of a sinking fund or otherwise) or which, if convertible or exchangeable, have been converted into or gaudanged for shares of

+3-

stock of any other class or classes shall have the status of authorized and unissued shares of Preferred Stock of the same series and may be reissued as a part of the series of which they were originally a part or may be reclassified and reissued as part of a new series of Preferred Stock to be created by resolution or resolutions of the Board of Directors or as part of any other series of Preferred Stock, all subject to the conditions and the restric ions on issuance set forth in the resolution or resolutions adopted by the Board of Directors providing for the issue of any series of Preferred Stock.

IV. Subject to the provisions of any applicable law, or except as otherwise provided by the resolution or resolutions providing for the issue of any series of Preferred Stock, the holders of outstanding shares of Common Stock shall exclusively possess voting power for the election of directors and for all other purposes, each holder of record of shares of Common Stock being entitled to one vote for each share of Common Stock standing in his name on the books of the Corporation.

V. Except as otherwise provided by the resolution or resolutions providing for the issue of any series of Preferred Stock, after payment shall have been made to the holders of Preferred Stock of the full amount of dividends to which they shall be entitled pursuant to the resolution or resolutions providing for the issue of any series of Preferred Stock, the holders of Common Stock shall be entitled, to the exclusion of

-4-

the holders of Preferred Stock of any and all series, to receive such dividends as from time to time may be declared by the Board of Directors.

VI. Except as otherwise provided by the resolution or resolutions providing for the issue of any series of Preferred Stock, in the event of any liquidation, dissolution or winding up of the Corporation whether voluntary or involuntary, after payment shall have been made to the holders of Preferred Stock of the full amount to which they shall be entitled pursuant to the resolution or resolutions providing for the issue of any series of Preferred Stock, the holders of Common Stock shall be entitled, to the exclusion of the holders of Preferred Stock of any and all series, to share, ratably according to the number of shares of Common Stock held by them, in all remaining assets of the Corporation available for distribution to its stockholders.

VII. The number of authorized shares of any class may be increased or decreased by the affirmative vote of the holders of a majority of the stock of the Corporation entitled to vote.

<u>FIFTH</u>: The name of the incorporator is Jacqueline Kadi and her mailing address is 200 Park Avenue, New York, New York 10166.

<u>SIXTH:</u> The affirmative vote of 66 2/3% of all outstanding shares of the Corporation entitled to vote thereon shall be required:

-5-

(a) for the adoption of any agreement for the merger of the Corporation with or into any other corporation or for the consolidation of the Corporation with any other corporations or

(b) to authorize any sale, lease, transfer or exchange of all or substantially all of the assets of the Corporation to any other person (as hereinafter defined).

For the purpose of this Article SIXTH, the term "person" shall mean any corporation, partnership, association, or other business entity, trust, estate or individual.

The affirmative vote of 66 2/31 of all outstanding shares of the corporation entitled to vote thereon shall be required for the amendment of all or any part of this Article SIXTH.

SEVENTH: The number of directors which shall constitute the entire Board of Directors of the Corporation shall be not less than six, the exact number to be fixed from time to time exclusively by the Board of Directors pursuant to a resolution duly adopted by a majority of the entire Board. The Board of Directors shall be divided into three classes, each to be as nearly equal in number as possible. At the 1985 annual meeting of stockholders, one class of such directors shall be elected for a one-year term, one class for a two-year term, and one class for a three-year term. Commencing with the 1986 annual meeting of stockholders and at each succeeding annual stockholders' meeting, successors to the class of directors whose term expires at such annual stockholders' meeting shall be elected for a three-year

-6-

term. If the number of such directors is changed, any increase or decrease in such directors shall be apportioned by the Board of Directors among the classes so as to maintain the number of directors comprising each class as nearly equal as possible, provided that no decrease in the number of directors shall affect the term of any director then in office. A director shall hold office until the annual stockholders' meeting for the year in which his term expires and until his successor is elected and qualified. In case of any increase in the number of directors or any vacancy in any class or classes, the additional directorships or vacancies may be filled by a majority of the directors then in office, though less than a quorum, and any director so elected shall hold office until the next annual meeting of stockholders, and until his successor shall have been elected and qualified. Any or all of the directors may be removed for cause by the stockholders or by the Board of Directors.

The affirmative vote of the holders of 66 2/3% or more of the shares entitled to vote in the election of directors shall be required to amend or repeal, or adopt any provisions inconsistent with, this Article SEVENTH.

IN WITNESS WHEREOF, the undersigned, being the incorporator of the above named corporation, has hereunto signed this Certificate of Incorporation on the $\frac{10}{100}$ day of January, 1985.

Accueline)

State of New York) T ##. T County of New York)

On this J3th day of January, 1985, before me personally came Jacqueline Kadi, to me known to be the person described in and who executed the foregoing certificate, and she duly acknowledged to me that she executed the same and that the facts therein stated are truly set forth.

NOLATY

Hotery Russel, Sone of New York Outbody In New York County Condition In New York County Conditions Depres March 20, 1984

-8-

725030002

CERTIFICATE OF OWNERSHIP AND MERGER

of

Biocraft Laboratories, Inc.

(a New Jersey corporation)-

into

Biocraft Laboratories, Inc.

(a Delaware corporation)

It is hereby certified that:

1. Biocraft Laboratories, Inc. (hereinafter called the "corporation") is a corporation of the State of New Jersey, the laws of which permit a merger of a corporation of that jurisdiction with a corporation of another jurisdiction.

2. The corporation, as the owner of all of the outstanding shares of the stock of Biocraft Laboratories, Inc., a corporation of the State of Delaware, hereby merges itself into Biocraft Laboratories, Inc. (the Delaware corporation).

3. The following is a copy of the resolutions adopted on the 25th day of Jenuary, 1985, by the Board of Directors of the corporation to marge the corporation into Biograft Laboratories, Inc. (the Delaware corporation):

> RESOLVED that this corporation be reincorporated in the State of Delaware by merginy itself into Biocraft Laboratories, Inc., a corporation of the State of Delaware, which is sometimes hereinafter referred to as the "surviving corporation", pursuant to the laws of the State of New Jersey and the State of Delaware as hereinafter provided, so that the separate existence of this corporation shall coase as soon as the merger shall become effective, and thereupon this corporation and the surviving corporation will become a single corporation, which shall continue to exist under, and he governed by, the laws of the State of Delaware.

> RESOLVED that the terms and conditions of the proposed marger are as follows:

00002

(a) From and after the effective time of the merger, all of the estate, property, rights, privileges, powers, and franchises of this corporation shall become vested in and held by the surviving corporation as fully and entirely and without change or diminution as the same were before held and enjoyed by this corporation, and the surviving corporation shall assume all of the obligations of this corporation.

(b) No pro rate issuance of the shares of the stock of the surviving corporation which are owned by this corporation immediately prior to the effective time of the merger shall be made, and such shares shall be surrendered and extinguished.

(c) Each share of common stock, without par value, of this corporation which shall be issued and outstanding immediately prior to the effective time of the merger shall be converted into 75,000 issued and outstanding shares of common stock, \$.01 par value, of the surviving corporation, and, from and after the effective time of the merger, the holders of all of maid issued and outstanding shares of common stock of this corporation shall automatically be and become holders of shares of the surviving corporation upon the basis above specified, whether or not certificates representing said shares are then issued and delivered.

(d) After the effective time of the merger, each holder of record of any outstanding certificate or certificates theretofore representing common stock of this corporation may surrender the same to the surviving corporation at its office in Elewood Park, New Jersey, and such holder shall be entitled upon such surrender to receive in exchange therefor a certificate or certificates representing the number of shares of common stock of the surviving corporation to which he is entitled upon the basis specified in (c) above. Until so surrendered, each outstanding certificate which prior to the effective time of the merger represented one or more shares of common stock of this corporation shall be deemed for all corporate purposes to evidence ownership of the number

-2-

00003

of shares of common stock of the surviving corporation to which he is entitled upon the basis specified in (c) above.

(e) From and after the effective time of the merger, the Certificate of Incorporation and the By-Laws of the surviving corporation shall be the Certificate of Incorporation and the By-Laws of the surviving corporation as in effect immediately prior to such affective time.

(f) The members of the Board of Directors and officers of the surviving corporation shall be the members of the Board of Directors and the corresponding officers of the surviving corporation immediately before the effective time of the merger.

(g) From and after the effective time of the merger, the assets and liabilities of this corporation and of the surviving corporation shall be entered on the books of the surviving corporation at the amounts at which they shall be carried at such time on the respective books of this corporation and of the surviving corporation, subject to such inter-corporate adjustments or eliminations, if any, as may be required to give effect to the merger; and, subject to such action as may be taken by the Board of Directors of the surviving corporation, in accordance with generally accepted accounting principles, the capital and surplus of the surviving corporation shall be equal to the capital and surplus of this corporation and of the surviving corporation.

RESOLVED that these resolutions to merge be submitted to the stockholders entitled to vote of this corporation at a meeting to be called and held after twenty days' notice of the time, place and purpose thereof mailed to each holder of the outstanding shares of stock entitled to vote of this corporation at his address as it appears on the records of this corporation or pursuant to a written waiver of such notice signed by all of the persons entitled thereto, unless the holders of all of the outstanding shares of stock entitled to vote of this corporation shall dispense with the holding of a meeting; and, in the event that the holders of at least a majority of the

-3-

00004

854850054

ي ئۇرىرىدى ئەر outstanding stock entitled to vote of this corporation shall vote for the approval of the perger at a meeting, or, in the event that the holders of all of the outstanding stock entitled to vote of this corporation shall dispense with a meeting and shall consent in writing signed by them for the approval of the proposed merger, the proposed merger shall be deemed to be approved.

RESOLVED that, in the event the proposed merger shall be approved, the proper officers of this corporation be and they hereby are authorized and directed to make and execute, under the corporate seal of this corporation, a Certificate of Ownership and Marger setting forth a copy of these resolutions to marge itself into the surviving corporation and the date of adoption thereof, and to cause the same to be filed and recorded as provided by law, and to do all acts and things whatsoever, within the States of Delsware and New Jersey and in any other appropriate jurisdiction, necessary or proper to effect this merger.

4. The proposed merger herein certified has been approved in writing by the holders of all of the outstanding stock entitled to vote of the corporation in accordance with the provisions of Section 228 of the General Corporation Law of Delaware.

Executed on January 29, 1985.

BIOCRAFT LABORATORIES, INC. (a New, Jersey corporation)

President

Attest:

Its Secretary

00005. م قد ما د چا

Emrtificate of Ownership of the "BIOCRAFT LABORATORIES, INC.", a corporation reganized and existing under the laws of the State of Delaware, merging "BIOCRAFT LABORATORIES, INC.",

a corporation organized and existing under the laws of the State of Bew Jersey, pursuant to Section 253 of the General Corporation Law of the State of Delaware, as received and filed in this office the thirtieth day of January, A.D. 1985, at 10 o'clock A .M.

And I do hereby further certify that the aforesaid Corporation shall be governed by the laws of the State of Belavare.

0.0006

8603030199

CERTIFICATE OF AMENDMENT

30 199

CERTIFICATE OF INCORPORATION

07

BIOCRAFT LABORATORIES, INC.

(Pursuant to Section 242Aof the Delaware General Corporation Law)

BIOCRAFT LABORATORIES, INC., a corporation organized and existing under and by virtue of the General Corporation Law of the State of Delaware, does hereby certify:

FIRST: That at a meeting of the Board of Directors of BIOCRAFT LABORATORIES, INC., resolutions were duly adopted setting forth proposed amendments to the Certificate of Incorporation of said Corporation, declaring said amendments to be advisable, and submitting said amendments at the next annual meeting of the stockholders of said Corporation for consideration thereof. The resolutions setting forth the proposed amendments are as follows:

RESOLVED, that the Board of Directors deems it advisable that, subject to stockholder approval at the 1986 Annual Meeting, the Company's Certificate of Incorporation be amended by striking out the first paragraph of Article FOURTH thereof and by substituting in lieu thereof the following:

"FOURTH: I. The aggregate number of shares which the corporation shall have authority to issue is thirty two million (32,000,000) shares of which thirty million (30,000,000) shares shall be common stock of the par value of \$.01 per share (the "Common Stock") and two million (2,000,000) shares shall be preferred stock of the par value of \$1.00 per share (the "Preferred Stock");"

RESOLVED, that the Board of Directors deems it advisable that, subject to stockholder approval at the 1986 Annual Meeting, the Company's Certificate of Incorporation he amended to add thereto a new Article EIGHTH to read as follows:

"EIGHTH: No director of the Corporation shall be personally liable to the Corporation or its stockholders for monetary damages for breach of fiduciary duty as a director, provided that this Article EIGHTH shall not eliminate or limit the liability of a director (i) for any breach of such director's duty of loyalty to the Corporation or its stockholders, (ii) for acts or omissions of such director not in good faith or which involve intentional misconduct or a knowing violation of law, (iii) under Section 174 of the Delaware General Corporation Law, or (iv) for any transaction from which such director derived an improper personal benefit; nor shall this Article EIGHTH eliminate or limit the liability of a director for any act or omission occurring prior to the date this Article EIGHTH becomes effective."

SECOND, That thereafter, pursuant to resolution of its Board of Directors, an annual meeting of the stockholders of said Corporation was duly called and held, upon notice in accordance with

. . .

00003

Section 222 of the General Corporation law of the State of Delaware, at which meeting the necessary number of shares as required by statute were voted in favor of the amendments.

THIRD: That said amendments were duly adopted in accordance \$223 with the provision of Section 242Aof the General Corporation Law of the State of Delaware.

IN WITNESS WHEREOF, said BIOCRAFT LABORATORIES, INC. has caused its corporate seal to be hereunto affixed and this certificate to be signed by its Prosident and attested by its Secretary, this <u>30</u>. day of September, 1986.

Harold Snyder

President

Вy

00004

Beatrice Snyder

Secretary

STATE OF NEW JERSEY

481

3

COUNTY OF BERGEN

BE IT REMEMBERED that on this 30 day of September, 1986, personally came before me, a Notary Public, in and for the County and State aforesaid, RAROLD SNYDER, president of BIOCRAFT LABORATORIES, INC., a corporation of the State of Delaware, and he duly executed said certificate before me and acknowledged the said certificate to be his act and deed and the act and deed of said corporation and the facts stated therein are true; and that the seal affixed to eadd certificate and attested by the Secretary of said corporation is the corporate seal of said corporation.

IN WITNESS WHEREOF, I have hereunto set my hand and scal of office the day and year aforesaid.

Notary Public in and for said County and State

My commission expires: SANDRA C. CSAPOSS NOTARY PUBLIC OF NEW JERSEY BY COMMISSION DIPACE NOV. 12, 1900

854850060

TIERRA-B-008978

STATE OF DELAUARE SECRETARY OF STATE DIVISION OF CORPORATIONS FILED 31:00 AR 05/31/1996 960167964 - 2063734

CERTIFICATE OF MERGER

merging Genco Merger Corporation with and into Biocraft Laboratories, Inc.

Pursuant to Section 251 of the General Corporation Law of the State of Delaware

The undersigned, Biocraft Laboratories, Inc., a corporation duly organized and existing under and by virtue of the General Corporation Law of the State of Delaware ("Biocraft"), does hereby certify that:

FIRST: The name and state of incorporation of each of the constituent corporations of the merger is as follows:

NAME :

STATE OF INCORPORATION:

Biocraft Laboratories, Inc.	Delaware
Gence Merger Corporation	Delaware

....

SECOND: The Agreement and Plan of Merger, dated as of January 29, 1996 (the "Merger Agreement"), among Biocraft, Teva Pharmaceutical Industries Limited, a corporation organized and existing under the laws of the State of Israel ("Teva"), and Genco Merger Corporation, a wholly owned subsidiary of Teva ("Genco"), providing for the merger of Genco with and into Biocraft (the "Merger"), has been approved, adopted, certified, executed and acknowledged by each of the constituent corporations in accordance with the requirements of Section 251 of the General Corporation Law of the State of Delaware.

854850061

THIRD: The name of the surviving corporation of the merger is Biocraft Laboratories, Inc.

FOURTH: The Certificate of Incorporation of Biocraft shall be amended in its entirety to read as attached hereto as Exhibit A.

FIFTH: The executed Merger Agreement is on file at the principal place of business of Biocraft, which is located at 18-01 River Road, Fair Lawn, New Jersey 07410.

SIXTH: A copy of the Merger Agreement will be furnished by Biocraft, on request and without cost, to any stockholder of any constituent corporation.

SEVENTH: This Certificate of Merger shall be effective at 4:01 p.m. B.S.T. on May 31, 1996.

IN WITNESS WHEREOF, Biocraft Laboratories, Inc. has caused this certificate to be signed by its Chairman, President and Chief Executive Officer and attested to by its Senior Vice President and Secretary as of May 31, 1996.

BIOCRAFT LABORATORIES, INC.

By

Harold Snyder, Chairman Ofthe Board, President and Chief Executive Officer

:

Attest:

By: Beatrice Snyder Senior Vice President and Secretary

EXHIBIT A

CERTIFICATE OF INCORPORATION

•

OF

BIOCRAFT LABORATORIES, INC.

1. The name of the corporation (the "Corporation") is Biocraft Laboratories, Inc.

2. The address of its registered office in the State

of Delaware is 1209 Orange Street in the City of Wilmington. County of New Castle. The name of its registered agent at such address is The Corporation Trust Company.

3. The nature of the business or purposes to be conducted or promoted by the Corporation is to engage in any lawful act or activity for which corporations may be organized under the General Corporation Law of the State of Delaware.
4. The total number of shares of stock which the

Corporation shall have authority to issue is 1,000 shares of Common Stock, each of which shall have a par value of one dollar (\$1.00) per share.

5. In furtherance and not in limitation of the powers conferred by statute, the by-laws of the Corporation may be made, altered, amended or repealed by the stockholders or by a majority of the entire Board of Directors.

6. Blections of directors need not be by written ballot.

7. (a) The Corporation shall indemnify to the fullest extent permitted under and in accordance with the laws of the State of Delaware any person who was or is a party or is threatened to be made a party to any threatened, pending or completed action, suit or proceeding, whether civil, criminal, administrative or investigative by reason of the fact that he is or was a director, officer, employee or agent of the Corporation, or is or was serving at the request of the Corporation as a director, officer, trustee, employee or agent of or in any other capacity with another corporation, partnership, joint venture, trust or other enterprise, against expenses (including attorneys' fees), judgments, fines and amounts paid in settlement actually and reasonably incurred by him in connection with such action, suit or proceeding if he acted in good faith and in a manner he reasonably believed to be in or not opposed to the best interests of the Corporation, and, with respect to any criminal action or proceeding, had no reasonable cause to believe his conduct was unlawful.

(b) Expenses incurred in defending a civil or criminal action, suit or proceeding shall (in the case of any action, suit or proceeding against a director of the Corporation) or may (in the case of any action, suit or proceeding against an officer, trustee, employee or agent) be paid by the Corporation in advance of the final disposition of such action, suit or proceeding as authorized by the Board upon receipt of an undertaking by or on behalf of the indemnified person to repay such amount if it shall

854850064

.

ultimately be determined that he is not entitled to be indemnified by the Corporation as authorized in this Article. (c) The indemnification and other rights set forth in

this paragraph shall not be exclusive of any provisions with respect thereto in the by-laws or any other contract or agreement between the Corporation and any officer, director, employee or agent of the Corporation.

(d) Neither the amendment hor repeal of this paragraph 7. subparagraph (a), (b) or (c), nor the adoption of any provision of this Certificate of Incorporation inconsistant with paragraph 7, subparagraph (a), (b) or (c), shall eliminate or reduce the effect of this paragraph 7, subparagraphs (a), (b) and (c), in respect of any matter occurring before such amendment, repeal or adoption of an inconsistent provision or in respect of any cause of action, suit or claim relating to any such matter which would have given rise to a right of indemnification or right to receive expenses pursuant to this paragraph 7, subparagraph (a), (b) or (c), if such provision had not been so amended or repealed or if a provision inconsistent therewith had not been so adopted.

(e) No director shall be personally liable to the Corporation or any stockholder for monetary damages for breach of fiduciary duty as a director, except for any matter in respect of which such director (a) shall be liable under Section 174 of the General Corporation Law of the State of Delaware or any amendment thereto or successor provision thereto, or (b) shall be liable by

reason that, in addition to any and all other requirements for liability, he:

(1) shall have breached his duty of loyalty to the Corporation or its stockholders;

(ii) shall not have acted in good faith or, in failing to act, shall not have acted in good faith;

(iii) shall have acted in a manner involving
 intentional misconduct or a knowing violation of law or, in
 failing to act, shall have acted in a manner involving
 intentional misconduct or a knowing violation of law; or

(iv) shall have derived an improper personal benefit.

8. If the General Corporation Law of the State of Delaware is amended after the date hereof to authorize corporate action further eliminating or limiting the personal liability of directors, then the liability of a director of the Corporation shall be eliminated or limited to the fullest extent permitted by the General Corporation Law of the State of Delaware, as so amended.

854850066

TIERRA-B-008984

854850067

FAX DFS	State of Delaware - Di DOCUMENT FILM	vision of Corporations				
Promy I (Two Hr. Service) DATE SUBMITTED	Presty 2 Privity 3 (Same Cay) (24 Hour) JULY 25, 1996	Prienty 4 Prienty 6 (Must Approvals) (Reg. Approvals)	Priority 8 (Rag. Work)			
AEQUESTOR NAME . Address	The Corporation Trust Compa -					
ATTN. PHONE	D. M. Dembkowski/1k (302) 658-7581					
NAME & COMPANY / ENTITY BIOCRAFT LABORATORIES, INC. (DE.DOM.) 2053734						
960218376 Merging: TAG PHARMACEUTICALS, INC. (DE.DOM.) 2070335						
SHV NUMBER	FILE NUMBER		ATION NO.			
TYPE of DOCUMENT		DOCUMENT CODE25				
	CHANGE & AGENY / OFF	ICE CHANGE & STOCK	.			
CORPORATIONS		METHOD of RETURN				
FRANCHISE TAX YEAR \$			MESSENGER /PICKUP			
FILING FEE TAX RECEIVING & INDEXING		REGULAR MAIL				
CERTIFIED COPIES N		OTHER				
SPECIAL SERVICES	\$					
KENT COUNTY RECORD	ea s	COMMENTS / FILING INSTRUC	TIONS			
NEW CASTLE COUNTY R		WITHDRAW \$30.00 IN PAYMENT	OF TAXES			
SUSSEX COUNTY RECORDER \$		TO MERGE				
·	TOTAL:\$	NOTE-DOCUMENT WAS PRECLEARED				
CREDIT CARD CHARGE						
	targe by stall card be this pervise:					
Signature Printed Náme						
AGENT USE ONLY		INSTRUCTIONS				
	······································	1. Puty ahade in the required Princip equare pend or maker, steplay within the separate 2. Each remeat trust to ashritted as a sepa- with its own Filling sheet as the FIRET PA	rais Item,			
		5000FB1 0	6-29-62			

.

.

STATE OF DELAWARE SECRETARY OF STATE DIVISION OF CORPORATIONS Filed Diol PM 07/26/1996 960218376 - 2053734

•

.

. .

AGREENENT AND PLAN OF MERGER

•

BY AND BETWEEN

TAG PHARMACEUTICALS, INC.

-

1

AND

BIOCRAFT LABORATORIES, INC.

٠

.

.

. .

.

Dated as of July 26, 1996

854850068

• •

TIERRA-B-008986

. .

AGREEMENT AND PLAN OF MERGER

AGREEMENT AND PLAN OF MERGER, dated as of July 26, 1996 (this "Agreement"), pursuant to Section 251 of the General Corporation Law of the State of Delaware (the "DGCL"), by and between TAG PHARMACEUTICALS, INC., a Delaware corporation ("TAG") and a wholly owned subsidiary of Orvet B.V., a corporation organized under the laws of Holland ("Orvet"), and BIOCRAFT LABORATORIES, INC., a Delaware corporation and a wholly owned subsidiary of Orvet ("Biocraft").

WHEREAS, the respective Boards of Directors of TAG and Biocraft, and Orvet acting as the sole stockholder of TAG and Biocraft, have each approved the merger of TAG with and into Biocraft pursuant to the terms and conditions set forth in this Agreement;

NOW, THEREFORE, in consideration of the premises and of the mitual agreements herein contained, the parties hereto agree as follows:

ARTICLE I

THE MERGER

1.01. The Merger. At such time as this Agreement is filed with the Secretary of State of the State of Delaware (the "Effective Time"), TAG shall be merged with and into Biocraft (the "Merger") and the separate corporate existence of TAG shall cease, and Biocraft shall continue as the surviving corporation under the laws of the State of Delaware under the name of "Biocraft Laboratories, Inc." (the "Surviving Corporation").

1.02 <u>Effective Time of the Merger</u>. The Board of Directors of each of TAG and Biocraft shall take all action necessary in order that the Merger shall be effective pursuant to the DGCL. The Effective Time of the Merger shall be July 26, 1996; <u>provided</u>, <u>however</u>, that, notwithstanding such Effective Time, the effective time of the Merger for all accounting purposes shall be as of the close of business on July 26, 1996. From and after the Effective Time, the Merger shall have the effects set forth in Section 259(a) of the DGCL.

1.03 <u>Certificate of Incorporation of the Surviving</u> <u>Corporation</u>. The Certificate of Incorporation of Biocraft, as heretofore amended and as in effect on the date of the Merger, shall continue in full force and effect as the Certificate of Incorporation of the Surviving Corporation unless and until subsequently amended; <u>provided</u>, <u>however</u>, that paragraph 4 of the Certificate of Incorporation of the Surviving Corporation shall be amended in its entirety to read as follows:

"4. The total number of shares of stock which the Corporation shall have authority to issue is 3,500 shares of Common Stock, each of which shall have a par value of one dollar (\$1.00) per share."

1.04 <u>By-Laws of the Surviving Corporation</u>. The By-Laws of Biocraft, as in effect immediately prior to the Effective Time, shall be the By-Laws of the Surviving Corporation until the same shall be subsequently amended or repealed as therein provided.

1.05 <u>Directors and Officers of the Surviving</u> <u>Corporation</u>. The directors and officers of Biocraft in office immediately prior to the Effective Time shall be the directors and officers of the Surviving Corporation until their respective successors shall be duly elected or appointed and qualified.

ARTICLE II

EFFECT OF THE MERGER

-

2.01 <u>Conversion of Shares</u>. At the Effective Time, by virtue of the Merger and without any action on the part of the holder of the shares of the capital stock of TAG or Biocraft, the outstanding shares of the Common Stock of TAG and Biocraft shall be converted into the shares of the Surviving Corporation as follows:

(a) Each share of the Common Stock of TAG which shall be outstanding at the Effective Time shall become two fully paid and nonassessable shares of Common Stock, \$1.00 par value, of the Surviving Corporation.

(b) Each share of the Common Stock of Biocraft which shall be outstanding at the Effective Time will be unchanged as a result of the Merger and shall remain one outstanding share of Common Stock of the Surviving Corporation after the Merger.

(c) After the Effective Time, Orvet shall surrender to the Surviving Corporation all certificates representing shares of the Common Stock of TAG that it holds and shall be entitled upon such surrender to receive certificates evidencing shares of Common Stock of the Surviving Corporation as provided in (a) above.

2.02 <u>Bffect of the Merger</u>. Upon the Effective Time, all the rights, privileges, immunities, powers, franchises, patents, trademarks, permits, licenses, registrations, and all of the properties, real and personal, including causes of action, and all other assets of every kind and description, of TAG shall be transferred to and vested in the Surviving Corporation without further act or deed.

0131321.0)

2.03 Additional Documents. TAG hereby agrees from time to time, as and when requested by the Surviving Corporation, to execute and deliver or cause to be executed and delivered all such deeds and instruments and to take or cause to be taken such further or other action as the Surviving Corporation may deem necessary or desirable in order to vest in and confirm to the Surviving Corporation title to and possession of any property of TAG acquired or to be acquired by reason of or as a result of the Merger and otherwise to carry out the intent and purposes hereof.

ARTICLE III

MISCELLANEOUS

3.01 Entire Agreement. This Agreement contains the entire understanding of the parties hereto with respect to the subject matter contained herein and supersedes all prior agreements and understandings, oral and written, with respect thereto.

3.02 <u>Termination</u>. Notwithstanding anything contained herein to the contrary, this Agreement and the Merger may be terminated and abandoned at any time prior to the Effective Time by the consent of the Boards of Directors of each of TAG and Biocraft.

3.03 <u>Counterparts</u>. This Agreement may be executed in counterparts, each of which shall be deemed to be an original, and all of which together shall be deemed to be one and the same instrument.

3.04 <u>Applicable Law</u>. This Agreement shall be governed by and construed in accordance with the DGCL.

0131321.01

.

.

IN WITNESS WHEREOF, each of the parties hereto, pursuant to the approval and authority duly given by resolutions adopted by their respective Boards of Directors and that fact having been certified by the Secretary of each party hereto, has caused this Agreement to be executed by their respective officers or directors, all as of the date first above written.

TAG PHARMACEUTICALS, INC.

By: Bli Hurvitz President

BIOCRAFT LABORATORIES, INC.

. Fletchu . han By: William Fletcher President

I, Peter H. Jakes, Secretary of TAG Pharmaceuticals, Inc., a Delaware corporation ("TAG"), hereby certify, as such Secretary, that the Agreement and Plan of Merger to which this Certificate is attached, after having been first duly signed on behalf of TAG and having been signed on behalf of Biocraft Laboratories, Inc., a Delaware corporation, was duly adopted pursuant to Section 228 of the General Corporation Law of the State of Delaware by the written consent of the sole stockholder of TAG holding 100% of the outstanding capital stock of TAG, which Agreement and Plan of Merger was thereby adopted as the act of the sole stockholder of TAG, and the duly adopted agreement and act of TAG.

WITNESS my hand on this 26th day of July, 1996.

I, Beatrice Snyder, Secretary of Biocraft Laboratories, Inc., a Delaware corporation ("Biocraft"), hereby certify, as such Secretary, that the Agreement and Plan of Merger to which this Certificate is attached, after having been first duly signed on behalf of Biocraft and having been signed on behalf of TAG Pharmaceuticals, Inc., a Delaware corporation, was duly adopted pursuant to Section 228 of the General Corporation Law of the State of Delaware by the written consent of the sole stockholder of Biocraft holding 100% of the outstanding capital stock of Biocraft, which Agreement and Plan of Merger was thereby adopted as the act of the sole stockholder of Biocraft and the duly adopted agreement and act of Biocraft.

WITNESS my hand on this 26thday of July, 1996.

Rectary Secretary

RESOLVED, that the Lemmon Merger shall be effective upon the date of filing with the Secretary of State of the State of Delaware a Certificate of Ownership and Merger; and further

RESOLVED, that the officers of the Corporation be, and each of them hereby is, authorized and directed to make and execute a Certificate of Ownership and Merger setting forth a copy of the resolutions of the Corporation with respect to the Lemmon Merger and the assumption of the liabilities and obligations of Lemmon, and the date of adoption thereof, and to cause the same to be filed with the Secretary of State of the State of Delaware and to take all such actions as they shall deem necessary or desirable to carry out the purposes of the foregoing resolutions; and further

RESOLVED, that the Corporation change its corporate name by changing Article 1 of the Corporation's Certificate of Incorporation to read as follows:

*1. The name of the corporation (the 'Corporation') is Teva Pharmaceuticals USA, Inc."

IN WITNESS WHEREOF, Biocraft Laboratories, Inc. has caused this Certificate of Ownership and Merger to be signed by its President and Chief Executive Officer and attested to by its Secretary as of July 26, 1996.

BIOCRAFT LABORATORIES, INC.

liam H. By: William Fletcher, President

and Chief Executive Officer

Attest:

By: Beatrice Snyder Secretary

STATE OF DELAWARE \$ECRETARY OF STATE DIVISION OF CORPORATIONS FILED 01:02 PR 07/26/1996 \$60210301 - 2053734

CERTIFICATE OF OWNERSHIP AND MERGER

merging Lemmon Company with and into Biocraft Laboratories, Inc.

Pursuant to Section 253 of the General Corporation Law of the State of Delaware

The undersigned, Biocraft Laboratories, Inc., a corporation duly organized and existing under and by virtue of the General Corporation Law of the State of Delaware (the "Corporation"), does hereby certify that:

FIRST: The Corporation was incorporated on the 28th day of January, 1985, pursuant to the General Corporation Law of the State of Delaware.

SECOND: The Corporation owns all of the outstanding shares of the capital stock of Lemmon Company, a corporation incorporated on the 26th day of February, 1981, pursuant to the General Corporation Law of the State of Delaware.

THIRD: The Corporation, by the following resolutions of its Board of Directors, duly adopted at a meeting held on the 25th day of June, 1996, determined to and did merge Lemmon Company into itself:

RESOLVED, that the merger of Lemmon Company, a Delaware corporation and, after the effective time of the merger of TAG Pharmaceuticals, Inc. with and into the Corporation, a wholly-owned subsidiary of the Corporation ("Lemmon"), with and into the Corporation (the "Lemmon Merger"), and the assumption by the Corporation of all of Lemmon's liabilities and obligations, are hereby approved; and further

854850076

PROSKAUER ROSE LLP

1585 Broadway New York, NY 10036-8299 Telephone 212.969.3000 Fax 212.969.2900

LOS ANGELES WASHINGTON DC BOCA RATON NEWARK PARIS

Gail S. Port

Direct Dial 212.969.3243 gport@proskauer.com

August 22, 2003

BY FEDERAL EXPRESS

Ms. Kedari Reddy, Assistant Regional Counsel Office of Regional Counsel – Region II U.S. Environmental Protection Agency 290 Broadway – 17th Floor New York, New York 10007-1866

Re: Former Biocraft Laboratories, Inc. (now known as Teva Pharmaceuticals USA, Inc.) Facility in Waldwick, New Jersey Lower Passaic River Study Area Response to USEPA Request for Information Pursuant to 42 U.S.C.§§ 9601-9675

Dear Ms. Reddy:

Pursuant to the request made by Alex Ince, (from USEPA, Region II) to my client Kirsten E. Bauer, Esq., enclosed are the following reports containing sampling data previously sent to you which was referenced in the response by Teva Pharmaceuticals USA, Inc. to Question 12(a) of the above referenced Request For Information, dated February 27, 2003:

- ∀(i) Preliminary Assessment Report prepared by Eder Associates, dated March 1 1996;
- $\sqrt{(ii)}$ Remedial Investigation Report prepared by Eder Associates, dated April 1997;
- V(iii) Remedial Investigation Workplan prepared by Eder Associates Division of Gannett Fleming, dated December 12, 1999;
- √ (iv) Remedial Investigation Report and NJPDES Discharge to Groundwater Permit Application prepared by Environmental Strategies Corporation, dated June 30, 2000;
- (v) Remedial Investigation Report prepared by Environmental Strategies Corporation, dated December 31, 2001;

0608/72600-002 NYWORD/145491 v1

PROSKAUER ROSE LLP

Ms. Kedari Reddy August 22, 2002 Page 2

¢

- Baseline Ecological Evaluation prepared by AMEC Associated, dated February (vi) 15, 2002; and
- Semi-Annual Groundwater Report prepared by Environmental Strategies (vii) Corporation, dated September 5, 2002.

Very truly yours,

fil S. bort Port

GSP:cs

Attachment

Kirsten E. Bauer, Esq. (w/o enclosures) cc:

. .

0608/72600-002 NYWORD/145491 v1

854820002

31196

Page 1 of 26

7/95

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF RESPONSIBLE PARTY SITE REMEDIATION CN028, TRENTON, NJ 08625-0028

PRELIMINARY ASSESSMENT REPORT

Please refer to the instructions and the Technical Requirements for Site Remediation, N.J.A.C. 7:26E-3.1 through 3.2, before completing this form. Answer all questions. Should you encounter any problems in completing this form, we recommend that you discuss the matter with a representative from the Site Remediation Program. Submitting incorrect or insufficient data may cause processing delays and possible postponement of your transaction. Please call (609) 633-7141 between the hours of 8:30 a.m. and 4:30 p.m. to request assistance.

PLEASE PRINT OR TYPE

Identification Number

	Date March 1, 1996
Industrial Establishment/Site Name	Biocraft Laboratories, Inc. (Biocraft)
Address	12 Industrial Park ("Plant") and 140 Hopper Avenue ("Warehouse")
City or Town Waldwick	Zip Code 07463
Municipality Waldwick	County Bergen
Lot (s) 36,46	Block (s) 154
Site Remediation Case Number or EPA	NID056356066

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

854820003

Page 2 of 26

1. Operational and Ownership History from the time the site was naturally vegetated or used as farmland. (Attach additional sheets if necessary).

Name	Owner	From	То
George B. and Adele Smith	Unimproved Land Portion of Parcel	2/7/17	7/27/20
Daniel B. and Margaretta Smith	Unimproved Land Portion of Parcel	2/7/17	12/18/20
Andrew B. Smith	Unimproved Land	12/18/20	?
Elli Steinbuch (widow) et als	Unimproved Land	?	1/25/38
Alan Investment	Unimproved Land	1/25/38	?
Elizabeth S. Gunderson	Unimproved Land	?	11/20/62
Waldwick Industrial Park (Nigrito, President) and F. William and Margaret Koestner	Unimproved Land	11/20/62	6/20/63
Paul and Antoinette Nigrito and F. William and Margaret Koestner	Unimproved Land Both Lots 46 (Plant) and 36 (Warehouse)	6/20/63	1/11/72

Plant.	12 Industrial	Park (Lot 4	5. Block 154)	, Manufacturing	Operations
--------	---------------	-------------	---------------	-----------------	------------

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Plant, 12 Industrial Park (Lot 4	6, Block 154), Manufacturing Operations

Name	Operator	From	То
Biocraft Laboratories, Facility built in Inc. 1972		1/11/72	Present

Name	Operator	From	То
Biocraft Laboratories, Inc.	Lot subdivided from Lot 46 in 1985, Warehouse built in 1985	after 4/17/85	Present

Sources:

es: Real Estate Title Search (June 1995 and February 1996), McRae's Directory (1994), New Jersey Manufacturing Directory (1995), Harris Publishing, New Jersey Business to Business (1995)

2A. Provide a brief description of the past operation(s) (e.g., industrial/commercial) conducted on site by each owner and operator (Attach additional sheets if necessary).

No other operations were conducted on the Plant site until Biocraft Laboratories purchased the property, built the plant, and associated site improvements and began operations in 1972. No operations were conducted on the Warehouse site until Biocraft Laboratories purchased the property and built the Warehouse building in 1985. Lots 36 and 46 were unimproved prior to Biocraft's ownership.

2B. Include a detailed description of the most recent operations subject to this preliminary assessment (Attach additional sheets if necessary).

The Waldwick Plant manufactures five semi-synthetic bulk generic penicillin products using proprietary processes. The bulk penicillin product is manufactured in separate production

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 4 of 26

campaigns, each of which lasts a minimum of one week for each product. They are manufactured using batch chemical processes which include the following key steps: chemical reactions (one or more), 2) batch extraction, 3) crystallization, 4) centrifuging, 5) drying, 7) milling, and 8) blending. The bulk generic penicillin products are packed in fiber drums. The Plant also houses a small R&D laboratory.

Bulk finished products and some raw materials are used in manufacturing at the Plant are stored in the Warehouse. The Warehouse also houses the Quality Control and Microbiology Laboratories. The bulk generic penicillin products which are packed in fiber drums at the plant are stored in the Warehouse where they are again quarantined, inspected, and released. Following release, the separate bulk generic penicillin products are brought to Biocraft's Elmwood Park facility (see PA form for this facility) where they are compressed, encapsulated, or mixed into dosage forms (tablets, capsuled and powders).

3. Hazardous Substance/Waste Inventory: List all raw materials, finished products, formulations and hazardous substances, hazardous wastes, hazardous constituent and pollutants, including intermediates and by-products that are or were historically present on the site (attach additional sheets if necessary).

Material Name	Typical Annual Usage	Storage Method/Container Type/Size	Location Reference Keyed to Site Map	To Remain on site? If yes, indicate quantity
See Table 1				

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 5 of 26

4. Summary of Wastewater Discharges of Sanitary and /or Industrial Waste and/or sanitary sludges: Present and past production processes, including dates, and their respective water use shall be identified and evaluated, including ultimate and potential discharge and disposal points and how and where materials are or were received on-site. All discharge and disposal points shall be clearly depicted on a scaled site map.

A. Discharge Period:

From	То	Discharge Type & Quantity, if known	Discharge/Disposal Point
1972	Present	Sanitary and Non-Contact Cooling Water - Not Metered (Plant)	Publicly Owned Treatment Works - Northwest Bergen County Utilities Authority
1995	Present	Industrial Waste Pretreatment Discharge approximately 7,800 gpd (Plant)	Publicly Owned Treatment Works - Northwest Bergen County Utilities Authority (Permit No. 95002)
1987	Present	Sanitary - Not Metered (Warehouse)	Publicly Owned Treatment Works - Northwest Bergen County Utilities Authority
1987	Present	Non-Categorical Discharge approximately 4,500 gpd (Warehouse)	Publicly Owned Treatment Works - Northwest Bergen County Utilities Authority (Permit No. 87061)

B. Provide a narrative of disposal processes for all process waste streams and disposal points. (attach additional sheets if necessary).

In the Plant, hazardous waste streams generated from the manufacturing processes are captured and either sent to the Plant's on-site solvent recovery system (distillation)or are disposed of off-site disposal...The hazardous waste streams sent for off-site disposal are limited amounts of process wastewater and still bottoms from methylene chloride distillation. Onsite solvent recovery is

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 6 of 26

performed on the crude methylene chloride waste stream and the acetone-water waste stream. Water reovered during manufacturing is pre-treated prior to being discharged to the POTW.

Warehouse operations generate laboratory wastes which are captured as hazardous wastes. Wastewater generated from rinsing laboratory equipment with tap water are discharged to the POTW in compliance with the permit conditions.

5. In accordance with N.J.A.C. 7:26E-3.2(a) 3.1, provide a scaled site plan, depicting the site boundaries, known limits of fill, paved and unpaved areas, structures and any of the potential areas of environmental concern listed below.

In accordance with N.J.A. C. 7:26E3.1(c)1.v., a narrative shall also be provided for each area of concern describing the (A) Type; (B) Age; (C) Dimensions of each container/area; (D) Chemical Content; (E) Volume; (F) Construction materials; (G) Location; (H) Integrity (i.e., tank test reports, description of drum storage pad); and (I) Inventory control records, unless a Department-approved leak detection system; pursuant to N.J.A.C. 7:1E or 7:14B, has always been in place and there is no discharge history. A site investigation must be completed in accordance with N.J.A.C. 7:26E-3.10 for all areas which require sampling.

PLANT

A. Bulk storage tanks and appurtenances, including, without limitation:

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative
Aboveground Tanks and associated piping	Currently/Yes	Drawing 1 No. 1	No	Appendix A Section 5.1
Underground Tanks and associated piping	Currently/Yes (No. 2 Fuel Oil) Formerly/Yes	Drawing 1 No. 2	No Yes	Appendix A Section 5.2

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 7 of 26

.

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative
Rail Spurs or Sidings	No			
Above or below ground pump stations	No			
Sumps	No			
Pits	No			
Rail/Truck loading and unloading areas	Currently/Yes (Truck)	Drawing 1 No. 3	No	Appendix A Section 5.3
Storage Pads and areas including drum and/or waste storage	Currently/Yes	Drawing 1 No. 4	No	Appendix A Section 5.4
Surface Lagoons and impoundments	No			
Dumpsters	Currently/Yes	Drawing 1 No. 5	No	Appendix A Section 5.5
Chemical Storage Cabinets or Closets	Currently/Yes (Interior)	Drawing 1 No. 6	No	Appendix A Section 5.6

B. Drainage systems and areas, including, without limitation:

Floor Drains or trenches and piping	Currently/Yes	Drawing 1 No. 7	No	Appendix A Section 5.7
Process area sinks and piping which receive process waste	Currently/Yes (Lab)	Drawing 1 No. 8	No	Appendix A Section 5.8

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 8 of 26

Area of Concern	Currently/Formerty exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative Appendix A Section 5.9	
Roof leaders when process operations vent to roof	Currently/Yes	Drawing 1 No. 9	No		
Drainage swales and culverts	No				
Storm sewer Currently/Yes collection systems		Drawing 1 No. 10	No	Appendix A Section 5.10	
Storm water detention ponds & fire water ponds	No				
Surface water bodies	No				
Septic systems, leachfields or seepage pits	No				
Dry wells	No				

C. Discharge and disposal areas, including, without limitation:

Waste Piles	No	
Landfills or landfarms	No	
Sprayfields	No	
Incinerators	No	
Open pipe discharges	No	

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 9 of 26

D.	Other areas o	f concern,	including,	without	limitation:	
----	---------------	------------	------------	---------	-------------	--

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative Appendix A Section 5.11	
Electrical transformers and capacitors	Currently/Yes (PSE&G Owned)	Drawing I No. 11	No		
Areas of stressed vegetation	No				
Underground piping, including industrial process sewers	Formerly/Yes (USTs) Currently/Yes (Groundwater Remediation System)	Drawing 1 No. 2	Yes	Appendix A Section 5.12	
Compressor vent dischargesCurrently/Yes (Captured as hazardous waste)Non-Contact Cooling water dischargesCurrently/Yes (To POTW)		Drawing 1 No. 12	No	Appendix A Section 5.13	
		Drawing 1 No. 13	No	Appendix A Section 5.14	
Discolored areas or spill areas	No			<u>,</u>	
Active or inactive production wells	Currently/Yes	Drawing 1 No. 14	Yes	Appendix A Section 5.15	

Revision No.: ______ Revision Date: _____ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

854820011

Page 10 of 26

E. Building interior areas with a potential for discharge to the environment, including, without limitation:

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative
Loading or transfer areas	Currently/Yes	Drawing 1 No. 15	No	Appendix A Section 5.16
Waste treatment areas	Currently/Yes	Drawing 1 No. 16	No	Appendix A Section 5.17
Boiler Rooms	Currently/Yes	Drawing 1 No. 17	No	Appendix A Section 5.18
Air vents and ducts	Currently/Yes	Drawing 1 No. 18	No	Appendix A Section 5.19
Hazardous Material storage or handling areas	Currently/Yes	Drawing 1 No. 6 and 19	No	Appendix A Section 5.6 and 5.20

F. Any other site specific area of concern.

None

WAREHOUSE

A.2. Bulk storage tanks and appurtenances, including, without limitation:

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative
Aboveground Tanks and associated piping	No			

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 11 of 26

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative	
Underground Tanks and associated piping	No				
Silos	No				
Rail Spurs or Sidings	No				
Above or below ground pump stations	No				
Sumps	No				
Pits	No				
Rail/Truck loading and unloading areas	Currently/Yes (Truck)	Drawing 1 No. 3	No	Appendix A Section 5.3	
Storage Pads and areas including drum and/or waste storage	Currently/Yes (Interior)	Drawing 1 No. 4	No	Appendix A Section 5.4	
Surface Lagoons and impoundments	No				
Dumpsters	Currently/Yes	Drawing 1 No. 5	No	Appendix A Section 5.5	
Chemical Storage Cabinets or Closets			No	Appendix A Section 5.6	

.

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 12 of 26

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative		
Floor Drains or trenches and piping	Currently/Yes	Drawing 1 No. 7	No	Appendix A Section 5.7		
Process area sinks and piping which receive process waste	Currently/Yes (Lab)	Drawing 1 No. 8	No	Appendix A Section 5.8		
Roof leaders when process operations vent to roof	Currently/Yes (Lab Hoods)	Drawing 1 No. 9	No	Appendix A Section 5.9		
Drainage swales and culverts	No					
Storm sewer collection systems	Currently/Yes	Drawing 1 No.10	No	Appendix A Section 5.10		
Storm water detention ponds & fire water ponds	No					
Surface water bodies	No					
Septic systems, leachfields or seepage pits	No					
Dry wells	No					

B. Drainage systems and areas, including, without limitation:

C. Discharge and disposal areas, including, without limitation:

Waste Piles	No		
Landfills or landfarms	No		

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 13 of 26

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative	
Sprayfields	No				
Incinerators	No				
Open pipe discharges	No				

D. Other areas of concern, including, without limitation:

Electrical transformers and capacitors	Currently/Yes (PSE&G Owned)	Drawing 1 No. 11	No	Appendix A Section 5.1
Areas of stressed vegetation	No			
Underground piping, including industrial process sewers	Currently/Yes (Plant Groundwater Remediation System)	Drawing 1 No. 2	Yes	Appendix A Section 5.12
Compressor vent discharges	No			
Non-Contact Cooling water discharges	No			
Discolored areas or spill areas	No			
Active or inactive production wells	No			
Dry wells	No			

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 14 of 26

Е.	Building	interior	areas	with	a	potential	for	discharge	ŧo	the	environment,	including,
withou	t limitaito	n;										0

Area of Concern	Currently/Formerly exists at facility Yes/No	Location Reference Keyed to Site Map	Sampling Proposed Yes/No	Page or Appendix # for Narrative
Loading or transfer areas	Currently/Yes	Drawing 1 No. 15	No	Appendix A Section 5.16
Waste treatment areas	No			
Boiler Rooms	Currently/Yes	Drawing 1 No. 17	No	Appendix A Section 5.18
Air vents and ducts	Currently/Yes	Drawing 1 No. 18	No	Appendix A Section 5.19
Hazardous Material siorage or handling areas	Currently/Yes	Drawing 1 No. 6 and 19	No	Appendix A Section 5.6 and 5.20

F. Any other site specific area of concern.

None

6. Protectiveness of past remedies, Order of Magnitude Analysis

A. Have any areas of environmental concern previously received a No-Further-Action approval from the Department or other equivalent government agency for which no additional remediation is proposed? Yes <u>X</u> No_____ If no, go to question #7. If yes, complete B.

B. In accordance with N.J.S.A. 58:10B-13 (e) the following evaluation of the protectiveness of past remedies shall be completed for all areas of environmental concern for which no further action was previously approved by the Department or other equivalent government agency and for which no additional remediation is proposed. All final sampling

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 15 of 26

results shall be evaluated to determine if contaminant levels remaining on site are in compliance with current remediation standards. The applicant shall determine:

i. if contaminant levels remaining on site are greater than the current cleanup criteria by an order of magnitude (factor of 10) or more by tabulating all sampling results, including sampling location, sample media, field and laboratory identification numbers, and method detection limits, as necessary, and analytical results for all individual contaminants; and

ii. compare each contaminant result to the current remediation criteria.

I hereby certify that I have completed the order of magnitude analysis required pursuant to N.J.S.A. 58:10B-13(e), since the issuance of a No-Further-Action approval, negative declaration approval or equivalent remediation approval; and

Based on the order of magnitude analysis there has been no discharge of a hazardous substance or hazardous waste, subsequent to the issuance of a No-Further-Action approval, negative declaration approval or equivalent remediation approval at the areas of environmental concern listed below and no levels of contamination remain which exceed the current applicable cleanup criteria by more than an order of magnitude.

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 16 of 26

Area of Concern	Location Reference Keyed to Site Map	Area of Concern	Location Reference Keyed to Site Map
1. Removal of Underground Storage Tanks	Drawing 1 No. 2	9.	
2.		10.	
3.		11.	
4.		12.	
5.		13.	
6.		14.	
7.		15.	-
8.		16.	

Please list the areas of concern for which the previous certification applies.

7. Historical Data on environmental quality at the Industrial establishment

A. Have any previous sampling results documenting environmental quality of the Industrial Establishment not received a no further action approval from the Department or been denied approval by the department?

X Yes (see Attachment #____) No

B. Have there been any known changes in site conditions or new information developed since completion of previous sampling or remediation? If sampling results were obtained, but are not part of this application, please explain below:

Recent and historic sampling results and a narrative on the continuing groundwater remediation at the plant site are included in the Preliminary Assessment Report (Section 7.0).

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 17 of 26

8. Discharge History of	Discharge History of Hazardous Substances and Wastes:						
A. Have there been any	. Have there been any discharges of hazardous substances and wastes?						
X_Yes (complete Item	s B-E)	No					
B. Was the Department not	fied of the discharge?						
XYes		No (Go to Item 9D)					
If yes, provide the case # The site is subject to a groundwater Administrative Consent Order (ACO) comprised of a NIDEP ACO dated 1/12/77, as amended in NIDEP Administrative Order (AO) dated 12/6/78, as amended in NIDEP ACO 9/25/80 as modified by NIDEP letter dated 6/18/8 (collectively, the "Groundwater ACO").							
	Was a no-further-action letter, negative declaration approval or full-compliance letter issued as a result of the cleanup of this discharge?						
Yes (Submit a copy	and go to item 9E)	<u>X</u> No (Remediation and monitoring ongoing in accord with NJDEP ACO)					
D. Were sample results	obtained?						
XYes							

E. Provide a description of the discharge and the response and resolution.

The Groundwater ACO stems from a discharge from underground lines leading to the underground waste solvent tank in November 1975. The lines were removed in the winter of 1975 and aboveground lines were installed. Subsequently, the underground storage tanks were removed and replaced with vaulted below grade storage tanks with secondary containment and continuous monitoring. Biocraft undertook an extensive research and development project to develop a process to remove and treat the impacted groundwater. The research resulted in the development of a sophisticated biodegradation/biostimulation process which has received a patent from the US Patent Office. The biodegradation/biostimulation system was installed and has been

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 18 of 26

operating since 1977. Extensive monitoring in accord with the Groundwater ACO shows that groundwater quality has progressively improved and Biocraft currently estimates that 90% of the groundwater plume has been remediated. The sampling data show that the treatment system reduces the influent concentrations of methylene chloride hy greater than 90%. Groundwater elevation and sampling data show that the zone of influence of the recovery system maintains hydraulic control of the groundwater plume. A detailed discussion of the remediation system and groundwater sampling results are found in the Preliminary Assessment Report (Section 7.0).

9. Aerial Photographic interpretation for sites larger than two acres from 1932 to present or to the earliest photograph available (Attach additional sheets if necessary).

Aerial Photographs from 1940, 1951, 1961, and 1974 were reviewed at the New Jersey Department of Environmental Protection Offices. The aerial photo review included both facilities (the Plant and Warehouse).

<u>4/6/4</u> 0	Scale 1:20,000	The area is wooded with scattered agricultural and single family homes on adjacent property.
<u>4/7/51</u>	Scale_1:20,000	The property is wooded. Surrounding property is agricultural with single family homes.
<u>4/23/61</u>	Scale_1:18,000	The property is wooded. Surrounding property is agricultural with single family homes.
<u>4/11/74</u>	Scale 1:18,000	The Biocraft building is present. Surrounding properties include industrial buildings to the east, north, west and northwest.

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 19 of 26

10. List all federal, state and local environmental permits at this facility, including permits for all previous and current owners or operators, applied for, received, or both (Attach additional sheets if necessary).

Check here if no permits are involved _____

A. New Jersey Air Pollution Control

Permit Number	Certificate Number	Date of Approval or Denial	Reason for Denial (If Applicable)	Expiration Date
	049648	4/16/81		1/5/98
	049649	4/16/81		1/5/98
	049650	4/16/81		1/5/98
	049651	4/16/81		1/5/98
	108250	8/13/92		8/13/97
	108251	8/13/92		8/13/97
	108252	8/13/92		8/13/97
	108253	8/13/92		8/13/97
	108254	8/10/92		8/10/97
	108255	8/3/92		8/3/97
	108256	8/13/92		8/13/97
	108257	8/13/92		8/13/97
	108258	8/10/92		8/10/97
	108259	8/13/92		8/13/97
	121828*			7/18/95

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

854820021

.

Page 20 of 26

Permit Number	Certificate Number	Date of Approval or Denial	Reason for Denial (If Applicable)	Expiration Date
<u></u>	041929	4/30/79		4/28/99
	118896*	10/27/94		10/21/00
	01944239	10/26/94**		
	01944240	10/26/94**		
<u> </u>	01944241	10/26/94**		
	019342	8/10/89		10/7/00

* Temporary Permit until Certification received from NIDEP.

** Renewal Application Submitted, Permits approved by NIDEP, Biocraft awaiting certificates.

- B. Underground Storage Tank Registration Number Not Applicable
- C. New Jersey Pollutant Discharge Elimination System (NJPDES) Permit

Number	Discharge Activity	Date Issued or Denied	Expiration Date	Body of Water Discharged Into
	Not Applicable			

D. Resource Conservation and Recovery Act (RCRA) permit # - EPA#NJD056356066

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 21 of 26

Agency Issuing Permit	Permit #	Type of Permit	Date of Approval or Denial	Expiration Date
NJDEP Bureau of Stormwater Permitting	NJ0088315 (Plant)	Stormwater	6/23/93	11/1/97
Northwest Bergen County Utilities Authority	870dj (Warehouse)	Industrial Wastewater Discharge	1/1/96	12/31/98
Northwest Bergen County Utilities Authority	95002 (Plant)	Industrial Wastewater Discharge	1/1/96	12/31/98
State of New Jersey (Boiler)	95303 (Plant)	Certificate of Registration	7/14/95	7/15/96
State of New Jersey (Boiler)	95304 (Plant)	Certificate of Registration	7/14/95	7/15/96
State of New Jersey (Boiler)	89-2044-H (Warehouse)	Certificate of Registration	7/14/95	7/15/95

E. All other federal, state, local government permits.

11. Summary of enforcement actions (including but not limited to, Notice of Violations, Court Orders, official notices or directives) for violations of environmental laws or regulations (attach additional sheets if necessary):

- B.1 (1) Name and address of agency that initiated the enforcement action

NIDEP, Trenton, New Jersey

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 22 of 26

- (2) Date of the enforcement action 1/12/77, 12/6/78, 9/25/80, letter 6/18/82 collectively, the "Groundwater ACO".
- (3) Section of statute, rule or permit allegedly violated

Various sections related to a discharge from underground storage tank piping.

- (4) Type of enforcement action The Groundwater ACO
- (5) Description of the violation Leak detected in underground piping to underground storage tanks
- (6) How was the violation resolved? Groundwater Biodegradation/ Biostimulation_system_installed_in 1977, continues to be operated, and extensive_monitoring_and_reporting has continued since that date.
- B.2 (1) Name and address of agency that initiated the enforcement action

NJDEP, Trenton, New Jersey

- (2) Date of the enforcement action 4/26/89
- (3) Section of statute, rule or permit allegedly violated

N.J.A.C. 7:27-8.3(e)1

(4) Type of enforcement action Administrative Order and Notice of Civil Administrative Penalty Assessment

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

Page 23 of 26

- (5) Description of the violation Use of sodium hydroxide not covered under NIDEP Air Permit No. 41930.
- (6) How was the violation resolved? Biocraft revised and resubmitted the permit
- B.3 (1) Name and address of agency that initiated the enforcement action NIDEP, 401 Fast State Street, Trenton, New Jersey
 - (2) Date of the enforcement action 11/23/94
 - (3) Section of statute, rule or permit allegedly violated

N.J.A.C. 7:1E-4.6(a)&(b)4

(4)	Type of enforcement action	Administrative Order and Notice of Civil Administrative Penalty Assessment
(5)	Description of the violation	A DPCC/DCR Plan had not been prepared for the Plant
(6)	How was the violation resolved?	A DPCC/DCR Plan was prepared, submitted and approved by NIDEP in 6/95 for the Plant

B.4 (1) Name and address of agency that initiated the enforcement action

NIDEP, 1474 Prospect Street, Trenton New Jersey.

- (2) Date of the enforcement action 9/25/80
- (3) Section of statute, rule or permit allegedly violated

N.I.S.A. 13:10-let.seq., N.I.S.A. 13:1E-1 et_seq. and N.I.A.C. 7:26-12-1

Page 24 of 26

B.5

•

(4)	Type of enforcement action	Administrative Consent Order			
(5)	Description of the violation	Hazardous waste stored in two 10,000 gallon underground storage tanks. Failure to submit a hazardous waste facility permit application			
(6)	How was the violation resol	<i>lved</i> ? Underground_storage_tanks_were_removed according to NJDEP_regulations, contingency plan was written, emergency equipment was made_available_in_case_of_a_spill_and_an evacuation_plan_was_submittedNJDEP observed_removal_and_recommended_no further action (memo_dated_4/15/92).			
(1)	Name and address of agenc	ry that initiated the enforcement action			
	NIDEP, Division of Enforcement Field Operations, Metro Enforcement, 2 Babcock Place, West Orange, New Jersey.				
(2)	Date of the enforcement action 5/12/94				
(3)	Section of statute, rule or permit allegedly violated				
	N.J.A.C. 7:26-7.4(1)4ii and N.J.A.C. 7.4(a)4viii				
(4)	Type of enforcement action Notice of Violation				
(5)	Description of the violation				
	USEPA identification number, NI decal number and correct transporters registration numbers were incorrect or missing on hazardous waste manifest.				
(6)	How was the violation reso	olved?			
	Proper paperwork was subr	mitted within 15 day time frame.			
vision No.	·				

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

854820026

.

Page 25 of 26

12. Site Map

A. In accordance with N.J.A.C. 7:26E-3.2(a) 3.1, submit a scaled site plan, detailing the subject lot and block, property and or leasehold boundaries, location of current and former buildings, fill areas, paved and unpaved areas, vegetated areas, and all areas of concern identified above and all active or inactive wells.

B. Scaled historical site maps and facility as built drawings (if available).

C. A copy of the United States Geologic Survey (USGS) 7.5 minute topographical quadrangle that includes the site and an area of at least one mile radius around the site. The facility location shall be clearly noted. If a portion of the USGS quadrangle is used, the scale, north arrow, contour interval, longitude and latitude with the name and date of the USGS quadrangle shall be noted on the map.

13. List any other information you are submitting or which has been formerly requested by the Department:

Description	Attachment #
NONE	

Revision No.: ______ Revision Date: ______ Facility: Biocraft Laboratories, Inc., Waldwick, New Jersey

page 26 of 26

CERTIFICATIONS:

A. The following certification shall be signed by the highest ranking individual at the site with overall responsibility for that site or activity. Where there is no individual at the site with overall responsibility for that site or activity, this certification shall be signed by the individual having responsibility for the overall operation of the site or activity.

I certify under penalty of law that the information provided in this document is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

Typed/P	rinted Name	Title	Plant Manaç	jer	-
Signatu	re Unto Rapisarch		2/29/9	6	-
Sworn t	o and Subscribed Before Me on this _	29ª. d.	iy	_	
Date of	1972 Flowing ANNA M. R				
lan	A Radi NOTARY PUBLIC OF NE.	-	· .	-	
Notary	MY COMMISSION EXPIRES 10-30-	70 .			
	following certification shall be sign	ned as fo	llows:	•	

B. The following certification shall be

. . .

1. For a corporation, by a principal executive officer of at least the level of vice president;

2. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively; or

3. For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official; or 4. For persons other than 1-3 above, by the person with the legal responsibility for the site.

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information, and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute I am personally liable for the penalties.

Typed/Printed Name	Melvin Kaufman	Title Vice President - Operations		
signature MUL		Date	2/29/96	
Sworn towand Subscri	ibed Before Me on this	29 CK	·······	
nato of Felinian	1. 1996		DERSEN	

Revision No: Revision Date:

ETHYL ANDERS NOTARY PUBLIC OF NEW JERSEY My Commission Expires May 1, 2000

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY ISRA CASE #96070

1. (C)

PRELIMINARY ASSESSMENT REPORT ITEM No. 6 TANK CLOSURE CERTIFICATION - APRIL 15, 1992

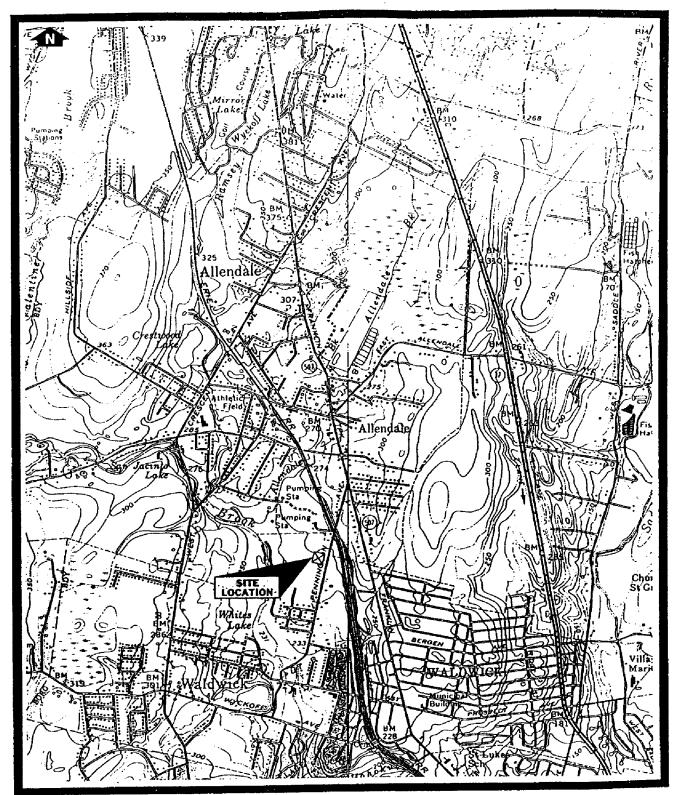
854820029

.

 \sim 02-64-03 L - ADM- 813 MEMO HERE ALPRETY EFATE DEPARTMENT OF INVINCING INTAL PROTECTION TO DAVID OSTER 4/15/82 DB TX MON Arnold Schiff Prin. Env. Spec. NUMBER Bide raft Laboratories Trak Clustere. 920211 Spelm Bused upon being present at remains of tanks on 2/7/92 and the test results received by the Department on glistas from Vectre Cooperation Sent out on yliolar, I recomment that no further action be taken . The ground water and soil sample came up non detect for the Vos.

854820030

FIGURES


·

.

.

. .

854820031

• me DCO+

FIGURE 1 - SITE LOCATION MAP

Biocraft Laboratories, Inc., Waldwick, New Jersey Scale 1:24,000 Contour In Contour Interval 10 Feet Longitude 74.07.30 Latitude 41.00.00 USGS, 7.5 Minute Quadrangle Map, Ramsey, NY-NJ, 1955 USGS, 7.5 Minute Quadrangle Map, Park Ridge, NY-NJ, 1955

TABLES 854820033

TIERRA-B-009027

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 1 (Preliminary Assessment Form Item 3)

HAZARDOUS SUBSTANCES STORED AT FACILITY

Substance Name	CAS	Typical Annual Usage •	Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily
	Number	Quantity Units	Container Type	Container Size]	On-Site	Quantity (lbs.)
Acenapthene	83-32-9	50 g	Bottles or Jugs (glass)	100 g	Laboratorics	Yes	Less than 1 lb.
Acetamide	60-35-5	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Acetic Acid	64-19-7	10 L	Bottles or Jugs (glass)	2.5 L & 500 mL	Laboratories	Yes	1 - 10
Acetic Anhydride	108-24-7	10 L	Bottles or Jugs (glass)	2.5 L & 500 mL	Laboratories	Yes	1 - 10
Acetone	67-64-1	1,000,000 lbs	Bottles or Jugs (glass), AST	10,000 gal	Laboratories, Production, Tank Farm	Yes	100,001 - 250,000
Acetonitrile	75-05-8	200 L	Bottles or Jugs (glass)	2.5 L	Laboratories	Yes	1-10
Adipic Acid	124-04-09	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Ammonia	7664-41-7	100 lbs	Cylinder	Cylinder	Laboratories	Yes	11 - 100
Ammonium Acetate	631-61-8	75 g	Bottles or Jugs (glass)	1 Kg	Laboratories	Yes	Less than 1 lb.
Ammonium Bicarbonate	1066-33-7	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Ammonium Chloride	12125-02-9	50 g	Bottles or Jugs (glass), Bag	500 g	Laboratories, Tank Farm	Yes	Less than 1 lb.
Ammonium Hydroxide	1336-21-6	10 L	Bottles or Jugs (glass)	2.5 L	Laboratories	Yes	1-10
Ammonium Nitrate	6484-52-2	IO L	Bottles or Jugs (plastic)	2.5 L	Laboratories	Yes	1-10
Ammonium Oxalate	1113-38-8	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Ammonium Persulfate	7727-54-0	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Ammonium Thiocyanate	1762-95-4	50 g	Bottles or Jugs (glass)	l Kg	Laboratories	Yes	Less than 1 lb.
Aniline	62-53-3	11	Bottles or Jugs (glass)	· 11	Laboratories	Yes	Less than 1 ib.
Anthracene	120-12-7	50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Antimony	7440-36-0	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Arsenic Trioxide	1327-53-3	50 g	Bottles or Jugs (glass)	125 g	Laboratorics	Yes	Less than 1 lb.
Benzene	71-43-2	41	Bottles or Jugs (glass)	500 mi.	Laboratories	Yes	Less than 1 lb.
Benzoic Acid	65-85-0	1L	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Benzoyi Chloride	98-88-4	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Benryl Chloride	100-44-7	11	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1 - 10
Beryllium Sulfate	13510-49-1	50 g	Bottles or Jugs (glass)	25 g	Laboratories	Yes	Less than 1 lb.
2-Butanol	78-92-2	10 L	Bottles or Jugs (glass)	1 L	Laboratories	Yes	I - 10
N-Butanol	71-36-3	10 L	Bottles or Jugs (glass)	1 L	Laboratories	Yes	Less than 1 lb.
Butyl Acetate	123-86-4	10 L	Bottles or Jugs (glass)	11	Laboratories	Yes	Less than 1 lb.

,

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

ε٠	grams	

L - Liters

Kg - Kilograms

lbs - pounds

854820034

ţ

Notes:

TABLE 1 Continues

Substance Name	CAS Number	Typical Annual Usage • Storage Method			Location/Keyed to Location Map		Maximum Daily
		Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
Cadmium	7440-43-9	50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Carbon Disulfide	75-15-0	1 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Carbon Tetrachloride	56-23-5	11	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Chlorobenzene	108-90-7	I L	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	Yes	Less than 1 lb.
Chloroform	67-66-3	1 L	Bottles or Jugs (glass)	i L & 500 mL	Laboratories	Yes	1 - 10
Chlorophenol	95-57-8	11	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	Ya	Less than 1 lb.
Chromium	7440-47-3	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Chromium Chloride	10025-73-7	100 g	Bottles or Jugs (glass)	500 g	Laboratories	Ya	Less than 1 lb.
Cupric Acetate	142-71-2	25 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Cupric Chloride	1344-67-8	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 ib.
Cupric Sulfate	10380-29-7	50 g	Bottles or Jugs (glass)	500 g	Laboratorics	Yes	Less than 1 lb.
Cyclohexane	110-82-7	11	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1 - 10
1.2-Dichlorobenzene	95-50-1	500 mL	Bottles or Juga (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Dichloromethane	75-09-2	See Methylene Chloride	Bottles or Jugs (glass), AST, Steel Drum	10,000 galion tank	Laboratories, Tank Farm, Production	Yes	100,001-250,000
N.N Dimethyl Aniline	121-69-7	500 mL	Bottles or Jugs (giass)	500 mL	Laboratories	Yes	1-10
Dicthylamine	109-89-7	50 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb.
Diethyl Ether	60-29-7	50 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb.
Diethyl Phthalate	84-66-2	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Dimethyl Dichlorosilane	75-78-5	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
1,4 Dioxane	123-91-1	2.5 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Diphenyl Amine	122-39-4	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Ethyl Acetate	141-78-6	1 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
Ethyl Chioroformate	541-41-3	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	11 - 100
Ethylene Dichloride	107-06-2	11	Bottles or Jugs (glass)	150 mL	Laboratories	Yes	Less than 1 lb.
Ethylene Glycol	107-21-1	4,000 lbs	Steel Drum	55 gallon	Laboratories, Tank Farm	Yes	10,001-50,000
Ferric Chloride	7783-50-8	200 g	Can	500 g	Laboratories	Yes	1-10
Ferric Nitrate	10421-48-4	100 Kg	Bottles or Jugs (glass)	20 L Carboy/50 g bottle	Laboratories	Yes	1-10
Ferrous Ammonium Sulfate	10045-89-03	250 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Ferrous Sulfate	7720-78-7	250 g	Bottles or Jugs (glass)	500g	Laboratories	Yes	1-10

14.1

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams

L - Liters

Kg - Kilograms lbs - pounds

TABLE 1 Continues ...

Substance Name	CAS Number	Typical Annual Usage * Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily	
		Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
Formaldehyde	50-00-0	1 L	Bottles or Jugs (glass)	150 mL	Laboratories	Yes	1-10
Formic Acid	64-18-6	10 L	Bottles or Jugs (glass)	1L	Laboratories	Yes	Less than 1 lb.
Fuel Oil (#2)		60,000 gal	UST	6,000 gallon tank	Tank Farm	Yes	50,001-100,000
Hydrazine Sulfate	10034-93-2	500 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 fb.
Hydrochloric Acid	7647-01-0	60,000 lbs	Bottles or Jugs (glass), AST	6,000 gallon tank	Laboratories, Tank Farm, Production	Yes	50,001-100,000
Hydrogen Peroxide	7722-84-1	11	Bottles or Jugs (glass)	IL	Laboratories	Yes	Less than 1 lb.
Hydrogen Sulfide	7783-06-4	10 lbs	Cylinder	Cylinder	Laboratories	Yes	Less than 1 lb.
Hydroquione	123-31-9	25 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Isobutanol	78-83-1	25 L	Bottles or Jugs (glass)	1 L	Laboratories	Yes	1-10
isobutyi Acetate	110-19-0	25 L	Bottles or Jugs (glass)	4 L	Laboratories	Yes	Less than 1 lb.
Isopropanol	67-63-0	SO L	Bottles or Jugs (glass)	40	Laboratories	Yes	1-10
Lead	7439-92-1	25 g	Bottles or Jugs (glass)	500 g	Laboratorics	Yes	Less than 1 lb.
Lead Acetate	301-04-3	25 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Lead Nitrate	10099-74-8	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Lead Sulfide	1314-87-0	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Mercuric Acetate	1600-27-7	25 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb.
Mercuric Chloride	10124-48-8	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Mecuric Oxide	21908-53-2	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Mercuric Sulfate	7783-35-9	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Mercuric Nitrate	778-26-7	1 L	Bottles or Jugs (glass)	1 L	Laboratories	Yes	Less than 1 lb.
Mercury	7439-97-6	l Kg	Bottles or Jugs (plastic)	500 g	Laboratorics	Yes	1-10
2-Methoxyethanol	109-86-4	10 L	Bottles or Jugs (glass)	11.	Laboratories	Yes	Less than I lb.
Methyl Alcohol	67-56-1	100 L	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
Methyl Ethyl Ketone	78-93-3	4 L	Bottles or Jugs (glass)	4 L	Laboratories	Yes	1-10
Methyl Isoburyl Ketone	108-10-1	1 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
Methylene Chloride	75-09-2	2,500,000 lbs	AST	10,000-gallon tank	Tank Farm, Production	Yes	50,001-100,000
Molybdenum Trioxide	1313-27-5	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Napthalene	91-20-3	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Nickel Chloride	7718-54-9	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Nickel Sulfate	7786-81-4	50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.

1

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

L - Liters

Kg - Kilograms

lbs - pounds

Notes:

g - grams

TABLE 1 Continues ...

Substance Name	CAS Number	Typical Annual Usage * Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily	
		Quantity Units	Container Type	Container Size		On-Site	Quantity (ibs.)
Nitric Acid	7697-37-2	10 L	Bottles or Jugs (glass)	1L	Laboratories	Yes	1-10
Nitrobenzene	98-95-3	2 L	Bottles or Jugs (glass)	1 11	Laboratories	Yes	1-10
2-Nitrophenol	88-75-5	50 g	Bottles or Jugs (glass)	100 g	Laboratorics	Yes	Less than 1 lb.
Pentachlorophenol	87-86-5	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Peracetic Acid	79-21-0	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Phenacetin	62-44-2	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Phenol	108-95-7	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Phosphoric Acid	7664-38-2	10 L	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	· Yes	1-10
Phosphorous Pentachloride	10026-13-8	500 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Phosphorous Trichlanide	7719-12-2	25 mL	Bottles or Jugs (glass)	25 mL	Laboratories	Yes	Less than 1 lb.
Picoline	109-06-8	250 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Potassium Bromate	7758-01-2	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Potassium Chromate	7789-00-6	500 g	Botties or Jugs (glass)	250 g	Laboratories	Yes	1-10
Potassium Cyanide	151-50-8	25 g	Bottles or Jugs (glass)	25 g	Laboratories	Yes	Less than 1 lb.
Potassium Dichromate	7778-50-9	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	1-10
Potassium Hydroxide	1310-58-3	11	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
Potassium Permaganate	7722-64-7	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Pyrene	129-00-0	1 1 1	Bottles or Jugs (glass)	1L	Laboratories	Yes	Less than 1 lb.
Pyridine	110-86-1	10 L	Bottles or Jugs (glass)	1 L	Laboratories	Yes	1-10
Ouinoline	91-22-5	1 1 1	Bottles or Jugs (glass)	1 L	Laboratories	Yes	Less than 1 lb.
Rancy Nickel	7440-02-0	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 (b.
Saccharin	81-07-2	100 lbs	Bottles or Jugs (glass)	30 gallon containers	Laboratories	Yes	11 - 100
Semicarbazide Hydrochloride	563-41-7	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Silver Nitrate	7761-88-8	25 g	Bottles or Jugs (glass)	30 g	Laboratories	Yes	Less than 1 lb.
Sodium	7740-23-5	1 Kg	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sodium Arsenate	7631-89-2	25 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Sodium Azide	26628-22-8	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.

,

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

ģ - grams

L - Liters

Kg - Kilograms Ibs - pounds

TABLE 1 Continues ...

Substance Name	CAS Number	Typical Annual Usage *	Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily
		Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
Sodium Chlorate	7775-09-9	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sodium Dichromate	10588-01-9	1 Kg	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Sodium Fluoride	7681-49-4	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sodium Hydride	7646-69-7	50 g	Can	500 g	Laboratories	Yes	1-10
Sodium Hydroxide	1310-73-2	60,000 lbs	Bottles or Jugs (glass), Steel Drum, AST	6,000 gal	Laboratories	Yes	11-100
Sodium Hypochlorite	7681-52-9	10 L	Plastic Drum	۱L	Laboratories	Yes	11-100
Sodium Methoxide	124-41-4	500 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	1-10
Sodium Sulfide	1313-82-2	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sulfuric Acid	7664-93-9	5 L	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
Tetrachioroethylene	127-18-4	11	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
Tetrahydrofuran	109-99-9	11	Bottles or Jugs (glass)	IL	Laboratories	Yes	1-10
Thioacetamide	62-55-5	500 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	1.10
Thiourca	62-56-6	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Toluene	108-88-3	50 L	Bottles or Jugs (glass)	4L	Pilot Plant Laboratories, Tank Farm	Yes	1,001-10,000
Trichloroethylene	79-01-6	11	Bottles or Jugs (giass)	500 mi.	Laboratories	Yes	Less than 1 lb.
Triethylamine	121-44-8	30,000 lbs	Bottles or Jugs (glass), Steel Drum	55 galions	Laboratories, Tank Farm, Production	Yes	1,001-10,000
Triethylchlorosilane	75-77-4	50 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	1-10
Uranyl Acetate	541-09-3	50 g	Bottles or Jugs (glass)	500 g	Laboratorics	Yes	1-10
Uranyl Nitrate	10102-06-4	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Waste Oil		500 gal	Steel Drum	55 galions	Tank Farm, Boiler Room	Yes	11-100
Waste Waters (acetone)	67-64-1	70,000 lbs	Bottles or Jugs (glass)	10,000 gallon tank	Laboratories, Tank Farm, Production	Yes	50,001-100,000
Zinc Acetate	557-34-6	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Zinc Chloride	7446-85-7	50 g	Botties or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Zinc Sulfate	7733-02-0	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.

Ŧ

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams L - Liters

Kg • Kilograms

lbs - pounds

.

·

. .

.

.

.

8548200**39**

TIERRA-B-009033

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY ISRA CASE #96070

APPENDIX A PRELIMINARY ASSESSMENT REPORT

-

854820040

TIERRA-B-009034

1.0 PURPOSE AND ORGANIZATION

The New Jersey Department of Environmental Protection (NJDEP)Industrial Site Recovery Act (ISRA) regulations require that Biocraft conduct a Preliminary Assessment (PA) containing the elements outlined in N.J.A.C. 7:26E-3.2. The report is organized into the following sections: 1.0 Purpose and Organization, 2.0 Introduction and Site History, 3.0 Materials and Products, 4.0 Production Processes, 5.0 Areas of Concern, 6.0 Discharges, and 7.0 Remediation Activities.

1

-

2.0 INTRODUCTION AND SITE HISTORY

The Biocraft Waldwick facility consists of a manufacturing building and a warehouse building on two contiguous properties with frontages on 12 Industrial Park (the "Plant") and 140 Hopper Avenue (the "Warehouse"), Waldwick, New Jersey. Figure 1 shows the site location. The general site plan (Drawing 1) includes the manufacturing and warehouse buildings, the property lines, fencing, storage tanks, drum storage area, and secondary containment units.

Historical information was obtained through a Title Search, MacRae's Industrial Directory, communication with Biocraft personnel, and site plans. Sanborn fire insurance maps were not available for this site. The title search was conducted by First Jersey Title Services, Inc., Paramus, New Jersey.

The site was undeveloped until Biocraft Laboratories, Inc. purchased the property in January, 1972 and built the Plant on the site. The office maintenance, and production areas, and research and development laboratories are located in the Plant building. The Warehouse building was constructed in 1985. Finished products and some raw materials are stored in the Warehouse building, which also houses the quality control and microbiology laboratories. The site plan is shown on Drawing 1.

The site is subject to a groundwater Administrative Consent Order (ACO) comprised of a NJDEP ACO dated January 12, 1977, as amended by NJDEP Administrative Order dated December 12, 1978, as amended by NJDEP ACO September 25, 1980, as modified by NJDEP letter dated June 18, 1982 (collectively, the "Groundwater ACO"). The Groundwater ACO stems from a discharge in November 1975 from underground lines leading to an underground waste solvent tank. The underground lines were removed during the winter of 1975 and aboveground lines were installed. Subsequently, the underground storage tanks were removed and replaced with vaulted below grade storage tanks with secondary containment and continuous monitoring. Biocraft undertook an

extensive research and development project to develop a process to remove and treat groundwater. The research resulted in the development of a sophisticated biodegradation/biostimulation process which has received a patent from the U.S. Patent Office. The biodegradation/biostimulation system was installed with NJDEP approval and has been operating since 1977. Extensive monitoring in accord with the Groundwater ACO shows that groundwater quality has progressively improved and Biocraft estimates that 90 percent of the groundwater plume has been remediated. The sampling data indicate that the treatment system reduced the influent concentrations of methylene chloride by greater than 90 percent. No butyl alcohol or acetone was detected in the effluent samples analyzed for the past four quarters. Groundwater elevation and sampling data show that the zone of influence of the recovery system maintains hydraulic control of the groundwater plume.

3.0 MATERIALS AND PRODUCTS

The Waldwick facility has manufactured five semi-synthetic penicillin products in bulk form under a proprietary process since opening in 1972. Materials used at the Plant are delivered in bulk (tank truck) and drum quantities. Raw materials used in manufacturing include methylene chloride, acetone, hydrochloric acid, sodium hydroxide, No. 2 fuel oil, and liquid nitrogen. Materials stored in drums include triethylamine, dimethyl acetamide, 2,6-lutidine, and pivaloyl chloride.

Small quantities of hazardous materials are stored in laboratories in the Plant and Warehouse Buildings. Hazardous materials are listed on Table 1.

4.0 PRODUCTION PROCESSES

The penicillin products are manufactured in the plant in separate production runs which last a minimum of one week for each product. The penicillins are manufactured using batch chemical processes which include the following key steps: 1) chemical reactions (one or more), 2) batch extraction, 3) crystallization, 4) centrifuging, 5) drying, 6) compaction, 7) milling, and 8) blending.

4.1 Materials Delivery

PLANT

Raw materials shipped by truck to the Plant in bulk containers (tank trucks, fiber and steel drums). The tank truck loading/unloading area is shown on Drawing 1. All tank contents are loaded/unloaded from this area through aboveground piping. Tank truck loading/unloading is performed in accord with Biocraft standard operating procedures. All tank truck seals, ports, and discharge lines are visually examined by a Biocraft employee when the truck arrives at the facility to verify that they are closed. The truck is backed into the loading/unloading area and the truck wheels are chocked to prevent movement. After completing loading/unloading, tank truck seals and ports are visually examined for leakage, and if necessary, tightened, adjusted, repaired, or replaced to prevent leakage in transit.

The fiber and steel drums are unloaded from the truck using a forklift and are stored on portable secondary containment skids in the drum storage area, or stored in the production areas of the plant. The truck loading bay is poured concrete and is in good condition.

WAREHOUSE

Bulk generic penicillin products and some raw materials which are used in manufacturing at the Plant are stored in the Warehouse. The raw materials are delivered by truck and unloaded using a forklift. Bulk finished products are loaded onto a company truck using a forklift and shipped to Biocraft's Elmwood Park facility. The truck loading and unloading areas are paved with asphalt and the pavement is in good condition.

4.2 Waste Practices

PLANT

Hazardous wastes generated from manufacturing are recovered and sent off-site for disposal or recovered (distillation) on-site. The hazardous waste streams sent for off-site disposal include: process waste water and still bottoms from methylene chloride distillation. Solvent is recovered and recycled for reuse in manufacturing from crude methylene chloride waste stream and the acetone-water waste stream. Water generated during the manufacturing process is pretreated by a bioreactor system prior to discharge to the POTW. This discharge is in compliance with the POTW permit.

WAREHOUSE

Hazardous wastes generated from the laboratories are disposed of off-site. Wastewater generated from the rinsing of laboratory glassware is discharged in compliance with the POTW permit.

5.0 AREAS OF CONCERN

5.1 Aboveground Tanks and Associated Piping

PLANT

Hazardous materials and wastes used and generated at the Plant are stored in drums, and aboveground and below grade (vaulted) storage tanks. One underground storage tank (No. 2 fuel oil) is outside the Plant building. Table 2 summarizes the tank storage area sizes, construction, and contents. The storage areas are described below:

Aboveground and Below Grade (Vaulted) Storage Tanks

- Hydrochloric acid is stored in one 6,000-gallon, single wall, fiberglass aboveground storage tank. The tank has no internal heating coils. The tank is located inside secondary containment constructed of poured reinforced concrete walls and floor. All tank piping is aboveground and does not pass through the containment walls. The concrete interior walls and concrete are coated with chemically resistant epoxy. Pipe valves are readily accessible and are close to the tank to permit shutoff in the event of a pipe rupture outside of the containment unit. The tank is equipped with a liquid level gauge and a high liquid level alarm. Tank overflow piping is directed into the containment. The tank was visually and hydrostatically tested in February 1994 and found to be in satisfactory condition.
- Sodium hydroxide is stored in a 6,000-gallon single wall, stainless steel aboveground storage tank. The tank has no internal heating coils. The tank is located inside secondary containment constructed of poured concrete walls and floor. The concrete interior walls and concrete are coated with chemically resistant epoxy. All tank piping is aboveground and does not pass through the containment walls. Pipe valves are readily accessible and

close to the tank to permit shut off in the event of a pipe rupture outside of the containment unit. The tank is equipped with a liquid level gauge and a high liquid level alarm. Tank overflow piping is directed to the containment unit. This staintess steel tank was installed in February 1995 as a replacement of the original fiberglass tank.

- Acetone and methylene chloride are stored in four, 10,000-gallon, single wall, carbon steel below grade storage tanks. The tanks have no internal heating coils. Two tanks store virgin acetone and methylene chloride and two tanks store acetone and methylene chloride recovered from the manufacturing process. The tanks are located in two below grade vaults. The vault walls, floors, and covers are poured, reinforced concrete coated with chemically resistant epoxy. All tank piping is aboveground and does not pass through the containment walls. Pipe valves are readily accessible and close to the tank to permit shutoff in the event of a pipe rupture outside of the containment unit. Each tank is equipped with a liquid level gauge, a high liquid level alarm, and a nitrogen blanketing system. The tank vault is equipped with an automatic leak detection system which is installed at the low point of the vault floor. The tanks were installed in 1990. The tanks were visually and hydrostatically tested in July 1995 and found to be in satisfactory condition.
- Hazardous wastes generated from the manufacturing process are stored in six 10,000 gallon, single wall, carbon steel tanks (Tank Nos. 5 through 10). The tanks have no internal heating coils. The tanks are located in three below grade vaults. The vault walls, floors, and covers are poured, reinforced concrete. The concrete is coated with chemically resistant epoxy. All tank piping is aboveground and does not pass through the containment walls. Pipe valves are readily accessible and are close to the tank to permit shutoff in the event of a pipe rupture outside of the containment unit. Each tank is equipped with a liquid level gauge, a high liquid level alarm, and a nitrogen blanketing system. The tank vault is equipped with an automatic leak detection system which is installed at the low point of the vault floor. The tanks were installed in 1990. The tanks were visually and

hydrostatically tested in September 1995 and found to be in satisfactory condition.

- Liquid nitrogen is stored in a 15,000 gallon, aboveground cryogenic tank. The tank has no internal heating coils. The tank is equipped with a level gauge, a pressure gauge, and a pressure relief valve.
- Process reactors, centrifuges, and distillation tanks in the manufacturing building are stainless steel. Secondary containment for the process reactors and centrifuges is provided by concrete curbing and the building masonry walls. The process reactors and centrifuges are equipped with a sight glass to determine liquid levels; liquid level gauges are not used because of varying reactor temperatures and pressures. The distillation tanks are equipped with liquid level gauges. All tanks are equipped with pressure relief valves.

Aboveground and Below Grade (Vaulted) Storage Tank Secondary Containment Units

All portions of the Biocraft facility where hazardous substances are refined, produced, stored, held, handled, processed or transferred are designed to minimize the possibility that a leak will become a discharge. Secondary containment units were designed to block all probable routes by which a released hazardous substance could reasonably be expected to become a discharge to the environment. In the event of a release into a secondary containment unit, Biocraft's standard operating procedures would require the prompt removal of the released hazardous materials from a secondary containment unit. Secondary containment units at the facility include concrete dikes, concrete vaults, and a double wall tank and piping. A summary of secondary containment unit unit units is presented in Table 2. A description of the secondary containment units is presented below.

The hydrochloric acid and sodium hydroxide tanks are located within two secondary containment dikes constructed of poured reinforced concrete walls and floor. The concrete is coated with chemically resistant epoxy. Chemically resistant water stops were installed

at the joints between the floor and the walls. The containment dikes do not drain into a watercourse, ditch, storm drain or sewer which leads directly or indirectly to a watercourse or POTW. Each containment dike contains one tank and incompatible materials are not stored in tanks in the same dike. Each containment dike has a storage capacity of approximately 7,000 gallons, which is greater than the volume of the tank (6,000-gallons) and 6-inches of accumulated rainwater (approximately 700 gallons).

The acetone, methylene chloride, and process waste tanks (Tank Nos. 1 through 10) are located in five below grade vaults. The vaults walls, floors, and covers are poured, reinforced concrete. The concrete is coated with chemically resistant epoxy. Stainless steel water stops were installed at the joints between the floor and the walls. The concrete vaults do not drain into a watercourse, ditch, storm drain or sewer which leads directly or indirectly to a water course or POTW. Each vault contains two tanks; incompatible materials are not stored in the same vault. The acetone and methylene chloride vaults each have a storage capacity of approximately 78,500 gallons, which is greater than the volume of the tanks (20,000 gallons) per vault) and 6 inches of accumulated rainwater (approximately 80,000 gallons, which is greater than the volume of the tanks (20,000 gallons, which is greater than the volume of the tanks (20,000 gallons, which is greater than the volume of the tanks (20,000 gallons).

WAREHOUSE

Small quantities of hazardous materials are stored and used in the quality control and microbiology laboratories. These materials are stored in approved chemical storage cabinets (Section 5.6). Hazardous wastes generated by the laboratory are stored in lab pack containers and are disposed of off-site.

5.2 Underground Storage Tanks

Former Underground Storage Tanks

PLANT

One 10,000-gallon No. 2 Fuel Oil underground storage tank was removed in 1991 in accord with a tank closure plan prepared by Tank and Line Compliance Corporation, Lafayette, New Jersey and approved by NJDEP. Post-excavation soil samples were not required because soil and groundwater bioremediation was being conducted at the time of tank removal (Sections 2.0, 5.12, and 6.0).

Ten 10,000-gallon underground storage tanks which contained solvents, waste solvents, and process wastewaters were removed in 1992 in accord with the NJDEP approved tank closure plan prepared by Vectre Corporation, Lafayette, New Jersey. Soil samples were collected from the excavation base and sidewalls in the area of the four hazardous waste storage tanks at the time of the tank removal. Sampling indicates that volatile organic compound concentrations were well below the Impact to Groundwater Soil Cleanup Criteria and the Residential Direct Contact Soil Cleanup Criteria. Soil samples were not required for the area of the hazardous materials storage tanks because soil and groundwater bioremediation was being conducted at the time of tank removal (Sections 2.0, 5.12, and 6.0). Soil samples were collected in the vicinity of the former hazardous materials storage tanks in September and October 1995 to confirm the absence of volatile organic compounds in the soil and to enable Biocraft to certify in this ISRA application that the only discharge which requires remediation was the UST system and that the remediation performed meets the current NJDEP Residential Direct Contact Soil Cleanup Criteria, Non-Residential Direct Contact Soil Cleanup Criteria or the Impact to Groundwater Soil Cleanup Criteria or the Impact Soil Cleanup Criteria, Non-Residential Direct Contact Soil Cleanup Criteria or the Impact to Groundwater Soil Cleanup Criteria (Sections 5.12, 6.0, and 7.1).

WAREHOUSE

There were no underground storage tanks at the Warehouse.

Existing Underground Storage Tank

PLANT

No. 2 fuel oil is stored in a 6,000-gallon, double walled, fiberglass, underground storage tank. Tank piping is constructed of carbon steel within a fiberglass rickwell for secondary containment and is equipped with an annular space leak detection system. The tank has no internal heating coils. The tank is equipped with a liquid level gauge, a high liquid level alarm, and an annular space leak detection system. The tank was installed in 1991.

WAREHOUSE

There are no underground storage tanks at the Warehouse.

5.3 Truck Loading/Unloading Area

PLANT

The tank truck loading/unloading area is shown on Drawing 1. All tank contents are loaded/unloaded from this area through aboveground piping. The truck ramp consists of a concrete slab, concrete curbing and a concrete trough. The concrete slab consists of 8-inch thick, poured, reinforced concrete which is pitched to the trough located at the midpoint of the slab. The concrete curbing is poured reinforced concrete with a maximum height of 2 feet. The concrete

pad, curbing, and trough are coated with chemically resistant epoxy. Stainless steel water stops are installed at all joints between the curb and the slab. The poured, reinforced concrete sump drain is 18 inches wide by 18 inches deep. The trough is covered with steel grating. An 8-inch diameter stainless steel pipe connects the truck pad overflow to the Tank 3 and 4 secondary containment unit. The stainless steel pipe passes through the wall of the secondary containment unit and is capped with an 8-inch diameter test plug which can be opened using a chain located on top of the curbing. In the event of a leak, the test plug would be opened and liquid would be allowed to discharge into the Tank 3 and 4 secondary containment unit. The truck ramp storage capacity is approximately 8,000-gallons and the Tank 3 and 4 secondary containment unit storage than the volume of the largest compartment of any tank truck loaded/unloaded in this area.

Fiber and steel drums are unloaded from the truck using a forklift and are stored on portable secondary containment skids in the drum storage area, or stored in the production areas of the plant. The truck loading bay is poured concrete and is in good condition.

WAREHOUSE

Bulk generic penicillin products and some raw materials which are used in manufacturing at the Plant are stored in the Warehouse. The raw materials are delivered by truck and unloaded using a forklift. Bulk finished products are loaded onto a company truck using a forklift and shipped to Biocraft's Elmwood Park facility. The truck loading and unloading areas are paved with asphalt and the pavement is in good condition.

5.4 Drum Storage Area

PLANT

Raw materials stored in drums include triethylamine, dimethyl acetamide, 2,6-Lutidine, and

pivaloyl chloride. Hazardous wastes are not stored in the drum storage area. The number of drums stored varies with the product being manufactured, but generally ranges from 150 to 200 55-gallon drums. The drums are stored in one area (approximately 1,800 square feet), on a poured, reinforced concrete slab. The drums are covered by water repellent tarps and stored on portable containment skids designed to store the volume of the largest drum. The drum storage pad is sloped to direct runoff to the parking lot and a concrete curb is located along the east side of the pad. The maximum capacity of the drum storage area is 72 portable containment skids (approximately 280 drums).

WAREHOUSE

Bulk generic penicillin products (dry powders) are packed in fiber drums in the Plant and stored in the Warehouse where they are quarantined, inspected and released. Following release, the bulk generic penicillin products are brought to Biocraft's Elmwood Park facility.

5.5 Dumpsters

<u>PLANT</u>

Non-hazardous solid wastes include paper products, cardboard, plastic, and general cafeteria wastes. These wastes are placed into a dumpster in the parking lot area and disposed of off-site.

WAREHOUSE

Non-hazardous solid wastes include paper products, cardboard, plastic, and general cafeteria wastes. These wastes are placed into a dumpster in the parking lot area and disposed of off-site.

5.6 Chemical Storage Cabinets and Closets

PLANT

Small quantities of hazardous materials are stored and used in the research and development laboratory in the Plant. Glass or plastic containers which hold solid materials and non-flammable liquids are stored in metal cabinets. Glass or plastic containers of flammable liquids are stored in cabinets approved for storing flammable substances. Incompatible materials are stored in separate cabinets. Secondary containment of the laboratory materials is provided by the building masonry walls. Biocraft has adequate supplies of sorbent materials, chemical neutralizing agents and other materials necessary to contain and clean up small leaks or discharges that may occur during ordinary laboratory operations. These materials are stored near the workplaces.

WAREHOUSE

Small quantities of hazardous materials are stored and used in the quality control and microbiology laboratories in the Warehouse. Glass or plastic containers which hold solid materials and non-flammable liquids are stored in metal cabinets. Glass or plastic containers of flammable liquids are stored in cabinets approved for storing flammable substances. Incompatible materials are stored in separate cabinets. Secondary containment of the laboratory materials is provided by the building masonry walls. Biocraft has adequate supplies of sorbent materials, chemical neutralizing agents and other materials necessary to contain and clean up small leaks or discharges that may occur during ordinary laboratory operations. These materials are stored near the workplaces.

15

DRAINAGE SYSTEMS

5.7 Floor Drains

PLANT

Except for a floor drain (Drain 1) in the production area of the Plant, all floor drains are sealed. Drain 1 is connected to the sanitary sewer which discharges to the POTW. Drain 1 is covered with a cap constructed of chemically resistant materials during the manufacturing operations. The cap is removed during housekeeping activities. No hazardous substances are discharged into the floor drain.

WAREHOUSE

Floor drains in the Warehouse building are connected to the sanitary sewer. Washwater from housekeeping activities is discharged to the floor drains. Hazardous substances are not discharged into the floor drains.

5.8 Process Area Sinks

PLANT

Wastewater generated by rinsing laboratory glassware with tap water is discharged to process area sinks connected to the municipal sewer system (POTW). The sanitary waste stream is monitored in accord with the facility's POTW permit. The Plant Manager indicated that there have been no sanitary effluent permit exceedances.

WAREHOUSE

Wastewater generated by rinsing laboratory glassware with tap water is discharged to process area sinks connected to the municipal sewer system (POTW). The sanitary waste stream is monitored in accord with the facility's POTW permit. The Plant Manager indicated that there have been no sanitary effluent permit exceedances.

5.9 Roof Leaders

PLANT

Certain of Biocraft's manufacturing and laboratory operations generate limited air emissions which are discharged to a rooftop scrubber through and air vent and duct system. Stormwater runoff from the manufacturing building is discharged onto the paved parking lot area through several roof leaders. It is unlikely that volatile organic compounds would be detected in the stormwater runoff.

WAREHOUSE

Biocraft's laboratories generate very limited air emissions which are discharged to the atmosphere through several roof mounted ducts in compliance with the applicable permit conditions. Stormwater runoff from the Warehouse roof is discharged onto the paved parking lot area through several roof leaders. There have been no permit exceedances from air emission discharges and it is unlikely that volatile organic compounds would be detected in the stormwater runoff.

5.10 Storm Sewer Collection Systems

· PLANT

Stormwater from the parking lot and roof runoff is discharged in compliance with the NJDEP Bureau of Stormwater Permitting Permit No. NJ0088315. Stormwater drains away from the manufacturing building and follows the topography towards the a storm drain in the parking lot. The storm drain discharges to an unnamed tributary to Allendale Brook.

WAREHOUSE

Hazardous materials are stored indoors in the laboratory section of the building and are not in contact with stormwater. Stormwater runoff from the parking lot and roof drains away from the building following the natural topography and is discharged into municipal stormwater collection basins along Hopper Avenue.

OTHER

5.11 Electrical Transformers and Capacitors

PLANT

Electricity for the Plant is supplied through a PSE&G owned transformer which is mounted on a poured concrete slab. This transformer does not contain dielectric fluid. Capacitors in on-site electrical equipment do not contain PCB dielectric.

WAREHOUSE

The Warehouse building electricity is supplied through a PSE&G transformer which is mounted

on a poured concrete slab. This transformer does not contain dielectric fluid.

5.12 Underground Piping

PLANT

Former Underground Piping

Underground piping was used to transfer solvents and wastewater/solvents from the former underground storage tanks to the Plant process areas. A leak in the underground wastewater/solvent piping was discovered in 1975 and all underground piping was removed and replaced with aboveground piping in 1975. A summary of the underground piping discharge is presented in Section 2.0 and 6.0.

WAREHOUSE

There were no underground piping systems at the Warehouse.

Existing Underground Piping

PLANT

Sanitary wastewater and non-contact cooling water are discharged to the POTW through underground piping. Underground storage tank (No. 2 Fuel Oil Tank) piping is constructed of carbon steel within a fiberglass rickwell for secondary containment and is equipped with an annular space leak detection system. Treated groundwater from the bioremediation/biostimulation system is discharged to two underground infiltration trenches which are located on the Plant site and partially, encroach on the Warehouse site.

WAREHOUSE

Sanitary wastewater and non-categorical wastewater generated from rinsing laboratory glassware with tap water are discharged to the POTW through underground piping. Treated groundwater from the bioremediation/biostimulation system is discharged to two underground infiltration trenches which are located on the Plant site and partially, encroach on the Warehouse site.

5.13 Compressor Vent Discharges

PLANT

Air compressor blowdown condensate is collected in a 55-gallon drum and disposed of as hazardous waste with the manufacturing process wastestream.

WAREHOUSE

There are no air compressors at the Warehouse.

5.14 Non-Contact Cooling Water Discharges

PLANT

Non-contact cooling water is discharged to the sanitary sewer which discharges to the POTW in compliance with the POTW permit.

WAREHOUSE

Warehouse operations do not require non-contact cooling water.

854820060

TIERRA-B-009054

.....

5.15 Active Production Wells

PLANT

One on-site deep bedrock water supply well is constructed with 50-feet of 8-inch diameter steel casing with an open borehole in bedrock from 50-feet to 300-feet below grade. The well water is used for non-contact cooling water. This well is continually pumped at an average rate of approximately 11.5 gallons per minute. Groundwater samples are collected and analyzed biannually in accord with the Groundwater ACO (Section 2.0).

WAREHOUSE

There are no production wells at the Warehouse.

BUILDING INTERIOR AREAS

5.16 Loading and Transfer Areas

PLANT

Hazardous materials are handled in the production and laboratory areas of the facility. Concrete curbing and the building masonry walls provide secondary containment for the production areas. Laboratory chemicals are stored in approved chemical storage cabinets (Section 5.6). Biocraft has adequate supplies of sorbent materials, chemical neutralizing agents and other materials necessary to contain and clean up small leaks or discharges that may occur during ordinary operations. These materials are stored near the workplaces.

WAREHOUSE

Hazardous materials are handled laboratory areas of the facility. These materials are stored in approved chemical storage cabinets (Section 5.6). Biocraft has adequate supplies of sorbent materials, chemical neutralizing agents and other materials necessary to contain and clean up small leaks or discharges that may occur during ordinary operations. These materials are stored near the workplaces.

5.17 Waste Treatment Area

<u>PLANT</u>

Wastewater which contains acetone and methylene chloride is treated in a bioreactor system located in the production area of the Plant. Concrete curbing and the building masonry walls provide secondary containment for the production areas. Laboratory chemicals are stored in approved chemical storage cabinets (Section 5.6). Biocraft has adequate supplies of sorbent materials, chemical neutralizing agents and other materials necessary to contain and clean up small leaks or discharges that may occur during ordinary operations. These materials are stored near the workplaces.

WAREHOUSE

There are no waste treatment areas in the Warehouse.

5.18 Boiler Room

PLANT

Boiler exhaust is discharged to the atmosphere through a roof duct in accord with applicable

854820062

TIERRA-B-009056

permit conditions. Boiler condensate is collected in a 55-gallon drum and disposed of as hazardous waste with the manufacturing process wastestream.

WAREHOUSE

Boiler exhaust is discharged to the atmosphere through a roof duct in accord with applicable permit conditions. Boiler condensate is collected in a 55-gallon drum and disposed of as hazardous waste with the manufacturing process waste stream.

5.19 Air Vents and Ducts

.

PLANT

Biocraft's manufacturing operation generates air emissions which are treated and discharged to the atmosphere through several roof mounted ducts in compliance with the applicable permit conditions. Other air vents and ducts located throughout the facility are associated with the heating and air conditioning system.

WAREHOUSE

The quality control and microbiology laboratories generate air emissions which are discharged to the atmosphere through several roof mounted ducts in compliance with applicable permit conditions. Other air vents and ducts located throughout the facility are associated with the heating and air conditioning system.

5.20 Hazardous Materials Storage or Handling Areas

PLANT

Hazardous materials are handled in the production and laboratory areas of the facility. Concrete curbing and the building masonry walls provide secondary containment for the production areas. Laboratory chemicals are stored in approved chemical storage cabinets (Section 5.6). Biocraft has adequate supplies of sorbent materials, chemical neutralizing agents and other materials necessary to contain and clean up small leaks or discharges that may occur during ordinary operations. These materials are stored near the workplaces.

WAREHOUSE

Hazardous materials are handled laboratory areas of the facility. These materials are stored in approved chemical storage cabinets (Section 5.6). Biocraft has adequate supplies of sorbent materials, chemical neutralizing agents and other materials necessary to contain and clean up small leaks or discharges that may occur during ordinary operations. These materials are stored near the workplaces.

6.0 DISCHARGES

The site is subject to a groundwater Administrative Consent Order (ACO) comprised of a NJDEP ACO dated January 12, 1977, as amended by NJDEP Administrative Order dated December 12, 1978, as amended by NJDEP ACO September 25, 1980, as modified by NJDEP letter dated June 18, 1982 (collectively, the "Groundwater ACO"). The Groundwater ACO stems from a discharge in November 1975 from underground lines leading to an underground waste solvent tank.

A 100-foot long underground steel pipe was installed in 1972 to transfer wastewater from the manufacturing building processing area to an underground wastewater storage tank. The wastewater contained low concentrations of acetone, methylene chloride, n-butyl alcohol, and dimethyl aniline. Biocraft discovered the leak in the underground pipe in November 1975 and removed the pipe from service. All underground pipes were replaced by aboveground pipes in the winter of 1975. Subsequently, the underground storage tanks were removed and replaced with vaulted below grade storage tanks with secondary containment and continuous monitoring. Biocraft pumped groundwater from on-site recovery wells and disposed of the groundwater off site between 1976 and 1981. The cost of disposing of the recovered groundwater off-site became constructed on-site an Biocraft approval with NJDEP's prohibitive and bioremediation/biostimulation system in June 1981. The system included a biostimulation process to decontaminate the groundwater. Soil samples were collected and analyzed in September and October 1995 from the area of the former underground transfer line and the stormwater collection sewer to confirm the absence of volatile organic compounds in the soil and to enable Biocraft to certify in this ISRA application that the only discharge which requires remediation was the UST system and that the remediation performed meets the current NJDEP Residential Direct Contact Soil Cleanup Criteria, Non-Residential Direct Contact Soil Cleanup Criteria or the Impact to Groundwater Soil Cleanup Criteria. The soil sampling is summarized in Section 7.0. The groundwater collection and treatment system are summarized in Section 7.0

Approximately 50-gallons of hydrochloric acid was discharged from a hydrochloric acid tank line (Drawing 1) which was damaged during routine maintenance operations on December 13, 1993. NJDEP was notified (Case No. 93-12-13-1607-57) and assisted in spill response activities. A small volume of hydrochloric acid was discharged into the stormwater collection system. Potable water was used to dilute the spill by pumping the water into the stormwater collection system for a period of four hours. Secondary containment for the hydrochloric acid tank and piping was constructed to minimize the potential for future discharges.

A second discharge of hydrochloric acid occurred on February 24, 1994. Hydrochloric acid leaked into the secondary containment unit from a broken valve on the hydrochloric acid tank. The leak seeped through the walls of the secondary containment unit and onto the parking lot pavement. NJDEP was notified (Case No. 94-2-24-1623-01) and assisted in the spill response. The discharged hydrochloric acid was contained and neutralized using sorbent material and soda ash. A new secondary containment unit with chemical resistant epoxy coating was constructed.

7.0 PROPOSED SAMPLING AND REMEDIATION

This preliminary assessment identified one area of concern warranting sampling: the former underground transfer line. Soil sampling in the area of the former underground transfer line associated with the UST system was proposed to confirm the absence of volatile organic compounds in the soil. In accordance with the Groundwater ACO, the company will continue its operation of the groundwater biodegradation/biostimulation system and will continue groundwater monitoring and quarterly groundwater reporting and annual reporting in accord with the groundwater ACO.

7.1 Former Underground Transfer Line

Soil samples were collected and analyzed in September and October 1995 from the area of the former underground transfer line and the stormwater collection sewer to confirm the absence of volatile organic compounds in the soil. The soil sampling did not detect any compounds above the NJDEP Residential Direct Contact Soil Cleanup Criteria, Non-Residential Soil Cleanup Criteria, or the Impact to Groundwater Soil Cleanup Criteria. The Field Sampling Plan, Site Investigation Report, and laboratory report are included in Attachment A.

7.2 Groundwater Monitoring

A quarterly groundwater monitoring program is performed at the Biocraft site. The monitoring program evaluates the progress and effectiveness of the groundwater biodegradation/biostimulation system installed to remediate methylene chloride, acetone, and butyl alcohol impacted groundwater. This program consists of sampling 11 wells quarterly and 26 wells annually, and analyzing the samples for methylene chloride, acetone, butyl alcohol, BOD, COD, TOC, chloride, and total phosphorous as specified in the ACO. The results of the quarterly and annual samples are submitted to the NJDEP.

The nature and extent of groundwater contamination at the Biocraft site has been documented in extensive groundwater investigations performed by Geraghty and Miller (G&M) between 1979 and 1995, and was supplemented by the monitoring program initiated by Biocraft in 1985. The G&M groundwater investigation reports and supplemental monitoring data have been submitted to the NJDEP in accord with the Groundwater ACO.

Biocraft has been operating the on-site remedial system pursuant to the Groundwater ACO which requires Biocraft to continue to extract and treat groundwater until acceptable groundwater quality is achieved. The ACO indicates that acceptable quality of groundwater is defined by the following parameters: BOD = 6.0 mg/L, COD = 23.0 mg/L, TOC = 18.0 mg/L, chlorides = 153 mg/L, pH = 4.0 to 7.5, methylene chloride = 8 ug/L, acetone = 100 ug/L, and butyl alcohol = 100 ug/L.

The groundwater sampling shows that groundwater quality has progressively improved and Biocraft currently estimates that 90 percent of the groundwater plume has been remediated. Groundwater elevation measurements and sampling data show that the zone of influence created by the recovery system maintains hydraulic control of the groundwater contaminant plume. The groundwater sampling data show that the highest concentrations of methylene chloride and acetone are in the southern area of the property and that the concentrations have been reduced significantly from the concentrations existing prior to biodegradation/biostimulation system startup.

7.3 Groundwater Biodegradation/Biostimulation System

Monitoring wells were installed and groundwater samples were collected and analyzed to determine whether the underground transfer line leak had impacted groundwater quality. The groundwater sampling showed elevated concentrations of methylene chloride, acetone, and butyl alcohol. Biocraft undertook an extensive research and development project to develop a process to remove and treat groundwater. The research resulted in the development of a sophisticated biodegradation/biostimulation process which has received a patent from the U.S. Patent Office.

The biodegradation/biostimulation system consists of several pumping wells, infiltration trenches, and a biological treatment system. The remediation system has been operating for 15 years and extensive groundwater monitoring at and downgradient of the site has been conducted to determine the effectiveness of the remediation system. The data shows that groundwater quality has progressively improved and Biocraft estimates that 90 percent of the groundwater plume has been remediated. The sampling data show the treatment system reduces the influent concentrations of methylene chloride by greater than 90 percent. No butyl alcohol or acetone have been detected in the effluent samples for all of the past four quarters.

7.3.1 Biodegradation/Biostimulation System Description

The biodegradation/biostimulation system consists of two identical activated sludge units, ACT I and ACT II. Each unit consists of an aeration tank and a settling tank. Both systems are operated in parallel, with ACT I treating groundwater pumped from Well 30, and ACT II treating groundwater pumped from Wells 32A/B and 13. Groundwater from Well 32A is pumped into the Well 32B casing, and the combined groundwater from Well 32B is pumped to the treatment system. The combined stream is called Well 32A/B groundwater. Groundwater is pumped from the wells to the surface using submersible pumps, and is then pumped into the treatment system.

Groundwater enters the aeration tanks, where it is aerated by a blower and diffuser which also keeps the tank contents mixed. Additional mixing is provided by internally recycling the tank contents by pumping. The aeration tank effluent is pumped to the settling tank and to separate the bacteria from the water. The settled bacteria (sludge) are recycled to the aeration tank to keep bacteria concentrations in the system high enough to remove organic compounds. A system pilot study is being conducted to determine whether system efficiency can be improved.

7.4 Groundwater Remediation

4

The company will continue its compliance with the requirements of the ACO with continued operation of the groundwater biodegradation/biostimulation system and long-term groundwater monitoring will protect the environment. Groundwater collection and treatment ensures that methylene chloride and acetone concentrations are reduced through on-site bioremediation. Long-term groundwater monitoring will effectively track the concentrations of methylene chloride and acetone in groundwater and the improvement of groundwater quality due to groundwater collection and treatment. The groundwater collection and treatment system performance will continue to be evaluated using treatment system influent and effluent sampling data.

854820070

TIERRA-B-009064

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY ISRA CASE #96070

APPENDIX A TABLES

....

.

854820071

TIERRA-B-009065

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 1 (Preliminary Assessment Form Item 3)

HAZARDOUS SUBSTANCES STORED AT FACILITY

Substance Name	CAS	Typical Annual Usage *	Storage Method	I	Location/Keyed to Location Map	To Remain	Maximum Daily
Substance Hame	Number	Quantity Units	Container Type	Container Size]	On-Site	Quantity (lbs.)
Acenapthene	83-32-9	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Acetamide	60-35-5	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
	64-19-7	10 L	Bottles or Jugs (glass)	25 L& 500 mL	Laboratories	Ìes	1 - 10
Acetic Acid	108-24-7	10 L	Bottles or Jugs (glass)	251& 500 mL	Laboratories	Yes	L - 10
Acetic Anhydride	67-64-1	1,000,000 lbs	Bottles or Jugs (glass), AST	10,000 gal	Laboratories, Production, Tank Farm	Yes	100,001 - 250,000
Acetone	75-05-8	200 L	Bottles or Jugs (glass)	2.5 L	Laboratories	Yes	1-10
Acetonitrile	124-04-09	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb,
Adipic Acid		100 lbs	Cylinder	Cylinder	Laboratories	Yes	11-100
Ammonia	7664-41-7	75 g	Bottles or Jugs (glass)	1 Kg	Laboratories	Yes	Less than 1 lb.
Ammonium Acetate	631-61-8		Bottles of Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Ammonium Bicarbonate	1066-33-7	50 g	Bottles of Jugs (glass), Bag	500 g	Laboratories, Tank Farm	Yes	Less than 1 lb.
Ammonium Chloride	12125-02-9	50 g 10 L	Bottles or Jugs (glass)	2.5 L	Laboratories	Yes	1-10
Ammonium Hydroxide	1336-21-6	10 L 10 L	Bottles or Jugs (plastic)	2.5 L	Laboratories	Yes	1-10
Ammonium Nitrate	6484-52-2	1 1	Bottles or Jugs (plass)	125 g	Laboratories	Yes	Less than 1 lb.
Ammonium Oxalate	1113-38-8	50 g		500 g	Laboratories	Yes	Less than 1 lb.
Ammonium Persulfate	7727-54-0	50 g	Bottles or Juga (glass)	1 Kg	Laboratorica	Yes	Less than 1 lb.
Ammonium Thiocyanate	1762-95-4	50 g	Bottles or Jugs (glass)	1L	Laboratories	Yes	Less than 1 lb.
Aniline	62-53-3	1L	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Anthracene	120-12-7	50 g	Bottles or Jugs (glass)	125 g	- Laboratories	Yes	Less than 1 lb.
Antimony	7440-36-0	50 g	Bottles or Jugs (glass)	-	Laboratories	Yes	Less than 1 lb.
Arsenic Trioxide	1327-53-3	50 g	Bottles or Jugs (glass)	125 g 500 mL	Laboratories	Yes	Less than 1 lb.
Benzene	71-43-2	4 L	Bottles or Jugs (glass)		Laboratories	Yes	Less than 1 lb.
Benzoic Acid	65-85-0	1 1 1	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Benzoyl Chloride	98-88-4	Sûg	Bottles or Jugs (glass)	500 g		Yes	1.10
Benzyl Chloride	100-44-7	1 16	Bottles or Jugs (glass)	500 mL	Laboratories		Less than 1 lb.
Beryllium Sulfate	13510-49-1	50 g	Bottles or Jugs (glass)	25 g	Laboratories	Yes	
2-Butanol	78-92-2	10 L	Bottles or Jugs (glass)	16	Laboratories	10	1 - 10
N-Butanol	71-36-3	10 L	Bonles or Jugs (glass)	11	Laboratories	Yes	Less than 1 lb.
Butyl Acetate	123-86-4	10 L	Bottles or Jugs (glass)	11.	Laboratories	Yes	Less than 1 lb.

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams

L - Liters

Kg - Kilograms

lbs - pounds

T/	٨B	LE	1	Continues	•	•	•
----	----	----	---	-----------	---	---	---

Substance Name	CAS Number	Typical Annual Usage *	Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily
380342 NC , NOTE		Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
Cadmium	7440-43-9	50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Carbon Disulfide	75-15-0	11	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Carbon Tetrachlonde	56-23-5	1 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Chlorobenzene	108-90-7	I L	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	Yes	Less than 1 lb.
Chloroform	67-66-3	11	Bottles or Juga (glass)	1 L & 500 mL	Laboratorics	Yes	1 - 10
	95-57-8	1 L	Bottles or Juga (glass)	1 L & 500 mL	Laboratories	Yes	Less than 1 lb.
Chlorophenol	7440-47-3	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 1b.
Chromium	10025-73-7	100 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Chromium Chloride	142-71-2	25 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 lb.
Cupric Acetate	1344-67-8	50 g	Bottles or Jugs (glass)	125 g	Laboratorics	ોલ્ડ	Less than 1 lb.
Cupric Chloride	10380-29-7	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Ýеs	Less than 1 lb.
Cupric Sulfate	110-82-7	1 1L	Bottles or Jugs (giass)	500 mL	Laboratories	Yes	1 - 10
Cyclohexane	95-50-1	500 mL	Botiles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
1,2-Dichlorobenzene	75-09-2	See Methylene Chloride	Botties or Jugs (glass), AST, Steel Drum	10,000 gallon tank	Laboratories, Tank Farm, Production	Yes	100,001-250,000
Dichloromethane		See Methylene Chuonde 500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
N,N Dimethyl Aniline	121-69-7	500 mL 50 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb.
Diethylamine	109-89-7	50 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb.
Diethyl Ether	60-29-7	500 mL	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Diethyl Phthalate	84-66-2	500 mL	Bottles of Jugs (glass)	500 mi.	Laboratories	Yes	1-10
Dimethyl Dichlorosilane	75-78-5	2.5 L	Bottles of Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
1,4 Dioxane	123-91-1	2.5 L 50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Diphenyl Amine	122-39-4	1 1	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
Ethyl Acetate	1	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	11 - 100
Ethyl Chloroformate	541-41-3		Bottles of Jugs (glass)	150 mL	Laboratories	Yes	Less than 1 lb.
Ethylene Dichloride	107-06-2	4.000 jbs	Steel Drum	55 gallon	Laboratories, Tank Farm	Yes	10.001-50.000
Ethylene Glycol	107-21-1	,	Can	500 g	Laboratories	Yes	1-10
Ferric Chloride	7783-50-8	200 g	Bottles or Jugs (glass)	20 L Carboy/50 g bottle	Laboratories	Yes	1.10
Ferric Nitrate	10421-48-4	100 Kg	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Ferrous Ammonium Sulfate	10045-89-03	-		500g	Laboratories	Yes	1-10
Ferrous Sulfate	7720-78-7	230 g	Bottles or Jugs (glass)	1	Laborationes		

.

Notes

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams

L - Liters

Kg • Kilograms

lbs - pounds

TABLE 1 Continues

Substance Name	CAS Number	Typical Annual	Usage *	Storage Method	1	Location/Keyed to Location Map	To Remain	Maximum Daily
The second second		Quantity	Units	Container Type	Container Size		On-Sile	Quantity (lbs.)
Formaldehyde	50-00-0		IL	Bottles or Jugs (glass)	150 mL	Laboratones	Yes	1-10
Formic Acid	64-18-6		10 L	Bottles or Jugs (glass)	11	Laboratories	Yes	Less than 1 lb.
Fuel Oil (#2)		60.0	00 gal	UST	6,000 gallon tank	Tank Farm	Yes	50,001-100,000
Hydrazine Sulfate	10034-93-2		00 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Hydrochloric Acid	7647-01-0	1	00 lbs	Bottles or Jugs (glass), AST	6,000 gallon tank	Laboratories, Tank Farm, Production	Yes	50,001-100,000
Hydrogen Peroxide	7722-84-1		1L	Bottles or Jugs (glass)	11	Laboratories	Yes	Less than 1 lb.
Hydrogen Sulfide	7783-06-4		10 lbs	Cylinder	Cylinder	Laboratories	Yes	Less than 1 lb.
Hydrogen Suulde Hydroguione	123-31-9		25 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Isobutano!	78-83-1		25 L	Bottles or Jugs (glass)	1L	Laboratories	Yes	1-10
	110-19-0		25 L	Bottles or Jugs (glass)	4L	Laboratories	Yes	Less than 1 lb.
sobutyl Acetate	67-63-0		SOL	Bottles or Jugs (glass)	4 L	Laboratories	Yes	1-10
sopropanol	7439-92-1		25 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Lead	301-04-3		25 g	Boules or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Lead Acetaic	10099-74-8		25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
Lead Nitrate	1314-87-0		25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb
Lead Sulfide	1600-27-7		25 g	Bottles or Jugs (glass)	50 g	Laboratories	Yes	Less than 1 lb
Mercuric Acetate	10124-48-8		25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb
Mercuric Chloride	21908-53-2	1	25 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb
Mecuric Oxide	7783-35-9		25 8	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb
Mercuric Sulfate	778-26-7		i L	Bottles or Jugs (glass)	1 11	Laboratories	Yes	Less than I lb
Mercuric Nitrate	7439-97-6		1 Kg	Bottles or Jugs (plastic)	500 g	Laboratories	Yes	1-10
Mercury	109-86-4	ļ	10 L	Bottles or Jugs (glass)	1 L	Laboratories	Yes	Less than 1 lt
2-Methoxyethanol	67-56-1	1	100 L	Bottles or Jugs (glass)	11.	Laboratories	Yes	1-10
Methyl Alcohol	78-93-3		4 L	Bottles or Jugs (glass)	41	Laboratories	Yes	1-10
Methyl Ethyl Ketone	108-10-1	1	1 L	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
Methyl Isobutyl Ketone	75-09-2	2 500 6	00 lbs	AST	10,000-gallon tank	Tank Farm, Production	Yes	50,001-100,0
Methylene Chloride	1313-27-5	2,000,0	50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 #
Molybdenum Trioxide	91-20-3		50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 l
Naphalene	7718-54-9		50 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 II
Nickel Chloride	7786-81-4		50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 ll
Nickel Sulfate	1100-01-4		<u> </u>					

т

Notes:

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams L - Liters

Kg - Kilograms

lbs - pounds

TABL	.E 1	Continues	
------	------	-----------	--

Substance Name	CAS Number	Typical Annual Usage * Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily	
Substance Name	CAS Number	Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
	7697-37-2	10 L	Bottles or Jugs (glass)	11	Laboratories	Yes	1-10
litric Acid	98-95-3	21	Bottles or Jugs (glass)	11.	Laboratorics) i e	1-10
litrobenzene	88-75-5	50 g	Bottles or Juga (glass)	100 g	Laboratories	Yes	Less than 1 lb.
Nitrophenol	87-86-5	50 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 lb.
entachlorophenol		500 mL	Botiles or Jugs (glass)	500 mL	Laboratories	Yes	Less than 1 lb.
Peracetic Acid	79-21-0	50 g	Botiles or Jugs (glass)	125 g	Laboratories	Yes	Less than 1 lb.
henacetin	62-44-2		Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Phenol	108-95-7	50 g 10 L	Bottles or Jugs (glass)	1 L & 500 mL	Laboratories	Yes	1-10
Phosphoric Acid	7664-38-2		Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Phosphorous Pentachloride	10026-13-8	500 g	Bottles or Jugs (glass)	25 mL	Laboratories	Yes	Less than 1 lb.
Phosphorous Trichloride	7719-12-2	25 mL		500 mL	Laboratories	Yes	Less than 1 lb.
Picoline	109-06-8	250 mL	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Potassium Bromate	7758-01-2	50 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	1-10
Potassium Chromate	7789-00-6	500 g	Bottles or Jugs (glass)	25 g	Laboratories	Yes	Less than 1 lb
Potassium Cyanide	151-50-8	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	1-10
Potassium Dichromate	7778-50-9	50 g	Bottles or Juga (glass)	100 g	Laboratories	Yes	1-10
Potassium Hydroxide	1310-58-3	1 ե	Bottles or Jugs (glass)	500 mi.	Laboratories	Yes	Less than 1 lb
Potassium Permaganate	7722-64-7	500 mL	Bottles or Jugs (glass)	i L	Laboratories	Yes	Less than 1 lb
Pyrene	129-00-0	1 L	Bottles or Jugs (glass)		Laboratories	Yes	1-10
Pyridine	110-86-1	10 L	Bottles or Jugs (glass)	1 11	Laboratories	Yes	Less than 1 It
Quinoline	91-22-5	1 1 1	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Loss than 1 lt
Rancy Nickel	7440-02-0	25 g	Bottles or Jugs (glass)		Laboratories	Yes	11-100
Sacchann	81-07-2	100 lbs	Bottles or Jugs (glass)	30 gallon containers	Laboratories	Yes	Less than 1
Semicarbazide Hydrochloride	563-41-7	25 g	Bottles or Jugs (glass)	100 g	Laboratories	Yes	Less than 1 il
Silver Nitrate	7761-88-8	25 g	Bottles or Jugs (glass)	30 g	Laboratories	Yes	Less than 1
Sodium	7740-23-5	l Kg	Bottles or Jugs (glass)	500 g		Yes	Less than 1 l
Sodium Arsenate	7631-89-2	25 g	Bottles or Jugs (glass)	250 g	Laboratories	Yes	Less than 1 l
Sodium Azide	26628-22-8	25 g	Bottles or Jugs (glass)	100 g	Laberatorics	1 45	

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated,

g - grams L - Liters

Kg - Kilograms Ibs - pounds

Substance Name	CAS Number	Typical Annual Usage *	Storage Method		Location/Keyed to Location Map	To Remain	Maximum Daily
		Quantity Units	Container Type	Container Size		On-Site	Quantity (lbs.)
Sodium Chlorate	7775-09-9	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb
Sodium Dichromate	10588-01-9	1 Kg	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Sodium Fluonde	7681-49-4	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Sodium Hydride	7646-69-7	50 g	Can	500 g	Laboratories	Yes	1-10
Sodium Hydroxide	1310-73-2	60,000 lbs	Bottles or Jugs (glass), Steel Drum, AST	6,000 gal	Laboratories	Yes	1-10
Sodium Hypochlorite	7681-52-9	10 L	Plastic Drum	11	Laboratories) is	
Sodium Methoxide	124-41-4	500 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	11-100
Sodium Sulfide	1313-82-2	50 g	Bottles or Jugs (glass)	500 g	Laboratories	1	1-10
Sulfune Acid	7664-93-9	5 L	Bottles or Jugs (glass)	11	Laboratories	Ves	Less than 1 lb.
Tetrachioroethylene	127-18-4	ΙĻ	Bottles or Jugs (glass)	500 mL	Laboratories	Yes	1-10
Tetrahydrofuran	109-99-9	11	Bottles or Jugs (glass)	16	Laboratories	Yes	1,10
Thioacetamide	62-55-5	500 g	Bottles or Jugs (glass)	125 g	Laboratories	Yes	1-10
Thiourca	62-56-6	50 g	Bottles or Jugs (glass)	125 g		Yes	1-10
Toluene	108-88-3	50 L	Bottles or Jugs (glass)	4L	Laboratories	Yes	Less than 1 lb.
Trichloroethylene	79-01-6	1	Bottles or Jugs (glass)	500 mL	Pilot Plant Laboratories, Tank Farm	Yes	1,001-10,000
Triethylamine	121-44-8	30,000 lbs	Bottles or Jugs (glass) Bottles or Jugs (glass), Steel Drum		Laboratories	Yes	Less than 1 lb.
Triethylchlorosilane	75-77-4	50 g	Bottles or Jugs (glass), Steel Drom Bottles or Jugs (glass)	55 gallons	Laboratories, Tank Farm, Production	Yes	1,001-10,000
Uranyl Acetate	541-09-3	50 g		50 g	Laboratories	Yes	1-10
Uranyl Nitrate	10102-06-4	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	1-10
Waste Oil		500 gal	Bottles or Jugs (glass) Steel Drum	500 g	Laboratories	Yes	Less than 1 lb.
Waste Waters (acctone)	67-64-1	70,000 lbs		55 gallons	Tank Farm, Boiler Room	Yes	H-100
Zine Acetate	557-34-6		Bottles or Jugs (glass)	10,000 gallon tank	Laboratories, Tank Farm, Production	Yes	50,001-100,000
Zinc Chloride	7446-85-7	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Zinc Sulfate	7733-02-0	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.
Notes:	1 //33-02-0	50 g	Bottles or Jugs (glass)	500 g	Laboratories	Yes	Less than 1 lb.

* - Laboratory chemicals are purchased, stored and used in very small quantities. Annual usage quantities are estimated.

g - grams

L - Liters

Kg - Kilograms

ibs - pounds

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 2

SECONDARY CONTAINMENT UNIT SUMMARY

Tenk No	Contents	Secondary Containment	Container Volume (Gallons)	Containment Volume (Gallons)	Leak Detection Systems
3 & 4 5 & 6 7 & 8 9 & 10	Prime Acetone/Recovered Acetone Prime Acetone/Recovered Methylene Chloride Empty Tank Bottoms/Process Waste Water Acetone and Water Waste/Methylene Chloride and Waste Water Hydrochlone Acid Sodium Hydroxide Nitrogen No 2 Fuel Oil Tank Truck Loading/Unloading Area Drum Storage Area	Concrete Vault Concrete Vault Concrete Vault Concrete Vault Concrete Vault Concrete Dike Concrete Dike Not Required Double wall, Fiberglass Concrete Dike Portable Contairment Skid	20,000 20,000 20,000 20,000 6,000 6,000 6,000 6,000 6,000 (1) 55/container (3)	78,500 80,000 80,000 7,000 7,000 Not Required Not Applicable 86,500 (2)	Automatic Leak Detection System in wult, level indicator, hi-level alarm Automatic Leak Detection System in wult, level indicator, hi-level alarm Automatic Leak Detection System in wult, level indicator, hi-level alarm Automatic Leak Detection System in wult, level indicator, hi-level alarm Automatic Leak Detection System in wult, level indicator, hi-level alarm Daily visual inspection, level indicator, hi-level alarm Daily visual inspection, level indicator, hi-level alarm Not Required Automatic Leak Detection System in annular space, level indicator, hi-level alarm Daily visual inspection.

.

NOTES

(1) - Volume of largest compartment of any tank truck loaded/unloaded in this area

(2) - Volume of truck ramp storage capacity is 3,000 gallons, additional svallable capacity is 78,500 gallons, and total capacity of the system is 86,500 gallons
 (3) - Maximum of four containers per portable containment skid

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

-

TABLE 3

HISTORIC GROUNDWATER ANALYTICAL RESULTS DATA <u>MW-1</u>

Date Sampled	BOD	COD	тос	Chloride	Methylene	Butanol	Acetone
				·······	Chloride		
4/25/88-8/8/88	7.0	9.0	25.0	38.0	< 5.0	< 10,0	< 10,0
12/4/88-3/19/89	28.0	32.0	11.0	27.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	35.0	43.0	5.5	4.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	5.0	12.0	8.0	18.7	< 5.0	< 10.0	< 10.0
5/94	-	-	2.4	•	< 10.0	< 50.0	< 10.0
11/95	-	11.0	-	-	2.5	-	9.1

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
4/25/88-8/8/88	18.0	10.0	14.0	23.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	25.0	43,0	16.0	30.0	< 5 0	< 10.0	< 10.0
2/25/90-4/29/90	10.0	30.0	8.6	6.5	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	< 3.0	10.0	42.0	32.3	< 5.0	< 10.0	< 10.0
5/94	-	3.0	3.6	-	< 10.0	< 50.0	< 10.0
11/95	-	15.0	-	-	2.7	-	6.7

<u>MW-2</u>

<u>MW-3</u>

Date Sampled	BOD	COD	TOC	Chloride		Butanol	Acetone
	<u> </u>				Chloride		
5/94	-	40.0	35.8		< 10.0	< 50.0	< 10.0
11/95	-	36.0	-		2.6	-	31.0

1

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
7/8/85-9/29/85	35.6	47.0	14.0	128.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	32.0	45.0	14.0	110.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	18.0	25,0	10.0	40.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	31.7	65.0	6.0	48.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	35.6	38.0	8.0	162 0	< 5 0	< 10.0	< 10.0
10/4/87-1/2/88	•		8.0		< 5 0	< 10.0	< 10.0
1/3/88-4/18/88	17.0	2.0	5.0	40.0	< 5.0	< 10.0	< 10.0
4/25/88-8/8/88	2.0	17.0	5.0	46 0	< 5 0	< 10.0	< 10.0
8/15/88-11/27/88	45.0	60.0	6.0	36 0	< 5 0	< 10.0	< 10.0
3/26/89-7/9/89	63.0	40.0	46.6	25.0	< 5 0	< 10.0	< 10.0
11/5/89-2/18/90	64.0	55.0	9.8	60	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	30.0	40.0	7.8	5.5	< 50	< 10.0	< 10.0
5/6/90-9/30/90	< 3.0	10.0	9.0	100.0	< 5.0	< 10.0	< 10.0

MW-4

.

<u>MW-5</u>

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
7/8/85-9/29/85	22.7	-	9.0	47.0	< 3.0	< 10.0	< 10. 0
3/16/86-1/3/87	25.0	30.0	8.0	45.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	30.0	48.0	9,0	15.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	20.0	38.0	5.0	36.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	-	-	9.0	48.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	18.8	38.0	9.0	48.0	< 5.0	< 10.0	0 .01 >
1/3/88-4/18/88	7.0	9.0	24.0	30.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	-		9.0	48.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	18.0	20.0	9.0	25.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	13.0	20.0	5,3	15.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	21.0	40.0	3.5	4.6	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	33.0	60.0	8.6	31.6	< 5.0	< 10.0	< 10.0

Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	Acetone
					Chloride		
7/8/85-9/29/85	-	35.0	11.0	22.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	15.0	23.0	6.0	20.0	< 5 0	< 10.0	< 10.0
1/5/87-4/4/87	27.0	45.0	14.0	30.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	20.0	10.0	6.0	43.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	47.6	60.0	6.0	36 0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	31.7	60.0	6.0	36 0	< 5 0	< 10.0	< 10.0
1/3/88-4/18/88	30.0	48.0	9.0	15.0	< 5 0	< 10.0	< 10.0
8/15/88-11/27/88	35.6	38.0	8.0	62.0	< 50	< 10.0	< 10.0
12/4/88-3/19/89	32.0	40.0	14.0	23 0	< 5.0	< 10.0	< 10.0
1/26/89-7/9/89	16.0	25.0	9.6	20.0	< 5 0	< 10.0	< 10.0
11/5/89-2/18/90	16.0	32.0	9.6	12.0	< 5 0	< 10.0	< 10.0
5/6/90-9/30/90	21.0	45.0	9.9	24 8	< 5.0	< 10.0	< 10.0
5/94	-	1.0	5.6	-	< 10.0	< 50.0	< 10.0
11/94	130.0	230.0	22.0	160.0	3.0	< 10.0	< 2.0
2/13/95	11.0	22.0	7.8	170.0	< 7.0	< 10.0	< 14.0
5/2/95	8.0	69.0	7.3	160.0	< 2.0	< 10.0	< 2.0
11/95	9.0	180.0	12.0	140.0	< 1.0	< 5.0	< 1.0

<u>MW-6</u>

Butanol

<u>MW-8</u>

Date Sampled	BOD	COD	тос	Chloride	Methylene Chloride	Butanol	Acetone
5/94	-	47.0	9.2	-	< 10.0	< 50.0	< 10.0
11/95	-	19.0	•	-	2.0		21.0

Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	Acetone
					Chlonde		
7/8/85-9/29/85	43.2	55.0	16 0	78.0	< 3 0	< 10.0	< 10.0
3/16/86-1/3/87	35.0	48.0	15.0	55 0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	30 0	43.0	14 0	25.0	< 5 0	< 10.0	< 10.0
4/5/87-7/4/87	9.7	35.0	6.0	250	< 5 0	< 10.0	< 10.0
7/5/87-10/3/87	25.1	65.0	5.0	43.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	20.0	65.0	5.0	43.0	< 5 0	< 10.0	< 10.0
1/3/88-4/18/88	18.0	25.0	10.0	40.0	< 5 0	< 10.0	< 10.0
4/25/88-8/8/88	9.7	35.0	60	23 0	< 5 0	< 10.0	< 10.0
8/15/88-11/27/88	35.6	30.0	6.0	25 0	< 5.0	< 10 0	< 10.0
3/26/89-7/9/89	17.0	15.0	13.7	25 0	< 5 0	< 10.0	< 10.0
7/16/89-10/26/89	10.0	19.0	14 3	10.0	< 50	< 10.0	< 10.0
11/5/89-2/18/90	32.0	40.0	5 2	10.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	15.0	25.0	62	6.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	32.0	53.0	5.2	20.0	< 5 0	< 10.0	< 10.0
5/94	-	28.0	7.8	-	< 10.0	< 50.0	< 10.0
11/94	140.0	210.0	35.0	170.0	3.0	< 10.0	77.0
2/13/95	50.0	81.0	23.0	1200.0	5.0	< 100 0	18.0
5/2/95	< 4.0	72.0	12.0	200.0	30.0	< 10.0	< 2.0
8/15/95	23.0	150.0	20.0	-	13.0	Butanol	< 1.0
11/95	16.0	66.0	43.0	160 0	5.1	< 5.0	< 1.0

<u>MW-9</u>

<u>MW-10</u>

Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	Acetone
					Chloride		
7/8/85-9/29/85	47.6	55.0	12.0	89.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	30.0	45.0	17.0	38.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	18.0	20.0	9.0	20.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	25.1	42.5	8.0	27.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	20.0	38.0	6.0	25.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	20.0	38.0	6.0	25 0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	27.0	45.0	14.0	30.0	< 5.0	< 10.0	< 10.0
4/25/88-8/8/88	23.0	40.0	8.0	25.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	47.6	60.0	6.0	30.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	20.0	30.0	9.6	30.0	< 5.0	< 10.0	< 100
7/16/89-10/26/89	16.0	20.0	10 0	7.0	< 5 ()	< 10.0	< 10.0
11/5/89-2/18/90	20.0	30.0	9.6	-	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	12.0	20.0	7.6	10.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	20.0	38.0	9.5	4.3	< 5.0	< 10.0	< 10.0
5794	-	23.0	12.6		< 10.6	< 50.0	< 10.0
5/2/95	-	-	-	-	76 C	< 10.0	420.0
8/15/95	-	-	-		26 ()	< 5.0	41.0
11/95	13.0	38.0	19.0	84 0	< 1.0	< 5.0	< 1.0

1

Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	Acetone
					Chloride		
						1	T
7/8/85-9/29/85	18.8	38.0	8.0	62 0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	35.0	47.0	10.0	115.0	8.0	< 10.0	40.0
1/5/87-4/4/87	38.0	50.0	18-0	115.0	< 5 0	< 10.0	< 10.0
4/5/87-7/4/87	35.6	60.0	9,0	30.0	< 5 0	< 10.0	< 10.0
7/5/87-10/3/87	22.7	47.0	140	128.0	< 5 0	< 10.0	< 10.0
10/4/87-1/2/88	35.6	47.0	14.0	128.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	32.0	45.0	14.0	110.0	< 5.0	< 10.0	< 10.0
4/25/88-8/8/88	18.8	38.0	8.0	33.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	22.7	47.0	14.0	28.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	40.0	55.0	20.0	80.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	11.0	18.0	7.0	30.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	15.0	20.0	6.4	15.5	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	11.0	10.0	7.5	15.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	15.0	28.0	7,0	15.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	57.0	32.0	4.7	200.0	< 5.0	< 10.0	< 10,0
5/94	-	56.0	19.6	-	< 10.0	< 1,000.0	< 2,100.0
11/4/94	6.7	< 10.0	< 5.0	43.0	< 2.0	< 10.0	< 2.0
2/13/95	36.0	< 10.0	20.0	420.0	6.0	< 100.0	56.0
5/2/95	11.0	97,0	17.0	260,0	< 2.0	Butanol	< 2.0
8/15/95	11.0	33.0	12.0	-	54.0	< 5.0	120.0
11/95	5.0	22.0	30.0	170.0	4.2	< 5.0	< 1.0

<u>P-13</u>

<u>MW-14</u>

Date Sampled	BOD	COD	тос	Chloride	Methylene Chloride	Butanol	Acetone
4/25/88-8/8/88 12/4/88-3/19/89	< 3.0 30.0	9.0 45.0	5.0 10.0	15.0 15.0		< 10.0	< 10.0
2/25/90-4/29/90 5/6/90-9/30/90	10.0 < 3.0	25.0 21.0	8.0 8.0	20.0 31.3		< 10.0 < 10.0 < 10.0	< 10.0 < 10.0 < 10.0
5/94 11/95	-	26.0 32.0	18.1	-	< 10.0 2.9	< 50.0	< 10.0 11.0

1

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
	<u> </u>				Cilloride		1
		[
7/8/85-9/29/85	11.6	42.5	8.0		< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	28.0	32.0	11.0	27.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	28.0	32.0	11.0	27 0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	11.6	55.0	12 0	17.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	31.7	10.0	6 0	27.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	9.7	10.0	6.0	27.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	9.0	< 3.0	5.0	25.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	25.1	65.0	5.0	43.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	20.0	23.0	12 0	35.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	18.0	20.0	11.6	15.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	12.0	22 0	90	9.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	18.0	18.0	116	16.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	< 3.0	12.0	73	26.1	< 5.0	< 10.0	< 10.01
11/94	7.7	58.0	7.1	32.0	< 2.0	< 10.0	< 2.0
2/13/95	< 2 0	36 0	5,9	1800.0	5.0	< 100.0	5.0
5/2/95	< 2.0	50.0	6.7	310.0	< 2.0	< 10.0	< 2.0
8/15/95	< 2.0	< 10.0	9.8		22.0	< 5.0	< 1.0
11/95	< 4.0	< 10.0	19.0	45.0	3.9	< 5.0	< 1.0
]	Butanol	

<u>MW-17</u>

<u>MW-24</u>

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
	i T						†=
7/8/85-9/29/85	25.1	35.0	6.0	27.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	18.0	20.0	9.0	20,0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	30.0	45.0	17.0	38.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	47.6	55.0	16.0	39.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	18.8	42.5	8.0	17.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	25.1	35.0	8.0	17.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	44.0	4.0	10.0	27.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	20.0	38.0	6.0	25.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	30.0	38.0	15.0	50.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	17.0	25 0	6.7	20.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	20.0	35 0	8.0	18.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	12.0	15.0	93	3.9	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	61.0	87.0	5.3	3.9	< 5.0	< 10.0	< 10.0
5/94	-	35.0	9.6	-	< 10.0	< 50.0	< 10.0
11/94	150.0	74.0	14 0	16.0	4.0	< 10.0	< 2.0
2/13/95	8.5	41.0	12.0	45.0	4.0	< 200.0	7.0
5/2/95	< 2.0	62.0	7.0	29.0	4.0	< 10.0	< 2 0
8/15/95	< 2.0	20.0	7.7	-	15.0	< 5.0	< 1.0
11/95	< 2.0	12.0	16.0	49.0	< 1.0	< 5.0	< 1.0

Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	
Date Sampled			TOC .	Cinoriae	Chloride	DULANO	Acetone
					Chioride		l r
7/8/85-9/29/85	97	10.0	60	25.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	30.0	43 0	14.0		< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	35.0	48.0	15.0	55.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	43.2	35.0	11.0	28.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	20.0	55.0	12.0	89.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	11.6	42.5	12.0	89.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	249.0	5.0	9.0	38.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	18.8	42.5	8.0	28.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	12.0	20.0	8.0	25.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	20.0	30.0	12.0	18.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	12.0	30.0	6.0	22.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	20.0	20.0	3.5	21.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	6.0	15.0	5.7	21.1	< 5.0	< 10.0	< 10.0
5/94	_	42.0	8.4	-	< 10.0	< 50.0	< 10.0
11/94	7.2	< 10.0	7.9	240.0	< 2.0	< 10.0	240,0
2/13/95	7.0	49.0	13.0	190.0	6.0	< 100.0	18.0
5/2/95	< 2.0	70.0	11.0	160.0	3.0	< 10.0	56.0
8/15/95	7.0	39.0	13.0	-	13.0	< 5.0	42.0
11/95	< 4.0	17.0	18.0	6.7	< 1.0	Butanol	< 1.0

<u>MW-25</u>

<u>MW-26</u>

Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	Acetone
					Chloride		
4/25/88-8/8/88	4.0	44.0	10.0	28.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	35.0	42.0	18.0	85.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	15.0	28.0	9.3	12.0	< 5.0	< 10,0	< 10.0
5/6/90-9/30/90	< 3.0	18.0	42.0	21.7	< 5.0	< 10.0	< 10.0

1

<u>MW-27</u>

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acctone
5/94 11/95	-	43 0 17 0	8.4	-	< 10.0 2.8	< 50.0	< 10 0 17 0

Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	Acetone
					Chloride		
7/8/85-9/29/85	20.0	38.0	5.0	43.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	27.0	45.0	14 0	30.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	15.0	23.0	6.0	20,0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	-	-	9.0	22.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	9.7	55 0	16.0	78.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	47.6	55.0	16.0	78.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	219.0	14.0	13.0	55.0	< 5.0	< 10.0	< 10.0
/15/88-11/27/8	20.0	55.0	12.0	89.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	28.0	35.0	10.0	40.0	< 5.0	Butanol	< 10.0
3/26/89-7/9/89	23.0	40.0	15.0	30.0	< 5.0	< 10.0	< 10.0
/16/89-10/26/8	13.0	17.0	13.7	17.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	11.0	10.0	4.9	14.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	11.0	21.0	4.9	40.0	< 5.0	< 10,0	< 10.0
5/94	-	104.0	35.6	-	< 10.0	< 50.0	< 10.0
11/94	42.0	240.0	13.0	230.0	< 2.0	Butanol	< 2.0
2/13/95	22.0	58.0	14.0	280.0	13.0	< 100.0	12.0
5/2/95	7.0	210.0	74.0	300.0	42.0	< 10.0	130.0
8/15/95	13.0	43.0	15.0		12.0	< 5.0	78.0

<u>MW-28</u>

1

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Accione
]	1					
7/8/85-9/29/85	20.0	65.0	6.0	36.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	30.0	48.0	9.0	15.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	25.0	30.0	8.0	45.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	22.7	47.0	14.0	25.0	< 5.0	< 10 0	< 10.0
7/5/87-10/3/87	11.6	35 0	11.0	22.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	43 2	55.0	11.0	22.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	141.0	< 3.0	5.0	20.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	10.0	55.0	16.0	78.0	< 5.0	< 10.0	< 10.0
12/4/88-3/19/89	30.0	40.0	15.0	80.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	15.0	25.0	10.0	25.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	20.0	30.0	10.0	15.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	< 3.0	10.0	8.8	14.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	< 3.0	15.0	8.8	4.1	< 5.0	< 10.0	< 10.0
11/95	17.0	80.0	39.0	250.0	4.6	< 5.0	< 1.0

<u>MW-29</u>

<u>P-30</u>

	Butanol								
Date Sampled	BOD	COD	TOC	Chloride	Methylene	Butanol	Acetone		
					Chloride	l			
					Γ		1		
7/8/85-9/29/85	38.8	510.0	120.0	331.0	25,000.0	< 10.0	40,000.0		
3/16/86-1/3/87	38.0	50.0	18.0	75.0	30.0	< 10.0	40.0		
1/5/87-4/4/87	48.0	63.0	28.0	62.0	8,500.0	Butanol	4,500.0		
4/5/87-7/4/87	52.0	65.0	26.0	40.0	8,000.0	< 10.0	4,200.0		
7/5/87-10/3/87	45.0	55.0	22.0	50.0	5,000.0	< 10.0	3,000.0		
10/4/87-1/2/88	40.0	52.0	20.0	60.0	4,500.0	< 10.0	2,000.0		
1/3/88-4/18/88	48.0	63.0	28.0	62.0	3,000.0	< 10.0	1,300.0		
4/2.5/88-8/8/88	52.0	55.0	25.0	40.0	2,900.0	< 10.0	1,200.0		
8/15/88-11/27/88	45.0	55.0	25.0	30.0	1,200.0	< 10.0	1,400.0		
12/4/88-3/19/89	30.0	50.0	18.0	60.0	1,500.0	< 10.0	1,800.0		
3/26/89-7/9/89	25.0	33.0	605.0	30,0	20,000.0	< 10.0	950.0		
7/16/89-10/26/89	40.0	55.0	15.0	19.0	1,000.0	< 10.0	200.0		
11/5/89-2/18/90	75 0	97.0	23.0	20.0	1,200.0	< 10,0	150.0		
2/25/90-4/29/90	40.0	50.0	8.5	25.0	1,000.0	< 10.0	< 10.0		
5/6/90-9/30/90	18.0	27 0	71.5	100.0	900.0	< 10.0	< 10.0		
5/94	-	64.0	15.8	-	970.0	< 500.0	< 10.0		
£1/4/94	90	< 10.0	7.5	100.0	31.0	< 10.0	74.0		
2/13/95	8.9	26 0	17.0	220.0	970.0	< 1,000.0	990.0		
5/2/95	3.0	45.0	8.0	160.0	575.0	< 10.0	160.0		
8/15/95	12.0	45.0	15.0	-	3,000.0	< 250	460.0		
11/95	< 2.0	26.0	22.0	200.0	< 1.0	< 5.0	53.0		

Μ	w	-31	

Date Sampled	BOD	COD	TOC	Chloride	Methylenc	Butanol	Acctone
					Chloride		
4/25/88-8/8/88	5.0	249.0	9.0	22.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	18.0	30.0	3.8	30.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	20.0	32.0	5.5	15.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	8.0	10.0	46.0	19.3	< 5.0	< 10 0	< 10.0
5/94		27.0	7.1	-	< 10.0	< 50.0	< 10.0
11/95	-	11.0	-		4.6	-	89

<u>MW-32</u>

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
4/25/88-8/8/88	14.0	219.0	13.0	25.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	20.0	28.0	5.5	15.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90 5/6/90-9/30/90	15.0 45.0	30.0 35.0	4.0. 132.0		< 5.0 < 5.0	< 10.0 < 10.0	< 10.0 < 10.0
5/94	-	33.0	9.7	-	< 10.0	Butanol	< 10.0
11/95		19.0	-	-	4.5	-	14.0

<u>MW-33A</u>

						Butanol	
Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
4/25/88-8/8/88	141.0	< 3.0	5.0	30,0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	15.0	25.0	6.0	20.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	10.0	23.0	4.5	30.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	< 3.0	15.0	253.0	20.7	< 5.0	< i0.0	< 10.0
11/95		19.0		-	4.3	-	15.0

854820087

-

_ . _ ~

Date Sampled	ROD	COD	TOC	Chloride	Methylene Chloride	Butanof	Accione
						[T
7/8/85-9/29/85	910.0	1,300.0	360 0	335.0	75,000 0	27,000.0	82,000.0
3/16/86-1/3/87	850.0	1,450.0	250.0	228.0	110,000.0	69,000.0	120,000.0
1/5/87-4/4/87	175.0	2250	65 0	1150	62,000.0	25,100.0	32,000.0
4/5/87-7/4/87	180.0	262 0	60.0	110.0	58,000.0	12,300 0	25,000 0
7/5/87-10/3/87	175.0	250.0	50.0	115.0	51,000.0	10,500 0	16,000 0
10/4/87-1/2/88	150.0	225.0	42.0	110.0	45,000 0	5,000.0	9,000 0
1/3/88-4/18/88	175.0	225 0	65.0	1150	74,000.0	7,800.0	11,000.0
4/25/88-8/8/88	100.0	150.0	40.0	70.0	66,700.0	7,500.0	17,000 0
8/15/88-11/27/88	90.0	120.0	30.0	25.0	50,200.0	8,000.0	10,000 0
12/4/88-3/19/89	80.0	100.0	25 0	70.0	40,000.0	5,600.0	8,000.0
3/26/89-7/9/89	43.0	55 0	10.0	18.0	35,500.0	5,100.0	8,500.0
7/16/89-10/26/89	60.0	70.0	180	20.0	40,000.0	4,800.0	7,800 0
11/5/89-2/18/90	82.0	1150	35.0	25.0	35,250.0	2,800.0	5,000.0
2/25/90-4/29/90	70.0	80.0	22 0	20.0	30,200.0	800.0	3,200.0
5/6/90-9/30/90	1710	230 0	70 1	100.0	26,000.0	< 10.0	2,100.0
5/94	-	138.0	51.6	· -	18,000.0	< 5,000.0	9,000 0
11/4/94	6.1	< 10.0	8.8	170.0	\$10.0	< 10.0	190.0
2/13/95	63.0	70.0	45.0	140.0	3,000.0	< 20,000.0	15,000.0
5/2/95	16.0	92.0	21.0	150.0	5,420.0	Butanol	3,290.0
8/15/95	160.0	230.0	56 0	-	59,000.0	< 1,000.0	12,000.0
11/95	< 2.0	56.0	40.0	79.0	190.0	< 5.0	90.0

<u>P-32A B</u>

<u>MW-42</u>

Date Sampled	BOD	COD	TOC	Chloride	Methylene Chloride	Butanol	Acetone
					Cillonide		<u> </u>
7/8/85-9/29/85	3t.7	60.0	9.0	48.0	< 3.0	< 10.0	< 10.0
3/16/86-1/3/87	18.0	25.0	10.0	40.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87	32.0	45.0	14.0	110.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	18.8	38.0	8.0	33.0	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	43.2		9.0	47.0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	22.7	35.0	9.0	47.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	22.0	< 3.0	2.0	45.0	< 5.0	< 10.0	< 10.0
4/25/88-8/8/88	< 3.0	22.0	20	25.0	< 5.0	< 10.0	< 10.0
8/15/88-11/27/88	11.6	35.0	110	22.0	< 5.0	< 10 0	< 10.0
3/26/89-7/9/89	< 3.0	10.0	3 0	19.0	< 5.0	< 10.0	< 10.0
7/16/89-10/26/89	10.0	15.0	80	18.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	22.0	10.0	13.5	5.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	18.0	25.0	9.0	10.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	< 3.0	18.0	10	5.1	< 5.0	< 10 0	< 10.0
5/94		-	4.2	-	< 10.0	< 50 0	< 10.0
11/94	4.2	< 10.0	< j 0	61.0	< 2.0	< 10.0	< 2.0
2/13/95	< 2.0	< 10.0	< 5 0	41.0	6.0	< 100.0	3.0
5/2/95	< 2 0	35.0	< 5 0	29.0	< 2.0	< 10.0	< 2.0
8/15/95	< 2.0	< 10.0	59	-	9.6	< 5.0	< 1.0
11/95		45.0	-	-	1.8	-	200.0

2.7

Butanol

854820088

6 M Report

DEEP WELL

Date Sampled	BOD	COD	тос	Chloride	Methylene Chloride	Butanol	Acctone
5/94 11/95	-	62.0 43.0	1.1	-	< 10 0 1 5	< 50 0	< 10.0

Date Sampled	BOD	COD	TOC	Chlonde	Methylene	Butanol	Acetone
					Chloride		
	1 1						
7/8/85-9/29/85	52.0	70.0	20.0	40 0	< 3.0	< 10,0	< 10.0
3/16/86-1/3/87	30.0	43.0	48.0	40.0	< 5.0	< 10.0	< 10.0
1/5/87-4/4/87		-	45.0	42.0	< 5.0	< 10.0	< 10.0
4/5/87-7/4/87	-	-	-	-	< 5.0	< 10.0	< 10.0
7/5/87-10/3/87	33.0	41.0	38.0	30 0	< 5.0	< 10.0	< 10.0
10/4/87-1/2/88	31.0	42.0	39.0	35.0	< 5.0	< 10.0	< 10.0
1/3/88-4/18/88	21.0	37.0	10.0	42.0	< 5.0	< 10.0	< 10.0
4/25/88-8/8/88	20.0	10.0	6.0	27.0	< 5.0	< 10.0	< 10.0
/15/88-11/27/8	33.0	40.0	35.0	30.0	< 5.0	Butanol	< 10.0
12/4/88-3/19/89	25.0	35.0	10.0	28.0	< 5.0	< 10.0	< 10.0
3/26/89-7/9/89	< 3.0	10.0	5.0	9.0	< 5.0	< 10.0	< 10.0
/16/89-10/26/8	10.0	15.0	6.3	18.0	< 5.0	< 10.0	< 10.0
11/5/89-2/18/90	20.0	30.0	10.0	60.0	< 5.0	< 10.0	< 10.0
2/25/90-4/29/90	15.0	20.0	5.5	15.0	< 5.0	< 10.0	< 10.0
5/6/90-9/30/90	< 3.0	12.0	6.6	100.0	< 5.0	Butanol	< 10.0
2/13/95	12.0	24.0	9.7	250.0	240.0	< 200,0	110.0
5/2/95	7.0	48.0	8.6	220.0	87.0	< 10.0	24.0
8/15/95	130.0	33.0	5.0		350.0	< 5.0	59.0

EFFLUENT

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY ISRA CASE #96070

.

APPENDIX A ATTACHMENT A FIELD SAMPLING PLAN

854820090

TIERRA-B-009084

1.0 INTRODUCTION

This Field Sampling Plan (FSP) describes the sampling procedures, field measurements, and sample analyses to be performed during the Industrial Site Recovery Act (ISRA) investigation at the Biocraft Laboratories, Inc. (Biocraft) property, in Waldwick, New Jersey.

The FSP is provided to ensure that all field investigation information, data, and resulting decisions are technically sound, statistically valid and properly documented.

1

MRF135003.FSP

854820091

TIERRA-B-009085

2.0 SITE DESCRIPTION

Biocraft Laboratories, Inc. (Biocraft) manufactures semi-synthetic penicillin products in bulk form The facility consists of two buildings, a manufacturing building and warehouse, which are located on two contiguous properties with frontages on 12 Industrial Park and 140 Hopper Avenue in Waldwick, Bergen County, New Jersey. Figure 1 shows the site location. The office maintenance, and production areas, and research and development laboratories are located in the manufacturing building. Bulk finished products and some raw materials are stored in the warehouse building, which also houses the quality control and microbiology laboratories.

The manufacturing and warehouse buildings, and parking areas cover approximately 30 percent of the 4.3 acre property. Landscaped areas cover approximately 10 percent of the property, and the remainder of the property is lightly wooded. The property is relatively flat with slopes ranging from 1 to 3 percent. Drawing 1 shows the site plan.

2

MRF135003.FSP

---- ---

3.0 PHYSICAL SETTING

3.1 Soil

The dominant soil type in the study area is classified as Dunellen. Dunellen soils have a very dark, grayish brown loam surface layer approximately 5 inches thick. The subsoil is approximately 21 inches thick, of which, the upper 10 inches is friable, dark yellowish brown loam and the lower 11 inches is friable brown loam. The substratum is stratified reddish brown gravely sand, sand, and loamy sand and brown sandy loam to a depth of 66 inches. Permeability of the Dunellen soils is moderate to moderately rapid in the subsoil and rapid in the substratum.

3.2 Geology and Hydrogeology

The site is located in an area of unstratified and stratified drift deposited by the Wisconsin glacier and its meltwaters during the Pleistocene Epoch of the Quaternary Period. Thin layers of silt and gravel are generally found from grade to 3 feet below grade. Glacial till underlies the site at a thicknesses of 8 to 15 feet. The glacial till consists of a poorly sorted mixture of boulders, cobbles, pebbles, sand, silt, and clay. Approximately 40 feet of semiconsolidated silt and fine sand underlie the till layer. Brunswick Shale of the Triassic Newark Group underlies the site at a depth of 50 to 60 feet below grade. The thickness of the Brunswick Shale is not known but is estimated to be greater than 6,000 feet.

Groundwater beneath the site exists in the void spaces of the unconsolidated quaternary glacial sediments and in the joints and fractures of the Brunswick Formation. The depth to groundwater ranges from grade to 9 feet below grade, depending on seasonal fluctuations. The groundwater flow direction is influenced by the groundwater recovery, treatment, and reinjection system. The inferred direction of groundwater flow is to the north, northwest at the northern section of the site, and to the south, southeast in the central and southern sections of the site.

3

MRF135003.FSP

4.0 AREA OF CONCERN

4.1 Former Underground Transfer Line

A 100-foot long underground steel pipe was installed in 1972 to transfer wastewater from the manufacturing building processing area to an underground wastewater storage tank. Plant Engineer Fred Furman indicated that the pipe was buried approximately 4 to 6 feet below grade. The wastewater contained low concentrations of acetone, methylene chloride, n-butyl alcohol and dimethyl aniline. Biocraft discovered a leak in the underground pipe in 1975 and removed the pipe from service. All underground pipes were replaced by aboveground pipes in 1975.

4

MRF135003.FSP

854820094

TIERRA-B-009088

5.0 FIELD INVESTIGATION PROCEDURE

Eder Associates (EDER) will be responsible for project coordination, overall quality assurance (QA), sampling operations, field screening, and quality control (QC). Samples will be analyzed by a New Jersey certified laboratory who will be responsible for laboratory QC, data quality review, analytical performance and systems auditing.

Data collected during the field investigation will be used to determine whether the former underground pipe leak has impacted site soil. If so, additional data will be collected and used to define the nature and extent of contamination, and to determine the need for corrective action. The sample locations, number of samples collected and analytical parameters have been selected based on the contaminant source, the characteristics of the contaminant, and the physical environment (e.g., soil) into which the contaminant may have been released.

5.1 Soil Sampling Procedures

Four borings will be drilled near the former underground pipe and one boring will be drilled near the storm water sewer manhole west of the former pipe leak using hollow stem augers. Boring locations are shown on Figure 2. Soil samples will be collected continuously from grade to 8-feet below grade or to the water table. Soil samples will be collected in 24-inch intervals using a split spoon Each 24-inch sample will be split into four 6-inch intervals and screened for organic vapor using a photoionization detector (PID). The sample from the 4 to 8-foot below grade interval with the highest PID reading will be analyzed in the laboratory. The sample from the 6-inch interval above groundwater or the sample collected from 7.5 to 8-feet below grade sample will be sent for laboratory analysis if all PID readings are the same.

5

MRE135003 ESP

6.0 LABORATORY ANALYSIS

One sample from each boring will be sent to a New Jersey certified laboratory and analyzed for volatile organic compounds (VOCs) using USEPA Method 8240. Four QA/QC samples (one field blank, one matrix spike, one matrix spike duplicate, and one field duplicate) will also be analyzed for VOCs. All laboratory reports will meet NJDEP Reduced Deliverable requirements.

MRF135003.FSP

6

7.0 QUALITY ASSURANCE/QUALITY CONTROL PLAN

The overall QA/QC objective is to develop and implement for sampling, laboratory analyses, field measurement, and reporting procedures that will provide data quality consistent with its intended use. The following sections outline the procedures to achieve the QA/QC objectives.

7.1 Sample Containers and Sample Preservatives

Sample containers and sample preservatives will be selected based on the sample matrix, potential contaminants, and the analytical methods, as outlined in USEPA SW-846. All sample containers will be prepared and quality controlled by the analytical laboratory.

Sample volumes, containers, preservatives, and holding times required for each analysis will meet the NJDEP requirements outlined in the May 1992 Field Sampling Procedures Manual.

7.2 Sample Holding, Shipping and Custody

Pertinent sample identification information will be recorded on the labels at the sampling location, and the labels will be affixed to the sample container and protected by clear waterproof tape. The sample jars will be placed in appropriate containers provided by the laboratory and maintained chilled with ice. A custody seal will be placed over the container lid to assure the integrity of the samples until they arrive at the laboratory.

Sample handling and chain-of-custody procedures will be maintained at all times. A chain-ofcustody form will be initiated and completed by the laboratory performing the analyses. The chain-of-custody form will provide an accurate written record to trace sample possession and holding from the time of sampling through data analysis and reporting. The following information will be specified for each sample on the chain-of-custody form. 1) sample number, 2) sample collection date, 3) approximate sample collection time, 4) sample location (which may be

MRE 135003 FSP

incorporated in the sample number), 5) sample preservation method, 6) sample matrix, and 7) analyses requested.

The chain-of-custody will be signed by the on-site field supervisor and placed in a water tight plastic bag taped to the underside of the sample shipping container.

All sample containers will be shipped to the laboratory as soon as possible but no later than 24hours after sample collection for a one day sampling effort. The samples will be shipped no later than 48 hours after sample collection, if either an overnight carrier is required or the sampling effort exceeds one day. Samples will be checked in by the laboratory's sample custodian on arrival at the laboratory. The custodian will sign the chain-of-custody documenting receipt of the samples from the carrier, verify that the number of samples received in the shipment is listed on the chain-of-custody, verify label information, and document the integrity and condition of all samples on the chain-of-custody form. The custodian will notify EDER's project manager in the event that there are any discrepancies or problems with the sample shipment.

The laboratory will retain the samples for 30 days after the analyses are complete.

7.3 Field Documentation

Bound field ledgers/books will be used to record all field activities. Entries will be made in as much detail as possible in order to reconstruct a particular situation at a later date without relying on memory. Field ledgers will be assigned to all field personnel and will be stored in the project file. Each ledger will be identified by the project number and book number. All entries will be made in ink and no erasures will be made. If an incorrect entry is made, the information will be crossed out with a single mark. All pertinent calibration information, field measurements, descriptions and photolog information will be documented.

MRF135003.FSP

8

7.4 Sample Location Identification

Data that identify the sample location will be maintained in the project log book and will consist of the following:

- Date
- Time
- Location (measured from a fixed reference point)
- Sample type
- Sample preservation and analysis
- · Sample handling (such as field filtration)
- Sampler's name and affiliation
- · Client's name and project number

7.5 Calibration Procedures and Frequency

All field and laboratory equipment will be calibrated prior to use. The calibration procedures will follow the manufacturer's instructions to assure that the equipment is functions within the tolerances established by the manufacturer and analytical requirements.

Laboratory calibration will be performed in accord with the laboratory's SOP.

<u>Microtip</u> - Field calibration will be based on an isobutylene in air standard. The calibration will be verified daily using a standard reference gas. If readings vary more than 10 percent from the standard value and the unit cannot be recalibrated, it will be replaced. All calibrations will be recorded in a bound ledger.

MRF135003.FSP

7.6 QA/QC Samples

Field duplicates and field blanks will be collected and sent to the laboratory to provide a means-to assess the quality of the data from the field sampling program. Field duplicate samples will be analyzed to evaluate sampling and analytical reproducibility. Field blank samples will be analyzed to check for procedural contamination

761 Field Blanks

One field blank will be collected for all sampling equipment and for each matrix. The field blank will be an identical bottle to bottle transfer. The blank water will be the same that the laboratory uses for its method blanks.

Non-Aqueous Matrix

Field blanks will only be analyzed for VOCs using EPA Method 8240. It is anticipated that one field blank will be required for this sampling event, but field blanks will be collected at a rate of 10 percent of the total number of samples collected throughout a sampling event that lasts longer than one day.

7.6.2 Trip Blanks

Trip blank is not required for non-aqueous matrix sampling.

7.6.3 Field Duplicates

One duplicate sample per matrix will be obtained for every 20 samples collected.

MRF135003 FSP

Non-Aqueous Matrix

Samples collected for VOC analyses will be collected from discrete intervals without compositing or mixing. The sample will be divided in half and the containers filled by scooping material alternately from each half. A detailed description of soil sampling is presented in Section 5.1

7.7 Field Equipment

Soil samples will be collected using the equipment listed in Table 1.

7.8 Decontamination of Sampling Equipment

All sampling equipment will be decontaminated to reduce the potential for cross-contamination The drill rig will be steam-cleaned or pressure washed at a designated decontamination area, away from the drilling area, before and after each boring is drilled. Augers, drill rods, and assorted hand tools will also be steam cleaned or pressure washed on pipe racks or pallets at the decontamination area. Equipment cleaning will be of sufficient duration to remove dirt, contamination, and/or oil and grease.

Split spoon samplers, stainless steel spatulas and other soil sampling equipment will be decontaminated in the field using the procedures outlined in the NJDEP Field Sampling Procedures Manual, May 1992.

Water generated during decontamination will be applied to the ground surface at the location specified by the on-site field supervisor. In accordance with the protocols outlined in the May 1992 NJDEP Field Sampling Procedures Manual, the decon water will be poured onto the ground provided it does not: 1) migrate off-site; 2) contaminate a previously uncontaminated aquifer and; 3) cause an increase in surface soil contamination. The decon water will be containerized if these conditions cannot be met,

MRF135003.ESP

7.9 Field Measurements

The sampling activities will include field measurements to establish conditions at the time of sampling.

Field measurements will be made under conditions, at frequencies, and for the length of time determined by the work and the characteristics of the contaminant. Ancillary data such as weather conditions and the time of day will be collected to determine if related factors (e.g. rainfall) impact the sample quality.

Information related to field measurement operations and procedures will be recorded in the project log book. This information will include:

- procedures and forms for recording raw data and the exact location, time, and facility-specific considerations associated with the data acquisition
- calibration of equipment
- collection of replicate measurements
- submission of field blanks
- potential interferences
- field equipment used

decontamination procedures

7.11 Sample Analysis

A New Jersey Certified Laboratory will be selected by competitive bids. The laboratory will be responsible for the following

Chain-of-custody procedures, including

1. identifying the laboratory sample custodian

MRF135003 FSP

- 2 providing a laboratory sample custody log consisting of serially-numbered lab-tracking report sheets
- 3 specifying laboratory sample custody procedures for sample handling, storage, and disbursement for analysis
- Sample storage and holding times
- Sample preparation methods
- Analytical procedures, including
 - L scope and application of the procedure
 - 2 sample matrix
 - 3. potential interferences
 - 4. precision and accuracy of the methodology
 - 5. method detection limits
- Calibration procedures and frequency
- Data reduction, validation, and reporting
- Internal quality control checks, laboratory performance, and system audits and frequency, including:
 - 1. method blank(s)
 - 2. laboratory control sample(s)
 - 3. calibration check sample(s)
 - 4. replicate sample(s)
 - 5. matrix-spiked sample(s)
 - 6. "blind" quality control sample(s)
 - 7. control charts
 - 8. surrogate samples
 - 9. zero and span gases
 - 10 reagent quality control checks

MRF135003.FSP

- Preventative maintenance procedures and schedules
- Corrective action for laboratory problems
- Turnaround time

The laboratory's QA manual will be submitted to the NJDEP upon request

MRF135003 FSP

_···

8.0 HEALTH AND SAFETY PLAN

8.1 Introduction

This HASP applies to EDER personnel where EDER's operations at the site involve employee exposure (or the reasonable possibility of employee exposure) to safety or health hazards EDER's policy is to minimize the possibility of work-related injury through aware and qualified supervision. health and safety training, medical monitoring and the use of appropriate personal protective equipment. EDER has established a guidance program and intends that the policy be implemented in a manner that protects its personnel to the maximum reasonable extent. The Corporate Health and Safety Program is documented in Appendix A of EDER's Employee Handbook, which is issued to each employee.

This HASP describes emergency response procedures and actual and potential physical and chemical hazards at the worksite. This HASP also provides information and guidance to contractors retained by EDER or Biocraft and to other parties who are outside of EDER's ability to control.

Notwithstanding the intent of this HASP as site specific hazard information and guidance, which is made available to all parties, contractors retained by EDER are independent contractors and are responsible for assuring the worksite safety of all of their employees and any other party retained by them.

This HASP was developed with the most recent and available information including applicable regulatory requirements (OSHA 29 CFR Parts 1910, 1926) and state and local codes. Activities governed by this HASP will be performed in conjunction with Biocraft health and safety procedures and human resource personnel responsible for health and safety. This HASP will be amended accordingly if additional safety measures are required. Site conditions may require that the site project manager/safety officer increase or decrease personnel protective measures. All workers will be briefed on any amendments made to this plan.

MRF135003.FSP

8.2 Hazard Evaluation

This Hazard Evaluation identifies the activity-specific hazards associated with site operations and standard operating procedures (SOPs) that should be implemented to 1) reduce hazards, 2) identify, general physical hazards that can be expected at the site, and 3) evaluate documented or potential chemical hazards at the site. Every effort must be made to reduce or eliminate these hazards. Those which cannot be eliminated must be guarded against using engineering controls and/or personal protective equipment.

Activities to be conducted during site remediation are drilling and soil sampling.

Overhead and underground utilities will be identified before any drilling work is done. Drilling work will be coordinated with Biocraft plant management who are familiar with the underground utility locations at the facility.

8.2.1 Activity-Specific Hazards and Standard Operating Procedures

8.2.1.1 Drilling and Soil Sampling

<u>Hazards</u>

- Inhalation of dust and/or volatile vapors;
- Skin contact with contaminated soil and groundwater;
- Physical impact with equipment;
- Slip/trip/fall;
- Noise,
- Electrical shock;
- Underground utilities;
- Explosion/fire;
- Heat stress and/or cold stress.

MR1135003 FSP

SOPs to Avoid Hazards

- Conduct air monitoring using a PID/FID to determine if respiratory protection is necessary;
- Wear appropriate personal protective equipment (gloves, tyvek, overboots, etc.);
- Avoid the use of loose belts, drawstrings, loose straps that might catch on moving equipment, and keep work areas free of obstructions;
- Be familiar with site topography and site layout hazards Keep all tools and equipment in a designated area;
- Wear hearing protection when working near heavy equipment;
- Lockout and tag electric main service when working on electrical components
- Electric tools must be connected through ground-fault interrupters;
- Markout utilities before excavating;
- Maintain fire extinguisher or other fire fighting equipment in work area;
- Ensure that all site personnel are familiar with the symptoms of heat stress and cold stress.

8.2.2 Chemical Hazards

Previous investigations indicate that volatile organic compounds (methylene chloride, acetone, and dimethylanine) are the primary contaminants of concern in the site soil.

This plan will be amended, as necessary, if other contaminants are identified in concentrations which may warrant additional safety precautions.

8.2.3 Biological Hazards

Biological agents can cause infection or disease to persons who are exposed, and may involve plants, animals or insects. Many biological agents require a carrier, such as bees, ticks, and snakes, to MRF135003.FSP

inoculate a host and controlling the agent may require controlling or avoiding the carrier. The most common biological agents that may be encountered at the site are bees and ticks. Workers should wear light colored, long sleeve shirts and pants while working at the site. Workers will not be permitted to wear shorts. A first-aid kit containing antiseptic and tweezers will be available at the site.

8.3 Key Personnel and Responsibilities

The following personnel and responsibilities are assigned during remedial activities:

Frederick H. Inyard, P.E. Principal-in-Charge, Quality Assurance Officer Eder Associates

Carol S. Graff Senior Project Manager Eder Associates

Mark Foley Project Engineer Eder Associates

The principal-in-charge is responsible for overall project management. Mark Foley will be the on-site health and safety officer (HSO), and will oversee daily safety issues and ensure that the HASP is implemented during remedial work.

The qualifications of the HSO comply with the OSHA training requirements (29 CFR Part 1910). The HSO has the authority to suspend site work based on safety concerns. The general responsibilities of the HSO are as follows:

1. To implement, enforce and monitor this HASP.

MRF135003.FSP

- 2 Inform all personnel of the information in this safety plan and any other safety requirements to be observed during work area operations, including.
 - a. Potential hazards;
 - Designation of key staff responsibilities;
 - c. Designation of work zones and levels of protection;
 - Decontamination procedures;
 - e. Air monitoring;
 - f Personnel hygiene principles,
 - g. Personnel protective equipment,
 - h. Respiratory protective equipment usage and fit testing; and
 - Emergency procedures dealing with fire and medical situations.
- Monitor air quality and all other hazards during operations.
- 4. Maintain a log that documents: (a) the names of workers and visitors in the work zone; (b) any chemical exposure symptoms exhibited by workers; and (c) safety problems encountered and mitigative actions taken.

8.4 Work Area Definition and Site Entry Procedures

Remedial investigation will take place at the location shown on Figure 2. A thirty foot radius area around this location will define the "work area". Access to work areas will be restricted to personnel who are familiar with this HASP and who have received OSHA-required (29 CFR 1910) training.

Decontamination areas will be established by the HSO to decontaminate construction and sampling equipment

MRF135003 FSP

The names of all personnel entering the work area will be recorded in the field notes Before engaging in any site work, all personnel involved in such work will be briefed on the following

- 1. Identity of project manager/safety officer.
- 2. Chemical contaminants suspected of being in the work area and their signs and symptoms of exposure.
- Location of first-aid equipment and qualified personnel.
- Decontamination procedures when required.
- Procedures to be used in contacting emergency response personnel, including potential site evacuation procedures in case of emergencies.
- 6. Contractor staff person in charge.
- 7. Activities taking place that day.
- 8. Heat or cold stress symptoms. All personnel will be advised to watch for signs of stress in staff working in the study area.
- 9. Personal protective equipment requirements and limitations.

It is the duty of the HSO to require all personnel entering the work areas at the site including workers and visitors to read this HASP and sign a statement indicating that they have done so

MRF135003 FSP

8.5 Personal Protection

The selection of personal protective equipment (PPE) will be in accord with the site air monitoring program described in Section 7.7 of this HASP, OSHA 29 CFR 1910.120(c) and (g), and 1910.132 Protective equipment shall be NIOSH-approved and the use of respiratory protection shall conform to OSHA 29 CFR 1910.133 and 1910.134 specifications; head protection shall conform to 1910.135, eye and face protection shall conform to 1910.133; and foot protection shall conform to 1910.136

8.5.1 Level D

Level D PPE shall be donned when the atmosphere contains no known hazard and work functions preclude splashes, immersion or the potential for unexpected inhalation of, or contact with, hazardous concentrations of harmful chemicals Level D PPE consists of:

- · Standard work uniform or coveralls (or tyvek, as needed);
- Steel toe and steel shank work boots;
- Hard hat as needed;
- Gloves as needed; and
- Safety glasses as needed.

8.5.2 Level C

Level C PPE shall be donned when the concentrations of measured total organic vapors in the breathing zone are greater than the ACGIH 300 ppm TLV for gasoline using a PID/FID. The specifications on the air purifying respirator filters used must be appropriate for contaminants identified or expected to be encountered. Level C PPE consists of:

- Chemical resistant or coated tyvek coveralls;
- Steel toe and steel shank workboots;
- Chemical resistant overboots or disposable boot covers;

MRF135003.FSP

- · Disposable inner gloves (surgical gloves),
- Disposable outer gloves;
- Full-face air purifying respirator fitted with organic vapor/dust and mist filters or filters appropriate for the contaminants identified or expected to be encountered.
- · Hard-hat;
- Splash shield, as needed, and
- Ankles/wrists taped with duct tape

8 5 3 Activity-Specific Levels of Personal Protection

All remedial work will be performed in Level D PPE. This level of protection may be changed during site work based on the air quality monitoring.

8 5.4 Surveillance Equipment and Materials

Air sampling will be performed around the perimeter of the work zone using a PID/FID to establish background VOC conditions before starting field activities. A discussion of the sampling procedures is included in Section 7.7 of this HASP.

8.5.5 Medical Surveillance

A yearly medical exam of the general state of health, baseline physiological data and ability to wear personal protective equipment will be required for individuals engaged in on-site work activities in accordance with the USEPA's "Standard Operating Safety Guides" and OSHA CFR 29 Part 1910.120 (f). This HASP addresses only emergency medical care and treatment.

8.5.6 Personnel Safety/Hygiene

All on-site personnel shall follow the following safety practices:

MRF135003 ESP

- Eating, drinking, chewing gum or tobacco, smoking, or any similar practice is prohibited in the work and decontamination areas
- 2 Hands and face must be thoroughly washed upon leaving the work area.
- 3 Whenever decontamination procedures for outer garments are in effect, it is recommended that the entire body be thoroughly washed as soon as possible after the protective garment is removed.
- 4 No excessive facial hair, which interferes with a satisfactory fit of the mask-to-face seal, is allowed for personnel required to wear respiratory protective equipment.
- 5. Contact with potentially contaminated surfaces in the work area should be avoided. Whenever possible, do not walk through puddles, mud, and other discolored surfaces; kneel on ground; or lean, sit or place equipment on drums, containers, vehicles, or the ground.
- Medicine and alcohol can exaggerate the effects from exposure to toxic chemicals.
 Alcoholic beverages will not be allowed on-site.

Fluids will be provided to staff to replace perspiration. All fluids for ingestion will be kept in sealed containers outside of the work area.

The protective outer wear worn by workers will decrease body ventilation, which increases the potential for heat casualties. Extended outdoor work during cold periods may result in cold stress hazards. Site personnel will be instructed in the identification of a heat/cold stress victim, the first-aid treatment procedures, and the prevention of heat/cold stress casualties. A Heat/Cold Casualty Prevention Plan describes the symptoms and treatment for heat exhaustion, heat stroke, hypothermia and frostbite, and lists precautions to prevent heat/cold stress.

MRF135003 FSP

eder associates

The following equipment will be maintained on-site for use in the event of an emergency

- 1 Twenty pound ABC type dry chemical fire extinguishers
- An industrial first-aid kit.

8.5.7 Personnel Training

All personnel will be trained in accordance with the OSHA requirements in 29 CFR Part 1910.120(e) prior to working at this site. Training requirements include the initial 40-hour health and safety course and the 8-hour supervisor and refresher courses. All on-site personnel directly involved in field activities will be briefed by the on-site manager/safety officer on the levels of personal protective equipment required for site activities, safety and hygiene procedures, general cleanup procedures, symptoms of chemical exposure, heat/cold stress, work area entry and exit, and notification of emergency personnel. Periodic safety meetings will be held, as necessary, to inform these workers of changes in the safety plan and/or area conditions.

8.6 Decontamination Procedures

Decontamination procedures will be used when contact is made with the soil and groundwater in the work area. All decontamination procedures will be performed in the decontamination area designated by the HSO. The following are the personnel decontamination procedures:

- All disposable protective clothing (garments, boot covers, gloves, etc.) will be removed in the decontamination area, placed in bags or drums, and properly disposed of.
- 2. Personnel engaged in site work shall wash their hands and face as appropriate before proceeding off-site, and shower and wash garments as soon as possible.

All potentially contaminated equipment will be decontaminated on-site by the use of either a pressure washer or potable water and detergent.

MRE13500315P

8.7 Air Quality Monitoring

Air quality will be monitored for total organic vapors using a Photovac Microtip® and/or Foxboro OVA before beginning the site work. Air monitoring equipment will be calibrated and maintained in accordance with manufacturer's instructions. Sampling will be performed as follows

- L. Organic vapors will be monitored using a photoionization flame ionization detector instrument.
 - a At least four measurements will be taken throughout the work area before starting the remedial construction to establish background concentrations.
 - b. Measurements will be made continuously during excavation work.
 - c. Routine measurements will be made during sampling activities.
- 2. All measurements will be logged in a field notebook.
- Level D protection will be used when organic vapor concentrations are less than 300 ppm.
- Level C protection would be used if organic concentrations exceed 300 ppm.

MRF135003.FSP

8.8 Emergency Contingency Plan

Site personnel must be prepared in the event of an emergency. Emergencies can take many forms, illnesses or injuries, chemical exposure, fires, explosions, spills, leaks, releases of harmful contaminants, or sudden changes in the weather.

The HSO will conduct a meeting with all on-site personnel before the start of site work to discuss personnel roles during an emergency, lines of authority and communication, and emergency recognition and prevention. All emergency and PPE equipment will be inspected and tested during the meeting. Safe places of refuge and evacuation routes will be updated on an as needed basis.

A post-emergency meeting with all site personnel will be held if an emergency occurs to review the cause and resolution of the emergency, and to determine whether the HASP adequately addressed the emergency that occurred. The HASP will be revised to incorporate the information obtained during the post-emergency meeting.

A list of emergency telephone numbers and a map to the hospital will be available at the site. Site personnel should be familiar with the emergency incident procedures, and the locations of site safety, first aid, and communication equipment.

8.8.1 Emergency Equipment On-Site

Private Telephones Emergency Alarms First Aid Kits Fire Extinguisher Biocraft Office, EDER mobile phone Portable Air Horn On-Site EDER vehicle On-Site EDER vehicle, Drill Rig

MRF135003.FSP

854820116

TIERRA-B-009110

8 8.2 Emergency Contacts

Community

Police Department and EMS	911
Fire Department (including Ambulance)	911
Health Department	201-599-6100
Hospital	201-447-8100

Government Environmental Agencies

National Response Center	1-800-424-8802
Poison Control Center	1-800-962-1253
NJDEP	609-633-7141

8.8.3 Personnel Responsibilities During an Emergency

The HSO has primary responsibility to respond to and correct emergency situations.

- Take appropriate measures to protect personnel including: withdrawal from the work zone, total evacuation and securing of the site or upgrading or downgrading the level of protective clothing and respiratory protection;
- Ensure that appropriate Federal, State and local agencies are informed, and emergency response plans are coordinated. The local fire department must be summoned immediately in the event of fire or explosion. The local authorities must be informed in the event of an air release of toxic materials in order to assess the need for evacuation,

MRF135003.FSP

- Ensure that appropriate decontamination, treatment, or testing of exposed or injured personnel is obtained;
- Help the appropriate agencies to determine the cause of the incident and make recommendations to prevent recurrence; and
- Ensure that all required reports have been prepared

8.8.4 Medical Emergencies

Any person who becomes ill or injured in the exclusion zone must be decontaminated to the maximum extent possible. Full decontamination should be completed and first aid administered prior to transport if the injury or illness is minor. First aid should be administered while waiting for an ambulance or paramedics. Any person transporting an injured/exposed person to a clinic or hospital for treatment should take directions to the hospital and information on the chemical(s) to which they may have been exposed.

8.8.5 Fire or Explosion

The local fire department must be summoned immediately in the event of fire or explosion. The HSO or designated alternate will advise the fire commander of the location, nature and identification of the hazardous materials on-site. If it is safe to do so, site personnel may:

- Use fire fighting equipment available on site; or
- Remove or isolate flammable or other hazardous materials which may contribute to the fire.

886 Evacuation Routes

Evacuation routes established by work area locations for this site will be highlighted on a site map and reviewed periodically.

Evacuation should be conducted immediately and without regard for equipment under extreme emergency conditions. Evacuation notification will be a continuous blast of a vehicle horn, if possible, and/or by verbal communication. Site personnel should:

- Keep upwind of smoke, vapors or spill location.
- Remove contaminated clothing once they are in a location of safety and leave it in a safe place.

The HSO will conduct a head count to ensure all personnel have been evacuated safely.

8.8.7 Spill Control Procedures

In the event of a leak or a release, site personnel will:

- Inform the HSO and/or supervisor immediately,
- Locate the source or the spillage and stop the flow if it can be done safely; and
- Begin containment and recovery of the spilled materials.

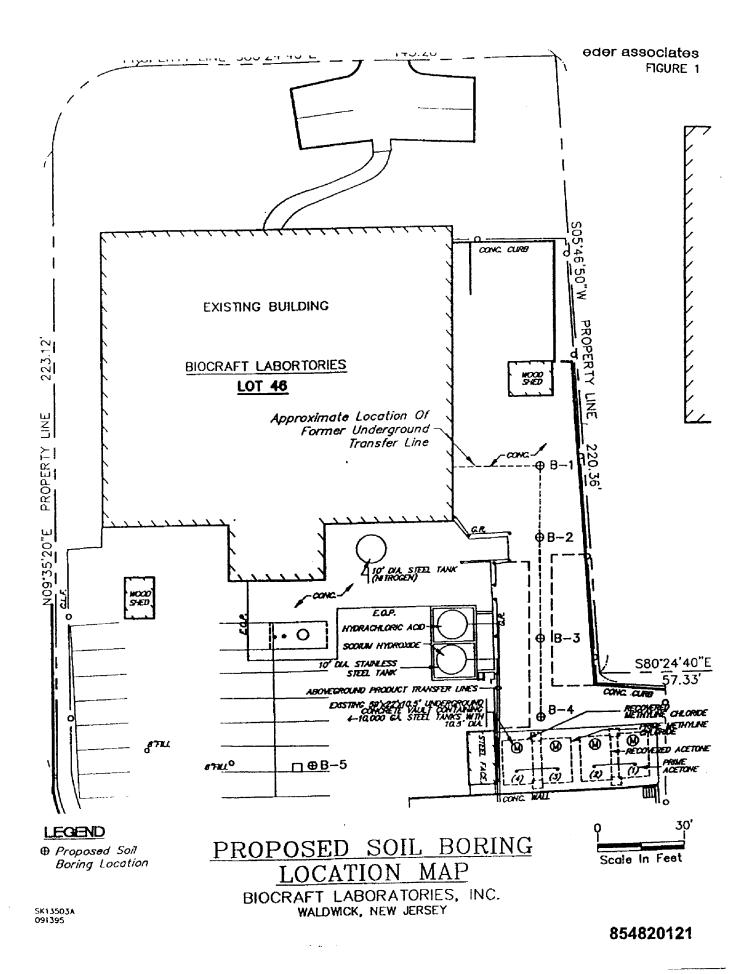
Equipment will be kept on-site to contain a spill. Spill containment equipment (adsorbent pads and "Speedy Dry") will be stored in the work area and the support zone.

8.8.8 Emergency Response Protocols

All emergency telephone numbers and a map showing the emergency route to the hospital (Figure 3) will be distributed to all on-site workers. The site safety officer or any other qualified person will initiate first-aid and, if necessary, call the Fire Department to dispatch an ambulance in the event of MRF135003 FSP

physical injury A physician will be informed, as specifically as possible, of the chemical(s) to which the person has been exposed and the toxicological properties of the chemical(s) if chemical exposure occurs. Site evacuation procedures and emergency response protocols will be reviewed with the site personnel prior to site investigation activities.

8 8 9 Emergency Route to Valley Hospital


Directions from the site to the hospital are as follows:

- Exit site on Industrial Park
- Right onto Hopper Avenue
- Left onto Prospect Street
- Right onto Franklin Tumpike
- Right onto North Maple Avenue
- Left onto Meadowbrook Avenue
- Valley Hospital is on the corner of Meadowbrook Avenue and North Van Dien Avenue

8.9 Confined Space

A confined space is defined as a space or work area not designed or intended for normal human occupancy, having limited means of access and poor natural ventilation, and any structure, including buildings or rooms which have limited means of egress. Examples include tanks, vats, and basements. By their very nature, confined spaces may contain oxygen-deficient atmospheres, flammable atmospheres, and/or toxic atmospheres. Confined space entry is not anticipated at the site. The health and safety plan will be amended and the requirements for a confined space entry will be followed in the event that confined space entry is necessary.

MRF135003 FSP

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY ISRA CASE #96070

.

•

.

APPENDIX A ATTACHMENT A <u>SITE ASSESSMENT REPORT</u>

.

854820122

.

TIERRA-B-009116

-

1.0 INTRODUCTION

This report presents the results of the soil investigation performed as part of the Industrial Site Recovery Act (ISRA) compliance program at the Biocraft Laboratories, Inc. (Biocraft) facility, Waldwick, New Jersey on September 28, 1995.

Table 1 summarizes the soil sampling data Sample locations are shown on Figure 1. The boring logs are located in Appendix A.

854820123

TIERRA-B-009117

2.0 BACKGROUND

Biocraft manufactures semi-synthetic penicillin products in bulk form. The Biocraft facility consists of a warehouse and manufacturing buildings located on two contiguous properties with frontages on 12 Industrial Park and 140 Hopper Avenue, Waldwick, New Jersey.

A 100-foot long underground steel pipe was installed four to six feet below grade in 1972 to transfer wastewater from the manufacturing building processing area to an underground wastewater storage tank. The wastewater contained low concentrations of acetone, methylene chloride, n-butyl alcohol and dimethyl aniline Biocraft discovered a leak in an underground pipe in 1975 and all underground pipes were replaced with aboveground lines. Biocraft signed an Administrative Consent Order (ACO) with the New Jersey Department of Environmental Protection (NJDEP) to clean-up the groundwater contamination from the leak using bioremediation.

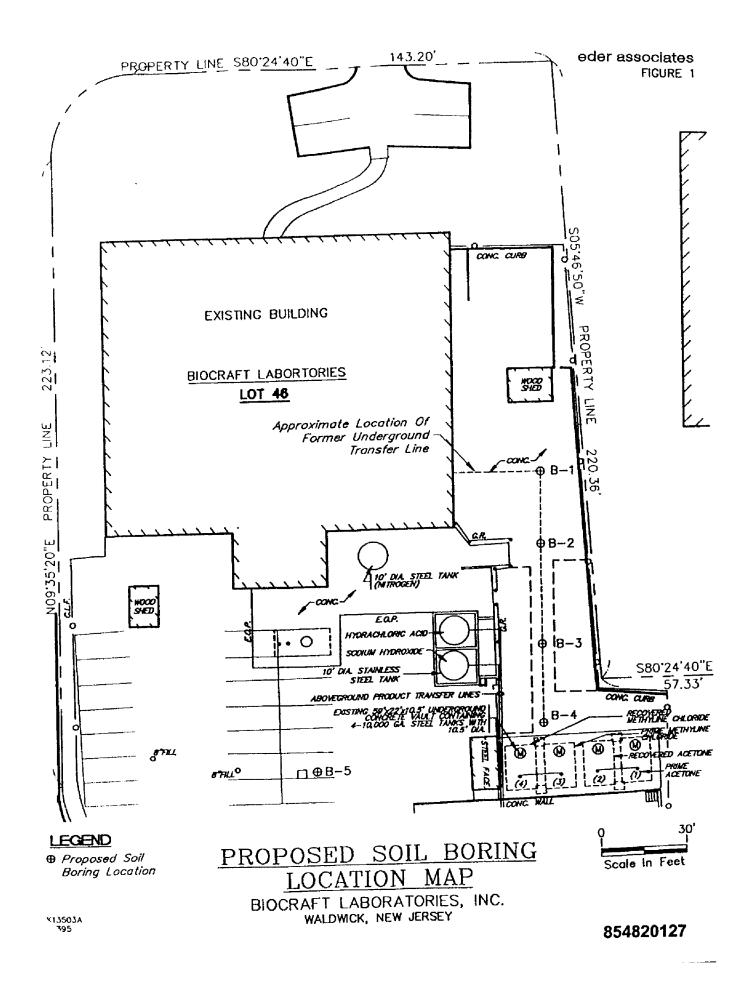
The groundwater collection and treatment system consists of monitoring wells, several pumping wells, infiltration trenches and in-situ and aboveground biological treatment systems.

3.0 SOIL INVESTIGATION

Four borings (SS-B1 through SS-B4) were drilled near the former underground pipe and one boring (SS-B5) was drilled near the storm water sewer manhole west of the former pipe leak on September 28, 1995 The boring locations are shown in Figure 1. Four soil samples per boring were collected in 24-inch intervals from grade to eight feet below grade using a split spoon. The soil samples were screened in discrete six inch intervals for organic vapor using a Photoionization detector (PID). The sample from the 4 to 8 foot below grade interval with the highest PID reading was sent to Laboratory Resources. Inc. Teterboro, New Jersey (New Jersey Certification No. 02046) and analyzed for volatile organic compounds (VOCs) by EPA method 8240. The sample was collected from 7.5 to 8 feet below grade if all PID readings were the same. The sample results are shown in Table 1. The boring logs are presented in Appendix A.

The soil sampling did not detect any compounds above the NJDEP Residential Direct Contact Soil Cleanup Criteria, Non-Residential Direct Contact Soil Cleanup Criteria, or the Impact to Groundwater Soil Cleanup Criteria. The results of the soil investigation are summarized below:

- Carbon disulfide was detected in each sample at concentrations ranging from 6.8 to 16.0 micrograms per kilograms (µg/kg).
- Methylene chloride was detected in four of the five samples at concentrations ranging from 3.9 to 6.5 µg/kg. The sample concentrations are well below the Impact to Groundwater Soil Cleanup Criteria of 1,000 µg/kg.
- Tetrachloroethene was detected in SS-B1 and SS-B4 at concentrations of 3.4 μ g/kg and 1.3 μ g/kg, respectively. The sample concentrations are well below the Impact to Groundwater Soil Cleanup Criteria of 1,000 μ g/kg


-3-

4.0 SUMMARY

A soil investigation of the former underground pipe did not detect any compounds above the NJDEP Residential Direct Contact Soil Cleanup Criteria, Non-Residential Direct Contact Soil Cleanup Criteria, or the Impact to Groundwater Soil Cleanup Criteria No additional investigation or remediation is warranted.

854820126

TIERRA-B-009120

TIERRA-B-009121

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE I

SOIL SAMPLING RESULTS SUMMARY

	SS-B1	SS-B2	SS-B3	SS-B4	\$\$-85	SS-B6	Field Blank
Sample Number	Sol	Soil	Soil	Soil	Soil	Soil	Water
Sample Matrix		55-6.0 fL b.g.	7.5-8.0 fL b.g.	7.5-8.0 ft. b.g.	7.5-8.0 ft. b.g.	7.5-8.0 ft. b.g.	-
Sample Depth	6.0-6.5 ft bg	9/28/95	9/28/95	9/28/95	9/28/95	9/28/95	9/28/95
Date Collected	9/28/95	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/L
Concentration Units	ug/Kg	1		- <u></u>	<u> </u>		
Volatile Organic Compounds							
Chloromethane	< 2.2	< 2.2	< 2.2	< 2.2	< 11.0	< 2.2 < 2.2	< 2.0 < 2.0
Vinyl Chloride	< 2.2	< 2.2	< 2.2	< 2.2	< 11.0	< 2.2	< 2.0
Bromomethane	< 2 2	< 2 2	< 2.2	< 2.2	< 11.0	< 2.2	< 2.0
Chloroethane	< 2.2	< 2.2	< 2.2	< 2.2	< 11.0	< 2.2	< 2.0
Trichlorofluoromethane	< 2.2	< 2.2	< 2.2	< 2.2	< 11.0		< 10.0
Actolein	<110	< 11.0	< 11.0	< 11.0	< 55 0	< 11.0	< 1.0
1.1-Dichloroethene	< 1.1	< i.I	< 1.1	<1.1	< 5.5	< 1.1	< 1.0
Acetone	<11	< 1.1	< 1.1	< 1.1	< 5 5	< 1.1	< 1.0 < 1.0
Carbon Disulfide	16.0	7.0	8.6	6.8	16.0 D	4.7	< 1.0
Methylene Chloride	6 5	3.9	47	5.6	< 5 5	4.2	< 10.0
Acrylonitrile	< 11.0	< 11.0	< 11.0	< 11.0	< 55 0	< 11.0	< 10.0
Trans-1,2-Dichloroethene	< 1.1	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
1.1-Dichloroethane	< 1.1	<1.1	<1.1	< 1.1	< 5.5	< 1.1	
2-Butanone	<11	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0 < 1.0
Chloroform	<11	<1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
1,2-Dichloroethane	< 1.1	<1.1	<1.1	< 1.1	< 5.5	< 1.1	
Vinyl Acetate	<1.1	<1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
1.1.1.Trichloroethane	<1.1	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
Carbon Tetrachloride	< 1.1	< 1.1	< 1.1	<1.1	< 5.5	< 1.1	< 1.0
Benzene	<1.1	< 1.i	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
2-Chloroethylvinylether	< 5.6	< 5.6	< 5.6	< 5.6	< 27.0	< 5.6	< 5.0 < 1.0
Trichloroethene	< 1.1	< 1.1	< 1.1	<1.1	< 5.5	< 1.1	<1.0
1,2-Dichloropropane	<1.1	< 1.1	< 1.1	<1.1	< 5.5	<1.1	< 1.0
Bromodichloromethane	< 1.1	< 1.1	<1.1	<1.1	< 5.5	< 1.1	<1.0
cis-1,3-Dichloropropene	< 1.1	< 1.1	<1.1	<1.1	< 5.5	< 1.1	
trans-1.3-Dichloropropene	< 1.1	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	1
1.1.2-Trichloroethane	< 1.1	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
Dibromochloromethane	<11	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
Bromoform	< 1.1	< 1.1	<1.1	< 1.1	< 5.5	< 1.1	< 1.0
4-Methyl-2-Pentanone	<1.1	< 1.1	<1.1	< 1.1	< 5.5	< 1.1	-
Toluene	< 1.1	<1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
2-Hexanone	< 1.1	<1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
Tetrachloroethene	3.4	< 1.1	< 1.1	1.3	< 5.5	<1.1	< 1.0
Chlorobenzene	< 1.1	<1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
Ethylbenzene	<1.1	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
m&p Xylene	< 1.1	< 1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
o-Xylenc	< 1.1	<1.1	< 1.1	< 1.1	< 5.5	< 1.1	<1.0
o-Aylene Siyrene	<1.1	<1.1	< 1.1	< 1.1	< 5.5	< 1.1	< 1.0
1,1,2,2-Tetrachloroethane	<11	< 1.1	<1.1	< 1.1	< 5.5	<11	< 1.0
m-Dichlorobenzene	<1.1	<11	< 1.1	<1.1	< 5.5	< 1.1	< 1.0
1	<11	<1.1	< 1.1	. < 1.1	< 5.5	<11	< 1.0
p-Dichlorobenzene o-Dichlorobenzene	<11	<1.1	<1.1	< 1.1	< 5.5	<11	< 1.0

NOTES:

<- Less Than

D - Indicates compound reported from a more diluted sample ug/Kg - Micrograms per Kilogram

ug/L. - Micrograms per Liter ft. b.g. - Feet Below Grade

1

BORING	REPORT		480 F0 8000 326 Sou 4519 1	prest Avenu Excelsior Jth State S Pleasant Ho	ie, Lo Drive Street Sme Ro Doad	ocust e, Ma :, Ani Dad, - Jack:	G ENGINEERS Valley, NY dison, WI n Arbor, WI Augusta, G/ sonville, F , Trenton,	53717 (48104 (30907 FL 32256	1	Sheet <u>1</u> of	<u>l</u>
DATE START	ED: 9/28	/95 	DAT	E FINISHED	: 9/2	28/95		BOREN	G NO.: SB	-1	
CLIENT: B	Siocraft La	aboratories	5					PROJE	CT NO.: 13	50-03	
PROJECT NA	HE AND LOG	CATION: E	Biocraft L	aboratories	s, Wal	dwic	k, NJ	PREPAI	RED BY: Ch	arles Kirman	
DRILLING (ONTRACTOR	: Uni-Tect	Drilling	LOGGED B	(: C)	narle	rs Kirwan	DRILL	ER:		
		SOIL SA	NPLER:				MONITORI	NG WELL:			
EQUIPMENT	CASING	SPLIT Spoon		CORE BARREL	YUC	GER	RISER	SCREEN		DRILL RIG	
TYPE:		S. Steel									
SI2E:		2'x 2"	*= -							HSA	
HANNER WT/PALL		140 lbs 18 ins		BIT]		
SURFACE EL	EVATION:					SURF	ACE CONDITI	IONS:			
WATER LEVI	EL AT:	FT. /	FTER	ERS.			FT. AFTER		HRS.	FT. APTER	ERS.
DEPTH BELOW GRADE (ft.)	PID/PID READINGS (PPM)	TYPE AND	SAM DEPTH (FROM-TO)	HOISTURE	RECOV	/ERY	BLOWS/6" OR CORE TIME	STRATA DEPTB/ ELEV.	TRACE	CRIPTION & REMAN =0-10%, LITTLE=1 =20-30%, AND=35-	0-201
0-1	4.3	SS-1	0-2'	HOIST	1	.51	4, 3		SILT, S	ome m to f Sand,	It Clay
1-2				<u>}</u>	} -		5, 5		SOLC,	sl.pl., brown	
2-3	3.1	SS-2	2-4'	MOIST	1	.0'	6, 5		Similia	r to SS-1	
3-4					}		11, 12				
4-5	26		4-6'	HOIST	0	.2'	9,7		SILT, 1	t f Sand and Cla	iy, tr
5-6					1		8,8		purple	, soft, sl.pl.,	DIOMU-
6-7	127	SS-4	6-8'	HOIST-WET	1	.5'	20, 21		SILT an	d GRAVEL, clasts	1" sub-
7-8				t			33, 49		n.pl.,	ed, lt ∎ to f San olive	1 0 , SOIC,
8-9									END OF B	KORING @ 8 FT b.o	j.s .
9-10								{			
10-11				[
11-12				[
12-13				[]	{		
13-14									ţ		
14-15		[[
15-16		1		T	[[l		
16-17		†						1	{		
17-18				[[1			
18-19				T				ļ			
19-20		+	t	1	[_ <u> </u>		

854820129

.....

BORING	REPORT		480 Fo 8000 326 Sou 4519 P	rest Avenu Excelsior th State S leasant Ho	e, Locust Drive, Ha treet, An me Road, A	G ENGINEERS Valley, NY Bison, WI Arbor, HI Augusta, GA Sonville, F , Trenton,	53717 48104 30907	Sheetof
DATE START	ED: 9/28/	95		FINISHED:			BORING	; NO.: SB-2
		boratories						CT NO.: 1350-03
				boratories				ED BY: Charles Kirman
DRILLING (CONTRACTOR :	Uni-Tect	Drilling	LOGGED BY	: Charle	s Kir u an	DRILLE	ER:
		SOIL SA	MPLER:			MONITORIN	IG WELL:	-
EQUIPHENT	CASING	SPLIT SPOON		CORE BARREL	AUGER	RISER	SCREEN	DRILL RIG AND METHOD
TYPE:		S. Steel						
SI2E:		2'x 2"					L	HSA
HAMMER WT/FALL		140 lbs 18 ins		BIT				
SURFACE E	EVATION :				SURF	ACE CONDIT	10NS:	
WATER LEV	EL λT:	FT. /	FTER	ERS.		FT. AFTER	·	BRS. FT. AFTER BRS
DEPTH BELOW GRADE	PID/FID READINGS	TYPE AND	SAM Depth	HOISTURE	P DOOUPDY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REHARKS TRACE=0-10\$, LITTLE=10-20\$ SOME=20-30\$, AND=35-50\$
(ft.)	(PPX)		(FROM-TO)		RECOVERY	27, 17		SILT, some Gravel, lt f Sand
0-1	23	SS-1	0-2'	MOIST	1.3'	18, 16	1	and Clay, soft, sl.pl., brown
1-2				HOTOD	1.0'	11, 11	1	SILT it f Sand, tr Gravel.
2-3	40	SS-2	2-4'	HOIST	1.0	8, 9	}	SILT, lt f Sand, tr Gravel, soft, sl.pl., dk purple
3-4				HOTER	1.5'	16, 13	1	SILT, it v f Sand, sl.pl., sof
4-5	47	<u>SS-3</u>	4-6'	HOIST	1.5	10, 13	}	olive
5-6				NOT ON LARG	1.5'	11, 9	}	Similiar to SS-3
6-7	24	<u>SS-4</u>	6-8'	HOIST-WET	1.5	8,7	1	END OF BORING @ 8 PT b.g.s.
7-8							}	
8-9		 	 	 		╂	1	
9-10	<u> </u>	\	}	<u> </u>	<u> </u>			
10-11		<u> </u>	}		 		4	
11-12			}	·	 		1	
12-13	ļ			·			-	
13-14				·}				
14-15	,		+	.}	+		-	
15-16		}	·	}	- <u></u>	-}		
16-17			.+	.}				
17-18	}		+		_	-+	-	
18-19		·}					-	
19-20	1				1	<u></u> ===		

BORING	REPORT		480 F0 8000 326 Sou 4519 F	ASSOCIATES prest Avenu Excelsior ith State S Pleasant Ho aymeadows R rview Execu	e, Locust Drive, Had treet, ληι me Road, i bad Jacks	Valley, NY Jison, WI h Arbor, MI Augusta, GJ sonville, F	53717 53717 48104 30907 1 32256	Sheet <u>]</u> of <u>1</u>	
DATE START	ED: 9/28/	1 '95	DATE	E FENISHED:	9/28/95		BORING	NO.; SB-}	
CLIENT: B	liocraft La	boratories	5				PROJEC	T NO.: 1350-03	
PROJECT NA	HE AND LOC	ATION: 1	Biocraft La	aboratories	, Waldwic	k, NJ	PREPAR	ED BY: Charles Kirman	
				LOGGED BY			DRILLE	R:	
		SOIL S		[HONITORI	NG WELL:		
EQUIPHENT	CASING	SPLIT Spoon		CORE BARREL	AUGER	RISER	SCREEN	DRILL RIG AND HETHOD	
TYPE:		S. Steel							
S12E:	_ _	2'x 2"						HSA .	
EAMMER WT/PALL		140 lbs 18 ins	 -	ВГТ		******]	
SURFACE E	EVATION:	L			SURF	ACE CONDIT	IONS:		
WATER LEVI	EL AT:	FT.	AFTER	HRS.		FT. APTER		HRS. FT. AFTER H	IRS.
DEPTE BELOW GRADE (ft.)	PID/PID READINGS (PPM)	TYPE AND	SAH DEPTB (FROM-TO)	PLE HOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TINE	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10%, LITTLE=10-20% SOME=20-30%, AND=35-50%	
0-1	0	SS-1	0-2'	HOIST	1.2'	24, 20		SILT and GRAVEL, lt . to f	
1-2			}	+		15, 24		Sand, firm, n.pl., brown	
2-3	0	 SS-2	2-4'	MOIST	0.4'	30, 16		SILT, some Gravel, lt m to f	
3-4		}		+		15, 12	1	Sand, firm, sl.pl., brown	
4-5		 	4-6'	HOIST	0.5'	23, 24	1	Similiar to SS-2	
5-6				<u>+</u>		22, 26	1		
6-7	57	SS-4	6-8'	HOIST-WET	1.0'	21, 19	1	SILT, 1t f Sand, tr Gravel,	
7-8					<u> </u>	16, 15	1	soft, sl.pl., olive END OF BORING & & FT b.g.s.	
8-9		 	<u> </u>	+		1	1		
9-10	}			·{	1				
10-11		<u> </u>		+	}	1	1		
11-12	}		+	+		1	1		
12-13		<u> </u>	1	+	<u>+</u>	1	1		
13-14	}	<u>+</u>	+	-+	†- -	1]		
14-15		<u>+</u>	·}		1	1]		
15-16		}	+			1]		
16-17		†	+		1				
17-18		+	+	+	1]		
18-19		+			+,	1			
19-20	}	+	-+	• • • • • • • • • • • • • • • • • • • •	+		1		====

BORING	REPORT		480 Fo 8000 326 Sou 4519 P	SSOCIATES rest Avenu Excelsior th State S leasant Ho ymeadows R view Execu	e, Locust Drive, Nac treet, λnr me Road, λ	lison, WI Arbor, WI Ugusta, GA	53717 48104 30907 L 32256 NJ 08611	Sheet <u> </u>
DATE START	ED: 9/28/	95		FINISHED:				NO.: SB-4
CLIENT: E	viocraft La	boratories						r NO.: 1350-03
PROJECT NA	NE AND LOC	CATION: E	iocraft La	boratories	, Waldwich	(, NJ	PREPARI	ED BY: Charles Kirman
DRILLING C	ONTRACTOR	Uni-Tech	Drilling	LOCCED BY	: Charle	s Kirman	DRILLE	R:
		SOIL SA	NPLER:			HONITORIN	IG WELL:	
EQUIPHENT	CASING	SPLIT Spoon		CORE BARREL	AUGER	RISER	SCREEN	DRILL RIG AND METHOD
TYPE:		S. Steel						
SIZE:		2'x 2"						HSA
HANMER WT/FALL		140 lbs 18 ins		817				
SURFACE E	LEVATION:				SURF	ACE CONDITI	CONS:	
WATER LEV	EL AT:	FT. 4	AFTER	HRS.	- 	FT. AFTER		BRS. FT. AFTER BRS
DEPTH BELOW GRADE (ft.)	PID/FID READINGS (PPM)	TYPE AND	SAM DEPTH (FROM-TO)	MOISTURE	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REHARKS TRACE=0-10%, LITTLE=10-20% SONE=20-30%, AND=35-50%
0-1	0		0-2'	MOIST	1.5'	18, 23		SILT some Gravel, lt cs to f Sand, firm, n.pl., reddish
1-2						24, 22		brown
2-3	2.3	SS-2	2-4'	HOIST	1.5'	18, 21		Similiar to SS-1
3-4						24, 19		
4-5	4.2	SS-3	4-6'	MOIST	0.2'	16, 12	Ì	SIIT, lt f Sand, tr Gravel, soft, sl.pl., purple-brown
5-6	<u> </u>			+		18, 9		
6-7	5.7	SS-4	6-8'	HOIST-WET	1.5'	7,9		Similiar to SS-3
7-8					[9,9		END OF BORING @ 8 FT b.g.s.
8-9		1	[T			ļ	
9-10		1				<u> </u>	1	
10-11	1	1				<u> </u>	1	
11-12							4	
12-13					<u> </u>		4	
13-14					ļ		-	
14-15			<u> </u>			<u> </u>	4	
15-16			<u> </u>		. 		-	
16-17		1			·	<u> </u>	-	
17-18					- <u> </u>		-	
18-19						·	-	
19-20		<u> </u>		1		<u> </u>	<u> </u>	

BORING	REPORT		480 Fo 8000 326 Sou 4519 P	SSOCIATES rest Avenu Excelsior th State S leasant Ho ymeadows R view Execu	e, Locust Drive, Had treet, Ann me Road, M	Valley, WI lison, WI Arbor, MI lugusta, GA	P.C. 11560 53717 48104 30907 1 32256	Sheet1of1_
DATE START	ED: 9/28/	1 95		FINISHED:			BORING	NO.: 38-5
CLIENT: B								1 NO.: 1350-03
PROJECT NA	HE AND LOC	ATION: B	iocraft La	boratories	, Waldwick	K, NJ	PREPAR	ED BY: Charles Kirman
DRILLING (ONTRACTOR:	Uni-Tech	Drilling	LOGGED BY	: Charles	s Kirman	DRILLE	R:
	1	SOIL SA		1		HONITORIN	IG WELL:]
EQUIPHENT	CASING	SPLIT SPOON		CORE BARREL	AUGER	RISER	SCREEN	DRILL RIG
TYPE:		S. Steel						
S12E:		2'x 2"						HSA I
HANNER WT/FALL		140 lbs 18 ins		BIT				
SURFACE E	LEVATION:				SURF	ACE CONDITI		
WATER LEV	EL AT:	Ft. /	FTER	ERS.		FT. AFTER		HRS. FT. AFTER HRS.
DEPTH BELOW GRADE		TYPE AND	SAM DEPTH (FROK-TO)	HOISTURE	RECOVERY	BLOWS/6" OR CORE TINE	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10%, LITTLE=10-20% SOHE=20-30%, AND=35-50%
(ft.) 0-1	0		0-2'	MOIST	1.4'	24, 38		Cs to f SAND and GRAVEL, It
1-2						30, 40	1	Silt, loose, n.pl., grey
2-3	0	 SS-2	2-4'	HOIST	0.4'	9, 18	1	SILT, some cs to f. Sand, lt Gravel, soft to firm, sl.pl.,
3-4						24, 32	1	grey-brown
4-5	0	 	4-6'	MOIST-WET	1.0'	15, 22		Similiar to SS-2
5-6			<u>+</u>	1		27, 32	1	
6-7	0	SS-4	6-8'	WET-SAT	1.5'	60, 42	1	SILT and cs to m SAND, lt
7-8			<u> </u>			22, 24	1	Gravel, firm, n.pl., brown saturated at 8' b.g.s. END OF BORING @ 8' FT b.g.s.
8-9		+		1			1	LAD OF DORTHO E U TT DIGID.
9-10						1	1	
10-11		+	1	1				
11-12	}		+	1	1]	
12-13			+	-	1]	
13-14		+	1		1			
14-15		+		1	1			
15-16	+	+	• † -	-	1			
16-17								
17-18		+					_]	
18-19	}				1		_	
19-20	}						<u> </u>	

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY ISRA CASE #96070

APPENDIX A ATTACHMENT A <u>LABORATORY REPORT</u>

ан 1920 - Салан С 1920 - Салан Са

· · · · ·

× ••

TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

/

BIOCRAFT LABORATORIES, INC. . REMEDIAL INVESTIGATION REPORT ISRA CASE #96070

PROJECT #1350-05 APRIL 1997

PREPARED BY: EDER ASSOCIATES 413 Riverview Executive Park Trenton, New Jersey 08611 Office Contact: Mark R. Foley (609) 695-1050 PREPARED FOR: Proskauer Rose Goetz & Mendelsohn LLP 1585 Broadway New York, New York 10036 *Contact:* Gail S. Port, Esq. (212) 969-3000

CONTENTS

			Page									
1.0	TEC	HNICAL OVERVIEW	1									
	1.1	Sample Collection and Analysis	1									
	1.2	Analytical Results										
2.0	SITE	DESCRIPTION	3									
3.0	РНҮ	SICAL SETTING	4									
	3.1	Soil	4									
	3.2	Geology and Hydrogeology										
4.0	ARE	A OF CONCERN	5									
5.0	QUARTERLY GROUNDWATER MONITORING RESULTS											
	5.1	February 1996										
	5.2	May 1996										
	5.3	July 1996										
	5.4	November 1996 (Annual Monitoring Event)										
	5.5	Groundwater Flow										
6.0	BIOI	DEGRADATION/BIOSTIMULATION SYSTEM	10									
	6.1	Biodegradation/Biostimulation System Description	10									
	6.2	Biodegradation/Biostimulation System Monitoring										
	6.3	Biodegradation/Biostimulation System Pumping Rates										
	6.4	Biodegradation/Biostimulation System Removal Percentage										

i

MRF041196

FIGURES

FIGURE 1		
FIGURE 4		Groundwater Flow Map, May 15, 1996
FIGURE 5		Groundwater Flow Map, July 24, 1996
FIGURE 6	Grou	indwater Flow Map, November 13, 1996

TABLES

TABLE 1	Groundwater Sampling Results Summary, February 1996
TABLE 2	Groundwater Sampling Results Summary, May 1996
TABLE 3	Groundwater Sampling Results Summary, July 1996
TABLE 4	Groundwater Sampling Results Summary, November 1996
TABLE 5	QA/QC Results Summary - February Through Novmeber 1996
TABLE 6	Biodegradation/Biostimulation System Sampling Results Summary

APPENDICES

APPENDIX A	Laboratory Reports (Bound Separately)
APPENDIX B	Field Sampling Forms
APPENDIX C	Contour Map Reporting Forms

MRF041196

e

1.0 TECHNICAL OVERVIEW

This Remedial Investigation Report (RIR) summarizes the groundwater monitoring conducted in February, May, July, and November 1996 at the Biocraft Laboratories, Inc. (Biocraft) property in Waldwick, New Jersey.

1.1 Sample Collection and Analysis

All sampling activities were conducted in accordance with the New Jersey Department of Environmental Protection (NJDEP) "Field Sampling Procedures Manual" May 1992, with the following exception:

• Samples were not collected from monitoring well MW-10 during the May, July, and November monitoring events because of well drawdown and insufficient recharge.

The February, May, and July 1996 groundwater samples were analyzed by Laboratory Resources, Inc., Teterboro, New Jersey (N.J. Certification #02046) and the November 1996 groundwater samples were analyzed by Accutest Laboratories, Dayton, New Jersey (N.J. Certification #12129). All samples were analyzed within the required holding time and all parameters were within their respective quality control ranges, with the following exceptions:

- February 1996 Methylene Chloride was detected at a concentration beyond the calibration range for sample BIO-P-32A. The sample holding time expired before re-analysis was possible.
- May 1996 The quantitation limits are elevated due to the dilution required for sample BIO-P-32A.
- July 1996 The quantitation limits are elevated due to the dilution required for sample BIO-

P-32A. Methylene chloride was detected in the field blank and trip blanks at concentrations of 3.9 and 3.0 μ g/l, respectively.

1.2 Analytical Results

Butyl alcohol concentrations in all samples were less than the laboratory minimum detection limit or less than the 500 micrograms per liter (μ g/l) Class IIA - Ground Water Quality Criteria. Acetone concentrations were less than the laboratory minimum detection limit or less than the 700 μ g/l Class IIA Groundwater Quality Criteria in all groundwater samples, except samples from recovery well P-32A/32B where concentrations ranged from 1,200 μ g/l to 10,000 μ g/l. Methylene chloride was detected at concentrations ranging from less than the laboratory minimum detection limit to 5,000 μ g/l (recovery well P-32A/32B). Methylene chloride concentrations were 9 μ g/l or less in 90 percent of the samples.

Analytical results of groundwater samples collected from off-site monitoring wells downgradient of the Biocraft groundwater recovery and treatment system show methylene chloride and butyl alcohol concentrations were below the laboratory minimum detection limit (MDL), and acetone concentrations were below the laboratory MDL or the Class IIA - Groundwater Quality Criteria. The analytical data suggests that the recovery system is capturing the full width of the groundwater contaminant plume.

2

2.0 SITE DESCRIPTION

Biocraft manufactures semi-synthetic penicillin products in bulk. The facility consists of two buildings, a manufacturing building and warehouse, located on contiguous properties with frontages on 12 Industrial Park and 140 Hopper Avenue in Waldwick, Bergen County, New Jersey. Figure 1 shows the site location. The office, maintenance, and production areas, and research and development laboratories are located in the manufacturing building. Bulk finished products and some raw materials are stored in the warehouse building which also houses the quality control and microbiology laboratories.

The manufacturing and warehouse buildings and parking areas cover approximately 30 percent of the 4.3 acre property. Landscaped areas cover approximately 10 percent of the property, and the remainder of the property is lightly wooded. The property is relatively flat with slopes ranging from 1 to 3 percent.

3

3.0 PHYSICAL SETTING

<u>3.1 Soil</u>

The dominant soil type in the study area is classified as Dunellen. Dunellen soils have a very dark, grayish brown loam surface layer approximately 5 inches thick. The subsoil is approximately 21 inches thick, of which, the upper 10 inches is friable, dark yellowish brown loam and the lower 11 inches is friable brown loam. The substratum is stratified reddish brown gravelly sand, sand, and loamy sand and brown sandy loam to an average depth of 66 inches. The permeability of the Dunnellen soils is moderate to moderately rapid in the subsoil and rapid in the substratum.

3.2 Geology and Hydrogeology

The site is located in an area of unstratified and stratified drift deposited by the Wisconsin glacier and its meltwaters during the Pleistocene Epoch of the Quaternary Period. Thin layers of silt and gravel are generally found from grade to 3 feet below grade. Glacial till. Glacial till consisting of a poorly sorted mixture of boulders, cobbles, pebbles, silt, sand, and clay underlies the site at a thickness of 8 to 15 feet. Approximately 40 feet of semiconsolidated silt and fine sand underlie the till layer. Brunswick shale of the Triassic Newark Group underlies the site at a depth of 50 to 60 feet below grade. The thickness of the Brunswick Shale is not known but is estimated to be greater than 6,000 feet.

Groundwater beneath the site occurs in void spaces of unconsolidated quaternary glacial sediments and in the joints and fractures of the Brunswick Formation. The depth to groundwater ranges from grade to 9 feet below grade, depending on seasonal fluctuations. The groundwater flow direction is influenced by the groundwater recovery, treatment, and reinjection system. The inferred direction of groundwater flow is to the north, northwest at the northern section of the site, and to the south, southeast in the central and southern sections of the site.

4.0 AREA OF CONCERN

A 100-foot long underground steel pipe was installed in 1972 to transfer wastewater from the manufacturing building processing area to an underground wastewater storage tank. The wastewater contained low concentrations of acetone, methylene chloride, n-butyl alcohol, and dimethyl aniline. Biocraft discovered a leak in the underground pipe in November 1975 and removed the pipe from service. Monitoring wells were installed and groundwater samples were collected and analyzed to determine whether the underground transfer line leak had impacted groundwater quality. The groundwater sampling showed elevated concentrations of methylene chloride, acetone, and butyl alcohol. The nature and extent of groundwater contamination at the Biocraft site has been documented in extensive groundwater investigations conducted by Geraghty and Miller (G&M) between 1979 and 1995, supplemented by the groundwater monitoring program initiated by Biocraft in 1985.

Biocraft pumped groundwater from three on-site recovery wells between 1975 and 1981 and disposed of the groundwater off-site. The cost of disposing of the recovered groundwater off-site became prohibitive and with NJDEP's approval, Biocraft undertook an extensive research and development project to develop a process to remove and treat groundwater. The research resulted in the development of a sophisticated biodegradation/biostimulation process which was patented in the U.S.

Biocraft initiated groundwater monitoring to evaluate the progress and effectiveness of the groundwater biodegradation/biostimulation system. This program consists of sampling 11 wells quarterly and 26 wells annually, and analyzing the samples for methylene chloride, acetone, butyl alcohol, BOD, COD, TOC, chloride, and total phosphorous. The groundwater sampling shows that groundwater quality has steadily improved and Biocraft currently estimates that 90 percent of the groundwater plume has been remediated. Groundwater elevation measurements and sampling data show that the zone of influence created by the recovery system maintains hydraulic control of the groundwater contaminant plume. The groundwater sampling data show that the highest

concentrations of methylene chloride and acetone are in the southern area of the property and that these concentrations have been reduced significantly from concentrations existing prior to biodegradation/biostimulation system.

854820143

TIERRA-B-009137

5.0 QUARTERLY GROUNDWATER MONITORING RESULTS

The quarterly groundwater monitoring results for February, May, July, and November 1996 are summarized in Sections 5.1 through 5.4. The laboratory reports are in Appendix A. Field sampling forms are in Appendix B. Analytical data are summarized in Tables 1 through 5.

5.1 February 1996

Samples were collected from eight monitoring wells (MW-6, MW-9, MW-10, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, and TOC. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride was detected at concentrations above the Class IIA - Groundwater Quality Criteria in monitoring wells MW-10 (8.9 μ g/l) and MW-28 (67 μ g/l). Butyl alcohol concentrations were below the laboratory MDL. BOD concentrations ranged from less than 2 milligrams per liter (mg/l) to 8 mg/l (MW-9). COD concentrations ranged from 14 mg/l to 41 mg/l (MW-17). TOC concentrations ranged from less than 5 mg/l to 7.4 mg/l (MW-9).

5.2 May 1996

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and the on-site production well, and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, and TOC. Acetone concentrations in all samples were less than the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations exceeded the Class IIA - Groundwater Quality Criteria in monitoring wells MW-6 (5 μ g/l) and MW-17 (4.6 μ g/l). Butyl alcohol concentrations in all samples were below the laboratory MDL. BOD concentrations ranged from less than 2 mg/l to 10 mg/l (MW-28). COD concentrations ranged from 13 mg/l to 80 mg/l (MW-28). TOC concentrations ranged from less than 5 mg/l to 31 mg/l (MW-28).

5.3 July 1996

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, and TOC. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride was detected in the field blank and trip blank at concentrations of 3.9 and 3.0 μ g/l, respectively. Methylene chloride was detected in all wells at concentrations ranging from 2.3 μ g/l (MW-9) to 8.7 μ g/l (MW-25). Butyl alcohol concentrations in all samples were below the laboratory MDL. BOD concentrations ranged from less than 4 mg/l to 56 mg/l (MW-9). COD concentrations ranged from less than 10 mg/l to 230 mg/l (MW-9). TOC concentrations ranged from less than 5 mg/l to 69 mg/l (MW-9).

5.4 November 1996 (Annual Monitoring Event)

Samples were collected from 23 monitoring wells and the on-site production well, and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, and TOC. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations exceeded the Class IIA - Groundwater Quality Criteria in monitoring well MW-1 (4.6 μ g/l) and the on-site production well (4.0 μ g/l). The methylene chloride detected in the on-site production well is considered as anomalous because all previous sampling showed no detection. The on-site production well will be resampled in May 1997. Butyl alcohol concentrations in all samples were below the laboratory MDL. BOD concentrations ranged from less than 2 mg/l to 21.6 mg/l (W-2). COD concentrations ranged from less than 20 mg/l to 95.1 mg/l (MW-24). TOC concentrations ranged from less than 1 mg/l to 20.1 mg/l (MW-9).

5.5 Groundwater Flow

Groundwater elevation contour maps (Figures 2 through 5) developed from depth to water measurements made during the quarterly groundwater monitoring program show that groundwater

flow is to the north-northwest at the northern section of the site, and to the south-southeast in the central and southern sections of the site and that groundwater discharged to the recharge trench system flows downgradient towards the recovery well system.

6.0 BIODEGRADATION/BIOSTIMULATION SYSTEM

6.1 Biodegradation/Biostimulation System Description

The Biocraft groundwater biodegradation/biostimulation system was designed as a "closed loop" system so that the treated groundwater is discharged upgradient and within the capture zone of the recovery well network. The biodegradation/biostimulation system consists of three recovery wells (P-13, P-30, and P-32A/32B), two infiltration trenches (Trench B and Trench C), and a biological treatment unit.

The biological treatment unit consists of two identical activated sludge units, ACT I and ACT II. Each unit consists of an aeration tank and a settling tank. Both systems are operated in parallel, with ACT I treating groundwater pumped from P-30, and ACT II treating groundwater pumped from P-13 and P-32A/32B. Groundwater enters the aeration tanks, and is aerated by a blower and diffuser which also keeps the tank contents mixed. Additional mixing is provided by internally pumping the tank contents. The aeration tank effluent is pumped to the settling tank to separate the bacteria from the water. The settled bacteria (sludge) is recycled to the aeration tank to keep bacteria concentrations in the system high enough to remove organic compounds. The biodegradation/biostimulation system effluent is passed through a dual vessel (in series) granular activated carbon unit (added in May 1996) and the treated groundwater is discharged to two recharge trenches upgradient of recovery wells P-30 and P-32A/32B. The maximum system flowrate is 8 gallons per minute (gpm).

6.2 Biodegradation/Biostimulation System Monitoring

Biodegradation/biostimulation system influent samples are collected from the three recovery wells, P-13, P-30, and P-32A/32B, and the effluent sample is collected from the discharge side of the activated carbon units. The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, and TOC.

6.2.1 February 1996

Influent acetone concentrations ranged from 2 μ g/l (P-32A/32B) to 590 μ g/l (P-13) which is less than the 700 μ g/l Class IIA - Groundwater Quality Criteria. Influent methylene chloride concentrations ranged from less than 2 μ g/l (P-13) to 1,200 μ g/l (P-32A/32B). Influent butyl alcohol concentrations ranged from an estimated concentration of 3.3 μ g/l (P-32A/32B) to 13 μ g/l (P-13), which is less than the 500 μ g/l Class IIA- Groundwater Quality Criteria. BOD concentrations ranged from 2 mg/l to 75 mg/l (P-13). COD concentrations ranged from 34 mg/l to 210 mg/l (P-13). TOC concentrations ranged from 5.6 mg/l to 57 mg/l (P-13).

The effluent sample was collected from the discharge side of the biological treatment unit because the carbon system was not added until May 1996. The effluent acetone concentration was 190 μ g/l. The effluent methylene chloride concentration was below the 2 μ g/l laboratory MDL. The effluent butyl alcohol concentration was 13 μ g/l. The BOD concentration was 6 mg/l. The COD concentration was 28 mg/l. The TOC concentration was 10 mg/l.

6.2.2 May 1996

Influent acetone concentrations ranged from less than 8.7 μ g/l (P-13, P-30) to 2,900 μ g/l (P-32A/32B). Influent methylene chloride concentrations ranged from less than 1.4 μ g/l (P-13, P-30) to 10,000 μ g/l (P-32A/32B). Influent butyl alcohol concentrations were below the laboratory MDL. BOD concentrations ranged from 3 mg/l to 12 mg/l (P-32A/32B). COD concentrations ranged from 3 mg/l to 12 mg/l (P-32A/32B). TOC concentrations ranged from 13 mg/l to 16 mg/l (P-32A/32B).

The effluent acetone concentration was below the $8.7\mu g/l$ laboratory MDL. The effluent methylene chloride concentration was $19 \mu g/l$. The effluent butyl alcohol concentration was below the $200 \mu g/l$ laboratory MDL. The BOD concentration was below 2 mg/l. The COD concentration was below 31 mg/l. The TOC concentration was below 6.5 mg/l.

6.2.3 July 1996

Influent acetone concentrations ranged from less than 8.7 μ g/l (P-13) to 5,000 μ g/l (P-32A/32B). Influent methylene chloride concentrations ranged from 6.6 μ g/l (P-13) to 3,600 μ g/l (P-32A/32B). Influent butyl alcohol concentrations were below the laboratory MDL. BOD concentrations ranged from 7 mg/l to 23 mg/l (P-32A/32B). COD concentrations ranged from 36 mg/l to 58 mg/l (P-32A/32B). TOC concentrations ranged from 13 mg/l to 20 mg/l (P-32A/32B).

The effluent acetone concentration was below the 8.7 μ g/l laboratory MDL. The effluent methylene chloride concentration was 7.5 μ g/l. The effluent butyl alcohol concentration was below the 200 μ g/l laboratory MDL. The BOD concentration was below 4 mg/l. The COD concentration was 15 mg/l. The TOC concentration was below 5 mg/l.

6.2.4 November 1996

Influent acetone concentrations ranged from less than 72.7 μ g/l (P-30) to 1,520 μ g/l (P-32A/32B). Influent methylene chloride concentrations ranged from less than 0.61 μ g/l (P-13) to 9,630 μ g/l (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL. BOD concentrations ranged from less than 3 mg/l to 72.8 mg/l (P-32A/32B). COD concentrations ranged from 26.6 mg/l to 205 mg/l (P-32A/32B). TOC concentrations ranged from 8.1 mg/l to 50.1 mg/l (P-32A/32B).

The effluent acetone concentration was below the 0.46 μ g/l laboratory MDL. The effluent methylene chloride concentration was 1.4 μ g/l. The effluent butyl alcohol concentration was less than the 200 μ g/l laboratory MDL. The BOD concentration was less than 2 mg/l. The COD concentration was less than 20 mg/l. The TOC concentration was 1.2 mg/l.

6.3 Biodegradation/Biostimulation System Pumping Rates

The average flow rates of the biodegradation/biostimulation system are summarized in Table 6. The biodegradation/biostimulation system extracted, treated, and recharged approximately 325,000 gallons of groundwater during the 12 month period ending February 1997.

6.4 Biodegradation/Biostimulation System Removal Percentage

The biodegradation/biostimulation system (with activated carbon unit) removed over 99 percent of the acetone and methylene chloride present in the influent water.

TABLE 1

GROUNDWATER SAMPLING RESULTS SUMMARY - FEBRUARY 1996

Sample Number	MW-6	MW-9	MW-10	MW-17	MW-24	MW-25	MW-28	MW-42
Sample Matrix	Water							
Date Collected	2/14/96	2/14/96	2/14/96	2/14/96	2/14/96	2/14/96	2/14/96	2/14/96
Volatile Organic Compounds (ug/L)								
Acetone	< 1.0	40.0	120.0	130.0	2.2	17.0	70.0	< 1.0
Methylene Chloride	< 1.0	< 1.0	8.9	1.3	1.4	< 1.0	67.0	< 1.0
Butyl Alcohol	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
BOD (mg/L)	< 4.0	8.0	NS	< 2.0	< 2.0	< 2.0	< 4.0	< 2.0
COD (mg/L)	14.0	31.0	NS	41.0	17.0	35.0	31.0	20.0
TOC (mg/L)	< 5.0	7.4	NS	7.1	5.6	6.8	6.0	< 5.0

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

ug/L - Micrograms per Liter

NS - Not Sampled

TABLE 2

GROUNDWATER SAMPLING RESULTS SUMMARY - MAY 1996

Sample Number	MW-6	MW-9	MW-10	MW-17	MW-24	MW-25	MW-28	MW-42
Sample Matrix	Water							
Date Collected	5/15/96	5/15/96	5/15/96	5/15/96	5/15/96	5/15/96	5/15/96	5/15/96
Volatile Organic Compounds (ug/L)								
Acetone	< 8.7	< 8,7	NS	< 8.7	< 8.7	< 8.7	120.0	< 8.7
Methylene Chloride	5.0	< 1.4	NS	4.6	< 1.4	2.1	2.3	< 1.4
Butyl Alcohol	< 200.0	< 200.0	NS	< 200.0	< 200.0	< 200.0	< 200.0	< 200.0
BOD (mg/L)	< 2.0	7.0	NS	< 2.0	4.0	5.0	10.0	< 2.0
COD (mg/L)	14.0	29.0	NS	47.0	60.0	51.0	80.0	13.0
TOC (mg/L)	6.5	11.0	NS	15.0	14.0	12.0	31.0	< 5.0

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

ug/L - Micrograms per Liter

NS - Not Sampled

TABLE 3

GROUNDWATER SAMPLING RESULTS SUMMARY - JULY 1996

Sample Number	MW-6	MW-9	MW-10	MW-17	MW-24	MW-25	MW-28	MW-42
Sample Matrix	Water							
Date Collected	7/24/96	7/24/96	7/24/96	7/24/96	7/24/96	7/24/96	7/24/96	7/24/96
Volatile Organic Compounds (ug/L)								
Acetone	< 8.7	86.0	NS	65.0	< 8.7	< 8.7	37.0	< 8.7
Methylene Chloride	8.1	2.3	NS	8.2	7.8	8.7	8.5	8.2
Butyl Alcohol	< 200.0	< 200.0	NS	< 200.0	< 200.0	< 200.0	< 200.0	< 200,0
BOD (mg/L)	< 4.0	56.0	NS	17.0	< 4.0	< 4.0	8.0	< 4.0
COD (mg/L)	< 10.0	230.0	NS	100.0	28.0	< 12.0	55.0	< 10.0
TOC (mg/L)	< 5.0	69.0	NS	28.0	11.0	8.8	20.0	< 5.0

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

ug/L - Micrograms per Liter

NS - Not Sampled

TABLE 4

GROUNDWATER SAMPLING RESULTS SUMMARY - NOVEMBER 1996

Sample Number	MW-1	MW-2	MW-3	MW-6	MW-8	MW-9	MW-10
Sample Matrix	Water						
Date Collected	11/12/96	11/12/96	11/12/96	11/12/96	11/12/96	11/12/96	11/12/96
Volatile Organic Compounds (ug/L)							
Acetone	< 0.46	< 0.46	106.0	< 0.46	6.00	68.3	NS
Methylene Chloride	4.60	< 0.61	< 0.61	< 0.6i	< 0.61	< 0.61	NS
Butyi Alcohol	< 1.40	< 1.40	< 1.40	< 1,40	< 1.40	< 1.40	NS
BOD (mg/L)	< 2.0	< 2.0	5.9	< 2.0	< 2.0	18.1	NS
COD (mg/L)	< 20.0	< 20.0	46.9	< 20.0	< 20.0	42.0	NS
TOC (mg/L)	2.6	1.3	15.7	3.0	5.8	20.1	NS

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

ug/L - Micrograms per Liter

TIERRA-B-009148

TABLE 4 Continued...

Sample Number	MW-14	MW-17	MW-24	MW-25	MW-28	MW-31	MW-32
Sample Matrix	Water						
Date Collected	11/12/96	11/12/96	11/12/96	11/12/96	11/12/96	11/13/96	11/12/96
Volatile Organic Compounds (ug/L)		Ĭ					1
Acetone	< 0.46	2.7	< 0.46	< 0.46	87.4	< 0.46	< 0.46
Methylene Chloride	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61
Butyl Alcohol	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
BOD (mg/L)	< 2.0	< 2.0	6.4	< 3.0	6.7	< 2.0	< 2.0
COD (mg/L)	< 20,0	27.2	95.1	58.5	54.3	25.3	25.3
TOC (mg/L)	6.2	9.1	14.4	10.5	17.0	9.5	8.8

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

TABLE 4 Continued...

Sample Number	MW-33A	MW-42	MW-D	PROD		
Sample Matrix	Water	Water	Water	Water		
Date Collected	11/13/96	11/13/96	11/13/96	11/12/96		
			Duplicate	Deep Well		
Volatile Organic Compounds (ug/L)						
Acetone	< 0.42	< 0.42	< 0.42	< 0.46		
Methylene Chloride	< 0.61	< 0.61	< 0.61	4.00		
Butyl Alcohol	< 1.40	< 1.40	< 1.40	< 1.4		
BOD (mg/L)	< 2.0	< 2.0	< 2.0	< 2.0		
COD (mg/L)	21.4	< 20.0	< 20.0	< 20.0		
TOC (mg/L)	6.7	< 2.0	2.2	< 1.0	1	

NOTES:

< • Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

TABLE 4 Continued...

0	BIO-DEP-1A	W-1	W-2	W-3	W-4	W-5	W-6
Sample Number	Water	Water	Water	Water	Water	Water	Water
Sample Matrix	11/13/96	11/13/96	11/13/96	11/13/96	11/13/96	11/13/96	11/13/96
Date Collected	11/15/90	11/15/70		1			
Volatile Organic Compounds (ug/L)							
Acetone	< 0.46	6.4	143.0	< 0.46	< 0.46	< 0.46	< 0.46
Methylene Chloride	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61
Butyl Alcohol	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
BOD (mg/L)	< 2.0	10.2	21.6	14.9	4.1	4.5	< 2,0
COD (mg/L)	< 20.0	52.6	20.1	25.3	< 20.0	< 20.0	< 20.0
TOC (mg/L)	1.7	17.8	12.2	7.6	3.5	3.7	3.2

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

TABLE 5

OA/OC RESULTS SUMMARY - FEBRUARY THROUGH NOVEMBER 1996

Sample Number	Field Blank	Trip Blank	Field Blank	Trip Blank	Field Blank	Trip Blank
Sample Matrix	Water	Water	Water	Water	Water	Water
Date Collected	2/14/96	2/14/96	5/15/96	5/15/96	7/24/96	7/24/96
Volatile Organic Compounds (ug/L)						
Acetone	< 1.0	< 1.0 < 1.0	< 8.7 < 1.4	< 8.7 < 1.4	< 8.7 3.9	< 8.7 3.0
Methylene Chloride Butyl Alcohol	< 1.0 < 5.0	< 5.0	< 200.0	< 200.0	< 200.0	< 200.0
BOD (mg/L)	< 2.0	NA	< 2.0	NA	< 4.0	NA
COD (mg/L)	< 10.0	NA	12.0	NA	< 10.0	NA
TOC (mg/L)	< 5.0	NA	< 5.0	NA	< 5.0	NA

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

ug/L - Micrograms per Liter

NA - Not Analyzed

TABLE 5 Continued. . .

Sample Number	Field Blank	Trip Blank	Field Blank 2	Trip Blank 2		
Sample Matrix	Water	Water	Water	Water		
Date Collected	11/12/96	11/12/96	11/13/96	11/13/96	*	<u></u>
Volatile Organic Compounds (ug/L)						
Acetone	< 0.46	< 0.46	< 0.46	< 0.46		
Methylene Chloride	< 0.61	< 0.61	< 0.61	< 0.61		
Butyl Alcohol	< 1,40	< 1.40	< 1.40	< 1.40		
BOD (mg/L)	< 2.0	NA	< 2.0	NA		
COD (mg/L)	< 20.0	NA	< 20.0	NA		
TOC (mg/L)	< 1.0	NA	< 1.0	NA		

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

ug/L - Micrograms per Liter

NA - Not Analyzed

TABLE 6

BIODEGRADATION/BIOSTIMULATION SYSTEM SAMPLING RESULTS SUMMARY - FEBRUARY THROUGH NOVEMBER 1996

Sample Number	PW-13	PW-30	MW-P32A	BIO-EFF	PW-13	PW-30	MW-P32A	BIO-EFF
Sample Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date Collected	2/14/96	2/14/96	2/14/96	2/14/96	5/15/96	5/15/96	5/15/96	5/15/96
Volatile Organic Compounds (ug/L)								
Acetone	590.0 D	72.0	2.0	190.0	< 8.7	< 8.7	2,900.0 E	< 8.7
Methylene Chloride	< 2.0	5.1	1,200.0 E	< 2.0	< 1.4	< 1.4	10,000.0 E	19.0
Butyl Alcohol	13.0 D	< 5.0	3.3 J	13.0 D	< 200.0	< 200.0	< 1000.0	< 200.0
BOD (mg/L)	75.0	2.0	6.0	6.0	7.0	3.0	12.0	< 2.0
COD (mg/L)	210,0	37.0	34.0	28.0	38.0	32.0	48.0	< 31.0
TOC (mg/L)	57.0	11.0	5.6	10.0	13.0	13.0	16.0	< 6.5

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

TABLE 6 Continued...

Sample Number) PW-13	PW-30	MW-P32A	BIO-EFF	PW-13	PW-30	MW-P32A	BIO-EFF
Sample Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date Collected	7/24/96	7/24/96	7/24/96	7/24/96	11/13/96	11/13/96	11/13/96	11/13/96
Volatile Organic Compounds (ug/L)								
Acetone	< 8.7	72.0	5,000.0 D	< 8.7	169.0	72.7	1,520.0	< 0.46
Methylene Chloride	6.6	66.0	3,600.0 D	7.5	< 0.61	1.9	9,630.0	1.4
Butyl Alcohol	< 200.0	< 200.0	< 4,000.0	< 200.0 D	< 1.40	< 1.40	< 7.0	< 1.40
BOD (mg/L)	15.0	7.0	23.0	< 4.0	34.0	< 3.0	72.8	< 2.0
COD (mg/L)	36.0	40.0	58.0	15.0	77.3	26.6	205.0	< 20.0
TOC (mg/L)	13.0	13.0	20.0	< 5.0	16.9	8.1	50.1	1.2

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Micrograms per Liter

WELL SA		_	der Associates erview Executiv	a Dark	OFFICES: New York
LO	G		n, New Jersey (Wisconsin Michigan
			95-1050 (Telep		Georgia Florida
		. (609) (595-1003 (Facsi	mile)	New Jersey
I. General Inform Client Name: Big	nation: scraft Laboratorie:	s. Inc.		Project No.: 135	-
Project Name: B	<u>iocraft - GW</u>			Sampled By: <u>M</u>	<u>F/CK</u>
Well No.: <u>MW-6</u>				Well Use: <u>Moni</u>	oring
Sample ID: <u>MW</u>	<u>-6</u>	Sample Date: 2.1	4.96	Sample Time: 13	30
II. Well Information	tion:		Well Diameter: 2	2 inches	
PID Reading: Q	Notor: 10 16 8 b	elow m n	-	(m.p.): <u>PVC Cas</u>	ing
-	Water: <u>10.16</u> ft. b h: <u>14.00</u> ft. below		•	(m.p.): <u>PVC Cas</u>	
-	n. <u>14.00</u> n. oelow	ш.р.	-	ling Water: <u>0.61</u> (
∆ h: <u>3.84</u> feet				emoved: <u>2.00</u> gal	
Volume to be re	moved: <u>1.84</u> galle	ons	Actual Volume 1	CINOVED. <u>2.00</u> 801	
III. Sampling In Purging Method ⊠ Peristaltic Pu □ Bailer	l:		 Submersible I Other 	Pump	
	/Recovery:	Good	🔀 Poor	Other	
Pump Flow Rat	e: <u>< 0.25</u> gpm			Purge Time:	<u>10</u> min.
Purge Chemistr	y:				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
1230	2	6.5	<u>604</u> 640		8.8 9.3
1235	2	0.4		-	
				-	
				· · · · · · · · · · · · · · · · · · ·	
-	after purge: <u>10.4</u>			Time: <u>1240</u> Time: <u>1330</u>	
-	-	g: <u>10.4</u> ft. below m.		-	7 Other
Sample Appear			ightly Turbid] Other
Sample Odor:	🛛 None		ther		
<i>IV. Sample Ana.</i> Sample Parame Metals:	<i>lyses:</i> ters: <u>Methylene (</u>	Chloride, Acetone.	Butyl Alcohol, BO	D. COD. TOC. CI	. Total Phosphorous
	boratory Resource	□ Filtered	Date Shipp		red

TUPET OF			Eder Associates		OFFICES:
WELL SA		Eucl Associates New York			New York
LO	G				Wisconsin Michigan
	i		n, New Jersey		Georgia
			595-1050 (Telej 695-1003 (Facs	•	Florida New Jersey
		(009)	l		
<i>I. General Inform</i> Client Name: <u>Bio</u>		s <u>, Inc.</u>		Project No.: <u>13</u>	50-0 <u>5</u>
Project Name: B	iocraft - GW			Sampled By: <u>M</u>	F/CK
Well No.: <u>MW-9</u>				Well Use: <u>Moni</u>	toring
Sample ID: <u>MW-</u>	9	Sample Date: 2.	14.96	Sample Time: 10	<u>)30</u>
	-	• –			
<i>II. Well Informat</i> PID Reading: Q	lon:		Well Diameter:	Linches	
Static Depth to V	Vater: <u>3.61</u> ft. bel	low m.p.	Measuring Poin	t (m.p.): <u>PYC Cas</u>	ing
Total Well Depti			Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Δ h: 8.00 feet		-	Volume of Stand	ling Water: <u>0.32</u> (gallons
Volume to be rea	noved: 1.00 gallo	ns	Actual Volume	removed: <u>1.00</u> gal	lons
	•				
III. Sampling Information: Purging Method: Peristaltic Pump Submersible Pump					
🗋 Bailer			Other		
Well Drawdown	/Recovery:	🛛 Good	Poor	Other	
Pump Flow Rate	:: <u>< 0.5</u> gpm	_		Purge Time:	<u>3</u> min.
-					
Purge Chemistry	/:				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C) 5.7
1020	0.25	<u>6.0</u> 6.0	629 650	-	6.4
1023	0.75	6.1	719	-	7.1
1020	1.0	6.1	795	-	7.5
Depth to water a	fter pprøe: 4.1 ft	below m.n.		Time: <u>1030</u>	L
-		: <u>4.1</u> ft. below m.p		Time: <u>1030</u>	
•) Other
Sample Appeara				Clear [
Sample Odor:	🛛 None		ther		
<i>IV. Sample Anal</i> j Sample Paramet Met ai s:	vses: ters: <u>Methylene C</u>	hloride. Acetone.]	Butyl Alcohol, BO	D. COD, TOC, Cl	. Total Phosphorous
	omtoni Dacourco	_	Date Shippe	-	
Laboratory: Lab	oratory Resource	2	Date Surph		

WELL SA	MPLING	_	Eder Associates		OFFICES: New York
LO	G	413 Riv	erview Executi	ve Park	Wisconsin
			n, New Jersey		Michigan Georgia
	l.	· · ·	595-1050 (Telej		Florida
		(609)	695-1003 (Facs	imile)	New Jersey
I. General Inform Client Name: <u>Bio</u>	nation: ocraft Laboratories	s. Inc.		Project No.: <u>13</u>	<u>50-05</u>
Project Name: B	iocraft - GW			Sampled By: M	F/CK
Well No.: MW-1				Well Use: <u>Moni</u>	toring
Sample ID: <u>MW</u>	_	Sample Date: 2.	14 96	Sample Time: 1	820
Sample ID. MIN.	10	Sample Date. 20	<u></u>		
II. Well Informat PID Reading: Q	tion:		Well Diameter:	1_inches	
Static Depth to V	Water: <u>2.15</u> ft. bel	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Dept	h: <u>12.00</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
∆ h: <u>9.85</u> feet			Volume of Stand	ling Water: <u>0,39</u>	gallons
Volume to be rea	moved: <u>1.17</u> gallo	ns	Actual Volume	removed: <u>0.40</u> gal	lons
III. Sampling Inj Purging Method Peristaltic Pur	:		Submersible	Pump	
🔲 Bailer			Other		
Well Drawdown	/Recovery:	Good	Poor	🛛 Other <u>We</u>	ll Did Not
				Recover - On	ly VOC collected
Pump Flow Rate	e: <u>< 0.25</u> gpm			Purge Time:	min.
•					
Purge Chemistr					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
				-	· · · · · · · · · · · · · · · · · · ·
				-	
				-	
		<u>I</u>	L	<u></u>	L
-	after purge: <u>12.00</u>			Time: <u>1020</u>	
Depth to water]	prior to sampling	: <u>11.4</u> ft. below m.;		Time: <u>1830</u>	
Sample Appears	ance: 📋 Turbio	t ⊠SI	ightly Turbid	Clear] Other
Sample Odor:	🖂 None		ther		
Metals:	ters: <u>Methylene C</u>	hloride. Acetone, I		[] Unfike	red
Laboratory: Lab	poratory Resources	<u>s</u>	Date Shipp	ea: <u>2/15/90</u>	

					OFFICES:
WELL SA	MPLING	-	Eder Associates		New York
LO) G		erview Executi		Wisconsin Michigan
			n, New Jersey		Georgia
		· · ·	595-1050 (Telej		Florida
		(609)	695-1003 (Facs	imile)	New Jersey
I. General Inform Client Name: <u>Bio</u>	nation: ocraft Laboratories	s, Inc.		Project No.: 13	<u>50-05</u>
Project Name: B	iocraft - GW			Sampled By: <u>M</u>	F/CK
Well No.: MW-1	1			Well Use: <u>Moni</u>	toring
Sample ID: <u>MW</u>	-17	Sample Date: 2.2	14.96	Sample Time: <u>1(</u>)30
		•		-	
II. Well Informa PID Reading: Q	tion:		Well Diameter:	4_inches	
Static Depth to	Water: <u>4.85</u> ft. bel	ow m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing
Total Well Dept	h: <u>10.45</u> ft. below	m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing
∆ h: <u>5.60</u> feet			Volume of Stand	ling Water: <u>3.64</u> (gailons
	moved: <u>10.90</u> gali	ons	Actual Volume	removed: <u>11.00</u> ga	allons
,				-	
III. Sampling Information: Purging Method: Peristaltic Pump Submersible Pump					
Bailer			Other		
Well Drawdown	/Recovery:	🖂 Good	Poor	Other	
Pump Flow Rate	e: < 0.5 gpm		_	Purge Time:	<u>22</u> min.
				0	
Purge Chemistr	y:				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
1007	3	6.79	904	•	7.7
1013	6	6.92	893 916		7.8
1019 1023	9	6.94 6.94	916	-	8.1
1025	11	0.54			
Depth to water :	after purge: <u>5,9</u> ft	below m.p.		Time: <u>1030</u>	
-	prior to sampling			Time: 1030	
•					Other
Sample Appears	-	-] Other
Sample Odor:	🛛 None		ther		
<i>IV. Sample Anal</i> Sample Parame Metals:	<i>yses:</i> ters: <u>Methylene C</u>	hloride, Acetone, I		🗍 Unfilter	<u>Total Phosphorou</u> ed
Laboratory: Lab	poratory Resources	ł	Date Shippe	ed: <u>2/15/96</u>	

.

ſ

					OFFICES:	
	MPLING		Eder Associates		New York	
l La)G		verview Executi		Wisconsin Michigan	
			n, New Jersey		Georgia	
}	1	(609) 695-1050 (Telephone) Florida (609) 695-1003 (Facsimile) New Jerse)				
		(609)	695-1003 (Facs	imile)	New Jerscy	
I. General Information: Client Name: <u>Biocraft Laboratories, Inc.</u> Project No.: <u>1350-05</u>						
Project Name: H	rt Name: <u>Biocraft - GW</u> Sampled By: <u>MF/CK</u>					
Well No.: <u>MW-2</u>	24			Well Use: <u>Moni</u>	toring	
Sample ID: <u>MW</u>	/-24	Sample Date: <u>2.</u>	14.96	Sample Time: 1	305	
II. Well Informa	ution:					
PID Reading: 0			Well Diameter: ;	2_inches		
Static Depth to	Water: <u>3.86</u> ft. bel	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Total Well Dept	th: <u>13.08</u> ft. below	m .p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>9.22</u> feet			Volume of Stand	ling Water: <u>1.47</u> (gallons	
Volume to be re	emoved: <u>4.40</u> gallo	ons	Actual Volume	removed: <u>5.00</u> gal	lons	
III. Sampling Information: Purging Method: Peristaltic Pump Submersible Pump						
🔲 Bailer			Other			
Well Drawdowi	n/Recovery:	🖾 Good	Poor	Other		
Pump Flow Rat	te: <u>< 0.5</u> gpm			Purge Time:	<u>10</u> min.	
Purge Chemisti	ry:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1757	2.5	7.68	169	-	5.9	
1802	5.0	7.82	190	-	6.0	
	 			-	· · · · · ·	
	· · · · · · · · · · · · · · · · · · ·					
Depth to water	after purge: <u>5,9</u> ft	. below m.p.		Time: <u>1805</u>		
Depth to water	prior to sampling	: <u>5.9</u> ft. below m.p.		Time: <u>1805</u>		
- Sample Appear		_		Clear) Other	
Sample Odor:	🛛 None	O	ther			
IV. Sample Analyses: Sample Parameters: <u>Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl. Total Phosphorous</u> Metals:						
Metals:	boratory Resource		Date Shippe		ea	

WELL SA	MPLING		Eder Associate	-	OFFICES: New York
LO)G		verview Execut		Wisconsin
			on, New Jersey		Michigan Georgia
	i.		695-1050 (Tele		Florida New Jersey
	·····	(809)	695-1003 (Fac	simile)	
<i>I. General Inform</i> Client Name: <u>Bio</u>	nation: ocraft Laboratorie	<u>s, Inc.</u>		Project No.: <u>13</u>	<u>50-05</u>
Project Name: <u>Biocraft - GW</u>				Sampled By: M	F/CK
Well No.: <u>MW-2</u>	<u>5</u>			Well Use: Moni	toring
Sample ID: <u>MW-</u>	-25	Sample Date: 2.	14.96	Sample Time: <u>1</u>	730
•		•		•	
II. Well Informat PID Reading: Q	tion:		Well Diameter:	2 inches	
Static Depth to V	Water: <u>3.53</u> ft. bei	łow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Depti	h: <u>10.00</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Δ h: <u>6.47</u> feet			Volume of Stan	ding Water: <u>1.04</u>	gallons
Volume to be rea	noved: <u>3.10</u> gallo	ons	Actual Volume	removed: <u>5.00</u> gal	lons
	0				
III. Sampling Inf Purging Method	:		🖂 Submersible	Pump	
🔲 Bailer			Other		
Well Drawdown	/Recovery:	🖾 Good	Poor	Other	
Pump Flow Rate	: 1.0 gpm	—		Purge Time:	5 min.
-	0.				-
Purge Chemistry	<i>r</i> :				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
1726	2.5	6.59	1211	•	6.0
1/29	5.0	6.63	1281	-	6.7
				-	
	······································				
			l		. <u></u> J
Depth to water a	fter purge: <u>3.76</u> f	it. below m.p.		Time: <u>1730</u>	
Depth to water p	rior to sampling:	: <u>3.76</u> ft. below m.	p.	Time: <u>1730</u>	
Sample Appeara	nce: 📋 Turbid	i 🛛 🛛 Si	ightly Turbid	Clear [Other
Sample Odor:	None None		her		
-	4 3	_ ··	··· ··· ··		
IV. Sample Analy	ses:				
-		hloride. Acetone, E	Sutyl Alcohol, BO		
Sample Paramete Metals: Laboratory: <u>Lab</u> g	ers: <u>Methylene Cl</u>	☐ Filtered	<u>Sutyl Alcohol, BO</u> Date Shippe	🗍 Unfilter	

.

1

WELL SAM LOC	7	413 Ri Trento (609)	Eder Associates OFFic 413 Riverview Executive Park Wisco Trenton, New Jersey 08611 Georg (609) 695-1050 (Telephone) Florid (609) 695-1003 (Facsimile) New J			
Client Name: Bioc		<u>s, Inc.</u>		Project No.: <u>13</u>	<u>50-05</u>	
Project Name: <u>Bio</u>	<u>craft - GW</u>			Sampled By: M	F/CK	
Well No.: <u>MW-28</u>				Well Use: <u>Mon</u> i	toring	
Sample ID: <u>MW-2</u>	B	Sample Date: <u>2</u>	<u>14.96</u>	Sample Time: 1	445	
II. Well Informatio	n:					
PID Reading: Q			Well Diameter:	2_inches		
Static Depth to Wa		•	-	t (m.p.): <u>PYC Cas</u>	-	
Total Well Depth:	8.55 ft. below r	n.p.	_	t (m.p.): <u>PVC Cas</u>	-	
∆ h: <u>6.58</u> feet				ing Water: <u>1.05</u> ;	-	
Volume to be remo	oved: <u>3.15</u> galle	ons	Actual Volume	removed: <u>3,50</u> gal	lons	
III. Sampling Infor Purging Method: ☐ Peristaltic Pump ☐ Bailer			Submersible Other	Pump		
Well Drawdown/R	ecovery:	🗖 Good		Other		
Pump Flow Rate:	0.25 gpm			Purge Time:	<u>20</u> min.	
Purge Chemistry:						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1420	1	6.46	1093	-	5.2	
1425	2 3.5	6.44	1101	-	4.9	
				•		
	•·····					
Depth to water afte		-	p.	Time: <u>1430</u> Time: <u>1445</u>		
Depth to water price		i 🖂 SI	ightly Turbid [Clear	Other	
	e: 📋 Turbic	K-21				
Sample Appearanc	e: 📋 Turbic	· · ·	her			
Depth to water prin Sample Appearance Sample Odor: <i>IV. Sample Analyse</i> Sample Parameters Metals:	⊠ None	_ 04	her	D. COD. TOC. Cl.		
Sample Appearanc Sample Odor: <i>IV. Sample Analyse</i> Sample Parameters	⊠ None s: s: <u>Methylene</u> Cl	hloride, Acetone, H	her	📋 Unfilter		

.

.

WELL SA	MPLING	-	Eder Associates	n 1	OFFICES: New York	
LO	G		erview Executiv		Wisconsin	
	1		n, New Jersey		Michigan Georgia	
			595-1050 (Telep		Florida New Jersey	
		(609)	695-1003 (Facsi	mile)	New Yessey	
I. General Inform Client Name: <u>Bio</u>	nation: ocraft Laboratorie:	s. Inc.		Project No.: <u>13</u>	<u>50-05</u>	
Project Name: B	<u>iocraft - GW</u>			Sampled By: M	F/CK	
Well No.: <u>MW-4</u>	2			Well Use: Moni	toring	
Sample ID: <u>MW</u> -	-42	Sample Date: 2.1	14.96	Sample Time: <u>1</u>	700	
• <u>•</u>						
<i>II. Well Informat</i> PID Reading: <u>0</u>	tion:		Well Diameter: 2	_inches		
Static Depth to V	Water: <u>2.17</u> ft. bel	ow m.p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ing	
Total Well Dept	h: <u>15.55</u> ft. below	m.p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ing	
Δ h: <u>13.33</u> feet			Volume of Stand	ing Water: <u>2.14</u>	gallons	
	moved: <u>6.42</u> gallo	ons	Actual Volume r	emoved: <u>6.80</u> gal	llons	
	<u>and i an </u>					
III. Sampling Inj Purging Method Peristaltic Put	:		📋 Submersible I	ק מועי		
🔲 Bailer			Other			
Well Drawdown	/Recovery:	🗖 Good	🛛 Poor	Other		
Pump Flow Rate	e: <u>0.5</u> gpm			Purge Time:	<u>15</u> min.	
Purge Chemistry	v:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1626	2	5.42	82.7	-	7.3	
1630	4	6.05 6.21	259 277		7.9	
1636	6.5	0.21			1.5	
Depth to water a	after purge: <u>6.8</u> ft	. below m.p.		Time: <u>1640</u>		
Depth to water p	prior to sampling	: 2.2 ft. below m.p.		Time: <u>1700</u>		
Sample Appears	nce: 📋 Turbie	t 🛛 🖾 Sl	ightly Turbid [Clear] Other	
Sample Odor:	🖂 None	<u> </u>	her			
Metals:	ters: <u>Methylene C</u>	Filtered		🗌 Unfilter	<u>Total Phosphorou</u> ed	
Laboratory: <u>Lab</u>	oratory Resources	i	Date Shippe	u. <u>4/13/30</u>		

					OFFICES:		
WELL SA	MPLING	Eder Associates OFFICES: 413 Riverview Executive Park Wisconsin					
LC	DG				Wisconsin Michigan		
			n, New Jersey 595-1050 (Telej		Georgia		
		• • •	• •		Florida New Jersey		
		(009)) 695-1003 (Facsimile) New Jersey				
<i>I. General Inform</i> Client Name: <u>Bi</u>	nation: ocraft Laboratoric	s <u>, Inc.</u>		Project No.: <u>13</u> ;	50-0 <u>5</u>		
Project Name: H	liocraft - GW			Sampled By: <u>Cl</u>	2		
Well No.: MW-9				Well Use: <u>Moni</u>	toring		
Sample ID: BIO	- MW-9	Sample Date: <u>5/</u>	15/96	Sample Time: <u>1(</u>	200		
5				• -			
<i>II. Well Informa</i> PID Reading: <u>Q</u>	tion:		Well Diameter:]	Linches			
Static Depth to	Water: <u>3.65</u> ft. bel	ow m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
Total Well Dept	h: <u>11.60</u> ft. below	m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
Δ h: <u>7.95</u> feet			Volume of Stand	ling Water: <u>0.32</u> (gallons		
	moved: <u>0.96</u> gallo	ns	Actual Volume	removed: <u>1.50</u> gal	lons		
	<u> </u>			-			
III. Sampling In Purging Method	l:		D Submersible	Pump			
Bailer			□ Other				
Well Drawdown	Recovery:	Good	⊠ Poor	Other			
Pump Flow Rat	-	U		Purge Time:			
I ump I ton Aut	C. MIRK SPAIN						
Purge Chemistr	y:						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
830	0	7.39	452	3.0	15.4		
<u>850</u> 855	1	7.48	440	<u>5.7</u> 5.4	15.6 16.6		
610	1.5	7.20					
	<u> </u>	l					
Depth to water	after purge: <u>11.1</u> :	ft. below m.p.		Time: <u>855</u>			
Depth to water	prior to sampling	: <u>5.2</u> ft. below m.p.		Time: <u>1000</u>			
- Sample Appears	ance: 🗂 Turbio	a nsi	ightly Turbid	🖂 Clear 🛛] Other		
Sample Odor:	☐ None		her		_		
Sample Gaoit			•				
<i>IV. Sample Anal</i> Sample Parame Metals:	lyses: ters: <u>Methylene C</u>	hloride, Acetone, I	Butyl Alcohol, BO	D. COD. TOC. Cl.	<u>Total Phosphorous</u> ed		
Laboratory: Ac	cutest		Date Shippe	d: <u>5/16/97</u>			
J. 110							

WELL SA	MPLING	J	Eder Associates	3	OFFICES: New York
LC		413 Riv	erview Executi	ve Park	Wisconsin
		Trento	n, New Jersey	08611	Michigan
			595-1050 (Tele		Georgia Florida
		• • •	695-1003 (Facs		New Jersey
<i>I. General Inforr</i> Client Name: <u>Bi</u>	nation: ocraft Laboratorie	s. Inc.		Project No.: <u>13</u> ;	5 0-05
Project Name: E	Biocraft - GW			Sampled By: <u>C</u>	2
Well No.: <u>MW-6</u>	į			Well Use: <u>Mon</u> i	toring
Sample ID: <u>BIO</u>	.MW-6	Sample Date: <u>5/</u>	15/97	Sample Time: L	245
Зашрк 10. <u>DI</u>	MAR V	Sample Date. 2			
<i>II. Well Informa</i> PID Reading: Q	tion:		Well Diameter:	1.5 inches	
-	Wataw 10 20 8 h			t (m.p.): <u>PVC Cas</u>	ing
•	Water: <u>10.39</u> ft. b	-	-		
-	h: <u>14.00</u> ft. below	ш. р .	•	t (m.p.): <u>PVC Cas</u> ling Water: 0.32	
∆ h: <u>3.61</u> feet				ling Water: <u>0.32</u> ;	
Volume to be re	moved: 0.96 gallo	ns	Actual Volume	removed: <u>1.50</u> gal	lons
III. Sampling Information: Purging Method: ☑ Peristaltic Pump ☐ Submersible Pump					
🗌 Bailer			Other		
Well Drawdown	/Recovery:	🗍 Good	🛛 Poor	Other	
Pump Flow Rat	e: <u>0.25</u> gpm			Purge Time:	<u>26</u> min.
Purge Chemistr	y :				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
1130	0	7.14	516	5.6	18.6
1146	1	7.38	565	6.2	18.4
1156	1.5	7.39	566	6.5	18.3
· · · · · · · · · ·					
				· · · · · · · · · · · · · · · · · · ·	
Depth to water	after purge: <u>13.4</u> :	ft. below m.p.		Time: <u>] 156</u>	
Depth to water	prior to sampling	: <u>11.2</u> ft. below m.	р.	Time: <u>1245</u>	
Sample Appear	ance: 🔲 Turbie	1 🗆 🗆 SI	ightly Turbid	🛛 Clear 🛛) Other
Sample Odor:			ther		
	ب		=		
<i>IV. Sample Anal</i> Sample Parame Metak:	lyses: ters: <u>Methylene C</u>	hloride, Acetone, I	Butyl Alcohol. BO	<u>D. COD. TOC. Cl.</u> D Unfilter	Total Phosphorou
Laboratory: Ac	catest		Date Shipp		
Daboratory. AQ	×#F#3F		mare ombh	A A A A A A A A A A A A A A A A A A A	

.

Ī

854820170

.

			- A secondary		OFFICES:		
WELL SAM	PLING	Eder Associates 413 Riverview Executive Park					
LOG			New Jersey 08		Michigan		
		(609) 69	Georgia Florida				
		(609) 69	New Jersey				
		(00))00	99) 695-1003 (Facsimile) New Jersey				
I. General Informa	tion:			Project No.: <u>135</u>	0-05		
Client Name: Biocr	aft Laboratories.	ft Laboratories. Inc.					
Project Name: Bio	craft - GW	Sampled By: CK					
Well No.: <u>MW-42</u>				Well Use: Monit	-		
Sample ID: BIO-M	W-42	Sample Date: 5/15	<u>5/97</u>	Sample Time: 15	<u>30</u>		
040.p							
II. Well Informatio	n:		Well Diameter: 2	inches			
PID Reading: 0					ing		
Static Depth to W		• · · · · · · · · · · · · · · · · · · ·	Measuring Point				
Total Well Depth:	15.55 ft. below		Measuring Point				
∆ h: <u>13.20</u> feet			Volume of Standi				
Volume to be rem	oved: 6.33 gallo	ns	Actual Volume re	emoved: <u>7.00</u> gal	lons		
VIABLE TO DE LOLL	•••••						
III. Sampling Info Purging Method: Peristaltic Pum			Submersible F	ump			
Bailer			Other				
Well Drawdown/	Recovery:	🗖 Good	🛛 Poor	Other	• = -		
Pump Flow Rate				Purge Time	: <u>30</u> min.		
Lamb Line rente	Jist of						
Purge Chemistry				D (()	Temp. (°C)		
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms) 138	D. O. (ppm) 10.9			
1442	2.5	5.74	163	9.3	100		
1452	5	6.14	189	8.5	10.8		
					·		
					+		
Depth to water a	after purge: <u>4.8</u>	ft. below m.p.		Time: <u>1502</u>			
		ig: 2.4 ft. below m.p).	Time: <u>1530</u>			
Sample Appear			lightly Turbid	🔀 Clear	Other		
	Non)ther				
Sample Odor:	U.100	· ل					
	lyses: ters: <u>Methylene</u>	Chloride, Acetone.	Butyl Alcohol, BC) <u>D, COD, TOC, (</u> [] Unfil	Cl. Total Phosphoro tered		
Metals: Laboratory: As	cutest		Date Shipj	ed: <u>5/16/97</u>			

		17	der Associates	T	OFFICES:
WELL SAM	1		rview Executiv	e Park	New York Wisconsin
LOG	7		, New Jersey 0		Michigan
			95-1050 (Telepl		Georgia Florida
			95-1003 (Facsi		New Jersey
		(005)0			
I. General Informa Client Name: <u>Bioc</u> r	<i>tion</i> : aft Laboratories	. Inc.		Project No.: 135	<u>0-05</u>
Project Name: Bio				Sampled By: CK	
-	crant - O II			Well Use: Monit	oring
Well No.: <u>MW-28</u>		Comple Date: 5/1	5/07	Sample Time: <u>10</u>	
Sample ID: <u>BIO-M</u>	<u>W-28</u>	Sample Date: <u>5/1</u>	<u> 171</u>	Sample 1	
II. Well Informatio PID Reading: Q	n:		Well Diameter: 1	_inches	
Static Depth to Wa	ster: 1.90 ft. bel	ow m.p.	Measuring Point	(m.p.): <u>PVC Casi</u>	ng
Total Well Depth:			Measuring Point		
	<u>0.10</u> R. 0010W H		Volume of Stand		
∆ h: <u>6.60</u> feet			Actual Volume r	-	
Volume to be rem	oved: <u>0.78</u> gallo	ns	Actual volume r	emoved: <u>1.20</u> gan	()#5
III. Sampling Information: Purging Method: Peristaltic Pump Bailer					
Well Drawdown/I	Decovers.	🔀 Good		Other	
			0	Purge Time:	3 min.
Pump Flow Rate:	<u>,və</u> gpm				
Dames Chamistary					
Purge Chemistry:	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
1031	0	7.22	842	0.5	17.7
1032	1	7.15	<u>837</u> 825	0.8	17.5
1040	1.5	7.14	823		
			L		
Depth to water a	Ben nurre: 7 8 f	t below m n		Time: <u>1040</u>	
-				Time: <u>1050</u>	
Depth to water p		g: <u>1.9</u> ft. below m.p] Other
Sample Appeara	nce: 🗌 Turbi		lightly Turbid	⊠ Clear [
Sample Odor:	🗋 None		ther		
Metals:	ers: <u>Methylene (</u>	<u>Chloride. Acetone.</u> Filtered			<u>. Total Phosphorous</u> red
Laboratory: <u>Acc</u>	utest		Date Shipp	cu. <u>J/14/74</u>	

WELL SAI LO I. General Inform Client Name: Bio	G nation:	E 413 Rive Trentor (609) 6 (609) 6)8611 hone)	OFFICES: New York Wisconsin Michigan Georgia Florida New Jersey		
				Sampled By: <u>CK</u>		
Project Name: B	_			Well Use: Monit		
Well No.: <u>MW-2</u>			5107	Sample Time: 11	_	
Sample ID: <u>BIO-</u>	<u>MW-25</u>	Sample Date: <u>5/1</u>	<u>.5/91</u>	Sample Time. 11	32	
II. Well Informate PID Reading: <u>0</u>			Well Diameter: 2			
Static Depth to V	Water: <u>4,15</u> ft. bei	iow m.p.	Measuring Point			
Total Well Dept	h: <u>10.00</u> ft. below	m.p.		(m.p.): <u>PVC Casi</u>		
∆ h: <u>5.85</u> feet			Volume of Stand	ing Water: <u>0.94</u> §	allons	
Volume to be re	moved: <u>2.82</u> gallo	ms	Actual Volume r	emoved: <u>3.00</u> gal	lons	
III. Sampling Information: Purging Method: ⊠ Peristattic Pump □ Bailer Well Drawdown/Recovery: □ Good ☑ Poor □ Other Pump Flow Rate: 0.5 gpm Purge Time: 6 min						
Purge Chemistr Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1130	1	6.86	451	4.0	16.0	
1132	2	7.02	446	<u>8.5</u> 6.4	16.7	
1134	3	6.93	493	0.4	15.2	
Depth to water after purge: 7.8 ft. below m.p. Time: 1134 Depth to water prior to sampling: 5.2 ft. below m.p. Time: 1145 Sample Appearance: Turbid Slightly Turbid Clear Other						
Sample Odor:	□ None	C O	ther			
Sample Outri: Item Chief C					<u>, Total Phosphorous</u> red	

ſ

WELL SAMPLING LOG I. General Information: Client Name: Biocraft Laboratorie: Project Name: Biocraft - GW Well No.: MW-24 Sample ID: BIO-MW-24		Eder Associates 413 Riverview Executive Park Trenton, New Jersey 08611 (609) 695-1050 (Telephone) (609) 695-1003 (Facsimile) s. Inc. Project No.: Sampled By: Well Use: Ma Sample Date: 5/15/97 Sample Time			K toring				
II. Well Information: PID Reading: 0 Well Diameter; 2 inches									
PID Reading: <u>0</u> Static Depth to Water: <u>3.71</u> ft. below m.p.			Measuring Point (m.p.): <u>PVC Casing</u>						
-	h: <u>13.08</u> ft. below		Measuring Point (m.p.): <u>PVC Casing</u>						
Δ h: <u>9.37</u> feet			Volume of Standing Water: 1.50 gallons						
	moved: <u>4,50</u> gallo	ons	Actual Volume removed: 5.00 gallons						
 III. Sampling Information: Purging Method: ☑ Peristaltic Pump □ Bailer Well Drawdown/Recovery: □ Good Pump Flow Rate: 0.25 gpm 			 □ Submersible Pump □ Other □ Poor □ Other Purge Time: 20 min. 						
Purge Chemistr Time	y: Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)				
1322	2.5	7.74	441	11.2	15.2				
1332	5	7.43	486	7.9	14.7				
					 				
-		g: <u>3.8</u> ft. below m.p id		Time: <u>1332</u> Time: <u>1500</u> ⊠ Clear [] Other				
IV. Sample Analyses: Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl. Total Phosphorous Metals:									
Laboratory: <u>Ac</u>	cutest		Date Shipped: <u>5/16/96</u>						

,

ſ

			71 4 -	1	OFFICES:		
			Eder Associates New York				
LO	G			1	Wisconsin Michigan		
			Trenton, New Jersey 08611				
		· · ·	95-1050 (Telep		Florida New Jersey		
(609)			595-1003 (Facs	imile)			
I. General Inform Client Name: <u>Bio</u>		i <u>, Inc.</u>		Project No.: <u>135</u>	<u>10-05</u>		
Project Name: Bi	ocraft - GW		Sampled By: <u>CK</u>				
Well No.: <u>MW-17</u>			Well Use: Monitoring				
Sample ID: <u>BIO-</u>	<u>MW-17</u>	Sample Date: 5/1	15/96 Sample Time: <u>930</u>				
<i>II. Well Information</i> : PID Reading: <u>0</u>			Well Diameter: 4_inches				
Static Depth to V	Vater: <u>4.87</u> ft. bel	ow m.p.	Measuring Point (m.p.): <u>PVC Casing</u>				
Total Well Depth	: <u>10.45</u> ft. below	m .p.	Measuring Point (m.p.): <u>PVC Casing</u>				
∆ h: <u>5.58</u> feet			Volume of Standing Water: 3.63 gallons				
Volume to be removed: <u>10,89</u> gallons			Actual Volume removed: 11.00 gallons				
111. Sampling Information: Purging Method: Peristaltic Pump			Submersible Pump Other				
Bailer							
Well Drawdown/Recovery: 🛛 Good			Deor	Other			
Pump Flow Rate	: <u>0.5</u> gpm		Purge Time: <u>22</u> min.				
Purge Chemistry	r:						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
910	4	6.62	1058	8.5	14.1		
918	8	7.19	1036 1036	2.7	13.3		
924	11	7.17	1050		1510		
Depth to water a				Time: <u>924</u>	L		
-		: <u>4.87</u> ft. below m.		Time: <u>930</u>	- Other		
			Clear [] Other			
Sample Odor:	📋 None	00	ther				
<i>IV. Sample Anal</i> y Sample Paramet Metals:	y <i>ses:</i> ters: <u>Methylene C</u>	hloride, Acetone,	Butyl Alcohol, BO	D. COD. TOC. Cl	. Total Phosphorou red		
IVICIAIS.		🗋 Filtered					

			der Associates		OFFICES:		
WELL SA		-	erview Executiv	New York Wisconsin			
LO	G		n, New Jersey (Michigan		
			•		Georgia		
	Ļ		95-1050 (Telep		Florida New Jersey		
		(609) (595-1003 (Facsi	mile)			
I. General Inform Client Name: <u>Bio</u>	nation: scraft Laboratories	3. Inc.		Project No.: <u>135</u>	<u>0-05</u>		
Project Name: B	iocraft - GW			Sampled By: <u>CK</u>	<u> </u>		
Well No.: <u>MW-9</u>				Well Use: Monit	oring		
Sample ID: <u>BIO-</u>	<u>MW-9</u>	Sample Date: 7/2	4/96	Sample Time: 10	00		
<i>II. Well Informat</i> PID Reading: <u>0</u>	tion:		Well Diameter:]	Linches			
-	Water: <u>3.98</u> ft. b e l	ow m.p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ng		
-	b: <u>11.60</u> ft. below		Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
Δ h: <u>7.62</u> feet			Volume of Stand	ling Water: <u>0.30</u> §	gallons		
Volume to be re	moved: <u>0.90</u> gallo	ns	Actual Volume	emoved: <u>1.50</u> gal	lons		
III. Sampling In Purging Method ⊠ Peristaltic Pu □ Bailer	l:		Submersible Pump Other				
Well Drawdown	/Recovery:	🗖 Good	⊠ Poor □ Other				
Pump Flow Rat	e: <u>0.25</u> gpm			Purge Time:	<u>50</u> min.		
Purge Chemistr	the second s				Temp. (°C)		
Time	Gallons	pH (Std. Units) 7.44	Sp. Cond. (ms) 944	D. O. (ppm) 11.1	19.4		
<u>810</u> 812	0.5	7.44	947	10.2	19.8		
900	1.5	6.92	898	7.0	19.2		
			·				
Depth to water	Depth to water after purge: 11.1 ft. below m.p. Time: 200 Depth to water prior to sampling: 5.1 ft. below m.p. Time: 1000 Sample Approximate: Turbid						
Sample Appear				Clear [
Sample Odor:	🗋 None	00	ther				
<i>IV. Sample Ana.</i> Sample Parame Metals:	<i>hyses:</i> sters: <u>Methylene C</u>	<u>hloride. Acetone.</u> Filtered	Butyl Alcohol, BO	D. COD. TOC. Cl	<u>. Total Phosphorous</u> red		
Laboratory: Ac	cutest		Date Shipp	ed: <u>7/25/96</u>			

,

			der Associates	T	OFFICES:	
WELL SA	MPLING		Verview Executive Park Wisconsin			
LO	G			less Jersey ()8611 Michigan		
			95-1050 (Telep		Georgia Florida	
			595-1003 (Facsi		New Jersey	
	<u> </u>					
I. General Inform Client Name: <u>Bio</u>	nation: ocraft Laboratories	<u>s, Inc.</u>		Project No.: <u>135</u>	<u>0-05</u>	
Project Name: <u>Biocraft - GW</u>				Sampled By: <u>CK</u>	<u> </u>	
Well No.: MW-6				Well Use: <u>Monit</u>	oring	
Sample ID: BIO-	MW-6	Sample Date: 7/2	4/96	Sample Time: 10	<u>45</u>	
II. Well Informat PID Reading: Q	tion:		Well Diameter:]	L <u>.5</u> inches		
Static Depth to V	Water: <u>10.62</u> ft. b	elow m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u> i	ing	
-	h: <u>14.00</u> ft. below		Measuring Point	t (m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>3.38</u> feet		-	Volume of Stand	ling Water: <u>0.30</u> §	gallons	
	moved: <u>0.90</u> gallo	MS.	Actual Volume	removed: <u>1.00</u> gal	lons	
vojame to be re-	moved. <u>v.2v</u> gune	/10				
 III. Sampling Inj Purging Method Peristaltic Put 	l:		🔲 Submersible 1	Pump		
🔲 Bailer			Other			
Well Drawdown	/Recovery:	Good	⊠ Poor □ Other			
Pump Flow Rat	e: 0.25 gpm			Purge Time:	<u>37</u> min.	
•						
Purge Chemistr					T	
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms) 555	D. O. (ppm) 3.2	Temp. (°C) 17.6	
855	.5	7.60	673	6.7	17.8	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·				
-	after purge: <u>13.4</u>		-	Time: <u>930</u> Time: <u>1045</u>		
-	-	g: <u>11.4</u> ft. below m.			ך Other	
Sample Appear			lightly Turbid			
Sample Odor:	None	; 🗆 0	ther			
<i>IV. Sample Ana</i> Sample Parame Metals:	<i>lyses:</i> ters: <u>Methylene (</u>	Chloride, Acetone,]			. Total Phosphorou: red	
Laboratory: Ac	cutest		Date Shipp	ea: <u>7/25/90</u>		

LOG Trenton, New Jersey 08611 (609) 695-1050 (Tclephone) Michigan Georgia Florida L General Information: Chent Name: Biostaft Laboratories. Inc. Project No.: 1350-05 Project Name: Biostaft - GW Sampled By: CK, Well No:: MW-42 Sample Date: 2/24/96 Sample ID: BIO-MW-42 Sample Date: 2/24/96 Static Depth to Water: 3.50 ft. below m.p. Measuring Point (m.p.): FVC Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): FVC Casing Ab: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.26 gallons Actual Volume removed: 6.00 gallons III. Sampling Information: Purging Method: © Peristakic Pump Submersible Pump Baller Other Well Drawdown/Recovery: Good Pump Flow Rate: 0.5 gpm Purge Time: 12 min. Purge Chemistry: Time: Gallons Time Gallons pH (Std. Units) Static Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water aft	WELL SAMP	LING		Eder Associates erview Executi		OFFICES: New York Wisconsin
I. General Information: Client Name: Biocraft Laboratories. Inc. Project No.: 1350-05 Project Name: Biocraft_GW Sampled By: CK Well No: MW-42 Sampled By: CK Sample ID: BIO-MW-42 Sample Date: 7/24/96 Sample Time: 1400 II. Well Information: PTO Reading: 0 Well Date: 2/24/96 Sample Time: 1400 II. Well Information: PTD Reading: 0 Well Date: 2/24/96 Sample Time: 1400 II. Well Information: PTO Reading: 0 Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC Casing A h: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons Mill Sampling Information: Purging Method: □ □ Other	LOG	1	Trento (609) 6	n, New Jersey 595-1050 (Telej	08611 phone)	Michigan Georgia Florida
Client Name: Biocraft Laboratories, Inc. Project No.: 1330-05 Project Name: BiocraftGW Sampled By: CK Well No.: MW-42 Sample Date: 2/24/96 Sample ID: BIO-MW-42 Sample Date: 2/24/96 Static Depth to Water: 3.50 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC Casing A b: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information: Purging Method: © Peristakic Pump Submersible Pump Bailer Other Well Date: 22 5.23 Mump Flow Rate: 0.5 gpm Purge Time: 12 min. Purge Chemistry: Good Time: Gallons pH (Std. Units) Sp. Cond. (ms) D. 0. (ppm) Temp. (°C) 1332 1336 4 6 6.22 200 11.8 140 14.0 1340 6 6 6.22 200 11.8 Depth to water after purge: 5.2 ft. below m.p. Tim	L	<u> </u>	. (007)			
Well No: MW-42 Well Use: Monitoring Sample ID: BIO-MW-42 Sample Date: 7/24/96 Sample Time: 1400 II. Well Information: Well Use: Monitoring PID Reading: 0 Well Diameter: 2, inches Static Depth to Water: 3.50 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC Casing A b: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information: Submersible Pump Bailer Other Well Drawdown/Recovery: Good Ø Poor Pump Flow Rate: 0.5 gpm Purge Time: 12 min. Purge Chemistry: Good Ø Poor Time Gallons pH (Std. Units) D. O. (ppm) Temp. (**C) 1336 4 6.15 183 10.3 14.0 Depth to water after purge: 5.2 ft. below m.p. Time: 1349 14.0 Depth to water prior to sampling: 3.2 ft. below m.p. Time: 1400 Sample Appearance: Other			<u>, Inc.</u>		Project No.: <u>13</u>	<u>50-05</u>
Sample ID: <u>BIO-MW-42</u> Sample Date: 2/24/26 Sample Time: 1400 <i>II. Well Information:</i> Well Diameter: 2 inches PID Reading: 0 Well Diameter: 2 inches Static Depth to Water: 3.50 ft. below m.p. Measuring Point (m.p.): PVC. Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC. Casing A h: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons <i>III. Sampling Information:</i> Purging Method: © Peristaltic Pump Submersible Pump Bailer Other	Project Name: Biocra	<u>ft - GW</u>			Sampled By: <u>C</u>	K
H. Well Information: Well Diameter: 2 inches Static Depth to Water: 3.50 ft. below m.p. Measuring Point (m.p.): PVC. Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC. Casing A b: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information: Purging Method: © Peristaltic Pump Submersible Pump Bailer Other Well Drawdown/Recovery: Good © Poor Pump Flow Rate: 0.5 gpm Purge Time: 12 min. Purge Chemistry: Time Gallons pH (Std. Units) Sp. Cond. (ms) D. O. (ppm) Temp. (°C) 1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water prior to sampling: 3.2 ft. below m.p. Time: 1400 Sample Appearance: Turbid Slightly Turbid Clear Other	Well No.: <u>MW-42</u>				Well Use: <u>Mon</u>	itoring
PID Reading: ① Well Diameter: 2 inches Static Depth to Water: 3_50 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC Casing A h: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information: Purging Method: ② Peristablic Pump Submersible Pump Bailer Other Well Drawdown/Recovery: Good Ø Poor Vinge Time: 12 min. Purge Time: 12 min. Purge Chemistry: Time Gallons Time Gallons pH (Std. Units) Sp. Cond. (ms) D. O. (ppm) Temp. (°C) 1332 2 5.23 119 5.0 15.2 1336 4 6.15 183 10.3 14.0 Image: Sightly to be water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water prior to sampling: 3.2 ft. below m.p. Time: 1400 Sample Appearance: Turbid Slightly Turbid © Clear Other	Sample ID: <u>BIO-MW-</u>	-42	Sample Date: 7/	<u>24/96</u>	Sample Time: 1	<u>400</u>
Static Depth to Water: 3.50 ft. below m.p. Measuring Point (m.p.): PVC. Casing Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC. Casing A h: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information: Purging Method: Purging Method: Submersible Pump Bailer Other Well Drawdown/Recovery: Good Poor Pump Flow Rate: 0.5 gpm Purge Time: 12 min. Purge Chemistry: Time Gallons Time Gallons pH (Std. Units) Sp. Cond. (ms) D.O. (ppm) Temp. (°C) 1332 2 5.23 119 5.0 152 1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water prior to sampling: 3.7 ft. below m.p. Time: 14400 Sample Appearance: Turbid Slightly Turbid Q Clear Other				Well Diameter	2 inches	
Total Well Depth: 15.50 ft. below m.p. Measuring Point (m.p.): PVC Casing ∆ h: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information:	_	r 3 50 A hel	ow m.n.			sing
A h: 12.00 feet Volume of Standing Water: 1.92 gallons A h: 12.00 feet Volume of Standing Water: 1.92 gallons Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information:	•		-	-		
Volume to be removed: 5.76 gallons Actual Volume removed: 6.00 gallons III. Sampling Information: Purging Method:	_	<u></u>	F .	•		
Purging Method: □ Submersible Pump □ Bailer □ Other Well Drawdown/Recovery: □ Good ⊠ Poor □ Pump Flow Rate: 0.5 gpm Purge Time: 12 min. Purge Chemistry:		d: <u>5.76</u> gallo	ns	Actual Volume	removed: <u>6.00</u> ga	llons
Well Drawdown/Recovery: □ Good ☑ Poor □ Other Pump Flow Rate: 0.5 gpm Purge Time: 12 min. Purge Chemistry: □ 0.0. (ppm) Temp. (°C) 1332 2 5.23 119 5.0 15.2 1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0 □ □ □ □ □ □ □ Depth to water after purge: 5.2 ft. below m.p. Time: 1340 1340 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Sample Appearance: □ □ □ □ Weil Drawdown/Recover 132 14.0 1340 14.0 □ □ □ □ □ □ □ Depth to water after purge: 5.2 ft. below m.p. Time: 1340 □ □ Sample Appearance: □ □ □ □ □ □ Sample Addition: □ □ □ □	Purging Method:	ation:		Submersible	Pump	
Pump Flow Rate: 0.5 gpm Purge Chemistry: Time Gallons pH (Std. Units) Sp. Cond. (ms) D. O. (ppm) Temp. (°C) 1332 2 5.23 119 5.0 15.2 1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 1340 6 0.22 200 11.8 14.0 1340 6 1340 1340 1340 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 1400 Sample Appearance: Turbid Slightly Turbid Clear Other	□ Bailer			Other		
Purge Chemistry: Time Gallons pH (Std. Units) Sp. Cond. (ms) D. O. (ppm) Temp. (°C) 1332 2 5.23 119 5.0 15.2 1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0	Well Drawdown/Rec	overy:	🗖 Good	🛛 Poor	Other	
Time Gallons pH (Std. Units) Sp. Cond. (ms) D. O. (ppm) Temp. (°C) 1332 2 5.23 119 5.0 15.2 1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 14.0 Depth to water prior to sampling: 3.7 ft. below m.p. Time: 1340 Sample Appearance: Turbid Slightly Turbid S Clear Sample Odor: None Other Other IV. Sample Analyses: Sample Parameters: Methylene Chloride. Acetone. Butyl Alcohol. BOD. COD. TOC. Cl. Total Phosphorou. Metals: Differed	Pump Flow Rate: 0.5	gpm			Purge Time	: <u>12</u> min.
1332 2 5.23 119 5.0 15.2 1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 Depth to water prior to sampling: 3.7 ft. below m.p. Time: 1340 Sample Appearance: □ Turbid Slightly Turbid ⊠ Clear □ V. Sample Analyses: □ Other	Purge Chemistry:					
1336 4 6.15 183 10.3 14.0 1340 6 6.22 200 11.8 14.0 1340 6 6.22 200 11.8 14.0 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 1340 14.0 Depth to water after purge: 5.2 ft. below m.p. Time: 1340 1340 14.0 Sample Appearance: Turbid Slightly Turbid Sclear Other	the second se					
1540 0 <th></th> <th></th> <th></th> <th></th> <th>the second s</th> <th></th>					the second s	
Depth to water prior to sampling: 3.7 ft. below m.p. Time: 1400 Sample Appearance: Turbid Slightly Turbid Clear Other Sample Odor: None Other Other Other IV. Sample Analyses: Sample Parameters: Methylene Chloride. Acetone. Butyl Alcohol. BOD. COD. TOC. Cl. Total Phosphorous Metals: Image: Chloride. Acetone. Butyl Alcohol. BOD. COD. TOC. Cl. Total Phosphorous Distribution of the phosphorous Distribution o	1340	6	6.22	200	11.8	14.0
Depth to water prior to sampling: 3.7 ft. below m.p. Time: 1400 Sample Appearance: Turbid Slightly Turbid Clear Other Sample Odor: None Other Other Other IV. Sample Analyses: Sample Parameters: Methylene Chloride. Acetone. Butyl Alcohol. BOD. COD. TOC. Cl. Total Phosphorous Metals: Image: Chloride Chlorid		<u></u>				
Depth to water prior to sampling: 3.7 ft. below m.p. Time: 1400 Sample Appearance: Turbid Slightly Turbid Clear Other Sample Odor: None Other Other Other IV. Sample Analyses: Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl. Total Phosphorous Metals: Unfiltered						
Depth to water prior to sampling: 3.7 ft. below m.p. Time: 1400 Sample Appearance: Turbid Slightly Turbid Clear Other Sample Odor: None Other Other Other IV. Sample Analyses: Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl. Total Phosphorous Metals: Unfiltered	Depth to water after	purge 52 ft	below m.p.		Time: 1340	
Sample Appearance: Turbid Slightly Turbid Clear Other Sample Odor: None Other Other IV. Sample Analyses: Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl. Total Phosphoron Metals: Image: Chloride in the comparison of	-					
Sample Odor: None Other IV. Sample Analyses: Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosphorov, Metals: Metals: Image: Provide the provided of the provi	•				🛛 Clear [] Other
Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl. Total Phosphorou Metals: Filtered Unfiltered				•		
Laboratory: Accutest Date Shipped: 7/25/96	Sample Parameters:	<u>Methylene C</u>	hloride, Acetone, J	Butyl Alcohol, BC	D. COD. TOC. C	I. Total Phosphoro red
	Laboratory: <u>Accutest</u>	L		Date Shipp	ed: <u>7/25/96</u>	

•

WELL SAI LO I. General Inform Client Name: Big	G nation: craft Laboratorie:	413 Rive Trentor (609) 6 (609) 6	der Associates erview Executiv h, New Jersey 0 95-1050 (Telepl 95-1003 (Facsin	8611 hone)	_
Project Name: Bi	<u>iocraft - GW</u>			-	
Well No.: <u>MW-2</u>	<u>B</u>			Well Use: Monit	-
Sample ID: <u>BIO-</u>	<u>MW-28</u>	Sample Date: <u>7/2</u>	4/96	Sample Time: <u>93</u>	<u>iu</u>
II. Well Informat PID Reading: Q Static Depth to V Total Well Depth	Water: <u>2.80</u> ft. be		Well Diameter: 1 Measuring Point Measuring Point Volume of Stand	(m.p.): <u>PVC Cas</u> (m.p.): <u>PVC Cas</u>	ing
∆ h: <u>5,35</u> feet					
Volume to be re-	moved: <u>0.63</u> gallo	ons	Actual Volume r	emoved: <u>1.00</u> gai	ions
 III. Sampling Inj Purging Method ➢ Peristaltic Pur □ Bailer Well Drawdown Pump Flow Rate 	l: mp / Recovery: e: <u>.05</u> gpm	図 Good	Submersible F Other Poor	'ump Other Purge Time:	
Purge Chemistr	y: Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
Time 830	0.5	6.47	1340	5.0	22.8
831	1	6.46	1400	5.6	22.1
	· · · · · · · · · · · · · · · · · · ·				
				<u></u>	
		+		<u></u>	<u> </u>
<u> </u>					
-	-	g: <u>2.8</u> ft. below m.p id		Time: <u>831</u> Time: <u>930</u> ⊠ Clear [] Other
<i>IV. Sample Anal</i> Sample Parame Metals: Laboratory: <u>Ac</u>	ters: <u>Methylene</u> (<u>Chloride, Acetone,]</u> Filtered	Butyi Alcohol. BO Date Shippe		I <u>, Total Phosphorous</u> red

.

854820179

. .

			der Associates		OFFICES:	
WELL SA	WELL SAMPLING Eder Asso 413 Riverview Ex				New York	
LO	G				Wisconsin Michigan	
			n, New Jersey (Georgia	
			95-1050 (Telep		Florida New Jersey	
		(609) (95-1003 (Facsi			
<i>I. General Inform</i> Client Name: <u>Bio</u>	craft Laboratories	, Inc.		Project No.: 135	<u>i0-05</u>	
Project Name: <u>B</u>	iocraft - GW			Sampled By: Ch		
Well No.: <u>MW-2</u>	5			Well Use: Monit	toring	
Sample ID: <u>BIO-</u>	<u>MW-25</u>	Sample Date: 7/2	4/96	Sample Time: 13	<u>300</u>	
II. Well Informat PID Reading: 0	ion:		Well Diameter: 2	Linches		
_	Water: <u>5.10</u> ft. bel	ow m. p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ing	
Total Well Dept	h: <u>10.00</u> ft. below	m.p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>4.90</u> feet			Volume of Stand	ling Water: <u>0.78</u> (gallons	
	moved: <u>2.34</u> gailo	ns	Actual Volume r	emoved: <u>3.00</u> gal	lons	
III. Sampling Inj						
Purging Method			🗇 Submersible l	Pump		
-	mb		☐ Other			
Bailer	-			Other		
Well Drawdown		🗌 Good	Poor 🖸	U		
Pump Flow Rate	e: <u>0.25</u> gpm			Purge Time:	. <u>12</u> mm.	
Purge Chemistr						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1220	1	6.47	481	5.0	20.9	
1224	2	6.46	524	5.1	20.4	
1228	3	6.40	527	8.2	20.5	
				·		
D	after purge: <u>9.5</u> f	helow m n		Time: <u>1230</u>		
-				Time: <u>1300</u>		
•	-	g: <u>6.8</u> ft. below m.p			Other	
Sample Appear						
Sample Odor:	□ None	0	ther			
IV. Sample Ana Sample Parame	lyses: ters: <u>Methylene (</u>	hloride, Acetone,	Butyl Alcohol, BO	<u>d, cod, toc, c</u>	. Total Phosphorous	
Metals:		☐ Filtered			ered	
Laboratory: Ac			Date Shinn	ed: <u>7/25/96</u>		

NUET CA	MDIINC	1	Eder Associates		OFFICES:	
	MPLING		verview Executive Park Wisconsin			
LC	lG		n, New Jersey		Michigan	
			595-1050 (Tele		Georgia Florida	
			695-1003 (Facs		New Jersey	
<i>I. General Inforr</i> Client Name: <u>Bi</u>	nation: ocraft Laboratoric	s. Inc.		Project No.: 13:	<u>50-05</u>	
Project Name: E	Biocraft - GW			Sampled By: <u>Cl</u>	ζ.	
Well No.: <u>MW-2</u>	24			Well Use: <u>Moni</u>	toring	
Sample ID: <u>BIO</u>	-MW-24	Sample Date: 7/	24/96	Sample Time: 12	245	
		-				
<i>II. Well Informa</i> PID Reading: <u>0</u>	tion:		Well Diameter:	2_inches		
Static Depth to	Water: <u>5.13</u> ft. bei	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Total Well Dept	h: <u>13.08</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>7.95</u> feet		-	Volume of Stan	ding Water: <u>1.27</u>	galions	
	moved: <u>3.81</u> galle	ns.		removed: <u>4.00</u> gal	-	
volume to be re		/11.5	///////////////////////////////////////			
III. Sampling In Purging Method ⊗ Peristaltic Pu	i:		Submersible	Pump		
🔲 Bailer			[] Other			
Well Drawdown	a/Recovery:	🗂 Good	🛛 Poor	Other		
Pump Flow Rat	e: 0.25 gpm			Purge Time:	<u>16</u> min.	
Purge Chemistr	у:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1205	2	7.08	463	7.7	23.4	
1214		1.02		12.5		
	I	ł		<u>I</u>	ł	
Depth to water	after purge: <u>12.6</u>	ft. below m.p.		Time: <u>1214</u>		
Depth to water	prior to sampling	: <u>7.2</u> ft. below m.p		Time: <u>1245</u>		
Sample Appearance: 🗇 Turbid 🔄 Slightly Turbid 🖾 Clear 📋 Other] Other	
Sample Odor:	□ None	[] O	ther			
•	_					
<i>IV. Sample Anal</i> Sample Parame Metals:	lyses: ters: <u>Methylene C</u>	hloride, Acetone, I	Butyl Alcohol, BO	D, COD, TOC, Cl, □ Unfilter	Total Phosphorou	
	outoat		Nata Shinn	-		
Laboratory: <u>Ac</u>	Laboratory: Accutest Date Shipped: 7/25/96					

		-			OFFICES:		
WELL SA	MPLING		EUCI ASSOCIATES New York				
LC)G		413 Riverview Executive Park Trenton, New Jersey 08611 (609) 695-1050 (Telephone) (609) 695-1003 (Facsimile)Wisconsin Michigan Georgia Florida New Jersey				
			•		Georgia		
			• •	-	Florida New Jersey		
		(009)	090-1000 (1acs				
I. General Inform Client Name: Bi	mation: ocraft Laboratorie	s. Inc.		Project No.: <u>13:</u>	<u>50-05</u>		
Project Name: E				Sampled By: <u>Cl</u>	2		
Well No.: MW-1				Well Use: <u>Moni</u>	toring		
Sample ID: BIO		Sample Date: 7/2	24/96	Sample Time: <u>9(</u>	<u>xo</u>		
		-		-			
II. Well Informa PID Reading: Q	tion:		Well Diameter:	<u>4 inches</u>			
Static Depth to	Water: <u>5.28</u> ft. be	low m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
Total Well Dept	th: <u>10.45</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing		
Δ h: <u>5.17</u> feet			Volume of Stand	ting Water: <u>3.36</u> (gallons		
Volume to be re	moved: <u>10.08</u> gal	lons	Actual Volume	removed: <u>11.00</u> ga	llons		
III. Sampling In Purging Method	d:		Submersible Pump Other				
Bailer	-		-				
Well Drawdowi	a/Recovery:	🛛 Good	🗋 Poor	Other			
Pump Flow Rat	e: 0.5 gpm			Purge Time:	<u>22</u> min.		
Dunne Chemiste	<i></i>						
Purge Chemistr Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
710	4	6.86	925	8.1	19.9		
712	8	6.84	887	7.1	20.4		
714	11	6.84	873	6.3	20.8		
	<u> </u>	L		L	· · · ·		
Depth to water	after purge: <u>5.28</u>	ft. below m.p.		Time: <u>714</u>			
Depth to water	prior to sampling	: <u>5.28</u> ft. below m.	p .	Time: <u>900</u>			
Sample Appear	• • •			🖂 Clear 🛛] Other		
Sample Odor:	[] None	—	ther				
Turber Parts							
<i>IV. Sample Ana</i> Sample Parame Metals:	<i>lyses:</i> eters: <u>Methylene C</u>	hloride, Acetone, I	Butyl Alcohol, BO	D. COD. TOC. Cl. □ Unfilter	Total Phosphoro		
	outert		Note Shinn	_			
Laboratory: Accutest Date Shipped: 7/25/96							

	1	т	lan Angenister		OFFICES:	
WELL SA	1		Eder Associates erview Executi	1	New York	
LO	G		n, New Jersey		Wisconsin Michigan	
			695-1050 (Telej		Georgia Florida	
			(609) 695-1003 (Facsimile)			
		(00))				
<i>I. General Inform</i> Client Name: <u>Bio</u>		. Inc.		Project No.: <u>13</u>	<u>50-05</u>	
Project Name: <u>Biocraft - GW</u>				Sampled By: <u>Cl</u>	\$	
Well No.: W-1				Well Use: <u>Moni</u>	toring	
Sample ID: <u>BIO-</u>	-W-1	Sample Date: 11	/13/96	Sample Time: 12	220	
54-pro <u></u>		•				
II. Well Informat PID Reading: Q	tion:		Well Diameter: ;	2_inches		
Static Depth to V	Water: <u>6.90</u> ft. bel	ow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
-	h: <u>16.60</u> ft. below		Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>9.70</u> feet		-	Volume of Stand	ting Water: <u>1.55</u> ;	gallons	
	moved: <u>4.65</u> gallo	me	Actual Volume	removed: <u>5.00</u> gal	lons	
volume to be rea	moveu. <u>4.02</u> gano					
III. Sampling Information: Purging Method: ⊠ Peristaltic Pump □ Bailer			Submersible Pump Other			
0	/Decovery:	□ Good	⊠ Poor □ Other			
Well Drawdown		0000	Purge Time: 2 min.			
Pump Flow Rate	e: <u>0,5</u> gpm			Furge Time.	<u>Z IIIII.</u>	
Purge Chemistry	27 *					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1124	2.5	6.31	350	4.5	11.9	
1129	5	6.44	360	4.6	12.1	
				ļ		
Depth to water a	after purge: <u>10.7</u>	ft. below m.p.		Time: <u>1130</u>		
Depth to water	prior to sampling	: <u>7.0</u> ft. below m.p		Time: <u>1220</u>		
Sample Appeara	ance: 📑 Turbi	d 🗖 St	ightly Turbid	🛛 Clear 🛛 🗌] Other	
Sample Odor: None Other						
<i>IV. Sample Anal</i> Sample Parame Metals: Laboratory: <u>Ac</u> a	ters: <u>Methylene C</u>	hloride. Acetone, 1		D. COD. TOC. Cl Unfilte ed: <u>11/14/96</u>	<u>, Total Phosphorou</u> red	

LC	MPLING DG	413 Riv Trento (609) ((609)	OFFICES: New York Wisconsin Michigan Georgia Florida New Jersey				
I. General Inform Client Name: <u>Bi</u>	mation: ocraft Laboratorie	s. Inc.		Project No.: 13	<u>50-05</u>		
Project Name: H	Biocraft - GW			Sampled By: <u>Cl</u>	2		
Well No.: <u>W-2</u>				Well Use: <u>Moni</u>	toring		
Sample ID: <u>BIO</u>	<u>-W-2</u>	Sample Date: 11	/13/96	Sample Time: <u>17</u>	210		
<i>II. Well Informa</i> PID Reading: Q	tion:		Well Diameter: /	2_inches			
Static Depth to	Water: <u>7.52</u> ft. be	low m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
Total Well Dept	h : <u>19.65</u> ft. below	т.р.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
Δ h: <u>12.13</u> feet			Volume of Stand	ling Water: <u>1.94</u> ;	gallons		
Volume to be re	moved: <u>5.82</u> galic	ns	Actual Volume	removed: <u>6.00</u> gal	lons		
 III. Sampling Information: Purging Method: 			□ Submersible Pump □ Other ⊠ Poor □ Other				
Pump Flow Rat	-		Purge Time: 12 min.				
	** 344 BF***			8	_		
Purge Chemistr		TI (Cal II-ta)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
Time 1109	Gallons 2	pH (Std. Units) 6.42	275 Sp. Cond. (IIIS)	4.2	12.7		
1113	4	6.62	355	4.6	12.8		
1117	6	6.72	357	3.4	12.9		
-	after purge: <u>15.5</u>	_		Time: <u>1120</u>			
•		: <u>7.8</u> ft. below m.p.		Time: <u>1210</u>			
Sample Appear:	ance: 🔲 Turbi		ightly Turbid	🛛 Clear 🗌] Other		
Sample Odor:	🗌 None	[] O	her				
<i>IV. Sample Anal</i> Sample Parame Metals:	lyses: ters: <u>Methylene C</u>	<u>hloride, Acetone, I</u> □ Filtered	<u>dutyi Alcohol, BO</u>	D. COD. TOC. Cl. D Unfilter	<u>Total Phosphorous</u> ed		
Laboratory: <u>Ac</u>	cutest		Date Shippe	ed: <u>11/14/96</u>			

			den Annahatan	T	OFFICES:	
WELL SAN			Eder Associates Verview Executive Park Wisconsin			
LO	G		n, New Jersey (Michigan	
			95-1050 (Telep		Georgia Florida	
		(609) 6		New Jersey		
I. General Inform Client Name: <u>Bio</u>		Inc.		Project No.: <u>135</u>	<u>0-05</u>	
Project Name: Bi	ocraft - GW			Sampled By: <u>CK</u>	L .	
Well No.: W-3				Well Use: Monit	oring	
Sample ID: BIO-	<u>W-3</u>	Sample Date: 11	<u>/13/96</u>	Sample Time: <u>12</u>	00	
-						
II. Well Information PID Reading: Q	lon:		Well Diameter: 2	Linches		
Static Depth to V	Vater: <u>7.73</u> ft. bel	ow m.p.	Measuring Point	(m.p.): <u>PVC Cas</u> i	ng	
Total Well Depth			Measuring Point	(m.p.): <u>PVC Cas</u> i	ng	
∆ h: <u>12.59</u> feet			Volume of Stand	ling Water: <u>2.01</u> g	gallons	
Volume to be ren	noved: <u>6.03</u> gallo	ns	Actual Volume r	emoved: <u>6.00</u> gall	ons	
III. Sampling Inf Purging Method: ⊠ Peristaltic Pur □ Bailer	:		Submersible Pump Other			
Well Drawdown	Recovery:	[□] Good	⊠ Poor	Other		
Pump Flow Rate				– Purge Time:	<u>12 min.</u>	
Tump Tron Actor				_		
Purge Chemistry	<i>r</i> :					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1054	2	6.75	368 385	2.2	12.9 13.0	
1058 1102	<u> </u>	6.76	385	3.0	13.0	
1102						
-	ifter purge: <u>17.5</u> prior to sampling	1. ft. below m.p. :: <u>8.2</u> ft. below m.p	·	Time: <u>1102</u> Time: <u>1200</u>		
Sample Appears				🛛 Clear 🛛] Other	
Sample Odor:	🗌 None	0	ther			
Sample Ouor.						
W Samule Anal	ters: <u>Methylene C</u>	<u>bloride, Acetone, l</u> Filtered		D. COD. TOC. Cl Unfilter ed: <u>11/14/96</u>	<u>. Total Phosphorous</u> red	

		T			OFFICES:	
WELL SA	MPLING	-	Eder Associates New York			
LO	G		on, New Jersey 08611 Wisconsin Michigan			
					Georgia	
			95-1050 (Telep		Florida New Jersey	
		(609) (595-1003 (Facsi]	
I. General Inform Client Name: <u>Bio</u>	ation: craft Laboratories	, Inc.		Project No.: <u>135</u>	<u>0-05</u>	
Project Name: <u>Biocraft - GW</u>				Sampled By: <u>CK</u>	•	
Well No.: <u>W-6</u>				Well Use: Monit	oring	
Sample ID: <u>BIO-</u>	<u>W-6</u>	Sample Date: 11/	<u>13/96</u>	Sample Time: 11	<u>20</u>	
II. Well Informat PID Reading: Q	ion:		Well Diameter: 2	<u>Linches</u>		
Static Depth to V	Vater: <u>7.11</u> ft. bel	ow m.p.	Measuring Point	(m.p.): <u>PVC Casi</u>	ng	
Total Well Depth	1: 21.60 ft. below	m.p.	Measuring Point	(m.p.): <u>PVC Casi</u>	ng	
∆ h: <u>14.05</u> feet			Volume of Stand	ling Water: <u>2.25</u> g	allons	
Volume to be rea	noved: <u>6.75</u> gailo	ns	Actual Volume 1	emoved: <u>7.00</u> gall	ons	
III. Sampling Information: Purging Method: ⊠ Peristaltic Pump □ Bailer			Submersible Pump Other			
Well Drawdown	Decoveru.	🖂 Good	Poor	Other		
Pump Flow Rate			0	Purge Time:		
Purge Chemistry					T (9C)	
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm) 3.1	Temp. (°C) 14.9	
1029	2 4	7.23	<u>663</u> 698	3.3	14.8	
1033 1038	6	7.26	728	3.2	14.7	
1038						
Depth to water after purge: 18.7 ft. below m.p. Time: 1038 Depth to water prior to sampling: 9.5 ft. below m.p. Time: 1120						
Sample Appears	ance: 🔲 Turbi	d 🖸 SI	ightly Turbid	🛛 Clear 🛛] Other	
Sample Odor:	🗋 None	00	ther			
IV. Sample Analyses: Sample Parameters: <u>Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl. Total Phosphorous</u> Metals:						
Laboratory: Accutest Date Shipped: 11/14/96						

		T	den Associator		OFFICES:	
WELL SA			Eder Associates New York			
LO	G		on, New Jersey 08611 Wisconsin			
				Georgia Florida		
			(609) 695-1050 (Telephone) (609) 695-1003 (Facsimile)			
<i>I. General Inform</i> Client Name: <u>Bio</u>	nation: ocraft Laboratories	. Inc.		Project No.: 135	<u>iQ-05</u>	
Project Name: <u>B</u>	iocraft - GW			Sampled By: <u>Ch</u>	Σ.	
Well No.: <u>W-4</u>				Well Use: Monit	toring	
Sample ID: <u>BIO-</u>	W-4	Sample Date: 11	/13/96	Sample Time: 11	40	
5411 pro 120. 212		•				
II. Well Informal PID Reading: Q	tion:		Well Diameter: 2	inches		
Static Denth to V	Water: <u>5.77</u> ft. bel	ow m.p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ing	
-	h: <u>18.00</u> ft. below		Measuring Point	(m.p.): <u>PVC Cas</u>	ing	
-			-	ing Water: <u>1.96</u>		
Δ h: <u>12.23</u> feet	h (00 1)-			emoved: 6.00 gal		
Volume to be re	moved: <u>5.88</u> gallo	ns	Actual Volume	emoved. <u>0.00</u> Bas	10110	
III. Sampling Information: Purging Method: Peristaltic Pump			Submersible Pump Other			
Bailer	-			Other		
Well Drawdown		🗌 Good	🛛 Poor	—		
Pump Flow Rate	e: <u>0.5</u> gpm			Purge Time:	<u>12</u> mm.	
Dune Chamiste						
Purge Chemistr Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
1010	2	6.67	253	0.9	14.0	
1014	4	6.81	306	2.2	14.2	
1018	6	7.11	425	0.7	14.4	
		<u> </u>				
Depth to water :	after purge: <u>14.7</u>	ft. below m.p.		Time: <u>1018</u>		
Depth to water	prior to sampling	;: <u>6.2</u> ft. below m.p		Time: <u>1140</u>		
Sample Appear	ance: 🔲 Turbi	d 🗆 Si	ightly Turbid	🛛 Clear 🛛 🗌] Other	
Sample Odor:	□ None	п0	ther			
2000p.0 00000						
<i>IV. Sample Anal</i> Sample Parame Metals:	<i>lyses:</i> ters: <u>Methylene C</u>	hloride, Acetone, Filtered	Butyl Alcohol, BO	D, COD, TOC, C Unfilte	<u>, Total Phosphorou</u> red	
Laboratory: <u>Ac</u>	cutest		Date Shipp	ed: <u>11/14/96</u>		

				<u> </u>	OFFICES:
WELL SAN	IPLING		der Associates	1	New York
LO			rview Executiv		Wisconsin Michigan
201	-		, New Jersey 0		Georgia
			95-1050 (Telepl		Florida New Jersey
		(609) 6	95-1003 (Facsi	mile) [New Julicy
I. General Inform Client Name: <u>Bio</u>	ation: craft Laboratories	Inc.		Project No.: 135	<u>0-05</u>
Project Name: <u>Bi</u>	<u>ocraft - GW</u>			Sampled By: <u>CK</u>	
Well No.: <u>W-5</u>				Well Use: Monit	oring
Sample ID: <u>BIO-V</u>	<u>w-5</u>	Sample Date: <u>11/</u>	<u>13/96</u>	Sample Time: <u> </u>	<u>30</u>
II. Well Informati	io n :		Well Diameter: 2	inches	
PID Reading: Q Static Depth to V	Vater: 5.98 ft. bel	ow m.p.	Measuring Point		ng
Total Well Depth			Measuring Point		
Δ h: <u>14.62</u> feet			Volume of Stand	ing Water: <u>2.34</u> §	gallons
Volume to be rer	noved: <u>7,02</u> gallo	ns	Actual Volume r	emoved: <u>7.00</u> gal	ions
III. Sampling Inf	formation:				
Purging Method				_	
Peristaltic Pur			Submersible I	rump	
🗂 Bailer			Other		
Well Drawdown	/Recovery:	🗖 Good	Poor	Other	
Pump Flow Rate	:: <u>0,5</u> gpm			Purge Time:	<u>14 min.</u>
Purge Chemistry	y: Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
Time 1015	2	6.92	416	2.1	14.4
1019	4	6.81	607	1.7	15.1
1024	7	7.10	570	2.1	15.0
		A halow m n		Time: <u>1024</u>	
-	after pu <mark>rge</mark> : <u>17.2</u>				
Depth to water	prior to sampling	g: <u>6.1</u> ft. below m.p		Time: <u>1130</u>	
Sample Appear	ance: 🔲 Turbi		lightly Turbid	⊠ Clear (] Other
Sample Odor:	None	· []0	ther		
n/ ct. A	hurse				
IV. Sample Ana Sample Parame	tyses. ters: Methylene (Chloride, Acetone.	Butyl Alcohol, BC	D. COD. TOC. C	1. Total Phosphorou
Metals:	AMERICAN PLANES TEMPER	☐ Filtered		🗌 Unfilte	ered
Laboratory: Ac	cutest		Date Shipp	ed: <u>11/14/96</u>	

854820188

WELL SAL LO I. General Inform Client Name: Bio Project Name: B Well No.: <u>MW-4</u>	G nation: peraft Laboratories iocraft - GW	413 Riv Trento (609) 6 (609) 6	Eder AssociatesOFFICES: New York413 Riverview Executive ParkWisconsin Michigan GeorgiaTrenton, New Jersey 08611Michigan Georgia(609) 695-1050 (Telephone)Florida New Jersey(609) 695-1003 (Facsimile)New JerseyProject No.: 1350-05 Sampled By: CK Well Use: Monitoring			
Sample ID: <u>BIO-</u>	<u>MW-42</u>	Sample Date: 11	/13/96	Sample Time: 11	00	
-	<i>tion:</i> Water: <u>3.05</u> ft. bel h: <u>15.50</u> ft. below		Well Diameter: <u>2</u> inches Measuring Point (m.p.): <u>PVC Casing</u> Measuring Point (m.p.): <u>PVC Casing</u>			
∆ h: <u>12.45</u> feet				ling Water: <u>1.99</u> g		
Volume to be re	moved: <u>5.97</u> gallo	ns	Actual Volume r	emoved: <u>6,00</u> gall	ons	
III. Sampling Inj Purging Method ⊠ Peristaltic Pur □ Bailer Well Drawdown Pump Flow Rate	: mp /Recovery:	🗀 Good	 Submersible I Other Poor 	Pump D Other Purge Time:		
Purge Chemistr					T (90)	
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms) 109	D. O. (ppm) 3.6	Temp. (°C) 12.6	
937	2	5.46	136	3.7	12.8	
941	6	6.34	181	3.7	12.9	
545			<u>_</u>			
-		:: <u>3.1</u> ft. below m.p d Si		Time: <u>945</u> Time: <u>1100</u> ⊠ Clear □] Other	
- IV Sample Ana	ters: <u>Methylene C</u>	hloride. Acetone. T Filtered		D, COD, TOC. Cl. D Unfilter ed: <u>11/14/96</u>	<u>. Total Phosphorous</u> red	
Danoratory. At	<u> </u>		F F			

WELL SAM			Eder Associates erview Executiv	ve Park	OFFICES: New York Wisconsin		
		(609) 6	n, New Jersey (595-1050 (Telep 695-1003 (Facsi	hone)	Michigan Georgia Florida New Jersey		
I. General Informati Client Name: <u>Biocra</u>		<u>s. Inc.</u>		Project No.: <u>135</u>	0-05		
Project Name: Bioc	raft - GW			Sampled By: Ck	2		
Well No.: DEP-1A			Well Use: Monitoring				
Sample ID: <u>BIO-DE</u>	<u>P-1A</u>	Sample Date: <u>11</u>	<u>/13/96</u>	Sample Time: 11	10		
II. Well Information	r:		Well Diameter: 2	2 inches			
PID Reading: 0 Static Depth to Wat	tor 758 A ha	low m n		(m.p.): <u>PVC Cas</u>	ine		
Total Well Depth: 2			-	(m.p.): <u>PVC Cas</u>			
-	ת שנשט זו. <u>בער</u> וו	m.h.	_	ling Water: 0.80 (
Δ h: <u>4.97</u> feet Volume to be remov	ved. 2 40 cells	me		emoved: <u>3.00</u> gal			
Volume to be remov	veu: <u>2.40</u> gant	/115	Actual Volumes	CHICLER FIRE B			
III. Sampling Inform Purging Method: ⊠ Peristaltic Pump			Submersible I	Pump			
Bailer			Other				
	ecovery:	🗖 Good	🛛 Poor	Other			
Pump Flow Rate: 0	<u>1.5</u> gpm			Purge Time:	<u>6</u> min.		
Purge Chemistry:	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
<u>Time</u> 957	1.5	6.38	143	2.2	11.7		
100	3	6.38	144	3.7	11.6		
		_					
Depth to water afte	er purge: <u>5.23</u>	ft. below m.p.	L	Time: <u>1000</u>			
Depth to water pric	_		I.	Time: <u>1110</u>			
Sample Appearance				🖾 Clear 🛛] Other		
Sample Odor:			ther				
<i>IV. Sample Analyse</i> Sample Parameter: Metals:	s :		Butyl Alcohol, BO	D, COD, TOC, Cl	<u>. Total Phosphoror</u> red		
Laboratory: Accut	est		Date Shippe	ed: <u>11/14/96</u>			
					85		

					OFFICES:	
WELL SA	MPLING	1	Eder Associates		New York	
)G	1	erview Executi		Wisconsin	
		l	n, New Jersey		Michigan Georgia	
			595-1050 (Tele		Florida	
		(609)	695-1003 (Facs	imile)	New Jersey	
I. General Infor		Ţ		Dundand bin - 124	50 O.5	
	ocraft Laboratorie	<u>s, inc.</u>		Project No.: 13:		
Project Name: <u>I</u>	<u> Biocraft - GW</u>			Sampled By: Cl	<u>s</u>	
Well No.: <u>MW-3</u>	33A			Well Use: <u>Moni</u>	toring	
Sample ID: <u>BIQ</u>	<u>-MW-33A</u>	Sample Date:]]	<u>/13/96</u>	Sample Time: 96	20	
II. Well Informa	ution:					
PID Reading: Q			Well Diameter:	<u>2</u> inches		
Static Depth to	Water: <u>5.40</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Total Well Dept	ih: <u>9.48</u> ft. below r	n.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>4.08</u> feet			Volume of Stand	ding Water: 0.65	gallons	
Volume to be re	moved: <u>1.95</u> galle	ons	Actual Volume removed: 2.00 gallons			
III. Sampling In Purging Method ⊠ Peristaltic Pu	i:		📋 Submersible	Բսաթ		
🔲 Bailer			Other			
Well Drawdown	h/Recovery:	🗖 Good	🛛 Poor	Other		
Pump Flow Rat	e: <u>0,25</u> gpm			Purge Time:	<u>8</u> min.	
•				-		
Purge Chemistr						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
853	0	7.42	712	2.0	14.3	
857 900	1	6.99 6.99	721	1.9	10.2	
900	2	0.39	115		10.7	
	l					
Depth to water	after purge: <u>7.2</u> fi	t. below m.p.		Time: <u>900</u>		
Depth to water	prior to sampling	: <u>7.2</u> ft. below m.p.		Time: <u>900</u>		
Sample Appear	ance: 📋 Turbi	d 🛛 SI	ightly Turbid	🛛 Clear 🛛	Other	
Sample Odor:	None	D 04	ber			
Metals:	ters: <u>Methylene C</u>	hloride, Acetone, I D Filtered			<u>Total Phosphorous</u> ed	
Laboratory: <u>Ac</u>	LUICSI		Date Shippe	a. <u>11/14/20</u>		

-

1

		т	Eder Associates		OFFICES:	
WELL SA			erview Executiv	ve Park	New York Wisconsin	
<i>L0</i>	G G		n, New Jersey		Michigan	
			95-1050 (Telep		Georgia Florida	
			695-1003 (Facs)		New Jersey	
L			575-1005 (1 uos			
I. General Inform Client Name: <u>Bis</u>	nation: ocraft Laboratories	<u>;, Inc.</u>		Project No.: <u>13</u>	<u>50-05</u>	
Project Name: B	iocraft - GW		Sampled By: <u>CK</u>			
Well No.: <u>MW-3</u>	1			Well Use: <u>Moni</u>	toring	
Sample ID: <u>BlO-</u>	<u>MW-31</u>	Sample Date: <u>11/13/96</u> Sample Time: <u>830</u>				
<i>II. Well Informa</i> PID Reading: Q	tion:		Well Diameter: 2	Linches		
Static Depth to V	Water: <u>4.36</u> ft. bel	ow m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing	
Total Well Depth: <u>11.62</u> ft. below m.p.			Measuring Point	t (m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>7.26</u> feet			Volume of Stand	ling Water: <u>1.16</u> ;	gallons	
Volume to be re	moved: <u>3.48</u> gallo	ns	Actual Volume r	emoved: <u>4.00</u> gal	lons	
III. Sampling In Purging Method ⊠ Peristaltic Pu	h:		🔲 Submersible I	Pump		
🔲 Bailer			Other			
— Well Drawdown	/Recovery:	🗖 Good	🛛 Poor	📋 Other		
Pump Flow Rat	e: <u>0.5</u> gpm			Purge Time:	<u>8</u> min.	
Purge Chemistr	V:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
812	0	6.50	288	2.8	11.9	
816	2	6.42	266 412	3.1	11.9 12.4	
819	4	6.79	412	5.0	12.7	
Depth to water	after purge: <u>5.26</u>	ft, below m.p.		Time: <u>820</u>		
-		: <u>4.4</u> ft. below m.p		Time: <u>830</u>		
Sample Appear	• • •] Other	
• ••	nce. □ Iuron	-	ther			
Sample Odor:		00	uivi			
<i>IV. Sample Ana</i> Sample Parame Metals:	<i>lyses:</i> ters: <u>Methylene C</u>	hloride, Acetone,]			. Total Phosphorou: red	
Laboratory: <u>Ac</u>	cutest		Date Shipp	ed: <u>11/14/96</u>		

• • •

	PLING	LING Eder Associates OFFICES: New York			
LOG			erview Executiv		Wisconsin
200			n, New Jersey (Michigan Georgia
			695-1050 (Telepi		Florida New Jersey
		(609)	695-1003 (Facsi	mile)	Incu seisey
I. General Informati				m 1 / M 102	0.05
Client Name: <u>Biocra</u>	aft Laboratorie	s. Inc.		Project No.: 135	
Project Name: <u>Bioc</u>	<u>raft - GW</u>			Sampled By: <u>Ck</u>	
Well No.: <u>MW-32</u>				Well Use: Monit	toring
Sample ID: <u>BIO-M\</u>	<u>₩-32</u>	Sample Date: <u>11</u>	/12/96	Sample Time: <u>15</u>	515
II. Well Information	1:				
PID Reading: 0			Well Diameter: 2	_inches	
Static Depth to Wat	ter: <u>3.69</u> ft. be	low m.p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ing
Total Well Depth:]	11.50 ft. below	m.p.	Measuring Point	(m.p.): <u>PVC Cas</u>	ing
∆ h: <u>7.81</u> feet			Volume of Stand	ing Water: <u>1.25</u> (gallons
Volume to be remo	ved: <u>3.75</u> gallo	ons	Actual Volume r	emoved: <u>4,00</u> gal	lons
III. Sampling Inform Purging Method: ⊠ Peristaltic Pump			□ Submersible F	ump	
			Other	-	
		Good	⊠ Poor	□ Other	
Well Drawdown/Re		0000	X I UUI	Purge Time:	
Pump Flow Rate: 0	<u>1.5</u> gpm			i uige i inte.	<u>v</u>
Purge Chemistry:					(1.0)
	Gallons	pH (Std. Units)	Sp. Cond. (ms) 551	D. O. (ppm) 3.3	Temp. (°C) 12.6
Time		6.00			
1435	0	5.90		5.4	12.0
		5.90 5.66 5.52	545 540		
1435 1439	0 2	5.66	545	5.4	12.4
1435 1439	0 2	5.66	545	5.4	12.4
1435 1439	0 2	5.66	545	5.4	12.4
1435 1439 1443	0 2 4	5.66 5.52	545	5.4	12.4
1435 1439 1443 Depth to water after	0 2 4 er purge: <u>7.8</u> f	5.66 5.52	545 540	5.4 4.2	12.4
1435 1439	0 2 4 er purge: 7.8 f	5.66 5.52 t. below m.p. g: <u>4.2</u> ft. below m.p		5.4 4.2 Time: <u>1445</u> Time: <u>1515</u>	12.4
1435 1439 1443 Depth to water after Depth to water prio Sample Appearance	0 2 4 er purge: 7.8 f	5.66 5.52 t. below m.p. g: <u>4.2</u> ft. below m.p id	545 540	5.4 4.2 Time: <u>1445</u> Time: <u>1515</u>	12.4
1435 1439 1443 Depth to water after Depth to water prior Sample Appearance Sample Odor: IV. Sample Analysee Sample Parameter: Metals:	0 2 4 er purge: 7.8 f or to sampling ce: [] Turbi [] None es: s: Methylene C	5.66 5.52 t. below m.p. g: 4.2 ft. below m.p id	545 540	5.4 4.2 Time: <u>1445</u> Time: <u>1515</u> ⊠ Clear [D. COD. TOC. Cl	12.4 12.4
1435 1439 1443 Depth to water after Depth to water priot Sample Appearance Sample Odor: IV. Sample Analyse Sample Parameter	0 2 4 er purge: 7.8 f or to sampling ce: [] Turbi [] None es: s: Methylene C	5.66 5.52 t. below m.p. g: 4.2 ft. below m.p id S 0 Chloride, Acetone,	545 540	5.4 4.2 Time: <u>1445</u> Time: <u>1515</u> ⊠ Clear [D. COD. TOC. Cl	12.4 12.4

TIERRA-B-009187

WELL SAM	PLING	Eder AssociatesOFFIC New Y413 Riverview Executive ParkWiscor Wiscor Trenton, New Jersey 08611 (609) 695-1050 (Telephone)Michig Georgi Florida New Je(609) 695-1003 (Facsimile)New Je				
I. General Informati Client Name: <u>Biocr</u> a		s <u>. Inc.</u>		Project No.: <u>135</u>	<u>0-05</u>	
Project Name: <u>Bioc</u>	<u>raft - GW</u>		Sampled By: <u>CK</u>			
Well No.: <u>MW-24</u>				Well Use: Monit	oring	
Sample ID: <u>BIO-M'</u>	₩-24	Sample Date: <u>11/12/96</u> Sample Time: <u>1415</u>				
II. Well Information PID Reading: Q	r :		Well Diameter: 2	2_inches		
Static Depth to Wa	ter: <u>5.00</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u> i	ng	
Total Well Depth:]			Measuring Point	t (m.p.): <u>PVC Casi</u>	ng	
∆ h: <u>8.00</u> feet		-	Volume of Stand	ding Water: <u>1.28</u> g	allons	
Volume to be remo	ved: <u>3.84</u> gallo	ons	Actual Volume	removed: <u>4,00</u> gall	ons	
111. Sampling Inford Purging Method: Peristaltic Pump Bailer			 Submersible Other 	Pump		
Well Drawdown/R	ecovery:	🗖 Good	🖾 Poor	Other		
Pump Flow Rate: () <u>.5</u> gpm			Purge Time:	<u>8</u> min.	
Purge Chemistry:						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm) 4.1	Temp. (°C) 15.1	
1354	2	7.20	320 298	4.1	15.5	
1400	4	7.67	288	3.7	15.6	
				Time: <u>1400</u>		
-	· · · · · · · · · · · · · · · · · · ·	g: <u>6.5</u> ft. below m.p		Time: <u>1415</u>	Other	
Depth to water pri				54 f 1007] Other	
Depth to water pri Sample Appearance	e: 🔲 Turbi			⊠ Clear □	-	
Depth to water pri Sample Appearance			tightly Turbid		-	
Depth to water after Depth to water pris Sample Appearance Sample Odor: <i>IV. Sample Analyse</i> Sample Parameter Metals:	e: [] Turbi [] None		ther		<u>Total Phosphoro</u> ed	
Depth to water pri Sample Appearance Sample Odor: <i>IV. Sample Analyse</i> Sample Parameter	e: D Turbi D None s: s: <u>Methylene (</u>	Chloride, Acetone,	ther Butyl Alcohol, BO	D, COD, TOC, Cl.	<u>Total Phosphoro</u> ed	

WELL SAI LO I. General Inform Client Name: <u>Bio</u> Project Name: <u>Bi</u> Well No.: <u>MW-25</u> Sample ID: <u>BIO-</u>]	G ation: craft Laboratoric ocraft - GW	413 Riv Trento (609) (609)	Eder Associates verview Executi on, New Jersey 595-1050 (Telep 695-1003 (Facs	ve Park 08611 phone)	K toring
II. Well Informati	lon:				
PID Reading: 0			Well Diameter:		
Static Depth to W		-	•	t (m.p.): <u>PVC Cas</u>	-
Total Well Depth	: <u>10.00</u> ft. below	m.p.	_	t (m.p.): <u>PYC Cas</u>	-
Δ h: <u>4.94</u> feet				ling Water: 0.79	-
Volume to be ren	noved: <u>2.37</u> gallo	ms	Actual Volume	emoved: <u>3.00</u> gal	lons
III. Sampling Info Purging Method: Peristaltic Pun			Submersible]	Pump	
Well Drawdown/	Recovery:	🗌 Good	Door	Other	
Pump Flow Rate	: <u>0.5</u> gpm			Purge Time:	<u>6 min.</u>
Purge Chemistry	: Gallons	all (Std Limita)	Sn Cond (ma)	D.O. (nom)	Temp. (°C)
Time 1348	0	pH (Std. Units) 687	Sp. Cond. (ms) 409	D. O. (ppm) 4.2	14.0
1350	1.5	6.79	452	4.2	14.1
1353	3	6.79	461	3.8	14.1
Depth to water a Depth to water p Sample Appeara	rior to sampling	: <u>5.1</u> ft. below m.p		Time: <u>1353</u> Time: <u>1430</u> ⊠ Clear □) Other
Sample Odor:	□ None		ther		
- IV. Sample Analy	ses: ers: <u>Methylene C</u>		Butyl Alcohol, BO Date Shippe		ed
					8548

WELL SAMP	IING	ING Eder Associates OFFICES: New York				
LOG	Liivo		erview Executiv		Wisconsin	
LUU			n, New Jersey (Michigan Georgia	
			95-1050 (Telep		Florida New Jersey	
		(609) (59.5-1003 (Facsi	mile)		
. General Informatio		_		Desident No. 125	0.05	
Client Name: <u>Biocraf</u>	t Laboratorie	s. Inc.		Project No.: <u>135</u>		
Project Name: <u>Biocra</u>	aft - GW			Sampled By: <u>CK</u>		
Well No.: <u>MW-17</u>				Well Use: Monit	oring	
Sample ID: <u>BIO-MW</u>	-17	Sample Date: <u>11</u>	/12/96	Sample Time: <u>13</u>	40	
I. Well Information:						
PID Reading: Q			Well Diameter: 4			
Static Depth to Wate	er: <u>5.13</u> ft. be	low m.p.	_	(m.p.): <u>PVC Cas</u>		
Fotal Well Depth: <u>1(</u>) <u>.45</u> ft. below	m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing	
∆ h: <u>5.32</u> feet			Volume of Stand	ling Water: <u>3.46</u> §	gallons	
olume to be remov	ed: <u>10.38</u> gal	ions	Actual Volume 1	removed: <u>10,50</u> ga	llons	
III. Sampling Inform Purging Method: 河 Peristaltic Pump	ation:		□ Submersible]	Pump		
Bailer			Other			
,	OVATO:	🖾 Good	Poor	Other		
				Purge Time:		
Pump Flow Rate: <u>0.</u>	7 Sbu			8		
Purge Chemistry:					T ((A))	
Time	Gallons	pH (Std. Units) 7.00	Sp. Cond. (ms) 451	D. O. (ppm) 3.8	Temp. (°C) 14.1	
1310	0 	6.95	467	3.2	14.7	
1320	10.5	6.95	452	4.6	14.7	
				<u> </u>		
Depth to water after	r nurge: 5.13	ft. below m.p.		Time: <u>1331</u>		
Depth to water prio			D.	Time: <u>1340</u>		
				•	Other	
Sample Appearance		—				
Sample Odor:	□ None	, 10	ther			
<i>IV. Sample Analyses</i> Sample Parameters Metals:	: : <u>Methylene (</u>	Chloride, Acetone, Filtered			<u>. Total Phosphorc</u> red	
Laboratory: Accute	<u>st</u>		Date Shipp	ed: <u>11/13/96</u>		
					854	

					OFFICES:		
WELL SA	MPLING		Eder Associates rerview Executi		New York		
)G				Wisconsin Michigan		
			n, New Jersey		Georgia		
	ŧ		695-1050 (Telej 695-1003 (Facs		Florida New Jersey		
		(009)	095-1005 (1 acs		الممسي		
<i>I. General Inform</i> Client Name: <u>Bi</u>	mation: ocraft Laboratorie:	s <u>. Inc.</u>		Project No.: <u>13</u> ;	<u>50-05</u>		
Project Name: E	Biocraft - GW	Sampled By: <u>CK</u>					
Well No.: MW-2	28			Well Use: <u>Moni</u>	: Monitoring		
Sample ID: BIO	 -MW-28	Sample Date: 11	/12/96	Sample Time: 1	300		
Gample in. 242	<u></u>	2000 Pro - 0000 - 224					
11. Well Informa PID Reading: Q	tion:		Well Diameter:	1_inches			
Static Depth to	Water: <u>2.82</u> ft. bel	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing		
Total Well Dept	в: <u>8.15</u> ft. below п	n.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing		
Δ h: 5.33 feet			Volume of Stan	ling Water: <u>0.21</u> ;	gallons		
Volume to be re	moved: <u>0.63</u> gallo	ons	Actual Volume	removed: <u>1.50</u> gal	lons		
	-						
III. Sampling In Purging Method Deristaltic Pu	j:		🖸 Submersible	Pump			
□ Bailer	•						
0	/D	🕅 Good	Poor	[7] Other			
Well Drawdown	•	M COOL		–			
Pump Flow Rat	e: <u>0.5</u> gpm			Purge Time:	<u>5</u> mm.		
Purge Chemistr	···						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
1247	0	6.58	863	3.5	15.1		
1249	1.0	6.58	857	2.9	15.7		
1250	1.5	6.58	853	2.1	16.1		
Depth to water	after purge: <u>6.62</u>	ft. below m.n.		Time: <u>1250</u>			
•	prior to sampling	-		Time: <u>1300</u>			
-	-] Other		
Sample Appear							
Sample Odor:	□ None		ther				
<i>IV. Sample Ana.</i> Sample Parame Metals:	<i>lyses:</i> eters: <u>Methylene C</u>	hloride. Acetone.] []] Filtered	Butyl Alcohol, BQ	D, COD, TOC, Cl	. Total Phosphorou red		
Laboratory: <u>Ac</u>	cutest		Date Shippe	ed: <u>11/13/96</u>			

WELL SAMPLING LOG	Eder AssociatesOFFICES:413 Riverview Executive ParkNew YorkTrenton, New Jersey 08611Michigan(609) 695-1050 (Telephone)Florida				
	(609)	695-1003 (Facs	amile)	New Jersey	
I. General Information: Client Name: <u>Biocraft Laboratorie</u>	s <u>. Inc.</u>		Project No.: <u>13</u> ;	50-0 <u>5</u>	
Project Name: <u>Biocraft - GW</u>		Sampled By: <u>CK</u>			
Well No.: <u>MW-9</u>		Well Use: Monitoring			
Sample ID: <u>BIO-MW-9</u>	Sample Date: 11	/12/96	Sample Time: <u>1</u>	100	
<i>II. Well Information</i> : PID Reading: <u>Q</u>		Well Diameter:	<u>1</u> inches		
Static Depth to Water: 4.26 ft. be	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing		
Total Well Depth: 11.60 ft. below	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing		
∆ h: <u>7.34</u> feet	Volume of Stand	ding Water: <u>0.29</u>	gallons		
Volume to be removed: 0.87 galk	Actual Volume	removed: <u>1.50</u> gal	lons		
 III. Sampling Information: Purging Method: ⊠ Peristaltic Pump □ Bailer Well Drawdown/Recovery: 	🗌 Good	 Submersible Other Poor 	Other		
Pump Flow Rate: 0.5 gpm			Purge Time:	<u>3</u> min.	
Dunne Chamisters					
Purge Chemistry: Time Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
927 0	7.20	523	3.6	16.1	
931 I 933 I.5	6.98 6.97	523 540	4.1	16.0 16.3	
935 1.5	0.97	540		10.5	
Depth to water after purge: <u>10.5</u> Depth to water prior to sampling			Time: <u>933</u> Time: <u>1100</u>	,,,,,_	
Sample Appearance: Turbi] Other	
Sample Odor:		ther			
IV. Sample Analyses: Sample Parameters: <u>Methylene C</u> Metals: Laboratory: <u>Accutest</u>	4	Butyl Alcohol, BO	D. COD. TOC. Cl. Unfilter ed: <u>11/13/96</u>	<u>Total Phosphorous</u> ed	

WELL O			Tidan A see sists		OFFICES:
	AMPLING	412 D:	Eder Associate verview Execut		New York
	0G		on, New Jersey		Wisconsin Michigan
			695-1050 (Tele	Georgia	
			695-1003 (Fac		Florida New Jersey
L	······································				
<i>I. General Infor</i> Client Name: <u>B</u>	<i>mation</i> : iocraft Laboratorie	<u>s. Inc.</u>		Project No.: <u>13</u>	<u>50-05</u>
Project Name:]	Biocraft - GW			Sampled By: C	К
Well No.: <u>MW-</u>	3			Well Use: Moni	itoring
Sample ID: <u>BIO</u>	- <u>MW-3</u>	Sample Date: 1	1/12/96	Sample Time: <u>1</u>	050
		1			
<i>II. Well Informa</i> PID Reading: <u>0</u>			Well Diameter:	Linches	
Static Depth to	Water: <u>4.47</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
-	th: <u>11.00</u> ft. below	-		t (m.p.): <u>PVC Cas</u>	
∆ h: <u>6.53</u> feet		-		ding Water: 0.26	-
	moved: <u>0.78</u> gallo	ons		removed: <u>1,50</u> gal	-
		-		Ant	
III. Sampling In Purging Method	i:			_	
Peristaltic Pu	тр			Pump	
Bailer			Other		
Well Drawdown	/Recovery:	🗖 Good	🛛 Poor	Other	
Pump Flow Rat	e: <u>0.25</u> gpm			Purge Time:	<u>6</u> min.
Burge Chemistre					
Purge Chemistr Time	y. Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
912	0	7.27	529	3.3	15.2
916	1	7.12	496	3.2	15.1
918	1.5	7.10	492	3.3	15.1
Depth to water a	after purge: <u>10.5</u> 1	t. below m.p.		Time: <u>918</u>	
		: <u>6.3</u> ft. below m.p.		Time: <u>1050</u>	
Sample Appeara		-			Other
Sample Odor:		<u> </u>			CHIVI ADDAL
Sample Ouver			her		
IV. Sample Analy Sample Paramet Metals:		n <u>toride. Acetone. B</u> Filtered	utyl Aicohol, BOI	D. COD, TOC, CI.	<u>Total Phosphorous</u> ed
Laboratory: Acc	utest		Date Shippe	d: <u>11/13/96</u>	
-					
					8548

. .

TIERRA-B-009193

WELL SA	MDLINC	I	Eder Associates		OFFICES:		
			verview Executive Park Wisconsin				
LC	G		n, New Jersey		Michigan		
			595-1050 (Telep		Georgia Florida		
		(609)	695-1003 (Facs	imile)	New Jersey		
		<u>s, Inc.</u>		Project No.: <u>13</u>	<u>50-05</u>		
Project Name: E	liocraft - GW			Sampled By: <u>C</u>	2		
Well No.: <u>MW-6</u>	1		Well Use: Monitoring				
Sample ID: <u>BIQ</u>	<u>-MW-6</u>	Sample Date: 11	/12/96	Sample Time: <u>1(</u>	<u>)35</u>		
II. Well Informa	tion:						
PID Reading: Q			Well Diameter:	1.5 inches			
Static Depth to Water: <u>10.76</u> ft. below m.p.			Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
Total Well Dept	h: <u>14.00</u> ft. below	m.p.	Measuring Point	t (m.p.): <u>PVC Cas</u>	ing		
∆ h: <u>3.24</u> feet			Volume of Stand	ting Water: <u>0,29</u> (gallons		
Volume to be re	moved: <u>0.87</u> galle	ons	Actual Volume	removed: <u>1.50</u> gal	lons		
III. Sampling In Purging Method ⊗ Peristaltic Pu	1:		Submersible Pump				
□ Bailer			Other				
Well Drawdowr	/Recovery:	🔲 Good	Poor Other				
Pump Flow Rat	e: <u>0.25</u> gpm			Purge Time:	<u>6</u> min.		
Purge Chemistr	v :						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
847	0						
<u>851</u> 853		· · · · · · · · · · · · · · · · · · ·	652	3.4	15.0		
000	1.5	0.05					
-	Information: e: Biocraft Laboratories. Inc. Project No.: 1350-05 me: Biocraft Laboratories. Inc. Sampled By: CK AW-6 Well Use: Monitoring BIO-MW-6 Sample Date: 11/12/96 Sample Time: 1035 iormation: well Diameter: 1.5.inches ag: 0 Well Diameter: 1.5.inches ih to Water: 10.76 ft. below m.p. Measuring Point (m.p.): PVC.Casing Depth: 14.00 ft. below m.p. Measuring Point (m.p.): PVC.Casing be removed: 0.87 gallons Actual Volume removed: 1.50 gallons ng Information: ethod: iic Pump Submersible Pump Other						
•					7 Other		
Sample Appear							
Sample Odor:	□ None	0	iner				
<i>IV. Sample Ana</i> Sample Parame Metals:	<i>lyses:</i> eters: <u>Methylene C</u>	hloride, Acetone, l	Butyl Alcohol, BO	D. COD. TOC. Cl	<u>Total Phosphorous</u> red		
Laboratory: <u>Ac</u>	cutest		Date Shipp	ed: <u>11/13/96</u>			

STREET GALANT			der Associates		OFFICES:
WELL SAMPLI	NG		erview Executiv	ve Park	New York Wisconsin
LOG			n, New Jersey		Michigan
			95-1050 (Teler		Georgia Florida
			595-1003 (Facs		New Jersey
I. General Information: Client Name: <u>Biocraft La</u>	boratories	. Inc.		Project No.: 134	<u>i0-05</u>
Project Name: <u>Biocraft -</u>	G₩			Sampled By: Ch	
Well No.: <u>MW-14</u>				Well Use: <u>Moni</u>	toring
Sample ID: <u>BIO-MW-14</u>	:	Sample Date: <u>11</u>	/12/96	Sample Time: <u>1(</u>	<u>)25</u>
II. Well Information:					
PID Reading: 0			Well Diameter:		
Static Depth to Water:			-	t (m.p.): <u>PVC Cas</u>	
Total Well Depth: 5.96	ft. below m	л.р.	_	t (m.p.): <u>PVC Cas</u>	
∆ h: <u>3,24</u> feet				ling Water: <u>0.19</u>	
Volume to be removed:	<u>0.57</u> gallo	ns	Actual Volume	removed: <u>J.00</u> gal	lons
III. Sampling Information Purging Method: Peristaltic Pump	on:		🔲 Submersible	Pump	
🗂 Bailer			Other		
Well Drawdown/Recov	ery:	🗖 Good	🛛 Poor	Other	
Pump Flow Rate: 0.25	gpm			Purge Time:	4 min.
Purge Chemistry:					
	llons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
832	0	7.25	271	5.8	12.7
	0.5	7.29	236	4.5	13.0
836	1	7.10			
			· · ·		
Depth to water after pu	urge 52 fi	below m.p.		Time: <u>836</u>	
Depth to water prior to				Time: <u>1925</u>	
Sample Appearance:	Turbi		ightly Turbid	Clear [] Other
Sample Odor:			ther	-	
<i>IV. Sample Analyses:</i> Sample Parameters: <u>M</u> Metals:	ethylene C	hloride, Acetone, Filtered	<u>Butyl Alcohol. BC</u>	D. COD. TOC. C	l <u>, Total Phosphorou</u> red
Laboratory: Accutest			Date Shipp	ed: <u>11/13/96</u>	

		т	Idan Aggaziatan		OFFICES:	
WELL SA			Eder Associates New York			
LO) G		n, New Jersey		Wisconsin Michigan	
			i, New Jersey 195-1050 (Telej		Georgia Florida	
		· · ·	695-1003 (Facs		New Jersey	
		(00))				
I. General Inform Client Name: <u>Bi</u>	nation: ocraft Laboratorie:	. Inc.		Project No.: <u>134</u>	<u>i0-05</u>	
Project Name: B	liocraft - GW			Sampled By: <u>Cl</u>	2	
Well No.: <u>MW-1</u>			Well Use: Monitoring			
Sample ID: <u>BIO-MW-1</u> Sample Date: 11			/12/96	Sam ple Time: <u>1(</u>	00	
54p.e 121 <u>212</u>	<u></u>	·····		-		
<i>II. Well Informa</i> PID Reading: Q	tion:		Well Diameter:	<u>1.5</u> inches		
Static Depth to	Water: <u>4.73</u> ft. bel	ow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
-	h: <u>8.60</u> ft. below п		Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Δ h: <u>3.87</u> feet			Volume of Stan	ling Water: <u>0.34</u> (gallons	
	moved: <u>1.02</u> gallo	ns	Actual Volume	remov ed: <u>1.50</u> gal	lons	
III. Sampling In Purging Method	1:		Submersible	Բսառ		
Peristaltic Pump			Other			
Bailer						
Well Drawdown	/Recovery:	🗌 Good	⊠ Poor □ Other			
Pump Flow Rat	e: <u>0.25</u> gpm			Purge Time:	<u>6</u> min.	
Purge Chemistr Time	y: Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
814	0	6.82	215	6.6	13.6	
818	1	6.91	264	6.2	13.7	
820	1.5	6.98	266	5.6	12.3	
	· · · · · · · · · · · · · · · · · · ·					
Depth to water	after purge: <u>7.5</u> fi	. below m.p.		Time: <u>820</u>		
Depth to water	prior to sampling	: <u>4.8</u> ft. below m.p.		Time: <u>1000</u>		
Sample Appear	ance: 🔲 Turbi	d 🗆 SI	ightly Turbid	🛛 Clear 🛛 🖸] Other	
Sample Odor:	□ None	0	ther			
	<u> </u>	<u> </u>				
	<i>lyses:</i> ters: <u>Methylene C</u>	hloride. Acetone, I	Butyl Alcohol, BO	D. COD. TOC. CI	Total Phosphorous	
Metals:		☐ Filtered			cu	
Laboratomu Ao	antaat		Date Shinn	ed: <u>11/13/96</u>		
Laboratory: <u>Ac</u>	CULESL		Date Smpp	. <u>11/12/20</u>		

			F.J., A		OFFICES:		
	MPLING	r i i i i i i i i i i i i i i i i i i i	New York				
	<i>JG</i>		verview Executive Park Wisconsin on, New Jersey 08611 Michigan				
			· ·		Georgia		
	1	4 · · ·	695-1050 (Telephone)Good Florida695-1003 (Facsimile)New Jersey				
					1		
<i>I. General Inform</i> Client Name: <u>Bi</u>	mation: ocraft Laboratorie	s. Inc.		Project No.: <u>13</u>	<u>50-05</u>		
Project Name: E	Biocraft - GW			Sampled By: <u>C</u>	ĸ		
Well No.: <u>MW-2</u>				Well Use: Mon	itoring		
Sample ID: <u>BIO</u>	- -MW-2	Sample Date: 11	/12/96	Sample Time: 1	-		
5410 pro 101 <u>proc</u>				~	<u> </u>		
II. Well Informa	tion:						
PID Reading: Q			Well Diameter:	1.5 inches			
Static Depth to	Water: <u>5,57</u> ft. be	low m.p.	Measuring Poin	ot (m.p.): <u>PVC Ca</u> s	ing		
Total Well Dept	h : <u>10.60</u> ft. below	m.p.	Measuring Poin	nt (m.p.): <u>PVC Cas</u>	ing		
∆ h: <u>5.03</u> feet			Volume of Stan	ding Water: 0.45	gallons		
	moved: <u>1.35</u> gallo	ms		removed: 1.50 gal	-		
• VIGHE IV DE IC			ALLER VUUINE	1.2110.1.211 TITA Bu			
III. Sampling In Purging Method	1:		📋 Submersible	Pump			
Bailer			Other				
Well Drawdown	Recovery		Poor	Other			
	•						
Pump Flow Rate	e: <u>V.25</u> gpin			Purge Time:	<u>o</u> mu.		
Purge Chemistr	v:						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
826	0	7.60	335	4.4	13.6		
830	1	7.62	524	5.0	13.5		
832	1.5	7.62	522	5.6	13.5		
	· · · · ·						
	···						
Denth to water a	i fter purge : <u>9.0</u> ft	below m n		Time: <u>832</u>			
-		-					
		: <u>5.8</u> ft. below m.p.		Time: <u>1010</u>			
Sample Appeara	nce: 🔲 Turbic		ightly Turbid	⊠ Clear □] Other		
Sample Odor:	🗋 None		her				
IV. Sample Analy							
-	ers: Methylene C		Butyl Alcohol, BO	D. COD. TOC. Cl.			
Metals:		Filtered			cu		
Laboratory: Acc	utest		Date Shipp	ed: <u>11/13/96</u>			

ŧ

WEITC	MPLING	T	Eder Associate	6	OFFICES:	
		1	verview Execut		New York	
)G		on, New Jersey		Wisconsin Michigan	
		1	695-1050 (Tele		Georgia Florida	
			695-1003 (Fac:		New Jersey	
I. General Infor Client Name: <u>B</u>	mation: iocraft Laboratorie	s. Inc.		Project No.: <u>13</u>	<u>50-05</u>	
Project Name:]	<u> Biocraft - GW</u>			Sampled By: <u>C</u>	Σ.	
Well No.: MW-	8			Well Use: <u>Moni</u>	toring	
Sample ID: BIO	<u>-MW-8</u>	Sample Date: 11	/12/96	Sample Time: <u>1</u>	115	
II. Well Informa PID Reading: Q			Well Diameter:	1.5 inches		
Static Depth to	Water: <u>4.15</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Total Well Dept	h: <u>7.35</u> ft. below n	n.p.		t (m.p.): <u>PVC Cas</u>	-	
Δ h: <u>3.20</u> feet			Volume of Stan	ding Water: 0.13	gallons	
	moved: 0.39 gallo	ins	Actual Volume	removed: 1.00 gal	lons	
III. Sampling Information: Purging Method:						
Peristaltic Pu	mp					
🔲 Bailer		Other				
Volume to be removed: 0.39 gallons Actual Volume rem III. Sampling Information: Purging Method: © Peristaltic Pump □ Submersible Pum □ Bailer □ Other Well Drawdown/Recovery: □ Good ⊠ Poor Pump Flow Rate: 0.25 gpm Purge Chemistry:		Other				
Pump Flow Rat	e: <u>0,25</u> gpm			Purge Time:	<u>4 min.</u>	
Devene Charlet						
and the second design of the s		pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
942	-			5.0	16.1	
944	0.5	6.81	809	6.3	16.9	
946	1	6.82	809	5.8	16.7	
			· · · · · · ·			
Depth to water a	after purge: <u>6,8</u> ft.	below m.p.		Time: <u>948</u>		
Depth to water j	prior to sampling:	5.5 ft. below m.p.		Time: <u>1115</u>		
Sample Appears	ance: 🔲 Turbid	l 🗆 Sli	ightly Turbid	🛛 Clear 🛛	Other	
Sample Odor: 🗌 None			her			
		—				
IV. Sample Anal		.1			(T + 1 D) 1	
Sample Paramet Metals:	iers: <u>Methylene Cl</u>	Filtered	SULVI AICONOL BOI	D. COD. TOC. CI.	Total Phosphorous	
Laboratory: Acc	cutest		Date Shippe			

	wing Description: <u>Groundwater Elevation and Direction of Groundwater Flow at Biocraft Lab</u> dwick, NJ, March 1, 1996	oratories,
5.	Has the ground water flow direction changed more than 45° from the Yes previous groundwater contour map?] No
	If yes, discuss reason for change.	
6.	Has ground water mounding and/or depressions been identified in the Yes \boxtimes ground water contour map?] No
	Unless the ground water mound and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence. Groundwater remediation system.	
	 	·
7.	Are the wells used in the contour map screened in the same water- Yes \boxtimes bearing zone?) No
	If no, justify inclusion of those wells.	
8.	Were the ground water contours computer generated, computer aided, or hand drawn?	
	If computer aided or generated, identify the interpolation method(s) used.	

Project No.: 1350-05

Drawing Description: Groundwater Elevation and Direction of Groundwater Flow at Biocraft Laboratories. Waldwick, NJ, March 1, 1996

Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

1. Did any surveyed well casing elevations change from the previous Yes in No is sampling events?

If yes, attach new "Well Certification - Form B" and identify the reason for the elevation Change (damage to casing, installation of recovery system in monitoring well, etc.)

-	-	-	-	-
-		-		-

2. Are there any monitoring wells in unconfined aquifers in which the Yes \square No \boxtimes water table elevation is higher than the top of the well screen?

If yes, identify these wells.

3. Are there any monitoring wells present at the site but omitted from Yes ⊠ No □ the contour map?

Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Several wells are no longer in service as reported to the NJDEP by Geraghty and Miller.

4. Are there any monitoring wells containing separate phase product Yes No during this measuring event?
 Were any of the monitoring wells with separate phase product Yes No included in the ground water contour map?

If yes, show the formula used to correct the water table elevation.

Project No.: 1350-05

Drawing Description: Groundwater Elevation and Direction of Groundwater Flow at Biocraft Laboratories. Waldwick, NJ, May 15, 1996

Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

1. Did any surveyed well casing elevations change from the previous Yes □ No ⊠ sampling events?

If yes, attach new "Well Certification - Form B" and identify the reason for the elevation Change (damage to casing, installation of recovery system in monitoring well, etc.)

2. Are there any monitoring wells in unconfined aquifers in which the Yes □ No ⊠ water table elevation is higher than the top of the well screen?

If yes, identify these wells.

3. Are there any monitoring wells present at the site but omitted from Yes No in the contour map?

Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Several wells are no longer in service as reported to the NJDEP by

Geraghty and Miller.

- -----
- 4. Are there any monitoring wells containing separate phase product Yes No X during this measuring event?
 Were any of the monitoring wells with separate phase product Yes No included in the ground water contour map?

If yes, show the formula used to correct the water table elevation.

Ртој	ect No.: 1350-05 Project Name: Biocraft Labora	tories, Inc.	Page 2 of 2
Drav <u>Wal</u> e	wing Description: <u>Groundwater Elevation and Direction of Groundwater Flow at B</u> dwick. NJ. May 15, 1996	iocraft Labor	atories. Inc.,
5.	Has the ground water flow direction changed more than 45° from the previous groundwater contour map?	Yes 📋	No 🛛
	If yes, discuss reason for change.		
6.	Has ground water mounding and/or depressions been identified in the ground water contour map?	Yes 🛛	No 🗌
	Unless the ground water mound and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence. Groundwater remediation system.		
7.	Are the wells used in the contour map screened in the same water- bearing zone?	Yes 🖂	No 📋
	If no, justify inclusion of those wells.		
8.	Were the ground water contours computer generated, computer aided, or hand drawn?		
	If computer aided or generated, identify the interpolation method(s) used.		

Project No.: 1350-05

Drawing Description: Groundwater Elevation and Direction of Groundwater Flow at Biocraft Laboratories. Waldwick, NJ, July 24, 1996

Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

Did any surveyed well casing elevations change from the previous Yes No 🖂 1. sampling events?

If yes, attach new "Well Certification - Form B" and identify the reason for the elevation Change (damage to casing, installation of recovery system in monitoring well, etc.)

Are there any monitoring wells in unconfined aquifers in which the Yes No 🖂 2. water table elevation is higher than the top of the well screen?

If yes, identify these wells.

_ _ _ _ _ _ ____ ____

Are there any monitoring wells present at the site but omitted from Yes X No 🗂 3. the contour map?

Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Several wells are no longer in service as reported to the NJDEP by Geraghty and Miller.

No 🖂 Are there any monitoring wells containing separate phase product Yes 4. during this measuring event? Were any of the monitoring wells with separate phase product Yes No 🗌 included in the ground water contour map?

If yes, show the formula used to correct the water table elevation.

_____ _____

Proje	ect No.: <u>1350-05</u> Proje	ct Name: Biocraft Laboratories	Inc.	
	ving Description: <u>Groundwater Elevation and Direction or</u> dwick, NJ, July 24, 1996	f Groundwater Flow at Biocraft	Laboratories,	Inc
5.	Has the ground water flow direction changed m previous groundwater contour map?	ore than 45° from the Ye	s 🔲 No	\boxtimes
	If yes, discuss reason for change.			
6.	Has ground water mounding and/or depressions ground water contour map?	been identified in the Yes	5 🛛 No	C
	Unless the ground water mound and/or depression ground water remediation system, discuss to occurrence. <u>Groundwater remediation system.</u>			
7.	Are the wells used in the contour map screene bearing zone?	d in the same water- Yes	No No	С
	If no, justify inclusion of those wells.			
3.	Were the ground water contours computer generated, computer aided, or hand drawn?			
	If computer aided or generated, identify the intused.	erpolation method(s)		

Project Name: Biocraft Laboratories. Inc.

Page 1 of 2

Drawing Description: Groundwater Elevation and Direction of Groundwater Flow at Biocraft Laboratories, Waldwick, NJ, November 13, 1996

Contour Map Reporting Form

This reporting form shall accompany each ground water contour map submittal. Use additional sheets as necessary.

1. Did any surveyed well casing elevations change from the previous Yes \Box No \boxtimes sampling events?

If yes, attach new "Well Certification - Form B" and identify the reason for the elevation Change (damage to casing, installation of recovery system in monitoring well, etc.)

Project No.: 1350-05

2. Are there any monitoring wells in unconfined aquifers in which the Yes \Box No \boxtimes water table elevation is higher than the top of the well screen?

If yes, identify these wells.

3. Are there any monitoring wells present at the site but omitted from Yes No the contour map?

Unless the omission of the well(s) has been previously approved by the Department, justify the omissions. Several wells are no longer in service as reported to the NJDEP by Geraghty and Miller.

4. Are there any monitoring wells containing separate phase product Yes No Were any of the monitoring wells with separate phase product Yes No included in the ground water contour map?

If yes, show the formula used to correct the water table elevation.

Project No.: 1350-05		Project Name: Biocraft Laboratories. Inc.		
Drawing Description: <u>Groundwater Elevation and Direction of Groundwater Flow at Biocraft Laboratories. Inc.</u> , Waldwick, NJ, November 15, 1996				
5.	Has the grour previous grou	nd water flow direction changed more than 45° from the indwater contour map?	Yes 🗌	No 🛛
	If yes, discus	s reason for change.		
6.		vater mounding and/or depressions been identified in the contour map?	Yes 🖂	No 🗌
	ground wate occurrence.	ound water mound and/or depressions are caused by the r remediation system, discuss the reasons for this		
	Groundwater	remediation system.		
7.	Are the well bearing zone	s used in the contour map screened in the same water-?	Yes 🛛	No 🗌
	If no, justify	inclusion of those wells.		
8.	-	und water contours generated, aided, or wn?		
	If computer used.	aided or generated, identify the interpolation method(s)		
	~~···			
				854820212

.

Page 2 of 2

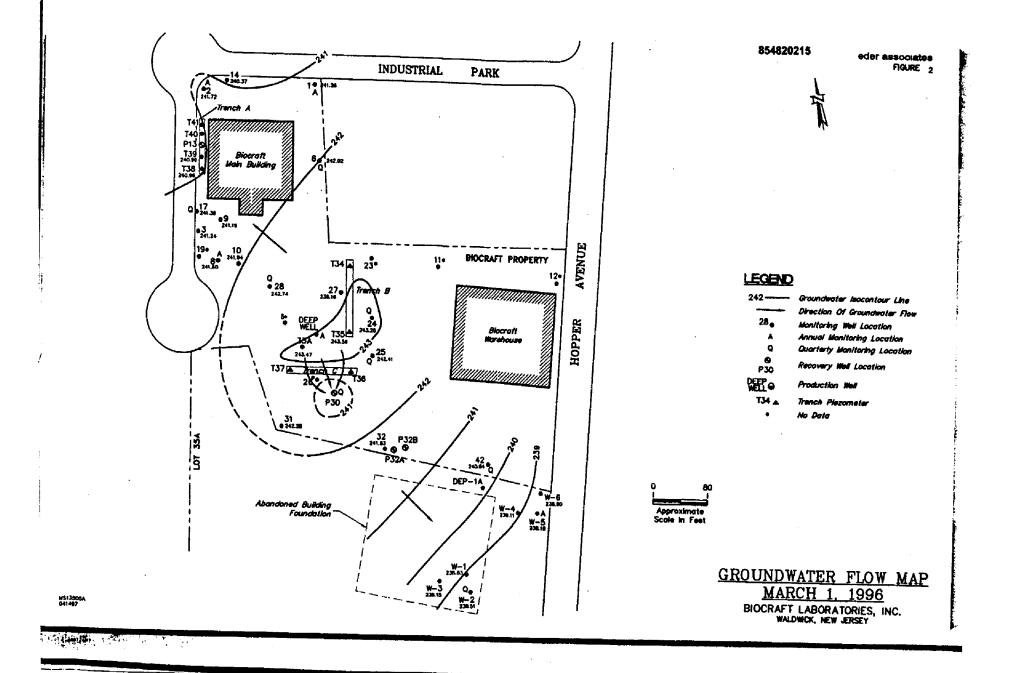
TIERRA-B-009206

TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

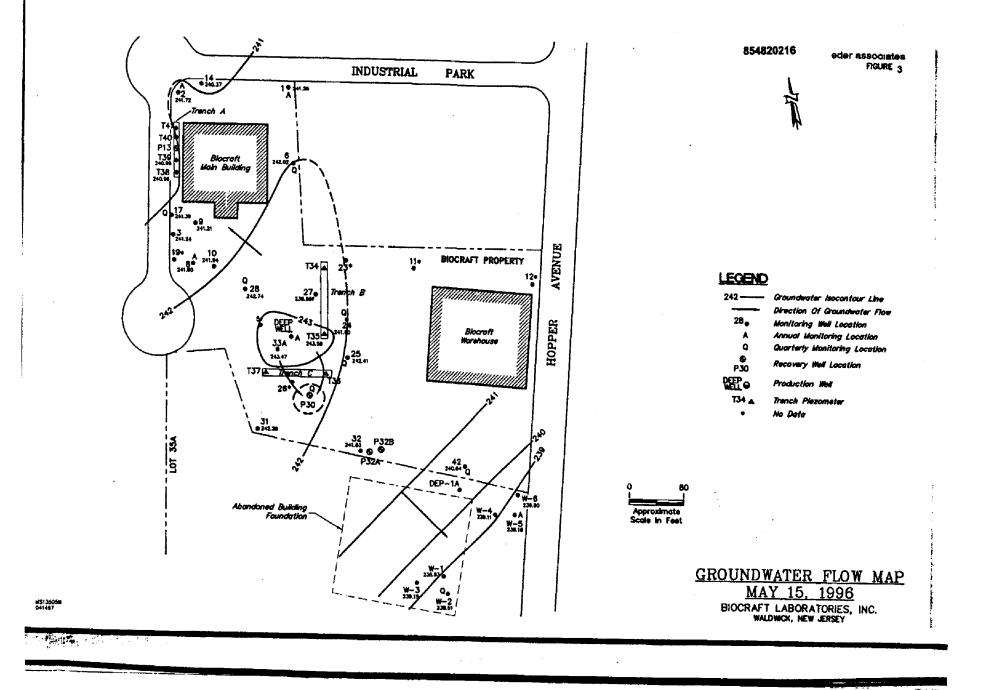
BIOCRAFT LABORATORIES, INC. REMEDIAL INVESTIGATION REPORT APPENDIX A - LABORATORY REPORTS VOLUME 1 OF 2 ISRA CASE #96070

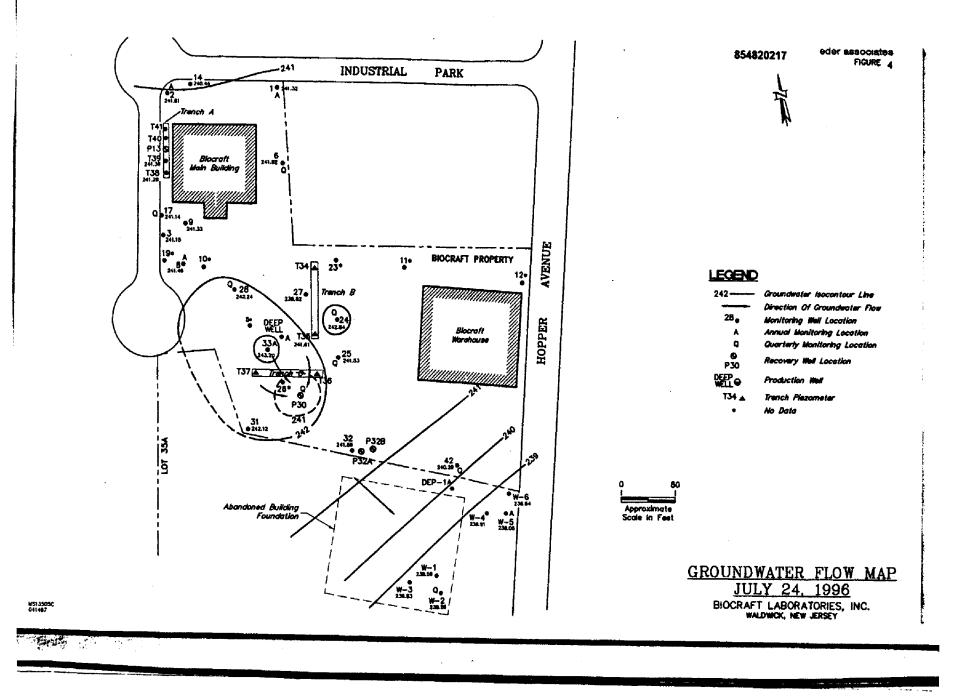
> PROJECT #1350-05 APRIL 1997

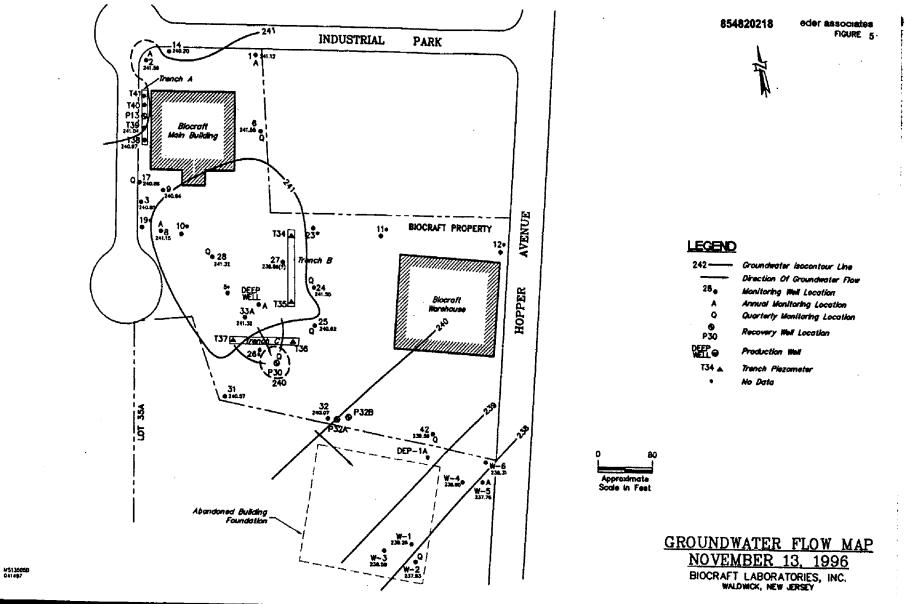
PREPARED BY: EDER ASSOCIATES 413 Riverview Executive Park Trenton, New Jersey 08611 Office Contact: Mark R. Foley (609) 695-1050 MRF012797.160409.RPT


PREPARED FOR: Proskauer Rose Goetz & Mendelsohn LLP 1585 Broadway New York, New York 10036 *Contact:* Gail S. Port, Esq. (212) 969-3000 012797

TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY


BIOCRAFT LABORATORIES, INC. REMEDIAL INVESTIGATION REPORT APPENDIX A - LABORATORY REPORTS VOLUME 2 OF 2 ISRA CASE #96070


PROJECT #1350-05 APRIL 1997


PREPARED BY: EDER ASSOCIATES 413 Riverview Executive Park Trenton, New Jersey 08611 Office Contact: Mark R. Foley (609) 695-1050 MRF012797.160409.RPT PREPARED FOR: Proskauer Rose Goetz & Mendelsohn LLP 1585 Broadway New York, New York 10036 *Contact:* Gail S. Port, Esq. (212) 969-3000 012797

TIERRA-B-009209

the star

REMEDIAL INVESTIGATION WORKPLAN TEVA PHARMACEUTICALS USA (f.k.a. BIOCRAFT LABORATORIES, INC.) WALDWICK, NEW JERSEY ISRA CASE #96070

854820219

1/99

TEVA PHARMACEUTICALS USA (f.k.a. BIOCRAFT LABORATORIES, INC.) WALDWICK, NEW JERSEY

REMEDIAL INVESTIGATION WORKPLAN TEVA PHARMACEUTICALS USA (f.k.a. BIOCRAFT LABORATORIES, INC.) WALDWICK, NEW JERSEY ISRA CASE #96070

PROJECT #34596

JANUARY 1999

PREPARED BY: GANNETT FLEMING, INC. – EDER DIVISION 227 Wall Street Princeton, NJ 08540 Office Contact: Mark R. Foley (609) 279-9140

PREPARED FOR: Proskauer Rose LLP 1585 Broadway New York, New York 10036 *Contact:* Gail S. Port, Esq. (212) 969-3000

854820220

TIERRA-B-009214

CONTENTS

		Page	
1.0	INTRODUCTION		
2.0	SITE DESCRIPTION		
3.0	РНҮ	SICAL SETTING	
	3.1	Soil	
	3.2	Geology and Hydrogeology	
4.0	QUA	RTERLY GROUNDWATER MONITORING RESULTS	
	4.1	Sample Collection and Analysis	
	4.2	Analytical Results Summary	
	4.3	February 1997	
	4.4	May 1997	
	4.5	August 1997	
	4.6	December 1997 (Annual Monitoring Event)	
	4.7	March 1998	
	4.8	June 1998	
	4.9	September 1998	
	4.10	Groundwater Flow	
5.0	BIOD	EGRADATION/BIOSTIMULATION SYSTEM	
	5.1	Biodegradation/Biostimulation System Description	
	5.2	Biodegradation/Biostimulation System Monitoring	
	5.3	Biodegradation/Biostimulation System Pumping Rates	
6.0	REMI	EDIAL INVESTIGATION	
	6.1	Soil	
	6.2	Groundwater	
	6.3	Sediment	
		23	

i

.

MRF041196

-

FIGURES

-	Site Location Map
	Acetone Concentrations in Groundwater - February 1997 through September 1998 Methylene Chloride Concentrations in Groundwater - February 1997 through September 1998
	Groundwater Flow Map - March 1998
	Acetone Isoconcentration Map - March 1998
_	Methylene Chloride Isoconcentration Map - March 1998
	Groundwater Flow Map - June 1998
	Acetone Isoconcentration Map - June 1998
	Methylene Chloride Isoconcentration Map - June 1998
	Groundwater Flow Map - September 1998
	Acetone Isoconcentration Map - September 1998
	Methylene Chloride Isoconcentration Map - September 1998
	Proposed Monitoring Well Locations
	Precipitation and Groundwater Elevations in Select Monitoring Wells vs. Time

TABLES

	TABLE 1	Groundwater Sampling Results Summary - February 1997
	TABLE 2	Groundwater Sampling Results Summary - May 1997
	TABLE 3	Oroundwater Sampling Results Summary - May 1997
		Groundwater Sampling Results Summary - May 1997
		Groundwater Sampling Results Summary - December 1997
		Groundwater Sampling Results Summers March 1000
	IADLE 0	Groundwater Sampling Results Summons June 1009
	TABLE 7	Groundwater Sampling Results Summary - September 1998
	TABLE 8	
	TABLE 9	water Level Measurements, February 19, 1997
		Water Level Measurements, May 8, 1997
-		Water Level Measurements March 27 1000
		Water Level Measurements Tune 26 1000
	TABLE 12	Water Level Measurements, September 25, 1998
		25, 1998

APPENDICES

APPENDIX A	Laboratory Reports (Submitted Under Separate Cover)
APPENDIX B	Groundwater Sampling Field Data Forms
APPENDIX C	Bruce Bright Affidavit
	Bruce Bright Affidavit

MRF041196

.

ii

1.0 INTRODUCTION

This Remedial Investigation Report (RIR)/Remedial Investigation Workplan (RIW) summarizes the groundwater monitoring conducted in February, May, August, and December 1997, and March, June, and September 1998 at the Teva Pharmaceuticals USA (Teva), formerly known as Biocraft Laboratories, Inc., property in Waldwick, New Jersey and summarizes the work to be conducted to address the New Jersey Department of Environmental Protection (NJDEP) July 1, 1998 letter.

1

2.0 SITE DESCRIPTION

Teva formerly manufactured semi-synthetic penicillin products in bulk at its Waldwick, New Jersey facility. The facility consists of two buildings, the former manufacturing building and warehouse, located on contiguous properties with frontages on 12 Industrial Park and 140 Hopper Avenue in Waldwick, Bergen County, New Jersey. Figure 1 shows the site location. The office, maintenance, and production areas, and research and development laboratories were located in the manufacturing building. Bulk finished products and some raw materials are stored in the warehouse building which also house the quality control and microbiology laboratories.

The manufacturing and warehouse buildings and parking areas cover approximately 30 percent of the 4.3 acre property. Landscaped areas cover approximately 10 percent of the property, and the remainder of the property is lightly wooded. The property is relatively flat with slopes ranging from 1 to 3 percent.

2

3.0 PHYSICAL SETTING

<u>3.1 Soil</u>

The dominant soil type in the study area is classified as Dunellen. Dunellen soils have a very dark, grayish brown loam surface layer approximately 5 inches thick. The subsoil is approximately 21 inches thick, of which, the upper 10 inches is friable, dark yellowish brown loam and the lower 11 inches is friable brown loam. The substratum is stratified reddish brown gravelly sand, sand, and loamy sand and brown sandy loam to an average depth of 66 inches. The permeability of the Dunnellen soils is moderate to moderately rapid in the subsoil and rapid in the substratum.

3.2 Geology and Hydrogeology

The site is located in an area of unstratified and stratified drift deposited by the Wisconsin glacier and its meltwaters during the Pleistocene Epoch of the Quaternary Period. Thin layers of silt and gravel are generally found from grade to 3 feet below grade. Glacial till. Glacial till consisting of a poorly sorted mixture of boulders, cobbles, pebbles, silt, sand, and clay underlies the site at a thickness of 8 to 15 feet. Approximately 40 feet of semiconsolidated silt and fine sand underlie the till layer. Brunswick shale of the Triassic Newark Group underlies the site at a depth of 50 to 60 feet below grade. The thickness of the Brunswick Shale is not known but is estimated to be greater than 6,000 feet.

Groundwater beneath the site occurs in void spaces of unconsolidated quaternary glacial sediments and in the joints and fractures of the Brunswick Formation. The depth to groundwater ranges from grade to 9 feet below grade, depending on seasonal fluctuations. The groundwater flow direction is influenced by the groundwater recovery, treatment, and reinjection system. The inferred direction of groundwater flow is to the north, northwest at the northern section of the site, and to the south, southeast in the central and southern sections of the site.

3

4.0 QUARTERLY GROUNDWATER MONITORING RESULTS

The quarterly groundwater monitoring results for February, May, August, and December 1997, and March, June, and September 1998 are summarized in Sections 4.1 through 4.10. The laboratory reports are in Appendix A. Field sampling forms are in Appendix B. Analytical data are summarized in Tables 1 through 5.

4.1 Sample Collection and Analysis

All sampling activities were conducted in accordance with the New Jersey Department of Environmental Protection (NJDEP) "Field Sampling Procedures Manual" May 1992, with the following exception:

• Samples were not collected from monitoring well MW-10 because of well drawdown and insufficient recharge.

The groundwater samples were analyzed by by Accutest Laboratories, Dayton, New Jersey (N.J. Certification #12129). All samples were analyzed within the required holding time and all parameters were within their respective quality control ranges, with the following exceptions:

- August 1997 The matrix spike/matrix spike duplicate recovery exceeded the recovery criteria for volatile organic analysis.
- December 1997 BOD was analyzed out of holding time due to a laboratory scheduling error. The matrix spike for Total Phosphorous was not within the acceptable matrix spike limit.
- --

4

March 1998 - The matrix spike/matrix spike duplicate recovery exceeded the recovery

- criteria for volatile organic analysis. The matrix spike for Total Organic Carbon was not within the acceptable matrix spike limit.
- June 1998 The matrix spike/matrix spike duplicate recovery exceeded the recovery criteria for volatile organic analysis.
- September 1998 The matrix spike for Total Phosphorous was not within the acceptable matrix spike limit.

4.2 Analytical Results Summary

Butyl alcohol concentrations in all samples were less than the laboratory minimum detection limit or less than the 500 micrograms per liter ($\mu g/l$) Class IIA - Ground Water Quality Criteria.

Acetone concentrations were less than the laboratory minimum detection limit or less than the 700 $\mu g/1$ Class IIA Groundwater Quality Criteria in all groundwater samples, except samples from recovery wells P-13 at a concentration of 2,140 $\mu g/1$ (February 1997), and P-32A/32B at concentrations of 1,820 $\mu g/1$ (May 1997), 3,350 $\mu g/1$ (August 1997), 970 $\mu g/1$ (December 1997), and 1,990 $\mu g/1$ (September 1998).

Methylene chloride was detected at concentrations ranging from less than the laboratory minimum detection limit to 17,600 μ g/l (recovery well P-32A/32B). Methylene chloride was detected in four monitoring wells, MW-9 (7.8 μ g/l, February 1997), MW-17 (4.8 μ g/l, February 1997), MW-28 (185 μ g/l, February 1997), and MW-25 (85.2 μ g/l, June 1998) at concentrations exceeding the 3 μ g/l Class IIA Ground Water Quality Criteria.

Analytical results of groundwater samples collected from off-site monitoring wells downgradient of the Teva groundwater recovery and treatment system show methylene chloride and butyl alcohol concentrations were below the laboratory minimum detection limit (MDL), and acetone

5

concentrations were below the laboratory MDL or the Class IIA - Groundwater Quality Criteria. The analytical data suggests that the recovery system is capturing the full width of the groundwater contaminant plume.

4.3 February 1997

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride was detected at concentrations above the Class IIA - Groundwater Quality Criteria in monitoring wells MW-9 (7.8 μ g/l), MW-17 (4.8 μ g/l), and MW-28 (185 μ g/l). Butyl alcohol concentrations were below the 1.4 μ g/l laboratory MDL.

- BOD concentrations ranged from less than 2 milligrams per liter (mg/l) to 12.1 mg/l (MW-28). COD concentrations ranged from less than 20 mg/l to 39.4 mg/l (MW-28). TOC concentrations ranged from 1.7 mg/l to 12.7 mg/l (MW-28). Total phosphorous concentrations ranged from less than 0.1 mg/l to 0.14 mg/l (MW-28). Chloride concentrations ranged from 17.5 mg/l to 867 mg/l (MW-17).
 - 4.4 May 1997

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and the on-site production well, and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Acetone concentrations in all samples were less than the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all samples were less than the Class IIA - Groundwater Quality Criteria. Butyl alcohol concentrations in all samples were below the $1.4 \mu g/l$ laboratory MDL.

BOD concentrations ranged from less than 2 mg/l to 9.6 mg/l (MW-28). COD concentrations ranged

6

from less than 20 mg/l to 43.2 mg/l (MW-28). TOC concentrations ranged from 1.8 mg/l to 11.9 mg/l (MW-28). Total phosphorous concentrations ranged from less than 0.1 mg/l to 0.47 mg/l (MW-28). Chloride concentrations ranged from 16.5 mg/l to 1,040 mg/l (MW-25).

4.5 August 1997

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all samples were below the 0.61 μ g/l laboratory MDL. Butyl alcohol concentrations in all samples were below the 1.4 μ g/l laboratory MDL.

BOD concentrations ranged from less than 2.8 mg/l to 19 mg/l (MW-28). COD concentrations ranged from less than 20 mg/l to 42.2 mg/l (MW-25). TOC concentrations ranged from 3 mg/l to 11.3 mg/l (MW-28). Total phosphorous concentrations ranged from less than 0.1 mg/l to 0.95 mg/l (MW-25). Chloride concentrations ranged from 41 mg/l to 400 mg/l (MW-25).

4.6 December 1997 (Annual Monitoring Event)

Samples were collected from 22 monitoring wells and analyzed for acetone, methylene chloride, butyl alcohol, aniline, N,N-dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all samples were below the 0.61 μ g/l laboratory MDL. Butyl alcohol concentrations in all samples were below the 1.4 μ g/l laboratory MDL.

Aniline concentrations were less than the 0.78 $\mu g/l$ laboratory MDL in all samples except W-1 (1.0 $\mu g/l$). N,N-dimethyl aniline concentrations were less that the 5 $\mu g/l$ laboratory MDL in all samples except W-1 (estimated concentration of 4.1 $\mu g/l$) and W-2 (estimated concentration of 2.7 $\mu g/l$).

7

BOD concentrations ranged from less than 2 mg/l to 28.4 mg/l (W-1). COD concentrations ranged from less than 20 mg/l to 152 mg/l (W-2). TOC concentrations ranged from 3.4 mg/l to 141 mg/l (W-2). Total phosphorous concentrations ranged from less than 0.1 mg/l to 19.5 mg/l (MW-24). Chloride concentrations ranged from 27.5 mg/l to 148 mg/l (MW-28).

4.7 March 1998

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all samples were below the 0.61 μ g/l laboratory MDL. Butyl alcohol concentrations in all samples were below the 1.4 μ g/l laboratory MDL.

BOD concentrations ranged from less than 2.8 mg/l to 18 mg/l (MW-28). COD concentrations ranged from less than 20 mg/l to 143 mg/l (MW-24). TOC concentrations ranged from 2.3 mg/l to 28 mg/l (MW-24). Total phosphorous concentrations ranged from less than 0.1 mg/l to 0.62 mg/l (MW-25). Chloride concentrations ranged from 26.2 mg/l to 335 mg/l (MW-6).

4.8 June 1998

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, aniline, N,N-dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all samples were below the 0.61 μ g/l laboratory MDL, except for MW-25 (85.2 μ g/l). Butyl alcohol concentrations in all samples were below the 1.4 μ g/l laboratory MDL.

Aniline concentrations were less than the 0.8 μ g/l laboratory MDL in all samples. N,N-dimethyl

8

aniline concentrations were less that the 5 μ g/l laboratory MDL in all samples except MW-28 (estimated concentration of 1.9 μ g/l).

BOD concentrations ranged from less than 2.8 mg/l to 8.1 mg/l (MW-28). COD concentrations ranged from less than 20 mg/l to 44.9 mg/l (MW-28). TOC concentrations ranged from 3 mg/l to 10 mg/l (MW-28). Total phosphorous concentrations ranged from less than 0.1 mg/l to 0.55 mg/l (MW-28). Chloride concentrations ranged from 18.8 mg/l to 171 mg/l (MW-6).

4.9 September 1998

- \

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, aniline, N,N-dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Acetone concentrations in all samples were below the Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all samples were below the 0.61 μ g/l laboratory MDL. Butyl alcohol concentrations in all samples were below the 1.4 μ g/l laboratory MDL.

Aniline concentrations were less than the 0.8 μ g/l laboratory MDL in all samples. N,N-dimethyl aniline concentrations were less that the 5 μ g/l laboratory MDL in all samples except MW-6 (5.1 μ g/l) and MW-28 (estimated concentration of 1.9 μ g/l).

BOD concentrations ranged from less than 2.0 mg/l to 19.8 mg/l (MW-28). COD concentrations ranged from less than 20 mg/l to 83.1 mg/l (MW-28). TOC concentrations ranged from 3.7 mg/l to 9.9 mg/l (MW-28). Total phosphorous concentrations ranged from less than 0.1 mg/l to 0.95 mg/l (MW-28). Chloride concentrations ranged from 45.7 mg/l to 181 mg/l (MW-6).

4.10 Groundwater Flow

Groundwater elevation contour maps (Figures Section) developed from depth to water measurements

made during the quarterly groundwater monitoring program (period March 1998 through September 1998) show that groundwater flow is to the north-northwest at the northern section of the site, and to the south-southeast in the central and southern sections of the site and that groundwater discharged to the recharge trench system flows downgradient towards the recovery well system.

10

854820232

TIERRA-B-009226

5.0 BIODEGRADATION/BIOSTIMULATION SYSTEM

5.1 Biodegradation/Biostimulation System Description

The Teva groundwater biodegradation/biostimulation system was designed so that the treated groundwater is discharged upgradient and within the capture zone of the recovery well network. The biodegradation/biostimulation system consists of three recovery wells (P-13, P-30, and P-32A/32B), two infiltration trenches (Trench B and Trench C), and a biological treatment unit.

The biological treatment unit consists of two identical activated sludge units, ACT I and ACT II. Each unit consists of an aeration tank and a settling tank. Both systems are operated in parallel, with ACT I treating groundwater pumped from P-30, and ACT II treating groundwater pumped from P-13 and P-32A/32B. Groundwater enters the aeration tanks, and is aerated by a blower and diffuser which also keeps the tank contents mixed. Additional mixing is provided by internally pumping the tank contents. The aeration tank effluent is pumped to the settling tank to separate the bacteria from the water. The settled bacteria (sludge) is recycled to the aeration tank to keep bacteria concentrations in the system high enough to remove organic compounds. The biodegradation/biostimulation system effluent is passed through a dual vessel (in series) granular activated carbon unit (added in May 1996) and the treated groundwater is discharged to two recharge trenches upgradient of recovery wells P-30 and P-32A/32B. The maximum system flowrate is 8 gallons per minute (gpm).

5.2 Biodegradation/Biostimulation System Monitoring

Biodegradation/biostimulation system influent samples are collected from the three recovery wells, P-13, P-30, and P-32A/32B, and the effluent sample is collected from the discharge side of the activated carbon units.

11

854820233

TIERRA-B-009227

5.2.1 February 1997

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were 2,140 $\mu g/l$ (P-13), 72.5 $\mu g/l$ (P-30), and 241 $\mu g/l$ (P-32A/32B). Influent methylene chloride concentrations were 573 $\mu g/l$ (P-13), 19.8 $\mu g/l$ (P-30), and 2,230 $\mu g/l$ (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL of 14 $\mu g/l$ (which is less than the 500 $\mu g/l$ Class IIA-Groundwater Quality Criteria).

BOD concentrations were 54.7 mg/l (P-13), 5.5 mg/l (P-30), and 9.9 mg/l (P-32A/32B). COD concentrations were 45.7 mg/l (P-13), 41.9 mg/l (P-30), and 31.8 mg/l (P-32A/32B). TOC concentrations were 14.3 mg/l (P-13), 10.9 mg/l (P-30), and 10.0 mg/l (P-32A/32B). Total phosphorous concentrations were 4.4 mg/l (P-13), 6.8 mg/l (P-30), and 2.3 mg/l (P-32A/32B). Chloride concentrations were 444 mg/l (P-13), 140 (P-30), and 127 mg/l (P-32A/32B).

The effluent sample was collected from the discharge side of the carbon system. The effluent acetone concentration was 299 μ g/l. The effluent methylene chloride concentration was 401 μ g/l. The effluent butyl alcohol concentration was less than the 2.8 μ g/l laboratory MDL. The BOD concentration was 10.2 mg/l. The COD concentration was 29.2 mg/l. The TOC concentration was 9.3 mg/l. Total phosphorous concentration was 10.1 mg/l. Chloride concentration was 192 mg/l.

5.2.2 May 1997

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were 16.8 μ g/l (P-13), 27.5 μ g/l (P-30), and 1,820 μ g/l (P-32A/32B). Influent methylene chloride concentrations were less than 0.61 μ g/l (P-13), less than 0.61 μ g/l (P-30), and 11,200 μ g/l (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL of 1.4 μ g/l (which is less than the 500 μ g/l Class IIA- Groundwater Quality Criteria).

12

BOD concentrations were 8.3 mg/l (P-13), less than 2.9 mg/l (P-30), and 15.3 mg/l (P-32A/32B). COD concentrations were 40.6 mg/l (P-13), 24.1 mg/l (P-30), and 49.5 mg/l (P-32A/32B). TOC concentrations were 9.6 mg/l (P-13), 7.1 mg/l (P-30), and 15.3 mg/l (P-32A/32B). Total phosphorous concentrations were 22.4 mg/l (P-13), 19.2 mg/l (P-30), and 15.3 mg/l (P-32A/32B). Chloride concentrations were 575 mg/l (P-13), 230 (P-30), and 145 mg/l (P-32A/32B)

The effluent sample was collected from the discharge side of the carbon system. The effluent acetone concentration was $7 \mu g/l$. The effluent methylene chloride concentration was 150 $\mu g/l$. The effluent butyl alcohol concentration was less than the 1.4 $\mu g/l$ laboratory MDL. The BOD concentration was less than 2 mg/l. The COD concentration was 30.5 mg/l. The TOC concentration was 6.1 mg/l. Total phosphorous concentration was 0.45 mg/l. Chloride concentration was 200 mg/l.

5.2.3 August 1997

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were 479 $\mu g/l$ (P-13), 104 $\mu g/l$ (P-30), and 3,350 $\mu g/l$ (P-32A/32B). Influent methylene chloride concentrations were 3,100 $\mu g/l$ (P-13), 40.2 $\mu g/l$ (P-30), and 16,400 $\mu g/l$ (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL of 1.4 $\mu g/l$ (which is less than the 500 $\mu g/l$ Class IIA- Groundwater Quality Criteria).

BOD concentrations were 5.5 mg/l (P-13), 6.2 mg/l (P-30), and 42.2 mg/l (P-32A/32B). COD concentrations were 27.5 mg/l (P-13), 29.8 mg/l (P-30), and 86.8 mg/l (P-32A/32B). TOC concentrations were 6.4 mg/l (P-13), 8.6 mg/l (P-30), and 24.7 mg/l (P-32A/32B). Total phosphorous concentrations were 0.36 mg/l (P-13), 1.5 mg/l (P-30), and 1.8 mg/l (P-32A/32B). Chloride concentrations were 169 mg/l (P-13), 315 mg/l (P-30), and 250 mg/l (P-32A/32B)

The effluent sample was collected from the discharge side of the carbon system. The effluent

acetone concentration was 76.4 μ g/l. The effluent methylene chloride concentration was 69.2 μ g/l. The effluent butyl alcohol concentration was less than the 1.4 μ g/l laboratory MDL. The BOD concentration was 17.3 mg/l. The COD concentration was 28.5 mg/l. The TOC concentration was 7.5 mg/l. Total phosphorous concentration was 1.0 mg/l. Chloride concentration was 255 mg/l.

5.2.4 December 1997

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, N,N-dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were 55.1 μ g/l (P-13), 17.1 μ g/l (P-30), and 970 μ g/l (P-32A/32B). Influent methylene chloride concentrations were less than 0.61 μ g/l (P-13), less than 0.61 μ g/l (P-30), and 13,000 μ g/l (P-32A/32B). Influent butyl alcohol concentrations were 201 μ g/l (P-13), 26.4 μ g/l (P-30), and less than 70 μ g/l (P-32A/32B). Influent aniline concentrations were less than 0.78 μ g/l (P-13), 27.3 μ g/l (P-30), and 441 μ g/l (P-32A/32B). Influent N,N-dimethyl aniline concentrations were less than 5.0 μ g/l (P-13), less than 5.0 μ g/l (P-30), and 37 μ g/l (P-32A/32B).

BOD concentrations were 7.4 mg/l (P-13), less than 2.9 mg/l (P-30), and 24.9 mg/l (P-32A/32B). COD concentrations were 20.9 mg/l (P-13), less than 20 mg/l (P-30), and 120 mg/l (P-32A/32B). TOC concentrations were 16.3 mg/l (P-13), 9.5 mg/l (P-30), and 32 mg/l (P-32A/32B). Total phosphorous concentrations were 1.1 mg/l (P-13), 0.73 mg/l (P-30), and 25.3 mg/l (P-32A/32B). Chloride concentrations were 350 mg/l (P-13), 283 mg/l (P-30), and 241 mg/l (P-32A/32B)

The effluent sample was collected from the discharge side of the carbon system. The effluent acetone concentration was 171 μ g/l. The effluent methylene chloride concentration was 141 μ g/l. The effluent butyl alcohol concentration was less than the 1.4 μ g/l laboratory MDL. The effluent aniline concentration was less than the 0.78 μ g/l laboratory MDL. The effluent N,N-dimethyl aniline concentration was an estimated 1.1 μ g/l. The BOD concentration was 4.0 mg/l. The COD concentration was less than 20 mg/l. The TOC concentration was 7.2 mg/l. Total phosphorous concentration was 7.3 mg/l. Chloride concentration was 286 mg/l.

14

5.2.5 March 1998

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, COD, BOD, TOC, total phosphorous, and chloride. Recovery well P-13 was not sampled because the pump was being serviced. Influent acetone concentrations were 63.5 μ g/l (P-30) and 273 μ g/l (P-32A/32B). Influent methylene chloride concentrations were 2.4 μ g/l (P-30) and 2,650 μ g/l (P-32A/32B). Influent butyl alcohol concentrations were less than the 1.4 μ g/l laboratory MDL.

BOD concentrations were 2.9 mg/l (P-30) and 5.2 mg/l (P-32A/32B). COD concentrations were 21.2 mg/l (P-30) and 26.4 mg/l (P-32A/32B). TOC concentrations were 6.5 mg/l (P-30) and 8.5 mg/l (P-32A/32B). Total phosphorous concentrations were 0.41mg/l (P-30) and 0.72 mg/l (P-32A/32B). Chloride concentrations were 113 mg/l (P-30) and 93.7 mg/l (P-32A/32B).

The effluent sample was collected from the discharge side of the carbon system. The effluent acetone concentration was 32.7 μg/l. The effluent methylene chloride concentration was 10.2 μg/l.
 The effluent butyl alcohol concentration was less than the 1.4 μg/l laboratory MDL. The BOD concentration was 3.0 mg/l. The COD concentration was less than 20 mg/l. The TOC concentration was 5.8 mg/l. Total phosphorous concentration was 0.66 mg/l. Chloride concentration was 104 mg/l.

5.2.6 June 1998

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, N,N-dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were 53.2 $\mu g/l$ (P-13), 11.8 $\mu g/l$ (P-30), and 191 $\mu g/l$ (P-32A/32B). Influent methylene chloride concentrations were less than 0.61 $\mu g/l$ (P-13), 122 $\mu g/l$ (P-30), and 1,260 $\mu g/l$ (P-32A/32B). Influent butyl alcohol concentrations were less than the 1.4 $\mu g/l$ laboratory MDL. Influent aniline concentrations were less than 0.79 $\mu g/l$ (P-13), 32 $\mu g/l$ (P-30), and 111 $\mu g/l$ (P-32A/32B). Influent N,N-dimethyl aniline concentrations were less than 2.3 $\mu g/l$ (P-13), 2.5 $\mu g/l$ (P-

15

30), and 31.8 µg/l (P-32A/32B).

BOD concentrations were 5.3 mg/l (P-13), less than 2 mg/l (P-30), and 6.4 mg/l (P-32A/32B). COD concentrations were 21.1 mg/l (P-13), less than 20 mg/l (P-30), and less than 20 mg/l (P-32A/32B). TOC concentrations were 11.8 mg/l (P-13), 7.6 mg/l (P-30), and 8.9 mg/l (P-32A/32B). Total phosphorous concentrations were 0.44 mg/l (P-13), 0.54 mg/l (P-30), and 0.29 mg/l (P-32A/32B). Chloride concentrations were 463 mg/l (P-13), 246 mg/l (P-30), and 174 mg/l (P-32A/32B)

The effluent sample was collected from the discharge side of the carbon system. The effluent acetone concentration was $36.6 \mu g/l$. The effluent methylene chloride concentration was $3.6 \mu g/l$. The effluent butyl alcohol concentration was less than the $1.4 \mu g/l$ laboratory MDL. The effluent aniline concentration was less than the $0.79 \mu g/l$ laboratory MDL. The effluent N,N-dimethyl aniline concentration was less than the $5 \mu g/l$ laboratory MDL. The BOD concentration was less than 2.0 mg/l. The COD concentration was less than 20 mg/l. The TOC concentration was 6.7 mg/l. Total phosphorous concentration was 2.8 mg/l. Chloride concentration was 263 mg/l.

5.2.7 September 1998

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, N,N-dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were 24.8 $\mu g/l$ (P-13), 148 $\mu g/l$ (P-30), and 1,990 $\mu g/l$ (P-32A/32B). Influent methylene chloride concentrations were less than 0.61 $\mu g/l$ (P-13), 9.9 $\mu g/l$ (P-30), and 17,600 $\mu g/l$ (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL. Influent aniline concentrations were less than 0.80 $\mu g/l$ (P-13), 77.7 $\mu g/l$ (P-30), and 144 $\mu g/l$ (P-32A/32B). Influent N,N-dimethyl aniline concentrations were less than 2 $\mu g/l$ (P-13), 7.3 $\mu g/l$ (P-30), and 62.4 $\mu g/l$ (P-32A/32B).

BOD concentrations were 26.3 mg/l (P-13), 14.6 mg/l (P-30), and less than 2 mg/l (P-32A/32B). COD concentrations were 68.2 mg/l (P-13), less than 20 mg/l (P-30), and 63.2 mg/l (P-32A/32B).

16

TOC concentrations were 12 mg/l (P-13), 11.7 mg/l (P-30), and 19.8 mg/l (P-32A/32B). Total phosphorous concentrations were 30.6 mg/l (P-13), 2.3 mg/l (P-30), and 1.2 mg/l (P-32A/32B). Chloride concentrations were 270 mg/l (P-13), 236 mg/l (P-30), and 212 mg/l (P-32A/32B)

The effluent sample was collected from the discharge side of the carbon system. The effluent acetone concentration was 13.9 μ g/l. The effluent methylene chloride concentration was less than 0.61 μ g/l. The effluent butyl alcohol concentration was less than the 1.4 μ g/l laboratory MDL. The effluent aniline concentration was less than the 0.79 μ g/l laboratory MDL. The effluent N,N-dimethyl aniline concentration was less than the 5 μ g/l laboratory MDL. The BOD concentration was 6.8 mg/l. The COD concentration was less than 20 mg/l. The TOC concentration was 5.5 mg/l. Total phosphorous concentration was 0.13 mg/l. Chloride concentration was 268 mg/l.

5.3 Biodegradation/Biostimulation System Pumping Rates

The biodegradation/biostimulation system extracted, treated, and recharged approximately 325,000 gallons of groundwater during the 12 month period ending November 1998.

6.0 REMEDIAL INVESTIGATION

This section describes the sampling procedures, field measurements, and sample analyses to be conducted during the Remedial Investigation. The procedures described in this section will ensure that all field investigation information, data, and resulting decisions are technically sound, statistically valid, and properly documented. Proposed monitoring well locations are shown in the Figures Section.

<u>6.1 Soil</u>

6.1.1 Drum Storage Area

Lubricating oil, ethylene glycol, triethylamine, dimethyl acetamide, 2,6-Lutidine, pivaloyl chloride, and, on occasion, hydrochloric acid and sodium hydroxide were stored on the concrete drum storage pad. No materials have been stored on the drum storage pad since the facility shut-down. The original building plan dated February 24, 1972 does not specify the location of the drum storage pad. The earliest drawing which depicts the drum storage pad was prepared in December 1976 and shows that the landscaped area extended 60-feet south from the northeast corner of the manufacturing building to a concrete pad which continued south along the southern fence line. Teva personnel indicated that employees used the landscaped area for recreation until the concrete pad and curbing was installed in the mid-1980s.

One soil boring will be drilled through the concrete drum storage pad approximately 20 feet east of the manufacturing building and 60 feet south of the northeast corner of the manufacturing building. Four soil borings will be drilled along the eastern edge of the concrete drum storage pad (one every 30 linear feet) starting from the wood shed continuing south to the bend in the property line. Soil samples will be collected continuously from the base of the concrete pad to 24-inches below grade. Soil samples will collected using a split spoon or direct push recovery tool. Each 24-inch sample will be divided into four 6-inch intervals and screened for organic vapors using a photoionization

18

854820240

TIERRA-B-009234

detector (PID) or flame ionization detector (FID). The sample with the highest PID/FID reading, or, if all readings are the same, the sample from 18 to 24-inches below grade will be analyzed for volatile organic compounds (VO+10), base/neutral extractable compounds (BN+15) including aniline and dimethyl aniline, and total petroleum hydrocarbons (TPH).

6.1.2 Methylene Chloride Vessels

Two 100-gallon process vessels observed at the southwest corner of the parking lot during the April 18, 1996 NJDEP site visit were decontaminated in the manufacturing building before they were placed outside. The vessels were used to store wastewater containing methylene chloride and were decontaminated by draining their contents, rinsing the interior with hot, caustic solution, followed by triple rinsing with hot potable water. The vessels were allowed to air dry and placed horizontally to minimize the amount of rainwater that would collect in the vessels. The connection port (approximately 1 inch in diameter) protruding from the top and bottom of the vessels were open, but did not face the ground.

As requested by the NJDEP, one soil boring will be drilled at the former methylene chloride vessel storage location. A soil sample will be collected continuously from the base of the concrete pad to 24-inches below grade. The sample will collected using a split spoon or direct push recovery tool. The 24-inch sample will be divided into four 6-inch intervals and screened for organic vapors using a PID or FID. If all PID/FID readings are at background levels, no soil samples will be collected. If the PID/FID readings exceed background, the sample with the highest PID/FID reading, or, if all readings are the same, the sample from 18 to 24-inches below grade will be analyzed for methylene chloride.

6.1.3 Underground Fuel Oil Storage Tank

One 10,000-gallon No. 2 fuel oil underground storage tank was removed in 1991 in accordance with a tank closure plan prepared by Tank and Line Compliance Corporation, Lafayette, New Jersey and

approved by NJDEP (Closure Approval #C-91-2139). No soil sampling was conducted and no detectable organic vapors were recorded during and after the excavation and removal. A 6,000-gallon new double wall fiberglass underground storage tank was installed in the same excavation. This tank is still in service. EDER contacted Raphael Rivera, Bureau of Underground Storage Tanks, on November 19, 1997 to determine the status of this case. Mr. Rivera indicated that the NJDEP's database shows the case was closed by the Department on November 23, 1992.

Six soil borings will be drilled around the existing 6,000-gallon underground fuel oil tank. Two soil borings will be drilled along each of the tank side walls and one boring will be drilled along each of the tank end walls. Soil samples will be collected continuously from grade to the water table (which is approximately 6-feet below grade). Soil samples will collected using a split spoon or direct push recovery tool. Each 24-inch sample will be divided into four 6-inch intervals and screened for organic vapors using a PID or FID. The sample with the highest PID/FID reading, or, if all readings are the same, the sample from the 6-inch interval above the water table will be analyzed for TPH.

6.1.4 Aboveground Hydrochloric Acid Tank

Hydrochloric acid (HCl) was stored in a 6,000-gallon single wall fiberglass aboveground storage tank. The tank was on a concrete pad within concrete block walls to provide secondary containment. There were two releases associated with this tank (Spill Nos. 93-12-13-1607-57 and 94-02-24-1623-01). Approximately 50-gallons of hydrochloric acid were discharged from an aboveground line during routine maintenance on December 13, 1993. On February 24, 1994 approximately 1,950 gallons of hydrochloric acid leaked into the secondary containment unit from a broken valve on the hydrochloric acid tank. On both occasions, the hydrochloric acid was mainly contained within the concrete block secondary containment unit, but a small volume of liquid seeped through a crack in the block wall and onto the asphalt pavement surrounded the containment dike. The asphalt pavement was in good condition (no visual evidence of deterioration) prior to and after the discharge (see Affidavit of Bruce Bright, Site Manager in Appendix C).

Because there was no discharge to the soil below the asphalt pavement, no additional sampling or remediation of this area is proposed.

6.1.5 Off-Site Soil (Lot 35A)

A soil investigation was conducted on the property adjacent (Lot 35A) to the Teva site by Geraghty & Miller (G&M) in 1987. The sampling showed that acetone was detected at estimated concentrations ranging from less than 25 micrograms per kilogram (μ g/kg) to 5,900 μ g/kg, which is well below the 1,000 mg/kg Unrestricted Use Soil Cleanup Criteria; dimethyl aniline concentrations ranged from less than 40 μ g/kg to 900 μ g/kg which is well below the 10,000 mg/kg total organic contaminant soil cleanup criteria; bis (2-ethylhexyl) phthalate concentrations ranged from less than 40 μ g/kg which is well below the 49 mg/kg Unrestricted Use Soil Cleanup Criteria; and aniline concentrations were well below the 10,000 mg/kg total organic contaminant soil cleanup criteria with the exception of one sample (GM-OD 20-21') which exceeded the criteria (13,000 mg/kg).

As agreeded to in our September 14, 1998 meeting with the NJDEP, no additional soil sampling or remediation will be conducted because the sample was collected from within the saturated zone. Groundwater samples will be collected from existing monitoring wells and analyzed for aniline and dimethyl aniline in accordance with Section 6.2.4.

6.2 Groundwater

A 100-foot long underground steel pipe was installed in 1972 to transfer wastewater from the manufacturing building processing area to an underground wastewater storage tank. The wastewater contained low concentrations of acetone, methylene chloride, n-butyl alcohol, and dimethyl aniline. Teva discovered a leak in the underground pipe in November 1975 and removed the pipe from service. Monitoring wells were installed and groundwater samples were collected and analyzed to determine whether the underground transfer line leak had impacted groundwater quality. The

groundwater sampling showed elevated concentrations of methylene chloride, acetone, and butyl alcohol. The nature and extent of groundwater contamination at the Teva site has been documented in extensive groundwater investigations conducted by Geraghty and Miller (G&M) between 1979 and 1995, supplemented by the groundwater monitoring program initiated by Teva in 1985.

Teva pumped groundwater from three on-site recovery wells between 1975 and 1981 and disposed of the groundwater off-site. The cost of disposing of the recovered groundwater off-site became prohibitive and with NJDEP's approval, Teva undertook an extensive research and development project to develop a process to remove and treat groundwater. The research resulted in the development of a sophisticated biodegradation/biostimulation process which was patented in the U.S.

Teva initiated groundwater monitoring to evaluate the progress and effectiveness of the groundwater biodegradation/biostimulation system. This program consists of sampling 11 wells quarterly and 26 wells annually, and analyzing the samples for methylene chloride, acetone, butyl alcohol, BOD, COD, TOC, chloride, and total phosphorous. The groundwater sampling shows that groundwater quality has steadily improved. Groundwater elevation measurements and sampling data show that the zone of influence created by the recovery system maintains hydraulic control of the groundwater contaminant plume. The groundwater sampling data show that the highest concentrations of methylene chloride and acetone are in the southern area of the property and that these concentrations have been reduced significantly from concentrations existing prior to biodegradation/biostimulation system.

6.2.1 Groundwater Contaminant Concentration Fluctuations

The concentration changes are attributable to a significant decrease in groundwater elevations measured in the third quarter of 1995. The third quarter 1995 sampling was conducted during a severe drought where groundwater levels were between 0.27 and 8.98 feet lower than those measured in the fourth quarter 1995. Precipitation data from the Office of the New Jersey State

Climatologist, Rutgers University, show that the total precipitation for the six month period (March through August) was 8.24 inches which was considerably less than precipitation for that same six month period in 1994 (30.14 inches), 1996 (24.67 inches), and 1997 (25.45 inches). Graph I shows the relationship between precipitation and volatile organic compound concentrations in P-32A/32B for the period between 1994 and 1997.

6.2.2 Off-Site Delineation

The quarterly groundwater monitoring program show that groundwater flow is to the northnorthwest at the northern section of the site, and to the south-southeast in the central and southern sections of the site and that groundwater discharged to the recharge trench system flows downgradient towards the recovery well system.

As discussed in our September 14, 1998 meeting with the NJDEP, the historical data was reviewed to determine whether there were a sufficient number of monitoring points to demonstrate that the entire plume is being captured. Based on this review it was determined that there is a sufficient number of monitoring points south of the site to demonstrate that recovery wells P-32A/32B and P-30 are capturing the full width of the plume. This determination was based on the groundwater flow and analytical data. Sampling conducted between 1994 and 1998 shows that the highest concentrations of contaminants on the south side of the property are detected in recovery well P-32A/32B. The sampling indicates acetone concentrations in downgradient wells W-1 through W-6 ranged from less than the laboratory MDL to 49.7 $\mu g/l$ which is well below the 700 Class IIA Groundwater Quality Criteria and an order of magnitude less than concentrations detected in P-32A/32B. The sampling indicates methylene chloride concentrations in downgradient wells W-1 through W-6 were less than the laboratory MDL which is several orders of magnitude less than concentrations detected in P-32A/32B.

The review indicated that additional off-site monitoring wells are required to demonstrate that the entire plume is being captured along the north side of the property. Sampling shows that methylene

chloride and acetone concentrations occasionally exceed the Class IIA-Ground Water Quality Criteria. Two shallow monitoring wells will be installed, one north of Industrial Park and one west of Industrial Park. The wells will be installed in the Township right-of-way. The borings will be drilled using hollow stem augers to an approximate depth of 15 feet below grade or to the top of bedrock, whichever is encountered first. The wells will be constructed of 10-feet of 2-inch diameter, flush joint, machine perforated PVC well screen and 5-feet of PVC riser pipe. The wells will be completed using a flush mount protective casing.

6.2.3 Vertical Delineation

One bedrock monitoring well will be installed to confirm that there has been no vertical migration of contaminants. The well will be installed midway between P-32A/32B and P-30. The boring will be installed using air rotary drilling equipment to a depth of approximately 65 feet below grade. The upper zone will be casing using steel conductor pipe extending from grade to competent bedrock (approximately 30 feet below grade). The well will be constructed of 10-feet of 2-inch diameter, flush joint, machine perforated PVC well screen and 55-feet of PVC riser pipe. The well will be completed using a steel protective casing.

6.2.4 Groundwater Monitoring

Groundwater samples will be collected quarterly from existing wells MW-6, MW-17, MW-24, MW-25, MW-28, MW-42, W-2, P-13, P-30, and P-32A/32B, and from the proposed shallow and deep monitoring wells. In addition to the quarterly samples, annual sampling will be conducted at MW-1, MW-2, MW-8, MW-31, and the on-site production well. The samples will be analyzed for methylene chloride, acetone, butyl alcohol, aniline, dimethyl aniline, COD, BOD, and TOC.

6.2.5 Monitoring Well Abandonment

Monitoring wells MW-6, MW-9, MW-10, MW-11, and MW-12 are constructed of small diameter

24

well casings (less than 2 inches) and will be abandoned in accordance with NJDEP regulations.
Monitoring wells MW-6 and MW-9 will be replaced by drilling two new borings within 10 feet of the abandoned wells using hollow stem augers to an approximate depth of 15 feet below grade or to the top of bedrock, whichever is encountered first. The wells will be constructed of 10-feet of 2-inch diameter, flush joint, machine perforated PVC well screen and 5-feet of PVC riser pipe. The wells will be completed using a flush mount protective casing.

6.3 Sediment

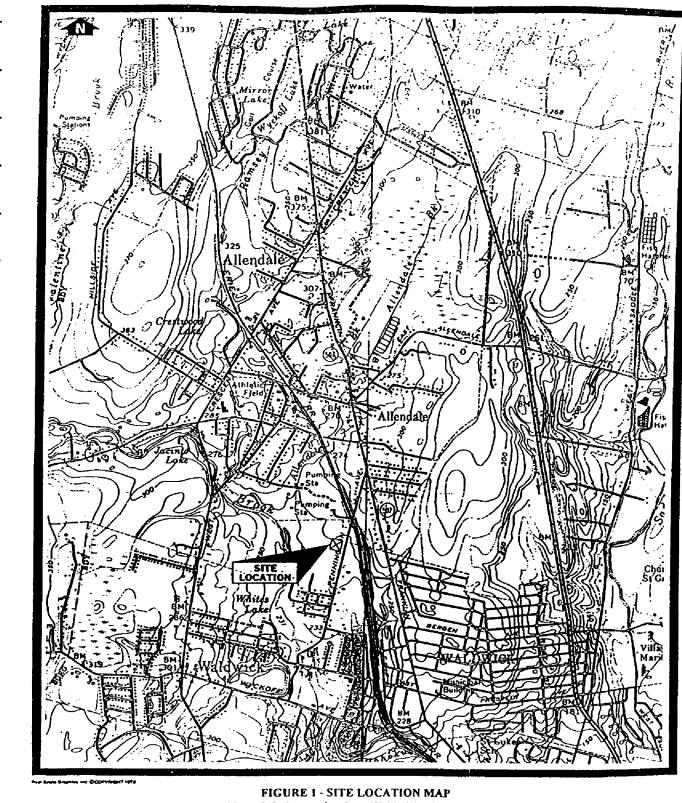
The leak in the underground transfer lines reportedly was discovered in 1975 during a NJDEP investigation requested by the Northwest Bergen Regional Health Commission (NWBRHC) to determine the causes of grayish-black algae growth on the surface water of Allendale Brook. The analytical results of surface water samples collected from Allendale Brook in 1975 and again in 1991 were well below the Surface Water Standards. Sediment sampling was not conducted.

These data show that surface water quality was not effected by this discharge and it is unlikely that these contaminants would be detected 22 years later because Biocraft removed the source of the discharge (the leaking underground lines) and reduced any potential discharges to surface water by installing the biodegradation/biostimulation system to control downgradient migration of VOCs by extracting and treating groundwater.

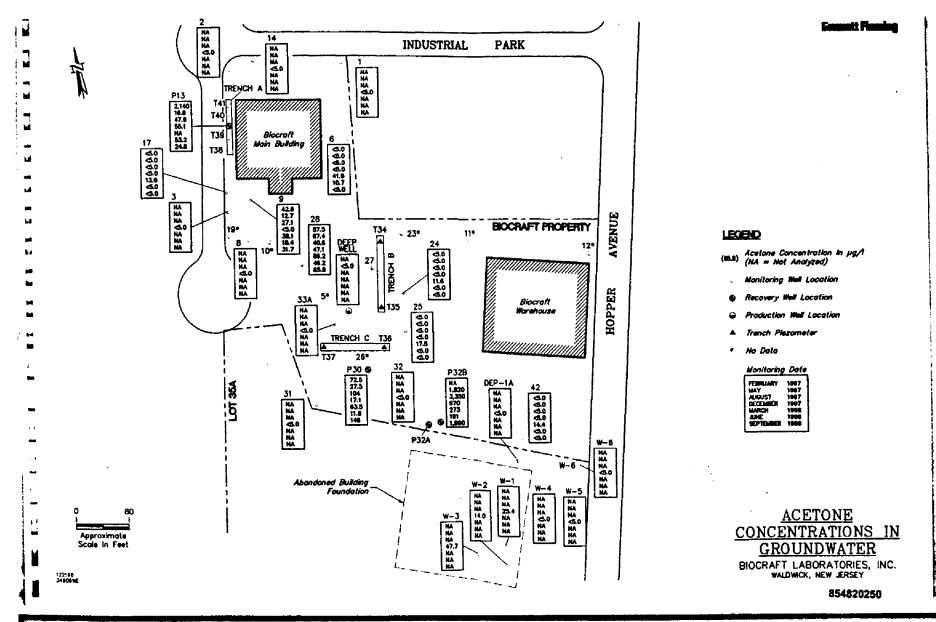
Nevertheless, as discussed during our September 14, 1998 meeting with the NJDEP, Teva proposes to collect one sediment sample from the discharge location of the on-site catch basin into Allendale Brook. The sample will be collected using a field decontaminated stainless steel sediment sampler. The sample will be collected from the 6-inch interval below the stream bed and analyzed for aniline and dimethyl aniline.

25

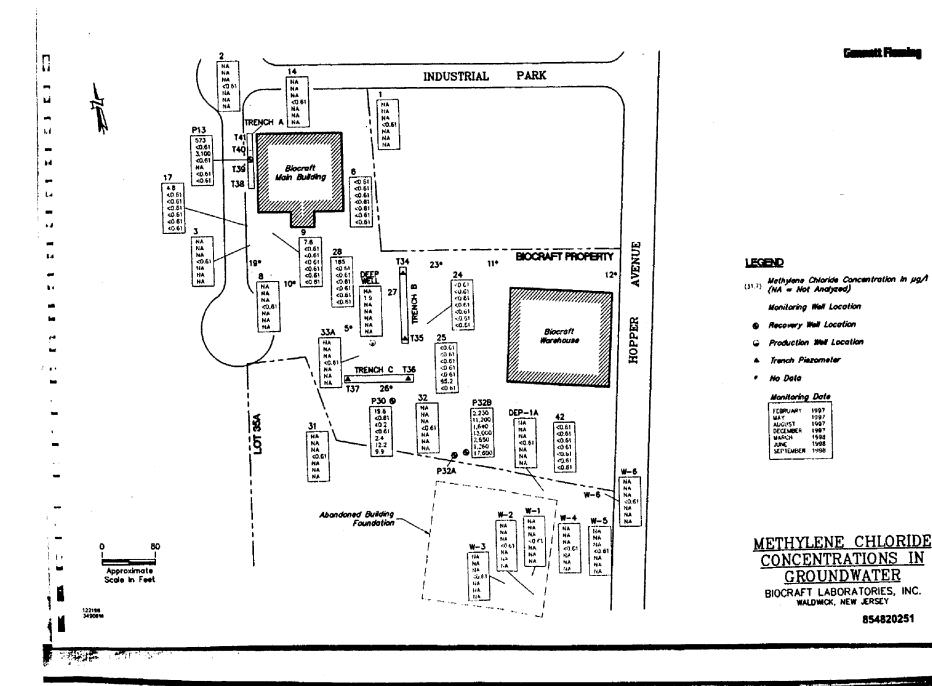
854820247

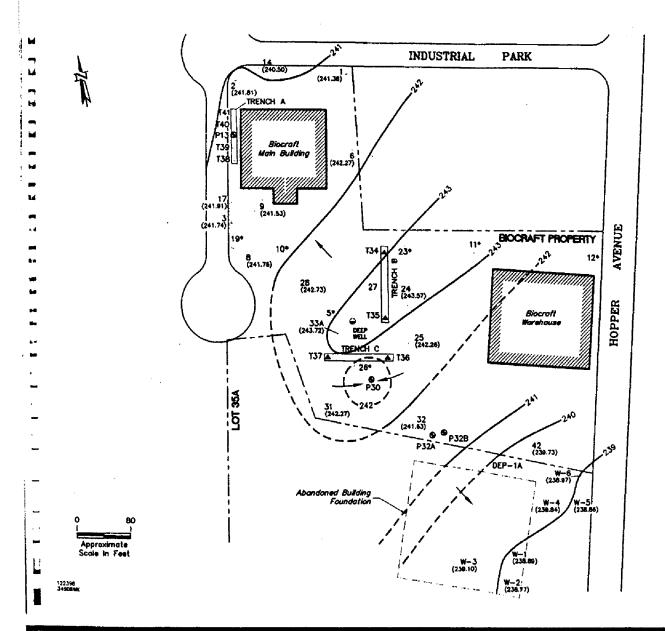

TIERRA-B-009241

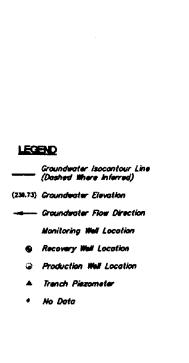
FIGURES


.

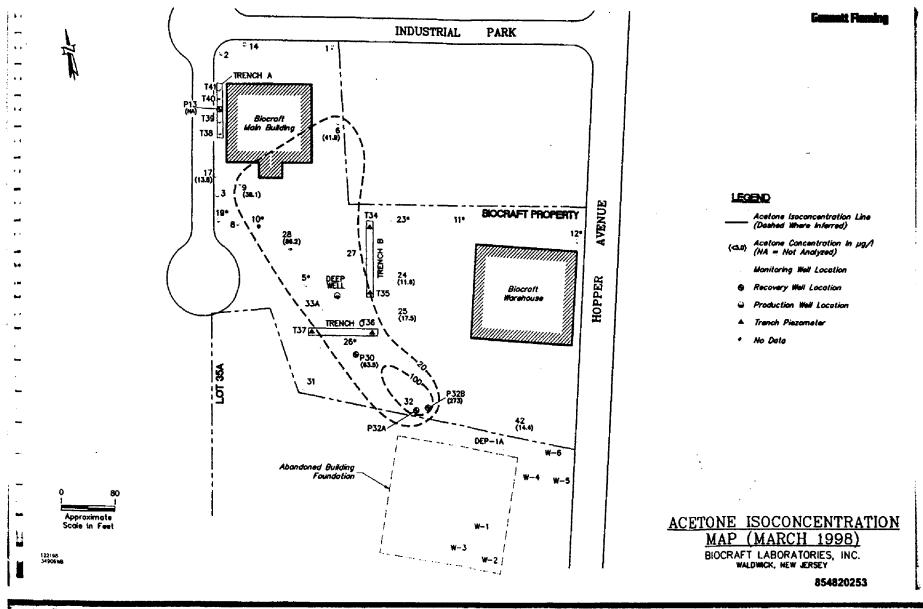
.

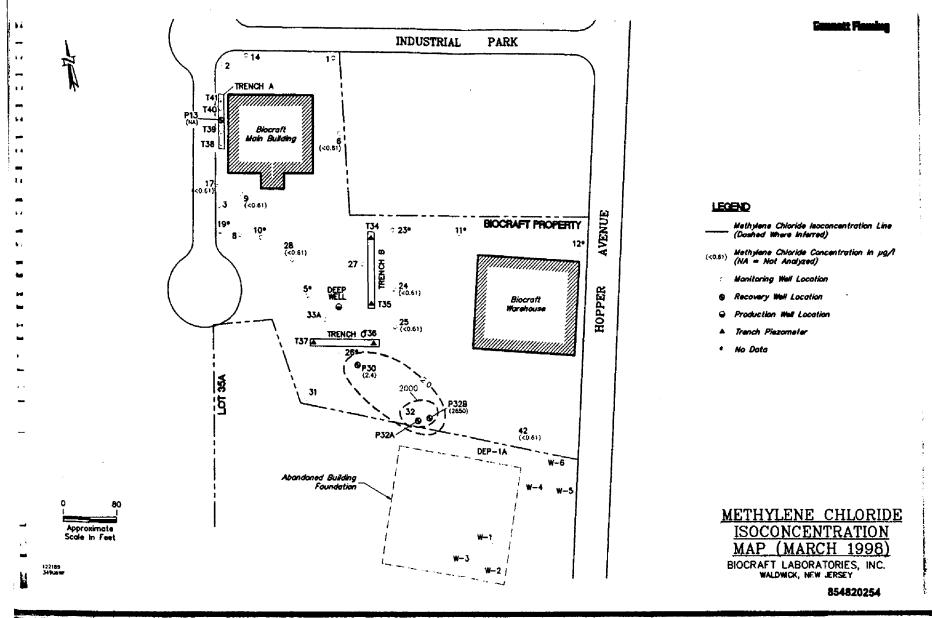

854820**248**

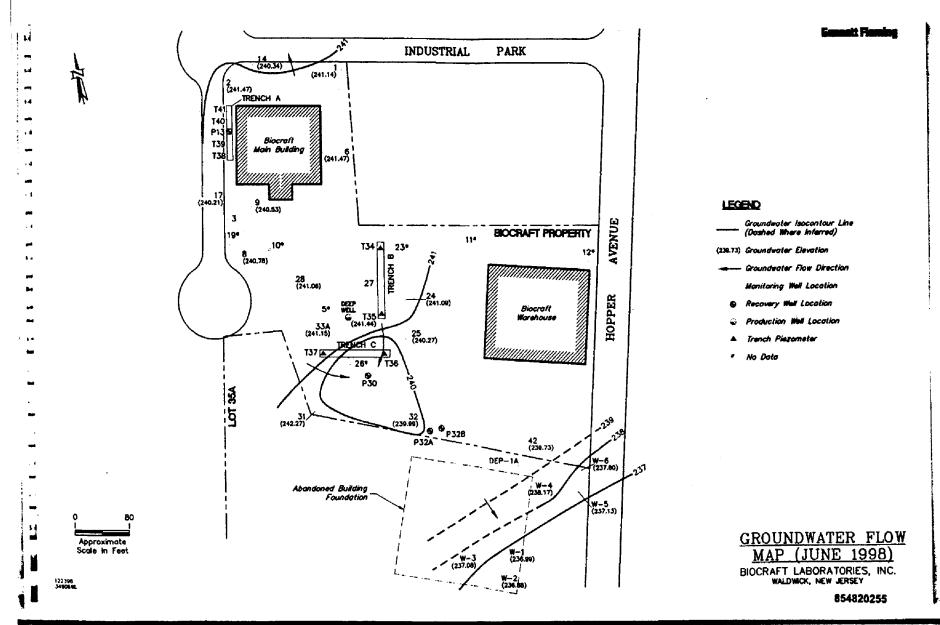


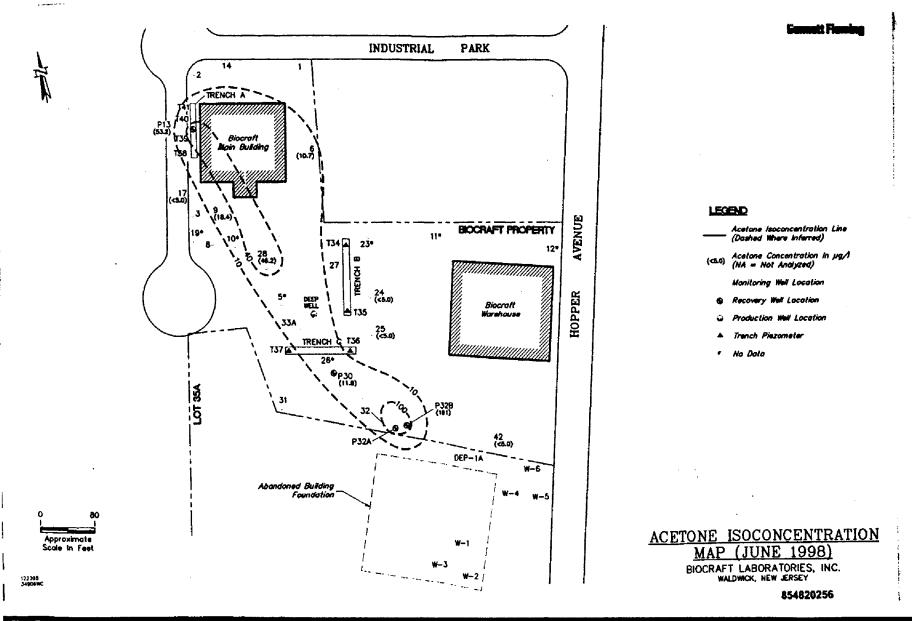

Biocraft Laboratories, Inc., Waldwick, New Jersey Scale 1:24,000 Contour Interval 10 Feet Longitude 74.07.30 Latitude 41.00.00 USGS, 7.5 Minute Quadrangle Map, Ramsey, NY-NJ, 1955 USGS, 7.5 Minute Quadrangle Map, Park Ridge, NY-NJ, 1955

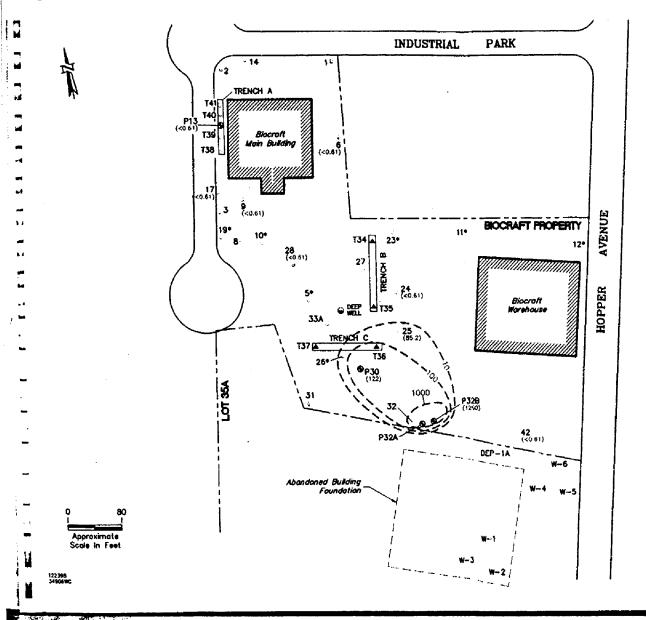

TELEVILLE CONTRACTOR

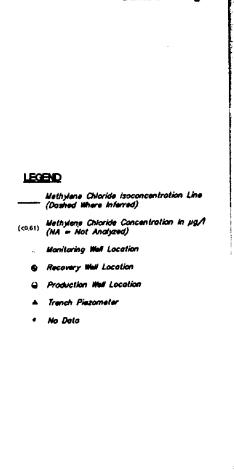


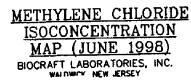


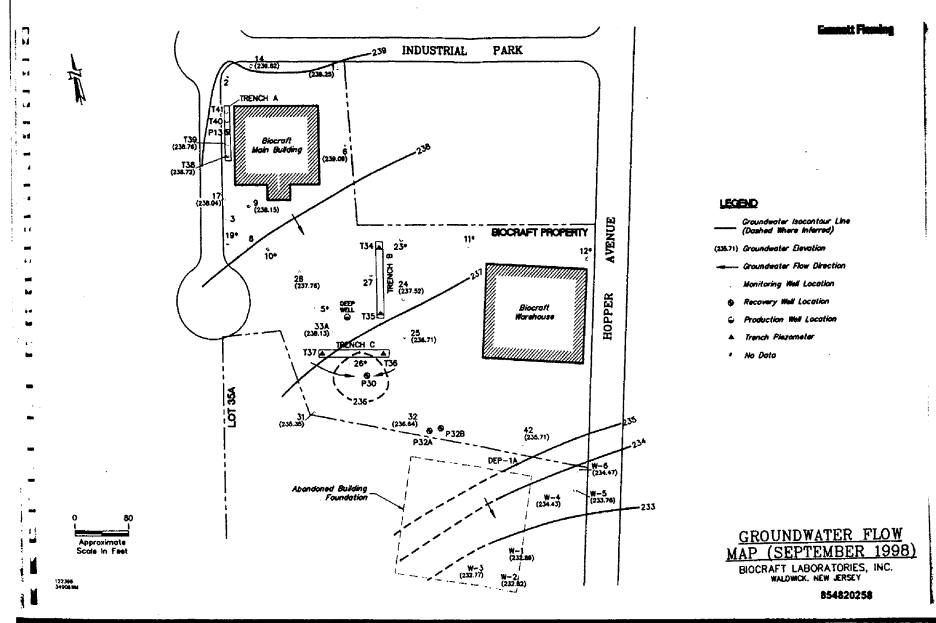

tt Fla

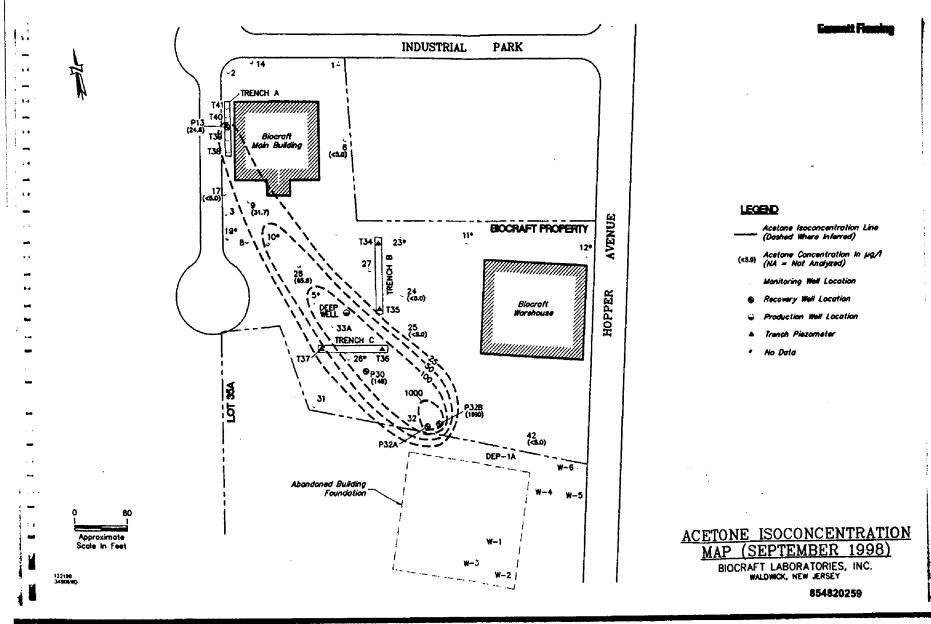



Par alter alter

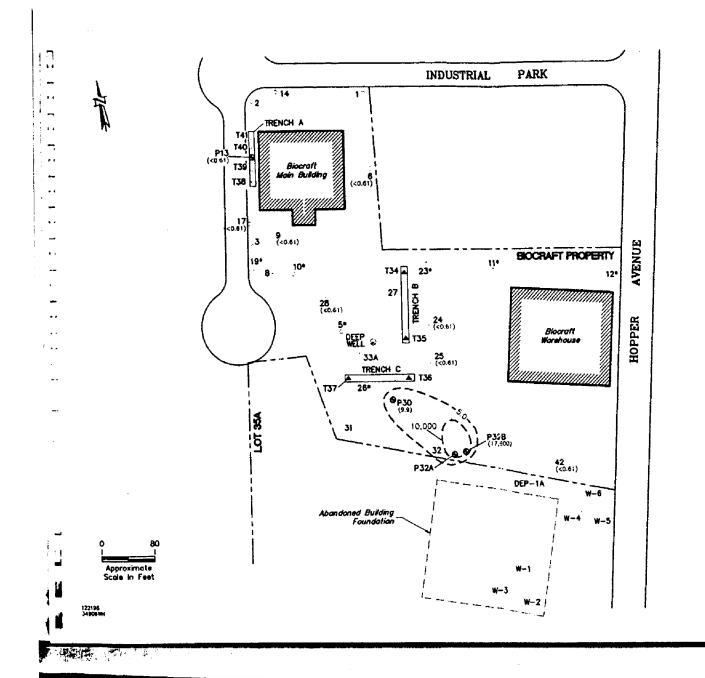


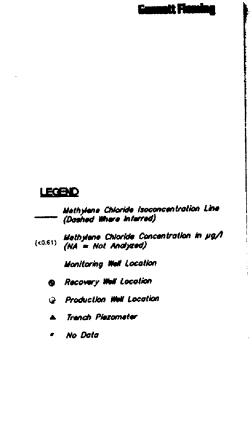


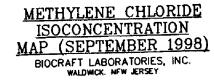


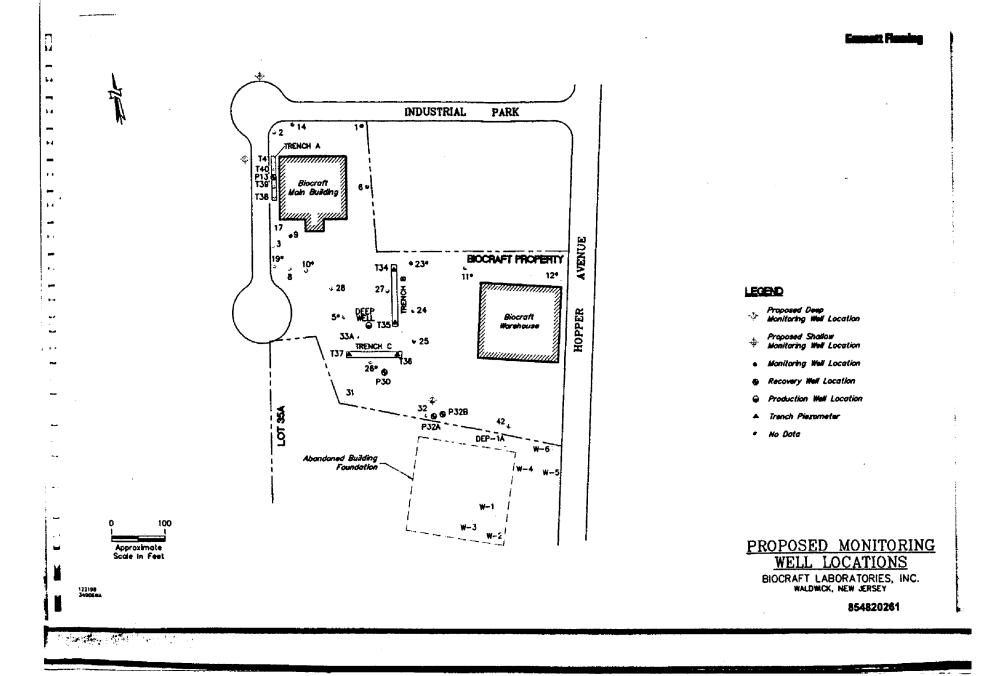


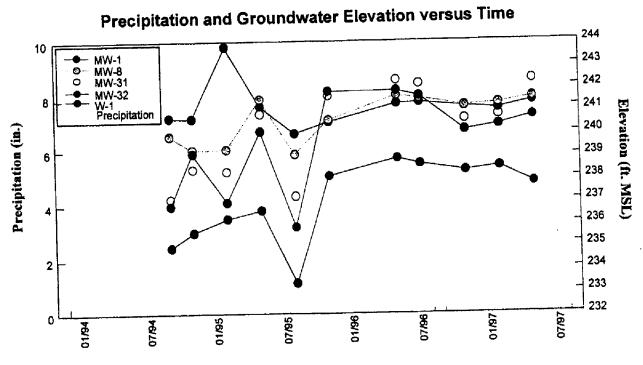
att Fis




854820257






. :

Date of Measurements

1

1

I.

TABLES

TABLE 1

GROUNDWATER SAMPLING RESULTS SUMMARY - FEBRUARY 1997

	MW-6	MW-9	MW-17	MW-24	MW-25	MW-28	MW-42
Sample Number	Water	Water	Water	Water	Water	Water	Water
Sample Matrix	and the second se	2/19/97	2/19/97	2/19/97	2/19/97	2/19/97	2/19/97
Date Collected	2/19/97	2/19/97	2/17/71	2127191		<u></u>	
Volatile Organic Compounds (ug/L)							
	< 5.0	42.6	< 5.0	< 5.0	< 5.0	57.5	< 5.0
Acetone	< 0.61	7.8	4.8	< 0.61	< 0.61	185.0	< 0.61
Methylene Chloride	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Butyl Alcohol	< 1.4	51.7					
BOD (mg/L)	< 2.0	10.9	< 2.0	< 2.0	< 2.0	12.1	< 2.0
	< 20	21.6	< 20	< 20	< 20	39.4	< 20
COD (mg/L)	183.0	153.0	867	17.5	40.0	192	20
Chloride (mg/L)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.14	< 0.10
Phosphorus, Total (mg/L)	2.3	6.9	3.7	3.9	4.7	12.7	1.7
TOC (mg/L)	4.3	0.5	L	1			

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

1

1

I

TABLE I Continued...

.

Sample Number	PW-13	PW-30	MW-P32A	BIO-EFF	MW-D
Sample Matrix	Water	Water	Water	Water	Water
Date Collected	02/19/97	02/19/97	02/19/97	02/19/97	02/19/97
					Duplicate
Volatile Organic Compounds (ug/L)					
Acetone	2140	72.5	241	299.0	296
Methylene Chloride	573	19.8	2230	401.0	441
Butyl Alcohol	< 14	< 1.4	< 14	< 2.8	< 2.8
BOD (mg/L)	54.7	5.5	9.9	10.2	10.4
COD (mg/L)	45.7	41.9	31.8	29.2	26.7
Chloride (mg/L)	444	140	127	192	185.0
Phosphorus, Total (mg/L)	4.4	6.8	2.3	10.1	15.7
TOC (mg/L)	14.3	10.9	10,0	9.3	9.5

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L- Milligrams per Liter

ug/L - Micrograms per Liter

B - Compound was also detected in method blank.

U - Compound was not detected.

TABLE 2

GROUNDWATER SAMPLING RESULTS SUMMARY - MAY 1997

Sample Number	MW-6	MW-9	MW-17	MW-24	MW-25	MW-28	MW-42
Sample Matrix	Water	Water	Water	Water	Water	Water	Water
Date Collected	05/08/97	05/08/97	05/08/97	05/08/97	05/08/97	05/08/97	05/08/97
Volatile Organic Compounds (ug/L) Acetone Methylene Chloride Butyl Alcohol	< 5.0 < 0.61 < 1.4	12.7 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4	67.4 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4
BOD (mg/L)	< 2.0	5.4	< 2.0	< 2.0	< 2.0	9.6	< 2.0
COD (mg/L)	< 20	41.9	21.6	< 20	21.6	43.2	< 20
Chloride (mg/L)	154.0	111.0	187	199	1040	187	16.5
Phosphorus, Total (mg/L)	< 0.10	0.12	< 0.10	< 0.10	0.27	0.47	< 0.10
TOC (mg/L)	2.8	4.6	7.0	5.8	4.6	11.9	1.8

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

1

1

ug/L - Micrograms per Liter

i

1

1

TABLE 2 Continued...

Sample Number	MW-D	PROD	PW-13	PW-30	MW-P32A	BIO-EFF
Sample Matrix	Water	Water	Water	Water	Water	Water
Date Collected	05/08/97	05/08/97	05/08/97	05/08/97	05/08/97	05/08/97
	Duplicate	Deep Well				
Volatile Organic Compounds (ug/L)						1
A	27.3	< 5.0	16.8	27.5	1820	7.0
Acetone Methylene Chloride	< 0.61	1.9	< 0.61	< 0.61	11200	150.0
Butyl Alcohol	< 1.4	< 1.4	< 1.4	<1.4	< 1.4	< 1.4
	< 2.0	< 2.0	8.3	< 2.9	15.3	< 2.0
BOD (mg/L)	24.1	< 20	40.6	24.1	49.5	30.5
COD (mg/L)	230	82.5	575	230	145	200
Chloride (mg/L)	19.9	< 0.10	22.4	19.2	15.3	0.45
Phosphorus, Total (mg/L) TOC (mg/L)	7.2	< 1.0	9.6	7.1	15.3	6.1

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

TABLE 3

GROUNDWATER SAMPLING RESULTS SUMMARY - AUGUST 1997

Sample Number	MW-6	MW-9	MW-17	MW-24	MW-25	MW-28	MW-42
Sample Matrix	Water	Water	Water	Water	Water	Water	Water
Date Collected	08/28/97	08/29/97	08/29/97	08/29/97	08/29/97	08/29/97	08/29/97
Volatile Organic Compounds (ug/L) Acetone Methylene Chloride Butyl Alcohol	< 5.0 < 0.61 < 1.4	27.1 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4	40.6 < 0.61 < 1.4	< 5.0 < 0.61 < 1.4
BOD (mg/L)	4.0	11.2	< 2.8	< 2.0	< 2.8	19.0	< 2.0
COD (mg/L)	< 20	37,2	24.8	26.0	42.2	37.2	< 20
Chloride (mg/L)	161.0	154.0	148	41.0	400	199	52.5
Phosphorus, Total (mg/L)	< 0.10	0.20	0.12	< 0.10	0.95	0.76	< 0.10
TOC (mg/L)	3.0	8.0	8.4	8.8	10.7	11.3	3.3

NOTES:

< - Less Than

1

T

1

1

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

1

ug/L - Micrograms per Liter

TIERRA-B-009262

. |

TABLE 3 Continued...

Sample Number	MW-D	PW-13	PW-30	MW-P32A	BIO-EFF
Sample Matrix	Water	Water	Water	Water	Water
Date Collected	08/29/97	08/29/97	08/29/97	08/29/97	08/29/97
	Duplicate				
Volatile Organic Compounds (ug/L)					
Acetone	< 5.0	479.0	104.0	3,350.0	76.4
Methylene Chloride	< 0.61	3,100	40.2	16,400	69.2
Butyl Alcohol	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
	< 2.0	5.5	6.2	42.2	17.3
BOD (mg/L)	45.9	27.5	29.8	86.8	28.5
COD (mg/L)	285.0	169.0	315.0	250.0	255.0
Chloride (mg/L)	0.76	0.36	1.5	1.8	1.0
Phosphorus, Total (mg/L) TOC (mg/L)	9.6	6.4	8.6	24.7	7.5

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 4

GROUNDWATER SAMPLING RESULTS SUMMARY - DECEMBER 1997

Sample Number	MW-1	MW-2	MW-3	MW-6	MW-8	MW-9	MW-14	MW-17	MW-24
Sample Matrix	Water								
Date Collected	12/18/97	12/18/97	12/18/97	12/17/97	12/18/97	12/17/97	12/18/97	12/18/97	12/17/97
Volatile Organic Compounds (ug/L)									
	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acetone	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61
Methylene Chloride Butyl Alcohol	< 1.4	< 1.4	< 1.4	< 1.4	< 1,4	< 1.4	< 1.4	< 1.4	< 1,4
	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
Aniline N,N-Dimethyl Aniline	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
BOD (mg/L)	< 2.0	< 2.0	8.1	2.2	5.7	8.8	< 2.0	7.6	< 2.0
	< 20	< 20	< 20	< 20	63.2	< 20	< 20	27.1	161
COD (mg/L)	298	190.0	150.0	180.0	194.0	118.0	51.7	158	27.5
Chloride (mg/L) Phosphorus, Total (mg/L)	< 0.10	0.14	5.0	< 0.10	0.26	0.19	< 0.10	0.45	19.5
TOC (mg/L)	8.9	7.0	18.6	3.4	20.8	7.6	8.2	11.1	7.4

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

TABLE 4 Continued...

	101/26	MW-28	MW-31	MW-32	MW-33A	MW-42	MW-D	BIO-DEP-1A	W-1
Sample Number	MW-25		Water	Water	Water	Water	Water	Water	Water
Sample Matrix	Water	Water		12/18/97	12/18/97	12/17/97	12/18/97	12/18/97	12/19/97
Date Collected	12/17/97	12/17/97	12/18/97	12/18/97			Duplicate		
Volatile Organic Compounds (ug/L)							2 - Fii		
	< 5.0	47.1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	25.4
Acetone	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61
Methylene Chloride	< 1.4	< 1.4	· <1.4	< 1.4	< 1.4	< 1.4	< 1.4	<1.4	< 1.4
Butyl Alcohol	< 1. 4				1				
	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	1.0
Aniline	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	4.1 J
N,N-Dimethyl Aniline	< 5.0	~ 5.0	- 5.0						
	(20	23.2	< 2.0	3.2	< 2.0	< 2.0	3.2	< 2.0	28.4
BOD (mg/L)	< 2.0		29.7	148.0	20.6	< 20	128.0	< 20	69.3
COD (mg/L)	20.8	85.7	63.6	308	217	60.5	306.0	40.9	80.8
Chloride (mg/L)	48	148		9.9	8.6	< 0.10	13.9	< 0.10	14.0
Phosphorus, Total (mg/L)	0.76	14.2	0.14	77.3	13.9	10.5	97.5	14.6	51.7
TOC (mg/L)	7.2	19.4	63.9	1 (7.5	L 13.7	L	1		

NOTES:

< - Less Than

.

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

TABLE 4 Continued...

Sample Number	W-2	W-3	W-4	W-5	W-6	PW-13	PW-30	MW-P32A	BIO-EFF
	Water								
Sample Matrix Date Collected	12/19/97	12/19/97	12/19/97	12/19/97	12/19/97	12/19/97	12/19/97	12/19/97	12/19/97
								_	
Volatile Organic Compounds (ug/L)								1	
4	14.0	49.7	< 5.0	< 5.0	< 5.0	55,1	17.1	970	171.0
Acetone Methylene Chloride	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	13,000	141.0
Butyl Alcohol	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	201.0	26.4	< 70	< 1.4
Aniline	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	27.3	441.0	< 0,78
N,N-Dimethyl Aniline	2.7 J	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	37.0	1.1 J
BOD (mg/L)	27.7	18.1	6.8	4.5	< 2.9	7.4	< 2.9	24.9	4.0
COD (mg/L)	152.0	63.7	49.7	28.8	< 20	20.9	< 20	120.0	< 20
Chloride (mg/L)	43.4	33.5	45.8	57.7	80.3	350.0	283.0	241.0	286.0
Phosphorus, Total (mg/L)	13.2	11.6	0.34	14.1	0.42	1.1	0.73	25.3	7.3
TOC (mg/L)	141.0	64.6	10.9	7.7	8.8	16.3	9.5	32.0	7.2

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 5

GROUNDWATER SAMPLING RESULTS SUMMARY - MARCH 1998

Sample Number	MW-6	MW-9	MW-17	MW-24	MW-25	MW-28	MW-D
Sample Matrix	Water						
Date Collected	03/26/98	03/26/98	03/26/98	03/26/98	03/26/98	03/26/98	03/26/98
							Duplicate
Volatile Organic Compounds (ug/L)							
Acetone	41.9	38.1	13.8	11.6	17.5	86.2	138.0
Methylene Chloride	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61
Butyl Alcohol	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
BOD (mg/L)	< 2.8	5.3	3.8	< 2.0	< 2.0	18.0	20.0
COD (mg/L)	21.1	< 20	52.8	143	29	73.9	68.6
Chloride (mg/L)	335.0	137.0	114.0	59.7	15.1	46.6	47.6
Phosphorus, Total (mg/L)	< 0.10	0.19	0.4	1.7	0.62	0.55	0.54
TOC (mg/L)	11.8	6.7	8.6	28.0	10.7	13.6	13.3

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

TABLE 5 Continued...

Sample Number	MW-42	P-30	P-32A/B	BIO-EFF
Sample Matrix	Water	Water	Water	Water
Date Collected	03/27/98	03/27/98	03/27/98	03/27/98
Volatile Organic Compounds (ug/L)				
Acetone	14.4	63.5	273.0	32.7
Methylene Chloride	< 0.61	2.4	2,650.0	10.2
Butyl Alcohol	< 1.4	< 1.4	< 1.4	< 1.4
BOD (mg/L)	< 2.0	2.9	5.2	3.0
COD (mg/L)	< 20	21.1	26.4	< 20
Chloride (mg/L)	26.2	113.0	93.7	104.0
Phosphorus, Total (mg/L)	< 0.10	0.41	0.72	0.66
TOC (mg/L)	2.3	6.5	8.5	5.8

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

NS - Not Sampled due to pump malfunction

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 6

GROUNDWATER SAMPLING RESULTS SUMMARY -JUNE 1998

Sample Number	MW-6	MW-9	MW-17	MW-24	MW-D	MW-25	MW-28
	Water	Water	Water	Water	Dup. 24	Water	Water
Sample Matrix Date Collected	06/25/98	06/25/98	06/25/98	06/25/98	06/25/98	06/25/98	06/25/98
Volatile Organic Compounds (ug/L)							
Acetone	10.7	18.4	< 5.0	< 5.0	< 5.0	< 5.0	46.2
Methylene Chloride	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	85.2	< 0.61
Butyl Alcohol	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aniline (ug/L)	< 0.78	< 0.79	< 0.80	< 0.80	< 0.80	< 0.79	< 0.79
N,N-Dimethyl Aniline (ug/L)	< 5.0	< 5.0	< 5.1	< 5.2	< 5.2	< 5.0	1.9
BOD (mg/L)	< 2.0	5.7	3.7	< 2.0	< 2.0	< 2.0	8.1
COD (mg/L)	< 20	< 20	29	21.1	< 20	< 20	44.9
Chloride (mg/L)	171.0	121.0	56.9	18.8	33.3	58.8	27.0
Phosphorus, Total (mg/L)	< 0.10	< 0.10	< 0.10	0.14	< 0.10	0.34	0.55
TOC (mg/L)	3.3	6.2	7.1	9.1	9.3	7	10

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

TABLE 6 Continued...

Sample Number	MW-42	P-30	P-32A/B	BIO-EFF	P-13
Sample Matrix	Water	Water	Water	Water	Water
Date Collected	06/26/98	06/26/98	06/26/98	06/26/98	06/26/98
Volatile Organic Compounds (ug/L)					
Acetone	< 5.0	11.8	191.0	36.6	53.2
Methylene Chloride	< 0.61	122.0	1,260.0	3.6	< 0.61
Butyl Alcohol	< 1.4	< 1.4	<14	< 1.4	< 1.4
Aniline (ug/L)	< 0.79	32	111	< 0.79	< 0.79
N,N-Dimethyl Aniline (ug/L)	< 5.0	2.5	31.8	< 5.0	2.3
BOD (mg/L)	< 2.0	< 2.0	6.4	< 2.0	5.3
COD (mg/L)	< 20	< 20	< 20	< 20	21.1
Chloride (mg/L)	76.2	246.0	174.0	263.0	463.0
Phosphorus, Total (mg/L)	< 0.10	0.54	0.29	2.8	0.44
TOC (mg/L)	3	7.6	8.9	6.7	11.8

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

NS - Not Sampled due to pump malfunction

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 7

GROUNDWATER SAMPLING RESULTS SUMMARY -SEPTEMBER 1998

	MW-6	MW-9	MW-17	MW-24	MW-D	MW-25	MW-28
Sample Number	Water	Water	Water	Water	Dup. 24	Water	Water
Sample Matrix	and the second se	09/24/98	09/24/98	09/24/98	09/24/98	09/25/98	09/24/98
Date Collected	09/24/98	07/24/70	V//2-470				
Volatile Organic Compounds (ug/L)							
		31.7	< 5.0	< 5.0	< 5.0	< 5.0	65.8
Acetone	< 5.0	< 0.61	< 0.61	< 0.61	< 0.61	<0.61	< 0.61
Methylene Chloride	< 0.61	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Butyl Alcohol	< 1.4	1 ~ 1.4					
	-0.80	< 0.78	< 0.78	< 0.79	< 0.78	< 0.78	<0.79
Aniline (ug/L)	< 0.80	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	1.9
N,N-Dimethyl Aniline (ug/L)	5.1	- 5.0					1
	< 2.0	15.2	8	< 2.8	< 2.0	6.7	19.8
BOD (mg/L)	23.6	48.4	48.4	< 20	< 20	23.6	83.1
COD (mg/L)	l l	180.0	45.7	54.6	61.4	117.0	55.1
Chloride (mg/L)	181.0	0.30	< 0.10	< 0.10	< 0.10	0.17	0.95
Phosphorus, Total (mg/L)	< 0.10	1		7.9	7.9	9.9	9.6
TOC (mg/L)	3.7	7.8	10.5	7.9	1.9		,

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

TABLE 7 Continued...

	MW-42	P-30	P-32A/B	BIO-EFF	P-13
Sample Number	Water	Water	Water	Water	Water
Sample Matrix	09/25/98	09/25/98	09/24/98	09/25/98	09/25/98
Date Collected	09/23/90	03/23/70	••••		l,
Volatile Organic Compounds (ug/L)					
	< 5.0	148.0	1,990 a	13.9	24.8
Acetone	< 0.61	9.9	17,600 a	< 0.61	< 0.61
Methylene Chloride	< 1.4	< 1.4	<7	< 1.4	< 1.4
Butyl Alcohol	~ 1.4		-		
	< 0.78	77.7	144	< 0.79	< 0.80
Aniline (ug/L)	1	7.3	62.4	< 5.0	1.1 J
N,N-Dimethyl Aniline (ug/L)	< 5.0	1.5	02.4		
	-20	14.6	< 2.0	6.8	26.3
BOD (mg/L)	< 2.0	< 20	63.2	< 20	68.2
COD (mg/L)	< 20	L	212.0	268.0	270.0
Chloride (mg/L)	118.0	236.0		0.13	30.6
Phosphorus, Total (mg/L)	< 0.10	2.3	1.2		12
TOC (mg/L)	5	11.7	19.8	5.5	

NOTES:

< - Less Than

J - Result is less than the quantitation limit or is an estimated result due to exceedance of holding time.

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

NS - Not Sampled

a - Result is from Run # 2

APPENDIX A

LABORATORY DATA REPORTS

(SUBMITTED UNDER SEPARATE COVER)

ı.

854820279

TABLE 8

WATER LEVEL MEASUREMENTS, FEBRUARY 19, 1997

Well	Measuring Point	Depth to Water	Water Level
Number	Elevation	(ft. below MP)	Elevation
	(ft. above mean sea level)		(ft. above mean sea level)
MW1	245.83	4.80	241.03
MW2	247.12	5,49	241.63
MW3	245.12	4.20	240.92
MW6	252.21	10.82	241.39
MW8	244.80	3.55	241.25
MW9	244.98	4.00	240.98
MW10	244.19	0.30	243,89
MW14	244.04	3.93	240.11
MW17	246.01	5.04	240,97
MW24	246.55	3.65	242,90
MW25	245.68	4,90	240.78
MW27	246.56	9.21	237.35
MW28	244.14	2.50	241.64
MW-31	244.93	4.20	240.73
MW-32	244.60	4.30	240.30
MW33A	246.72	5.28	241.44
MW42	242.64	2.22	240.42
T35	250.20	7.65	242.55
T38	246.58	5.58	241.00
T39	246.96	5.83	241.13
W-1	244.51	6.05	238.46
W-2	244.56	6.50	238.06
W-3	244.38	5.63	238.75
W-4	243.68	4.95	238.73
W-5	243.11	5.20	237.91
W-6	244.91	6,48	238,43

ALL VALUES MEASURED IN FEET

1

TABLE 9

WATER LEVEL MEASUREMENTS, MAY 8, 1997

Well	Measuring Point	Depth to Water	Water Level
Number	Elevation	(ft. below MP)	Elevation
	(ft. above mean sea level)		(ft. above mean sea level)
MWI	245.83	4.50	241.33
MW2	247.12	5,56	241.56
MW3	245.12	3.91	241.21
MW6	252.21	10.36	241.85
MW8	244.80	3.29	241.51
MW9	244.98	3.73	241.25
MW10	244.19	0.60	243.59
MW14	244.04	3.85	240.19
MW17	246.01	4.80	241,21
MW24	246.55	3.46	243.09
MW25	245.68	3.59	242.09
MW27	246.56	8.70	237.86
MW28	244.14	2.10	242.04
MW-31	244.93	2.65	242.28
MW-32	244.60	3.91	240,69
MW33A	246.72	3.57	243.15
MW42	242.64	2.38	240.26
P30	241.78	2.86	238,92
T35	250.20	6.92	243.28
T38	246.58	5,70	240.88
T39	246.96	5.93	241.03
W-1	244.51	6.77	237.74
W-2	244.56	6.95	237.61
W-3	244.38	5.22	239.16
W-4	243.68	4.87	238.81
W-5	243.11	5.56	237.55
W-6	244.91	6.56	238.35

ALL VALUES MEASURED IN FEET

854820281

TABLE 10

WATER LEVEL MEASUREMENTS, MARCH 27, 1998

Well	Measuring Point	Depth to Water	Water Level
Number	Elevation	(ft. below MP)	Elevation
	(ft. above mean sea level)		(ft. above mean sea level)
MW1	245.83	4.45	241.38
MW2	247.12	5.31	241.81
MW3	245.12	3.38	241.74
MW6	252.21	9.94	242.27
MW8	244.80	3.04	241.76
MW9	244.98	3,45	241.53
MW10	244.19	N.M.	N.M
MW14	244.04	3.54	240.50
MW17	246.01	4.10	241.91
MW24	246.55	2.98	243.57
MW25	245.68	3.42	242.26
MW27	246.56	N.M.	N.M
MW28	244.14	1.41	242.73
MW-31	244.93	2.66	242.27
MW-32	244.60	2.97	241.63
MW33A	246.72	3.00	243.72
MW42	242.64	2.91	239.73
P30	241.78	N.M.	N.M .
T35	250.20	N.M.	N.M.
T38	246.58	N.M.	N.M.
T39	246.96	N.M.	N.M.
W-1	244.51	5.62	238,89
W-2	244.56	5.79	238.77
W-3	244.38	5.28	239,10
W-4	243.68	3.84	239.84
W-5	243.11	4.75	238.36
W-6	244.91	5.94	238.97

ALL VALUES MEASURED IN FEET N.M. - Not Measured

. ____.

TABLE 11

WATER LEVEL MEASUREMENTS, JUNE 26, 1998

Well	Measuring Point	Depth to Water	Water Level
Number	Elevation	(ft. below MP)	Elevation
<u> </u>	(ft. above mean sea level)		(ft. above mean sea level)
MW1	245.83	4.69	241.14
MW2	247.12	5.65	241.47
MW3	245.12	N.M.	N.M.
MW6	252.21	10,74	241.47
MW8	244.80	4.02	240.78
MW9	244.98	4.45	240.53
MW10	244.19	N.M.	N.M.
MW14	244.04	3.70	240.34
MW17	246.01	5.80	240.21
MW24	246.55	5.46	241.09
MW25	245.68	5.41	240,27
MW27	246.56	N.M.	N.M.
MW28	244.14	3.08	241.06
MW-31	244.93	4.83	240.10
MW-32	244.60	4.61	239,99
MW33A	246.72	5.57	241.15
MW42	242.64	2.91	239.73
P30	241.78	N.M.	N.M.
T35	250.20	8.76	241.44
T38	246.58	N.M.	N.M.
T39	246.96	N.M.	N.M.
W-1	244.51	7.52	236.99
W-2	244.56	7.68	236.88
W-3	244.38	7.30	237.08
W-4	243.68	5.51	238.17
W-5	243.11	5.98	237.13
W-6	244.91	7.11	237.80
DEP 1A	N.M.	3.14	N.M.

N.M. - Not Measured

ALL VALUES MEASURED IN FEET

_

_

_

BIOCRAFT LABORATORIES, INC. WALDWICK, NEW JERSEY

TABLE 12

WATER LEVEL MEASUREMENTS, SEPTEMBER 25, 1998

Well Number	Measuring Point Elevation	Depth to Water (ft. below MP)	Water Level Elevation
	(ft. above mean sea level)	· · ·	(ft. above mean sea level)
MW1	245.83	6,58	239.25
MW2	247.12	7,50	239.62
MW3	245.12	N.M.	N.M.
MW6	252.21	13.12	239.09
MW8	244.80	N.M.	N.M.
MW9	244.98	6.83	238.15
MW10	244.19	N.M.	N.M.
MW14	244.04	N.M.	N.M.
MW17	246.01	7.97	238.04
MW24	246.55	9.03	237.52
MW25	245.68	8.97	236.71
MW27	246.56	N.M.	N.M.
MW28	244.14	6.38	237.76
MW-31	244.93	9.58	235.35
MW-32	244.60	7.96	236.64
MW33A	246.72	8.59	238.13
MW42	242.64	6.93	235.71
P30	241.78	N.M.	N.M.
T35	250.20	N.M.	N.M.
T38	246.58	7.86	238.72
T39	246.96	8.20	238.76
W-1	244.51	11.62	232.89
W-2	244.56	11.74	232.82
W-3	244.38	11.61	232.77
W-4	243.68	9.25	234.43
W-5	243.11	9.35	233.76
W-6	244.91	10.44	234.47

N.M. - Not Measured ALL VALUES MEASURED IN FEET

1

854820284

APPENDIX B

•

GROUNDWATER SAMPLING FIELD DATA FORMS

854820287

	WELL SA	MPLING	1	Eder Associate	S	OFFICES:	
_		2G	413 Ri	verview Execut	ive Park	New York Wisconsin	
		70	Trent	on, New Jersey	08611	Michigan	
				695-1050 (Tele		Georgia Ftorida	
				695-1003 (Fac		New Jersey	
l			(007)			L	
	I. General Infor	mation.					
-		ocraft Laboratorie	s, Inc.		Project No.: 13	<u>50-05</u>	
	Project Name: <u>I</u>	Biocraft - GW			Sampled By: <u>Cl</u>	<u>K</u>	
	Well No.: <u>MW-0</u>	<u>5</u>			Well Use: Moni	toring	
	Sample ID: <u>B10</u>	-MW-6	Sample Date: 2/	19/97	Sample Time: <u>13</u>	300	
_							
	II. Well Informa PID Reading: 0	ition:		Well Diameter:	1.5 inches		
		Water: <u>10.82</u> ft, b	elow m.p.			ine	
		h: 14.00 ft. below		Measuring Point (m.p.): <u>PVC Casing</u> Measuring Point (m.p.): <u>PVC Casing</u>			
	Δ h: <u>3.18</u> feet		•	-	ding Water: 0.29		
	Volume to be removed: 0.87 gallons			Actual Volume removed: 1.50 gallons			
	III. Sampling In	formation:					
	Purging Method				_		
	🔀 Peristaltic Pı	nub			-		
-	Bailer			Other			
·	Well Drawdown	Recovery:	Good	🔀 Poor	Other		
-	Pump Flow Rate	e: <u>0.25</u> gpm			Purge Time:	<u>20</u> min.	
1	Purge Chemistr		1				
-	Time 1120	Gallons 0	pH (Std. Units) 6.93	Sp. Cond. (ms) 552	D. O. (ppm) 2.7	Temp. (°C) 9.8	
	1120	1	7.12	565	3.8	9.6	
	1140		,=				
		1.5	7.14	566	3.8	9.7	
		1.5	7.14	566	3.8	9.7	
		1.5	7.14	566	3.8	9.7	
-		1.5	7.14	566	3.8	9.7	
-				566		9.7	
-		1.5		566	3.8 Time: <u>1140</u>	9.7	
-	Depth to water a	after purge: <u>13.2</u>				9.7	
-	Depth to water a	after purge: <u>13.2</u> prior to sampling	ft. below m.p. : <u>11.2</u> ft. below m.		Time: <u>1140</u> Time: <u>1300</u>	9.7	
-	Depth to water a Depth to water j	after purge: <u>13.2</u> prior to sampling	ft. below m.p. : <u>11.2</u> ft. below m. d Si	D.	Time: <u>1140</u> Time: <u>1300</u>		
	Depth to water a Depth to water p Sample Appears Sample Odor:	after purge: <u>13.2</u> prior to sampling ance: Turbi None	ft. below m.p. : <u>11.2</u> ft. below m. d Si	p. ightły Turbid	Time: <u>1140</u> Time: <u>1300</u>		
-	Depth to water a Depth to water p Sample Appears Sample Odor: IV. Sample Anal	after purge: <u>13.2</u> prior to sampling ance: Turbi None yses:	ft. below m.p. : <u>11.2</u> ft. below m.j d Si O	p. lightły Turbid ther	Time: <u>1140</u> Time: <u>1300</u> 🗙 Clear] Other	
	Depth to water a Depth to water p Sample Appears Sample Odor: IV. Sample Anal	after purge: <u>13.2</u> prior to sampling ance: Turbi None yses:	ft. below m.p. : <u>11.2</u> ft. below m.j d Si O	p. lightły Turbid ther	Time: <u>1140</u> Time: <u>1300</u> 🗙 Clear] Other	
-	Depth to water a Depth to water p Sample Appears Sample Odor: <i>IV. Sample Anal</i> Sample Paramet	after purge: <u>13.2</u> prior to sampling ance: None pses: ters: <u>Methylene C</u>	ft. below m.p. : <u>11.2</u> ft. below m. d S O hloride, Acetone, F	p. lightły Turbid ther	Time: <u>1140</u> Time: <u>1300</u> Clear] Other	

854820288

i

-						
	WELLSA	MPLING		Eder Associate:	5	OFFICES:
	4	G		verview Executi		New York Wisconsin
-		<i>,</i> 0	Trento	on, New Jersey	08611	Michigan
			(609)	695-1050 (Tele	phone)	Georgia Florida
_			(609)	695-1003 (Face	simile)	New Jersey
·						
	I. General Inform	<i>mation</i> : ocraft Laboratorie	n Inc		Project No.: 13:	50-05
			<u>, , , , , , , , , , , , , , , , , , , </u>		Sampled By: Cl	
	Project Name: E					_
_	Well No.: MW-9	-		. .	Well Use: Moni	
	Sample ID: <u>BIO</u>	<u>-MW-9</u>	Sample Date: <u>2/</u>	<u>19/97</u>	Sample Time: <u>1(</u>	000
_	H. Wall Informer	dan.				
_	II. Well Informa PID Reading: 0	uon.		Well Diameter:	1 inches	
		Water: <u>4.0</u> 0 ft. be	low m.p.	Measuring Poin	t (m.p.): PVC Cas	ing
	-	h: 11.60 ft. below	-	Measuring Poin	t (m.p.): PVC Cas	ing
	∆ h: 7.60 feet		•	Volume of Stan	ding Water: 0.30	gallons
-		moved: 0.90 galk	ากร	Actual Volume	removed: 1.50 gal	lons
	volume to be re				<u></u> 8	
_	III. Sampling In	formation:				
	Purging Method			Submersible	Dump	
	Peristaltic Pu	mp			-	
-	Bailer			Other		
	Well Drawdown	=	Good	🔀 Poor	Other	
-	Pump Flow Rate	e: <u>0.25</u> gpm			Purge Time:	<u>25</u> min.
	Purge Chemistr					
	Time	y. Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
-	900	0	6.25	336	12.5	9.5
	920	1	6.39	442	6.6 10.6	9.9
-	925	1.5	6.40	420	10.0	10.2
		· · · · · · · · · · · · · · · · · · ·				
				L		I
	Depth to water a	after purge: <u>11.0</u>	ft. below m.p.		Time: <u>925</u>	
	Depth to water j	prior to sampling	; <u>6.8</u> ft. below m.p		Time: <u>1000</u>	•
	Sample Appeara	ance: 📋 Turbi	id 🗌 S	lightly Turbid	🛛 Clear 🛛] Other
-	Sample Odor:	None		ther		
_	IV. Sample Anal					Total Dheenherous
	Sample Parame Metals:	ters: <u>Methylene C</u>	Filtered	Sutyl Alconol, BO	D, COD, TOC, CI,	Total Phosphorous ed
	Laboratory: Acc	cutest		Date Shippe		
-	Saboratory, Au				· · · · · · · · · · · · · · · · · · ·	

	WELL SA	MPLING		Eder Associates	3	OFFICES: New York	
_			413 Riv	erview Executi	ve Park	Wisconsin	
		0	Trento	on, New Jersey	08611	Michigan	
				695-1050 (Tele		Georgia Florida	
-				695-1003 (Facs		New Jersey	
	<u>[</u>						
	I. General Inform	nation [.]					
-		ocraft Laboratorie	s, Inc.		Project No.: 13:	<u>50-05</u>	
	Project Name: B	iocraft - GW			Sampled By: Cl	<u><</u>	
_	Well No.: MW-1	7			Well Use: <u>Moni</u>	toring	
	Sample ID: BIO-	- MW-17	Sample Date: 2/	19/97	Sample Time: 80	ю	
	54mpie 10. <u>100</u>	<u> </u>	Sampie Date.	<u></u>			
	II. Well Informa	tion					
	PID Reading: 0	110M .		Well Diameter:	4 inches		
	- =	Water: 5.04 ft. be	low m.p.		- t (m.p.): PVC Cas	ing	
-	-	h: 10.45 ft. below		_	t (m.p.): PVC Cas		
	Δ h: 5.41 feet		-	Volume of Stand	ling Water: <u>3.52</u>	gallons	
-		moved: 10.56 gal	lons	Actual Volume removed: 11.00 galions			
		0					
-	III. Sampling Inj	formation:					
	Purging Method						
	🛛 Peristaltic Pu	mp		Submersible	Pump		
-	Bailer			Other	-		
	Well Drawdown	/Recovery:	🔀 Good	Poor	Other		
-	Pump Flow Rate	e: <u>0.5</u> gpm			Purge Time:	<u>22</u> min.	
	Purge Chemistry	y:					
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	730	4	6.87	251	13.5	7.5	
	735	8	6.57	250	12.7	7.0	
	740	11	6.56	246	12.7	7.0	
•							
-							
			A				
_	Depth to water a	fter purge: <u>5.04</u>	ft. below m.p.		Time: <u>740</u>		
-	Depth to water p	prior to sampling	: 5.04 ft. below m.	р.	Time: <u>800</u>		
	Sample Appears	nce: 🗍 Turbi	id ∏s	lightly Turbid	Clear	Other	
-	• ••			ther			
	Sample Odor:						
	11/ 0						
	IV. Sample Anal Sample Paramet	yses: ters: Methylene C	hloride. Acetone	Butyl Alcohol, BO	D, COD. TOC. CI.	Total Phosphorous	
	Metals:	ere. monyroue c	Filtered		Unfilte		
		nitert		Date Shipp			
	Laboratory: <u>Acc</u>			Pare ombh			

-

	WELL S	AMPLING		Eder Associate	S	OFFICES:
_	t l	OG	413 Ri	verview Execut		New York Wisconsin
			Trent	on, New Jersey	08611	Michigan
			(609)	695-1050 (Tele	phone)	Georgia Florida
-			(609)	695-1003 (Fac.	simile)	New Jersey
	I. General Infor	mation: iocraft Laboratorie	e Inc		Project No.: 13	50-05
			-5, <u>11</u> C.			
	Project Name: I				Sampled By: <u>Ci</u>	-
	Well No.: MW-2	—		······	Well Use: Moni	
	Sample ID: <u>BIO</u>	-MW-24	Sample Date: 2/	19/97	Sample Time: <u>1</u>	345
<u> </u>	II. Well Informa	uion.				
	PID Reading: 0			Well Diameter:	2 inches	
	Static Depth to	Water: 3.65 ft. be	low m.p.		 t (m.p.): <u>PVC Cas</u>	ing
-	-	h: <u>13.08</u> ft. below	-		t (m.p.): PVC Cas	
	∆ h: 9.43 feet					
-		moved: 4.53 gallo	ne.	Volume of Standing Water: 1.51 gallons Actual Volume removed: 5.00 gallons		
		<u></u>	///d	Actual Volume		10115
-	III. Sampling In	formation:				
	Purging Method			—	-	
	Peristaltic Pu	imp			Pump	
	Bailer	_		Other	-	
	Well Drawdown	-	Good	🔀 Poor	Other	
-	Pump Flow Rate	e: <u>0.25</u> gpm			Purge Time:	<u>20</u> min.
	Purge Chemistr					
	Time	g. Galions	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
-	1330	2.5	6.86	195	11.7	6.4
	1340	5	6.82	201	8.8	6.6
-						
پ ٠		·····				
-					· · · · · · · · · · · · · · · · · · ·	
l			L			
	Depth to water a	fter purge: <u>6.2</u> ft.	. below m.p.		Time: <u>1340</u>	
-	Depth to water p	orior to sampling	. <u>6.2</u> ft. below m.p.		Time: <u>1345</u>	
	Sample Appears	nce: 🔲 Turbi	d 🗌 SI	ightly Turbid	Clear	Other
-	Sample Odor:	None		iher		
	-					
	IV. Sample Analy					
	Sample Paramet Metals:	ers: Methylene Cl	hloride, Acetone, E	utyl Alcohol, BOI	D, COD, TOC, Cl,	Total Phosphorous
	Laboratory: Acc	utest		Date Shippe		
-	<u></u>			Pare outppe	. <u></u>	

_

1

.

	WELL S	AMPLING	1	Eder Associate	:S	OFFICES:
		0G	413 Ri	verview Execut		New York Wisconsin
-				on, New Jersey		Michigan
				695-1050 (Tele		Georgia Florida
-		,		695-1003 (Fac		New Jersey
						<u> </u>
	I. General Infor	mation:				
	Client Name: B	iocraft Laboratorie	es, Inc.		Project No.: 13	<u>50-05</u>
	Project Name:	Biocraft - GW			Sampled By: <u>Cl</u>	K
_	Well No.: MW-	25			Well Use: <u>Moni</u>	toring
_	Sample ID: BIO	-MW-25	Sample Date: 2/	19/97	Sample Time: 14	400
—	II. Well Informa	tion:				
	PID Reading: 0			Well Diameter:	2_inches	
	Static Depth to	Water: <u>4.90</u> ft. be	low m.p.	Measuring Poir	it (m.p.): <u>PVC Cas</u>	ing
—	Total Well Dept	h: <u>10.00</u> ft. below	т.р.	Measuring Poir	t (m.p.): <u>PVC Cas</u>	ing
	∆ h: <u>5.10</u> feet				ding Water: 0.82	gallons
-	Volume to be re	moved: <u>2.46</u> galle	ons	Actual Volume	removed: <u>3.00</u> gal	lons
_	III. Sampling In					
	Purging Method			Submersible	Dump	
	-	աթ		—	-	
	Bailer			Other	-	
	Well Drawdown	/Recovery:	Good 🗌	🔀 Poor	Other	
	Pump Flow Rat	e: <u>0.25</u> gpm			Purge Time:	<u>12</u> min.
	Purge Chemistr					
-	Time 1345	Gallons 1	pH (Std. Units)	Sp. Cond. (ms) 228	D. O. (ppm)	Temp. (°C)
	1345	2	6.93 6.91	236	14.0 6.1	6.0
	1353	3	6.91	236	2.9	6.3
-						
		· ··				
-	····- · ···			·		
					lI	
	Depth to water a	after purge: 8.6 ft	. below m.p.		Time: 1353	
	-		: 6.2 ft. below m.p.		Time: 1400	
	Sample Appear				Clear [Other
		_				J Oulei
	Sample Odor:	None None	Цо	ther		
	IV Samula Anal					
	IV. Sample Anal Sample Parame		hloride, Acetone. E	Butyl Alcohol, BO	D, COD, TOC. CI.	Total Phosphorous
	Metals:		Filtered		Unfilter	
	Laboratory: Acc	utest		Date Shippe	ed: 2/20/97	
_						

_

.

	WELL SA	MPLING		Eder Associate		OFFICES: New York	
	LC)G		verview Executi		Wisconsin	
			1	on, New Jersey		Michigan Georgia	
				695-1050 (Tele		Florida New Jersey	
-			(009)	695-1003 (Facs			
	I. General Infor	mation.					
		ocraft Laboratorie	es, înc.		Project No.: 13	50-05	
	Project Name: <u>B</u>	liocraft - GW			Sampled By: <u>Cl</u>	<u><</u>	
-	Well No.: <u>MW-4</u>	2			Well Use: <u>Moni</u>	toring	
	Sample ID: <u>BIO</u>	-MW-42	Sample Date: <u>2/</u>	<u>19/97</u>	Sample Time: <u>1</u>	500	
	II Wall Informa	dan.					
	II. Well Informa PID Reading: <u>0</u>	uon:		Well Diameter:	2 inches		
_	Static Depth to V	Water: <u>2.22</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
	Total Well Dept	h: <u>15.50</u> ft. below	m.p.	Measuring Point (m.p.): PVC Casing			
	∆ h: <u>13.28</u> feet			Volume of Stand	ling Water: <u>2.12</u> (gallons	
	Volume to be re	moved: <u>6.36</u> gallo	ons	Actual Volume removed: 8.00 gallons			
	III. Sampling Inj	formation					
-	Purging Method						
	🛛 Peristaltic Pu	mp		Submersible	Pump		
-	🔲 Bailer			Other			
	Well Drawdown	/Recovery:	🔲 Good	🔀 Poor	Other		
-	Pump Flow Rate	e: <u>0.5</u> gpm			Purge Time:	<u>16</u> min.	
	Purge Chemistry	y:					
_	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	1450	4	5.08	86.8	9.6	8.7	
	1458	8	5.04	98.5	13.6	8.8	
-							
-							
	Denth to water a	fter purge: <u>4.7</u> ft	below m.n.		Time: 1500		
		—	: 4.7 ft. below m.p.		Time: 1500		
	Sample Appeara				Clear	Other	
_	Sample Odor:	None		ther			
	Sample Odvit						
-	IV. Sample Analy Sample Paramet		hloride, Acetone, I	Butyl Alcohol, BOI	D, COD, TOC, CI,	Total Phosphorous	
	Metals:		Filtered		[]] Unfilter		
-	Laboratory: Acc	utest		Date Shippe	d: <u>2/20/97</u>		

_

.

	WELL S	AMPLING	Î.	Eder Associate	S	OFFICES:
-		$\mathcal{O}G$	413 Ri	verview Execut	ive Park	New York Wisconsin
			Trento	on, New Jersey	08611	Michigan
			(609)	695-1050 (Tele	phone)	Georgia Florida
		1	(609)	695-1003 (Fac:	simile)	New Jersey
		·····				
	I. General Infor	<i>mation</i> : iocraft Laboratorie			Deciset No. 12	50.05
			<u>s, mc.</u>		Project No.: <u>13</u>	
	Project Name: 1				Sampled By: C	_
—	Well No.: <u>MW-</u>	5			Well Use: Moni	
	Sample ID: <u>BIO</u>	<u>-MW-6</u>	Sample Date: <u>5/</u>	8/97	Sample Time: L	200
_						
	II. Well Information PID Reading: 0	tion:		Well Diameter:	1 inches	
		Watan 10 26 A 'h	ala m a		—	Inc
	_	Water: <u>10.36</u> ft. b	-	-	t (m.p.): <u>PVC Cas</u>	
		th: <u>14.00</u> ft. below	m.p.	_	t (m.p.): <u>PVC Cas</u>	
_	Δ h: <u>3.64</u> feet				ding Water: 0.15	-
	Volume to be re	moved: <u>0.45</u> gallo	ons	Actual Volume	removed: <u>1.00</u> gal	lons
		.		J		
<u>~~</u>	III. Sampling In Purging Method					
	Peristaltic Pu			Submersible	Pump	
	🔲 Bailer			Other	_	
	Weil Drawdowr	r/Recovery:	Good	🔀 Poor	Other	
	Pump Flow Rat	e: 0.1 gpm			Purge Time:	25 min.
	-				-	
	Purge Chemistr	у:				
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
	1040	0.5	7.63	461 465	<u>8.4</u> 2.7	12.9
	1100	· · · · · · · · · · · · · · · · · · ·	1.52	405	2.1	12.7
-						
	L	I	<u> </u>			· · · · · · · · ·
_	Depth to water	after purge: <u>13.8</u>	ft. below m.p.		Time: <u>1100</u>	
	Depth to water	prior to sampling	: <u>11.0</u> ft. below m.	р.	Time: <u>1200</u>	
	Sample Appears	ance: 🔲 Turbi	d 🗋 S	lightly Turbid	🛛 Clear 🛛] Other
	Sample Odor:	🗌 None		ther		
_	IV. Sample Anal		blanda Assess			Total Dhamb
	Sample Parame Metals:	ters: Methylene C	hloride, Acetone, I Filtered	sutyl Alcohol, BO	D, COD; TOC, CI, Unfilter	Total Phosphorous red
	Laboratory: Ac	nitect		Date Shippe		
	Caboratory. AC	Juicol		Date Surbh		

WELL SA	MPLING		Eder Associates	3	OFFICES:	
		413 Ri	verview Executi		New York Wisconsin	
20			on, New Jersey		Michigan Georgia	
		· · · ·	695-1050 (Tele		Florida	
	1	(609)	695-1003 (Facs	simile)	New Jersey	
I. General Inforr						
Client Name: Bi	ocraft Laboratori	es, Inc.		Project No.: 13	50-05	
Project Name: <u>B</u>	liocraft - GW			Sampled By: <u>Cl</u>	ĸ	
Well No.: <u>MW-9</u>	-			Well Use: Moni	toring	
Sample ID: <u>BIO</u>	<u>-MW-9</u>	Sample Date: <u>5/</u>	8/97	Sample Time: <u>1</u>	115	
II. Well Informa	tion:					
PID Reading: 0			Well Diameter:	<u>l</u> inches		
Static Depth to V	Water: <u>3.73</u> ft. be	low m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Dept	Total Well Depth: <u>11.60</u> ft. below m.p.			t (m.p.): <u>PVC Cas</u>	ing	
Δ h: <u>7.87</u> feet			Volume of Stand	ling Water: 0.32	gallons	
Volume to be rea	moved: <u>0.96</u> gall	ons	Actual Volume 1	removed: <u>1.00</u> gal	lons	
III. Sampling Inj Purging Method	:		í	_		
Peristaltic Pu	mp		Submersible	-		
🔲 Bailer			Other			
Well Drawdown	/Recovery:	Good	🔀 Poor	Other		
Pump Flow Rate	e: 0.1 gpm			Purge Time:	<u>50</u> min.	
Purge Chemistry	v:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
845	0.5	6.81	296	6.5	12.9	
930	1	6.93	359	10.2	13.1	
		· · · · · · · · · · · · · · · · · · ·				
II		A below m n		Time: 930	····	
Danth to motor a				1 mic. 950		
Depth to water a		-		Time 1115		
Depth to water p	prior to sampling	: <u>5.2</u> ft. below m.p		Time: <u>1115</u>] Other	
Depth to water p Sample Appeara	orior to sampling	: <u>5.2</u> ft. below m.p id S	lightly Turbid	Time: <u>1115</u>] Other	
Depth to water p	prior to sampling	: <u>5.2</u> ft. below m.p id S] Other	
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i>	orior to sampling ance: Turb	g: <u>5.2</u> ft. below m.p id ☐ S e ☐ O	lightly Turbid (ther	Clear		
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i> Sample Paramet	orior to sampling ance: Turb	:: <u>5.2</u> ft. below m.p id	lightly Turbid (ther	∑ Clear []	Total Phosphorou	
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i> Sample Paramet Metals:	orior to sampling ance: Turb None vses: ers: Methylene C	g: <u>5.2</u> ft. below m.p id ☐ S e ☐ O	lightly Turbid (ther Butyl Alcohol, BOI	Clear	Total Phosphorou	
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i> Sample Paramet	orior to sampling ance: Turb None vses: ers: Methylene C	:: <u>5.2</u> ft. below m.p id	lightly Turbid (ther	Clear	Total Phosphorou	
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i> Sample Paramet Metals:	orior to sampling ance: Turb None vses: ers: Methylene C	:: <u>5.2</u> ft. below m.p id	lightly Turbid (ther Butyl Alcohol, BOI	Clear	Total Phosphorou	
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i> Sample Paramet Metals:	orior to sampling ance: Turb None vses: ers: Methylene C	:: <u>5.2</u> ft. below m.p id	lightly Turbid (ther Butyl Alcohol, BOI	Clear	Total Phosphorou	

-								
	WELL SA	MPLING	1	Eder Associate	5	OFFICES:		
)G		verview Executi		New York Wisconsin		
-		<i>7</i> 0	Trento	on, New Jersey	08611	Michigan Georgia		
			(609)	695-1050 (Tele	phone)	Florida		
-			(609)	695-1003 (Facs	simile)	New Jersey		
_	I. General Inform Client Name: Bi	<i>mation</i> : iocraft Laboratorie	s. Inc.		Project No.: 13:	50-05		
	Project Name: I				Sampled By: <u>Cl</u>			
	Well No.: MW-	17			Well Use: Moni	toring		
-	Sample ID: <u>BIO</u>	- <u>MW-17</u>	Sample Date: 5/	8/97	Sample Time: 80	00		
-	II. Well Informa PID Reading: 0	non:		Well Diameter:	<u>4</u> inches			
	Static Depth to	Water: <u>4.80</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing		
-	Total Well Dept	h: <u>10.45</u> ft. below	m.p.	Measuring Point (m.p.): PVC Casing				
	Δ h: <u>5.65</u> feet Volume to be removed: <u>11.01</u> gallons			Volume of Standing Water: <u>3.67</u> gallons				
	Volume to be removed: <u>11.01</u> gallons Actual Volume removed: <u>12.00</u> g					illons		
-	III. Sampling In Purging Method	1:		Submersible	Pump			
	Bailer	-		 ☐ Other				
-	Well Drawdown	Recovery:	🔀 Good	Poor	Other			
	Pump Flow Rat	•			Purge Time:	 24 min.		
-	•				-			
	Purge Chemistr							
	Time 734	Gallons 4	pH (Std. Units) 6.50	Sp. Cond. (ms) 520	D. O. (ppm) 9.4	Temp. (°C) 12.2		
	742		6.78	543	4.7	12.1		
	753	12	6.80	544	3.2	12.1		
						·····		
-								
	Depth to water a	after purge: 4.8 ft	. below m.p.		Time: 753			
-	Depth to water	prior to sampling	: 4.8 ft. below m.p.		Time: 800			
	Sample Appears	ance: 🔲 Turbi	d 🗌 S	ightly Turbid	Clear] Other		
	Sample Odor:	None None		ther				
-	<i>IV. Sample Anal</i> Sample Parame Metals:		hloride, Acetone, F	Butyl Alcohol, BOI	D, COD, TOC, Cl,	Total Phosphorous ed		
-	Laboratory: <u>Acc</u>	cutest		Date Shippe	d: <u>5/8/97</u>			

1

WELL SA	MPLING]	Eder Associate	es	OFFICES:
		413 Ri	verview Execut		New York Wisconsin
	U	Trent	on, New Jersey	08611	Michigan
		(609)	695-1050 (Tele	phone)	Georgia Florida
L	i		695-1003 (Fac		New Jersey
I. General Inform	nation:				
Client Name: Bio	scraft Laboratorie	s, Inc.		Project No.: 13	150-05
Project Name: B	iocraft - GW			Sampled By: <u>C</u>	<u>- K</u>
Well No.: <u>MW-24</u>	<u>4</u>			Well Use: Mon	itoring
Sample ID: <u>BIO-</u>	<u>MW-24</u>	Sample Date: <u>5</u>	/8/97	Sample Time: <u>I</u>	220
II. Well Informat	ion:				
PID Reading: 0			Well Diameter:	2 inches	
Static Depth to V	Vater: <u>3.46</u> ft. bel	ow m.p.	Measuring Poin	it (m.p.): <u>PVC Ca</u>	sing
Total Well Depth	1: <u>13.08</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing
Δ h: <u>9.62</u> feet			Volume of Stan	ding Water: 1.54	gallons
Volume to be ren	noved: <u>4.62</u> gallo	ns	Actual Volume	removed: <u>5.00</u> ga	llons
III. Sampling Info Purging Method: Peristaltic Pur	:		Submaraik!-	Pump	
Bailer	սի			-	
	D		Other		
Well Drawdown/	-	Good	Poor 🛛	Other	<u> </u>
Pump Flow Rate:	: <u>0.25</u> gpm			Purge Time:	20 min.
Purge Chemistry		11 (0.1 11 15			
Time 1125	Gallons 2.5	pH (Std. Units) 7.26	Sp. Cond. (ms) 497	D. O. (ppm) 8.8	Temp. (°C)
1135	5	7.20	584	10.5	15.2
				10.5	
Depth to water af		helow m o		Time: 1126	
Depth to water an	· · <u> </u>	-		Time: <u>1135</u> Time: 1220	
Sample Appearan	- •			Clear \lceil] Other
Sample Odor:	None				
Sample Outr			ther		
IV. Sample Analys		1			100 . t mit 1
sample raramete	rs: Methylene Ch	Filtered	Butyl Alcohol, BOI	D, COD, TOC, Cl,	
Metals:			Data Shinna		
	itest		Date Shippe	u: <u>3/6/97</u>	
Metals:	itest		Date Suppe	u: <u>5/6/97</u>	
Metals:	<u>itest</u>		Date Simple	u: <u>3/8/9/</u>	
Metals:	<u>itest</u>		Date Snippe	u: <u>5/6/97</u>	85

	WELLS	AMPLING		Eder Associate		OFFICES:	
	11		412 Di	verview Execut		New York	
		OG				Wisconsin Michigan	
				Georgia			
				•	. ,	Florida	
		!	(609)	695-1003 (Facs	simile)	New Jersey	
	I. General Infor	mation:					
	Client Name: B	iocraft Laboratori	es, Inc.		Project No.: 13	<u>50-05</u>	
	Project Name: <u>I</u>	Biocraft - GW			Sampled By: <u>C</u>	<u>K</u>	
	Well No.: <u>MW-</u> 2	<u>25</u>			Well Use: Mon	itoring	
	Sample ID: <u>BIO</u>	-MW-25	Sample Date: <u>5</u>	18/97	Sample Time: <u>1</u>	300	
	II. Well Informa						
	PID Reading: 0			Well Diameter:			
		Water: <u>3.59</u> ft. be	-		t (m.p.): <u>PVC Cas</u>		
	Total Well Dept	th: <u>10.00</u> ft. below	v m.p.	_	t (m.p.): <u>PVC Cas</u>		
	Δ h: <u>6.41</u> feet			Volume of Stand	ling Water: <u>1.03</u> ;	gallons	
	Volume to be re	moved: <u>3.09</u> gall	ons	Actual Volume	removed: <u>4.00</u> gal	lons	
	III. Sampling In Purging Method Ø Peristaltic Pu	i:		Submersible	Բսաթ		
	Bailer			Other			
	Well Drawdown	/Recovery:	Good				
	Pump Flow Rate	-			Purge Time:	16 min.	
					_	—	
ſ	Purge Chemistr						
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	1230	2	6.41	2600	11.0	12.9	
	1238	4	6.30	2330	13.7	12.9	
1							
		······································	L				
	Depth to water a	after purge: <u>8.5</u> fl	i. below m.p.		Time: <u>1238</u>		
	Depth to water p	orior to sampling	: <u>5.2</u> ft. below m.p.		Time: <u>1300</u>		
	Sample Appeara	nce: 🔲 Turbi			Clear	Other	
	Sample Odor:	🗌 None		ther			
	<i>IV. Sample Anal</i> y Sample Paramet Metals:		hloride, Acetone, E	lutyl Alcohol, BOE), COD, TOC, Cl,		
	.			Data Chinna			
	Laboratory: <u>Acc</u>	utest		Date Shipped	. <u>516/51</u>		
	Laboratory: <u>Acc</u>	utest		Date Shipped	1. <u>576777</u>		

	WELL SA	MPLING	<u> </u>	Eder Associate	S	OFFICES:	
			413 Ri	verview Execut	ive Park	New York Wisconsin	
		U	Trento	on, New Jersey	08611	Michigan Georgia	
			(609)	695-1050 (Tele	phone)	Florida	
-			(609)	695-1003 (Facs	simile)	New Jersey	
	I. General Inform	nation.					
-	Client Name: Big		es, Inc.		Project No.: 13	<u>50-05</u>	
	Project Name: <u>B</u>	iocraft - GW			Sampled By: <u>Cl</u>	<u>K</u>	
_	Well No.: MW-2	<u>8</u>			Well Use: Moni	toring	
	Sample ID: <u>BIO-</u>	<u>MW-28</u>	Sample Date: <u>5/</u>	8/97	Sample Time: <u>10</u>	030	
-	II. Well Informat	tion:					
	PID Reading: <u>0</u>			Well Diameter: <u>1</u> inches			
-	Static Depth to V	<u> </u>	-	Measuring Point (m.p.): <u>PVC Casing</u>			
	Total Well Depti	1: 8.15 ft. below	m.p.	Measuring Point (m.p.): <u>PVC Casing</u> Volume of Standing Water: 0.24 gallons			
-	∆ h: <u>6.05</u> feet						
	Volume to be rer	noved: <u>0.72</u> gail	ons	Actual volume	removed: <u>1.00</u> gal	lons	
-	III. Sampling Inf Purging Method	:					
	Peristaltic Pu	mp		Submersible			
-	Bailer			Other	_		
	Well Drawdown/Recovery: 🛛 Good			Poor	Other	<u> </u>	
-	Pump Flow Rate	: <u>0.25</u> gpm			Purge Time:	4 min.	
	Purge Chemistry						
-	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	1010 1012	0.5 I	6.47	641	6.5 5.9	13.5	
	1012	<u> </u>	0.49	040	5.9	13.5	
-							
			1				
-	I						
	Depth to water a	fter purge: <u>3.9</u> f	t. below m.p.		Time: <u>1012</u>		
-	Depth to water p	rior to sampling	g: <u>2.4</u> ft. below m.p.	•	Time: 1030		
	Sample Appeara	nce: 📋 Turb	id 🗌 Si	ightly Turbid	🛛 Clear 🛛] Other	
	Sample Odor:	None None	• <u> </u>	ther			
-	<i>IV, Sample Analy</i> Sample Paramete Metals:		Chloride, Acetone, E	lutyl Alcohol, BOI	D, COD, TOC, Cl,		
	Laboratory: Accu	itest		Date Shippe	d: 5/8//97		

¢

WEIT	SAMPLING		Eder Associate	S	OFFICES:
		1 · · · · · · · · · · · · · · · · · · ·	verview Execut		New York Wisconsin
	LOG		on, New Jersey 08611 Michigan		
			695-1050 (Tele		Georgia Florida
			695-1003 (Fac		New Jersey
L					
I. General In		_		*******	
	: Biocraft Laboratorie	es, Inc.		Project No.: 13	
Project Nam	e: Biocraft - GW			Sampled By: C	
Well No.: <u>M</u>	<u>W-42</u>			Well Use: Mon	itoring
Sample ID:]	BIO-MW-42	Sample Date: <u>5/</u>	8/97	Sample Time: <u>I</u>	400
II. Well Info	rmation:				
PID Reading			Well Diameter:	2 inches	
Static Depth	to Water: 2.38 ft. be	low m.p.	Measuring Poir	1 t (m.p.): <u>PVC Ca</u>	sing
Total Well D	Depth: 15.50 ft. below	' m.p .	Measuring Poir	nt (m.p.): <u>PVC Ca</u>	sing
Δ h: <u>13.12</u> fe	et		Volume of Stan	ding Water: 2.10	gallons
Volume to b	e removed: <u>6.30</u> galle	ons	Actual Volume	removed: <u>7.00</u> ga	llons
III. Samplin	g Information:		Ĩ		
Purging Met					
🛛 Peristalti	c Pump		Submersible	: Pump	
🔲 Bailer			Other	-	
Well Drawd	own/Recovery:	🔀 Good	Poor	Other	
Pump Flow }	Rate: 0.5 gpm			Purge Time	: 14 min.
•				_	_
Purge Chem Time	istry: Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
1325	3.5	5.52	102	6.5	12.
1332	7	5.48	107	2.3	12.
	•				
			· · · · · · · · · · · · · · · · · · ·		
Depth to wat	ler after purge: <u>6.8</u> fi	t. below m.p.		Time: <u>1332</u>	
Depth to wat	er prior to sampling	: 2.5 ft. below m.p.		Time: 1400	
- Sample App] Other
Sample Odo	r: 🗍 None		ther	· -	
- <u></u>	L	÷ب			
IV. Sample A	•			D 000 700	70
•	meters: Methylene C	hloride, Acetone, I Filtered	sutyl Alcohol, BO	D, COD, TOC, Cl	
Sample Para		1			
Sample Para Metals:	Accuses		Date Chinne	A+ 5/8/07	
Sample Para	Accutest	_	Date Shippe	ed: <u>5/8/97</u>	
Sample Para Metals:	Accutest		Date Shippe	ed: <u>5/8/97</u>	
Sample Para Metals:	Accutest	_	Date Shippe	ed: <u>5/8/97</u>	

ı.

				OFFICES:	
WELL SAMPLING		Eder Associates	Dorle	New York	
LOG		erview Executiv n, New Jersey		Wisconsin Michigan	
	I rento	695-1050 (Telep	hone)	Georgia Florida	
	(609)	695-1003 (Facsi	mile)	New Jersey	
	(007)				
I. General Information:			Project No.: <u>13</u>	50-05	
Client Name: Biocraft Laboratori	ies, Inc.		Sampled By: Cl		
Project Name: <u>Biocraft - GW</u>			• •		
Well No.: <u>MW-6</u>			Well Use: <u>Moni</u>		
Sample ID: <u>BIO-MW-6</u>	Sample Date: <u>8/</u>	<u>21/97</u>	Sample Time:		
II. Well Information:					
PID Reading: <u>0</u>		Well Diameter:	1.5 inches		
Static Depth to Water: 11.34 ft.	below m.p.	Measuring Point			
Total Well Depth: 14.00 ft. belo	w т.р.	Measuring Point			
∆ h: <u>2.66</u> feet		Volume of Standing Water: 0.97 gallons			
Volume to be removed: 2.92 ga	llons	Actual Volume	removed: <u>3.00</u> ga	lions	
III. Sampling Information:					
Purging Method: Peristaltic Pump		Submersible	Pump		
Bailer		Other			
Well Drawdown/Recovery:	Good	🔀 Poor	Other		
Pump Flow Rate: <1 gpm			Purge Time	: min.	
Purge Chemistry:	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
Time Gallons	6.7	500	2.0.07	20.	
		<u> </u>			
		<u> </u>	ļ		
Depth to water after purge:	ft. below m.p.		Time:		
Depth to water prior to sample		m.p.	Time:		
Sample Appearance:		Slightly Turbid	🔀 Clear	Other	
Sample Odor:	 	Other			
IV. Sample Analyses:		Dunit Alaskat Dr	<u>רחר מחר מיר מיר מיר מיר מיר מיר מיר מיר מיר מי</u>	'I Total Phosphi	
IV. Sample Analyses: Sample Parameters: <u>Methylen</u> Metals:	e Chloride, Acetone	BUTYL AICODOL BU	<u>D. COD. TOC. C</u> Unfil	tered	
-	L.)	Date Ship	ed: <u>5/8/97</u>		
Laboratory: Accutest					

-

-

_

.

	WELL SAMPLI	NG		Eder Associates	5	OFFICES: New York	
-	LOG		413 Riv	erview Executi	ve Park	Wisconsin	
	200			n, New Jersey		Michigan Georgia	
_			· · ·	595-1050 (Tele		Florida New Jersey	
_			(609)	695-1003 (Facs	simile)	New Jersey	
	I. General Information: Client Name: Biocraft Lab	oratorie	s, Inc.		Project No.: 13	50-05	
	Project Name: Biocraft - C	σw			Sampled By: <u>C</u>	<u>:K</u>	
	Well No.: <u>MW-9</u>			Well Use: Monitoring			
	Sample ID: <u>BIO-MW-9</u>		Sample Date: 8/	79/97	Sample Time:		
	Sample 1D. <u>DIO-WW-2</u>		Sample Date.				
	II. Well Information:						
	PID Reading: 0			Well Diameter:	<u>I</u> inches		
	Static Depth to Water: 5.6	<u>09</u> ft. bel	ow m.p.	Measuring Point (m.p.): <u>PVC Casing</u>			
	Total Well Depth: <u>11.60</u> f	Total Well Depth: 11.60 ft. below m.p.			t (m.p.): <u>PVC Ca</u>	sing	
	∆ h: <u>6.51</u> feet			Volume of Stan	ding Water: <u>0.26</u>	gallons	
	Volume to be removed: 0	ns	Actual Volume removed: 1.50 gallons				
	-						
-	III. Sampling Information						
	Purging Method:			Submersible	Pump		
	Bailer			Other	F		
			🗂 Good		Other		
	Well Drawdown/Recover	-				 : min.	
	Pump Flow Rate: §	gpm			I dige i ime	·	
	Purge Chemistry:						
-	Time Gall	ons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	940 1		6.8	400		21.0	
-							
						· · · · · · · · · · · · · · · · · · ·	
	L		L	I.,	1		
	Depth to water after purg	ge:	ft. below m.p.		Time:		
	Depth to water prior to sa	ampling	: ft. below r	n.p.	Time:		
	Sample Appearance: [🗌 Turbi	d 🗌 S	lightly Turbid	🔀 Clear 🛛 [Other	
	Sample Odor: [] None		ther			
	<i>IV. Sample Analyses:</i> Sample Parameters: <u>Met</u> t	ular - C	hlarida Aastana 1	Rubit Alcohol RO		1 Total Phosphorou	
	Sample Parameters: <u>Mett</u> Metals:	iviene C	Filtered	Durft Alcoliol, DO	<u>D, COD, 10C, C</u> [] Unfilt	ered	
-	Laboratory: Accutest			Date Shipp	ed:		
	Incorney, incontrol						

_

	WELL SA	MPLING		Eder Associate	s	OFFICES:		
-			413 Riv	verview Executive Park Wisconsin				
			Trento	on, New Jersey	08611	Michigan Georgia		
			(609)	695-1050 (Tele	phone)	Florida		
-			(609)	695-1003 (Fac	simile)	New Jersey		
1								
-	I. General Inform Client Name: Bi	nation: ocraft Laboratorie	s Inc		Project No.: 13	50-05		
	Project Name: E		<u>, any</u>	Sampled By: CK				
-	Well No.: <u>MW-2</u>				Well Use: Moni	_		
	Sample ID: <u>BIO-MW-25</u>		Sample Date: <u>8/</u>	, 21/97	Sample Time: 1			
	Sample 1D. <u>BIO</u>	- <u>WI W-25</u>	Sample Date. of	21/71	Dampie Time. 1	200		
-	II. Well Informa	tion:						
	PID Reading: 0			Well Diameter:	2 inches			
-	Static Depth to ¹	Water: <u>6.65</u> ft. be	low m.p.	Measuring Poir	nt (m.p.): <u>PVC Cas</u>	ing		
	Total Well Dept	h: <u>10,00</u> ft. below	m .p.	Measuring Poir	ag Point (m.p.): <u>PVC Casing</u>			
	△ h: 3.35 feet Volume of Star			Volume of Stan	ding Water: 0.53	gallons		
	Volume to be re	moved: <u>1.60</u> gaile	ons	Actual Volume removed: 2.00 gallons				
	III. Sampling In Purging Method							
	Peristaltic Pu			Submersible	Pump			
-	Bailer			Other				
	Well Drawdown	/Recovery:	Good	Poor	Other			
	Pump Flow Rate	e: <u><1</u> gpm			Purge Time:	min.		
	Purge Chemistr	Contraction of the Contraction o						
	Time 1510	Gallons 2	pH (Std. Units) 6.6	Sp. Cond. (ms) 775	D. O. (ppm) 11.0	Temp. (°C) 22.0		
	1510	2	0.0		11.0			
-								
_			····					
	Depth to water	after purge:	ft below m n		Time:			
	-		: ft. below r		Time:			
				-		7.04		
	Sample Appears			lightly Turbid] Other		
	Sample Odor:	None None	Цo	ther				
	IV. Sample Anal	vses:						
•	Sample Parame			Butyl Alcohol, BO		Total Phosphorous		
	Metals:		Filtered		🔲 Unfilte	red		
-	Laboratory: <u>Acc</u>	cutest		Date Shipp	ed:			

	WELL S	AMPLING	1	Eder Associate	S	OFFICES:		
	11	0G	413 Ri	verview Execut	ive Park	New York Wisconsin		
			Trent	on, New Jersey	08611	Michigan		
			1	695-1050 (Tele		Georgia Florida		
				695-1003 (Fac	• •	New Jersey		
		······	1	<u> </u>				
	I. General Info	mation:						
	*	iocraft Laboratori	es, Inc.		Project No.: <u>13</u>	<u>50-05</u>		
	Project Name:	Biocraft - GW			Sampled By: <u>C</u>	к		
,	Well No.: MW-			Well Use: <u>Monitoring</u>				
			Sample Data: 8					
	Sample ID: <u>BI(</u>	-M W-28	Sample Date: <u>8</u>	29191	Sample Time:			
وسندو								
	II. Well Inform			Well Diamatan	7 inchas			
	PID Reading: <u>0</u>			Well Diameter:	—			
<u></u>	-	Static Depth to Water: <u>4.13</u> ft. below m.p.			t (m.p.): <u>PVC Cas</u>	ing		
	Total Well Dep	Total Well Depth: 8.15 ft. below m.p.			t (m.p.): <u>PVC Cas</u>	ing		
	Δ h: <u>4.02</u> feet			Volume of Standing Water: 0.64 gallons				
	Volume to be re	emoved: <u>1.92</u> gall	ons	Actual Volume removed: 2.50 gallons				
	III. Sampling Ir							
	Purging Metho				D			
	Peristaltic P	սար		Submersible	rump			
	Bailer			Other				
	Well Drawdow	n/Recovery:	🔀 Good	Poor	Other			
	Pump Flow Rat	e: gpm			Purge Time:	min.		
	Purge Chemista	y:						
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	1015	1	6.3	700		22.0		
	1025	2	6.3	800	5.9	22.0		
			ļ					
		•						
		I	I					
	Depth to water	after purge:	_ ft. below m.p.		Time:			
	Depth to water	prior to sampling	: ft. below n	n.p.	Time:			
	Sample Appear			•] Other		
						J =		
	Sample Odor:	None None	; []0	ther				
	IV Samuela Arra	han og 1						
	IV. Sample Anal Sample Parame		hloride, Acetone, E	Sutvi Alcohol BOI		Total Phosphorou		
	Metals:	ter or <u>intent joint C</u>	Filtered		Unfilter			
		nteet		Date Shippe				
 .	Laboratory: <u>Ac</u>	41031		Date Subbe	u			

····-

1

	WELL SA	MPLING		Eder Associate		OFFICES: New York		
)G	413 Ri	verview Execut	ive Park	Wisconsin		
		-	Trent	on, New Jersey	08611	Michigan		
			(609)	695-1050 (Tele	phone)	Georgia Florida		
		1	(609)	695-1003 (Fac	simile)	New Jersey		
_	I. General Infor Client Name: <u>B</u>	mation: iocraft Laboratori	es, Inc.		Project No.: 13	350-05		
	Project Name: I	Biocraft - GW			Sampled By: <u>C</u>	ĸ		
	Well No.: <u>MW-4</u>			Well Use: Monitoring				
	Sample ID: <u>BIO</u>	- <u>MW-42</u>	Sample Date: <u>8</u>	21/97	Sample Time:			
	II. Well Informa PID Reading: Q	tion:		Well Diameter:	2 inches			
_	÷ -	Water: <u>6.16</u> ft. be	elow m.n.		—	sino		
		h: <u>15.55</u> ft. below	-	Measuring Point (m.p.): <u>PVC Casing</u> Measuring Point (m.p.): <u>PVC Casing</u>				
	Δ h: <u>9.39</u> feet	••• ••• ••• •••	· ····		ding Water: <u>1.50</u>			
		moved: <u>4.50</u> gall	ons	Actual Volume removed: <u>5.00</u> gallons				
-	III. Sampling In Purging Method Peristaltic Pu Bailer	i:		Submersible Pump Other				
	_	_	9 • •		—			
	Well Drawdown	•	🔀 Good	Poor	Other			
	Pump Flow Rate	e: <u><l< u=""> gpm</l<></u>			Purge Time:	min.		
	Purge Chemistry	y:						
-	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	1725	3.5	6.7	550	6.5	14.5		
	17.38	4.5	6.8	600	2.3	14.5		
					·			
_						· · · · · · · · · · · · · · · · · · ·		
_								
	Depth to water a Depth to water p		_ ft. below m.p. ;: ft. below n	n.p.	Time: Time:			
	Sample Appeara	ace: 🚺 Turbi	id 🔲 Si	ightly Turbid	Clear] Other		
	Sample Odor:	 [_] None		ther				
-	<i>IV. Sample Anal</i> y Sample Paramet Metals:		hloride, Acetone, E	Buty] Alcohol, BOI	D. COD, TOC, Cl,			
-	Laboratory: <u>Acc</u>	utest		Date Shippe	d:			
-								

	WELL SA	MPLING		Eder Associates	5	OFFICES: New York	
_			413 Riv	erview Executi	ive Park	Wisconsin	
		, U	Trento	n, New Jersey	08611	Michigan Georgia	
			1 (695-1050 (Tele		Florida	
-			(609)	695-1003 (Facs	simile)	New Jersey	
I							
	I. General Inform	nation: ocraft Laboratorie	e Inc		Project No.: 13	50-05	
			<u>5, 110-</u>		Sampled By: <u>N</u>		
	Project Name: B				Well Use: Moni		
	Well No.: <u>MW-1</u>						
	Sample ID: <u>BIO</u>	<u>•MW-1</u> .	Sample Date: <u>12</u>	/18/9/	Sample Time: <u>1</u>	<u>/40</u>	
	II. Well Informa	tion.					
	PID Reading:			Well Diameter:	<u>1.5</u> inches		
_	Static Depth to V	Water: <u>5.37</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
_	Total Well Depth: 8.60 ft. below m.p.			Measuring Point (m.p.): <u>PVC Casing</u>			
	∆ h: <u>3.23</u> feet			Volume of Stan	ding Water: <u>0.29</u>	gallons	
	Volume to be re	moved: <u>0.87</u> galle	ns	Actual Volume removed: 1.00 gallons			
	III. Sampling Inj						
	Purging Method			Submersible	Բսաթ		
		aub		Other	p		
	Bailer	-			Other		
	Well Drawdown		Good	🔀 Poor	Purge Time:		
-	Pump Flow Rate	e: gpm			Furge time.		
	Purge Chemistr	v.					
-	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	1730	0.5	7.6	200		9.0	
							
			l	<u>I</u>		ł	
	Depth to water a	after purge:	_ ft. below m.p.		Time:		
-	Depth to water	prior to sampling	: ft. below 1	n .p.	Time:		
	Sample Appears	ance: 🗍 Turbi	id 🗌 S	lightly Turbid	Clear] Other	
	Sample Odor:	None		ther			
	-						
-	IV. Sample Anal	yses:				Total Dhamha-an	
	Sample Parame Metals:	ters: <u>Methylene C</u>	hloride, Acetone, I	BULYI AICONOL, BU	D. COD. 10C. CI	red	
	Laboratory: Ac	cuted	L.J - 110104	Date Shinn	ed: <u>12/19/97</u>		
-	Danoratory. AC	Jucor		2210 Curbb			

	WELL SA	MPLING		Eder Associate	S	OFFICES: New York		
-		7 <i>G</i>	413 Ri	verview Execut	Wisconsin			
			F	on, New Jersey		Michigan Georgia		
				695-1050 (Tele		Florida		
-	<u>L</u>	·	(609)	695-1003 (Fac	simile)	New Jersey		
	I. General Infor	mation						
-		iocraft Laboratorie	es, Inc.	Project No.: <u>1350-05</u>				
	Project Name: <u>I</u>	<u> Biocraft - GW</u>		Sampled By: <u>NB/DM</u>				
	Well No.: <u>MW-</u> 2	2		Well Use: Monitoring				
	Sample ID: <u>BIO</u>	<u>-MW-2</u>	Sample Date: <u>11</u>	<u>2/18/97</u>	Sample Time:	630		
-	II. Well Informa	tion-						
	PID Reading:			Well Diameter: 1.5 inches				
-	Static Depth to	Water: <u>6.15</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
	Total Well Dept	h: <u>10.60</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
	Δ h: <u>4.45</u> feet			Volume of Stan	ding Water: <u>0.40</u>	gallons		
-	Volume to be re	moved: <u>1.20</u> gallo	ons	Actual Volume removed: 1.50 gallons				
_	III. Sampling In			ł				
	Purging Method			Submersible	Dump			
_		mb		Other	Tump			
	Weil Drawdown	A ACONATIV	Good		Other			
	Pump Flow Rat	-			Purge Time: min.			
-	I ump from itat	Bhu			I diße I ture	211411.		
	Purge Chemistr		•					
-	Time 1630	Gallons	pH (Std. Units) 7.5	Sp. Cond. (ms) 300	D. O. (ppm)	Temp. (°C) 8.0		
	1050	K	7.5			0.0		
-		_						
_								
	Depth to water a	ifter purge:	_ ft. below m.p.		Time:			
	Depth to water p	orior to sampling	: ft. below n	n.p.	Time:			
	Sample Appears	ince: 🔲 Turbi	d 🗌 S	lightly Turbid	Clear [] Other		
-	Sample Odor:	None		ther				
	IV Come to Ameri							
	IV. Sample Anal Sample Paramet		hloride. Acetone F	Butyl Alcohol, BOI	D, COD. TOC. CI	Total Phosphorous		
	Metals:		Filtered		[] Unfilte			
-	Laboratory: Acc	utest		Date Shippe	d: <u>12/19/97</u>			

	WELL SA	AMPLING		Eder Associate		OFFICES: New York		
•		0G	1	verview Execut		Wisconsin		
				on, New Jersey	Michigan Georgia			
-				695-1050 (Tele	Florida New Jersey			
	L		(609)	695-1003 (Fac	simile)	Inter strikey		
_	I. General Infor							
-		iocraft Laboratori	es, Inc.		Project No.: 1	<u>350-05</u>		
	Project Name: <u>I</u>	<u> Hiocraft - GW</u>			Sampled By: <u>h</u>	<u>IB/DM</u>		
	Well No.: <u>MW-3</u>	<u>3</u>			Well Use: Mor	hitoring		
	Sample ID: <u>BIO</u>	<u>-MW-3</u>	Sample Date: <u>1</u>	2/18/97	Sample Time: 9	245		
	II Wall Informa	tion.						
	II. Well Informa PID Reading:			Well Diameter:	1_inches			
	Static Depth to	Water: <u>5.14</u> ft. be	low m.p.	Measuring Poin	nt (m.p.): <u>PVC Ca</u>	sing		
		th: <u>11.00</u> ft. below		_	t (m.p.): <u>PVC Ca</u>	-		
	∆ h: <u>5.86</u> feet	· ·			ding Water: 0.53			
		moved: <u>1.59</u> gall	ons		removed: <u>1.70</u> ga	-		
					0			
	III. Sampling In							
	Purging Method			C. Submanible	Dumm			
		nup		Submersible Pump				
	Bailer	m		Other				
	Well Drawdown	-	Good	🔀 Poor	Other			
	Pump Flow Rate	e: gpm			Purge Time	: min.		
	Purge Chemistr	v:						
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	940	1	7.6	500		8.0		
				· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
	L		<u> </u>			<u></u>		
	Depth to water a	after purge:	_ ft. below m.p.		Time:			
	Depth to water g	prior to sampling	: ft. below n	n. p .	Time:			
	Sample Appeara	ance: 🛛 🛛 Turbi	id 🗌 S	lightly Turbid	Clear] Other		
	Sample Odor:	None		ther				
	IV. Sample Analy							
	Sample Paramet Metals:	ers: <u>Methylene C</u>	hloride, Acetone, <u>H</u> Filtered	Butyl Alcohol, BO	D. COD. TOC. Cl.	<u>Total Phosphorous</u> red		
	Laboratory: <u>Acc</u>	utest		Date Shippe	d: <u>12/19/97</u>			
						854820		

	44	MPLING		Eder Associates				
)G		verview Executive Park Wisconsin				
			Trent	on, New Jersey	Michigan			
			(609)	695-1050 (Tel	ephone)	Georgia Florida		
			(609)) 695-1003 (Fac	simile)	New Jersey		
	I. General Inform	nation:						
	Client Name: <u>Bio</u>		es, Inc.		Project No.: 13	<u>350-05</u>		
	Project Name: <u>B</u>				Sampled By: <u>N</u>	<u>IB/DM</u>		
	Well No.: <u>MW-6</u>				Well Use: Mon	itoring		
	Sample ID: <u>BIO-</u>	<u>MW-6</u>	Sample Date: <u>1</u>	<u>2/17/97</u>	Sample Time:]	1430		
	II. Well Informat PID Reading:			Well Diameter:	1.5 inches			
	Static Depth to V	Vater: <u>11.41</u> ft. 1	below m.p.	Measuring Polat (m.p.): <u>PVC Casing</u>				
	Total Well Depth		-		nt (m.p.): <u>PVC Ca</u>			
	Δ h: <u>2.59</u> feet				ding Water: 0.23			
	Volume to be removed: 0.70 gallons			Actual Volume	removed: 0.80 ga	llons		
	III. Sampling Info Purging Method: Ø Peristaltic Pur			Submersible Pump				
	Bailer			Other				
	Well Drawdown/	Recovery:	Good	Poor	Other			
	Pump Flow Rate:	gpm			Purge Time:			
	Purge Chemistry	:						
ļ	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	1125	0.5	7.4	500	D. O. (ppin)	14.0		
	1230	0.7	7.0	520		14.0		
				520		14.5		
						· · ·		
t		<u></u>	1					
	Depth to water af		-		Time:			
	Depth to water pr			-	Time:			
	Sample Appearan				Clear] Other		
	Sample Odor:	None None		ther				
	<i>IV. Sample Analys</i> Sample Paramete: Metals:		hloride, Acetone, B	utyl Alcohol, BOI	<u>), COD, TOC, CI,</u> Unfilter			
	Sample Paramete	rs: <u>Methylene C</u> i	hloride, Acetone, B	utyl Alcohol, BOI Date Shippe	🔲 Unfilter			
	Sample Parameter Metals:	rs: <u>Methylene C</u> i	hloride, Acetone, B		🔲 Unfilter			

	WELL S	AMPLING		Eder Associate	es	OFFICES:		
-	11	OG	413 R	verview Execu		New York Wisconsin		
			Trent	on, New Jersey	08611	Michigan		
				695-1050 (Tel		Georgia Florida		
		- -	(609)	695-1003 (Fac	simile)	New Jersey		
	I. General Infor	mation:	_					
		iocraft Laboratori	es, Inc.		Project No.: <u>13</u>	<u>350-05</u>		
	Project Name:]				Sampled By; <u>}</u>	<u>IB/DM</u>		
-	Well No.: <u>MW-</u>	8			Well Use: Mon	itoring		
	Sample ID: <u>BIC</u>	<u>)-MW-8</u>	Sample Date: <u>1</u>	<u>2/18/97</u>	Sample Time: <u>I</u>	200		
	II. Well Informa PID Reading:			Well Diameter:	1 inches			
			1					
		Water: <u>4.87</u> ft. be	-		it (m.p.): <u>PVC Ca</u>			
		th: <u>7.35</u> ft. below :	m.p.		it (m.p.): <u>PVC Ca</u>			
	∆ h: <u>2.48</u> feet			Volume of Stan	ding Water: <u>0.94</u>	gallons		
	Volume to be re	moved: <u>2.80</u> gall	ons	Actual Volume removed: <u>3.00</u> gallons				
_	III. Sampling In							
	Purging Method							
	Peristaltic Pu			Submersible	Ритр			
-	🔲 Bailer			Other				
	Well Drawdown	/Recovery:	Good	🔀 Poor	Other			
-	Pump Flow Rat	e: gpm			Purge Time:			
	Purge Chemistr							
	Time 1120	Gallons 3	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
		3	7.1	790		12.0		
-			· · · · · · · · · · · · · · · · · · ·		·			
		·····						
						L		
		ifter purge:	-		Time:			
	Depth to water p	prior to sampling	ft. below n	п.р.	Time:			
	Sample Appeara	nce: 🔲 Turbi	a 🗌 SI	ightly Turbid 🛛 🌔	🛛 Clear 🛛 🗌] Other		
	Sample Odor:	🗌 None	0	ther				
-	IV. Sample Analy		Josida Assistant D					
	Metals:	ers. <u>Inteutytene Cl</u>	Filtered	ULYI AICODOL BOL	<u>, COD, TOC, CI,</u> Unfilter	<u>Total Phosphorous</u> ed		
	Laboratory: Acc	utest	_	Date Shippe				
		<u> </u>		Sure Surbhe				

	WELL S	AMPLING		Eder Associate	S	OFFICES:		
-	E	OG	413 Ri	verview Execut	ive Park	New York Wisconsin		
			Trent	on, New Jersey	08611	Michigan		
			(609)	695-1050 (Tele	phone)	Georgia Florida		
-			(609)	695-1003 (Fac	simile)	New Jersey		
-	<i>I. General Infor</i> Client Name: <u>B</u>	mation: iocraft Laboratoric	s, Inc.		Project No.: <u>13</u>	50-05		
	Project Name:	Biocraft - GW			Sampled By: <u>N</u>	B/DM		
	Well No.: <u>MW-</u>	2			Well Use: <u>Mon</u>	itoring		
	Sample ID: <u>BIC</u>	- <u>MW-9</u>	Sample Date: <u>1</u> 2	2/17/97	Sample Time: <u>l</u>	<u>00</u>		
-	II. Well Informa	ution:						
	PID Reading:			Well Diameter:	<u>1</u> inches			
	Static Depth to	Water: <u>5.08</u> ft. be	low m.p.	Measuring Poin	et (m.p.): <u>PVC Cas</u>	sing		
	Total Well Dep	th: <u>11.60</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
_	Δ h: <u>6.52</u> feet			Volume of Stan	ding Water: <u>0.27</u>	gallons		
	Volume to be removed: 0.81 gallons			Actual Volume removed: 0.85 gallons				
-	III. Sampling In Purging Metho Peristaltic Pu]:		Submersible	Ритр			
	Bailer			Other				
	Well Drawdowr	/Recovery:	🔲 Good	🔀 Poor	Other	~ -		
-	Pump Flow Rat	e: gpm			Purge Time:	min.		
	Burne Chamilat							
_	Purge Chemistr Time	y: Gallons	pH (Std. Units)	Sa Cand (ma)		Temp (IC)		
	1040	0.3	рн (за. оніз) 7.6	Sp. Cond. (ms) 290	D. O. (ppm)	Temp. (°C) 14.5		
	1044	0.8	7.5	450		14.5		
					`			
-								
•		<u> </u>	<u> </u>					
-	-	after purge:			Time:			
	•	orior to sampling:		•	Time:			
-	Sample Appears				Clear [] Other		
	Sample Odor:	None None	Цo	iher				
-	<i>IV. Sample Anal</i> Sample Paramet Metals:	•	aloride, Acetone, E	utyl Alcohol, BOI	D, COD, TOC, Cl,	Total Phosphorous red		
	Laboratory: <u>Acc</u>	eutest		Date Shippe	d: <u>12/18/97</u>			

ſ							
	TT/		1			OFFICES.	
- 11	WELL S.	AMPLING		Eder Associate		OFFICES: New York	
	L	OG		verview Execut		Wisconsin	
l			Trent	on, New Jersey	08611	Michigan Georgia	
			(609)	695-1050 (Tele	ephone)	Florida	
			(609)	695-1003 (Fac	simile)	New Jersey	
	I. General Infor Client Name: <u>B</u>	rmation: liocraft Laboratori	ies, Inc.		Project No.: 1.	350-05	
	Project Name:	Biocraft - GW			Sampled By: <u>h</u>	B/DM	
	Well No.: <u>MW-</u>				Well Use: Mor	<u>nitoring</u>	
	Sample ID: <u>BIC</u>	<u>D-MW-14</u>	Sample Date: <u>1</u>	<u>2/18/97</u>	Sample Time: <u>J</u>	1715	
	II. Well Informu PID Reading:			Well Diameter:	1.5 inches		
	Static Depth to	Water: <u>4.30</u> ft. be	elow m.p.		 it (m.p.): <u>PVC Ca</u>	sing	
	Total Well Dep	th: <u>5.96</u> ft. below	m. p.	Measuring Poin	it (m.p.): <u>PVC Ca</u>	sing	
	∆ h: <u>1.66</u> feet			Volume of Stan	ding Water: <u>0.15</u>	gallons	
Volume to be removed: 0.45 gallons			ons	Actual Volume removed: 0.50 gallons			
III. Sampling Information: Purging Method: Peristattic Pump				Submersible Pump			
	Bailer			Other			
	Well Drawdows	Arecovery:	🔲 Good	🔀 Poor	Other		
	Pump Flow Rat	e: gpm			Purge Time	: min.	
,	Purge Chemistr	-v:					
Г	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
-	1710	0.3	7.8	250		8.	
[f	
					· · · · · · · · · · · · · · · · · · ·		
-	······································						
			<u> </u>				
]	Depth to water :	after purge:	ft. below m.p.		Time:		
	-		ft. below r	n.p.	Time:		
5	Sample Appeara	ance: 🔲 Turbi	id 🗍 S	lightly Turbid	Clear [] Other	
5	Sample Odor:	🗌 None	. 00	ther			
i	IV. Sample Anal Sample Paramet		hloride, Acetone, I	Butyl Alcohol, BOI			
5	Metals:		Filtered		Unfilte:	red	

	WELL S	AMPLING	I	Eder Associat	es	OFFICES:		
		.0G	413 R	iverview Execu	tive Park	New York Wisconsin		
			Tren	ton, New Jersey	08611	Michigan		
_				695-1050 (Tel	• •	Georgia Florida		
			(609) 695-1003 (Fac	simile)	New Jersey		
	I. General Info	rmation:						
		Biocraft Laboratori	es, Inc.		Project No.: <u>1</u>	350-05		
	Project Name :	Biocraft - GW			Sampled By: <u>h</u>	B/DM		
	Weli No.: <u>MW</u>	<u>-17</u>			Well Use: Mor	itoring		
	Sample ID: <u>BI(</u>	<u>D-MW-17</u>	Sample Date: <u>1</u>	2/18/97	Sample Time: §	230		
	II. Well Inform PID Reading:			Well Diameter:	d inches			
-		 Water: <u>5.96</u> ft. be	low m n		-			
-		th: <u>10.45</u> ft. below			nt (m.p.): <u>PVC Ca</u>			
	Δ h: <u>4.49</u> feet		, m.p.		it (m.p.): <u>PVC Ca</u>			
-		emoved: <u>9.00</u> galle	000	Volume of Standing Water: <u>3.00</u> gallons Actual Volume removed: <u>10.00</u> gallons				
		emoved: <u>2.00</u> gan	0115	Actual volume	removea: 10.00 g	allons		
-	III. Sampling Ii							
	Purging Metho							
_		սաբ			Pump			
		- ()	5 70	Other				
	Well Drawdow	-	🛛 Good	Poor	Other			
	Pump Flow Rat	e: gpm			Purge Time:	<u>5</u> min.		
	Purge Chemist	'y :						
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	930	10	8.0	500		9.0		
-								
	Denth to water	fton numero	A halan					
-		after purge:	•		Time:			
		prior to sampling:		-	Time:	- -		
	Sample Appears			• •	Clear] Other		
	Sample Odor:	None None	0 []	lher				
	IV. Sample Anal	vses:						
	Sample Paramet		loride, Acetone, B	utyl Alcohol, BOI	<u>, COD, TOC, ČI,</u>	Total Phosphorous		
	Metals:		Filtered		Unfilter			
—	Laboratory: <u>Acc</u>	utest		Date Shippe	d: <u>12/19/97</u>			

WELL SAMPLING LOG Eder Associates OFFICES New York 413 Riverview Executive Park Trenton, New Jersey 08611 (609) 695-1050 (Telephone) (609) 695-1003 (Facsimile) Micingan Georgia Forida I. General Information: Client Name: Biocraft Laboratories, Inc. Project No.: 1350-05 Project Name: Biocraft - GW Sampled By: NB/DM Well No.: MW-24 Sample Date: 12/17/97 Sample ID: BIO-MW-24 Sample Date: 12/17/97 Static Depth to Water: 5,70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing A b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Purging Method: Purging Method: Purging Method: Purging Method: Purging Method: Purging Method: Purg Flow Rate: gpm Purge Time: mi	rk in n				
LOG 413 Riverview Executive Park Trenton, New Jersey 08611 (609) 695-1050 (Tclephone) (609) 695-1003 (Facsimile) Wiscoms Michigan M	in N				
Interform Interform Georgia I. General Information: (609) 695-1003 (Facsimile) New Jerse I. General Information: Project Name: Biocraft Laboratories, Inc. Project No.: 1350-05 Project Name: Biocraft - GW Sampled By: NB/DM Well No.: MW-24 Sample Date: 12/17/97 Sample Time: 1400 II. Well Information: PID Reading: Well Diameter: 2 inches Static Depth to Water: 5.70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing A b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Purging Method: Purging Method: Other Peristaltic Pump Good Bailer Other Well Drawdown/Recovery: Good					
(609) 695-1003 (Facsimile) New Jerse I. General Information: Client Name: Biocraft Laboratories, Inc. Project No.: 1350-05 Project Name: Biocraft - GW Sampled By: NB/DM Well No.: MW-24 Sample Date: 12/17/97 Sample Time: 1400 II. Well Information: PID Reading: Well Diameter: 2 inches Static Depth to Water: 5,70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing A b: 7,30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Purging Method: Peristaltic Pump Submersible Pump Bailer Other	icy				
I. General Information: Client Name: Biocraft Laboratories, Inc. Project No.: 1350-05 Project Name: Biocraft _GW Sampled By: NB/DM Well No.: MW-24 Sampled By: NB/DM Well No.: MW-24 Well Use: Monitoring Sample ID: BIO-MW-24 Sample Date: 12/17/97 Sample Time: 1400 II. Well Information: PID Reading: Well Diameter: 2 inches Static Depth to Water: 5.70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing A h: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Purging Method: Peristaltic Punp Submersible Pump Bailer Other Well Drawdown/Recovery: Good Poor					
Client Name: Biocraft Laboratories, Inc. Project No.: 1350-05 Project Name: Biocraft - GW Sampled By: NB/DM Well No.: MW-24 Well Use: Monitoring Sample ID: BIO-MW-24 Sample Date: 12/17/97 Sample Time: 1400 <i>II. Well Information:</i> PID Reading: Well Diameter: 2 inches Static Depth to Water: 5,70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing A b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons <i>III. Sampling Information:</i> Purging Method: Peristaltic Pump Submersible Pump Bailer Other Well Drawdown/Recovery: Good Poor					
Project Name: Biocraft - GW Sampled By: NB/DM Well No.: MW-24 Well Use: Monitoring Sample ID: BIO-MW-24 Sample Date: 12/17/97 Sample Time: 1400 <i>II. Well Information:</i> Yell Diameter: 2 inches Sample Time: 1400 <i>II. Well Information:</i> Well Diameter: 2 inches Static Depth to Water: 5,70 ft. below m.p. Measuring Point (m.p.): PVC Casing Static Depth to Water: 5,70 ft. below m.p. Measuring Point (m.p.): PVC Casing Volume of Standing Water: 1.17 gallons A b: 7,30 feet Volume of Standing Water: 1.17 gallons Actual Volume removed: 3.60 gallons <i>III. Sampling Information:</i> Submersible Pump Submersible Pump Bailer Other					
Well No.: <u>MW-24</u> Well Use: Monitoring Sample ID: <u>BIO-MW-24</u> Sample Date: <u>12/17/97</u> Sample Time: <u>1400</u> <i>II. Well Information</i> : Well Diameter: <u>2</u> inches PID Reading: Well Diameter: <u>2</u> inches Static Depth to Water: <u>5.70</u> ft. below m.p. Measuring Point (m.p.): <u>PVC Casing</u> Total Well Depth: <u>13.00</u> ft. below m.p. Measuring Point (m.p.): <u>PVC Casing</u> Δ b: <u>7.30</u> feet Volume of Standing Water: <u>1.17</u> gallons Volume to be removed: <u>3.51</u> gallons Actual Volume removed: <u>3.60</u> gallons <i>III. Sampling Information:</i>					
Sample ID: <u>BIO-MW-24</u> Sample Date: <u>12/17/97</u> Sample Time: <u>1400</u> <i>II. Well Information:</i> Well Diameter: <u>2</u> inches PID Reading: Well Diameter: <u>2</u> inches Static Depth to Water: <u>5.70</u> ft. below m.p. Measuring Point (m.p.): <u>PVC Casing</u> Total Well Depth: <u>13.00</u> ft. below m.p. Measuring Point (m.p.): <u>PVC Casing</u> Δ h: <u>7.30</u> feet Volume of Standing Water: <u>1.17</u> gallons Volume to be removed: <u>3.51</u> gallons Actual Volume removed: <u>3.60</u> gallons <i>III. Sampling Information:</i>					
II. Well Information: Well Diameter: 2 inches PID Reading: Well Diameter: 2 inches Static Depth to Water: 5,70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing Δ b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Submersible Pump Peristaltic Pump Other					
PID Reading: Well Diameter: 2_inches Static Depth to Water: 5.70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing Δ b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information:					
Static Depth to Water: 5,70 ft. below m.p. Measuring Point (m.p.): PVC Casing Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing △ b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information:					
Total Well Depth: 13.00 ft. below m.p. Measuring Point (m.p.): PVC Casing △ b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Purging Method: ☑ Peristaltic Pump ☐ Submersible Pump ☐ Bailer ☐ Other Well Drawdown/Recovery: ☐ Good ☑ Poor					
∆ b: 7.30 feet Volume of Standing Water: 1.17 gallons Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Purging Method: ☑ Peristaltic Pump □ Submersible Pump □ Bailer □ Other Well Drawdown/Recovery: □ Good ☑ Poor □ Other					
Volume to be removed: 3.51 gallons Actual Volume removed: 3.60 gallons III. Sampling Information: Purging Method: Purging Method: Submersible Pump Bailer Other Well Drawdown/Recovery: Good Poor Other					
III. Sampling Information: Purging Method: Peristaltic Pump Bailer Well Drawdown/Recovery:					
Purging Method: Submersible Pump Peristaltic Pump Other Bailer Other Well Drawdown/Recovery: Good Poor Other					
Purging Method: Submersible Pump Peristaltic Pump Other Bailer Other Well Drawdown/Recovery: Good Poor Other					
Peristaltic Pump Bailer Well Drawdown/Recovery:					
Well Drawdown/Recovery: Good Solor Other	Submersible Pump				
	Other				
Pump Flow Rate: gpm Purge Time: mi					
	Purge Time: min.				
Purge Chemistry:					
Time Gallons pH (Std. Units) Sp. Cond. (ms) D. O. (ppm) Temp.	. (°C)				
1305 1.5 7.6 200	11.5				
1325 2.0 7.5 200	13.0				
	_				
Depth to water after purge: ft. below m.p. Time:					
Depth to water prior to sampling: ft. below m.p. Time:					
Sample Appearance: Turbid Slightly Turbid Clear Other					
Sample Odor: None Other					
IV. Sample Analyses:					
Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Pho	osphoro				
Metals: Filtered Unfiltered					
Laboratory: Accutest Date Shipped: 12/18/97					

	WELL S.	AMPLING		Eder Associate	\$S -	OFFICES: New York			
		0G	1	iverview Execu		Wisconsin			
				on, New Jersey 695-1050 (Tele		Michigan Georgia			
					• •	Florida New Jersey			
	l		<u> (009</u>) 695-1003 (Fac	sinne)				
-	I. General Info								
	Client Name: <u>B</u>	liocraft Laboratori	es, Inc.		Project No.: 1	350-05			
	Project Name:	<u> Biocraft - GW</u>			Sampled By: <u>h</u>	IB/DM			
	Well No.: <u>MW-</u>	25			Well Use: Mon	itoring			
	Sample ID: <u>BIC</u>	<u>D-MW-25</u>	Sample Date: <u>1</u>	<u>2/17/97</u>	Sample Time:]	420			
	11 W. H K. C.								
	II. Well Inform PID Reading: _			Well Diameter:	2 inches				
-		Water: <u>5.47</u> ft. be	low m p		<u></u> it (m.p.): <u>PVC Ca</u>	sina			
		th: <u>10.00</u> ft. below	-		it (m.p.): <u>PVC Ca</u> it (m.p.): PVC Ca	-			
	Δ h: <u>4.53</u> feet	<u></u>		-					
		emoved: <u>2.20</u> galle	205	Volume of Standing Water: 0.72 gallons					
	volume to be fo	- 10 - Cu. <u>2.20</u> gain	5115	Actual Volume removed: 2.50 gallons					
	III. Sampling In	formation:							
		Purging Method:			_				
_	Peristaltic P	ump		Submersible Pump					
	Bailer			Other	_				
	Well Drawdowr	-	Good	🔀 Poor	Other				
-	Pump Flow Rat	e: gpm			Purge Time	min.			
	Purge Chemistr	y:							
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)			
	1430	2	7.6	600		9.5			
—									
						· · · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·				
		after purge:			Time:				
		prior to sampling		n.p.	Time:				
	Sample Appears			ightly Turbid	Clear [] Other			
	Sample Odor:	🔲 None	0	ther					
	IV. Sample Anal								
			nloride, Acetone, E	utyl Alcohol, BOI	D, COD, TOC. CI.	Total Phosphorous			
	Metals:		Filtered		Unfilter				
	Laboratory: <u>Acc</u>	cutest		Date Shippe	d: <u>12/18/97</u>				
-									
						85482031			

.

	WELL S.	AMPLING		Eder Associat	es	OFFICES:
_		OG		iverview Execu		New York Wisconsin
				ton, New Jersey		Michigan Georgia
				695-1050 (Tel		Florida
			(609) 695-1003 (Fa	csimile)	New Jersey
	I. General Info	mation:				
		jocraft Laboratori	<u>es, Inc.</u>		Project No.:]	350-05
	Project Name:	Biocraft - GW			Sampled By:	NB/DM
-	Well No.: <u>MW-</u>	<u>28</u>			Well Use: Mo	nitoring
	Sample ID: <u>BIC</u>	<u>-MW-28</u>	Sample Date: <u>1</u>	2/17/97	Sample Time:	1215
-						
	II. Well Informa					
	PID Reading:			Well Diameter		
		Water: 3.57 ft. be	-		nt (m.p.): <u>PVC C</u>	
		th: <u>8.15</u> ft. below (m.p.		nt (m.p.): <u>PVC C</u>	
	∆ h: <u>4.58</u> feet			Volume of Star	nding Water: 0.11	gallons
	Volume to be re	moved: 0.54 galle	ons	Actual Volume	removed: <u>0.60</u> g	allons
	III Samplina In	formations				
	III. Sampling In Purging Method					
	Peristaltic Pu			Submersible	e Pump	
	Bailer			Other	-	
	Well Drawdown	Recovery:	🔀 Good	Poor	Other	
-	Pump Flow Rate	e: gpm				: min.
					-	
	Purge Chemistr					
	Time 1200	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
	1200	0.5	6.8	600		12.0
-		······································		· · · · · · · · · · · · · · · · · · ·		
-						
_						
—						
	Donth As motor	<u> </u>			I <u></u> <u></u>	
		fter purge:	-		Time:	
			ft. below n	1.р.	Time:	
_	Sample Appeara	nce: 📋 Turbic	i 🗌 si	ightly Turbid	🛛 Clear 🛛 [] Other
	Sample Odor:	🗌 None		ther		
·	IV. Sample Analy Sample Parameter		lorida Acatone D	und Alaskal DO		Total Phosphorous
	Metals:	ers. <u>meurylene Ca</u>	Filtered	utyl Alconol, BOI	$\int Unfilte$	
	Laboratory: Acci	utest		Date Shippe	_	
				p	<u></u>	
_						85100004
- .						85482031

WELL SA	MPLING		Eder Associates		OFFICES: New York
)G				Wisconsin
			•		Michigan Georgia
			• •		Florida
		(609)	695-1003 (Facs	simile)	New Jersey
I. General Infor	mation:				
Client Name: B	ocraft Laboratori	es, Inc.		Project No.: <u>13</u>	<u>350-05</u>
				Sampled By: <u>h</u>	
Well No.: <u>MW-3</u>	<u>11</u>			Well Use: Mon	itoring
Sample ID: <u>BIO</u>	<u>-MW-31</u>	Sample Date: <u>1</u>	<u>2/18/97</u>	Sample Time:]	400
II. Well Informa	tion:				
-			Well Diameter:	2_inches	
Static Depth to Water: 5.69 ft. below m.p.			Measuring Point	t (m.p.): <u>PVC Ca</u>	sing
Total Well Depth: 11.62 ft. below m.p.			Measuring Point	(m.p.): <u>PVC Ca</u>	sing
∆ h: <u>5.93</u> feet			Volume of Stand	ling Water: <u>0.95</u>	gallons
Volume to be re	Volume to be removed: 2.85 gallons			emoved: <u>3.00</u> ga	llons
Purging Method	Pump				
🔲 Bailer			Other		
Well Drawdown	/Recovery:	Good	Poor	Other	
Pump Flow Rate	e: gpm		_	Purge Time	
Burge Chemister					
		nH (Std Units)	Sn Cond (ms)		Temp. (°C)
1355	0.5	7.8	250	<u> </u>	9.0
			······		
		I			L
	-				
Depth to water a				Time:	
-		: ft. below n	•	Time: Time:	
-	orior to sampling	: ft. below n	•	Time:] Other
Depth to water p	orior to sampling	:ft. below n dSi	•	Time:] Other
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i>	rior to sampling nce:	t. below n ft. ft. below n ft.	ightly Turbid [Time:] Clear [Total Phosphorous
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i> Sample Paramet	rior to sampling nce:	ft. below n d SI	ightly Turbid [Time:	Total Phosphorous
Depth to water p Sample Appeara Sample Odor: <i>IV. Sample Analy</i> Sample Paramete Metals:	rior to sampling nce:	ft. below n d SI	ightly Turbid [ther Butyl Alcohol, BOD	Time:	Total Phosphorous
	I. General Information Client Name: Bi Project Name: E Well No.: MW-3 Sample ID: BIQ II. Well Information PID Reading: Static Depth to Total Well Depth Δ h: 5.93 feet Volume to be re III. Sampling In, Purging Method Peristaltic Pu Bailer Well Drawdown Pump Flow Rate Purge Chemistry Time	Project Name: Biocraft - GW Well No.: MW-31 Sample ID: BJO-MW-31 <i>II. Well Information</i> : PID Reading:	LOU Trent (609) (609) <i>i. General Information</i> : Client Name: Biocraft Laboratories, Inc. Project Name: Biocraft - GW Well No.: MW-31 Sample ID: BIO-MW-31 Sampling Information: Purging Method: Peristaltic Pump Bailer Well Drawdown/Recovery: Good Pump Flow Rate: gpm	LUGU Trenton, New Jersey (609) 695-1050 (Tele (609) 695-1003 (Facs I. General Information: Client Name: Biocraft Laboratories, Inc. Project Name: Biocraft - GW Well No.: MW-31 Sample ID: BIO-MW-31 Static Depth to Water: 5.69 ft. below m.p. Measuring Point A b: 5.93 feet Volume of Stand Volume to be removed: 2.85 gailons Method: Peristaltic Pump Bailer Other	Image: Constraint of the system of the s

	(
_	WELL SA	MPLING		Eder Associat		OFFICES:		
-	LO	G		liverview Execu		New York Wisconsin		
				ton, New Jersey		Michigan Georgia		
-) 695-1050 (Tel		Florida		
	L		(609) 695-1003 (Fa	csimile)	New Jersey		
	I. General Inform							
	Client Name: <u>Bio</u>		<u>ies, Inc.</u>		Project No.: 1			
-	Project Name: <u>Bio</u> Well No.: <u>MW-32</u>				Sampled By:			
		Sample ID: <u>BIO-MW-32</u> Sample Date:			Well Use: Mo			
	54 mpie 1D. <u>110-1</u>	<u>1w-52</u>	Sample Date:	2/18/9/	Sample Time:	<u>1115</u>		
-	II. Well Informatio	on;						
	PID Reading:			Well Diameter:	: <u>2</u> inches			
-	Static Depth to Water: 5.70 ft. below m.p.			Measuring Poi	nt (m.p.): <u>PVC C</u>	asing		
	Total Well Depth:	Total Well Depth: 11.50 ft. below m.p.			nt (m.p.): <u>PVC C</u> a	asing		
-	∆ h: <u>5.80</u> feet				ding Water: 0.93			
	Volume to be rem	oved: <u>2.79</u> gall	lons	Actual Volume removed: 3.00 gallons				
-	III. Sampling Info Purging Method: Peristaltic Pum			C Submorrible	Dum			
-	Bailer	F		Submersible Pump				
	Well Drawdown/R	ecovery:	Good	Other Poor	Other			
	Pump Flow Rate:	-				 :: min.		
					I dige i mit	. <u></u> 11111.		
_	Purge Chemistry:							
-	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	1045	1.5	7.6	650		10.0		
		<u></u>	<u>}</u>					
	Depth to water afte	r burge:	ft. below m n		Time	····		
	Depth to water price				Time:			
	Sample Appearance			-	Time:			
	Sample Odor:	None	۰۰ ب ب	- •	Clear [] Other		
		L'I MORE		ther				
	<i>IV. Sample Analyses</i> Sample Parameters Metals:		hloride, Acetone, B	utyl Alcohol, BOD	<u>, COD, TOC, CI,</u> Unfilter			
	Laboratory: Accutes	<u>st</u>		Date Shipped				
				-				
						854820		

-								
	WELL SAMPLING		Eder Associate	-c	OFFICES:			
—	LOG	413 R	iverview Execu		New York			
	200		ton, New Jersey		Wisconsin Michigan			
			695-1050 (Tel		Georgia Florida			
		(609) 695-1003 (Fac	simile)	New Jersey			
	I. General Information:							
-	Client Name: Biocraft Laboratories	<u>, Inc.</u>		Project No.: <u>1</u>	<u>350-05</u>			
	Project Name: <u>Biocraft - GW</u>			Sampled By: <u>}</u>	<u>√B/DM</u>			
-	Well No.: MW-33A			Well Use: Mor	itoring			
	Sample ID: <u>BIO-MW-33A</u>	Sample Date: 1	2/18/97	Sample Time:	1345			
-	II. Well Information:							
	PID Reading:		Well Diameter: <u>2</u> inches					
•	Static Depth to Water: 5.67 ft. belo	w m.p.		<u> </u>	sing			
	Total Well Depth: 9.48 ft. below m.	-						
	Δ b : <u>3.81</u> feet		Measuring Point (m.p.): <u>PVC Casing</u> Volume of Standing Water: <u>0.61</u> gallons					
-	Volume to be removed: 1.83 gallon	s		removed: <u>2.00</u> ga	-			
	Privite							
	III. Sampling Information: Purging Method:							
	Peristaltic Pump	Submersible Pump						
•	Bailer		Other					
	Well Drawdown/Recovery:	Good Good	🛛 Poor	Other	•••			
	Pump Flow Rate: gpm			Purge Time:	min.			
	Purge Chemistry:							
-		pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)			
	1320 1	8.0	600		11.0			
		·						
	Depth to water often surrow		l		······································			
	Depth to water after purge: f	•		Time:				
	Depth to water prior to sampling:			Time:				
	Sample Appearance: Turbid			Clear] Other			
	Sample Odor: Done	[] O	her					
	IV. Sample Analyses:							
	Sample Parameters: <u>Methylene Chlo</u> Metals:	ride, Acetone, B	utyl Alcohol, BOD	, COD, TOC, CI,	Total Phosphorous			
	Laboratory: <u>Accutest</u>	Filtered	D-4 OF		ed			
	Dabbi atory. <u>Acculest</u>		Date Shipped	1: <u>12/19/97</u>				
					054001			
					85482			

- 11 11/12TT (CALA	DIINO		F1 4		OFFICES:		
WELL SAM			Eder Associates 227 Wall Street				
LOG		Dringe		Wisconsin Michigan			
				ton, New Jersey 08540 279-9140 (Telephone)			
			279-9436 (Fac	• /	Florida New Jersey		
<i>I. General Informatia</i> Client Name: <u>Biocra</u>		es Inc		Project No.: <u>34</u>	1004 000		
Project Name: Biocr		<u>1110.</u>		Sampled By: D			
Well No.: <u>MW-28</u>			Well Use: Monitoring				
Sample ID: <u>BIO-MW</u>	V-28	Sample Date: 9					
		<u>-</u>	<u>12.1170</u>		<u>2.23</u>		
II. Well Information:	:						
PID Reading: <u>-</u>			Well Diameter:	2 inches			
Static Depth to Wate			Measuring Poin	et (m.p.): <u>PVC Cas</u>	sing		
Total Well Depth: <u>8.</u>	<u>10</u> ft. below 1	n.p.	Measuring Poin	ut (m.p.): <u>PVC Cas</u>	sing		
∆ h: 2.12 feet			Volume of Stan	ding Water: 0.34	gallons		
Volume to be remove	Volume to be removed: <u>1.02</u> gallons			Actual Volume removed: 1.2 gallons			
WI Come Para Tra							
III. Sampling Inform Purging Method:	ation:						
Peristaltic Pump			🔀 Submersible	Pump			
Bailer			Other				
Well Drawdown/Rec	overy:	🔲 Good	🔀 Poor	Other			
Well Drawdown/Rec Purge Start Time: <u>11</u>	-	Good Purge Time: <u>2</u>			 tate: <u>0.055</u> gpm		
Purge Start Time: <u>11</u>	-						
Purge Start Time: 11 Purge Chemistry:	1:55	Purge Time: <u>2</u>	<u>2</u> min.	Pump Flow F	tate: <u>0.055</u> gpm		
Purge Start Time: 11 Purge Chemistry:	-				tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time	Gallons	Purge Time: <u>2</u> pH (Std. Units)	2 min. Sp. Cond. (ms)	Pump Flow F	tate: <u>0.055</u> gpm		
Purge Start Time: 11 Purge Chemistry: Time	Gallons	Purge Time: <u>2</u> pH (Std. Units)	2 min. Sp. Cond. (ms)	Pump Flow F	tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time	Gallons	Purge Time: <u>2</u> pH (Std. Units)	2 min. Sp. Cond. (ms)	Pump Flow F	tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time	Gallons	Purge Time: <u>2</u> pH (Std. Units)	2 min. Sp. Cond. (ms)	Pump Flow F	tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time	Gallons	Purge Time: <u>2</u> pH (Std. Units)	2 min. Sp. Cond. (ms)	Pump Flow F	tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time	Gallons 0.5	Purge Time: 2 pH (Std. Units) 6.2	2 min. Sp. Cond. (ms)	Pump Flow F	tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time 12:03	Gallons 0.5 purge: <u>7.31</u> f	Purge Time: 2 pH (Std. Units) 6.2 1. below m.p.	2 min. Sp. Cond. (ms) 375	Pump Flow F	tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time 12:03 Depth to water after	Gallons 0.5 purge: 7.31 f to sampling:	Purge Time: <u>2</u> pH (Std. Units) <u>6.2</u>	2 min. Sp. Cond. (ms) 375	Pump Flow F	tate: <u>0.055</u> gpm Temp. (°C)		
Purge Start Time: 11 Purge Chemistry: Time 12:03 Depth to water after Depth to water prior	Gallons 0.5 purge: 7.31 f to sampling:	Purge Time: 2 PH (Std. Units) 6.2	2 min. Sp. Cond. (ms) 375	Pump Flow F	Rate: <u>0.055</u> gpm Temp. (°C) 24.8		
Purge Start Time: 11 Purge Chemistry: Time 12:03 Depth to water after Depth to water prior Sample Appearance:	Gallons 0.5 purge: 7.31 f to sampling:	Purge Time: 2 PH (Std. Units) 6.2	2 min. Sp. Cond. (ms) 375	Pump Flow F	Rate: <u>0.055</u> gpm Temp. (°C) 24.8		
Purge Start Time: 11 Purge Chemistry: Time 12:03 Depth to water after Depth to water prior Sample Appearance:	Gallons 0.5 purge: 7.31 f to sampling:	Purge Time: <u>2</u> pH (Std. Units) 6.2 	2 min. Sp. Cond. (ms) 375	Pump Flow F	Rate: <u>0.055</u> gpm Temp. (°C) 24.8		
Purge Start Time: 11 Purge Chemistry: Time 12:03 Depth to water after Depth to water prior Sample Appearance: Sample Odor: IV. Sample Analyses:	Gallons 0.5 purge: 7.31 f to sampling: X Turbio None	Purge Time: <u>2</u> pH (Std. Units) 6.2 	2 min. Sp. Cond. (ms) 375 375	Pump Flow F	Temp. (°C) 24.8		
Purge Start Time: 11 Purge Chemistry: Time 12:03 Depth to water after Depth to water prior Sample Appearance: Sample Odor:	Gallons 0.5 purge: 7.31 f to sampling: X Turbio None	Purge Time: <u>2</u> pH (Std. Units) 6.2 	2 min. Sp. Cond. (ms) 375 375	Pump Flow F	Temp. (°C) 24.8 Other <u>Sheen</u>		
Purge Start Time: 11 Purge Chemistry: Time 12:03 Depth to water after Depth to water prior Sample Appearance: Sample Odor: IV. Sample Analyses: Sample Parameters: N	Gallons 0.5 0.5 purge: 7.31 f to sampling: X Turbid None Methylene ch	Purge Time: 2 pH (Std. Units) 6.2 	2 min. Sp. Cond. (ms) 375 375	Pump Flow F	Temp. (°C) 24.8 Other <u>Sheen</u>		

WE	LL SAM	DI INC		Eder Associate	<u></u>	OFFICES:	
				erview Execut		New York Wisconsin	
	LOG	7		n. New Jersey 08611 Michiga		Michigan	
				695-1050 (Tele		Georgia Florida	
				695-1003 (Fac	-	New Jersey	
	r <i>al Informa</i> i Name: <u>Biocr</u>	aft Laboratorie	s, Inc.	Project No.: <u>1350-05</u>			
Project	Name: Bioc	xaft - GW		Sampled By: <u>NB/DM</u>			
Well No.: <u>MW-42</u>				Well Use: Mon	itoring		
Sample	ID: <u>BIO-M</u>	<u>W-42</u>	Sample Date: <u>12</u>	<u>/17/97</u>	Sample Time: <u>I</u>	610	
II Well	Information	ار ۲					
PID Reading:			Well Diameter:	2 inches			
Static I	Static Depth to Water: <u>4.64</u> ft. below m.p.			Measuring Poin	ut (m.p.): <u>PVC Ca</u>	sing	
Total V	Total Well Depth: <u>15.50</u> ft. below m.p.			5	et (m.p.): <u>PVC Ca</u>		
Δh: <u>10</u>	<u>.86</u> feet				ding Water: <u>1.74</u>	-	
Volume	e to be remo	ved: <u>5.22</u> gallo	ns	Actual Volume removed: 5.50 gallons			
	<i>npling Infor</i> g Method:	mation:					
🛛 Per	istaltic Pump)		Submersible Pump			
📋 Bai	ler			Other			
Well D	rawdown/Re	ecovery:	Good 🗌	🔀 Poor	Other		
Pump I	Flow Rate: _	gpm			Purge Time	:: min.	
Purge (Chemistry:						
	me	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	45	1.5	7.5	200		11.0	
16	05	5	6.8	600		11.0	
		·····					
		······································					
Denth 4	o wotor offi	P DIFA-	_ ft. below m.p.		Time:		
-			_ n. below hi.p. : ft. below n	nn	Time:		
-	Appearanc					Other	
Sample	••	None		ther	L		
~~~npr			° ت				
IV. San	nple Analyse	s: •• Mathedama C	blanida Aratar 1	Jubil Ataskal PA		Total Phoenhorous	
Sample Metals:		s: <u>Meinylene C</u>	Filtered	DURYL AICONOL, BO	D, COD, TOC, C Unfilte	I, Total Phosphorous cred	
	tory: Accute	est		Date Shipp	ed: <u>12/18/97</u>		
				<b>F</b> F			

---

	WELL SA	AMPLING		Eder Associate	s	OFFICES:	
		OG		verview Execut		New York Wisconsin	
				on, New Jersey		Michigan Georgia	
			1	695-1050 (Telephone)Georgia695-1003 (Facsimile)New Jersey			
·	L	·····	(009)	1093-1003 (Fac	sinne)		
_	I. General Info	mation:					
	Client Name; <u>B</u>	iocraft Laboratori	es, Inc.	Project No.: <u>1350-05</u>			
	Project Name:	<u>Biocraft - GW</u>		Sampled By: <u>NB/DM</u>			
••••• ·	Well No.: <u>DEP-</u>	Well No.: DEP-1A			Well Use: Mor	<u>uitoring</u>	
	Sample ID: <u>BIC</u>	D-DEP-1A	Sample Date: <u>1</u>	<u>2/18/97</u>	Sample Time: ]	1330	
-							
	II. Well Informa PID Reading: 0			Well Diameter:	2 inches		
	Static Depth to Water: <u>4.18</u> ft. below m.p.				 it (m.p.): <u>PVC Ca</u>	sino	
		th: <u>7.55</u> ft. below 1	-		it (m.p.): <u>PVC Ca</u>		
_	Δ h: <u>3.37</u> feet		<b>F</b>	-	ding Water: <u>0.54</u>		
_		emoved: <u>1.62</u> galle	ons		removed: 1.75 ga		
					<u></u> Bu		
—	III. Sampling In						
	Purging Methor				Pumo		
-	Bailer	-		Other			
	Well Drawdown	/Recovery:	Good	Poor	Other		
-	Pump Flow Rat	e: gpm			Purge Time:		
_	Purge Chemistry:						
	Time 1315	Gallons	pH (Std. Units) 7.4	Sp. Cond. (ms) 200	D. O. (ppm)	Temp. (°C) 12.5	
				200		12.5	
-							
				······			
	Depth to water a	after purge:	_ ft. below m.p.		Time:		
	Depth to water p	orior to sampling	: ft. below n	ı.p.	Time:		
	Sample Appeara	nce: 🔲 Turbi	d 🗍 SI	ightly Turbid	Clear	] Other	
	Sample Odor:	None 🗌	<u> </u>	ther			
	Maria a a a						
	IV. Sample Analy Sample Paramet		nloride. Acetone P	utvi Alcohol, BOI		Total Phosphorous	
	Metals:		Filtered	<u></u>			
	Laboratory: Acc	utest		Date Shippe	d: <u>12/19/97</u>		

1

### 854820322

	WELLS	AMPLING	1	Eder Associate	s	OFFICES:	
	11	0G	413 Ri	verview Execut		New York Wisconsin	
		00		on, New Jersey		Michigan	
				605 1050 (Tolombona) Georgia		Georgia	
_						Florida New Jersey	
			(609)	695-1003 (Fac	simile)	New Jersey	
-	1. General Info			Dustant No. 1250.05			
	Chent Name: <u>p</u>	iocraft Laboratorie	<u>es, inc.</u>	<b>Project No.:</b> <u>1350-05</u>			
	Project Name:	<u>Biocraft - GW</u>		Sampled By: <u>NB/DM</u>			
_	Well No.: <u>W-1</u>				Well Use: Mon	itoring	
	Sample ID: <u>BIC</u>	<u>D-W-1</u>	Sample Date: <u>1</u>	<u>2/19/97</u>	Sample Time: <u>1</u>	.330	
	II. Well Inform	ation:					
	PID Reading:			Well Diameter:	2_inches		
_	Static Depth to	Water: 9.21 ft. be	low m.p.	Measuring Poin	— 1t (m.p.): <u>PVC Ca</u>	sing	
		Total Well Depth: 16.60 ft. below m.p.			it (m.p.): <u>PVC Ca</u>		
	Δ <b>b</b> : <u>7.39</u> feet			-			
		Volume to be removed: <u>3.54</u> gallons			Volume of Standing Water: 1.18 gallons		
	volume to be to	enioveu: <u>5.54</u> gano	JAS	Actual Volume removed: 3.75 gallons			
	*** ~	<i>.</i>	** <b>-</b>				
	III. Sampling In Purging Metho	•					
	Peristaltic P			Submersible	Dumn		
		unp		— •			
—	Bailer			Other			
	Well Drawdowi	n/Recovery:	🔲 Good	🔀 Poor	Other	· <b></b>	
_	Pump Flow Rate: gpm				Purge Time:	min.	
					-		
	Purge Chemista	ry:					
_	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	1345	3	6.8	430	GT	11.5	
-							
-				· · · · · · · · · · · · · · · · · · ·			
	L						
	Depth to water :	after purge:	ft, below m n		Time:		
	-						
	Depth to water	prior to sampling:		•	Time:		
	Sample Appears	ance: 📋 Turbio	i 🗍 Si	lightly Turbid	🛛 Clear 🛛 🗌	] Other	
	Sample Odor:	None	Пo	ther			
	-						
_	IV. Sample Anal	yses:					
-			loride, Acetone, E	Butyl Alcohol, BOI	D, COD, TOC, CI.	Total Phosphorous	
	Metals:	<b>-</b>	Filtered		[] Unfilter		
-	Laboratory: Acc	cutest		Date Shippe	d: 12/19/97		
		<u></u>		Sare outpe			

------

ı.

					· <u></u>		
	WELL S	AMPLING		Eder Associate	s	OFFICES:	
-	11	0G	413 R	verview Execut	tive Park	New York Wisconsin	
	-		Trent	on, New Jersey	08611	Michigan Georgia	
			1	695-1050 (Telephone)		Florida	
			(609)	695-1003 (Fac	simile)	New Jersey	
	I. Comment Info						
~	<i>I. General Info</i> Client Name: <u>B</u>	iocraft Laboratorie	es, Inc.	Project No.: <u>1350-05</u>			
	Project Name:	<u> Biocraft - GW</u>		Sampled By: <u>NB/DM</u>			
-	Well No.; <u>W-2</u>				Well Use: <u>Mon</u>	itoring	
	Sample ID: <u>BIO-W-2</u> Sample Date: <u>12</u>			2/19/97	Sample Time: <u>1</u>	<u>345</u>	
_							
	II. Well Information: PID Reading:			Well Diameter:	2 inches		
-	Static Depth to Water: <u>9.38</u> ft. below m.p.					sing	
	Total Well Dep	th: <u>19.65</u> ft. below	т.р.	Measuring Poin	it (m.p.): <u>PVC Ca</u>	sing	
	<b>∆ b:</b> <u>10.27</u> feet			Volume of Stan	ding Water: <u>1.64</u>	gallons	
	Volume to be re	emoved: <u>4.92</u> galle	ons	Actual Volume	removed: <u>5.00</u> ga	llons	
_							
	III. Sampling In Purging Metho						
	Peristaltic P			Submersible	Pump		
	Bailer			Other			
	Well Drawdowi	ARecovery:	Good	Poor	Other		
	Pump Flow Rat	e: gpm			Purge Time:		
					-		
<b></b>	Purge Chemistry:						
	Time 1340	Gallons 5	pH (Std. Units) 7.2	Sp. Cond. (ms) 330	D. O. (ppm)	Temp. (°C)	
	1340					10.5	
-							
-	Depth to water a	after purge:	ft, below m.p.		Time:		
	Depth to water	prior to sampling:	ft. below n	n. <b>p</b> .	Time:		
	Sample Appear			•		] Other	
-	Sample Odor:	None	-	ther		J •	
	···						
	IV. Sample Anal						
	Sample Paramet Metals:	ters: <u>Methylene Cl</u>	loride, Acetone, E	lutyl Alcohol, BOI	<u>), COD, TOC, Cl,</u> Unfilter	Total Phosphorous	
<u>~</u>	Laboratory: Acc	utert		Data Chi-		CU	
	54001 4101 y. <u>ACC</u>	<u>/////31</u>		Date Shippe	u. <u>12/19/97</u>		

WELL SA	AMPLING		Eder Associate		OFFICES: New York		
	0G	413 Ri	verview Execut	view Executive Park			
		Trent	on, New Jersey	08611	Michigan		
		(609)	695-1050 (Telephone) Georgia Florida				
	۱ 	(609)	695-1003 (Fac	simile)	Ncw Jersey		
I. General Infor Client Name: B	mation: iocraft Laboratori	es, Inc.		Project No.: 13	50-05		
Project Name: ]			Sampled By: <u>NB/DM</u>				
Well No.: <u>W-3</u>				Well Use: Mon			
Sample ID: <u>BIO</u>	<u>-W-3</u>	Sample Date: 👖	2/19/97	Sample Time: 1			
II. Well Informa		-					
PID Reading:			Well Diameter:				
-	Water: <u>8.93</u> ft. be	•	•	t (m.p.): <u>PVC Cas</u>			
-	th: <u>20.32</u> ft. below	v m.p.	-	t (m.p.): <u>PVC Cas</u>			
∆ h: <u>11.39</u> feet	A h: <u>11.39</u> feet Volume to be removed: <u>5.46</u> gailons			ding Water: <u>1.82</u>	-		
volume to be re	emoved: <u>5.46</u> gall	ons	Actual Volume	removed: <u>5.50</u> ga	lions		
Purging Method	III. Sampling Information:         Purging Method:         Image: Submersible Pump						
Bailer		Other					
Well Drawdown	/Recovery:	Good	Poor	Other			
Pump Flow Rat	Pump Fiow Rate: gpm			Purge Time: min.			
				-			
Burne Chambre				-			
Purge Chemistr		nH (Std Units)	Sp. Cond. (ms)		Temp (°C)		
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms) 180	D. O. (ppm)	Temp. (°C)		
يحربها فالمسجعة فستشمط تقاني		pH (Std. Units) 7.2	Sp. Cond. (ms) 180	D. O. (ppm)	Temp. (°C) 10.0		
Time	Gallons			D. O. (ppm)			
Time	Gallons			D. O. (ppm)			
Time	Gallons			D. O. (ppm)			
Time	Gallons			D. O. (ppm)			
Time 1215	Gallons	7.2		D. O. (ppm)			
Time 1215	Gallons 1.5 after purge:	7.2	180				
Time 1215	Gallons 1.5 after purge:	7.2 7.2 ft. below m.p. g: ft. below m	180	Time: Time:			
Time 1215 Depth to water a Depth to water p	Gallons 1.5 after purge:	7.2 7.2 ft. below m.p. g: ft. below m id S	180	Time: Time:			
Time         1215         Depth to water a         Depth to water a         Sample Appeara         Sample Odor:         IV. Sample Analy	Gallons 1.5 after purge: prior to sampling ance:	7.2 7.2 ft. below m.p. g: ft. below m id Si c: O	180	Time: Time: ] Clear []	10.0		
Time         1215         Depth to water a         Depth to water a         Sample Appeara         Sample Odor:         IV. Sample Analy         Sample Parameter	Gallons 1.5 after purge: prior to sampling ance:	7.2 7.2 ft. below m.p. g: ft. below m id Si c O	180	Time: Time: Clear [] D. COD, TOC, Cl. Unfiker	10.0		
Time         1215         Depth to water a         Depth to water a         Sample Appears         Sample Odor:         IV. Sample Analy         Sample Parameter         Metals:	Gallons 1.5 after purge: prior to sampling ance:	7.2 7.2 ft. below m.p. g: ft. below m id Si c O	180	Time: Time: Clear [] D. COD, TOC, Cl. Unfiker	10.0		
Time         1215         Depth to water a         Depth to water a         Sample Appears         Sample Odor:         IV. Sample Analy         Sample Parameter         Metals:	Gallons 1.5 after purge: prior to sampling ance:	7.2 7.2 ft. below m.p. g: ft. below m id Si c O	180	Time: Time: Clear [] D. COD, TOC, Cl. Unfiker	10.0		

. .---

.

	WELL S	AMPLING		Eder Associate	S	OFFICES:	
-		0G	413 Ri	verview Execut	ive Park	New York Wisconsin	
			Trent	on, New Jersey	08611	Michigan Georgia	
				695-1050 (Tele		Florida	
			(609)	695-1003 (Fac	simile)	New Jersey	
	I. Comment Info						
-	I. General Infor Client Name: <u>B</u>	iocraft Laboratorie	es, Inc.	Project No.: <u>1350-05</u>			
	Project Name: ]	Biocraft - GW		Sampled By: <u>NB/DM</u>			
	Well No.: <u>W-4</u>				Well Use: <u>Mon</u>	<u>itoring</u>	
	Sample ID: <u>BIC</u>	<u>-W-4</u>	Sample Date: <u>1</u>	<u>2/19/97</u>	Sample Time: <u>I</u>	100	
	II. Well Information PID Reading:			Well Diameter:	2 inches		
-	Static Depth to Water: 7.08 ft. below m.p.				— it (m.p.): <u>PVC Ca</u>	sing	
	Total Well Dep	th: <u>18.00</u> ft. below	т.р.	Measuring Poin	it (m.p.): <u>PVC Ca</u>	sing	
	∆ h: <u>10.92</u> feet			Volume of Stan	ding Water: <u>1.75</u>	gallons	
	Volume to be re	emoved: <u>5.25</u> gallo	ons	Actual Volume	removed: <u>5.50</u> ga	lions	
—	III. Sampling In Purging Metho	•					
	Peristaltic P			Submersible	Pump		
	Bailer			Other			
	Well Drawdowr	n/Recovery:	Good	🔀 Poor	Other		
	Pump Flow Rat	e: gpm			Purge Time:	min.	
	Purge Chemistr						
- 1	Time	y. Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	930	3.5	7.8	300		12.0	
				··· <b>··································</b>			
-							
		I	I			L	
	-	after purge:			Time:		
	Depth to water	prior to sampling	: ft. below n	-	Time:		
	Sample Appears	ance: 🔲 Turbi	d 🗋 S	lightly Turbid	🛛 Clear 🛛 🗌	] Other	
	Sample Odor:	None None	0	ther			
_	IV. Sample Anal	vses:					
	Sample Parame			utyl Alcohol, BO		Total Phosphorous	
	Metals:		Filtered			red	
	Laboratory: Acc	cutest		Date Shippe	d: <u>12/19/97</u>		

	••••••••••••••••••••••••••••••••••••••							
	WELL SA	AMPLING	1	Eder Associate		OFFICES:		
<u> </u>		0G	413 Ri	verview Execut	ive Park	New York Wisconsin		
			Trent	on, New Jersey 08611		Michigan Georgia		
			(609)	(609) 695-1050 (Telephone)				
			(609)	695-1003 (Facsimile) Florida New Jersey				
	L							
	I. General Infor				-			
		iocraft Laboratorie	<u>es, Inc.</u>		Project No.: 13			
	Project Name: ]	<u>Biocraft - GW</u>		Sampled By: <u>NB/DM</u>				
_	Well No.: <u>W-5</u>				Well Use: Mon	itoring		
	Sample ID: <u>BIC</u>	<u>0-W-5</u>	Sample Date: <u>1</u>	<u>2/19/97</u>	Sample Time: <u>l</u>	140		
	II. Well Informa PID Reading:			Well Diameter: <u>2</u> inches				
			1		-	•		
-		Static Depth to Water: <u>7.25</u> ft. below m.p. Total Well Depth: <u>20.60</u> ft. below m.p.			t (m.p.): <u>PVC Ca</u>			
	-	th: <u>20.60</u> ft. below	m.p.	_	it (m.p.): <u>PVC Ca</u>			
-	∆ h: <u>13.35</u> feet			Volume of Standing Water: 2.14 gallons				
	Volume to be re	emoved: <u>6.42</u> gallo	ms	Actual Volume removed: 6.50 gallons				
_		<b>6 6</b>						
	III. Sampling In Purging Method							
	Peristaltic Pu			🔀 Submersible	Pump			
-	Bailer			Other				
	Well Drawdown	1/Recovery:	Good	Poor	Other			
_	Pump Flow Rat	e: gpm			Purge Time:			
	•							
	Purge Chemistr	y:						
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	1130	1	7.5	410		12.0		
		. <u></u>						
				······				
-		· ·····						
l l			L,	·				
	Depth to water a	after purge:	ft. below m.p.		Time:	_		
	Depth to water	prior to sampling:	ft. below n	ър.	Time:	+		
	Sample Appears	ance: 🔲 Turbi	a 🗋 si	ightly Turbid	Clear [	] Other		
	Sample Odor:	☐ None		ther				
	-	·····	÷ ت	*****				
	IV. Sample Anal							
	Sample Paramet Metals:	ters: <u>Methylene Cl</u>		utyl Alcohol, BOI		Total Phosphorous		
			Filtered	<b>_</b> / <b>_</b> .		ed		
	Laboratory: <u>Acc</u>	cutest		Date Shippe	d: <u>12/19/97</u>			

	WELL S	AMPLING		Eder Associat		OFFICES: New York		
		.0G		iverview Execu		Wisconsin		
				ton, New Jersey		Michigan Georgia		
_				695-1050 (Tel		Florida		
_			(609	) 695-1003 (Fac	csimile)	New Jersey		
	I. General Info	rmation:						
-		Biocraft Laboratorio	es, Inc.	Project No.: <u>1350-05</u>				
	Project Name:	Biocraft - GW		Sampled By: <u>NB/DM</u>				
-	Well No.: <u>W-6</u>			Well Use: Monitoring				
	Sample ID: <u>BI(</u>	<u>)-W-6</u>	Sample Date: <u>1</u>	<u>2/19/97</u>	Sample Time:	1125		
-								
	<i>II. Well Inform</i> PID Reading: _			Well Diameter:	2 inches			
		Water: <u>8.34</u> ft. be	low m.n.		nt (m.p.): <u>PVC C</u>	acina		
		oth: <u>21.60</u> ft. below	-		nt (m.p.): <u>PVC C</u> nt (m.p.): <u>PVC C</u>			
	∆ h: <u>13.26</u> feet		•		iding Water: <u>2.1</u>			
•		Volume to be removed: <u>6.36</u> gallons			removed: <u>6.50</u> g			
		0						
-	III. Sampling I							
	Purging Metho			Submersible	Dumn			
	Bailer			Other	•			
	Well Drawdow	n/Recovery:	Good	∑ Poor	Other			
	Pump Flow Rat	•						
	<b>;</b> ,, <b></b> ,	5thin			I uige I ime	e: min.		
	Purge Chemistr							
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	925	6	7.9	600		12.0		
						l		
			·····	·····				
	Depth to water		A 1					
		after purge:			Time:			
		prior to sampling:			Time:			
	Sample Appears	4		-	🛛 Clear [	] Other		
	Sample Odor:	None None	Цо	ther				
	IV. Sample Anal	yses:						
	Sample Paramet		loride, Acetone, E	utyl Alcohol, BOI		, Total Phosphorous		
	Metals:		Filtered		🔲 Unfilte	red		
	Laboratory: <u>Acc</u>	utest		Date Shippe	d: <u>12/19/97</u>			
						8548203		

-

P

-

and the second						
WELL SAMPLI	ING		Eder Associates	<u></u>	OFFICES:	
LOG			227 Wall Street	New York Wisconsin		
LUG		Princet	on, New Jersey	08540	Michigan	
			279-9140 (Telej		Georgia Florida	
1			279-9436 (Facs		New Jersey	
		(000)				
I. General Information:		_				
Client Name: Biocraft La		s, Inc.	Project No.: <u>34906-000</u>			
Project Name: Biocraft -	<u>GW</u>			Sampled By: <u>N</u>		
Well No.: <u>MW-6</u>				Well Use: Mon		
Sample ID: <u>BIO-MW-6</u>		Sample Date: <u>3/</u>	26/98	Sample Time: 1	120	
II. Well Information:						
PID Reading: -		Well Diameter: <u>1.5</u> inches				
Static Depth to Water: 9.	.97 ft. bel	ow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	sing	
Total Well Depth: 14.00	<b>m.p</b> .	_	t (m.p.): <u>PVC Ca</u>			
$\Delta$ h: <u>4.03</u> feet			Volume of Stand	ling Water: 0.37	gailons	
Volume to be removed: 1	<u>1.11</u> gallo	ns	Actual Volume removed: <u>1.20</u> gallons			
III. Sampling Information Purging Method:	n:					
Peristaltic Pump			Submersible	Pump		
🗍 Bailer			Other	-		
Well Drawdown/Recover	ry:	Good	🔀 Роог	Other		
Pump Flow Rate: 0.2 gpr	m			Purge Time	: <u>6</u> min.	
Purge Chemistry:						
	llons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C	
Time Gal	ilons .2	pH (Std. Units) 7.1	Sp. Cond. (ms) 1200	D. O. (ppm)	Temp. (°C	
Time Gal				D. O. (ppm)		
Time Gal				D. O. (ppm)		
Time Gal				D. O. (ppm)		
Time Gal				D. O. (ppm)		
Time Gal				D. O. (ppm)		
Time Gal	.2	7.1		D. O. (ppm)		
Time         Gal           1050         1	.2	7.1	1200			
Time     Gal       1050     1       Depth to water after pur       Depth to water prior to s	.2 rge: <u>11.5</u> 1 sampling.	7.1 7.1 ft. below m.p. : <u>11.5</u> ft. below m.	1200	Time: <u>1119</u>		
Time     Gal       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050	.2 rge: <u>11.5</u> f sampling X Turbio	7.1 7.1 ft. below m.p. : <u>11.5</u> ft. below m. d S	1200	Time: <u>1119</u> Time: <u>1119</u>		
Time     Gal       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050	.2 rge: <u>11.5</u> 1 sampling.	7.1 7.1 ft. below m.p. : <u>11.5</u> ft. below m. d S	1200	Time: <u>1119</u> Time: <u>1119</u>		
Time     Gal       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050     1       1050	.2 rge: <u>11.5</u> 1 sampling: X Turbic None	7.1 7.1 ft. below m.p. : <u>11.5</u> ft. below m. d S C	p. lightly Turbid	Time: <u>1119</u> Time: <u>1119</u> Clear [	] Other	
Time     Gal       1050     1       1050     1       Depth to water after pur       Depth to water prior to s       Sample Appearance:       Sample Odor:       IV. Sample Analyses:       Sample Parameters:	.2 rge: <u>11.5</u> 1 sampling: X Turbic None	7.1 7.1 ft. below m.p. : <u>11.5</u> ft. below m. d S C hloride, Acetone, 1	p. lightly Turbid	Time: <u>1119</u> Time: <u>1119</u> Clear [ D, COD, TOC, Cl	] Other	

____

_								
	WELL SA	MPLING	1	Eder Associate	S	OFFICES:		
	11	DG		227 Wall Stree	t	New York Wisconsin		
		70	Prince	ton, New Jersey	08540	Michigan		
:				279-9140 (Tele		Georgia Florida		
	-			279-9436 (Fac	• •	New Jersey		
			(00))	277 7150 (1 40.				
	I. General Infor	mation						
		ocraft Laboratorie	s. Inc.	Project No.: 34906-000				
					_			
	Project Name: H			Sampled By: <u>NB/JW</u>				
-	Well No.: <u>MW-9</u>	-		Well Use: Monitoring				
	Sample ID: <u>BlO</u>	<u>-MW-9</u>	Sample Date: <u>3/</u>	26/98	Sample Time: <u>1</u>	400		
	II. Well Informa	tion:						
	PID Reading: <u>-</u>			Well Diameter: <u>1</u> inches				
-	Static Depth to Water: 2.59 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
	Total Well Depth: 11.60 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
	∆ h: <u>9.01</u> feet			Volume of Stan	ding Water: 0.36	gallons		
	Volume to be re	moved: <u>1.08</u> galle	Actual Volume removed: 1.10 gallons					
-	III. Sampling In							
	Purging Method			Submersible	Pump			
		mμ						
-	Bailer			Other	-			
	Well Drawdown	/Recovery:	🔲 Good	🔀 Poor	Other			
-	Pump Flow Rate	e: 0.2 gpm			Purge Time	: <u>6</u> min.		
	Purge Chemistr			See Court (max)		T (00)		
	Time 1340	Gallons	pH (Std. Units) 7	Sp. Cond. (ms) 290	D. O. (ppm)	Temp. (°C) 11.9		
				270				
					·			
—		······································						
			l			l		
	Depth to water a	fter purge: - ft. b	elow m.p.		<b>Time</b> : 1341			
		· · · •	: 7.36 ft. below m.	n	Time: 1359			
	-			-		7.04		
-	Sample Appears	nce: 🛛 Turbi		lightly Turbid	Clear	Other		
	Sample Odor:	🔀 None		ther				
	IV. Sample Anal		hlarida Aastans T	Dutul Alashat DOI		Total Dhasekaus		
	Metals:	ers: <u>Meinylene C</u>	Filtered	Duryi Alconol, BU	$\Box, COD, TOC, CI,$ Unfilte	Total Phosphorous		
		autaat		Date Office				
-	Laboratory: <u>Acc</u>	uicsi	•	Date Shippe	a. <u>3/2//98</u>			

	WELL SA	AMPLING		Eder Associate		OFFICES: New York		
-	1	)G		227 Wall Stree	t	Wisconsin		
			Prince	on, New Jersey	08540	Michigan		
				Georgia				
_	1		, , ,	279-9140 (Telephone) Florida 279-9436 (Facsimile) New Jersey				
			(009)	279-9430 (Fac				
	I. General Infor							
-	Client Name: <u>B</u>	iocraft Laboratorie	es, Inc.	Project No.: <u>34906-000</u>				
	Project Name: 1	Biocraft - GW			Sampled By: N	B/JW		
-	Well No.: MW-			Well Use: Monitoring				
	Sample ID: BIO	NAW 17	Sample Date: 3/	26/08	Sample Time: 1	000		
	Sample ID. DIO		Sample Date. 5/	20/98	Sample Time.	000		
	II. Well Informa	ation:						
	PID Reading: -			Well Diameter:	4 inches			
-	Static Depth to	Water: <u>4.00</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
	Total Well Dept	th: <u>10.45</u> ft. below	m.p.	_	t (m.p.): <u>PVC Ca</u>			
-	∆ h: <u>6.45</u> feet	∆ h: <u>6.45</u> feet			ding Water: <u>4.20</u>	gallons		
	Volume to be re	emoved: <u>12.60</u> gal	ons Actual Volume removed: 13.00 gallons					
-	III. Sampling In Purging Method	III. Sampling Information:						
	Peristaltic Pu			Submersible	Pump			
_		*		Other				
	Bailer				-			
	Well Drawdowr	n/Recovery:	🔀 Good	🛄 Poor	Other			
	Pump Flow Rat	e: l gom			Purge Time	: 13 min.		
	-	_ 01			8	<u> </u>		
	Dungo Chomistr							
	Purge Chemistr		TI (Chat IInites)	Sm. Cond. (ma)	D.O.(mm)	T (90)		
_	Time 0940	Gallons 9	pH (Std. Units) 7.7	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	0940	13	7.4	350		12.6		
	0745	13	/.4	550		12.3		
		1						
	· · · · · · · · · · · · · · · · · · ·				·····			
		I	I		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
-	Depth to water a	after purge: <u>6.56</u> :	ft. below m.p.		Time: <u>0946</u>			
	Depth to water	prior to sampling	: 5.5 ft. below m.p.		Time: 0959			
	Sample Appears					Other		
-	Sample Appears		-					
	Sample Odor:	None 🛛		ther				
-	<i>IV. Sample Anal</i> Sample Parame Metals:		hloride, Acetone, E	Butyl Alcohol, BOI	D, COD, TOC, Cl	, Total Phosphorous red		
	Laboratory: Acc	cutest		Date Shippe	d: 3/27/98			
				- are outpe				

_ . .

Image: system of the syste									
LUCU       Princeton, New Jersey 08540 (609) 279-9140 (Telephone)       Mistigan Foods Foods Foods (609) 279-9436 (Facsimile)         -       L. General Information: (GUE Name: Biocraft - GW       Project No: 34906-000         Project Name: Biocraft - GW       Sampled By: NB/W         -       Well No: MW-24       Sample Date: 326/98         Sample ID: BIO-MW-24       Sample Date: 326/98       Sample Time: 1530         -       II. Well Information: PID Reading:       Well Diameter: 2 inches         -       Static Depth to Water: 2.00 ft. below m.p.       Measuring Point (m.p.): PVC Casing Total Well Depth: 13.08 ft. below m.p.         -       A h: 10.13 feet       Volume of Standing Water: 1.62 gallons         -       Using Information: Purging Method: Peristaltic Pump       Submersible Pump         -       Baller       Other         -       Pump Flow Rate: 1 gpm       Purge Time: 5 min.         Purge Chemistry:       -       -         -       Time Gallons pH (Std. Units) Sp. Cond. (ms) D. 0. (ppm) Temp. (*         -       1515       4       7.4       200         -       Depth to water after purge: _ft. below m.p.       Time: !517         -       Depth to water after purge: _ft. below m.p.       Time: !517         -       Depth to water prior to sampling 7.1 ft. belo				F			New York		
Image: State of the state	-		<b>D</b> G						
-       (609) 279-9436 (Facsimile)       New Jersey         -       I. General Information: Client Name: Biocraft Laboratories, Inc.       Project No.: 34906-000         Project Name: Biocraft - GW       Sampled By: NB/JW         -       Well No:: MW-24       Sample Date: 3/26/98       Sampled By: NB/JW         -       Well No:: MW-24       Sample Date: 3/26/98       Sample Time: 1530         - <i>II. Well Information:</i> PID Reading:				•			Georgia		
Image: status product status produ									
Client Name: Biocraft Laboratories, Inc.       Project No: 34906-000         Project Name: Biocraft - GW       Sampled By: NB/JW         Well No: MW-24       Sample Date: 3/26/98       Sampled By: NB/JW         Sample ID: BIO-MW-24       Sample Date: 3/26/98       Sample Time: 1530         II. Well Information:       PID Reading: :       Well Diameter: 2 inches         Static Depth to Water: 2:00 ft. below m.p.       Measuring Point (m.p.): PVC Casing         Total Well Dept:: 13.08 ft. below m.p.       Measuring Point (m.p.): PVC Casing         A h: 10.13 feet       Volume of Standing Water: 1.62 gallons         Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons         III. Sampling Information:       Purging Method:         Purging Method:       Other		(609) 2			279-9430 (racs	inne)	L		
Client Name: Biocraft Laboratories, Inc.       Project No: 34906-000         Project Name: Biocraft - GW       Sampled By: NB/JW         Well No: MW-24       Sample Date: 3/26/98       Sampled By: NB/JW         Sample ID: BIO-MW-24       Sample Date: 3/26/98       Sample Time: 1530         II. Well Information:       PID Reading: :       Well Diameter: 2 inches         Static Depth to Water: 2:00 ft. below m.p.       Measuring Point (m.p.): PVC Casing         Total Well Dept:: 13.08 ft. below m.p.       Measuring Point (m.p.): PVC Casing         A h: 10.13 feet       Volume of Standing Water: 1.62 gallons         Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons         III. Sampling Information:       Purging Method:         Purging Method:       Other									
	-			es, Inc.		Project No.: 34	906-000		
Sample ID: BIO-MW-24       Sample Date: 3/26/98       Sample Time: 1530         II. Well Information: PID Reading::       Well Diameter: 2 inches         Static Depth to Water: 2.00 ft. below m.p.       Measuring Point (m.p.): PVC Casing         Total Well Depth: 13.08 ft. below m.p.       Measuring Point (m.p.): PVC Casing         A h: 10.13 feet       Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons         -       III. Sampling Information: Purging Method: □ Perstatic Pump       Submersible Pump         □ Bailer       Other		Project Name: E	iocraft - GW			Sampled By: <u>NB/JW</u>			
II. Well Information:       Well Diameter: 2 inches         PID Reading: _       Well Diameter: 2 inches         Static Depth to Water: 2.00 ft. below m.p.       Measuring Point (m.p.): PVC Casing         Total Well Depth: 13.08 ft. below m.p.       Measuring Point (m.p.): PVC Casing         A h: 10.13 feet       Volume of Standing Water: 1.62 gallons         Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons         III. Sampling Information:       Purging Method:         Persitatic Pump       Submersible Pump         Bailer       Other		Well No.: <u>MW-2</u>	4						
PID Reading: :       Well Diameter: 2_inches         Static Depth to Water: 2_00 ft. below m.p.       Measuring Point (m.p.): PVC Casing         Total Well Depth: 13.08 ft. below m.p.       Measuring Point (m.p.): PVC Casing         A h: 10.13 feet       Volume of Standing Water: 1.62 gallons         Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons         III. Sampling Information:       Purging Method:         Purging Method:       Submersible Pump         Bailer       Other		Sample ID: <u>BIO</u>	-MW-24	Sample Date: 3/26/98 Sample Time: 1			530		
Total Well Depth: 13.08 ft. below m.p.       Measuring Point (m.p.): PVC Casing         △ h: 10.13 feet       Volume of Standing Water: 1.62 gallons         ✓ Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons         —       III. Sampling Information: Purging Method: Peristaltic Pump       Submersible Pump         —       Bailer       Other			tion:		Well Diameter:	2 inches			
∆ h: 10.13 feet       Volume of Standing Water: 1.62 gallons         ✓ Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons         —       III. Sampling Information: Purging Method: Peristaltic Pump       Submersible Pump         —       Bailer       Other	_	Static Depth to Y	Water: <u>2.00</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	ing		
Volume to be removed: 4.86 gallons       Actual Volume removed: 5.00 gallons	_	Total Well Dept	h: <u>13.08</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
<ul> <li><i>HI. Sampling Information:</i>         Purging Method:         Peristaltic Pump         Bailer         Peristaltic Pump         Bailer         Bailer         Other         Veil Drawdown/Recovery:         Good         Porge Time: 5 min.         Purge Chemistry:         <u>Time         Gallons         pH (Std. Units)         Sp. Cond. (ms)         D. O. (ppm)         Temp. (*         1515         4         7.4         200         <u>1515         4         7.4         </u> <u>1517         Depth to water after purge: _ft. below m.p.         Time: _1517         Depth to water prior to sampling: 7.1 ft. below m.p.         Time: _1529         Sample Appearance: Turbid         Slightly Turbid         Clear Other         Sample Appearance: Turbid         Slightly Turbid         Clear Other         <u>Unfiltered         </u> <u>Unfiltered         </u> <u>Unfiltered         </u> </u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></li></ul>	_	∆ h: <u>10.13</u> feet	: 10.13 feet Volume o			ding Water: <u>1.62</u>	gallons		
Purging Method:       □       Peristaltic Pump       Submersible Pump         □       Bailer       □       Other         Well Drawdown/Recovery:       □       Good       Ø Poor       □         Pump Flow Rate:       1 gpm       Purge Time:       5 min.         Purge Chemistry:       □       □       □       □         Image Chemistry:       □       □       □       □ <th></th> <td>Volume to be re</td> <td>moved: <u>4.86</u> galle</td> <td>ons</td> <td colspan="4">Actual Volume removed: 5.00 gallons</td>		Volume to be re	moved: <u>4.86</u> galle	ons	Actual Volume removed: 5.00 gallons				
□       Bailer       □       Other         Well Drawdown/Recovery:       □       Good       ∅ Poor       □       Other         Pump Flow Rate:       1 gpm       Purge Time:       5 min.         Purge Chemistry:       □       □       □       □         □       Time       Gallons       pH (Std. Units)       Sp. Cond. (ms)       D. O. (ppm)       Temp. (*         □       1515       4       7.4       200       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □ </th <th></th> <th colspan="3">Purging Method:</th> <th>M Submersible</th> <th>Pump</th> <th></th>		Purging Method:			M Submersible	Pump			
Well Drawdown/Recovery:       □ Good       ☑ Poor       □ Other         Pump Flow Rate:       1 gpm       Purge Time: 5 min.         Purge Chemistry:       □       □       □         □       Time       Gallons       pH (Std. Units)       Sp. Cond. (ms)       D. O. (ppm)       Temp. (*         □       1515       4       7.4       200       □       □         □       □       □       □       □       □       □       □         □       □       □       □       □       □       □       □       □         □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □			աւթ			-			
Pump Flow Rate: 1 gpm       Purge Time: 5 min.         Purge Chemistry:		Bailer				-			
Purge Chemistry:         Time       Gallons       pH (Std. Units)       Sp. Cond. (ms)       D. O. (ppm)       Temp. (*         1515       4       7.4       200       1       1         1515       4       7.4       200       1       1         1515       4       7.4       200       1       1         1515       4       7.4       200       1       1         1517       1       1       1       1       1       1         1517       Depth to water after purge: _ ft. below m.p.       Time: 1517       1529       1         1517       Depth to water prior to sampling: 7.1 ft. below m.p.       Time: 1529       1529         1518       Sample Appearance:       Turbid       Slightly Turbid       Clear       Other		Well Drawdown	/Recovery:	🛄 Good	🛛 Poor	Other			
Time       Gallons       pH (Std. Units)       Sp. Cond. (ms)       D. O. (ppm)       Temp. (*         1515       4       7.4       200	-	Pump Flow Rate	e: <u>l</u> gpm			Purge Time	: <u>5</u> min.		
1515       4       7.4       200         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       -       -         -       -       -       <		Purge Chemistr	y:						
	-					D. O. (ppm)	Temp. (°C)		
Depth to water prior to sampling: 7.1 ft. below m.p.       Time: 1529         Sample Appearance:       □ Turbid       ⊠ Slightly Turbid       □ Clear       □ Other         Sample Odor:       ⊠ None       □ Other       □       IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp       □ Unfiltered		1515	4	7.4	200		8.5		
Depth to water prior to sampling: 7.1 ft. below m.p.       Time: 1529         Sample Appearance:       □ Turbid       ⊠ Slightly Turbid       □ Clear       □ Other         Sample Odor:       ⊠ None       □ Other       □       IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp       □ Unfiltered									
Depth to water prior to sampling: 7.1 ft. below m.p.       Time: 1529         Sample Appearance:       □ Turbid       ⊠ Slightly Turbid       □ Clear       □ Other         Sample Odor:       ⊠ None       □ Other       □       IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp       □ Unfiltered	-		<u> </u>						
Depth to water prior to sampling: 7.1 ft. below m.p.       Time: 1529         Sample Appearance:       □ Turbid       ⊠ Slightly Turbid       □ Clear       □ Other         Sample Odor:       ⊠ None       □ Other       □       IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp       □ Unfiltered									
Depth to water prior to sampling: 7.1 ft. below m.p.       Time: 1529         Sample Appearance:       □ Turbid       ⊠ Slightly Turbid       □ Clear       □ Other         Sample Odor:       ⊠ None       □ Other       □       IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp       □ Unfiltered									
Depth to water prior to sampling: 7.1 ft. below m.p.       Time: 1529         Sample Appearance:       □ Turbid       ⊠ Slightly Turbid       □ Clear       □ Other         Sample Odor:       ⊠ None       □ Other       □       IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp       □ Unfiltered		D. (1.)	A	l			<u></u>		
Sample Appearance:       Turbid       Slightly Turbid       Clear       Other         Sample Odor:       None       Other       Other         IV. Sample Analyses:       Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp Metals:       Filtered       Unfiltered	-								
Sample Odor:       None       Other         IV. Sample Analyses:       Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp Metals:         Metals:       Filtered       Unfiltered		Depth to water j	orior to sampling	;: <u>7.1</u> ft. below m.p		Time: <u>1529</u>			
IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp         Metals:       Filtered		Sample Appears	nce: 🔄 🔲 Turbi	id 🛛 🖾 S	lightly Turbid	Clear [	] Other		
IV. Sample Analyses:         Sample Parameters:       Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp         Metals:       Filtered		Sample Odor:	🛛 None		ther				
Sample Parameters: Methylene Chloride, Acetone, Butyl Alcohol, BOD, COD, TOC, Cl, Total Phosp Metals: Filtered Unfiltered									
- Laboratory: Accutest Date Shipped: 3/27/98	-	Sample Parame			Butyl Alcohol, BO				
	-	Laboratory: <u>Acc</u>	eutest		Date Shippe	ed: <u>3/27/98</u>			

n in the second s						
j	WELL SA	MPLING		Eder Associates	S	OFFICES:
	LC			227 Wall Street	t	New York Wisconsin
				on, New Jersey	Michigan	
ļ				· · ·		Georgia
				0) 279-9140 (Telephone) 9) 279-9436 (Facsimile) New Jel		
Ł			(609) 279-9436 (Facsimile)			
	I. General Inform	mation:				
	•	ocraft Laboratorio	es, Inc.		Project No.: 34	906-000
	Project Name: E	liocraft - GW			Sampled By: <u>N</u>	B/JW
	Well No.: MW-2	5			Well Use: Mon	itoring
	Sample ID: <u>BIO</u>	-MW-25	Sample Date: <u>3/</u>	26/98	Sample Time: <u>1</u>	540
	TF 117-11 3- C	41				
	II. Well Informa PID Reading: -	uon:		Well Diameter:	2 inches	
		Water: <u>3.36</u> ft. be	low m.p.		 t (m.p.): PVC Cas	sing
	-	h: <u>10.00</u> ft. below	-	_	t (m.p.): <u>PVC Ca</u>	
	∆ h: <u>6.64</u> feet			Volume of Stand	ding Water: 1.06	gallons
	Volume to be re	moved: 3.18 galle	ons	Actual Volume	removed: <u>3.20</u> ga	ilons
	III. Sampling Inj Purging Method	l:		Submersible	-	
	Bailer			Other	-	
	Well Drawdown	/Recovery:	Good	🔀 Poor	Other	
	Pump Flow Rate	e: <u>1</u> gpm			Purge Time:	: <u>3.5</u> min.
	Purge Chemistry					
r	Time	g. Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
	1510	3.2	7.6	150	D. O. (ppill)	7.7
		ifter purge: <u>-</u> ft. t prior to sampling	pelow m.p. : <u>3.62</u> ft. below m.j	p.	Time: <u>1510</u> Time: <u>1539</u>	
	Sample Appears	nce: 🔲 Turbi	id 🛛 🖾 Si	ightly Turbid	Clear [	] Other
	Sample Odor:	🔀 None		ther		
	<i>IV. Sample Analy</i> Sample Paramet Metals:		hloride, Acetone, I	autyl Alcohol, BOI	D, COD, TOC, CI	
			_			

.

	4	AMPLING OG	Ī	Eder Associate 227 Wall Stree		OFFICES: New York Wisconsin		
			Prince	ton, New Jersey	Michigan			
				279-9140 (Tele		Georgia Florida		
-		1	(609)	279-9436 (Fac	simile)	New Jersey		
					<u> </u>			
	I. General Infor Client Name: B	mation: iocraft Laboratori	es. Inc		Project No.: 34	1906-000		
	Project Name:				Sampled By: N			
_	Well No.; MW-	· · · · · · · · · · · · · · · · · · ·			Weil Use: Mor			
_	Sample ID: BIC		Sample Date: 3/	56/08				
	Sample ID. DIC	-WIW-28	Sample Date: 5/	20/98	Sample Time: 1	1210		
	II. Welt Informa	ution:						
	PID Reading: -			Well Diameter: 1 inches				
	Static Depth to	Water: 0.79 ft. be	low m.p.	Measuring Poin	it (m.p.): <u>PVC Ca</u>	sing		
	Total Well Dep	th: <u>8.15</u> ft. below 1	m.p.		t (m.p.): PVC Ca			
	Δ <b>b</b> : 7.36 feet				ding Water: 0.29			
-		moved: 0.87 gall	ons		removed: 0.90 ga	-		
		<u></u> 6			<u> </u>			
-	III. Sampling In Purging Method X Peristaltic Pu	<b>j</b> :			Submersible Pump			
-	Bailer	•		Other	•			
	Well Drawdown	Recovery	🔀 Good	Poor	- Other			
	Pump Flow Rat	-						
		er <u>vit</u> Bpin			Purge Time	. <u>5</u> mm.		
	Purge Chemistr	y:						
-	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	1157	0.9	7.1	270		9.3		
<b></b>			· · · · · · · · · · · · · · · · · · ·					
						· · · · ·		
		, <u>, , ,</u>				1		
_	Depth to water a	after purge: <u>3.5</u> ft	. below m.p.		Time: <u>1158</u>			
	Depth to water p	prior to sampling	: <u>1.4</u> ft. below m.p.		Time: <u>1209</u>			
	Sample Appeara	ince: 🗌 Turbi	d 🛛 🖾 SI	ightly Turbid [	Clear	] Other		
-	Sample Odor:	🔀 None		iher				
-	IV. Sample Anal	vses:						
	Sample Paramet Metais:	ers: Methylene C	hloride, Acetone, E	utyl Alcohol, BOI	D, COD, TOC, Ci, Unfilte	Total Phosphorous red		
-	Laboratory: <u>Acc</u>	utest		Date Shippe	d: <u>3/27/98</u>			
						85482033		

WELL SAMPLING Eder Associates					OFFICES: New York		
	)G		227 Wall Stree		Wisconsin		
			ton, New Jersey		Michigan G <del>c</del> orgia		
		1	279-9140 (Tele	• /	Florida New Jersey		
L	·	(609)	(609) 279-9436 (Facsimile)				
I. General Inform							
Client Name: <u>Bi</u>	ocraft Laboratori	es, Inc.	Project No.: <u>34906-000</u>				
Project Name: <u>B</u>	iocraft - GW			Sampled By: <u>N</u>	B/JW		
Well No.: <u>MW-4</u>	2			Well Use: Mon	itoring		
Sample ID: <u>BIO-</u>	MW-42	Sample Date: <u>3</u>	27/98	Sample Time: <u>1</u>	000		
II. Well Informa	tion						
PID Reading: -			Well Diameter:	2 inches			
Static Depth to V	Static Depth to Water: 2.91 ft. below m.p.			t (m.p.): <u>PVC Ca</u>	sing		
Total Well Depti	h: <u>15.55</u> ft. below	/ m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing		
Δ h: <u>12.64</u> feet			Volume of Stan	ding Water: <u>2.00</u>	gallons		
Volume to be rea	Volume to be removed: 6.00 gallons			removed: <u>6.00</u> ga	llons		
III. Sampling Information:         Purging Method:         Peristaltic Pump         Submersible Pump							
Bailer		Other					
Well Drawdown	Recovery:	Good	Poor	-			
Pump Flow Rate	•			Purge Time:	30 min.		
				U	—		
Purge Chemistry							
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
0925 0940	3.5	6.7	130 150		9.5		
0,40	0	0.7	130		9.5		
Depth to water a	fter purge: 8.15	ft below m n		Time: 0941			
-	• •	: <u>4.51</u> ft. below m.j	n	Time: 0959			
Sample Appeara			-	$\bigtriangledown$ Clear $[$	Other		
Sample Odor:	None		ther				
<i>IV. Sample Analy</i> Sample Paramete Metals:		hloride, Acetone, E	Butyl Alcohol, BOI	), COĐ, TOC, Cl,	<u>Total Phosphorous</u> ed		
Laboratory: <u>Accu</u>	itest		Date Shippe	d: <u>3/27/98</u>			
					854		
					034		

-----

	· · · · · · · · · · · · · · · · · · ·						
	WELLS	SAMPLING		Eder Associa	4	OFFICES:	
				227 Wall Stre		New York	
		LOG	Duite		Wisconsin		
				ceton, New Jerse		Michigan Georgia	
				9) 279-9140 (Te		Florida	
	L		(60	(609) 279-9436 (Facsimile)		New Jersey	
	I Concert Int						
-	I. General Infe Client Name:	Biocraft Laborato	ries, Inc.		Project No.: 3	4906.000	
	Project Name:	Biocraft - GW			Sampled By: I		
	Well No.: <u>MW</u>	<u>′-6</u>			Well Use: Mor		
	Sample ID: <u>BI</u>	0-MW-6	Sample Date:	6/25/98	Sample Time:		
	II. Well Inform PID Reading: :	uation:		Well Diameter	: 1.5 inches		
	Static Depth to	Water: <u>10.73</u> ft.	below m.p.		nt (m.p.): <u>PVC Ca</u>	sing	
	Total Well Dep	oth: 14.00 ft. belo	w m.p.		nt (m.p.): <u>PVC Ca</u>		
	Δ h: <u>3.27</u> feet				ding Water: 0.28		
-	Volume to be removed: 0.85 gallons			Actual Volume removed: <u>1.0</u> gallons			
	III. Sampling Information:         Purging Method:         Image: Submersible Pump						
	Bailer				e rump		
				Other	_		
	Well Drawdow	n/Recovery:	Good 🗌	🔀 Poor	Other		
-	Pump Flow Rat	te: <u>0.01</u> gpm		Purge Time: 100 min.			
	Purge Chemistr	'y:_					
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	9:43	1	6.5	550	D. O. (ppill)	17.7	
						17.7	
	Depth to water a	fter purge: <u>14.00</u>	ft. below m.p.		Time: 9:44		
-			: <u>12.4</u> ft. below m.j	n.	Time: 9.55		
	Sample Appeara					Other	
	Sample Odor:	None	لاينه	ther		<u> </u>	
-	<i>IV. Sample Analy</i> Sample Paramete Metals:	ses: ers: Methylene Ch		utyl Alcohol, BOD	, COD, TOC, CI, T	<u>`otal Phosphorus, 1</u>	
_	Laboratory: <u>Accu</u>	utest		Date Shipped		4	

-

-----

.

	WELL	SAMPLING	1	Eder Associa	ntes	OFFICES:		
		LOG		227 Wall Street				
			Prin	ceton, New Jers		Wisconsin Michigan		
	H		(60)	9) 279-9140 (Te	lephone)	Georgia		
—			(60	9) 279-9436 (Fa	acsimile)	Florida New Jersey		
	I. General Inf	ormation:						
-		Biocraft Laborato	ries, Inc.		Project No.:	34906.000		
	Project Name	: Biocraft - GW			Sampled By:			
	Well No.: MW	-9						
	Sample ID: <u>BIO-MW-9</u> Sample Date:			6006100	Well Use: Mo			
			Daupie Date.	0/23/98	Sample Time:	<u>11:15</u>		
	II. Well Inform	nation:						
	PID Reading:	-		Well Diameter	" 1 5 inches			
	Static Denth to	- ) Water: <u>4.43</u> ft. b						
-					nt (m.p.): <u>PVC Ca</u>			
		oth: <u>11.60</u> ft. belo	wm.p.	Measuring Poi	Measuring Point (m.p.): PVC Casing			
_	Δ h: <u>7.17</u> feet			Volume of Star	nding Water: 0.62	gallons		
-	Volume to be r	emoved: <u>1.87</u> gal	lons					
			ons Actual Volume removed: 2.0 gallons					
	III. Sampling I	nformation:						
	Purging Metho							
	Peristaltic P	ump		🛛 Submersible	e Pump			
-	Bailer			Other				
	Well Drawdow	n/Recovery:	Good	Poor	- Other			
	Purge Start Tio	ne: 10:31	Purge Time: 4			-		
-			- dige rime.	<u>нг</u> ниш.	Pump Flow Ra	te: <u>0.04</u> gpm		
	Purge Chemista	<b>v</b> :						
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)				
	1052	1	7.0	300	D. O. (ppm)	Temp. (°C)		
	1113	2	7.0	400		<u>21.3</u> 20.6		
						20.0		
		·						
-								
					l			
	Depth to water a	fter purge: <u>11.60</u>	ft. below m.p.		Time: 11:13			
—	Depth to water p	rior to sampling:	3.01 ft. below m.r	).	Time: 11:15			
	Sample Appeara		-		 			
-	Sample Odor:	لاسب	<b>C</b> )		Clear	Other		
	Sample Outre	🛛 None	0	her				
	IV. Sample Analy	6 a.c. 1						
-	Sample Paramete	ses: ers: Methylene chi	oride Acetone D.					
	Metals:	<u></u>	Filtered	ityl Alconol, BOD,	COD, TOC, CI, T	otal Phosphorus, BN		
	Laboratory: Accu	itest		<b>D</b>		a		
	<u></u>			Date Shipped	: 6/26/98			

_	11	SAMPLING		Eder Associat		OFFICES: New York			
-		LOG	Princ	227 Wall Street Princeton, New Jersey 08540					
	Ĭ		(609	9) 279-9140 (Tel	lephone)	Michigan Georgia			
		(609) 279-9436 (			csimile)	Florida New Jersey			
		-							
-	<i>I. General Inf</i> Client Name:	ormation: Biocraft Laborator	ies, Inc.		Project No.: 3	4906.000			
	Project Name	: <u>Biocraft - GW</u>			Sampled By: ]				
-	Well No.: MW	/-17			Well Use: Moi				
	Sample ID: <u>B</u>	<u>O-MW-17</u>	Sample Date:	Sample Date: <u>6/25/98</u> Sample Time: <u>9:20</u>					
-	II. Well Inform	nation:							
	PID Reading:			Well Diameter:	4 inches				
_	Static Depth to	• Water: <u>5.96</u> ft. b	elow m.p.		- nt (m.p.): <u>PVC Ca</u>	sina			
	Total Well De	pth: <u>10.45</u> ft. belov	vm.p.		nt (m.p.): <u>PVC Ca</u>				
	∆ h: <u>4.69</u> feet				ding Water: <u>3.79</u>				
-	Volume to be a	removed: <u>9,14</u> gall	ons		ual Volume removed: <u>10.0</u> gallons				
	III. Sampling Information: Purging Method: Peristaltic Pump								
_	Bailer	unt		Submersible	Ритр				
		n/Decovern	570	Other					
		Well Drawdown/Recovery:     Image: Good     Poor     Image: Other       Purge Start Time: 8:50     Purge Time: 10 min     Purge Flow: Potent 4.0							
	i alfe Start I fi	ue: <u>6.50</u>	Purge Time: 1	0 min.	Pump Flow R	ate: 1.0 gpm			
	Purge Chemisti	ry:							
_	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)			
	<u>8:57</u> 900	5	6.0	420		18.0			
,			6.4	250		17.1			
-									
_		after purge: <u>7.02</u> fi	-	I.	Time: <u>9:05</u>				
		prior to sampling:	6.94 ft. below m.p	).	Time: <u>9:18</u>				
-	Sample Appeara	nce: 🔲 Turbid	I 🛛 SI	ightly Turbid	] Clear	Other			
	Sample Odor:	🛛 None	01	her					
	<i>IV. Sample Analy</i> Sample Paramet Metals:		oride, Acetone, Bu	ityl Alcohol, BOD,	COD, TOC, CI, T	otal Phosphorus, BN			
	Laboratory: Acc	utest		Nate Shinned		a			
		u <b>—</b>		Date Shipped	: 0/23/98				

.

	WELL S	SAMPLING	1	Eder Associa	tes	OFFICES:		
_		LOG		227 Wall Stre		New York Wisconsin		
			Princ	Princeton, New Jersey 08540				
	H		(609	)) 279-9140 (Te	lephone)	Georgia Florida		
<b>—</b> ,	L		(60	9) 279-9436 (Fa	csimile)	New Jersey		
	I. General Info Client Name	ormation: Biocraft Laborator	· · · ·					
-		Biocraft - GW	ies, inc.		Project No.: 3			
	Well No.: MW			Sampled By: <u>DG/NB</u>				
	Sample ID: <u>BI</u>		Comula Data	6 <b>10</b> 5 10 5	Well Use: Monitoring			
	BIO-MWD	0-111-24	Sample Date:	e: <u>6/25/98</u> Sample Time: <u>15:00</u>				
-	BIO-MWD							
	II. Well Inform	nation.						
	PID Reading:			Well Diameter: 2 inches				
-	Static Depth to	Water: <u>5.26</u> ft. b	elow m.p.			sino		
	Total Well Dep	oth: <u>13.08</u> ft. below	v m.p.		nt (m.p.): <u>PVC Ca</u>			
-	Δ h: <u>7.82</u> feet				iding Water: 1.25			
	Volume to be r	emoved: <u>3.75</u> gall	ons	Actual Volume removed: 4.0 gallons				
					0			
	III. Sampling It Purging Metho	nformation:						
_	Peristaltic P				-			
	Bailer	<b>F</b>		Submersible	Pump			
	Well Drawdow	n/Recovery-	Good	Other	-			
-	Purge Start Tin	-		Poor	[] Other			
	Br Start III	<u>12.47</u>	Purge Time: 1	<u>28</u> min.	Pump Flow R	ate: 0.016 gpm		
<b></b>	Purge Chemistr	ny:						
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)		
	13:45	2	8.0	140		21.1		
-								
-	Depth to water a	ifter purge: <u>13.08</u>	ft. below m.p.		Time: 14:57			
	Depth to water p	orior to sampling:	11.71 ft. below m	. <b>D</b> .	Time: 14:59			
-	Sample Appeara			ightly Turbid		Other		
	Sample Odor:	🔀 None	 [X] OI	- · ·				
-								
	IV. Sample Analy	ses:						
	Sample Paramet Metals:	ers: <u>Methylene chl</u>	oride, Acetone, Bi	utyl Alcohol, BOD	, COD, TOC, CI, T	otal Phosphorus, BN		
			Filtered		Unfiltere	d		
	Laboratory: Acc	ulest		Date Shipped	l: <u>6/25/98</u>			
_								

1

	WELL S	SAMPLING	· /	Eder Associa		OFFICES:				
	1	LOG		227 Wall Str		New York				
		.00	Prin	ceton, New Jers		Wisconsin				
			1111	ON 270 OT 40 (27)	ey 08540	Michigan Georgia				
	ll l			9) 279-9140 (Te	elephone)	Florida				
			(60	9) 279-9436 (Fa	acsimile)	New Jersey				
	I. General Info									
-	Client Name:	Biocraft Laborato	vries Inc		<b>.</b>					
			1103, IIIC.		Project No.:	34906.000				
		Biocraft - GW			Sampled By:	DG/NB				
	Well No.: <u>MW</u>	-25			Well Use: Mo	nitoring				
	Sample ID: <u>BI</u>	O-MW-25	Sample Date:	6/2.5/98	Sample Time:					
			-	· _ · · ·	Sample Hate.	14.10				
_	II. Well Inform	ation:								
	PID Reading: -			Well Diameter	- 2 inches					
	Static Depth to	Water: <u>5.36</u> ft. 1	below m n							
		th: <u>10.00</u> ft. belo			int (m.p.): <u>PVC Ca</u>					
		п. 10.00 п. рею	w m.p.	Measuring Poi	nt (m.p.): <u>PVC Casing</u> iding Water: 0.74 gallons					
	∆ h: <u>4.64</u> feet			Volume of Standing Water: 0.74 gallons						
	Volume to be re	emoved: <u>2.22</u> gal	lions							
		0		Actual Volume removed: 2.5 gallons						
	III. Sampling In	formation:								
	Purging Methor	d:								
	Peristaltic P	ւտբ		🔀 Submersible	e Pump					
	Bailer			Other	p					
	Well Drawdown	/Decovorru								
		_	Good Poor Other							
-	Purge Start Tim	e: <u>13:30</u>	Purge Time: 3	Purge Time: 35 min. Pump Flow Rate: 0.07 gpm						
	Purge Chemistry									
	Time 13:47	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)				
	13.47	1	7.4	190		19.3				
			<u> </u>							
			<u> </u>							
			<u> </u>			· · · · · · · · · · · · · · · · · · ·				
	D				<u> </u>					
-	Depth to water a				Time: 14:05					
	Depth to water p	rior to sampling	: 8.65 ft. below r	n.p.	Time: 14:09					
	Sample Appearat									
	Sample Odor:			ightly Turbid [	]Clear	Other				
	oumple Odor.	🔀 None		ther						
	IV Samuela Analys									
	IV. Sample Analys Sample Parameter	es: re: Mathalana -t	1							
	Metals:	s. Meurylene ch	Filtered	ityl Alcohol, BOD,	COD, TOC, CI, T	otal Phosphorus, BN				
					Unfiltere	d				
-	Laboratory: Accur	lest		Date Shipped	: 6/25/98	•				
-										

-					
	WELL SAMPLING		Eder Associat	es	OFFICES:
_	LOG	1	227 Wall Stre		New York
	200	Princ	eton, New Jerse		Wisconsin Michigan
			) 279-9140 (Tel		Georgia
-			) 279-9436 (Fa		Florida New Jersey
	I. General Information: Client Name: <u>Biocraft Laborator</u> i	ies, Inc.		Project No.: 3	1006 000
	Project Name: Biocraft - GW			Sampled By: ]	
_	Well No.: MW-28			Well Use: Mo	
-	Sample ID: BIO-MW-28	Sample Date: (	5/25/98	Sample Time:	· —
				Sample Time:	13:00
	II. Well Information:				
	PID Reading:		Well Diameter:		
-	Static Depth to Water: 3.06 ft. be			nt (m.p.): <u>PVC Ca</u>	
	Total Well Depth: 8.15 ft. below	m.p.		nt (m.p.): <u>PVC Ca</u>	
-	$\Delta$ h: 5.09 feet		Volume of Stan	ding Water: 0.46	gallons
	Volume to be removed: <u>1.4</u> gallor	ns	Actual Volume	removed: <u>1.4</u> gal	lons
	III. Sampling Information:				
-	Purging Method:				
	Peristaltic Pump		Submersible	Pump	
•	Bailer		Other	-	
	Well Drawdown/Recovery:	Good	🔀 Poor	Other	
•	Purge Start Time: 12:25	Purge Time: 2	: 22 min. Pump Flow Rate: 0.06 gpm		
	Purge Chemistry:				
	Time Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	T (00)
	12:46 1	7.1	200	D. O. (ppn)	Temp. (°C) 23.8
					23.6
	Depth to water after purge: 6.05 ft	. below m.p.		Time: 12:47	
	Depth to water prior to sampling:	•	<b>.</b>	Time: 12:58	
	Sample Appearance: 🔲 Turbid		ghtly Turbid ∏	Clear	Other
	Sample Odor: None		her Hydrogen		Unici
		sulphi	<u> </u>		
		supri			
	IV. Sample Analyses:				
	Sample Parameters: Methylene chie Metals:	oride, Acetone, Bu	tyl Alcohol, BOD,	COD, TOC, CI, T	otal Phosphorus.
		Filtered			.d
	Laboratory: Accutest		Date Shipped	: <u>6/25/98</u>	

	WELL SAMPLING		<b>F</b> .J		OFFICES:			
-				Eder Associates 227 Wall Street				
	LOG	Drin			New York Wisconsin			
		(60	ceton, New Jers	ey 08540	Michigan Georgia			
_	J.	(60	9) 279-9140 (Te 9) 279-9436 (Fe	elephone)	Florida			
		(00	2)213-9430 (F	acsimile)	New Jersey			
	I. General Information:							
	Client Name: Biocraft Laborate	ories, Inc.		Project No.:	34906.000			
	Project Name: <u>Biocraft - GW</u>			Sampled By:				
	Well No.: <u>MW-42</u>			Well Use: Me				
	Sample ID: BIO-MW-42	Sample Date:	Sample Date: 6/26/98 Sample Time: 9:4.					
		-		Sample Time.	<u> <del>5.45</del></u>			
_								
	II. Well Information:							
	PID Reading: <u>-</u>		Well Diameter	r: 2 inches				
	Static Depth to Water: 3.41 ft.	below m.p.		_	asing			
	Total Well Depth: <u>15.55</u> ft. belo	w m.p.	Measuring Point (m.p.): <u>PVC Casing</u> Measuring Point (m.p.): <u>PVC Casing</u>					
-	Δ h: <u>12.14</u> feet			tanding Water: <u>1.94</u> gallons				
	Volume to be removed: 5.82 ga	llons						
				removed: <u>6.0</u> gal	lons			
	III. Sampling Information:							
_	Purging Method:							
	_		Submersible	e Pump				
			Other					
-	Well Drawdown/Recovery: 🗍 Good 📃 Poo			Other				
	Purge Start Time: 9:07	Purge Time: 3	Purge Time: 32 min. Pump Flow Rate: 0.18 gpm					
_				-	6F			
•	Purge Chemistry: Time Gallons							
	TimeGallons9:233	pH (Std. Units) 7.2	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)			
	9:39 6	7.2	100		13.8			
			150		13.3			
_								
—			·					
	Depth to water after purge: 14.60			Time: <u>9:44</u>				
_	Depth to water prior to sampling	: <u>14.66</u> ft. below m	.p.	Time: 9:44				
_	Sample Appearance: 🛛 🔲 Turbi	d 🛛 🖾 Si	ightly Turbid [	 Clear	Other			
	Sample Odor: 🛛 🕅 None		her					
			<b>—</b> ——					
	IV. Sample Analyses:							
	Sample Parameters: Methylene ch Metals:	loride, Acetone, Bu	ityl Alcohol, BOD	, COD <u>, TOC, CI</u> , 1	otal Phosphorus, BN			
-		Filtered			d			
	Laboratory: Accutest Date Shipped: 6/26/98							

·							
	WELL	AMPLING					
		_	1	Eder Associat		OFFICES: New York	
		.OG	Drino	227 Wall Stre		Wisconsin Michigan	
				Princeton, New Jersey 08540 (609) 279-9140 (Telephone)			
		1		) 279-9436 (Fa		Florida New Jersey	
			1 (665	<u>) = ) )   )   )                         </u>			
-	I. General Info						
		Biocraft Laboratori	<u>ies, Inc.</u>		Project No.: <u>3</u>	<u>4906.000</u>	
_	Project Name:	Biocraft - GW			Sampled By: [	<u>DG/FA</u>	
_	Well No.: <u>MW-6</u>				Well Use: Mor	hitoring	
	Sample ID: <u>BI</u>	<u>D-MW-6</u>	Sample Date:	9/24/98	Sample Time:	14:15	
—					• •		
	II. Well Inform						
-	PID Reading: -			Well Diameter	: <u>1.5</u> inches		
		Water: <u>13.08</u> ft. 1	-	Measuring Poi	nt (m.p.): <u>PVC Ca</u>	sing	
	Total Well Dep	th: <u>13.88</u> ft. below	v m.p.	Measuring Poin	nt (m.p.): <u>PVC Ca</u>	sing	
-	∆ h: <u>0.8</u> feet			Volume of Stan	ding Water: 0.07	gallons	
	Volume to be removed: 0.21 gallons			Actual Volume removed: 0.25 gallons			
				·			
	III. Sampling In Purging Metho						
	Peristaltic P			Submersible	Pump		
	Bailer	•		Other	-		
		1/Recovery:	Good	Poor			
-	Pump Flow Rat	•		E FOOI	Other		
		6Pm			Purge Time:	min.	
_	Purge Chemistr	y:					
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
	14:00	0.25	6.4	500		23.0	
<b>—</b> .							
			······				
		·····				J	
	Depth to water a	fter purge: <u>13.85</u>	ft. below m.p.		Time: <u>14:05</u>		
	Depth to water p	orior to sampling:	ft. below n	ı.p.	Time:		
	Sample Appeara	nce: 🔀 Turbic	i 🗆 🗆	ightly Turbid		] Other	
	Sample Odor:	None		ther		,	
-	IV. Sample Analy						
	Sample Paramete Metals:	ers: <u>Methylene Ch</u>	loride, Acetone, B	utyl Alcohol, BOE		Total Phosphorus, BN	
-	Laboratory: Acci	utest	Filtered	<b>_</b>		ed	
	Saboratory. ACC	utest		Date Shipped	d: <u>9/25/98</u>		
_							
-							

	() () ****	· <u> </u>			
14	AMPLING		Eder Associat		OFFICES: New York
	9G		227 Wall Stre		Wisconsin
ł			eton, New Jerse		Michigan Georgia
	i		) 279-9140 (Tel		Florida
L		(009	) 279-9436 (Fac	csimile)	New Jersey
<i>I. General Infor</i> Client Name: <u>Bi</u>	mation: ocraft Laborator	ies, Inc.		Project No.: <u>3</u>	4906 000
Project Name: <u>I</u>			Sampled By: <u>DG/FA</u>		
Well No.: <u>MW-9</u>				Well Use: Mor	
Sample ID: <u>BIO</u>	-	Sample Date: §	0/74/08		
•	<u></u>	Sumple Dute. 2	124/30	Sample Time:	11:05
II. Well Informa	tion:				
PID Reading: <u>-</u>			Well Diameter:	<u>l</u> inches	
Static Depth to		-	Measuring Poir	nt (m.p.): <u>PVC Ca</u>	sing
Total Well Dept	h: <u>11.60</u> ft. belov	v m.p.	Measuring Point (m.p.): PVC Casing		
∆ h: <u>4.79</u> feet			Volume of Standing Water: 0.19 gallons		
Volume to be rep	moved: <u>0.57</u> gall	ons	Actual Volume removed: 0.9 gailons		
III. Sampling Inj				-	
Purging Method			Submersible	Pump	
Bailer			Other		
Well Drawdown/	Recovery;	Good	Poor	Other	
Purge Start Time	e: <u>10:26</u>	Purge Time: <u>3</u>		Pump Flow Ra	te: 0.028 gpm
Purge Chemistry	:				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
10:45	0.5	6.2	275		22.4
<u>-</u>		·			
Depth to water af		•		Time: <u>10:58</u>	
Depth to water pr	ior to sampling:	9.25 ft. below m.p	<b>b.</b>	Time: <u>11:02</u>	
Sample Appearan	ce: 📋 Turbi	a ⊠si	ightly Turbid [	] Clear	] Other
Sample Odor:	🗌 None	X of	ther <u>Hydrogen</u>		
		<u>sulphi</u>	de		
I <i>V. Sample Analys</i> Sample Parameter Metais:		loride, Acetone, Bi	utyl Alcohol, BOD		<u>Fotal Phosphorus, BN</u>
Laboratory: Accut	est		Date Shimed		20
	~~		Date Shipped	1: <u>9/25/98</u>	

_

.

	ING	Eder Associa	tes	OFFICES:		
LOG		227 Wall Str		New York		
	[ ]	Princeton, New Jers		Wisconsin Michigan		
		(609) 279-9140 (Te		Georgia		
L		(609) 279-9436 (Fa		Florida New Jersey		
			<u> </u>			
I. General Information: Client Name: <u>Biocraft La</u>	aboratories Inc		Dente dat			
Project Name: Biocraft -			Project No.:			
Well No.: <u>MW-17</u>	<u> </u>		Sampled By: <u>DG/FA</u>			
Sample ID: <u>BIO-MW-17</u>	Community T		Well Use: <u>M</u>			
Sample 1D. <u>BIO-MW-17</u>	. Sample L	Date: <u>9/24/98</u>	Sample Time	: <u>9:55</u>		
II. Well Information:						
PID Reading: -		Well Diameter	r: <u>4</u> inches			
Static Depth to Water: 7	<u>85</u> ft. below m.p.	Measuring Poi	int (m.p.): <u>PVC (</u>	Casing		
Total Well Depth: <u>10.41</u>	ft. below m.p.		int (m.p.): <u>PVC (</u>			
∆ h: <u>2.6</u> feet			nding Water: 1.(			
Volume to be removed:	5.07 gallons		Actual Volume removed: 5.0 gallons			
			ziz 6			
III. Sampling Information Purging Method:	n:					
Peristaltic Pump		Submersibl	e Pump			
Bailer		Other	•			
Well Drawdown/Recover	ry: 🕅 Good					
Purge Start Time: <u>9:30</u>		ime: <u>5</u> min.	Other			
	i uige II		rump riow	Rate: <u>1.0</u> gpm		
Purge Chemistry:						
Time Gall			D. O. (ppm)	Temp. (°C)		
9:35 5	5.8	375		20.3		
				+		
Depth to water - fter						
Depth to water after purg			Time: <u>9:40</u>			
Depth to water prior to sa		-	<b>Time</b> : <u>9:50</u>			
Sample Appearance:	] Turbid	Slightly Turbid	Clear	Other <u>Turbid at bo</u>		
			9	of bailer		
	_	Other <u>Hydrogen</u>				
Sample Odor:	None	VI other III undgen				
Sample Odor:		sulphide				
IV. Sample Analyses:	:	<u>sulphide</u>				
	:	sulphide ne, Butyl Alcohol, BOE	0, COD, TOC, CI	<u>, Total Phosphorus, B</u> ered		

-

1

	WELL S	AMPLING		Eder Associa	ites	OFFICES:	
		OG	1	227 Wall Str	eet	New York Wisconsin	
			Princ	ceton, New Jers	ey 08540	Michigan	
-	ł	1		9) 279-9140 (Te		Georgia Florida	
	<u> </u>		(60	9) 279-9436 (Fa	acsimile)	New Jersey	
	I. General Info	rmation:					
	Client Name: E	liocraft Laboratori	<u>es, Inc.</u>		Project No.:	34906 000	
	Project Name:			Sampled By:			
	Well No.: <u>MW-</u>						
	Sample ID: BIC		Sample Date:	0/04/08	Well Use: Mo		
	BIO-MWD	<u>- 101 H, -24</u>	Sample Date:	9/24/98	Sample Time:	<u>16:50</u>	
	<u>210 mm</u>						
	II. Well Inform	ution:					
-	PID Reading; -			Well Diameter	: 2 inches		
	Static Depth to	Water: <u>9.01</u> ft. be	low m.p.				
-	Total Well Dept	th: <u>13.05</u> ft. below	т.р.				
	∆ h: <u>4.04</u> feet					-	
-	Volume to be removed: <u>1.93</u> gallons			Volume of Standing Water: <u>0.64</u> gallons Actual Volume removed: <u>2.0</u> gallons			
		_			. removed. <u>2.0</u> gai	ions	
	III. Sampling In	formation:					
	Purging Method	l: mn					
	Bailer				•		
	Well Drawdown	Becover.		Other			
		-	Good	🛛 Poor	Other	-	
	Purge Start Tim	e: <u>14:39</u>	Purge Time: <u>1</u>	<u>29</u> min.	Pump Flow R	ate: <u>0.016</u> gpm	
<b>—</b>	Purge Chemistry	r:					
	Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)		
_	15:10	1	6.8	300	D. O. (ppm)	Temp. (°C) 23.3	
			·				
	L						
	Depth to water al	ter purge: <u>12.71</u> f	t. below m.p.		Time: <u>16:48</u>		
	Depth to water p			n			
	Sample Appearan			ightly Turbid f	Time: <u>16:49</u>		
	Sample Odor:	None			Clear	Other	
-	• • • • • • • • • • • • • • • • • • • •			her <u>Hydrogen</u>			
			<u>sulphi</u>	de			
	IV. Sample Analys	es:					
	Sample Parameter	rs: Methylene chlo	ride, Acetone, Bu	ityl Alcohol, BOD	COD. TOC. CL 1	otal Phosphorus, BN	
	Metals:		Filtered		Unfiltere	d	
-							
						85101	

8548	20	34	6
------	----	----	---

	AMPLING		Eder Associat		OFFICES:	
	OG		227 Wall Stre		New York Wisconsin	
		Princ (600	eton, New Jerse	y 08540	Michigan Georgia	
		(609	) 279-9140 (Tel ) 279-9436 (Fa	epnone) (simile)	Florida New Jersey	
			/			
I. General Infor Client Name: B	mation: iocraft Laborator	er Inc				
Project Name: ]		<u>ies, me.</u>	Project No.: <u>34906.000</u>			
Well No.: <u>MW-25</u>			Sampled By: <u>DG/FA</u>			
Sample ID: <u>BIO</u>		Sample Date: §	0/25/08	Well Use: <u>Mor</u>		
• • • • • •		Sample Date.	123198	Sample Time:	<u>11:17</u>	
II. Well Informa	ition:					
PID Reading: -			Well Diameter:	<u>2</u> inches		
Static Depth to		-	Measuring Poi	nt (m.p.): <u>PVC Ca</u>	sing	
Total Well Dept	h: <u>10.00</u> ft. below	/ m.p.	Measuring Poin	at (m.p.): <u>PVC Ca</u>	sing	
$\Delta$ h: <u>1.03</u> feet			Volume of Stan	ding Water: 0.16	gallons	
Volume to be re-	moved: <u>0.5</u> gallo	ns	Actual Volume removed: 0.5 gallons			
III. Sampling Inj	formation:					
Purging Method	<b>!:</b>					
Peristaltic Pu	mp		🛛 Submersible	Pump		
	~		Other			
Well Drawdown	•	Good	Poor	Other	-	
Purge Start Time	e: <u>9:17</u>	Purge Time: <u>1</u>	<u>13</u> min.	Pump Flow R	ate: <u>0.004</u> gpm	
Purge Chemistry	<i>r</i> :					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
11:10	0.5	7.4	425		21.5	
		···· .				
					·····	
					and the second s	
Depth to water at	ter purge: Well	went drv		Time: 11.12		
Depth to water at Depth to water p			l	Time: <u>    :   2</u>		
Depth to water at Depth to water pu Sample Appearan	rior to sampling:	ft. below n		Time:	) Other	
Depth to water p	rior to sampling: nce: []] Turbic	ft. below n	ightly Turbid [	Time:	] Other	
Depth to water pi Sample Appearan	rior to sampling:	ft. below n	ightly Turbid [ her <u>Hydrogen</u>	Time:	] Other	
Depth to water pi Sample Appearan	rior to sampling: nce: []] Turbic	ft. below n	ightly Turbid [ her <u>Hydrogen</u>	Time:	] Other	
Depth to water p Sample Appearan Sample Odor: <i>IV. Sample Analys</i>	rior to sampling: nce:  Turbic None None	ft. below n	ightly Turbid [ ther <u>Hydrogen</u> <u>de</u>	Time: ] Clear		
Depth to water p Sample Appearan Sample Odor:	rior to sampling: nce:  Turbic None None	ft. below n I X SI X Of sulphi	ightly Turbid [ ther <u>Hydrogen</u> <u>de</u>	Time: ] Clear 	<u>Fotal Phosphorus</u> ,	
Depth to water pu Sample Appearan Sample Odor: <i>IV. Sample Analys</i> Sample Parameter	rior to sampling: ace: Turbic None Ses: rs: <u>Methylene chl</u>	ft. below n	ightly Turbid [ ther <u>Hydrogen</u> <u>de</u>	Time: Clear <u>COD, TOC, CI, 7</u> Unfilter	<u> Total Phosphorus</u>	

	11	SAMPLING		Eder Associa		OFFICES:	
		LOG		227 Wall Su		New York Wisconsin	
			Prin	ceton, New Jers	ey 08540	Michigan	
			(60)	9) 279-9140 (Te	elephone)	Georgia Florida	
·			(60	9) 279-9436 (F	acsimile)	New Jersey	
-	<i>I. General Inf</i> Client Name:	ormation: Biocraft Laborator	ies Inc				
		100 <u>1 1110.</u>	1 Jojeet 110., <u>34506.000</u>				
-	Project Name: <u>Biocraft - GW</u> Well No.: <u>MW-42</u>			Sampled By: <u>DG/FA</u>		DG/FA	
					Well Use: Mo	nitoring	
-	Sample ID: <u>B</u>		Sample Date:	<u>9/25/98</u>	Sample Time:	<u>10:20</u>	
	BIO-MS, BIO	<u>-MSD</u>					
	II. Well Inform PID Reading:	tation:		Well Diameter	r: 2 inches		
	Static Depth to	Water: <u>6.93</u> ft. be	low m.p.				
-		oth: <u>15.55</u> ft. below	-	Measuring Point (m.p.): <u>PVC Casing</u> Measuring Point (m.p.): <u>PVC Casing</u>			
	∆ h: <u>8.6</u> feet						
	Volume to be r	emoved: <u>4.12</u> gallo	ons	Volume of Standing Water: <u>1.37</u> gallons Actual Volume removed: <u>4.2</u> gallons			
-	III. Sampling II Purging Metho Ø Peristaltic P	d:		Submersible	e Pump		
	🔲 Bailer			Other	-		
-	Well Drawdow	n/Recovery:	Good	Poor	Other		
	Purge Start Tin	ne: <u>9:21</u>	Purge Time: 5	_		t. 0.070	
-				<u> </u>	Pump Flow Ra	te: <u>0.072</u> gpm	
	Purge Chemistr						
_	<u>Time</u> 9:49	Gallons 2	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
			7.1	750		14.2	
-							
_							
		······································		·			
		fter purge: <u>14.75</u> f			Time: <u>10:19</u>		
-	Depth to water p	rior to sampling: ]	14.75 ft. below m	.p.	Time: <u>10:19</u>		
	Sample Appeara	nce: 🔲 Turbid	🔀 SI	ightly Turbid [	_	Other	
	Sample Odor:	None 🗌		her			
		rs: <u>Methylene chlo</u>	ride, Acetone, Bu	ityl Alcohol, BOD	<u>, COD, TOC, Cl, 1</u> Unfiltere	<u>`otal Phosphorus, BN</u> d	
	Laboratory: <u>Accu</u>	test		Date Shipped			
-				~ are outpled	. <u>7123170</u>		



### APPENDIX C

١

.

### BRUCE BRIGHT AFFIDAVIT

### 854820350

_		
-		- -
-		AFFIDAVIT OF BRUCE BRIGHT
-	STATE OF NEW JERSEY	)
-	COUNTY OF BERGEN	) )
-	Bruce Bright, being du	ly sworn, deposes and says:
	formerly known as Bio	Manager at Teva Pharmaceuticals USA, Inc. ("Teva"), craft Laboratories, Inc ("Biocraft"). I have been employed
	including lead operator	k, New Jersey plant since 1975 in a variety of capacities, r, supervisor, safety director, warehouse manager and have personal knowledge of the facts set forth herein.
	("NJDEP") in support of	itted to the New Jersey Department of Environmental Protection of Biocraft's position that no discharge was made to the soils or
-	groundwater at Biocraf on December 13, 1993 Case No. 94-02-24-162	t's Waldwick facility as a result of two spills of hydrochloric acid (Spill Case No. 93-12-13-1607-57) and February 24, 1994 (Spill 23-01) respectively.
-	gallon single wall fiber	0's, Biocraft's Waldwick, New Jersey facility installed a 6000 glass above ground tank for the storage of hydrochloric acid.
	This above ground tank surface and was second	used by the facility in the pharmaceutical manufacturing process. was located behind the manufacturing building on a concrete arily contained within a concrete diked area. Surrounding the
-	concrete secondary con	tainment diked area was and still is an asphalt paved parking area.
-	from the above ground	approximately 50 gallons of hydrochloric acid spilled tank as a result of a broken flange on the tank. The d within the secondary containment area onto the concrete
	paved surface. Althoug secondary containment	h a small amount of the hydrochloric acid breached the area through a small crack in the wall of the concrete dike, hloric acid was fully contained within the secondary
-	containment area or on diked area. At the time underneath the tank and	the asphalt paved surface immediately outside the concrete of this spill and at all times thereafter, the concrete surface the asphalt paved surface were in good condition with no
	evidence of deterioration	n.
-	5. On February 24, 1994 h result of a broken valve	ydrochloric acid spilled from the above ground tank as a on the tank. Hydrochloric acid spilled onto the concrete
		854820351

paved surface within the secondary containment area. Although a small amount of the hydrochloric acid breached the secondary containment area through a small crack in the wall of the concrete dike, all of the spilled hydrochloric acid was fully contained within the secondary containment area or on the asphalt paved surface immediately outside the concrete diked area. At the time of this spill and at all times thereafter, both the concrete paved surface underneath the hydrochloric acid tank unit and the asphalt paved surface were in good condition with no evidence of deterioration.

6. Accordingly, there is no reason to believe that our soils were impacted and there is no basis for requiring any investigation of the soils under, adjacent to or in the immediate vicinity of the hydrochloric acid tank at Biocraft's Waldwick, New Jersey facility.

Bruce Bright

Sworn to and Subscribed Before Me on this 24 thate of November ____, 1998.

Notan Public

SHARON M. MULLIGAN NOTARY SUPLIC OF NEW JERSEY My Commission Expires May 24, 2000

### 854820352

# 6/30/00 **ENVIRONMENTAL STRATEGIES CORPORATION** ----

# ENVIRONMENTAL STRATEGIES CORPORATION

REMEDIAL INVESTIGATION REPORT TEVA PHARMACEUTICALS USA, INC. 12 INDUSTRIAL PARK WALDWICK, NEW JERSEY ISRA CASE #E96070





### ENVIRONMENTAL STRATEGIES CORPORATION DOING INSINESS IN NEW JERSEY AS ESC STRATEGIES CORPORATION 270 Davidson Avenue, Suite 102 • Somerset, New Jersey 08873 • (732) 564-0888 • Fax (732) 564-1888

REMEDIAL INVESTIGATION REPORT TEVA PHARMACEUTICALS USA, INC. 12 INDUSTRIAL PARK WALDWICK, NEW JERSEY ISRA CASE #E96070

PREPARED FOR PROSKAUER ROSE LLP AND TEVA PHARMACEUTICALS USA, INC.

### PREPARED

### BY

### ENVIRONMENTAL STRATEGIES CORPORATION

**JUNE 30, 2000** 

854820355

Reston, VA = San Jose, CA = Boxborough, MA + Pittsburgh, PA = Minneapolis, MN + Houston, TX + Cazenovia, NY = Burbank, CA + Durham, NC + Tulsa, OK

Content	S

			Page
-	Exec	cutive Summary	ES-1
_	1.0	Introduction	1
	2.0	Site Description	2
	3.0	Physical Setting	3
		3.1 Soil	3
		3.2 Geology and Hydrogeology	3
-		3.3 Site Specific Geology and Hydrogeology	4
	4.0	Quarterly Groundwater Monitoring Results	5
		4.1 Sample Collection and Analysis	5
		4.2 Analytical Results Summary	6
		4.3 December 1998 (Annual Monitoring Event)	7
		4.4 April 1999	8
		4.5 August 1999	9
		4.6 December 1999 (Annual Monitoring Event)	10
		4.7 April 2000	10
_		4.8 Groundwater Flow	11
	5.0	Biodegradation/Biostimulation System	12
	5.0	5.1 Biodegradation/Biostimulation System Description	12
			12
		5 , 5	13
		5.4 Biodegradation/Biostimulation System Pumping Rates	18
	6.0	Remedial Investigation	19
		6.1 Soil	19
		6.2 Groundwater	23
		6.3 Sediment	27
	7.0	<b>Baseline Ecological Evaluation (BEE)</b>	28
-	8.0	Other NJDEP Requirements	31
	9.0	Summary and Proposed Work	32
		9.1 Summary	32
		9.2 Proposed Work	32

i

_	
_	List of Tables:
	Table 1 – Groundwater Sample Results, December 1998
	Table 2 – Groundwater Sample Results, April 1999
_	Table 3 – Groundwater Sample Results, August 1999
	Table 4 – Groundwater Sample Results, December 1999
	Table 5 – Groundwater Sample Results, April 2000
	Table 6 – Groundwater Sample Results, Recovery Wells and Effluent, December 1998 through         April 2000
	Table 7 – Groundwater Sample Results Summary, February 1996 through April 2000
-	Table 8 - Soil Sample VOC Results (South Drum Pad), March 2000
	Table 9 – Soil Sample SVOC Results (South Drum Pad), March 2000
	Table 10 - Soil Sample TPH Results (South Drum Pad), March 2000
-	Table 11 - Soil Sample VOC Results (Northeast Drum Pad), March 2000
	Table 12 - Soil Sample SVOC Results (Northeast Drum Pad), March 2000
	Table 13 - Soil Sample TPH Results (Northeast Drum Pad), March 2000
_	Table 14 - Soil Sample VOC Results (Fuel Oil UST), March 2000
	Table 15 – Soil Sample TPH Results (Fuel Oil UST), March 2000
_	Table 16 – Municipal Well Sampling Results
	Table 17 – Municipal Well Construction Information
	List of Figures:
	Figure 1 – Monitoring Well Locations
	Figure 2 – Acetone Concentrations in Groundwater
	Figure 3 – Methylene Chloride Concentrations in Groundwater
	Figure 4 – Aniline/Dimethyl Aniline Concentrations in Groundwater
	Figure 5 – Acetone Isoconcentration Map (December 1998)
-	Figure 6 – Methylene Chloride Isoconcentration Map (December 1998)
	Figure 7 – Groundwater Flow Map (April 1999)
	Figure 8 - Acetone Isoconcentration Map (April 1999)
	Figure 9 – Methylene Chloride Isoconcentration Map (April 1999)
	Figure 10 – Groundwater Flow Map (August 1999)
	Figure 11 - Acetone Isoconcentration Map (August 1999)
-	Figure 12 – Methylene Chloride Isoconcentration Map (August 1999)
	Figure 13 – Groundwater Flow Map (December 1999)
	Figure 14 - Acetone Isoconcentration Map (December 1999)
Acres in	Figure 15 – Groundwater Flow Map (April 2000)
	Figure 16- Acetone Isoconcentration Map (April 2000)
_	Figure 17 – Soil Boring Location Map
	Figure 18 – Municipal Well Location Map
	O

ii

-

_

1

### List of Appendices:

.....

- Appendix A Laboratory Reports (Bound Separately)
- Appendix B Field Sampling Forms
  - Appendix C Boring Logs and Well Construction Diagrams
    - Appendix D Monitoring Well Permits, Completion Forms, and Abandonment Forms
  - Appendix E Contaminant Concentrations versus Time Graphs
  - Appendix F Contour Map Reporting Forms
- Appendix G NJPDES Discharge to Groundwater Permit Application

#### **Executive Summary**

This Remedial Investigation Report (RIR) summarizes the soil, sediment, and groundwater investigations conducted to satisfy the New Jersey Department of Environmental Protection (NJDEP) Industrial Site Recovery Act (ISRA) requirements. ISRA was triggered in 1996 when Teva purchased Biocraft Laboratories (ISRA Case #96070). Teva filed a Remediation in Progress Waiver for the continued operation of a groundwater remediation system. Teva stopped manufacturing products at the Waldwick facility in 1997 and facility closure (including removal of process equipment, cleaning tanks and lines, and general housekeeping cleanup) have been conducted since that time.

### Remedial Investigation Findings

Sixteen groundwater monitoring rounds have been conducted under the ISRA program.
 Groundwater sampling indicates that the highest concentrations of methylene chloride and acetone are in the southern area of the property (P-30 and P-32A/B), that the extent and concentrations of VOCs, aniline, and dimethyl aniline have been reduced significantly from concentrations existing prior to biodegradation/biostimulation system, and that there is no off site migration or vertical migration of groundwater contaminants. Continued groundwater monitoring and operation of the biodegradation/biostimulation system is proposed.

Soil sampling conducted at the former methylene chloride vessel area, the northeast and south drum pads, former underground chemical storage tank area, and underground fuel oil tank area indicated that no individual VOC+10, BN+15, or TPH compound exceeded the applicable most stringent soil cleanup criteria. No additional soil investigation or remediation is proposed or warranted.

Sediment sampling indicates that Allendale Brook sediment quality was not affected by the former underground waste water line discharge. No additional sediment investigation or remediation is proposed or warranted.

ES-1

# **1.0 INTRODUCTION**

-	This Remedial Investigation Report (RIR) summarizes the soil, sediment, and groundwater investigations conducted between November 1999 and May 2000, and the groundwater monitoring			
-	conducted in December 1998, April 1999, August 1999, December 1999, and April 2000 at the Teva Pharmaceuticals USA, Inc. (Teva) (formerly known as Biocraft Laboratories, Inc.) property in			
	Waldwick, New Jersey. The work conducted also addressed the letters of the New Jersey Department of Environmental Protection (NJDEP) dated July 1, 1998 and May 28, 1999 and is			
-	consistent with our discussions with NJDEP during the April 18, 1996 meeting.			
-				
-				
-				
-				
-				
-				
-				
-				
-	1			
-	854820360			

#### 2.0 SITE DESCRIPTION

Teva formerly manufactured semi-synthetic penicillin products in bulk at its Waldwick, New Jersey facility. The facility consists of two buildings, the former manufacturing building and warehouse, located on contiguous properties with frontages on 12 Industrial Park and 140 Hopper Avenue in Waldwick, Bergen County, New Jersey. The manufacturing and warehouse buildings and parking areas cover approximately 30 percent of the 4.3 acre property. Landscaped areas cover approximately 10 percent of the property, and the remainder of the property is lightly wooded. The property is relatively flat with slopes ranging from 1 to 3 percent.

The office, maintenance, and production areas, and research and development laboratories were located in the manufacturing building. Finished bulk products and some raw materials were stored in the warehouse building which also housed the quality control and microbiology laboratories.

ISRA was triggered in 1996 when Teva purchased Biocraft Laboratories. Teva filed a Remediation in Progress Waiver for the continued operation of a groundwater remediation system. Teva stopped manufacturing products at the Waldwick facility in 1997 and facility closure (including removal of process equipment, cleaning tanks and lines, and general housekeeping cleanup) have been conducted since that time.

The manufacturing building is currently vacant with no operations or storage of materials. All former process lines and tanks have been rinsed with potable water and the rinse water disposed of off site. All vaulted tank fill pipes and supply lines have been sealed with blank flanges. The quality control and microbiology laboratories still operate at the warehouse building. However, the volume of finished product stored in the warehouse has been significantly reduced.

2

#### 3.0 PHYSICAL SETTING

3.1 Soil

The dominant soil type in the study area is classified as Dunellen. Dunellen soils have a very dark, grayish brown loam surface layer approximately 5 inches thick. The subsoil is approximately 21 inches thick, of which, the upper 10 inches is friable, dark yellowish brown loam and the lower 11 inches is friable brown loam. The substratum is stratified reddish brown gravelly sand, sand, and loamy sand and brown sandy loam to an average depth of 66 inches. The permeability of the Dunnellen soils is moderate to moderately rapid in the subsoil and rapid in the substratum.

3.2 Geology and Hydrogeology

The site is located in an area of unstratified and stratified drift deposited by the Wisconsin glacier and its meltwaters during the Pleistocene Epoch of the Quaternary Period. Thin layers of silt and gravel are generally found from grade to 3 feet below grade. Glacial till. Glacial till consisting of a poorly sorted mixture of boulders, cobbles, pebbles, silt, sand, and clay underlies the site at a thickness of 8 to 15 feet. Approximately 40 feet of silt and fine sand underlie the till layer. Brunswick shale of the Triassic Newark Group underlies the site at a depth of 50 to 60 feet below grade. The thickness of the Brunswick Shale is not known but is estimated to be greater than 6,000 feet.

Groundwater beneath the site occurs in void spaces of unconsolidated quaternary glacial sediments and in the joints and fractures of the Brunswick Formation. The depth to groundwater ranges from grade to 9 feet below grade, depending on seasonal fluctuations. The groundwater flow direction is influenced by the groundwater recovery, treatment, and reinjection system. The inferred direction of groundwater flow is to the north, northwest at the northern section of the site, and to the south, southeast in the central and southern sections of the site.

3

-

### 3.3 Site Specific Geology and Hydrogeology

A100-foot long underground steel pipe was installed in 1972 to transfer wastewater from the manufacturing building processing area to an underground wastewater storage tank. The wastewater contained low concentrations of acetone, methylene chloride, n-butyl alcohol, and dimethyl aniline. Teva discovered a leak in the underground pipe in November 1975 and removed the pipe from service. Monitoring wells were installed and groundwater samples were collected and analyzed to determine whether the underground transfer line leak had impacted groundwater quality. The groundwater sampling showed elevated concentrations of methylene chloride, acetone, and butyl alcohol. The nature and extent of groundwater contamination at the Teva site has been documented in extensive groundwater investigations conducted by Geraghty and Miller (G&M) between 1979 and 1995, supplemented by the groundwater monitoring program initiated by Teva in 1985.

Teva pumped groundwater from three on-site recovery wells between 1975 and 1981 and disposed of the groundwater off-site. The cost of disposing of the recovered groundwater off-site became prohibitive and with NJDEP's approval, Teva undertook an extensive research and development project to develop a process to remove and treat groundwater. The research resulted in the development of a sophisticated biodegradation/biostimulation process which was patented in the U.S.

Teva initiated groundwater monitoring to evaluate the progress and effectiveness of the groundwater biodegradation/biostimulation system. This program consisted of sampling 11 wells quarterly and 26 wells annually, and analyzing the samples for methylene chloride, acetone, butyl alcohol, BOD, COD, TOC, chloride, and total phosphorous. The groundwater sampling shows that groundwater quality has improved. Groundwater elevation measurements and sampling data show that the zone of influence created by the recovery system maintains hydraulic control of the groundwater contaminant plume. The groundwater sampling data show that the highest concentrations of methylene chloride and acetone are in the southern area of the property and that these concentrations have been reduced significantly from concentrations existing prior to biodegradation/biostimulation system.

4

## 4.0 QUARTERLY GROUNDWATER MONITORING RESULTS

The quarterly groundwater monitoring results for December 1998, April 1999, August 1999, December 1999, and April 2000 are summarized in Sections 4.1 through 4.10. The laboratory reports are in Appendix A. Field sampling forms are in Appendix B. Analytical data are summarized in Tables I through 6. The monitoring well locations, analytical results, concentration isocontour maps, and groundwater flow maps are included as Figures 1 through 17.

----

# 4.1 Sample Collection and Analysis

All sampling activities were conducted in accordance with the New Jersey Department of Environmental Protection (NJDEP) <u>Field Sampling Procedures Manual</u>, May 1992, with the following exception:

Due to a shipping company error the samples collected in July 1999 were lost in transit and arrived at the laboratory beyond the recommended holding time with many of the sample containers broken. Therefore, these samples were not analyzed and groundwater monitoring was conducted again in August 1999 and in December 1999.

The groundwater samples were analyzed by by Accutest Laboratories, Dayton, New Jersey (N.J. Certification #12129). All samples were analyzed within the required holding time and all parameters were within their respective quality control ranges, with the following exceptions:

- December 1998 The spike amount for total phosphate was low relative to the sample amount for sample W-6.
- _

.

April 1999 – The matrix spike/matrix spike duplicate recovery was outside of the control

5

- limits due to a matrix interference for acetone and methylene chloride for sample MW-9, and for acetone in samples Effluent, Field Blank, and Trip Blank.
- August 1999 The matrix spike/matrix spike duplicate recovery exceeded the recovery criteria for methylene chloride analysis for sample P-32A/B. The matrix spike/matrix spike duplicate recovery exceeded the in-house control limits for aniline. The spike amount for total phosphate was low relative to the sample amount.
  - December 2000 The matrix spike/matrix spike duplicate recovery exceeded the in-house control limits for aniline.

## 4.2 Analytical Results Summary

Butyl alcohol concentrations in all monitoring well samples for the period February 1996 through April 2000 (16 sampling events) were less than the laboratory minimum detection limit or well below the 500 micrograms per liter ( $\mu g/l$ ) Class IIA - Ground Water Quality Criteria.

Acetone concentrations were less than the laboratory minimum detection limit or less than the 700  $\mu$ g/l Class IIA Groundwater Quality Criteria in all monitoring well samples for the period February 1996 through April 2000.

Methylene chloride was detected at concentrations exceeding the 2  $\mu$ g/l Class IIA Ground Water Quality Criteria in the following samples for the period February 1996 through December 1998:

- MW-1 4.6  $\mu$ g/l (November 1996)
- MW-3 3.0  $\mu$ g/l (December 1998)
- MW-6 5.0 μg/l (May 1996), 8.1 μg/l (July 1996)
- MW-9 2.3 μg/l (July 1996), 7.8 μg/l (February 1997)

б

- - MW-10 8.9 μg/l (February 1996)
  - MW-17 4.6 μg/l (May 1996), 8.2 μg/l (July 1996), 4.8 μg/l (February 1997)
- MW-24 7.8 μg/l (July 1996)
  - MW-25 2.1 μg/l (May 1996), 8.7 μg/l (July 1996), 85.2 μg/l (June 1998)
- MW-28 67 μg/l (February 1996), 2.3 μg/l (May 1996), 8.5 μg/l (July 1996), 185 μg/l (February 1997)
  - MW-42 8.2 μg/l (July 1996)

Methylene chloride was not detected at concentrations exceeding the laboratory minimum detection limit in any monitoring well sample collected during the period April 1999 through April 2000 (four monitoring events).

Analytical results of groundwater samples collected from off-site monitoring wells downgradient of the Teva groundwater recovery and treatment system show methylene chloride and butyl alcohol concentrations were below the laboratory minimum detection limit (MDL), and acetone concentrations were below the laboratory MDL or the Class IIA - Groundwater Quality Criteria. The analytical data suggests that the recovery system is capturing the full width of the groundwater contaminant plume.

Methylene chloride and butyl alcohol concentrations did not exceed the laboratory MDL in samples collected from the newly installed deep groundwater monitoring well (MW-45D). Acetone was detected at a concentration of  $102 \mu g/l$  which is well below the 700  $\mu g/l$  Class IIA Groundwater Quality Criteria. These data indicates that the groundwater quality in the bedrock aquifer has not been affected by former Teva operations.

#### 4.3 December 1998 (Annual Sampling Event)

Samples were collected from 21 monitoring wells (MW-1, MW-2, MW-3, MW-6, MW-8, MW-9, MW-14, MW-17, MW-24, MW-25, MW-28, MW-31, MW-32, MW-33A, MW-42, W-1, W-2, W-3, W-4, W-5, and W-6) and analyzed for acetone, methylene chloride, butyl alcohol, aniline,

7

.

dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. The December 1998 sampling event was conducted by Eder Associates. Unfortunately, field sampling logs and groundwater elevation data for this sampling event were not available to ESC.

Butyl alcohol concentrations in all groundwater samples did not exceed the 1.4  $\mu g/l$ laboratory MDL. Acetone concentrations ranged from less than the 5.0  $\mu g/l$  laboratory MDL to 32.9  $\mu g/l$  (MW-9) which is less than the 700  $\mu g/l$  Class IIA - Groundwater Quality Criteria. Except for sample MW-3, methylene chloride concentrations in all groundwater samples did not exceed the 0.61  $\mu g/l$  laboratory. Methylene chloride was detected in sample MW-3 at a concentration of 3.0  $\mu g/l$  which exceeds the 2  $\mu g/l$  Class IIA - Groundwater Quality Criteria. Aniline was detected at concentrations above the laboratory MDL in groundwater samples W-1 (2.3  $\mu g/l$ ) and W-3 (27.3  $\mu g/l$ ). Dimethyl aniline was detected at concentrations above the laboratory MDL in groundwater samples MW-28 (1.3  $\mu g/l$ ), MW-32 (6.4  $\mu g/l$ ), W-1 (4.5  $\mu g/l$ ), W-2 (4.0  $\mu g/l$ ), and W-3 (3.9  $\mu g/l$ ).

BOD concentrations ranged from less than 3 milligrams per liter (mg/l) to 143 mg/l (W-3). COD concentrations ranged from less than 20 mg/l to 172 mg/l (W-3). TOC concentrations ranged from 1.5 mg/l to 61.2 mg/l (W-3). Total phosphorous concentrations ranged from less than 0.1 mg/l to 2.0 mg/l (W-3). Chloride concentrations ranged from 34.2 mg/l to 328 mg/l (W-3).

### <u>4.4 April 1999</u>

Samples were collected from seven monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-25, MW-28, and MW-42) and analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride.

Butyl alcohol concentrations in all groundwater samples did not exceed the 3.5  $\mu$ g/l laboratory MDL. Except for sample MW-28, acetone concentrations in all groundwater samples did not exceed the 1.3  $\mu$ g/l laboratory MDL. Acetone was detected at a concentration of 36.7  $\mu$ g/l in a sample from MW-28, which is less than the 700  $\mu$ g/l Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all groundwater samples did not exceed the 0.40  $\mu$ g/l laboratory MDL. Aniline concentrations in all groundwater samples did not exceed the 0.78  $\mu$ g/l

8

laboratory MDL. Dimethyl aniline concentrations in all groundwater samples did not exceed the 5.0  $\mu$ g/l laboratory MDL.

BOD concentrations ranged from less than 2 mg/l to 10.9 mg/l (MW-28). COD concentrations ranged from less than 20 mg/l to 28.9 mg/l (MW-9). TOC concentrations ranged from 2.4 mg/l to 10.1 mg/l (MW-6). Total phosphorous concentrations ranged from less than 0.1 mg/l to 0.81 mg/l (MW-17). Chloride concentrations ranged from 8.5 mg/l to 217 mg/l (MW-17).

#### 4.5 August 1999

Samples were collected from six monitoring wells (MW-6, MW-9, MW-17, MW-24, MW-28, and MW-42) and analyzed for acctone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. There was less than 2-inches of water in MW-25 (due to the extended dry period prior to sampling), therefore a groundwater sample could not be collected.

Butyl alcohol concentrations in all groundwater samples did not exceed the 3.5  $\mu$ g/l laboratory MDL. Except for samples MW-9 and MW-28, acetone concentrations in all groundwater samples did not exceed the 1.3  $\mu$ g/l laboratory MDL. Acetone was detected at concentrations of 22.4  $\mu$ g/l (MW-9) and 35.8  $\mu$ g/l (MW-28), which are less than the 700  $\mu$ g/l Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all groundwater samples did not exceed the 0.40  $\mu$ g/l laboratory MDL. Aniline concentrations in all groundwater samples did not exceed the 0.80  $\mu$ g/l laboratory MDL. Dimethyl aniline concentrations in all groundwater samples did not exceed the exceed the 5.0  $\mu$ g/l laboratory MDL.

BOD concentrations ranged from less than 4.8 mg/l to 19.6 mg/l (MW-9). COD concentrations ranged from less than 20 mg/l to 112 mg/l (MW-28). TOC concentrations ranged from 4.8 mg/l to 11.9 mg/l (MW-17). Total phosphorous concentrations ranged from less than 0.1 mg/l to 3.3 mg/l (MW-6). Chloride concentrations ranged from 13.5 mg/l to 186 mg/l (MW-9).

9

#### 4.6 December 1999 (Annual Monitoring Event)

Samples were collected from 11 monitoring wells (MW-1, MW-2, MW-6, MW-8, MW-17, MW-24, MW-25, MW-28, MW-31, MW-42, and W-2) and analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, and TOC.

Butyl alcohol concentrations in all samples were below the 3.5  $\mu$ g/l laboratory MDL. Except for samples MW-31 and W-2, acetone concentrations in all groundwater samples did not exceed the 1.3  $\mu$ g/l laboratory MDL. Acetone was detected at concentrations of 5.8  $\mu$ g/l (MW-31) and 16.1  $\mu$ g/l (W-2), which are less than the 700  $\mu$ g/l Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all groundwater samples did not exceed the 0.40  $\mu$ g/l laboratory MDL. Aniline concentrations in all groundwater samples did not exceed the laboratory MDL. Dimethyl aniline concentrations in all groundwater samples did not exceed the laboratory MDL.

BOD concentrations ranged from less than 2 mg/l to 17.1 mg/l (W-2). COD concentrations ranged from less than 20 mg/l to 34.2 mg/l (W-2). TOC concentrations ranged from 1.1 mg/l to 17.4 mg/l (MW-42).

#### 4.7 April 2000

Samples were collected from seven on-site monitoring wells (MW-6A, MW-9A, MW-17, MW-24, MW-25, MW-28, and MW-42), two off-site monitoring wells (MW-43 and MW-44), and deep a monitoring well (MW-45D). The samples were analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, and TOC.

Butyl alcohol concentrations in all samples were below the 3.5  $\mu$ g/l laboratory MDL. Except for samples MW-28 and MW-45D, acetone concentrations in all groundwater samples did not exceed the 1.3  $\mu$ g/l laboratory MDL. Acetone was detected at concentrations of 10.3  $\mu$ g/l (MW-28) and 102  $\mu$ g/l (MW-45D), which are less than the 700  $\mu$ g/l Class IIA - Groundwater Quality Criteria. Methylene chloride concentrations in all groundwater samples did not exceed the laboratory MDL. Aniline concentrations in all groundwater samples did not exceed the laboratory MDL.

10

____

aniline concentrations in all groundwater samples did not exceed the laboratory MDL.

BOD concentrations ranged from less than 2 mg/l to 6.9 mg/l (MW-45D). COD concentrations ranged from less than 20 mg/l to 31 mg/l (MW-45D). TOC concentrations ranged from 1.4 mg/l to 8.2 mg/l (MW-45D).

# 4.8 Groundwater Flow

Groundwater elevation contour maps developed from depth to water measurements made during the quarterly groundwater monitoring show that groundwater flow is to the north-northwest at the northern section of the site, and to the south-southeast in the central and southern sections of the site and that groundwater discharged to the recharge trench system flows downgradient towards the recovery well system.

11

# 854820370

TIERRA-B-009364

## 5.0 BIODEGRADATION/BIOSTIMULATION SYSTEM

# 5.1 Biodegradation/Biostimulation System Description

The Teva groundwater biodegradation/biostimulation system was designed so that the treated groundwater is discharged upgradient and within the capture zone of the recovery well network. The biodegradation/biostimulation system consists of three recovery wells (P-13, P-30, and P-32A/32B), two infiltration trenches (Trench B and Trench C), and a biological treatment unit.

The biological treatment unit consists of two identical activated sludge units, ACT I and ACT II. Each unit consists of an aeration tank and a settling tank. Both systems are operated in parallel, with ACT I treating groundwater pumped from P-30, and ACT II treating groundwater pumped from P-13 and P-32A/32B. Groundwater enters the aeration tanks, and is aerated by a blower and diffuser which also keeps the tank contents mixed. Additional mixing is provided by internally pumping the tank contents. The aeration tank effluent is pumped to the settling tank to separate the bacteria from the water. The settled bacteria (sludge) is recycled to the aeration tank to keep bacteria concentrations in the system high enough to remove organic compounds. The biodegradation/biostimulation system effluent (treated groundwater) is discharged to two recharge trenches upgradient of recovery wells P-30 and P-32A/32B. The maximum system flowrate is 8 gallons per minute (gpm).

## 5.2 System Operation

Teva's treatment system operations are maintained by a Teva employee who has operated the system for approximately 10 years. Teva prepared and submitted a NJPDES-Discharge to Groundwater permit application in December 1997. NJDEP indicated that a revised NJPDES permit application should be submitted after completing off site and vertical groundwater delineation. Upon NJDEP issuance of the NJPDES permit (a revised NJPDES application is included in Appendix C), it is anticipated that a licensed operator will oversee the treatment system operation, supervise Teva's treatment system operator, and will be responsible for the record keeping required by the NJPDES

12

permit.

Recovery wells P-13 and P-32A/B have been off line several weeks over the past 12 months for system maintenance (pump bearings needed to be replaced and several lines froze and burst during the winter). The system will be periodically shut down for several days over the next three months for additional repairs and reconfiguration (as to be expected with a system that is over 20 years old). The necessary repairs include: repair/replacement of rusted pipe and pipe fittings, insulating and heat tracing aboveground lines, and upgrading electrical systems. An inline sediment filter and activated carbon canisters will be added to treat the effluent from the settling tank before discharging the treated groundwater to the infiltration trenches. It is not expected that these short duration repairs will affect groundwater quality downgradient of the recovery wells.

### _

# 5.3 Biodegradation/Biostimulation System Monitoring

Biodegradation/biostimulation system influent samples are collected from the three recovery wells, P-13, P-30, and P-32A/32B, and the effluent sample is collected from the discharge side of the settling tank. The laboratory reports are in Appendix A. Analytical data are summarized in Table 7.

#### -

### 5.3.1 December 1998

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were 14.4  $\mu g/l$  (P-13), 66.3  $\mu g/l$  (P-30), and 3,810  $\mu g/l$  (P-32A/32B). Influent methylene chloride concentrations were less than 0.61  $\mu g/l$  (P-13), 2.0  $\mu g/l$  (P-30), and 29,500  $\mu g/l$  (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL (which was less than the 700  $\mu g/l$  Class IIA- Groundwater Quality Criteria). Influent aniline concentrations were less than 0.85  $\mu g/l$  (P-13), and 64.3  $\mu g/l$  (P-30), and 393  $\mu g/l$  (P-32A/32B). Influent dimethyl aniline concentrations were less than 5.4  $\mu g/l$  (P-13), 3.6  $\mu g/l$  (P-30), and 154  $\mu g/l$ 

13

-

(P-32A/32B).

BOD concentrations were 11.0 mg/l (P-13), less than 3.0 mg/l (P-30), and 58.0 mg/l (P-32A/32B). COD concentrations were 51.2 mg/l (P-13), 28.2 mg/l (P-30), and 156.0 mg/l (P-32A/32B). TOC concentrations were 8.6 mg/l (P-13), 11.1 mg/l (P-30), and 42.2 mg/l (P-32A/32B). Total phosphorous concentrations were 10.5 mg/l (P-13), 1.4 mg/l (P-30), and 2.0 mg/l (P-32A/32B). Chloride concentrations were 254 mg/l (P-13), 266 mg/l (P-30), and 304 mg/l (P-32A/32B).

The effluent sample was collected from the discharge side of the settling tank. The effluent acetone concentration was  $34.9 \ \mu g/l$ . The effluent methylene chloride concentration was  $216 \ \mu g/l$ . The effluent butyl alcohol concentration was less than the  $1.4 \ \mu g/l$  laboratory MDL. The effluent aniline concentration was less than  $0.78 \ \mu g/l$ . The effluent dimethyl aniline concentration was less than  $5 \ \mu g/l$ . The BOD concentration was less than  $3.0 \ mg/l$ . The COD concentration was  $20.5 \ mg/l$ . The TOC concentration was  $6.5 \ mg/l$ . Total phosphorous concentration was  $0.56 \ mg/l$ . Chloride concentration was  $321 \ mg/l$ .

5.3.2 April 1999

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Influent acetone concentrations were  $35.5 \ \mu g/l$  (P-13), less than  $1.3 \ \mu g/l$  (P-30), and  $667 \ \mu g/l$  (P-32A/32B). Influent methylene chloride concentrations were less than  $0.40 \ \mu g/l$  (P-13), less than  $0.40 \ \mu g/l$  (P-30), and  $1,550 \ \mu g/l$  (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL (which was less than the 700  $\mu g/l$  (P-13), less than  $0.80 \ \mu g/l$  (P-30), and  $81.6 \ \mu g/l$  (P-32A/32B). Influent dimethyl aniline concentrations were  $1.1 \ \mu g/l$  (P-30), and  $81.6 \ \mu g/l$  (P-30), and  $64.0 \ \mu g/l$  (P-32A/32B).

BOD concentrations were 6.9 mg/l (P-13), less than 2.0 mg/l (P-30), and 16.3 mg/l (P-32A/32B). COD concentrations were less than 20 mg/l (P-13), less than 20 mg/l (P-30), and 25.3

14

mg/l (P-32A/32B). TOC concentrations were 9.7 mg/l (P-13), 6.6 mg/l (P-30), and 12.6 mg/l (P-32A/32B). Total phosphorous concentrations were 0.21 mg/l (P-13), 0.43 mg/l (P-30), and 0.81 mg/l (P-32A/32B). Chloride concentrations were 240 mg/l (P-13), 129 mg/l (P-30), and 218 mg/l (P-32A/32B).

The effluent sample was collected from the discharge side of the settling tank. The effluent acetone concentration was 47.4  $\mu$ g/l. The effluent methylene chloride concentration was 11.3  $\mu$ g/l. The effluent butyl alcohol concentration was less than the 3.5  $\mu$ g/l laboratory MDL. The effluent aniline concentration was less than 0.83  $\mu$ g/l. The effluent dimethyl aniline concentration was less than 5.3  $\mu$ g/l. The BOD concentration was 4.7 mg/l. The COD concentration was less than 20 mg/l. The TOC concentration was 6.2 mg/l. Total phosphorous concentration was 0.2 mg/l. Chloride concentration was 230 mg/l.

#### 5.3.3 August 1999

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, TOC, total phosphorous, and chloride. Recovery well P-13 was out of service for repairs and was not sampled. Influent acetone concentrations were 35.1  $\mu g/l$  (P-30) and 3,100  $\mu g/l$  (P-32A/32B). Influent methylene chloride concentrations were less than 0.40  $\mu g/l$  (P-30) and 29,500  $\mu g/l$  (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL (which was less than the 700  $\mu g/l$  Class IIA- Groundwater Quality Criteria). Influent aniline concentrations were 3.2  $\mu g/l$  (P-30) and 302  $\mu g/l$  (P-32A/32B). Influent dimethyl aniline concentrations were 3.7  $\mu g/l$  (P-30) and 241  $\mu g/l$  (P-32A/32B).

BOD concentrations were less than 7.2 mg/l (P-30) and 40.8 mg/l (P-32A/32B). COD concentrations were 32.5 mg/l (P-30) and 108 mg/l (P-32A/32B). TOC concentrations were 8.3 mg/l (P-30) and 27.9 mg/l (P-32A/32B). Total phosphorous concentrations were 1.3 mg/l (P-30) and 1.7 mg/l (P-32A/32B). Chloride concentrations were 351 mg/l (P-30) and 285 mg/l (P-32A/32B).

The effluent sample was collected from the discharge side of the settling tank. The effluent acetone concentration was 49.7  $\mu$ g/l. The effluent methylene chloride concentration was 2.3  $\mu$ g/l.

15

The effluent butyl alcohol concentration was less than the 3.5  $\mu$ g/l laboratory MDL. The effluent aniline concentration was less than 0.78  $\mu$ g/l. The effluent dimethyl aniline concentration was less than 5  $\mu$ g/l. The BOD concentration was 29.4 mg/l. The COD concentration was 35.1 mg/l. The TOC concentration was 8.3 mg/l. Total phosphorous concentration was 9.3 mg/l. Chloride concentration was 250 mg/l.

<u>5.3.4 December 1999</u>

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, and TOC. P-32A/32B was off line due to a frozen pipe and was not sampled. Influent acetone concentrations were  $48.2 \ \mu g/l$  (P-13) and less than 1.3  $\mu g/l$  (P-30). Influent methylene chloride concentrations were less than 0.40  $\mu g/l$  (P-13) and less than 0.40  $\mu g/l$  (P-30). Influent butyl alcohol concentrations were less than the laboratory MDL (which was less than the 700  $\mu g/l$  Class IIA- Groundwater Quality Criteria). Influent aniline concentrations were less than 0.83  $\mu g/l$  (P-13) and less than 0.82  $\mu g/l$  (P-30). Influent dimethyl aniline concentrations were less than 5.3  $\mu g/l$  (P-13) and less than 5.2  $\mu g/l$  (P-30).

BOD concentrations were 11.1 mg/l (P-13) and less than 2.0 mg/l (P-30). COD concentrations were 53.8 mg/l (P-13) and 20.5 mg/l (P-30). TOC concentrations were 11.0 mg/l (P-13) and 5.9 mg/l (P-30).

The effluent sample was collected from the discharge side of the settling tank. The effluent acetone concentration was less than  $1.3 \ \mu g/l$ . The effluent methylene chloride concentration was less than 0.40  $\ \mu g/l$ . The effluent butyl alcohol concentration was less than the  $3.5 \ \mu g/l$  laboratory MDL. The effluent aniline concentration was less than 0.78  $\ \mu g/l$ . The effluent dimethyl aniline concentration was less than  $5 \ \mu g/l$ . The BOD concentration was less than 2.0 mg/l. The COD concentration was 21.1 mg/l. The TOC concentration was 5.5 mg/l.

16

5.3.5 April 2000

The influent and effluent samples are analyzed for acetone, methylene chloride, butyl alcohol, aniline, dimethyl aniline, COD, BOD, and TOC. Influent acetone concentrations were 46.0  $\mu g/l$  (P-13), less than 1.3  $\mu g/l$  (P-30), and less than 1.3  $\mu g/l$  (P-32A/32B). Influent methylene chloride concentrations were less than 0.40  $\mu g/l$  (P-13), less than 0.40  $\mu g/l$  (P-30), and less than 0.40  $\mu g/l$  (P-32A/32B). Influent butyl alcohol concentrations were less than the laboratory MDL (which was less than the 700  $\mu g/l$  Class IIA- Groundwater Quality Criteria). Influent aniline concentrations were less than 0.79  $\mu g/l$  (P-13), less than 0.80  $\mu g/l$  (P-30), and less than 0.82  $\mu g/l$  (P-32A/32B). Influent dimethyl aniline concentrations were less than 5.0  $\mu g/l$  (P-30), and less than 5.2  $\mu g/l$  (P-30), and less than 5.2  $\mu g/l$  (P-30), and less than 5.2  $\mu g/l$  (P-32A/32B).

BOD concentrations were less than 2.0 mg/l (P-13), less than 3.3 mg/l (P-30), and 3.3 mg/l (P-32A/32B). COD concentrations were less than 20 mg/l (P-13), less than 20 mg/l (P-30), and 1less than 20 mg/l (P-32A/32B). TOC concentrations were 8.3 mg/l (P-13), 6.6 mg/l (P-30), and 7.2 mg/l (P-32A/32B).

P-32A/32B was off line for piping repairs and was pump was started shortly before a sample was collected. The samples were collected after a period of heavy rain and the samples collected may not be representative of aquifer conditions. Samples from P-32A/32B will be collected in July 2000.

The effluent sample was collected from the discharge side of the settling tank. The effluent acetone concentration was less than  $1.3 \mu g/l$ . The effluent methylene chloride concentration was less than  $0.4 \mu g/l$ . The effluent butyl alcohol concentration was less than the  $3.5 \mu g/l$  laboratory MDL. The effluent aniline concentration was less than  $0.78 \mu g/l$ . The effluent dimethyl aniline concentration was less than  $5 \mu g/l$ . The BOD concentration was less than 3.3 mg/l. The COD concentration was 20.6 mg/l. The TOC concentration was 7.2 mg/l.

17

____

# 5.4 Biodegradation/Biostimulation System Pumping Rates

The biodegradation/biostimulation system extracted, treated, and recharged an average of 375 gallons of groundwater per day during the 12 month period ending April 2000.

18

1



TIERRA-B-009371

### 6.0 REMEDIAL INVESTIGATION

This section describes the sampling procedures, field measurements, and sample analyses conducted during the Remedial Investigation conducted in late 1999 and spring 2000. Tables 8 through 15 summarize the soil sampling results. Figure 17 shows the soil boring locations. Boring logs are included in Appendix D.

<u>6.1 Soil</u>

# 6.1.1 Drum Storage Area (Northeast Side of Manufacturing Building) and Former Underground Storage Tanks

Lubricating oil, ethylene glycol, triethylamine, dimethyl acetamide, 2,6-Lutidine, pivaloyl chloride, and, on occasion, hydrochloric acid and sodium hydroxide were stored on the concrete drum storage pad. No materials have been stored on the drum storage pad since the facility shut-down. The original building plan dated February 24, 1972 does not specify the location of the drum storage pad. The earliest drawing which depicts the drum storage pad was prepared in December 1976 and shows that the landscaped area extended 60-feet south from the northeast corner of the manufacturing building to a concrete pad which continued south along the southern fence line. Teva personnel indicated that employees used the landscaped area for recreation until the concrete pad and curbing was installed in the mid-1980s. In addition, the former underground storage tanks (removed) and underground transfer lines were located along the northeast side of the manufacturing building under the concrete pad.

One soil boring (EDP-2) was drilled through the concrete drum storage pad approximately 20 feet east of the manufacturing building and 60 feet south of the northeast corner of the manufacturing building. Five soil borings (EDP-1, EDP-3, EDP-4, EDP-5, and EDP-6) were drilled along the eastern edge of the concrete drum storage pad (one every 30 linear feet) starting north of the wood shed continuing south to the bend in the property line. Soil samples were collected continuously from the base of the concrete pad to groundwater (approximately 7 feet below grade).

19

Soil samples were collected using a split spoon. Each 24-inch sample was divided into 6-inch intervals and screened for organic vapors using a photoionization detector (PID). The sample with the highest PID reading, or, if all readings were the same, the sample from the 6-inch interval above groundwater was analyzed for volatile organic compounds (VO+10), base/neutral extractable compounds (BN+15) including aniline and dimethyl aniline, and total petroleum hydrocarbons (TPH). The compounds triethylamine, dimethyl acetamide, and pivaloyl chloride were included as part of the library search. Standards and an analytical method for detecting 2,6-Lutidine in soil could not be prepared because it is a proprietary compound.

The sampling indicates that all individual VOC+10 and BN+15 compounds were not detected above the laboratory MDL (which was well below the most stringent soil cleanup criteria). Petroleum hydrocarbon concentrations ranged from less than 26 milligrams per kilogram (mg/kg) to 82.5 mg/kg (which is well below the total organic contaminant soil cleanup criteria of 10,000 mg/kg).

The sampling indicates that the drum storage area and former underground storage tanks have not affected soil quality. No additional sampling or remediation of this area is warranted or proposed.

# 6.1.2 Drum Storage Area (South of Manufacturing Building)

Triethylamine, dimethyl acetamide, 2,6-Lutidine, pivaloyl chloride, hydrochloric acid, and sodium hydroxide were stored on the concrete drum storage pad when the main storage area (northeast of the manufacturing building) was at capacity. No materials have been stored on the drum storage pad since the facility shut-down. The concrete storage pad and curbing were installed in 1990.

Three soil borings (SDP-1, SDP-2, and SDP-3) were drilled along the southern edge of the concrete drum storage pad (one every 30 linear feet). Soil samples were collected continuously from the grade to groundwater (approximately 5 feet below grade). Soil samples werecollected using a split spoon. Each 24-inch sample was divided into 6-inch intervals and screened for organic vapors using a PID. The sample with the highest PID reading, or, if all readings are the same, the sample

20

from the 6-inch interval above groundwater was analyzed for VO+10, BN+15 including aniline and dimethyl aniline, and TPH. The compounds triethylamine, dimethyl acetamide, and pivaloyl chloride were included as part of the library search. Standards and an analytical method for detecting 2,6-Lutidine in soil could not be prepared because it is a proprietary compound.

The sampling indicates that all individual VOC+10 compounds were not detected above the laboratory MDL (which was well below the most stringent soil cleanup criteria), except for dimethyl aniline which was detected in sample SDP-2 at a concentration of 0.318 mg/kg (which is well below the total organic contaminant soil cleanup criteria of 10,000 mg/kg). Petroleum hydrocarbon concentrations ranged from less than 26 mg/kg to 82.5 mg/kg (which is well below the total organic contaminant soil cleanup criteria of 10,000 mg/kg).

The sampling indicates that the drum storage area had not affected soil quality. No additional sampling or remediation of this area is warranted or proposed.

### 6.1.3 Methylene Chloride Vessels

Two 100-gallon process vessels observed at the southwest corner of the parking lot during the April 18, 1996 NJDEP site visit were decontaminated in the manufacturing building before they were placed outside. The vessels were used to store wastewater containing methylene chloride and were decontaminated by draining their contents, rinsing the interior with hot, caustic solution, followed by triple rinsing with hot potable water. The vessels were allowed to air dry and placed horizontally to minimize the amount of rainwater that would collect in the vessels. The connection port (approximately 1 inch in diameter) protruding from the top and bottom of the vessels were open, but did not face the ground.

As requested by the NJDEP, one soil boring (SB-1) was drilled at the former methylene chloride vessel storage location. Soil samples were collected continuously from ground surface to groundwater (approximately 3.5 feet below grade). The samples were collected using a split spoon. The split spoon samples were divided into 6-inch intervals and screened for organic vapors using a PID. All PID readings were at background levels and no soil samples were sent for laboratory analysis.

21

The sampling confirms that the soil quality in this area was not affected. Additional sampling or remediation of this area is not warranted or proposed.

6.1.4 Underground Fuel Oil Storage Tank

One 10,000-gallon No. 2 fuel oil underground storage tank was removed in 1991 in accordance with a tank closure plan prepared by Tank and Line Compliance Corporation, Lafayette, New Jersey and approved by NJDEP (Closure Approval #C-91-2139). No soil sampling was conducted and no detectable organic vapors were recorded during and after the excavation and removal. A 6,000-gallon new double wall fiberglass underground storage tank was installed in the same excavation. This tank is still in service. EDER contacted Raphael Rivera, Bureau of Underground Storage Tanks, on November 19, 1997 to determine the status of this case. Mr. Rivera indicated that the NJDEP's database shows the case was closed by the Department on November 23, 1992.

Five soil borings (OT-1, OT-2, OT-3, OT-4, and OT-5) were drilled around the existing 6,000-gallon underground fuel oil tank. Two soil borings (OT-3 and OT-4) were drilled along the south side of the tank, one boring (OT-1) was drilled on the north side of the tank (originally two borings were proposed for this side, however, due to underground utilities only one boring could be drilled safely), and one boring was drilled along each of the tank end walls (OT-2 and OT-5). Soil samples were collected continuously from grade to the water table (which is approximately 5-feet below grade). Soil samples were collected using a split spoon. Each split spoon sample was divided into 6-inch intervals and screened for organic vapors using a PID. The sample with the highest PID reading, or, if all readings are the same, the sample from the 6-inch interval above the water table was analyzed for TPH. The sample with the highest TPH concentration (OT-4) was also analyzed for VOC+10.

TPH concentrations ranged from less than 25 mg/kg to 1,360 mg/kg (OT-4), which is less than the total organic contaminant soil cleanup criteria of 10,000 mg/kg.

The sampling indicates that soil quality in this area has not been affected. Additional sampling or remediation of this area is not proposed.

22

----

# 6.2 Groundwater

The groundwater remedial investigation included installing two off site monitoring wells and a deep groundwater monitoring well, and abandoning and replacing several old monitoring wells. Boring logs, well completion forms, and well abandonment forms are included in Appendix D.

### 6.2.1 Off-Site Delineation

The quarterly groundwater monitoring program show that groundwater flow is to the northnorthwest at the northern section of the site, and to the south-southeast in the central and southern sections of the site and that groundwater discharged to the recharge trench system flows downgradient towards the recovery well system.

As discussed in our September 14, 1998 meeting with the NJDEP, the historical data was reviewed to determine whether there were a sufficient number of monitoring points to demonstrate that the entire plume is being captured. Based on this review it was determined that there is a sufficient number of monitoring points south of the site to demonstrate that recovery wells P-32A/32B and P-30 are capturing the full width of the plume. This determination was based on the groundwater flow and analytical data. Sampling conducted between 1994 and 2000 shows that the highest concentrations of contaminants on the south side of the property are detected in recovery well P-32A/32B. The sampling indicates acetone concentrations in downgradient wells W-1 through W-6 ranged from less than the laboratory MDL to 143  $\mu g/l$  which is well below the 700 Class IIA Groundwater Quality Criteria and an order of magnitude less than concentrations detected in P-32A/32B. The sampling indicates methylene chloride concentrations in downgradient wells W-1 through W-6 were less than the laboratory MDL which is several orders of magnitude less than concentrations detected in P-32A/32B.

The review indicated that additional off-site monitoring wells were required to demonstrate that the entire plume is being captured along the north side of the property. Sampling shows that

23

methylene chloride and acetone concentrations occasionally exceed the Class IIA-Ground Water Quality Criteria at P-13. Two shallow monitoring wells (MW-43 and MW-44) were installed, one north of Industrial Park (MW-44) and one west of Industrial Park (MW-43). The wells were installed in the Township right-of-way at the locations approved by the NJDEP. The borings were drilled using air rotary equipment (a zone of cobbles and gravel precluded the use of hollow stem augers in this area) to an approximate depth of 15 feet below. The wells are constructed of 10-feet of 2-inch diameter, flush joint, machine perforated PVC well screen and approximately 5-feet of PVC riser pipe. The wells were completed using a flush mount protective casing.

Groundwater sampling conducted in April 2000 indicates that methylene chloride, acetone, butyl alcohol, aniline, and dimethyl aniline concentrations did not exceed the laboratory MDL. The sampling indicates that recovery well P-13 is capturing the full width of the plume and that there is no off site migration of contaminated groundwater.

### 6.2.2 Vertical Delineation

One bedrock monitoring well was installed to confirm that there has been no vertical migration of contaminants. The well was installed approximately 100-feet east of P-30 at the location approved by NJDEP. The boring was installed using air rotary drilling equipment to a depth of approximately 67 feet below grade. The upper zone was double cased using steel conductor pipe extending from grade to competent bedrock (approximately 57 feet below grade). The well was constructed of 10-feet of 2-inch diameter, flush joint, machine perforated PVC well screen and approximately 60-feet of PVC riser pipe. The well was completed using a steel protective casing.

Groundwater sampling conducted in April 2000 indicates that methylene chloride, butyl alcohol, aniline, and dimethyl aniline concentrations did not exceed the laboratory MDL. Acetone was detected at a concentration of 102  $\mu$ g/L which is well below the 700  $\mu$ g/L Class IIA groundwater quality criteria. The sampling suggests that the seepage between the unconsolidated aquifer and the bedrock aquifer may occur, however, the bedrock groundwater sample concentrations of methylene chloride, acetone, butyl alcohol, aniline, and dimethyl aniline did not exceed the Class IIA

groundwater quality criteria.

#### 6.2.3 Lot 35A

The property immediately south of the Teva facility, known as Lot 35A, has been sold and the new property owner (Waldwick Plastics) is planning on constructing a building on the existing foundation. Downgradient monitoring wells W-1, W-2, and W-3 are located within the existing foundation. According, as approved by the NJDEP, these three wells were abandoned in accordance with NJDEP regulations. Three replacement monitoring wells W-1A, W-2A, and W-3A were installed at the locations shown on Figure 1. The borings were drilled using air rotary equipment (a zone of cobbles and gravel precluded the use of hollow stem augers in this area) to an approximate depth of 15 feet below. The wells are constructed of 10-feet of 2-inch diameter, flush joint, machine perforated PVC well screen and approximately 5-feet of PVC riser pipe. The wells were completed using a protective steel casing.

#### 6.2.4 Monitoring Well Abandonment

Small diameter well casing (less than 2 inches) monitoring wells MW-6, MW-9, MW-10, and MW-12 and three monitoring wells (W-1, W-2, and W-3) on the Lot 35A property were abandoned by Plainfield Well Drilling on March 14, 2000 in accordance with NJDEP regulations. Monitoring well MW-11 could not be located and was assumed to have been paved over when the parking lot was resurfaced several years ago.

Monitoring wells MW-6 and MW-9 were replaced by drilling two new borings (MW-6A and MW-9A) within 10 feet of the abandoned wells using air rotary equipment to an approximate depth of 15 feet below grade. The wells are constructed of 10-feet of 2-inch diameter, flush joint, machine perforated PVC well screen and 5-feet of PVC riser pipe. The wells were completed using a flush mount protective casing.

25

6.2.5 Well Search

ESC reviewed Township of Waldwick and Allendale municipal well records to identify wells within 0.25-miles of the facility and to determine the groundwater quality of these wells (Table 16). Four wells (Well #2, Well #3, Well #6, and Well#7) operated by the Township of Waldwick were identified. Raw water monitoring conducted by the Township between December 1998 and May 2000 indicates that the volatile organic compounds (VOCs) trichloroethene (TCE) and tetrachloroethene (PCE) were detected in samples from well nos. 2, 3, and 7 at concentrations exceeding the drinking water maximum contaminant level (MCL). VOCs were not detected in well no. 6. Methylene chloride, acetone, and butyl alcohol were not detected above the laboratory MDL in any of the water samples.

Two wells (Well #2 and Well #4) operated by the Township of Allendale were identified. Raw water monitoring conducted by the Township indicates that tetrachloroethane was detected at concentrations exceeding the drinking water MCL in the May 2000 sampling event. Additional monitoring data for the past two years was requested by ESC, but has not yet been received. This data will be tabulated and sent under a separate cover to the NJDEP.

The water quality data indicates that regional groundwater in the bedrock aquifer has elevated concentrations of several VOCs. However, it is highly unlikely that Teva's operations have affected groundwater quality of these wells because: a) site specific groundwater monitoring data indicates that there is no off site migration of contaminated groundwater (the remediation system is capturing the full width of the plume and concentrations of methylene chloride, acetone, and butyl alcohol in monitoring wells downgradient of the remediation system have not exceeded the Class IIA groundwater quality criteria), b) the site specific groundwater monitoring data collected from the on site production well and newly installed bedrock monitoring well indicate that groundwater quality in the bedrock aquifer have not been affected (contaminant concentrations have not been detected above the Class IIA groundwater quality criteria) by groundwater in the shallow unconsolidated zone, and c) the contaminants of concern, methylene chloride and acetone, were not detected at concentrations above the laboratory MDL or the drinking water MCL in the water

26

samples collected by the municipalities.

Neither the Township of Waldwick nor Allendale maintains records regarding residential potable supply wells, however, both of the Water Department Superintendents were not aware of any active residential potable supply wells within 0.5 miles of the Teva site. The only known residential well listed on the previous well survey prepared by NJDEP was operated by a homeowner on Hopper Street for lawn irrigation. The homeowner indicated that the well has been closed for several years.

#### 6.3 Sediment

The leak in the underground transfer lines was discovered in 1975 during a NJDEP investigation requested by the Northwest Bergen Regional Health Commission (NWBRHC) to determine the causes of grayish-black algae growth on the surface water of Allendale Brook. The analytical results of surface water samples collected from Allendale Brook in 1975 and again in 1991 were well below the Surface Water Standards. Sediment sampling was not conducted.

At the request of NJDEP at the September 1998 meeting and as requested in a NJDEP comment letter, a sediment sample (SED-1) was collected from Allendale Brook below the storm water discharge pipe on November 5, 1999 by ESC and analyzed for grain size distribution, aniline, and dimethyl aniline. The sampling indicated that aniline and dimethyl aniline were not detected above the laboratory minimum detection limits ( $84 \mu g/kg$  for aniline and  $210 \mu g/kg$  for dimethyl aniline). The grain size distribution indicates that the sample consisted of coarse to fine sand and fine gravel with trace fines. The sampling results confirm that the underground transfer line leak has not adversely affected Allendale Brook surface water or sediment quality.

27

.

# 7.0 BASELINE ECOLOGICAL EVALUATION (BEE)

This qualitative baseline ecological evaluation (BEE) was prepared based on the site history, site inspections, and site investigation findings. The purpose of the BEE is to identify potential receptors that could be affected from the wastewater release to the environment and the contaminants that can reasonably be expected to accumulate and persist in the environment.

### Potential Receptors

The site history and site inspections indicate that the potential receptors would be:

- Allendale Brook surface water and sediment The potential pathway would be groundwater infiltration into the on site storm water piping which discharges to Allendale Brook, and
- Township of Allendale and Waldwick municipal supply wells The potential pathway would be seepage of groundwater from the shallow aquifer to the bedrock aquifer and transport through the bedrock aquifer to the municipal supply wells.
- <u>Contaminants of Concern</u>

As discussed previously, wastewater containing low concentrations of acetone, methylene chloride, n-butyl alcohol, and dimethyl aniline was discharged to the environment from a leak in an underground transfer line. The characteristics of each compound were evaluated to determine whether they would persist in the environment.

Acetone, methylene chloride, and butyl alcohol would not accumulate nor persist in surface water and sediment because of their relatively high vapor pressures (they would generally volatilize to the atmosphere). Acetone and butyl alcohol may persist in the groundwater, however, because

28

of their relatively low octanol/water coefficient (less likely to be absorbed by organic matter in the soil) and because they are readily degraded under aerobic conditions the duration in the groundwater is expected to be short. Methylene chloride may persist in the groundwater aquifer because it has a relatively high octanol/water coefficient ( $K_{ow}$ =101.07) and would be absorbed by organic matter in aquifer soil. Methylene chloride does degraded under aerobic conditions, but a much slower rate than acetone and butyl alcohol.

Aniline and dimethyl aniline may persist in the surface water, sediment, and groundwater because they have low vapor pressures (are less likely to volatilize to the atmosphere), are relatively insoluble in water, and have high octanol/water coefficients (would be expected to be adsorbed by organic matter in the surface water and sediment). Aniline and dimethyl aniline readily degrade under aerobic conditions.

### Site Investigation Findings

The analytical results of surface water samples collected from Allendale Brook in 1975 were well below the Surface Water Standards. The NJDEP February 28, 1991 Site Inspection Report indicates that the United States Environmental Protection Agency (USEPA) collected two stream samples on behalf of Teva from Allendale Brook in 1975. Butyl alcohol (4  $\mu$ g/L) and dimethyl aniline (0.1  $\mu$ g/L) were detected in one of the samples. As requested by the NJDEP (April 1996 meeting), ESC collected a sediment sample from Allendale Brook in November 1999 and analyzed the sample for aniline and dimethyl aniline. The sampling indicated that aniline and dimethyl aniline were not detected above the laboratory MDL.

The groundwater sampling data show that the highest concentrations of methylene chloride and acetone are in the unconsolidated aquifer at southern area of the property. Groundwater sampling data from the on site deep monitoring well (MW-45D) indicates that bedrock groundwater quality is well below the class IIA groundwater quality criteria. Municipal well sampling data indicates that VOCs are present in the groundwater, however, methylene chloride, acetone, and butyl alcohol have not been detected above the laboratory MDL in samples collected from the municipal

29

wells.         These data indicate that the potential receptors have not been affected by the wastewater release at the Teva site.				
These data indicate that the potential receptors have not been affected by the wastewater release at the Teva site.				
_ release at the Teva site:	-	wells.		
			potential receptors have not been affected by the	wastewater
		release at the 1 eva site.		
	-			
	_			
	—			
	-			
	-			
30	-		Ĩ	
30	-			
30				
30				
30	-			
30	_			
30	: •			
30	-			
30	-			
30	_			
30				
30	_			
- 854820389			30	
	-			854820389
		***		

.

TIERRA-B-009383

#### **8.0 OTHER NJDEP REQUIREMENTS**

#### 8.1 Treatment System Air Monitoring

Air emissions testing is required to determine the volume volatile organic compounds (VOCs) emissions from the treatment system exhaust. The testing consists of two monitoring events, one conducted in the spring (May 2000) which represents typical system operating conditions (moderate ambient temperatures and humidity), and a second test to be conducted in July 2000 which represents worst case conditions (high ambient temperatures and humidity). A mass balance calculation will be used to determine the volume of VOCs emitted. An air emissions permit applicability determination or air permit application will be submitted to the NJDEP Bureau of New Source Review in September 2000.

### 8.2 Vaulted Tank Testing

As part of the continuing manufacturing building shut-down, all aboveground piping systems were back-flushed using potable water under high pressure. The rinse water was collected in the vaulted underground storage tanks, the rinse water was pumped from the tanks into waste tanker trucks, the interior of the tanks cleaned and the waste water removed, and the waste water was transported and disposed of off site by a licensed waste hauler. The tanks have been disconnected from the piping systems and the flanges capped. Teva has retained PCA Engineering, Inc. (PCA) of Pompton Lakes, New Jersey to conduct the tank testing during the week of July 24, 2000. PCA conducted the previous tank testing in 1995. PCA's report will be sent under a separate cover.

31

### 9.0 SUMMARY AND PROPOSED WORK

<u>9.1 Summary</u>

Sixteen groundwater monitoring rounds have been conducted under the ISRA program.
 Groundwater sampling indicates that the highest concentrations of methylene chloride and acetone
 are in the southern area of the property (P-30 and P-32A/B), that the extent and concentrations of VOCs, aniline, and dimethyl aniline have been reduced significantly from concentrations existing prior to biodegradation/biostimulation system, and that there is no off site migration or vertical migration of groundwater contaminants.

Soil sampling conducted at the former methylene chloride vessel area, the northeast and south drum pads, former underground chemical storage tank area, and underground fuel oil tank area indicated that no individual VOC+10, BN+15, or TPH compound exceeded the applicable most stringent soil cleanup criteria.

Sediment sampling indicates that Allendale Brook sediment quality was not affected by the former underground waste water line discharge.

- <u>9.2 Proposed Work</u>
  - 9.2.1 Groundwater Monitoring

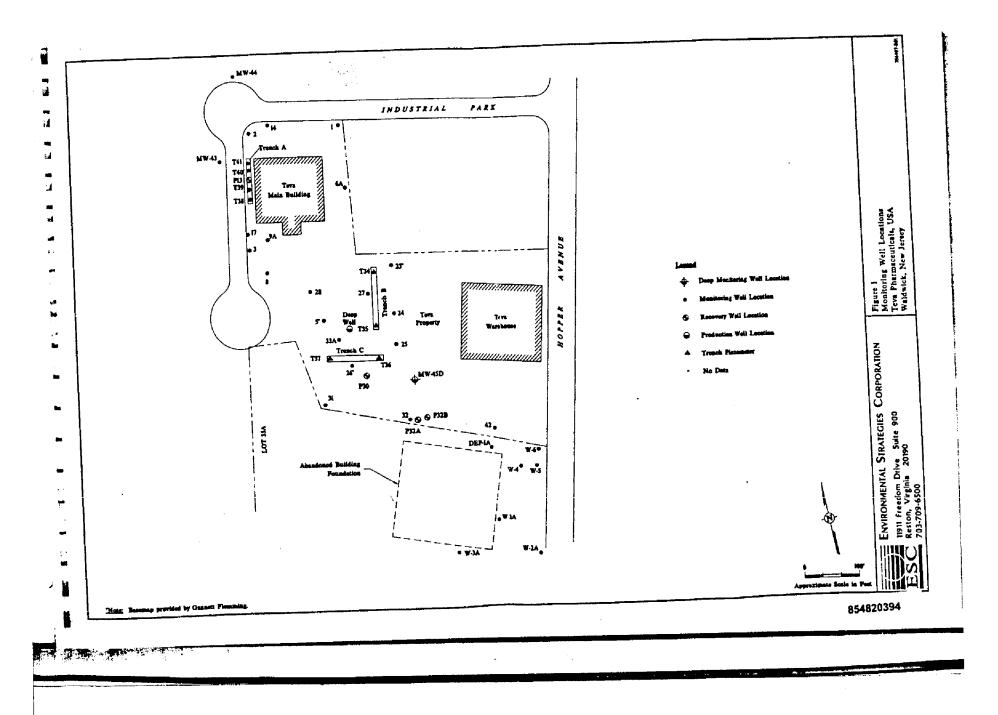
Teva proposes to reduce the number of groundwater samples and parameters based on the analytical results for the past 16 monitoring events which indicate that VOC, aniline, and dimethyl aniline concentration in many of the currently sampled monitoring wells do not exceed the laboratory MDL. Groundwater samples will be collected quarterly and annually from monitoring wells MW-6A, MW-17, MW-24, MW-42, MW-43, MW-44, MW-45D, W-2, P-13, P-30, and P-32A/32B. The samples will be analyzed for methylene chloride, acetone, aniline, and dimethyl aniline.

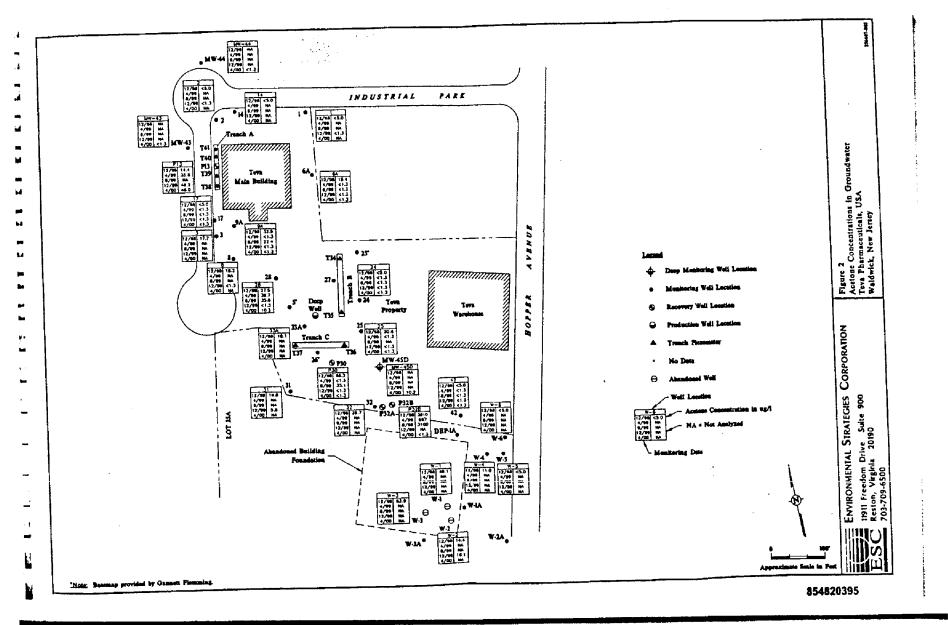
32

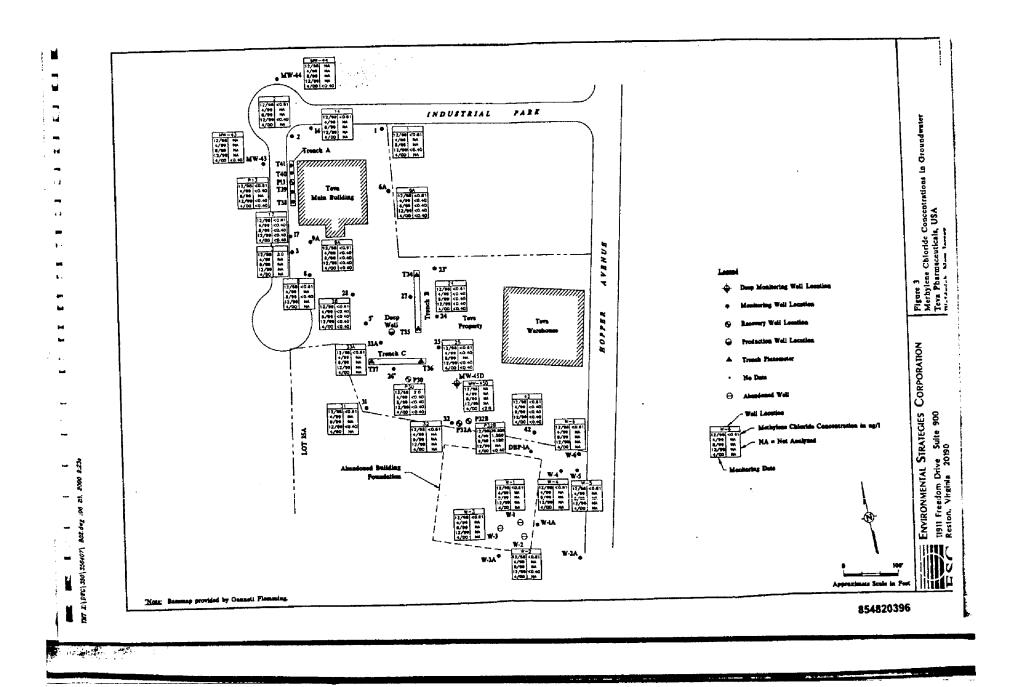
معبير

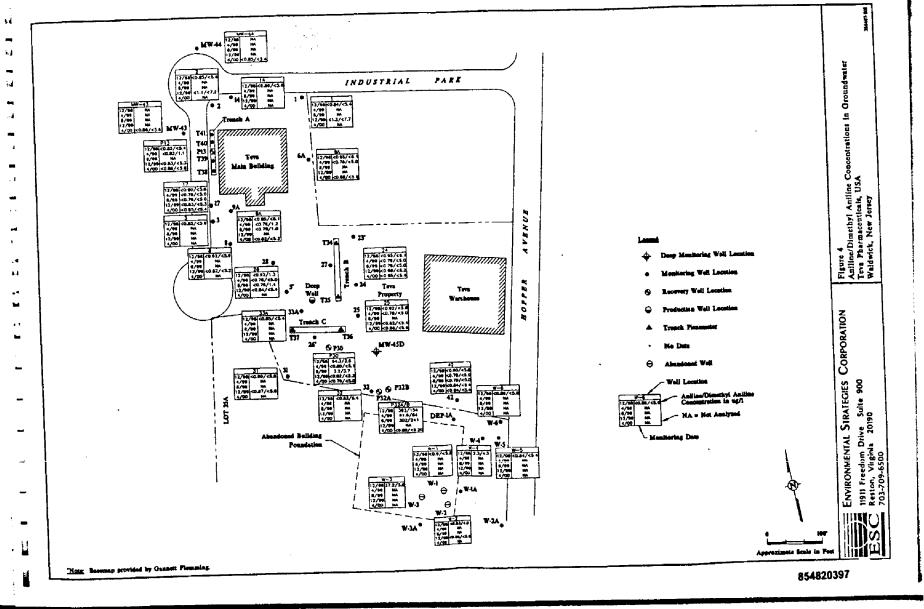
## 9.2.2 Classification Exception Area

Modeling is being conducted to determine whether the remedial timeframe can be reduced by conducting additional remedial measures (such as air sparging and soil vapor extraction). After completing this evaluation, Teva will prepare a Classification Exception Area for the facility which will include the expected remedial timeframe.

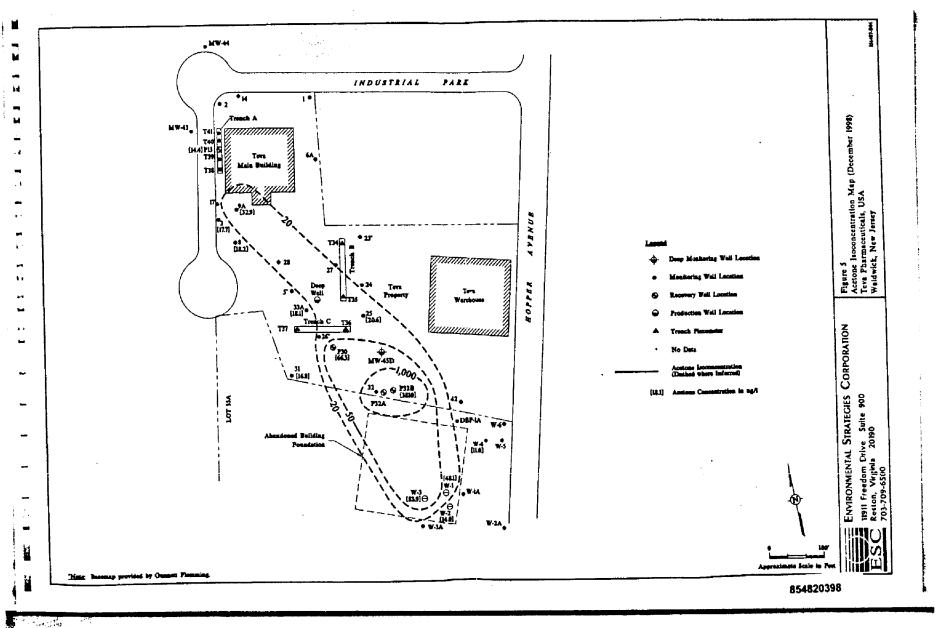

33

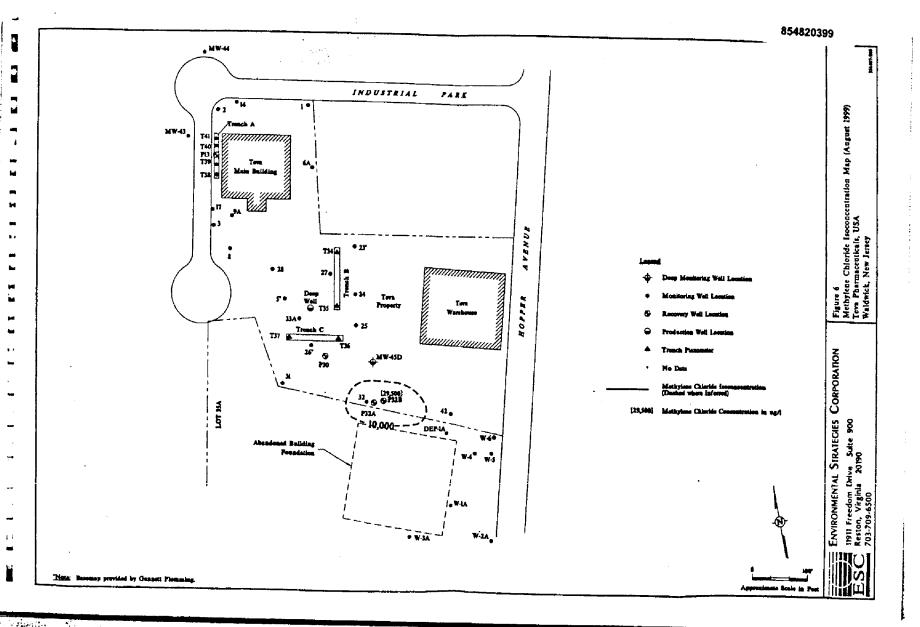

# 854820392


Figures

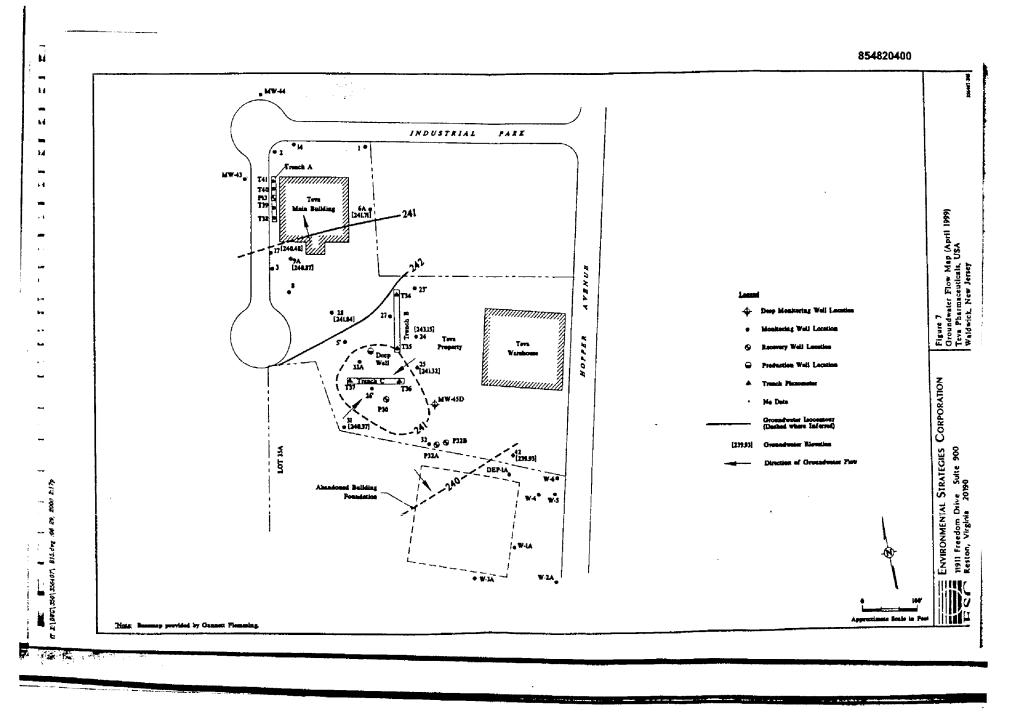

1

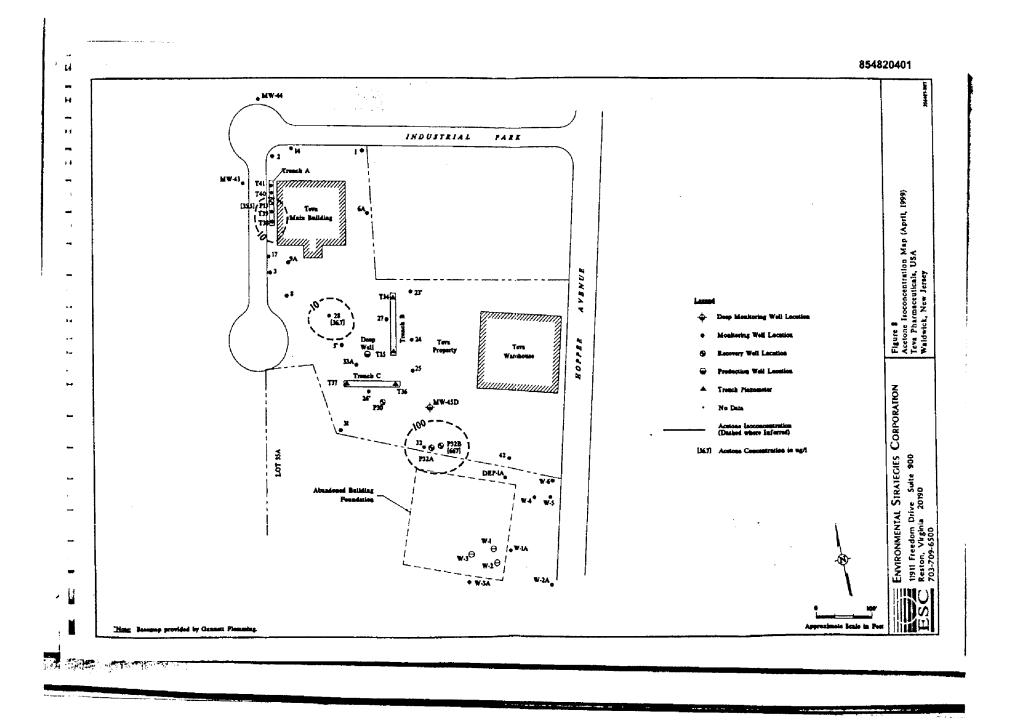
854820393

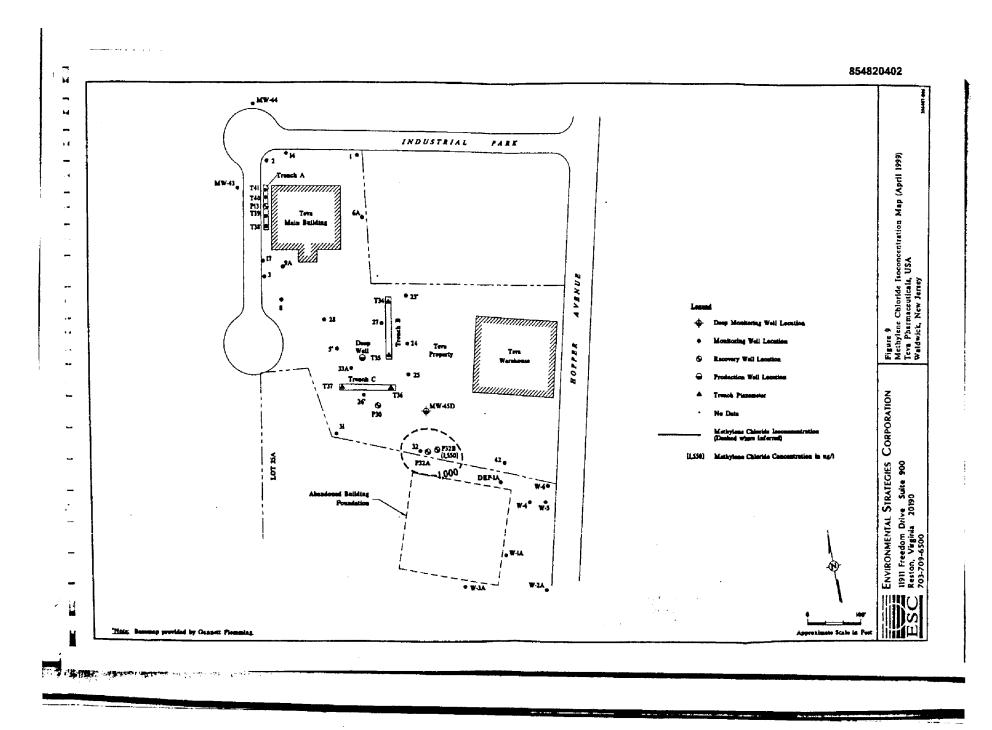


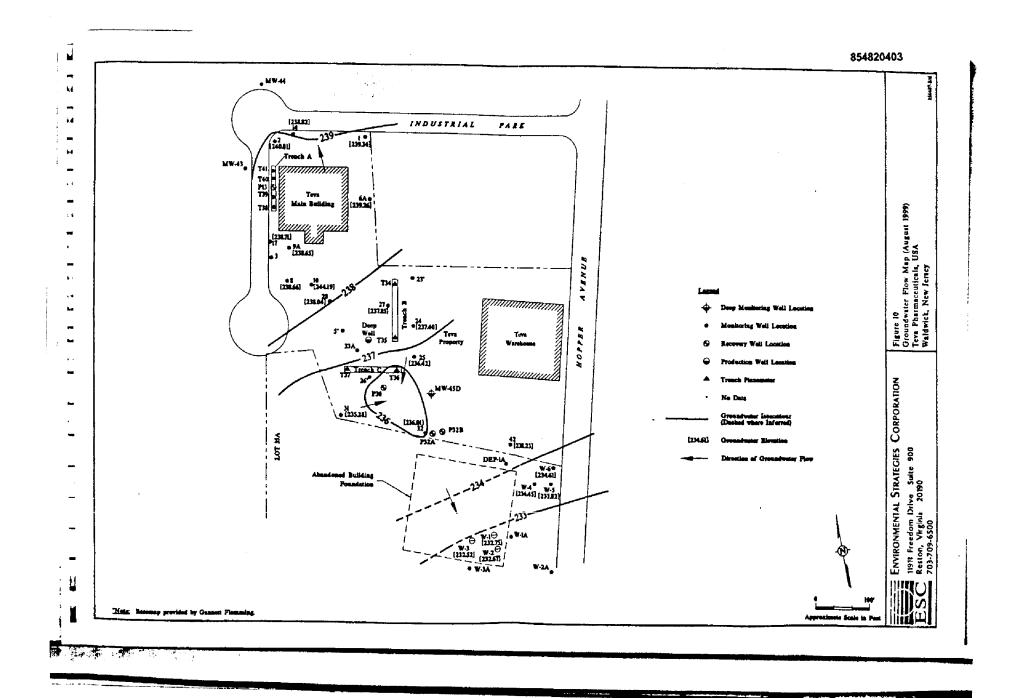



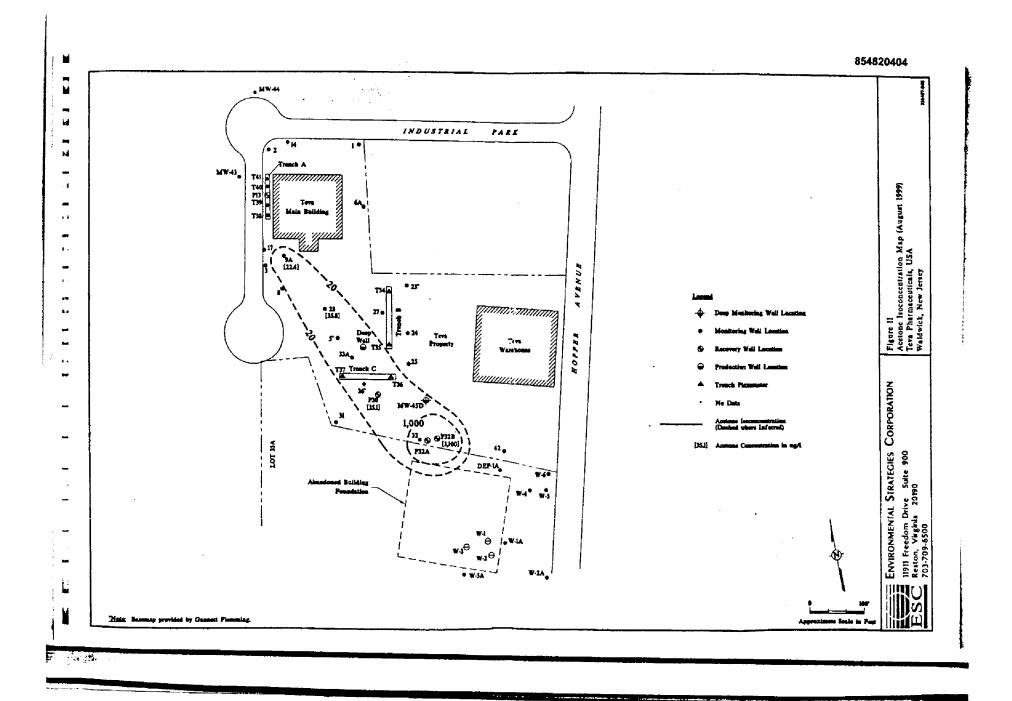


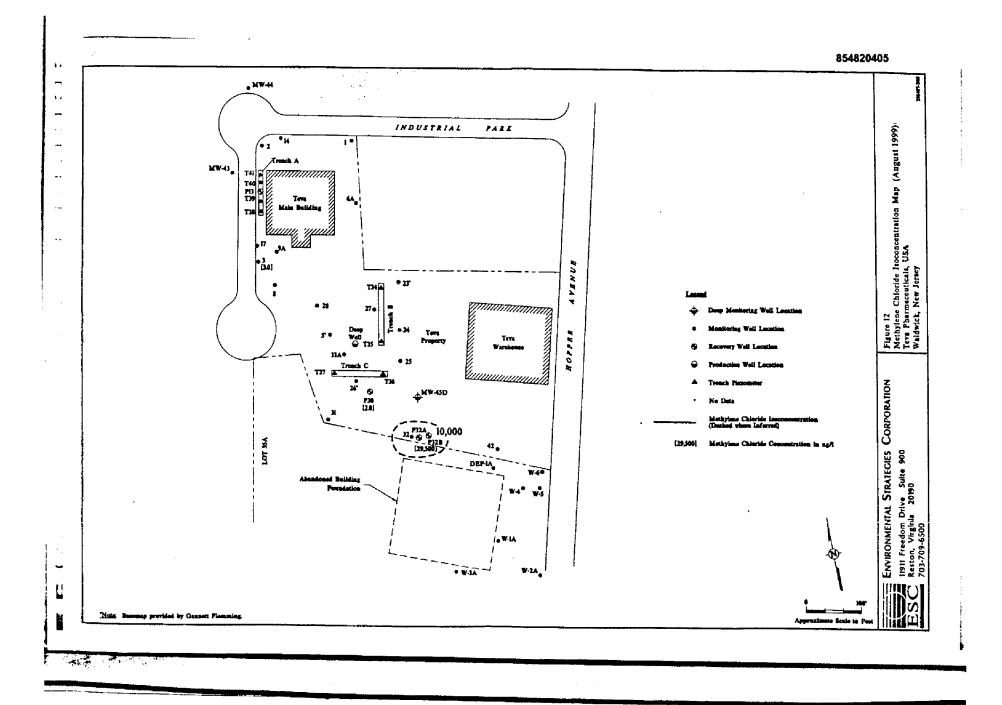



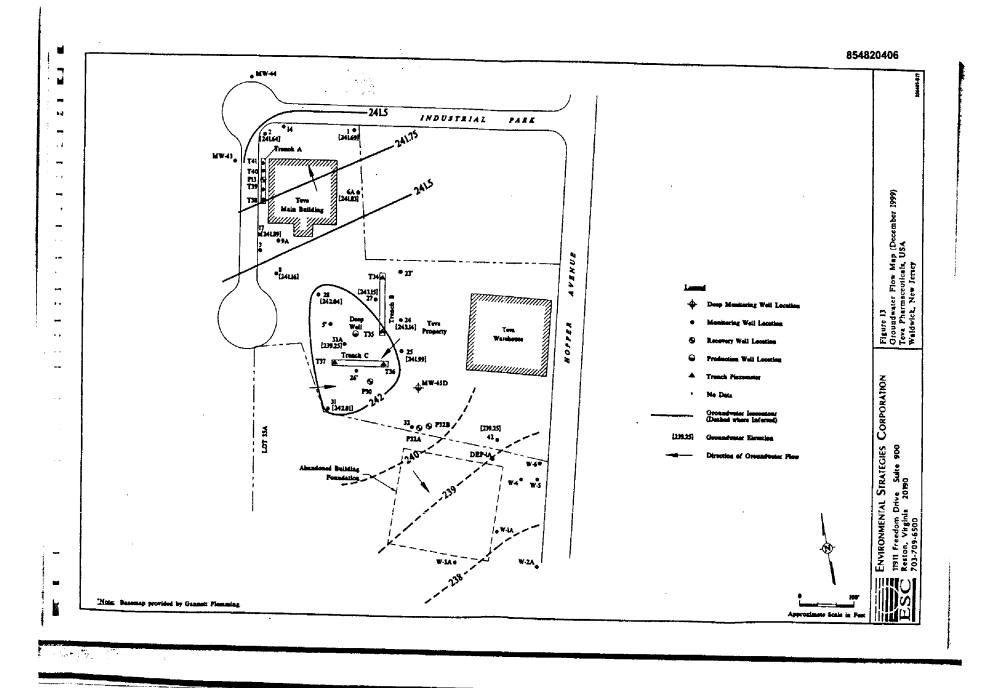


and the state of the second second



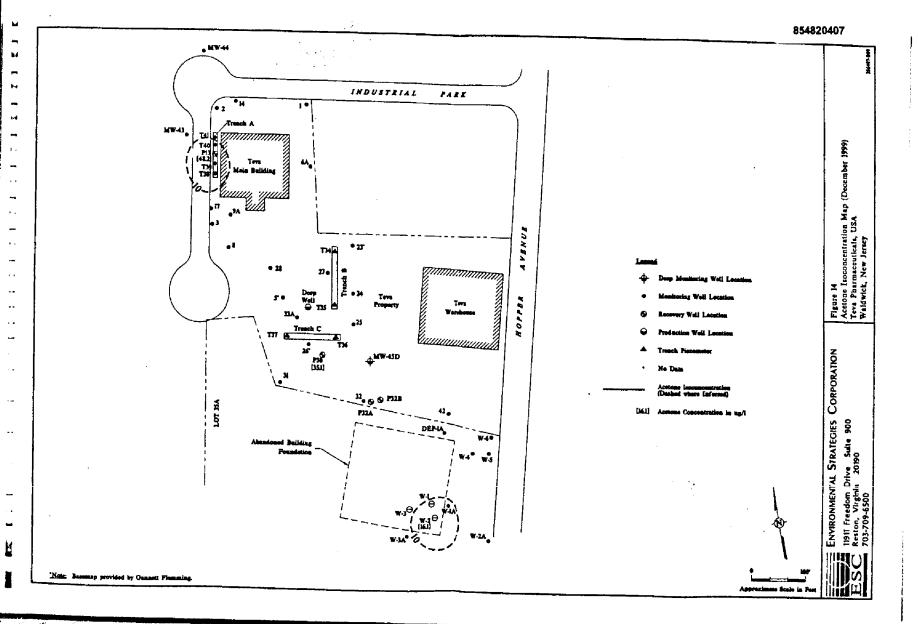





- 19 19 والمركزة تجاوله الم

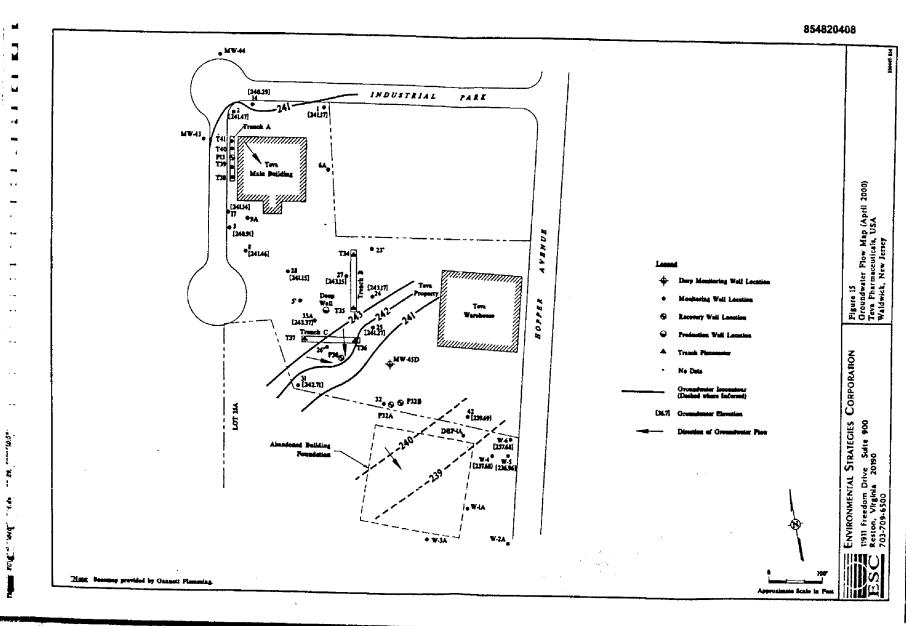


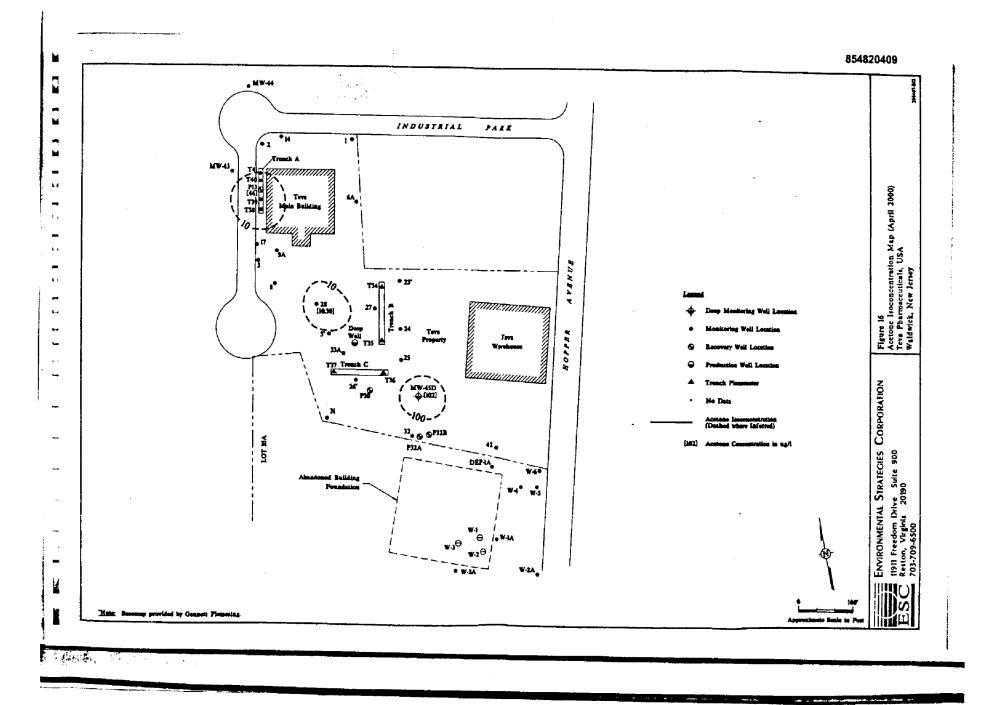


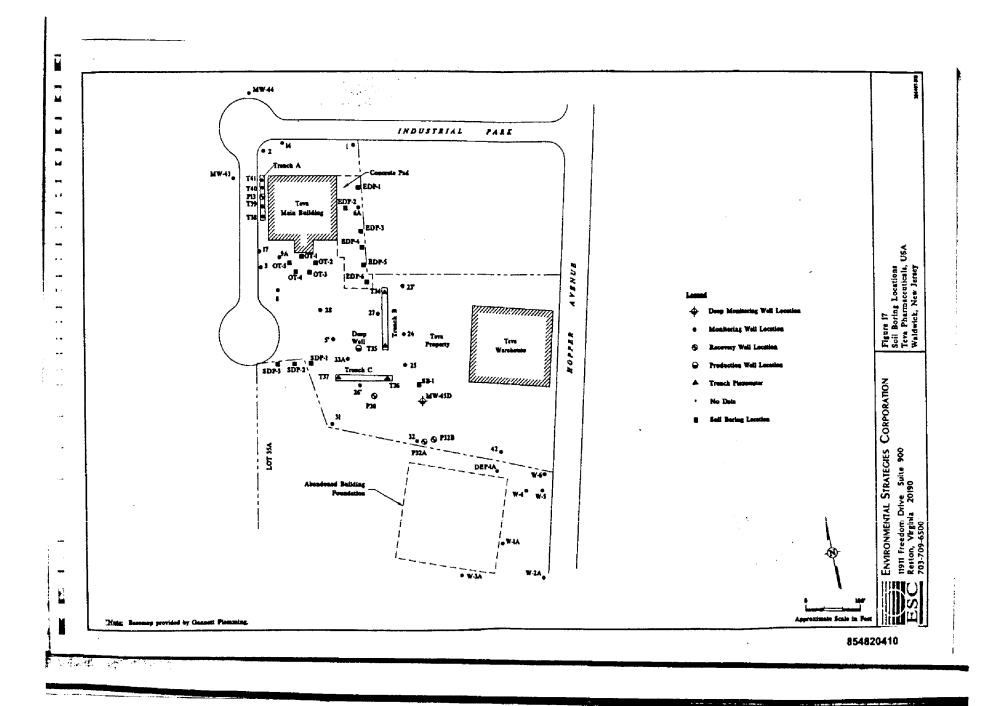





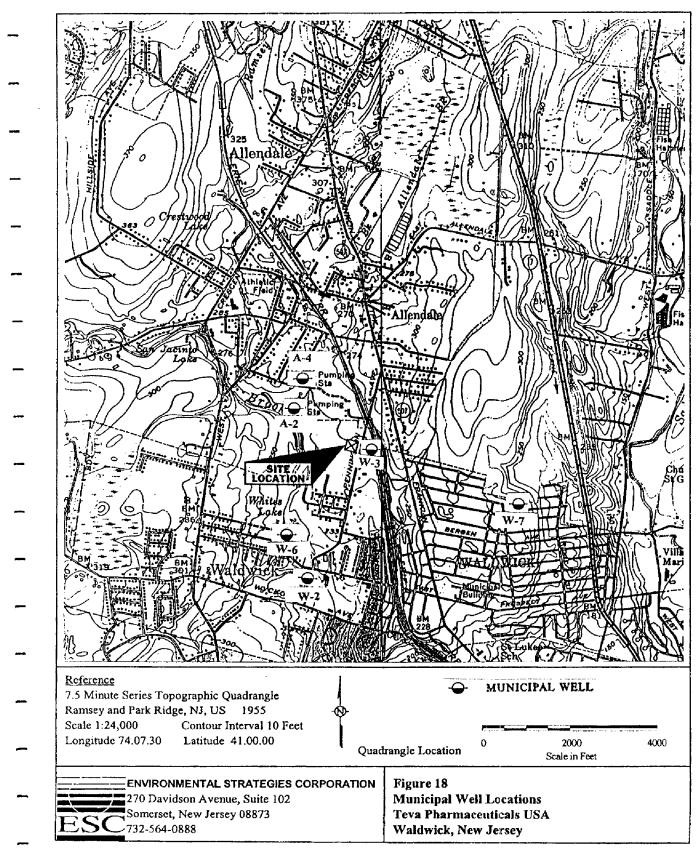







------




#### Carl Carl




### the the second





TIERRA-B-009404



-		
	Tables	
-		
-		
-		
-		
_		
_		
_		
-		
-		
-		
_		
-		
-		854820412

#### TABLE 1

#### GROUNDWATER SAMPLE RESULTS, DECEMBER 1998 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-1 E43395-4 Water 12/16/98	MW-2 E43395-2 Water 12/16/98	MW-3 E43395-1 Water 12/16/98	MW-6 E43302-4 Water 12/15/98	MW-8 E43473-14 Water 12/18/98	MW-9 E43302-1 Water 12/15/98	MW-14 E43395-3 Water 12/16/98	MW-17 E43302-2 Water 12/15/98
Parameter Acetone (ug/L) Methylene Chloride (ug/L) Butyl Alcohol (ug/L)	700.00 2.00 500.00		<5.00 <0.61 <1.40	<5.00 <0.61 <1.40	17.70 <b>3.00</b> <1.40	15.40 <0.61 <1.40	18.20 <0.61 <1.40	32.90 <0.61 <1.40	<5.00 <0.61 <1.40	<5.00 <0.61 <1.40
Aniline (ug/L) N,N-Dimethyl Aniline (ug/L)			<0.84 <5.40	<0.85 <5.40	<0.86 <5,60	<0.95 <6.10	<0.92 <5.90	<0.95 <6.10	<0.86 <5.60	<0.90 <5.80
BOD (mg/L) COD (mg/L) Chloride (mg/L) Phosphorus, Total (mg/L) TOC (mg/L)	 250000.00 		7.00 <20.00 166.00 <0.10 2.20	<3.00 <20.00 173.00 <0.10 1.50	<3.00 <20.00 59.40 0.81 6.70	<2.00 <20.00 202.00 <0.10 2.70	<5.00 43,50 76.40 0.15 7.00	4.40 26.90 226.00 0.26 9.80	<3.00 <20.00 129.00 <0.10 5.20	<2.00 39.70 46.60 0.25 15.90

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

TABLE I

#### GROUNDWATER SAMPLE RESULTS, DECEMBER 1998 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-24 E43302-5 Water 12/15/98	MW-25 E43473-13 Water 12/18/98	MW-28 E43302-3 Water 12/18/98	MW-31 E43473-7 Water 12/17/98	MW-32 E43473-8 Water 12/ <u>17/98</u>	MW-33A E43473-12 Water 12/18/98	MW-42 E43302-6 Water 12/15/98	MW-D E43302-7 Water 12/15/98 Duplicate
Parameter Acetone (ug/L) Methylene Chloride (ug/L) Butyl Alcohol (ug/L)	700.00 2.00 500.00		<5.00 <0.61 <1.40	20.60 <0.61 <1.40	27.50 <0.61 <1.40	16.80 <0.61 <1.40	28.70 <0.61 <1.40	18.10 <0.61 <1.40	<5.00 <0.61 <1.40	<5.00 <0.61 <1.40
Aniline (ug/L) N,N-Dimethy! Aniline (ug/L)			<0.95 <6.10	<0.92 <5.90	<0.92 1.30	<0.90 <5.80	<0.82 6.40	<0.85 <5.40	<0.90 <5.80	<0.92 <5.90
BOD (mg/L) COD (mg/L) Chloride (mg/L) Phosphorus, Total (mg/L) TOC (mg/L)	 250000.00 		<2.00 33.30 34.20 0.28 4.80	<5.00 36.00 121.00 0.61 6.20	17.80 76.80 91.70 1.10 10.90	6.50 69.10 88.70 0.32 19.20	14.20 61.40 227.00 0.27 23.00	<2.00 43.50 259.00 10.90 10.40	<2.00 <20.00 112.00 <0.10 4.60	<2.00 <20.00 113.00 <0.10 4.60

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< • Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

#### TABLE I

#### GROUNDWATER SAMPLE RESULTS, DECEMBER 1998 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	W-1 E43473-4 Water 12/17/98	W-2 E43473-5 Water 12/17/98	W-3 E43473-6 Water 12/17/98	W-4 E43473-2 Water 12/17/98	W-5 E43473-3 Water 12/17/98	W-6 E43473-1 Water 12/17/98
Parameter Acetone (ug/L) Methylene Chloride (ug/L) Buryl Alcohol (ug/L)	700.00 2.00 500.00		48.10 <0.61 <1.40	14.40 <0.61 <1.40	83.90 <0,61 <1.40	11.00 <0.61 <1.40	<5.00 <0.61 <1.40	<5.00 <0.61 <1.40
Aniline (ug/L) N,N-Dimethyl Aniline (ug/L)			2.30 4.50	<0.83 4.00	27.20 3.90	<0.90 <5.80	<0.84 <5.40	<0.86 <5.60
BOD (mg/L) COD (mg/L) Chloride (mg/L) Phosphorus, Total (mg/L) TOC (mg/L)	 250000.00 		34.60 81.90 113.00 1.70 24.60	29.40 61.40 37.00 0.78 8.00	143.00 172.00 328.00 2.00 61.20	33.30 41.00 71.40 0.60 14.80	<2.00 <20.00 49.30 0.13 4.40	<2.00 69.10 44.30 0.66 3.50

NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

#### TABLE 2

#### GROUNDWATER SAMPLE RESULTS, APRIL 1999 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

Sample Number	Class IIA	Sample Number	MW-6	MW-9	MW-17	MW-24	MW-25	MW-28	MW-42
Laboratory ID	Groundwater	Laboratory ID	E49186-1	E49186-2	E49186-3	E49186-4	E49186-5	E49186-6	E49186-7
Sample Matrix	Quality	Sample Matrix	Water						
Date Collected	Criteria	Date Collected	4/29/99	4/29/99	4/29/99	4/29/99	4/29/99	4/29/99	4/29/99
Parameter Acetone (ug/L) Methylene Chloride (ug/L) Butyl Alcohol (ug/L)	700.00 2.00 500.00		<1.30 <0.40 <3.50	<1.30 <0,40 <3.50	<1.30 <0.40 <3.50	<1.30 <0.40 <3.50	<1.30 <0.40 <3.50	36.70 <0.40 <3.50	<1.30 <0.40 <3.50
Aniline (ug/L) N,N-Dimethyl Aniline (ug/L)			<0.78 <5.00	<0.78 1.20	<0.78 <5.00	<0.78 <5.00	<0.78 <5.00	<0.78 <5.00	<0.78 <5.00
BOD (mg/L)			7.00	8.30	8.00	<2.00	<2.00	10.90	<2.00
COD (mg/L)			<20.00	28.90	21.10	<20.00	<20.00	<20.00	<20.00
Chloride (mg/L)	250000.00		181.00	124.00	217.00	8.50	48.10	27.80	34.40
Phosphorus, Total (mg/L)			<0.10	0.16	0.81	<0.10	0.17	<0.10	<0.10
TOC (mg/L)			10.10	6.60	4.80	3.60	5.60	4.50	2.40

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria < - Less Than J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

#### TABLE 3

#### GROUNDWATER SAMPLE RESULTS, AUGUST 1999 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-6 E54398-1 Water 8/19/99	MW-9 E54398-2 Water 8/19/99	MW-17 E54398-4 Water 8/19/99	MW-24 E54398-6 Water <u>8/20/99</u>	MW-28 E54398-3 Water 8/19/99	MW-42 E54398-9 Water 8/20/99
Parameter	700.00		<1.30	22.40	<1.30	<1.30	35.80	<1.30
Acetone (ug/L)	2.00		<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Methylene Chloride (ug/L) Butyl Alcohol (ug/L)	500.00		<3.50	<3.50	<3.50	<3.50	<3.50	<3.50
Aniline (ug/L)			NA	<0.78	<0.78	<0.78	< 0.80	<0.78
N,N-Dimethyl Aniline (ug/L)			NA	0.98	<5.00	<5.00	1.40	<5.00
BOD (mg/L)	-		7.00	19.60	<7.20	<4.80	12.30	<4.80
COD (mg/L)			NA	102.00	67.50	<20.00	112.00	23.00
Chloride (mg/L)	250000.00		166.00	186.00	122.00	13.50	48.30	98.00
Phosphorus, Total (mg/L)			3.30	0.58	0.81	< 0.10	1.70	<0.10
TOC (mg/L)			NA	11.10	11.90	4.80	9.00	6.40

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter ug/L - Micrograms per Liter

TABLE 4

#### GROUNDWATER SAMPLE RESULTS, DECEMBER 1999 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-1 E60999-3 Water 12/21/99	MW-2 E60999-4 Water 12/21/99	MW-6 E61153-5 Water 12/22/99	MW-8 E61153-7 Water 12/22/99	MW-D E61153-8 Water 12/22/99	MW-17 E61153-13 Water 12/23/99
Parameter							Duplicate	
Acetone (ug/L)	700.00		<1.30	<1.30	<1.30	<1.30	<1.30	<1.30
Methylene Chloride (ug/L)	2.00		<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Butyl Alcohol (ug/L)	500.00		<3.50	<3.50	<3.50	<3.50	<3.50	<3.50
Aniline (ug/L)	-		<1.20	<1.10	NC	<0.82	< 0.83	< 0.83
N,N-Dimethyl Aniline (ug/L)			<7.70	<7.20	NC	<5.20	<5.30	<5.30
BOD (mg/L)	-		7.00	<6.60	NC	<2.00	<2.00	<7.10
COD (mg/L)			<20.00	<20.00	NC	<20.00	<20.00	<20.00
TOC (mg/L)			1.10	1.40	NC	5.60	5.20	5.40

NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

#### TABLE 4

#### GROUNDWATER SAMPLE RESULTS, DECEMBER 1999 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-24 E60999-6 Water 12/21/99	MW-25 E60999-7 Water 12/21/99	MW-28 E61153-6 Water 12/22/99	MW-31 E61153-9 Water 12/22/99	MW-42 E61153-4 Water 12/22/99	W-2 E60999-5 Water 12/21/99
<b>Parameter</b> Acetone (ug/L) Methylene Chloride (ug/L) Butyl Alcohol (ug/L)	700.00 2.00 500.00		<1.30 <0.40 <3.50	<1.30 <0.40 <3.50	<1.30 <0.40 <3.50	5.80 <0.40 <3.50	<1.30 <0.40 <3.50	16.10 <0.40 <3.50
Aniline (ug/L) N,N-Dimethyl Aniline (ug/L)	-		<0.98 <6.20	<0.82 <5.20	<0.84 <5.40	<0.87 <5.80	<0.84 <5.40	< <b>0.86</b> <5.60
BOD (mg/L) COD (mg/L) TOC (mg/L)			<2.00 21.10 3.50	<2.00 <20.00 4.80	<4.70 20.50 5.30	<7.10 30.70 7.60	<4.70 <20.00 17.40	17.70 34.20 9.70

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

#### TABLE 5

#### GROUNDWATER SAMPLE RESULTS, APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-6A E67299-4 Water 4/12/00	MW-9A E67299-5 Water 4/12/00	MW-17 E67299-3 Water 4/12/00	MW-24 E67299-7 Water 4/12/00	MW-25 E67299-10 Water 4/12/00	MW-28 E67299-6 Water 4/12/00
Parameter Acetone (ug/L)	700.00		< 1.30	< 1.30	< 1.30	< 1.30	< 1.30	10.30
Methylene Chloride (ug/L) Butyl Alcohol (ug/L)	2.00 500.00		< 0.40 < 3.50	< 0.40 < 3.50				
Aniline (ug/L) N.N-Dimethyl Aniline (ug/L)	-		< 0.86 < 5,60	< 0.82 < 5.20	< 0.85 < 5.40	< 0.85 < 5.40	< 0.86 < 5.60	< 0.84 < 5.40
BOD (mg/L) COD (mg/L) TOC (mg/L)			< 16.00 < 20.00 3.20	< 2.00 < 20.00 2.80	< 5.00 53.80 7.60	< 2.00 < 20.00 2.10	< 2.00 < 20.00 4.00	< 5.40 < 20.0 5.50

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

#### TABLE 5

#### GROUNDWATER SAMPLE RESULTS, APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-42 E67299-9 Water 4/12/00	MW-43 E67299-1 Water 4/12/00	MW-44 E67299-1 Water 4/12/00	MW-45D E67299-15 Water 4/12/00	MW-D* E67299-14 Water 4/12/00
Parameter							
Acetone (ug/L)	700.00		< 1.30	< 1.30	< 1.30	102.0	106.00
Methylene Chloride (ug/L)	2.00		< 0.40	< 0.40	< 0.40	< 2.00	< 0.80
Butyl Alcohol (ug/L)	500.00		< 3.50	< 3.50	< 3.50	< 18.00	< 7.00
Aniline (ug/L)			< 0.84	< 0.86	< 0.85	< 0.87	< 0.79
N,N-Dimethyl Aniline (ug/L)			< 5.40	< 5.60	< 5.40	< 5.60	< 5.00
BOD (mg/L)	_		< 2.00	< 2.00	< 2.00	6.90	6.90
COD (mg/L)			< 20.00	25.10	< 20.00	31.00	29.70
TOC (mg/L)			2.60	2.50	1.40	8.20	8.70

NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter • - MW-45D (Duplicate)

TABLE 6

#### GROUNDWATER SAMPLE RESULTS RECOVERY WELLS AND EFFLUENT, DECEMBER 1998 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	PW-13 E43473-11 Water 12/18/98	P-13 E49186-10 Water 4/30/99	P-13 Water	PW-13 E61153-3 Water 12/22/99	P-13 E67299-8 Water 4/12/00
Acetone (ug/L)	700.00		14.40	35.50	NS	48.20	46.00
Methylene Chloride (ug/L)	2.00		<0.61	<0.40	NS	<0.40	< 0.40
Butyl Alcohol (ug/L)	500.00		<1.40	<3.50	NS	<3.50	< 3.50
Aniline (ug/L)			<0.85	<0.82	NS	<0.83	< 0.86
N,N-Dimethyl Aniline (ug/L)	-		<5.40	1.10		<5.30	< 5.60
BOD (mg/L)			11.00	6.90	NS	11.10	21.20
COD (mg/L)	••		51.20	<20.00	NS	53.80	38.70
Chloride (mg/L)	250000.00		254.00	240.00	NS	NA	NA
Phosphorus, Total (mg/L)			10.50	0.21	NS	NA	NA
TOC (mg/L)			8.60	9.70	NS	11.00	18.10

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria < - Less Than J - Result is less than the quantitation limit or is an estimated result mg/L - Milligrams per Liter ug/L - Micrograms per Liter

NS - Not Sampled, pump off line for repairs

# TO THE REPORT OF THE TOTAL PROPERTY OF TOTAL

TABLE 6

#### GROUNDWATER SAMPLE RESULTS RECOVERY WELLS AND EFFLUENT, DECEMBER 1998 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	PW-30 E43395-6 Water 12/16/98	P-30 E49186-11 Water 4/30/99	P-30 E54398-7 Water 8/20/99	PW-30 E61153-12 Water 12/23/99	P-30 E67299-11 Water 4/12/00
Acetone (ug/L)	700.00		66.30	<1.30	35.10	<1.30 <0.40	< 1.30 < 0.40
Methylene Chloride (ug/L) Butyl Alcohoi (ug/L)	2.00 500.00		2.00 <1,40	<0.40 <3.50	<0.40 <3.50	<3.50	< 3.50
Aniline (ug/L) N.N-Dimethyl Aniline (ug/L)			64.30 3.60	<0.80 <5.10	3.20 3.70	<0.82 <5.2	< 0.79 < 5,00
BOD (mg/L)	-		<3.00	<2.00	<7.20 32.50	<2.00 20.50	< 2.00 < 20.00
COD (mg/L) Chloride (mg/L)	 250000.00		28.20 266.00 1.40	<20,00 129.00 0.43	351.00 1.30	NA NA	NA NA
Phosphorus, Total (mg/L) TOC (mg/L)	-		11.10	6.60	8.30	5.90	8.30

#### NOTES:

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

NS - Not Sampled, pump off line for repairs

TABLE 6

#### GROUNDWATER SAMPLE RESULTS RECOVERY WELLS AND EFFLUENT, DECEMBER 1998 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Class IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	MW-P32A E43395-7 Water 12/16/98	P-32A/B E49186-12 Water 4/30/99	P-32A/B E54398-8 Water 8/20/99	MW-P32A Water	P-32A/B E67299-13 Water 4/12/00
Acetone (ug/L)	700.00		3810.00	667.00	3100.00	NS	< 1.30
Methylene Chloride (ug/L)	2.00		29500.00	1550.00	29500.00	NS	< 0.40
Butyl Alcohol (ug/L)	500.00		<140.00	<3.50	<180.00	NS	< 3.50
Aniline (ug/L)	_		393.00	81.60	302.00	NS	< 0.80
N,N-Dimethyl Aniline (ug/L)	-		154.00	64.00	241.00	NS	< 5.20
BOD (mg/L)			58.00	16.30	40.80	NS	< 3.30
COD (mg/L)			156.00	25.30	108.00	NS	< 20.00
Chloride (mg/L)	250000.00		304.00	218.00	285.00	NS	NA
Phosphorus, Total (mg/L)			2.00	0.81	1.70	NS	NA
TOC (mg/L)			42.20	12.60	27.90	NS	6.60

NOTES:

.

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

NS - Not Sampled, pump off line for repairs

# TO THE TEACH THE THE FORMER TO THE TARGET TO T

TABLE 6

#### GROUNDWATER SAMPLE RESULTS RECOVERY WELLS AND EFFLUENT, DECEMBER 1998 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Ctass IIA Groundwater Quality Criteria	Sample Number Laboratory ID Sample Matrix Date Collected	BIO-EFF E43395-5 Water 12/16/98	BIO-EFF E49186-13 Water 4/30/99	BIO-EFF E54398-10 Water 8/20/99	BIO-EFF E60999-8 Water 12/21/99	BIO-EFF E67299-12 Water 4/12/00
Acetone (ug/L) Methylene Chloride (ug/L)	700.00 2.00		34.90 <b>216.00</b>	47.40 11.30	49.70 <b>2.30</b>	<1.30 <0.40 <3.50	< 1.30 < 0.40 < 3.50
Butyl Alcohol (ug/L) Aniline (ug/L)	500.00		<1.40 <0.78	<3.50 <0.83	<3.50 <0.78	<0.78	< 0.82
N,N-Dimethyl Aniline (ug/L)			<5.00 <3.00	<5.30 4.70	<5.00 29.40	<5.00 <2.00	< 5.20 < 3.30
BOD (mg/L) COD (mg/L) Chloride (mg/L)	250000.00		20.50 321.00	<20.00 230.00	35.10 250.00	21.10 NA	20.60 NA
Phosphorus, Total (mg/L) TOC (mg/L)			0.56 6.50	0.20 6.20	9.30 7.60	NA 5.50	NA 7.20

#### NOTES:

.

Bold - Sample concentration exceeds the Class IIA Groundwater Quality Criteria

< - Less Than

J - Result is less than the quantitation limit or is an estimated result

mg/L - Milligrams per Liter

ug/L - Micrograms per Liter

NS - Not Sampled, pump off line for repairs

TABLE 7

### GROUNDWATER SAMPLING SUMMARY, FEBRUARY 1996 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

Well No.	Date Sampled	Acetone (ug/L)	Methylene Chloride (ug/L)	Butyl Alcohol (ug/L)	Aniline (ug/L)	Dimethyl Aniline (ug/L)
MW-1	11/12/96	< 0.46	4.60	< 1.40	NA	NA
	12/18/97	< 5.00	< 0.61	< 1.40	< 0.78	< 5.00
	12/16/98	< 5.00	< 0.61	< 1.40	< 0.84	< 5.40
	12/21/99	< 1.30	< 0.40	< 3.50	< 1.20	< 7.70
MW-2	11/12/96	< 0.46	< 0.61	< 1.40	NA	NA
	12/18/97	< 5.00	< 0.61	< 1.40	< 0.78	< 5.00
	12/16/98	< 5.00	< 0.61	< 1.40	< 0.85	< 5.40
	12/21/99	< 1.30	< 0.40	< 3.50	< 1.10	< 7.20
MW-3	11/12/96	106.00	< 0.61	< 1.40	NA	
	12/18/97	< 5.00	< 0.61	< 1.40	< 0.78	
	12/16/98	17.70	3,00	< 1.40	< 0.86	< 5.60
MW-6	2/14/96	< 1.00	< 1.00	< 5.00	NA	
	5/15/96	< 8.70	5.00	< 200.00		
	7/24/96	< 8.70		< 200.00		
	11/12/96	< 0.46	< 0.61	< 1.40		
	2/19/97	< 5.00	< 0.61	< 1.40		
	5/8/97	< 5.00	< 0.61	< 1.40		
	8/28/97	< 5.00	< 0.61	< 1.40		
	12/17/97	< 5.00	< 0.61	< 1.40		
	3/26/98	41.90	< 0.63	< 1.40		
	6/25/98	10.70	) < 0.63			
	9/24/98	< 5.00	) < 0.6			
	12/15/98	15.40	) < 0.6			
	4/29/99	< 1.30				
	8/19/99	< 1.30				
	12/21/99	< 1.3				
	4/12/00	< 1.30	0 < 0.4	0 < 3.5	0 < 0.8	6 < 5.60

-

TABLE 7

## GROUNDWATER SAMPLING SUMMARY, FEBRUARY 1996 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

Well No.	Date Sampled	Acetone (ug/L)	Methylene Chloride (ug/L)	Butyi Alcohol (ug/L)	Aniline (ug/L)	Dimethyl Aniline (ug/L)
MW-9	2/14/96	40.00	< 1.00	< 5.00	NA	NA
	5/15/96	< 8.70	< 1.40	< 200.00	NA	NA
	7/24/96	86.00	2,30	< 200.00	NA	NA
	11/12/96	68.30	< 0.61	< 1.40	NA	NA
	2/19/97	42.60	7.80	< 1.40	NA	NA
	5/8/97	12.70	< 0.61	< 1.40	NA	NA
	8/28/97	27.10	< 0.61	< 1.40		NA
•	12/17/97	< 5.00	< 0.61	< 1.40		< 5.00
	3/26/98	38.10	< 0.61	< 1.40		
	6/25/98	18.40	< 0.61	< 1.40		
	9/24/98	31.70		< 1.40		
	12/15/98	32.90		< 1.40	< 0.95	
	4/29/99	< 1.30		< 3.50	< 0.78	
	8/19/99	22.40		< 3.50		
	4/12/00	< 1.30		< 3.50	< 0.82	< 5.20
MW-17	2/14/96	130.00	1.30	) < 5.00		
141 44 - F V	5/15/96	< 8.70		¢ < 200.00	) NA	
	7/24/96	65.00		< 200.00	) NA	
	11/12/96	2.70	< 0.61	ື < 1.40	) NA	
	2/19/97	< 5.00		) < 1.40		
	5/8/97	< 5.00	A STATE OF A		) NA	
	8/28/97	< 5.00		1 < 1.40	) NA	
	12/17/97	< 5.00		1 < 1.40	0.78	
	3/26/98	13.80	·		) NA	
	6/25/98	< 5.00			0 < 0.8	0 < 5.10
	9/24/98	< 5.00			0 < 0.7	8 < 5.00
	12/15/98	< 5.0		-		0 < 5.80
	4/29/99	< 1.30	•			
	4/29/99 8/19/99	< 1.3	•			
	8/19/99 12/21/99	< 1.3	•			
	4/12/00	< 1.3				

854820427

### 

TABLE 7

### GROUNDWATER SAMPLING SUMMARY, FEBRUARY 1996 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

Well No.	Date Sampled	Acetone (ug/L)	Methylene Chloride (ug/L)	Butyl Alcohol (ug/L)	the second s	Dimethyl Aniline (ug/L)
MW-24	2/14/96	2.20	1.40	< 5.00	NA	NA
1.1.1.1.2.1	5/15/96	< 8.70	< 1.40	< 200.00	NA	NA
	7/24/96	< 8.70	7.80	< 200.00	NA	NA
	11/12/96	< 0.46	< 0.61	< 1.40	NA	NA
	2/19/97	< 5.00	< 0.61	< 1.40	NA	NA
	5/8/97	< 5.00		< 1.40	NA	NA
	8/28/97	< 5.00		< 1.40	NA	NA
	12/17/97	< 5.00		< 1.40		< 5.00
	3/26/98	11.60		< 1.40		
	6/25/98	< 5.00		< 1.40		
	9/24/98	< 5.00	< 0.61	< 1.40		
	12/15/98	< 5.00		< 1.40		
	4/29/99	< 1.30				
	8/19/99	< 1.30		< 3.50		
	12/21/99	< 1.30				
	4/12/00	< 1.30	) < 0.40	< 3.50	< 0.85	< 5.40
MW-25	2/14/96	17.0	) < 1.00	) < 5.00		
141 44 -2-2	5/15/96	< 8.7		c < 200.00		
	7/24/96	< 8.7	이 이렇게 가지 않는 것이다. 안에서 한 것을 많이 잘 못했는지?			
	11/12/96	< 0.4		< 1.40	) NA	
	2/19/97	< 5.0		< 1.40	) NA	
	5/8/97	< 5.0		1 < 1.40	) NA	
	8/28/97	< 5.0		1 < 1.40	) NA	
	12/17/97	< 5.0	-		o < 0.7	
	3/26/98	17.5	•		0 NA	
	6/25/98	< 5.0			0 < 0.7	9 < 5.00
	9/24/98	< 5.0	<ul> <li>The second s second second se second second s</li></ul>	14.44	0 < 0.7	8 < 5.00
	9/24/98 12/15/98	20.6	-		0 < 0.9	2 < 5.90
		< 1.3		-		8 < 5.00
	4/29/99 12/21/99	< 1.3	-		-	
	4/12/00	< 1.3	•			

## 

TABLE 7

#### GROUNDWATER SAMPLING SUMMARY, FEBRUARY 1996 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

Well No.	Date Sampled	Acetone (ug/L)	Methylene Chloride (ug/L)	Butyl Alcohol (ug/L)	Aniline (ug/L)	Dimethyl Aniline (ug/L)
MW-28	2/14/96	70.00	67:00	< 5.00	NA	NA
	5/15/96	120.00	2:30	< 200.00	NA	NA
	7/24/96	37.00	8.50	< 200.00	NA	NA
	11/12/96	87.40	< 0.61	< 1.40	NA	NA
	2/19/97	57.50	185.00	< 1.40	NA	NA
	5/8/97	67.40	< 0.61	< 1.40	NA	NA
	8/28/97	40.60	< 0.61	< 1.40	NA	NA
	12/17/97	47.10	< 0.61	< 1.40	< 0.78	< 5.00
	3/26/98	86.20	< 0.61	< 1.40	NA	NA
	6/25/98	46.20	< 0.61	< 1.40	< 0.79	
	9/24/98	65.80	< 0.61	< 1.40	< 0.79	1,90
	12/15/98	27.50	< 0.61	< 1.40	< 0.92	
	4/29/99	< 1.30	< 0.40	< 3.50	< 0.78	
	8/19/99	35.80		< 3.50	< 0.80	
	12/21/99	< 1.30		< 3.50	< 0.84	< 5.40
	4/12/00	10.30	< 0.40	< 3.50	< 0.84	< 5.40
MW-42	2/14/96	< 1.00	< 1.00	< 5.00	NA	
	5/15/96	< 8.70	< 1.40	< 200.00	NA NA	. NA
	7/24/96	< 8.70	しょうしん かいしん (あいしい) しんしかり しょうしゅうしん 気気の かめ	< 200.0	NA NA	NA NA
	11/12/96	< 0.42		< 1.40	) NA	NA NA
	2/19/97	< 5.00		< 1.40	NA NA	
	5/8/97	< 5.00		< 1.40	) NA	
	8/28/97	< 5.00		< 1.40	) NA	
	12/17/97	< 5.00		< 1.40	) < 0.78	3 < 5.00
	3/26/98	14.40		< 1.40	) NA	
	6/25/98	< 5.00		1 < 1.40	) < 0.79	9 < 5.00
	9/24/98	< 5.00		1 < 1.40	) < 0.78	8 < 5.00
	12/15/98	< 5.00			) < 0.9	) < 5.80
	4/29/99	< 1.30	F		> < 0.7	8 < 5.00
	8/19/99	< 1.30			0.73	8 < 5.00
	12/21/99	< 1.30			0.8	4 < 5.40
	4/12/00	< 1.30	·		0 < 0.8	4 < 5.40

Page 4 of 6

## which is the second of the second sec

TABLE 7

#### GROUNDWATER SAMPLING SUMMARY, FEBRUARY 1996 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

Well No.	Date Sampled	Acetone (ug/L)	Methylene Chloride (ug/L)	Butyl Alcohol (ug/L)	Aniline (ug/L)	Dimethyl Aniline (ug/L)
P-13	2/14/96	590.00	< 2.00	13.00	NA	NA
	5/15/96	< 8.70	< 1.40	< 200.00	NA	NA
	7/24/96	< 8.70	<b>6.6</b> 0	< 200.00	NA	NA
	11/12/96	169.00	< 0.61	< 1.40	NA	NA
	2/19/97	2140.00	573.00	< 14.00	NA	NA
	5/8/97	16.8	< 0.61	< 1.40	NA	NA
	8/28/97	479.00	3100:00	< 1.40	NA	NA
	12/17/97	55.10	< 0.61	201.00	< 0.78	< 5.00
	6/25/98	53.20	< 0.61	< 1.40	< 0.79	2.30
	9/24/98	24.80	< 0.61	< 1.40	< 0.80	1.10
	12/15/98	14.40	< 0.61	< 1.40	< 0.85	< 5.40
	4/29/99	35.50	< 0.40	< 3.50	< 0.82	1.10
	12/21/99	48.20	< 0.40	< 3.50	< 0.83	< 5.30
	4/12/00	46.00	< 0.40	< 3.50	< 0.86	< 5.60
P-30	2/14/96	72.00	5.10	< 5.00	NA	NA
	5/15/96	< 8.70	< 1.40	< 200.00	NA	NA
	7/24/96	72.00		< 200.00	NA	NA
	11/12/96	72.70	1.90	< 1.40	NA	NA
	2/19/97	72.50		< 1.40	NA	NA
	5/8/97	27.50	< 0.61	< 1.40	NA	NA
	8/28/97	104.00	40.20	< 1.40	NA	. NA
	12/17/97	17.10	< 0.61	26.40	27.30	< 5.00
	3/26/98	63.50	2.40	< 1.40	NA NA	. NA
	6/25/98	11.80	그렇게 다니 아직 것 같아요. 그는 것은 한 한 분위가 다니 가지 소문을 들었다.	< 1.40	32.00	2.50
	9/24/98	148.00	9.90	< 1.40	77.70	7.30
	12/15/98	66.30	<ul> <li>A style</li> <li>A style</li></ul>	< 1.40	64.30	3.60
	4/29/99	< 1.30		< 3.50	< 0.80	> < 5.10
	8/19/99	35.10	< 0.40	) < 3.50	3.20	) 3.70
	12/21/99	< 1.30		) < 3.50	) < 0.82	< 5.20
	4/12/00	< 1.30			) < 0.79	< 5.00

## 

TABLE 7

#### GROUNDWATER SAMPLING SUMMARY, FEBRUARY 1996 THROUGH APRIL 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

Well No.	Date Sampled	Acetone (ug/L)	Methylene Chloride (ug/L)	Butyl Alcohol (ug/L)	Aniline (ug/L)	Dimethyl Aniline (ug/L)
P-32A/B	2/14/96	2.00	1200.00	3.30	NA	NA
• • • • • • • • • • • • • • • • • • • •	5/15/96	2900,00	10000.00	< 1000.00	NA	NA
	7/24/96	5000:00	3600.00	< 4000.00	NA	NA
	11/12/96	1520,00	9630.00	< 7.00	NA	NA -
	2/19/97	241.00		< 14.00	NA	NA
	5/8/97	1820.00	11200.00	< 1.40	NA	NA
	8/28/97	3350.00	16400.00	< 1.40	NA	NA
	12/17/97	970:00	13000.00	< 70.00	441.00	37.00
	3/26/98	273.00		< 1.40	NA	NA
	6/25/98	191.00		< 14.00	111.00	31.80
	9/24/98	1990,00		< 7.00	144.00	62.40
	12/15/98	3810.00		< 140.00	393.00	154.00
	4/29/99	667.00	Long and the set of the second second second	< 3.50	81.60	64.00
	8/20/99	310000	19500.00	< 180.00	302.00	241.00
	4/12/00	< 1.30	< 0.40	< 3.50	< 0.80	< 5.20

#### SOIL SAMPLE VOC RESULTS (SOUTH DRUM PAD), MARCH 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

-					Sample ID	SDP-1	SDP-2	SDP-3 E65198-8
					Laboratory ID	E65198-6	E65198-7	2/8/00
		Residential	Non-Residential	Impact to	Date Collected	3/8/00	3/8/00	Soil
		Direct Contact	Direct Contact	Groundwater	Sample Matrix	Soil	Soil	
		Soil Cleanup	Soil Cleanup	Soil Cleanup	Sample Depth	4 -4.5 ft.b.g	4.5-5.0 IL 0.g.	Drum Pad
		Criteria (mg/kg)	Criteria (mg/kg)	Criteria (mg/kg)	Area of Concern	Drum Pad	Drum Pad <8.10	<6.80
_	Acrolein					<7.00 <0.70	<0.81	<0.68
	Acrylonitrile	1	5	1		<0.70 <0.14	< 0.16	<0.14
	Benzene	3	13	1		<0.14	<0.10	<0.68
	Bromodichloromethane	11	46	1		<0.70	<0.81	<0.68
	Bromoform	86	370	1		<0.70	<0.81	<0.68
	Bromomethane	79	1000	1		<0.70	<0.81 <0.81	<0.68
	Carbon tetrachloride	2	4	1		<0.70	<0.81	<0.68
	Chlorobenzene	37	680	1		<0.70	<0.81	<0.68
	Chloroethane					<0.70	<3.20	<2.70
	2-Chloroethyl vinyl ether					<0.70	<0.81	<0.68
	Chloroform	19	28	1		<0.70	<0.81	<0.68
	Chloromethane	520	1000	10		<0.70	<0.81	<0.68
	Dibromochloromethane	110	1000	1		<0.70	<0.81	<0.68
	1,2-Dichlorobenzene	5100		50		<0.70	<0.81	<0.68
	1,3-Dichlorobenzene	5100				<0.70	<0.81	<0.68
	1,4-Dichlorobenzene	570	10000	100		<0.70	<0.81	
,	Dichlorodifluromethane			40		<0.70	<0.81	
	1,1-Dichloroethane	570				<0.70	<0.81	
	1,2-Dichloroethane	6				<0.70	<0.81	
	1,1-Dichloroethene	8	150			<0.70	<0.81	
	cis-1,2-Dichloroethene	79				<0.70	<0.81	
	trans-1,2-Dichloroethene	1000		-		<0.70	<0.81	
	1,2-Dichloropropane	10	_		•	<0.70	<0.81	
	cis-1,3-Dichloropropene	4		-		<0.70	<0.81	
	trans-1,3-Dichloropropene	4		-		< 0.14	<0.16	
	Ethylbenzene	1000				<0.70	<0.81	
	Methylene chloride	49				<0.70		
	1,1,2,2-Tetrachloroethane	170				<0.70		
	Tetrachloroethene	4				<0.14	<0.16	<0.14
	Toluene	1000				<0.70		
	1,1,1-Trichloroethane	210				<0.70		<0.68
Aller .	1,1,2-Trichloroethane	22	•			<0.70		<0.68
	Trichloroethene	23	) 34	•		<0.70		<0.68
	Trichlorofluromethane	-		- 10	า	<0.70		
	Vinyl chloride	2				<0.70		
	Xylene (total)	410	) 1000	, 0,		-0,70	0.01	
	Notes:							

Notes:

÷

mg/kg - milligrams per kilogram

Bold - Sample concentration exceeds the most stringent Soil Cleanup Criteria

Bold - The most stringent Soil Cleanup Criteria

854820432

TIERRA-B-009426

. . . . . .

# SOIL SAMPLE SVOC SUMMARY (SOUTH DRUM PAD) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

				····	Sample ID	SDP-2	SDP-1	SDP-3
-					Laboratory ID	E65198-7	E65198-6	E65198-8
				Impact to	Date Collected	3/8/00	3/8/00	3/8/00
		Residential	Non-Residential	Groundwater	Sample Matrix	Soil	Soil	Soil
		Direct Contact	Direct Conlact	Soil Cleanup	Sample Denth		4.5-5.0 ft. b.g.	4.5-5.0 ft.b.g.
		Soil Cleanup	Soil Cleanup	Criteria (mg/kg)	Area of Concern	Drum Pad	Drum Pad	Drum Pad
		Criteria (mg/kg)	Criteria (mg/kg)	Ciliena (ing/kg) 100	Artu of concern	<0.075	<0.070	<0.069
	Accnaphthene	3400	10000	100		<0.075	<0.070	<0.069
	Acenaphthylene					<0.075	<0.070	<0.069
	Aniline		10000	100		<0.075	<0.070	<0.069
	Anthracene	10000	10000	100		<0.750	<0.700	⊲0.690
	Benzidine			500		⊲0.075	<0.070	<0.069
	Benzo(a)anthracene	0.9	4	100		⊲0.075	<0.070	<0.069
	Benzo(a)pyrene	0.66	0.66	50		⊲0.075	<0.070	<0.069
	Benzo(b)fluroanthene	0.9	4	30		<0.075	<0.070	<0.069
	Benzo(g,h,i)perylene			500		<0.075	<0.070	<0.069
	Benzo(k)fluroanthene	0.9	4	500		<0.075	<0.070	<0.069
	4-Bromophenyl phenyl ether			50		<0.075	<0.070	<0.069
•	Butyl benzyl phthalate	1100	10000	50		<0.075	<0.070	<0.069
_	2-Chloronaphpthalene		(200	_		<0.190		⊲0.170
	4-Chloroaniline	230	4200			<0.075		<0.069
	Chrysene	9	40			<0.075		<0.069
	bis(2-Chloroethoxy)methane		3	10		<0.075		<0.069
	bis(2-Chloroethyl)ether	0.66				<0.075		<0.069
	bis(2-Chloroisopropyl)ether	2300	10000	10		<0.075		<0.069
	4-Chlorophenyl phenyl ether	<b>5</b> 4 6 6	10000	50		<0.075		<0.069
	1.2-Dichlorobenzene	5100	10000			<0.075		<0.069
	1,2-Diphenylhydrazine	c	10000	100		<0.075		<0.069
	1,3-Dichlorobenzene	5100				<0.075		<0.069
	1,4-Dichlorobenzene	570	4			⊲0.075		<0.069
-	2,4-Dinitrotoluene	1	- 4			<0.075		<0.069
	2.6-Dinitrotoulenc	1				<0.190	<0.170	<0.170
	3,3'-Dichlorebenzidine	4	,			<0.075	<0.070	<0.069
_	N,N-Dimethylaniline					0.318	<0.170	<0.069
	Dimethyl Aniline (total)	0.66	0.66	100		<0.075	<0.070	<0.069
	Dibenzo(a,h)anthracene	5700				<0.075	; ⊲0.070	<0.069
	Di-n-butyl phthalate	1100				<0.075	i ⊲0.070	<0.069
-	Di-n-ocyl phthalate	10000				<0.075	s <0.070	) <0.069
	Diethyl phthalate	10000				⊲0.075	5 <0.070	<0.069
i	Dimethyl phthalate	49		·		<0.075	s <0.070	) <0.069
	bis(2-Ethylhexyl)phthalate	2300				<0.07	s <0.070	) <0.069
·	Fluoranthene	230				<0.073	5 <0.076	) <0.069
	Fluorenc	0.66		2 100		<0.07	5 <0.076	) <0.069
	Hexachlorobenzene	0.00	·	-		<0.07	5 <0.070	< 0.069
, <b></b>	Hexachlorobutadiene	40				⊲0.750	o <0.704	o <0.690
	Hexachlorocyclopentadiene				)	<0.19	0 <0.170	0 ⊲0.170
i	Hexachlorethane	0.1		4 500	)	<0.07	s <0.07	0 <0.069
	Indeno(1,2,3-cd)pyrene	110			,	<0.07	5 <0.07	
	Isophorone	23			1	<0.07	5 <0.07	0 <0.069
	Naphthalene		-			⊲0.07	5 <0.07	
	Nitrobenzene					<0.07		
-	n-Nitrosodimethylamine	0.6	5 0.6	6 1(	)	<0.07	5 <0.07	
	N-Nitroso-di-n-propylamine	14	-		)	⊲0.19	0 <0.17	
	N-Nitrosodiphenylamine					<0.07		
	Phenathrene	170	0 1000	0 <b>10</b> 0	,	<0.07		
	Pyrene 1,2,4-Trichlorobenzene	6			D	<0.07	5 <0.07	0 <0.069
i -	<u>Notes:</u> mg/kg - milligrams per kilog	ram		n Criteria				

mg/kg - milligrams per kilogram Bold - Sample concentration exceeds the most stringent Soil Cleanup Criteria Bold - The most stringent Soil Cleanup Criteria

-

į.

#### 1 1 1 1 1

#### TABLE 10

### SOIL SAMPLE TPH RESULTS (SOUTH DRUM PAD) MARCH 2000 TEVA PHARMACEUTICALS USA, NEW JERSEY

Total Petroleum Hydrocarbons (mg/kg)	Soil Cleanup	Sample Depth Area of Concern	4 -4.5 ft.b.g Drum Pad 54.3	4.5-5.0 ft. b.g. Drum Pad 198.0	4.5-5.0 ft.b.g. Drum Pad < 27.0
	Total Organic Contaminant	Sample ID Laboratory ID Date Collected Sample Matrix	SDP-1 E65198-6 3/8/00 Soil	SDP-2 E65198-7 3/8/00 Soil	SDP-3 E65198-8 3/8/00 Soil

#### NOTES:

•

mg/kg - milligrams per kilogram

J - Estimated Concentration

ND - Not Detected above laboratory minimum detection limit BOLD - Sample Concentration exceeds the most stringent Soil Cleanup Criteria

1 1		J	Ţ	1	1	1	1	I	3	1	1	1	I	ł	i -	E .	I	)
-----	--	---	---	---	---	---	---	---	---	---	---	---	---	---	-----	-----	---	---

#### SOIL SAMPLE VOC RESULTS (NORTHEAST DRUM PAD), MARCH 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

$\pi \omega$	**	iun,	140	<b>11</b>	*	

		WALDY	WICK, NEW JERS	C I				
				Sample ID	EDP-1	EDP-2	EDP-3	EDP-4
				Laboratory ID	E65198-9	E65198-13		
	Residential	Non-Residential	Impact to	Date Collected	3/8/00	3/9/00	3/8/00	3/9/00
	Direct Contact	Direct Contact	Groundwater	Sample Matrix	Soil	Soil	Soil	Soil
	Soil Cleanup	Soil Cleanup	Soil Cleanup	Sample Depth	6.5-7 ft. b.g	6.5-7 ft. b.g	6.5-7 ft. b.g	6.5-7 ft. b.g
	Criteria (mg/kg)	Criteria (mg/kg)	Criteria (mg/kg)	Area of Concern	Drum Pad	Drum Pad	Drum Pad	Drum Pad
Acrolein	Ontoria (mgr. g/		<u> </u>		<6.80		<7.00	<7,30
Acrylonitrile	1	5	1		<0.68	<0.74	<0.70	
Benzene	3	-	1		<0.14	<0.15	<0.14	
Bromodichloromethane	11	46	1		<0.68	<0.74		
Bromoform	86	370	1		<0.68	<0.74		
Bromomethane	79		1		<0.68	<0.74	<0.70	<0.73
Carbon tetrachloride	2		1		<0.68	<0.74	<0.70	
Chlorobenzene	37		1		<0.68	<0.74	<0.70	< 0.73
Chloroethane	0.				<0.68	<0.74	<0.70	< 0.73
2-Chloroethyl vinyl ether					<2.70	< 2.90	<2.80	<2.90
Chloroform	19	28	1		<0.68	<0.74	<0.70	< 0.73
Chloromethane	520				<0.68	< 0.74	<0.70	) <0.73
Dibromochloromethane	110				<0.68	< 0.74	<0.70	) <0.73
	5100				<0.68		<0.70	) <0.73
1,2-Dichlorobenzene	5100				<0.68	3 <0.74	<0.70	) <0.73
1,3-Dichlorobenzene	570				<0.68		<0.70	< 0.73
1,4-Dichlorobenzene Dichlorodifluromethane	5/0	10000			<0.68		<0.70	< 0.73
	570	1000	10		<0.6	3 <0.74	<0.70	< 0.73
1,1-Dichloroethane	6				<0.6		<0.70	) <0.73
1,2-Dichloroethane	8	,			<0.6			0 <0.73
1,1-Dichloroethene	79				<0.6		4 <0.7	0 <0.73
cis-1,2-Dichloroethene	1000	•			<0.6	-		0 <0.73
trans-1,2-Dichloroethene	1000				<0.6			0 <0.73
1,2-Dichloropropane	10				<0.6			0 <0.73
cis-1,3-Dichloropropene		, . , .			<0.6			0 <0.73
trans-1,3-Dichloropropene	100		-		<0.1			
Ethylbenzene	49	•			<0.6		- · ·	
Methylene chloride	41				<0.6			
1,1,2,2-Tetrachloroethane		-	5 1		<0.6	-		
Tetrachloroethene		•			<0.0			-
Toluene	100	•			<0.6		-	
1,1,1-Trichloroethane	21	•		, 1	<0.6			
1,1,2-Trichloroethane	2	-		1	<0.6	-		
Trichloroethene	2	ა ა	4	1	<0.6			-
Trichlorofluromethane		<b>.</b> .	7 1	0	<0.6			
Vinyl chloride		-			<0.0	•		
Xyiene (total)	41	ų 100	U 0	,	~U.(		v.	
Notes:								

Notes:

mg/kg - milligrams per kilogram Bold - Sample Concentration exceeds the most stringent Soil Cleanup Criteria

Bold - The most stringent Soil Cleanup Criteria

				-			-	-	-	· ·				1	1	1	1	1
1	]	j ·	]	}	] .	1	1	1	3	1	1	ł	i i	1	1	•	1	•

#### SOIL SAMPLE VOC RESULTS (NORTHEAST DRUM PAD), MARCH 2000 TEVA PHARMACEUTICALS USA

WALDWICK, NEW JERSEY

		WALDY	VICK, NEW JERS	EI			
				Sample ID	EDP-5	EDP-6	EDP-60
				Laboratory ID	E65198-14	E65198-15	E65198-16
	Residential	Non-Residential	Impact to	Date Collected	3/9/00	3/9/00	3/9/00
	Direct Contact	Direct Contact	Groundwater	Sample Matrix	Soil		
	Soil Cleanup	Soil Cleanup	Soil Cleanup	Sample Depth	6.5-7 ft. b.g	6.5-7 ft. b.g	6.5-7 ft. b.g
	Criteria (mg/kg)	Criteria (mg/kg)	Criteria (mg/kg)	Area of Concern	Drum Pad	Drum Pad	Dup EDP-6
Acrolein		<b>X</b> X			<6.40		
Acrylonitrile	1	5	1		<0.64	<0.59	
Benzene	3	13	1		< 0.13	<0.12	
Bromodichloromethane	11	46	1		<0.64	<0.59	
Bromoform	86	370	1		<0.64		
Bromomethane	79	1000	1		<0.64	<0.59	
Carbon tetrachloride	2	4	1		<0.64	< 0.59	< 0.64
Chlorobenzene	37	680	1		<0.64	<0.59	< 0.64
Chloroethane	••				<0.64	< 0.59	> <0.64
2-Chloroethyl vinyl ether					<2.50	) <2.40	) <2.50
Chloroform	19	28	1		<0.64	< 0.59	< 0.64
Chloromethane	520	1000	10		<0.64	4 <0.59	> <0.64
Dibromochloromethane	110	1000	1		<0.64	4 <0.59	> <0.64
1.2-Dichlorobenzene	5100		50	ł	<0.64	4 < 0.59	9 <0.64
1.3-Dichlorobenzene	5100		100	1	<0.64	4 <0.59	9 <0.64
1.4-Dichlorobenzene	570		100	1	<0.64	4 < 0.59	9 <0.64
Dichlorodifluromethane					<0.64	4 <0.59	9 <0.64
1.1-Dichloroethane	570	1000	10	)	<0.64	4 <0.59	9 <0.64
1,2-Dichloroethane	6		. 1	1	<0.6	4 <0.59	
1.1-Dichloroethene	8	150	10	0	<0.64		
cis-1.2-Dichloroethene	79	1000	1	1	<0.6		
trans-1,2-Dichloroethene	1000	1000	50	)	<0.6	4 <0.5	9 <0.64
1,2-Dichloropropane	10	43	- 1	-	<0.6	4 <0.5	9 <0.64
cis-1,3-Dichloropropene	4	. 5	5 1	ſ	<0.6	4 <0.5	9 <0.64
trans-1.3-Dichloropropene	4	. 5	5 1	1	<0.6	4 <0.5	9 <0.64
Ethylbenzene	1000	1000	) 100	)	<0.i	3 <0.1	
Methylene chloride	49	210	) :	1	<0.6	4 <0.5	9 <0.64
1.1.2.2-Tetrachloroethanc	170	) 310	) :	1	<0.6	4 <0.5	9 <0.64
Tetrachloroethene	4		з ·	1	<0.6	4 <0.5	9 <0.64
Toluene	1000		) 50	0	<0.1	3 <0.1	2 <0.13
1,1,1-Trichloroethane	210		) 51	0	<0.6	64 <0.5	i9 <0.64
1,1,2-Trichloroethane	22		о ·	1	<0.6	4 <0.5	59 <0.64
Trichloroethene	23	-		1	<0.6	4 <0.5	59 <0.64
Trichlorofluromethane	_				<0.6	54 <0.5	59 <0.64
Vinyl chloride	2		7 1	0	<0.6	54 < 0.5	59 <0.64
Xylene (total)	41(				<0.6	54 <0.5	59 <0.64
Aytene (wan)			-				

Notes: mg/kg - milligrams per kilogram Bold - Sample concentration exceeds the most stringent Soil Cleanup Criteria Bold - The most stringent Soil Cleanup Criteria

,

#### TABLE 12

## SOIL SAMPLE SVOC RESULTS (NORTHEAST DRUM PAD) TEVA PHARMACEUTICALS USA

						EDP-1	EDP-2	EDP-3	EDP-4
					Sample ID	E65198-9	E65198-13	E65198-11	
parent.					Laboratory ID	3/8/00	3/9/00	3/8/00	3/9/00
		Residential	Non-Residential	Impact to	Date Collected		Soil	Soil	Soil
		Direct Contact	Direct Contact	Groundwater	Sample Matrix	Soil	6.5-7 ft. b.g		
		Soil Cleanup	Soil Cleanup	Soil Cleanup	Sample Depth		Drum Pad	Drum Pad	Drum Pad
		Criteria (mg/kg)	Criteria (mg/kg)	Criteria (mg/kg)	Area of Concern	Drum Pad <0.067	<0.075	< 0.069	<0.077
	Acenaphthene	3400	10000	100		<0.067	<0.075	<0.069	<0.077
	Acenaphthylene					<0.067	<0.075	<0.069	<0.077
	Aniline					<0.067	<0.075	< 0.069	< 0.077
	Anthracene	10000	10000	100		<0.670	<0.750	<0.690	<0.770
	Benzidine					<0.070	<0.075	<0.069	< 0.077
	Benzo(a)anthracene	0.9	4	500		<0.067	<0.075	< 0.069	<0.077
	Benzo(a)pyrene	0.66	0.66	100		< 0.067	<0.075	<0.069	<0.077
	Benzo(b)fluroanthene	0.9	4	50		<0.067		<0.069	<0.077
	Benzo(g,h,i)perylene					<0.067		<0.069	<0.077
	Benzo(k)fluroanthene	0.9	4	500		<0.067			
	4-Bromophenyl phenyl ether					<0.067			<0.077
	Butyl benzyl phthalate	1100	10000	50		<0.067			<0.077
	2-Chloronaphpthalene					<0.170			<0.190
	4-Chloroaniline	230	4200			< 0.067			<0.077
	Chrysene	9	40	500		<0.067	-		<0.077
	bis(2-Chloroethoxy)methane		-	10		<0.067			<0.077
	bis(2-Chloroethyl)ether	0.66	3			<0.067		<0.069	<0.077
	bis(2-Chloroisopropyl)ether	2300	10000	10		<0.067		< 0.069	<0.077
	4-Chlorophenyl phenyl ether			50		<0.067			
	1.2-Dichlorobenzene	5100	10000	- JU		<0.067			< 0.077
	1.2 Diphenylhydrazine			100		<0.067		<0.069	<0.077
-	1,3-Dichlorobenzene	5100				<0.067		< 0.069	< 0.077
	1,4-Dichlorobenzene	570				< 0.067		<0.069	< 0.077
	2,4-Dinitrotoluene	1	4			<0.06		< 0.069	> <0.077
	2,6-Dinitrotoulene	1				<0.170		< 0.170	
<u></u>	3,3'-Dichlorobenzidine	2		100		<0.06		< 0.069	
	N.N-Dimethylaniline					<0.170		< 0.170	
	Dimethyl Aniline (total)		0.66	100		<0.06	7 <0.075		
	Dibenzo(a,h)anthracene	0.66	· · · · · · · · · · · · · · · · · · ·			<0.06	7 <0.075		
-	Di-n-butyl phthalate	5700				<0.06	7 <0.075		
	Di-n-ocyl phthalate	1100				<0.06	7 <0.075		
	Diethyl phthalate	10000		· · · ·		<0.06	7 <0.075		
	Dimethyl phthalate	10000				<0.06			
	bis(2-Ethylhexyl)phthalate	230			I	<0.06			
<u></u>	Fluoranthene	230				<0.06			
	Fluorenc	0.50		2 100		<0.06			
	Hexachlorobenzene	0.00			)	<0.06			
	Hexachlorobutadiene	40			1	<0.67			
	Hexachlorocyclopentadiene	-10-	-		)	<0.17			
	Hexachlorethane	0.		4 500	)	<0.06			
	Indeno(1,2,3-cd)pyrene	110		0 50	)	<0.06			
	Isophorone	23	¥		)	<0.06			-
	Naphthalene	25	-			<0.06			
	Nitrobenzene					<0.06			-
	n-Nitrosodimethylamine	0.6	5 0.64	5 11	0	<0.06			
	N-Nitroso-di-n-propylamine	14	-		2	<0.17			•
_	N-Nitrosodiphenylamine		-			<0.06			
	Phenathrene	170	0 1000			<0.06		•	
	Pyrene 1.2.4 Teicklorobenzene	6	-		0	<0.00	57 <0.07	⊂o.0k	
	1,2,4-Trichlorobenzene	•	-						

Notes: mg/kg - milligrams per kilogram Bold - Sample concentration exceeds the most stringent Soil Cleanup Criteria Bold - The most stringent Soil Cleanup Criteria

### 854820437

------

# SOIL SAMPLE SVOC RESULTS (NORTHEAST DRUM PAD) TEVA PHARMACEUTICALS USA

								EDP-60	
					Sample ID	EDP-5	EDP-6		
					Laboratory ID	E65198-14	E65198-15	3/9/00	
				Impact to	Date Collected	3/9/00	3/9/00		
		Residential	Non-Residential	Groundwater	an a barrantea	Soil	Soil	Soil	
		Direct Contact	Direct Contact	Soil Cleanup	Sample Matrix Sample Depth	6.5-7 ft. b.g	6.5-7 ft. b.g	6.5-7 n. b.g	
		Soil Cleanup	Soil Cleanup	Criterio (mnAn)	Area of Concern	Drum Pad	Drum Pao	Dup CDI V	
		Criteria (mg/kg)	Criteria (mg/kg)	100	nice of the	<0.071	<0.069	<0.067	
	Acenaphthene	3400	10000	700		<0.071	<0.069	<0.067	
	Acenaphthylene					<0.071	<0.069	<0.067	
	Aniline			100		<0.071	<0.069	<0.067	
	Anthracene	10000	10000	100		<0.710	<0.690	<0.670	
	Benzidine			500		<0.071	<0.069	<0.067	
	Benzo(a)anthracene	0.9	4	100		<0.071	<0.069	<0.067	
		0.66	0.66			< 0.071	<0.069	<0.067	
	Benzo(a)pyrene	0.9	4	50		< 0.071		<0.067	
	Benzo(b)fluroanthene	-				<0.071		<0.067	
	Benzo(g,h,i)perylene	0.9	4	500		<0.071		<0.067	
	Benzo(k)fluroanthene	0.0							
	4-Bromophenyl phenyl ether	1100	10000	50		<0.071			
	Butyl benzyl phthalate	1100				<0.071			
	2-Chloronaphpthalene		4200			<0.180			
	4-Chloroaniline	230				<0.071		/ -	
	Chrysene	9	40			<0.071			
	bis(2-Chloroethoxy)methane		_	10		<0.07	<0.069		
1	bis(2-Chloroethyl)ether	0.66	; 3			<0.07	<0.069		
_	bis(2-Chloroisopropyl)ether	230	) 10000	) 10		<0.07		< 0.067	
—	4-Chlorophenyl phenyl ether					<0.07		< 0.067	
	4-Chlorophenyl phenyl ether	510	o 10000	) 50		<0.07	•		
	1,2-Dichlorobenzene					<0.07	•		
	1,2-Diphenylhydrazine	510	n 1000	) 100			•		
	1,3-Dichlorobenzene	57		o <b>100</b>	1	<0.07	•		
	1,4-Dichlorobenzene		•	4 10	)	<0.07	•		
	2,4-Dinitrotoluene		, 1	4 10	)	<0.07			
1	2,6-Dinitrotoulene			6 100	)	<0.18			
	3,3'-Dichlorobenzidine		2	•		<0.07			
	N.N-Dimethylaniline					<0.18			
	Dimethyl Aniline (total)	_		<b>s</b> 10	'n	<0.07			
	Dibenzo(a,h)anthracene	0.6				<0.07	ין <0.06		
	Di-n-butyl phthalate	570	0 1000	•		<0.07	1 <0.06		
	Di-n-ocyl phthalate	110	0 1000	•		<0.07	n <0.06	9 <0.067	
		1000				< 0.07		9 <0.067	
	Diethyl phthalate	1000	0 1000			<0.0			
	Dimethyl phthalate		9 21			<0.0	•		
	bis(2-Ethylhexyl)phthalate	23				<0.0			
	Fluoranthene	23						· · · · ·	
	Fluorene	0.0		2 10		<0.0			
	Hexachlorobenzene	0.0	1	21 10	0	<0.0			
	Hexachlorobutadiene		,		0	<0.7			
	Hexachlorocyclopentadiene	: 4		0 10	0	<0.1			
	Hexachlorethane		Y ·	4 50		<0.0			
	Indeno(1,2,3-cd)pyrene		.9	•	0	<0.0			
	Isophorone		00 100	00		<0.0			
	Naphthalene	2	30 42	00 10		<0.0	71 <0.0		
	Nitrobenzene					<0.0		69 <0.067	
	n-Nitrosodimethylamine					<0.0		69 <0.067	
	n-Millosodimeutyaditike	<b>.</b> 0.	66 0.		10	<0.1			
	N-Nitroso-di-n-propylamin			00 10	20	<0.1 <0.0			
	N-Nitrosodiphenylamine								
_	Phenathrene	43	00 100	100 1	00	<0.0			
-	Pyrene	11	~~		00	<0.0	J/I <0.0	107 -0.007	
	1,2,4-Trichlorobenzene		00 14						
	Notes								

____

1

1

Notes: mg/kg - milligrams per kilogram Bold - Sample concentration exceeds the most stringent Soll Cleanup Criteria Bold - The most stringent Soil Cleanup Criteria

## 

TABLE 13

#### SOIL SAMPLE TPH RESULTS (NORTHEAST DRUM PAD) MARCH 2000 TEVA PHARMACEUTICALS USA, NEW JERSEY

	Total Organic Contaminant Soil Cleanup Criteria (mg/kg)	Sample ID Laboratory ID Date Collected Sample Matrix Sample Depth Area of Concern	EDP-1 E65198-9 3/8/00 Soil 6.5-7 ft. b.g Drum Pad	EDP-2 E65198-13 3/8/00 Soil 6.5-7 ft. b.g Drum Pad	EDP-3 E65198-11 3/8/00 Soil 6.5-7 ft. b.g Drum Pad	EDP-4 E65198-12 3/8/00 Soil 6.5-7 ft. b.g Drum Pad	EDP-5 E65198-14 3/8/00 Soil 6.5-7 ft. b.g Drum Pad	EDP-6 E65198-15 3/8/00 Soil 6.5-7 ft. b.g Drum Pad	EDP-60 E65198-16 3/8/00 Soil 6.5-7 ft. b.g Dup EDP-6
Total Petroleum Hydrocarbons (mg/kg)	10000		82.5	< 27	29.8	< 28	< 26	< 26	< 26
NOTES: mg/kg - milligrams per kilogram									

J - Estimated Concentration

ND - Not Detected above laboratory minimum detection limit BOLD - Sample Concentration exceeds the most study entry Soft Cleanup Criteria

#### SOIL SAMPLE VOC RESULTS (FUEL OIL UST), MARCH 2000 TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

-		Residential Direct Contact Soil Cleanup Criteria (mg/kg)	Non-Residential Direct Contact Soil Cleanup Criteria (mg/kg)	Impact to Groundwater Soil Cleanup Criteria (mg/kg)	OT-4 E65198-4R 3/8/00 Soil 3.5 to 4 ft. b.g. Oil Tank
-	Acrolein				<7.10
	Acrylonitrile	1	5	1	<0.71
	Benzene	3	13	1	<0.14
	Bromodichloromethane	11	46	1	<0.71
	Bromoform	86	370	1	<0.71
	Bromomethane	79	1000	1	<0.71
	Carbon tetrachloride	2	4	1	<0.71
	Chlorobenzene	37	680	1	<0.71
	Chloroethane				<0.71
	2-Chloroethyl vinyl ether				<2.80
	Chloroform	19	28	1	<0.71
	Chloromethane	520	1000	10	<0.71
	Dibromochloromethane	110	1000	1	<0.71
	1,2-Dichlorobenzene	5100	10000	50	<0.71
	1,3-Dichlorobenzene	5100	10000	100	<0.71
	1,4-Dichlorobenzene	570	10000	100	<0.71
—	Dichlorodifluromethane				<0.71
	1,1-Dichloroethane	570	1000	10	<0.71
	1,2-Dichloroethane	6	24	1	<0.71
	1,1-Dichloroethene	8	150	10	<0.71
	cis-1,2-Dichloroethene	79	1000	1	<0.71
	trans-1,2-Dichloroethene	1000	1000	50	<0.71
	1,2-Dichloropropane	10	43		<0.71
	cis-1,3-Dichloropropene	4	5	1	<0.71
	trans-1,3-Dichloropropene	4	5	1	<0.71
	Ethylbenzene	1000	1000	100	<0.14
	Methylene chloride	49	210	1	<0.71
-	1,1,2,2-Tetrachloroethane	170	310	1	<0.71
	Tetrachloroethene	4	6	1	<0.71
	Toluene	1000	1000	500	< 0.14
	1,1,1-Trichloroethane	210	1000	50	<0.71
	1,1,2-Trichloroethane	22	420	1	<0.71
	Trichlorocthene	23	54	1	<0.71
i	Trichlorofluromethane				<0.71
	Vinyl chloride	2	7	10	<0.71
	Xylene (total)	410	1000	67	<0.71
	Notes:				

mg/kg - milligrams per kilogram

Bold - Sample concentration exceeds the most stringent Soil Cleanup Criteria, Bold - The most stringent Soil Cleanup Criteria

## THE PERSON POLICY AND A REPORT OF A REPORT

#### TABLE 15

#### SOIL SAMPLE TPH RESULTS (FUEL OIL UST) MARCH 2000 TEVA PHARMACEUTICALS USA, NEW JERSEY

•		Sample ID	OT-1	OT-2	OT-3	OT-4	OT-5
		Laboratory ID	E65198-1	E65198-2	E65198-3	E65198-4	E65198-5
	Total Organic	Date Collected	3/8/00	3/8/00	3/8/00	3/8/00	3/8/00
	Contaminant	Sample Matrix	Soil	Soil	Soil	Soil	Soil
	Soil Cleanup	Sample Depth	2.5-3.0 ft. b.g.	7.5-8.0 ft. b.g.	4.5-5.0 ft. b.g.	3.5-4.0 ft. b.g.	3.5-4.0 ft. b.g.
	Criteria (mg/kg)	Area of Concern	Oil Tank				
Total Petroleum Hydrocarbons (mg/kg)	10000		< 25	83.5	< 25	1360	< 28

NOTES:

mg/kg - milligrams per kilogram

J - Estimated Concentration

ND - Not Detected above laboratory minimum detection limit

BOLD - Sample Concentration exceeds the most stringent Soil Cleanup Criteria

		TABL	E 16			
-	MUNICIPAL W	ELL SAMPLING SU	MMARY (MCL)	EXCEEDANCES)		
		TEVA PHARMACE				
		WALDWICK, N	EW JERSEY			
<del></del>						
	Maximum	Monitoring Well	W-2	W-2	W-2	W-2
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
-	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	12/1999	12/1999	12/1999	12/1999
Bromoform (ug/l)	No MCL		ND	2.44	ND	5.67
Bromodichloromethane (ug/l)	No MCL		ND	2.44 ND	ND ND	5.62 0.44 J
Chloroform (ug/l)	No MCL		ND	ND	ND	0.44 J ND
Cis-1,2 Dichloroethene	70,00		ND	ND	ND	ND
Dibromochloromethane (ug/l)	No MCL		ND	0.46	ND	1.96
1,1-Dichloroethane	50.00		ND	ND	ND	1.90 ND
MTBE (ug/l)	No MCL		0.46	ND	0.67	ND
Tetrachloroethene (ug/l)	1.00		4.49	ND	5.48	ND
1,1,1-Trichloroethane (ug/l)	30.00		ND	ND	1.21	ND
Trichloroethene (ug/l)	1.00		1.29	ND	1.75	ND
	Maximum	Monitoring Well	W-2	W-2	W-2	W-2
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	11/1999	11/1999	11/1999	11/1999
Bromoform (ug/l)	No MCL		ND	1.24	ND	2.52
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)	No MCL		0.51	ND	ND	ND
Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	1.29
I,I-Dichloroethane	50.00		ND	ND	ND	ND
MTBE (ug/l)	No MCL		ND	ND	1.12	ND
Tetrachloroethene (ug/l)	1.00		ND	ND	4.25	ND
1,1,1-Trichloroethane (ug/l)	30.00		1.88	ND	1.46	ND
Trichloroethene (ug/l)	1.00		ND	ND	1.72	ND
	Maximum	Monitoring Well	W-2	W-2	W-2	W-2
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	10/1999	10/1999	10/1999	10/1999
Bromoform (ug/l)	No MCL		ND	2.79		2 00
Bromodichloromethane (ug/l)	No MCL		ND ND	2.79 ND	ND	3.99
Chloroform (ug/l)	No MCL		ND		ND	ND
Cis-1,2 Dichloroethene	70.00		ND	ND ND	ND	ND
Dibromochloromethane (ug/l)	No MCL		ND	0.68	ND	ND 0.66
1,1-Dichloroethane	50.00		ND ND	0.68 ND	ND	0.66
MTBE (ug/l)	No MCL		0.58		ND	ND
Tetrachloroethene (ug/l)	1.00		4.57	ND ND	0.95	ND
1,1,1-Trichloroethane (ug/l)	30.00		4.57	ND	4.51	ND
Trichloroethene (ug/l)	1.00		1.50	ND	1.05	ND
	1,00		1.70	עא	1.47	ND

_

-

:

—

·····

## 854820442

.

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

_		Maximum Contaminant Level (MCL)	Monitoring Well Influent/Effluent Sample Matrix Date Collected	W-2 Influent Water 9/1999	W-2 Effluent Water 9/1999	W-2 Influent Water 9/1999	W-2 Effluent Water 9/1999
	Bromoform (ug/l)	No MCL		ND ND	1.30 ND	ND ND	ND ND
_	Bromodichloromethane (ug/l)	No MCL No MCL		ND ND	ND	ND	ND
	Chloroform (ug/l) Cis-1,2 Dichloroethene	70.00		23,90	ND	2.37	ND
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		ND	ND	ND	ND
	Tetrachloroethene (ug/l)	1.00		20.60	ND	5,49	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.97	ND	ND	ND
-	Trichloroethene (ug/l)	1.00		7.05	ND	1.91	ND
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	8/1999	8/1999	8/1999	8/1999
				ND	1.50	ND	3.67
—	Bromoform (ug/l)	No MCL No MCL		ND	0.48.	ND	ND
	Bromodichloromethane (ug/l)	No MCL No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	70.00		ND	ND	ND	ND
_	Cis-1,2 Dichloroethene Dibromochloromethane (ug/l)	No MCL		ND	2.89	ND	1.02
	1.1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		0.57	ND	0.72	0.50
	Tetrachloroethene (ug/l)	1.00		4.41	ND	4.21	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.05	ND	0.88	ND
	Trichloroethene (ug/l)	1.00		1.72	ND	1.68	ND
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	7/1999	7/1999	7/1999 (Repeat)	7/1999 (Repeat)
	Bromoform (ug/l)	No MCL		ND	2.02	ND	1.41
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
—	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		6.56	1.08	ND	ND ND
	1,1-Dichloroethane	50.00		ND	ND	ND 0.76	ND ND
	MTBE (ug/l)	No MCL		1.00	0.61	0.76	ND
-	Tetrachloroethene (ug/l)	1.00		ND	ND	<b>3.64</b> 1.50	ND ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.43	ND ND	2.05	ND
	Trichloroethene (ug/l)	1.00		1.97	ND	2.03	ND

854820443

_____

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

---

_

		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
_		(MCL)	Date Collected	7/1999 (repeat)	7/1999 (repeat)	7/1999 (Repeat)	7/1999 (Repeat)
	Bromoform (ug/l)	No MCL		3.73	ND	ND	ND
-	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		0.96	ND	ND	ND
_	1,1-Dichloroethane	50.00		ND	0.64	ND	ND
	MTBE (ug/l)	No MCL		0.45J	0.87	ND	ND
	Tetrachloroethene (ug/l)	1.00		ND	4.97	ND	ND
	1,1,1-Trichloroethane (ug/l)	30.00		ND	1.30	ND	ND
	Trichloroethene (ug/l)	1.00		ND	2.05	ND	ND
	Themosoculoue (ug, t)						
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	6/1999	6/1999	6/1999	6/1999
-	Bromoform (ug/l)	No MCL		ND	2.70	ND	ND
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		1.06	ND	ND	ND
-	Dibromochloromethane (ug/l)	No MCL		ND	1.16	ND	ND
	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		ND	ND	ND	ND
	Tetrachloroethene (ug/l)	1.00		5.49	ND	4,40	ND
_	1,1,1-Trichloroethane (ug/l)	30.00		ND	ND	0.80	ND
	Trichloroethene (ug/l)	1.00		1.39	ND	1.34	ND
			1.6	W-2	W-2	W-2	W-2
		Maximum Contaminant	Monitoring Well Influent/Effluent	w-2 Influent	Etfluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
				5/1999	5/1999	5/1999	5/1999
		(MCL)	Date Collected	3/1999	3/1999	5/1999	5/1999
-	Bromoform (ug/i)	No MCL		ND	ND	ND	ND
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
•	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
—	•	No MCL		ND	ND	ND	ND
	Dibromochloromethane (ug/i)	50.00		ND	ND	ND	ND
:	1,1-Dichloroethane	No MCL		ND	ND	ND	ND
	MTBE (ug/l)	1.00		4.80	ND	4.77	ND
	Tetrachloroethene (ug/i)			9.66	ND	0.81	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.25	ND	1.43	ND
	Trichloroethene (ug/l)	1.00		1.43		1.75	

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

-							
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
_		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	4/1999	4/1999	4/1999	4/1999
		b					
	Bromoform (ug/l)	No MCL		ND	ND	ND	ND
-	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
—	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		ND	ND	ND	0.48J
	Tetrachloroethene (ug/l)	1.00		4.64	ND	4.64	ND
	1,1,1-Trichloroethane (ug/l)	30.00		0.96	ND	0.96	ND
-	Trichloroethene (ug/l)	1.00		1,42	ND	1.43	ND
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	3/1999	3/1999	3/1999	3/1999
					1.17	ND	ND
	Bromoform (ug/l)	No MCL		ND	1.37		
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND ND	1.06 ND	ND	ND
	1,1-Dichloroethane	50.00 No MCL		ND	ND ND	ND	ND
	MTBE (ug/l)	NO MUL 1.00		3,39	ND	2,80	ND
	Tetrachloroethene (ug/l) 1,1,1-Trichloroethane (ug/l)	30.00		0.93	ND	0.92	ND
	Trichloroethene (ug/l)	1.00		1.29	ND	1.40	ND
	Themoroeutene (ug/t)	1.00		1.47	ND	1.40	ND
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	2/1999	2/1999	2/1999	2/1999
—							
	Bromoform (ug/l)	No MCL		ND	4.49	ND	ND
	Bromodichloromethane (ug/l)	No MCL		ND	1.14	ND	ND
	Chloroform (ug/l)	No MCL		1.06	ND	ND	ND
_	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND	1.67	ND	ND
	1,1-Dichloroethane	50.00		1.15	ND	ND	ND
	MTBE (ug/l)	No MCL		0.59	0.57	ND	1.32
-	Tetrachloroethene (ug/l)	1.00		5.96	ND	ND	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.83	ND	ND	ND
	Trichloroethene (ug/l)	1.00		2.25	ND	ND	ND

.....

_

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

-							
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
-		(MCL)	Date Collected	1/1999	1/1999	1/1999	1/1999
		<u> </u>					
1	Bromoform (ug/l)	No MCL		ND	ND	ND	1.38
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1.1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		ND	0.97	ND	ND
	Tetrachloroethene (ug/l)	1.00		1.34	ND	ND	ND
	1.1.1-Trichloroethane (ug/l)	30.00		1.10	ND	0.84	ND
	Trichloroethene (ug/l)	1.00		0.82	ND	ND	ND
Ī							
-		Maximum	Monitoring Well	₩-3	W-3	W-3	W-3
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	12/1999	12/1999	12/1999	12/1999
				ND	1.42	ND	10.00
	Bromoform (ug/l)	No MCL		ND	ND	ND	1.53
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	0.48J
	Chloroform (ug/l)	No MCL		11.00	ND	2.44	ND
	Cis-1,2 Dichloroethene	70.00		ND	0.65	ND	5.14
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1,1-Dichloroethane	50.00		0.93	ND	2.02	0.82
	MTBE (ug/l)	No MCL		25.80	ND	3.94	ND
	Tetrachloroethene (ug/l)	1.00			ND	ND	ND
	1,1,1-Trichloroethane (ug/l)	30.00		0.89	ND	1.65	ND
1	Trichloroethene (ug/l)	1.00		7,60		1.05	
		Maximum	Monitoring Well	W-3	W-3	W-3	W-3
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	11/1999	11/1999	11/1999	11/1999
E	Bromoform (ug/l)	No MCL		ND	9.16	ND	6.18
F	Bromodichloromethane (ug/l)	No MCL		ND	0.80	ND	1.10
(	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
(	Cis-1,2 Dichloroethene	70.00		ND	ND	12.90	ND
I	Dibromochloromethane (ug/l)	No MCL		ND	6.06	ND	2.79
1	1,1-Dichloroethane	50.00		ND	ND	ND	ND
M	MTBE (ug/l)	No MCL		ND	ND	1.57	ND
1	Tetrachloroethene (ug/l)	1.00		4.39	ND	27.90	ND
1	1,1,1-Trichloroethane (ug/l)	30.00		ND	ND	1.69 <b>8.08</b>	ND ND
		1.00		ND	ND		

-

.

- -
- .
- ----
- 1

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Maximum	Monitoring Well	W-3	W-3	W-3	W-3
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	10/1999	10/1999	10/1999	10/1999
Bromoform (ug/l)	No MCL		ND	9.13	ND	4.84
Bromodichloromethane (ug/l)	No MCL		ND	0.45J	ND	0.41J
Chloroform (ug/l)	No MCL		ND	ND	ND	ND
Cis-1.2 Dichloroethene	70.00		11.90	ND	3.28	ND
Dibromochloromethane (ug/l)	No MCL		ND	3.12	ND	1.75
	50.00		ND	ND	ND	ND
1,1-Dichloroethane	No MCL		1.05	0.70	0.73	ND
MTBE (ug/l)	1.00		23.50	ND	11.00	ND
Tetrachloroethene (ug/l)	30.00		1.01	ND	ND	ND
1,1,1-Trichloroethane (ug/l)	1.00		9.46	ND	2.78	ND
Trichloroethene (ug/l)	1.00		2.40			
	Maximum	Monitoring Well	W-3	W-3	W-3	W-3
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	9/1999	9/1999	9/1999	9/1999
	No MCL		ND	ND	ND	1.62
Bromoform (ug/l)	No MCL		ND	ND	ND	ND
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)	70.00		ND	ND	17.23	ND
Cis-1,2 Dichloroethene Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
1,1-Dichloroethane	50.00		0.66	ND	ND	ND
MTBE (ug/l)	No MCL		ND	ND	ND	ND
Tetrachloroethene (ug/l)	1.00		4.59	ND	13.20	ND
1,1,1-Trichloroethane (ug/l)	30.00		1.97	ND	1.80	ND
Trichloroethene (ug/l)	1.00		1.80	ND	5.94	ND
					W-3	W-3
	Maximum	Monitoring Well	W-3	W-3	·· •	Effluent
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Water
	Level	Sample Matrix	Water	Water	Water	8/1999
	(MCL)	Date Collected	8/1999	8/1999	8/1999	8/1999
Bromoform (ug/l)	No MCL		ND	ND	ND	ND
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)	No MCL		ND	ND	ND	ND
Cis-1,2 Dichloroethene	70.00		3.84	ND	9.95	ND
Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
1,1-Dichloroethane	50.00		ND	ND	ND	ND
MTBE (ug/l)	No MCL		0.48J	ND	ND	ND
Tetrachloroethene (ug/l)	1.00		9.32	ND	28.40	ND
1,1,1-Trichloroethane (ug/l)	30.00		0.62	ND	0.90	ND
				ND	8.79	ND

----

_

- .
- ----

- -

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

_		Maximu <b>m</b> Contaminant Level (MCL)	Monitoring Well Influent/Effluent Sample Matrix Date Collected	W-3 Influent Water 7/1999	W-3 Effluent Water 7/1999	W-3 Influent Water 7/1999	W-3 Effluent Water 7/1999
	Bromoform (ug/l)	No MCL		ND	8.53	ND	6.00
	Bromodichloromethane (ug/l)	No MCL		ND	0.77	ND	1.08
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		4.10	ND	9.03	ND
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	2.55
	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		1.25	0.47J	0.85	ND
	Tetrachioroethene (ug/l)	1.00		9.32	ND	19.90	ND
	1,1,1-Trichloroethane (ug/l)	30.00		0.51	ND	ND	ND
	Trichloroethene (ug/l)	1.00		3.20	ND	7.32	ND
					117.2	W-3	W-3
	· · · · · · · · · · · · · · · · ·	Maximum	Monitoring Well	W-3	W-3	w-3 Influent	Effluent
		Contaminant	Influent/Effluent	Influent	Effluent	Water	Water
		Level	Sample Matrix	Water	Water	6/1999	6/1999
		(MCL)	Date Collected	6/1999	6/1999	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	0/1777
				ND	3,87	ND	5.66
-	Bromoform (ug/l)	No MCL		ND	0.423	ND	0.67
	Bromodichloromethane (ug/l)	No MCL		ND	0.423 ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	8.05	ND
	Cis-1,2 Dichloroethene	70.00		10.20	1.56	ND	2.22
—	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1,1-Dichloroethane	50.00		ND	ND ND	0.49J	ND
	MTBE (ug/l)	No MCL		1.25	ND ND	23.70	ND
	Tetrachloroethene (ug/l)	1.00		25.80		0.96	ND
-	1,1,1-Trichloroethane (ug/l)	30.00		0.87	ND ND	6.63	ND
	Trichloroethene (ug/l)	1.00		7.67		0.05	
		Hovimum	Monitoring Well	W-3	W-3	W-3	W-3
		Maximum Contaminant	Monttoring wen Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	5/1999	5/1999	5/1999	5/1999
			Dute Conecieu				
-	Disma form (und)	No MCL		ND	8.72	ND	1.44
	Bromoform (ug/l) Bromodichloromethane (ug/l)	No MCL		ND	0.43J	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
		70.00		6.87	ND	9.24	ND
-	Cis-1,2 Dichloroethene Dibromochloromethane (ug/l)	No MCL		ND	3.00	ND	0.78
		50.00		ND	ND	ND	ND
	1,1-Dichloroethane	No MCL		1.25	ND	0.49J	ND
	MTBE (ug/l)	1.00		20.50	ND	22.70	ND
_	Tetrachloroethene (ug/l)	30.00		0.67	ND	0.86	ND
	1,1,1-Trichloroethane (ug/l)	1.00		6.30	ND	6.36	ND
	Trichloroethene (ug/l)	1.00					

•

- ---
- -
- -----

Page 7 of 18

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Maximum	Monitoring Well	W-3	W-3	W-3	W-3
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Levei	Sample Matrix	Water	Water	Water	Water
-	(MCL)	Date Collected	4/1999	4/1999	4/1999	4/1999
	No MCL		ND	1.09	ND	1.69
Bromoform (ug/l)	No MCL		ND	ND	ND	ND
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)			5.31	ND	5.31	ND
Cis-1,2 Dichloroethene	70.00		ND	ND	ND	0.71
Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
1,1-Dichloroethane	50.00		1.25	ND	ND	ND
MTBE (ug/l)	No MCL			ND	5.45	ND
Tetrachloroethene (ug/l)	1.00		11.30	ND	ND	ND
1,1,1-Trichloroethane (ug/l)	30.00		0.51	ND	1.85	ND
Trichloroethene (ug/l)	1.00		3.12	ND	1,05	ND
	Maximum	Monitoring Well	W-3	W-3	W-3	W-3
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	3/1999	3/1999	3/1999	3/1999
	(MOL)	Dale Conected		511737		
Bromoform (ug/l)	No MCL		ND	4.49	ND	2.69
Bromodichloromethane (ug/l)	No MCL		ND	0.51	ND	ND
Chloroform (ug/l)	No MCL		ND	ND	ND	ND
Cis-1,2 Dichloroethene	70.00		9.16	ND	ND	ND
Dibromochloromethane (ug/l)	No MCL		ND	2.25	ND	1.54
1,1-Dichloroethane	50.00		ND	ND	ND	ND
MTBE (ug/l)	No MCL		ND	ND	ND	ND
Tetrachloroethene (ug/l)	1.00		17.80	ND	4.11	ND
1,1,1-Trichloroethane (ug/l)	30.00		0.81	ND	ND	ND
Trichloroethene (ug/l)	1.00		5.89	ND	0.84	ND
	Maximum	Monitoring Well	W-3	W-3	W-3	W-3
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	2/1999	2/1999	2/1999	2/1999
		Dale Conecieu	2/1///			
Bromoform (ug/l)	No MCL		ND	3,18	ND	4.60
Bromodichloromethane (ug/l)	No MCL		ND	1.15	ND	0.73
Chloroform (ug/l)	No MCL		ND	ND	ND	0.64
Cis-1,2 Dichloroethene	70.00		10.20	ND	3.32	ND
Dibromochloromethane (ug/l)	No MCL		ND	1.57	ND	2.59
1,1-Dichloroethane	50.00		ND	ND	ND	ND
MTBE (ug/l)	No MCL		0.62	ND	ND	ND
MIBE (ug/l) Tetrachloroethene (ug/l)	1.00		19.70	ND	7.06	ND
	30.00		1.59	ND	ND	ND
1,1,1-Trichloroethane (ug/l)	1.00		6.29	ND	2.10	ND
Trichloroethene (ug/l)	1.00		V.27			

.

-

- -----

- -

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

	Maximum Contaminant Level (MCL)	Monitoring Well Influent/Effluent Sample Matrix Date Collected	W-3 Influent Water 1/1999	W-3 Effluent Water 1/1999	W-3 Influent Water 1/1999	W-3 Effluent Water 1/1999
Bromoform (ug/l)	No MCL		ND	6.58	ND	3.82
Bromodichloromethane (ug/l)	No MCL		ND	1.50	ND	0.94
Chloroform (ug/l)	No MCL		ND	0.65	ND	ND
Cis-1,2 Dichloroethene	70.00		0.71	ND	0.70	ND
Dibromochloromethane (ug/l)	No MCL		ND	3.07	ND	2.74
1, i-Dichloroethane	50.00		ND	ND	ND	ND
MTBE (ug/l)	No MCL		0.62	ND	ND	ND
Tetrachloroethene (ug/l)	1.00		1.83	ND	2.71	ND
1,1,1-Trichloroethane (ug/l)	30.00		ND	ND	ND	ND
Trichloroethene (ug/i)	1.00		0.78	ND	1.18	ND
	Maximum	Monitoring Well	W-7	W-7	W-7	W-7
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluen
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	12/1999	12/1999	12/1999	12/1999
Bromoform (ug/l)	No MCL		ND	ND	ND	2.74
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)	No MCL		ND	ND	ND	ND
Cis-1,2 Dichloroethene	70.00		1.10	ND	1.73	ND
Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	1.4
	50.00		ND	ND	ND	ND
l, l-Dichloroethane MTBE (ug/l)	No MCL		ND	ND	ND	ND
Tetrachloroethene (ug/l)	1.00		6.48	ND	7.21	ND
1,1,1-Trichloroethane (ug/l)	30.00		ND	ND	ND	ND
Trichloroethene (ug/l)	1.00		1.62	ND	2.02	ND
	Maximum	Monitoring Well	W-7	W-7	W-7	W-7
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluen
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	11/1999	11/1999	11/1999	11/1999
Bromoform (ug/l)	No MCL		ND	5.41	ND	4.38
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	0.64
Chloroform (ug/l)	No MCL		ND	ND	0.47J	ND
Cis-1,2 Dichloroethene	70.00		0.69	ND	2.54	ND
Dibromochloromethane (ug/l)	No MCL		ND	1.77	ND	2.48
I,1-Dichloroethane	50.00		ND	ND	ND	ND
MTBE (ug/l)	No MCL		ND	ND	ND	ND
Tetrachloroethene (ug/l)	1.00		6.48	ND	4.83	ND
• •	30.00		ND	ND	0.53	ND
1,1,1-Trichloroethane (ug/l)				ND	1.62	ND

- ----

- ____

Page 9 of 18

.

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

		Maximum	Monitoring Well	W-7	W-7	W-7	W-7
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Levei	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	10/1999	10/1999	10/1999	10/1999
			Dure Conecteu	10/1///			
	Bromoform (ug/l)	No MCL		ND	0.52	ND	3.80
		No MCL		ND	ND	ND	ND
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	70.00		1.13	ND	3.41	ND
	Cis-1,2 Dichloroethene	,		ND	ND	ND	1.42
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1,1-Dichloroethane	50.00			ND	ND	ND
	MTBE (ug/l)	No MCL		ND		5.06	ND
	Tetrachloroethene (ug/l)	1.00		6.02	ND		ND
	1,1,1-Trichloroethane (ug/l)	30.00		ND	ND	ND	ND
-	Trichloroethene (ug/l)	1.00		1.64	ND	1.97	ND
		Maximum	Monitoring Well	W-7	W-7	W-7	W-7
			Monttoring reu Influent/Effluent	Influent	Effluent	Influent	Effluent
_		Contaminant		Water	Water	Water	Water
		Level	Sample Matrix		9/1999	9/1999	9/1999
		(MCL)	Date Collected	9/1999	9/1999	7(1375	
		No MCL		ND	ND	ND	0.53
	Bromoform (ug/l)	No MCL		ND	ND	ND	ND
	Bromodichloromethane (ug/l)			ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	1.84	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
-	Dibromochloromethane (ug/l)	No MCL			ND	ND	ND
	1,1-Dichloroethane	50.00		0.53		ND	ND
	MTBE (ug/l)	No MCL		ND	ND		ND
	Tetrachloroethene (ug/l)	1.00		4,53	ND	1.79	ND
—	1,1,1-Trichloroethane (ug/i)	30.00		1.57	ND	ND	
	Trichlorocthene (ug/l)	1.00		1.75	ND	1.61	ND
			Manitaning Walt	W-7	W-7	W-7	W-7
		Maximum	Monitoring Well	W-7 Influent	Effluent	Influent	Effluent
		Contaminant	Influent/Effluent	Water	Water	Water	Water
		Level	Sample Matrix	8/1999	8/1999	8/1999	8/1999
		(MCL)	Date Collected	8/1999	3/1377	011777	
	Bromoform (ug/l)	No MCL		ND	9.43	ND	5.24
	Bromodichloromethane (ug/l)	No MCL		ND	8.69	ND	0.97
		No MCL		ND	5.24	ND	ND
	Chloroform (ug/l)	70.00		0.78	ND	ND	ND
	Cis-1,2 Dichloroethene	No MCL		ND	14.20	ND	2.47
	Dibromochloromethane (ug/l)	50.00		ND	ND	ND	ND
	1,1-Dichloroethane			ND	ND	ND	NÐ
	MTBE (ug/l)	No MCL		4.53	ND	ND	ND
	Tetrachloroethene (ug/l)	1.00		4.53 ND	ND	ND	ND
	1,1,1-Trichloroethane (ug/l)	30.00			ND ND	0.79	ND
	Trichloroethene (ug/l)	1.00		1.53	NU	0.79	14D

- . ....
- —

.

- -
- _

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

-	

_		Maximum Contaminant Level	Monitoring Well Influent/Effluent Sample Matrix	W-7 Influent Water	W-7 Effluent Water	W-7 Influent Water 7/1999	W-7 Effluent Water 7/1999
		(MCL)	Date Collected	7/1999	7/1999	//1999	11000
				ND	14.10	ND	5.48
	Bromoform (ug/l)	No MCL		ND	0.53	ND	0.76
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		0.84	ND	1.67	ND
	Cis-1,2 Dichloroethene	70.00		ND	3.87	ND	2.62
-	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		4.82	ND	5.24	ND
	Tetrachioroethene (ug/l)	1.00		ND	ND	ND	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.53	ND	1.74	ND
	Trichloroethene (ug/l)	1.00		1,55	ND	1	
		Maximum	Monitoring Well	W-7	W-7	W-7	W-7
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
-		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	6/1999	6/1999	6/1999	6/1999
			Dale Conected	0/1777			
	/ _	No MCL		ND	1.60	ND	4.73
	Bromoform (ug/l)	No MCL		ND	ND	ND	ND
	Bromodichloromethane (ug/l)	No MCL No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	N8 MCL 70.00		ND	ND	ND	ND
	Cis-1,2 Dichloroethene			ND	ND	ND	1.54
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		4.66	ND	ND	ND
	Tetrachloroethene (ug/l)	1.00		0.88	ND	ND	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.50	ND	0.62	ND
	Trichloroethene (ug/l)	1.00		1.50			
		Maximum	Monitoring Well	W-7	W-7	W-7	W-7
_		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	5/1999	5/1999	5/1999	5/1999
	Bromoform (ug/l)	No MCL		ND	ND	ND	ND
	Bromotorin (ug/1) Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
:	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
		70.00		1.36	ND	3.36	ND
	Cis-1,2 Dichloroethene	No MCL		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	50.00		ND	ND	ND	ND
	1,1-Dichloroethanc	No MCL		ND	ND	ND	ND
	MTBE (ug/l)	1.00		6.59	ND	6.78	ND
	Tetrachloroethene (ug/l)	30.00		ND	ND	ND	ND
	1,1,1-Trichloroethane (ug/l)	1.00		1.34	ND	1.52	ND
	Trichloroethene (ug/l)	1.00					

- :
- .
- ___
- —

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

.....

_

	Maximum	Monitoring Well	<b>W-</b> 7	W-7	W-7	W-7
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	4/1999	4/1999	4/1999	4/1999
			ND	1.25	ND	1.12
Bromoform (ug/l)	No MCL		ND	ND	ND	ND
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)	No MCL		0.79	ND	1,17	ND
Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
1,1-Dichloroethane	50.00		ND	ND	ND	ND
MTBE (ug/l)	No MCL				6.75	ND
Tetrachloroethene (ug/l)	1.00		11.00	ND	ND	ND
1,1,1-Trichloroethane (ug/l)	30.00		ND	ND	1.67	ND
Trichloroethene (ug/l)	1.00		1.31	ND	1.07	ND
	Maximum	Monitoring Well	W-7	W-7	W-7	₩-7
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	3/1999	3/1999	3/1999	3/1999
	(MOL)	Dure Content				
Bromoform (ug/l)	No MCL		ND	3.20	ND	ND
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)	No MCL		ND	ND	ND	ND
Cis-1.2 Dichloroethene	70.00		1.75	ND	1.36	ND
Dibromochloromethane (ug/l)	No MCL		ND	1.44	ND	ND
1,1-Dichloroethane	50.00		ND	ND	ND	ND
	No MCL		ND	ND	ND	ND
MTBE (ug/l)	1.00		6.91	ND	6.88	ND
Tetrachloroethene (ug/l)	30.00		ND	ND	ND	ND
1,1,1-Trichloroethane (ug/l)	1.00		1.80	ND	1.76	ND
Trichloroethene (ug/l)	1.00		100			
	Maximum	Monitoring Well	W-7	W-7	W-7	W-7
	Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
	Level	Sample Matrix	Water	Water	Water	Water
	(MCL)	Date Collected	2/1999	2/1999	2/1999	2/1999
				ND	2.13	ND
Bromoform (ug/l)	No MCL		ND		2.13 ND	ND
Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
Chloroform (ug/l)	No MCL		1.17	ND	ND	ND
Cis-1,2 Dichloroethene	70.00		3.20	ND	1.05	ND
Dibromochloromethane (ug/l)	No MCL		ND	ND		ND
1,1-Dichloroethane	. 50.00		0.86	ND	ND	ND ND
MTBE (ug/l)	No MCL		ND	ND	ND	
Tetrachloroethene (ug/l)	1.00		8.37	ND	ND	ND
1.1.1-Trichloroethane (ug/l)	30.00		1.25	ND	ND	ND
Trichloroethene (ug/l)	1.00		2.73	ND	ND	ND

- -
- -
- ----
- ţ
- ----

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

		Maximum	Monitoring Well	W-7	W-7	W-7	W-7
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	1/1999	1/1999	1/1999	1/1999
		(MOL)	Dute concerta				
		No MCL		ND	2.34	ND	ND
	Bromoform (ug/l)	No MCL		ND	ND	ND	ND
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	70.00		ND	ND	ND	ND
	Cis-1,2 Dichloroethene			ND	0.57	ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
-	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBÉ (ug/l)	No MCL			ND	ND	ND
	Tetrachloroethene (ug/l)	1.00		•	ND	ND	ND
	1,1,1-Trichloroethane (ug/l)	30.00		ND		1.07	ND
	Trichloroethene (ug/l)	1.00		ND	ND	1.07	ND
					W-2	W-2	W-2
		Maximum	Monitoring Well	W-2		Influent	Effluent
		Contaminant	Influent/Effluent	Influent	Effluent	Water	Water
		Level	Sample Matrix	Water	Water		May-00
		(MCL)	Date Collected	May-00	May-00	May-00	May-00
					2.02	ND	0.99
	Bromoform (ug/l)	No MCL		ND	2.02	ND	ND
	Bromodichloromethane (ug/l)	No MCL		ND	ND		ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND ND
	1,1-Dichloroethane	50.00		ND	ND	ND	
	MTBE (ug/l)	No MCL		0.43J	ND	0.51	ND
	Tetrachloroethene (ug/l)	1.00		1.84	ND	2.16	ND
-	1,1,1-Trichloroethane (ug/l)	30.00		0.61	ND	0.71	ND
	Trichloroethene (ug/l)	1.00		ND	ND	ND	ND
						W-2	W-2
		Maximum	Monitoring Well	W-2	W-2		Effluent
-		Contaminant	Influent/Effluent	Influent	Effluent	Influent	
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	Apr-00	Apr-00	Apr-00	Apr-00
	Bromoform (ug/l)	No MCL		ND	3.41	ND	5.06
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		0.68	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND	0.74	ND	1.5
	1,1-Dichloroethane	50.00		ND	ND	ND	ND
	MTBE (ug/l)	No MCL		ND	ND	0.63	ND
_	Tetrachloroethene (ug/l)	1.00		ND	ND	4.63	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.69	ND	1.02	ND
	Trichloroethene (ug/l)	1.00		ND	ND	1.56	ND
	thenotoence (up i)						

- ----
- _
- .
- ----

#### MUNICIPAL WELL SAMPLING SUMMARY (MCL EXCEEDANCES) TEVA PHARMACEUTICALS USA WALDWICK, NEW JERSEY

_

		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
—		(MCL)	Date Collected	Mar-00	Mar-00	Mar-00	Mar-00
		(MCL)	Duie Concellea	11111 00			
	Bromoform (ug/l)	No MCL		ND	1.61	ND	5.37
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	1.22	ND
	-	No MCL		ND	0.51	ND	0.85
	Dibromochloromethane (ug/l)	50.00		ND	ND	ND	ND
	1,1-Dichloroethane	No MCL		1.19	0.53	ND	ND
	MTBE (ug/l)	1,00		5.62	ND	1.08	ND
	Tetrachloroethene (ug/l)			1.14	ND	2.43	ND
	1,1,1-Trichloroethane (ug/l)	30.00		1.53	ND	0.85	ND
	Trichloroethene (ug/l)	1.00		1.33	ND	0.05	
			Martine Wall	W-2	W-2	W-2	W-2
		Maximum	Monitoring Well	W-2 Influent	Effluent	Influent	Effluent
_		Contaminant	Influent/Effluent		Water	Water	Water
		Level	Sample Matrix	Water		Feb-00	Feb-00
		(MCL)	Date Collected	Feb-00	Feb-00	re0-00	100-00
		No MCL		ND	2.18	ND	1.56
	Bromoform (ug/l)	No MCL		ND	ND	ND	ND
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
	Chloroform (ug/l)	70.00		ND	ND	ND	ND
	Cis-1,2 Dichloroethene			ND	ND	ND	ND
	Dibromochloromethane (ug/l)	No MCL		ND	ND	ND	ND
	1,1-Dichloroethane	50.00		0.57	ND	1.02	.41J
	MTBE (ug/l)	No MCL		1.83	ND	6.78	ND
	Tetrachloroethene (ug/l)	1.00		0.73	ND	1.29	ND
	1,1,1-Trichloroethane (ug/l)	30.00		0.75	ND	1.71	ND
	Trichloroethene (ug/l)	1.00		0.51	ND	1.71	
		Maximum	Monitoring Well	W-2	W-2	W-2	W-2
_		Contaminant	Influent/Effluent	Influent	Effluent	Influent	Effluent
		Level	Sample Matrix	Water	Water	Water	Water
		(MCL)	Date Collected	Jan-00	Jan-00	Jan-00	Jan-00
			Duit concerna				
	Bromoform (ug/l)	No MCL		ND	7.87	ND	11.20
	Bromodichloromethane (ug/l)	No MCL		ND	ND	ND	ND
:	Chloroform (ug/l)	No MCL		ND	ND	ND	ND
	Cis-1,2 Dichloroethene	70.00		ND	ND	ND	ND
—	Dibromochloromethane (ug/l)	No MCL		ND	1.24	ND	1.99
		50.00		ND	ND	ND	ND
	1,1-Dichloroethane	No MCL		0.55	ND	0.59	ND
	MTBE (ug/l)	1.00		3.17	ND	4.16	ND
	Tetrachloroethene (ug/l)			0.71	ND	0.60	ND
	1,1,1-Trichloroethane (ug/l)	30.00		0.99	ND	1.26	ND
	Trichloroethene (ug/l)	1.00	· · · · · · · · · · · · · · · · · · ·	V.77		A18 V	

- ---
- .
- -
- ...
- ___



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

#### SEF 1 5 2003

#### GENERAL NOTICE LETTER CERTIFIED MAIL-RETURN RECEIPT REQUESTED

George Barrett, President Teva Pharmaceuticals USA Inc. 1090 Horsham Road North Wales, Pennsylvania 19454

RE: Diamond Alkali Superfund Site Notice of Potential Liability for Response Actions in the Lower Passaic River, New Jersey

Dear Mr. Barrett:

The United States Environmental Protection Agency ("EPA") is charged with responding to the release and/or threatened release of hazardous substances, pollutants, and contaminants into the environment and with enforcement responsibilities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended ("CERCLA"), 42 U.S.C. §9601 et seq. Accordingly, EPA is seeking your cooperation in an innovative approach to environmental remediation and restoration activities for the Lower Passaic River.

EPA has documented the release or threatened release of hazardous substances, pollutants and contaminants into the six-mile stretch of the river, known as the Passaic River Study Area, which is part of the Diamond Alkali Superfund Site ("Site") located in Newark, New Jersey. Based on the results of previous CERCLA remedial investigation activities and other environmental studies, including a reconnaissance study of the Passaic River conducted by the United States Army Corps of Engineers ("USACE"), EPA has further determined that contaminated sediments and other potential sources of hazardous substances exist along the entire 17-mile tidal reach of the Lower Passaic River. Thus, EPA has decided to expand the Study to include the areal extent of contamination to which hazardous substances from the six-mile stretch were transported; and those sources from which hazardous substances outside the six-mile stretch have come to be located within the expanded Study Area.

By this letter, EPA is notifying Teva Pharmaceuticals USA Inc. ("Teva") of its potential liability relating to the Site pursuant to Section 107(a) of CERCLA, 42 U.S.C. §9607(a). Under CERCLA, potentially responsible parties ("PRPs") include current and past owners of a facility, as well as persons who arranged for the disposal or treatment of hazardous substances at the Site, or the transport of hazardous substances to the Site.

Internet Address (URL) + http://www.epa.gov Recycled/Recyclable + Printed with Vegetable Oll Based Inks on Recycled Paper (Minimum 50% Postconsumer content)

In recognition of our complementary roles, EPA has formed a partnership with USACE and the New Jersey Department of Transportation-Office of Maritime Resources ("OMR") ["the governmental partnership"] to identify and to address water quality improvement, remediation, and restoration opportunities in the 17-mile Lower Passaic River. This governmental partnership is consistent with a national Memorandum of Understanding ("MOU") executed on July 2, 2002 between EPA and USACE. This MOU calls for the two agencies to cooperate, where appropriate, on environmental remediation and restoration of degraded urban rivers and related resources. In agreeing to implement the MOU, the EPA and USACE will use their existing statutory and regulatory authorities in a coordinated manner. These authorities for EPA include CERCLA, the Clean Water Act, and the Resource Conservation and Recovery Act. The USACE's authority stems from the Water Resources Development Act ("WRDA"). WRDA allows for the use of some federal funds to pay for a portion of the USACE's approved projects related to ecosystem restoration.

For the first phase of the Lower Passaic River Project, the governmental partners are proceeding with an integrated five- to seven-year study to determine an appropriate remediation and restoration plan for the river. The study will involve investigation of environmental impacts and pollution sources, as well as evaluation of alternative actions, leading to recommendations of environmental remediation and restoration activities. This study is being conducted by EPA under the authority of CERCLA and by USACE and OMR, as local sponsor, under WRDA. EPA, USACE, and OMR are coordinating with the New Jersey Department of Environmental Protection and the Federal and State Natural Resource Trustee agencies. EPA, USACE, and OMR estimate that the study will cost approximately \$20 million, with the WRDA and CERCLA shares being about \$10 million each. EPA will be seeking its share of the costs of the study from PRPs.

Based on information that EPA evaluated during the course of its investigation of the Site, EPA believes that hazardous substances were being released from the former Biocraft Laboratories facility located at 12 Industrial Park in Waldwick, New Jersey, into the Lower Passaic River. Hazardous substances, pollutants and contaminants released from the facility into the river present a risk to the environment and the humans who may ingest contaminated fish and shellfish. Therefore, Teva may be potentially liable for response costs which the government may incur relating to the study of the Lower Passaic River. In addition, responsible parties may be required to pay damages for injury to, destruction of, or loss of natural resources, including the cost of assessing such damages.

Enclosed is a list of the other PRPs who have received Notice letters. This list represents EPA's findings on the identities of PRPs to date. We are continuing efforts to locate additional PRPs who have released hazardous substances, directly or indirectly, into the Passaic River. Inclusion on, or exclusion from, the list does not constitute a final determination by EPA concerning the liability of any party for the release or threat of release of hazardous substances at the Site. Be advised that notice of your potential liability at the Site is being forwarded to all parties on this list.

We request that you consider becoming a "cooperating party" for the Lower Passaic River

Project. As a cooperating party, you, along with many other such parties, will be expected to fund EPA's share of the study costs. Upon completion of the study, it is expected that CERCLA and WRDA processes will be used to identify the required remediation and restoration programs, as well as the assignment of remediation and restoration costs. At this time, the commitments of the cooperating parties will apply only to the study. For those who choose not to cooperate, EPA may apply the CERCLA enforcement process, pursuant to Sections 106 (a) and 107(a) of CERCLA, 42 U.S.C. §9606(a) and §9607(a) and other laws.

Pursuant to CERCLA Section 113(k), EPA must establish an administrative record that contains documents that form the basis of EPA's decision on the selection of a response action for a site. The administrative record files, which contain the documents related to the response action selected for this Site are located at EPA's Region 2 office (290 Broadway, New York) on the 18th floor. You may call the Records Center at (212) 637-4308 to make an appointment to view the administrative record for the Lower Passaic River Project.

EPA will be holding a meeting with all PRPs on October 29, 2003 at 10:00 AM in Conference Room 27A at the Region 2 office. At that meeting, EPA will provide information about the actions taken to date in the Lower Passaic River, as well as plans for future activities. After the presentation, PRPs will be given the opportunity to caucus, and EPA will return to answer any questions that might be generated during the private session. Please be advised that due to increased security measures, all visitors need to be registered with the security desk in the lobby in order to gain entry to the office. In order to ensure a smooth arrival, you will need to provide EPA with a list of attendees no later than October 15, 2003.

EPA recommends that the cooperating parties select a steering committee to represent the group's interest as soon as possible, since EPA expects a funding commitment for the financing of the CERCLA share of the \$20 million study by mid-November 2003. If you wish to discuss this further, please contact Ms. Alice Yeh, Remedial Project Manager, at (212) 637-4427 or Ms. Kedari Reddy, Assistant Regional Counsel, at (212) 637-3106. Please note that all communications from attorneys should be directed to Ms. Reddy.

Sincerely yours,

George Pavlou, Director Emergency and Remedial Response Division

Enclosure

cc: Kirsten E. Bauer, Esq. Teva North America

PRPs in Receipt of Notice Letters:

.

PRP	Legal Counsel
J. Roger Hirl President and Chairman of the Board Occidental Chemical Co. Occidental Tower 5005 LBJ Freeway Dallas, Texas 75244	Paul W. Herring, Esq. Andrews & Kurth L.L.P. 1717 Main Street, Suite 3700 Dallas, Texas 75201
Joseph Gabriel Vice President of Operations 360 North Pastoria Environmental Corp. 1100 Ridgeway Avenue Rochester, New York 14652-6280	Philip Sellinger, Esq. Sills Cummis Zuckerman One Riverfront Plaza Newark, NJ 07102
Robert Ball, President	Lawrence Salibra, Esq.
Alcan Aluminum Corporation	Alcan Aluminum Corporation
100 Erieview Plaza, 29th Floor	6060 Parkland Blvd.
Cleveland, Ohio 44114	Mayfield Hts., OH 44124
Mark Epstein, President	Eric Aronson, Esq.
Alden Leeds Inc.	Whitman Breed Abbott & Morgan
55 Jacobus Ave.	One Gateway Center
Kearny, New Jersey 07032	Newark, NJ 07102
Alan Bendelius, President	Fredi L. Pearlmutter, Esq.
Alliance Chemical, Inc.	Cooper, Rose & English, LLP
Linden Avenue	480 Morris Avenue
Ridgefield, New Jersey 07657	Summit, New Jersey 07901-1527
William Gentner, President The Andrew Jergens Co. 2535 Spring Grove Ave. Cincinnati, Ohio 45214	A. Christian Worrell III, Esq. Head & Ritchey, LLP 1900 Fifth Third Center 511 Walnut Street Cincinnati, OH 45202
Gary Cappeline, President	Stephen Leermakers, Esq.
Ashland Specialty Chemical Co.	Ashland Specialty Chemical Co.
5200 Blazer Parkway	5200 Blazer Parkway
Dublin, Ohio 43017	Dublin, OH 43017
Klaus Peter Loebbe, President	Nan Bernardo, Esq. and Nancy Lake Martin, Esq.
BASF Corporation	BASF Corporation
3000 Continental Drive North	3000 Continental Drive North
Mount Olive, New Jersey 07828	Mount Olive, NJ 07828

	······································
Joseph Akers, Vice President	Gerard Hickel, Esq.
Bayer Corporation	Bayer Corporation
100 Bayer Road	100 Bayer Road
Pittsburgh, Pennsylvania 15205-9741	Pittsburgh, PA 15205-9741
Yvan Dupay, President	Arthur Schulz, Esq.
Benjamin Moore & Co.	Environmental Counsel
51 Chestnut Ridge Road	4910 Massachusetts Ave., N.W. Suite 221
Montvale, New Jersey 07645	Washington, DC 20016
Alberto Celleri, President	Jim Giannotti
Chemical Compounds Inc.	Chemical Compounds Inc.
10 Baldwin Court	29-75 Riverside Avenue
Roseland, New Jersey 07086	Newark, NJ 07104
President	Brian Kelly, Esq.
Chris-Craft Industries, Inc.	Chris-Craft Industries, Inc.
767 Fifth Avenue, 46th Floor	767 Fifth Avenue, 46th Floor
New York, New York 10153	New York, NY 10153
John Guffey, President Coltec Industries, Inc. 3 Coliseum Centre 2550 West Tyvola Road Charlotte, North Carolina 28217	John R. Mayo, Esq. Coltec Industries, Inc. 430 Park Avenue New York, NY 10022
Roger Marcus, President	Russell Hewit, Esq.
Congoleum Corporation	Dughi & Hewit
3705 Quakerbridge Road	340 North Avenue
Mercerville, New Jersey 08619	Cranford, NJ 07016
Martin Benante, Chairman	James Maher, Esq.
Curtiss-Wright Corp.	Curtiss-Wright Corp.
4 Becker Farm Road	4 Becker Farm Road
Roseland, New Jersey 07068	Roseland, NJ 07068
Antonio Perez, President	Elliot Stern, Esq.
Eastman Kodak Company	Eastman Kodak Company
343 State Street	343 State Street
Rochester, New York 14650	Rochester, NY 14650
Edgar Woolard, Chairman E.I. du Pont de Nemours & Co. 1007 Market Street Wilmington, Delaware 19898	Bernard J. Reilly, Esq. Corporate Counsel E.I. du Pont de Nemours & Co. 1007 Market Street Wilmington, DE 19898

•

.

----

1

David Weisman, CEO	Jeffrey Schwartz, Esq.
Elan Chemical Company	Sarber Schlesinger Satz & Goldstein
268 Doremus Ave.	One Gateway Center
Newark, New Jersey 07105	Newark, NJ 07102
Al Reisch, President E M Sergeant Pulp & Chemical Co. Inc. 6 Chelsea Road Clifton, New Jersey 07102	None
Mark Tucker, Esq. Essex Chemical Corp. 2030 WMDC Midland, Michigan 48674	Kenneth Mack, Esq. Fox, Rothschild, O'Brien & Frankel Princeton Pike Corp.Center 997 Lenox Drive, Building 3 Lawrenceville, NJ 08648
Todd Walker, President	John Ix, Esq.
Fairmount Chemical Co. Inc.	Porzio Bromberg & Newman
117 Blanchard St.	163 Madison Ave.
Newark, New Jersey 07105	Morristown, NJ 07962
Bradley Buechler, President	Robert M. Becker, Esq.
Franklin-Burlington Plastics Inc.	Kraemer, Burns, Mytelka & Lovell, P.A.
113 Passaic Ave.	675 Morris Ave.
Kearny, New Jersey 07032	Springfield, NJ 07081
Henry Benz, President	Anne Conley-Pitchell, Esq.
Hoescht Celanese Chemicals, Inc.	Hoescht Celanese Corp.
Route 202-206	Route 202-206
P.O.Box 2500	P.O.Box 2500
Somerville, New Jersey 08876	Somerville, NJ 08876
Francine Rothschild, President Kearny Smelting & Refining 936 Harrison Ave #5 Kearny, New Jersey 07032	None
Henry Schact, CEO	Ralph McMurry, Esq.
Lucent Technologies, Inc.	Hill, Betts & Nash LLP
600 Mountain Avenue	I Riverfront Plaza, Suite 327
Murray Hill, New Jersey 07974	Newark, NJ 07102-5401
Richard Meelia, President	Patricia Duft, Esq.
Mallinckrodt, Inc.	Mallinckrodt, Inc.
675 McDonnell Blvd.	675 McDonnell Blvd.
Hazelwood, Missouri 63042	Hazelwood, MO 63042

1

٠

•

Richard Mahoney, CEO	L. William Higley, Esq.
Monsanto Company	Monsanto Company
800 N. Lindbergh Blvd.	800 N. Lindbergh Blvd.
St. Louis, Missouri 63167	St. Louis, MO 63167
Joseph Galli, President Newell Rubbermaid, Inc. 29 E. Stephenson St. Freeport, Illinois 61032	Peter Schultz, Director Environmental Affairs Newell Co. 4000 Auburn St. Rockford, IL 61101
Jean-Pierre van Rooy, President Otis Elevator Company North American Operations 10 Farm Springs Road Farmington, Connecticut 06032	Sarah Hurley, Esq. Robinson & Cole LLP 695 East Main Street Stamford, CT 06904-2305
Richard Ablon, President	J.L. Effinger, Esq.
Ogden Corporation	Ogden Corporation
Two Pennsylvania Plaza, 25 th Floor	Two Pennsylvania Plaza, 25 th Floor
New York, New York 10121	New York, NY 10121
Henry McKinnell, Chairman	Michael McThomas, Esq.
Pfizer Inc.	Pfizer Inc.
235 E. 42 nd St.	235 E. 42 nd St.
New York, New York 10017	New York, NY 10017
Raymond LeBoeuf, President	Joseph Karas, Esq.
PPG Industries, Inc.	PPG Industries, Inc.
One PPG Place	One PPG Place
Pittsburgh, Pennsylvania 15272	Pittsburgh, PA 15272
Lawrence Codey, President	Hugh Mahoney, Esq.
PSE&G Co.	PSE&G Co.
P.O. Box 570	P.O. Box 570
Newark, New Jersey 07101-0570	Newark, NJ 07101
Phillip D. Ashkettle, President Reichhold Chemicals, Inc. P.O. Box 13582 Research Triangle Park, North Carolina 27709	Adam S. Walters, Esq. Phillips, Lytle, Hitchcock, Blaine & Huber 3400 Marine Midland Center Buffalo, NY 14203
Robert McNeeley, President	Paul Rivers, Director
Reilly Industries, Inc.	Corporate Environmental Affairs
1510 Market Square Center	Reilly Industries, Inc.
151 North Delaware Street	1500 S. Tibbs Avenue
Indianapolis, Indiana 46204	Indianapolis, IN 46242

.

.

.

Robert Finn, President	Howard Myers, Esq.
RSR Corporation	RSR Corporation
2777 Stemmons Freeway, Suite 1800	2777 Stemmons Freeway, Suite 1800
Dallas, Texas 75207	Dailas, TX 75207
Christopher Connor, CEO	Donald McConnell, Esq.
The Sherwin-Williams Company	The Sherwin-Williams Co.
101 Prospect Avenue, N.W.	101 Prospect Ave., N.W.
Cleveland, Ohio 44115-1075	Cleveland, OH 44115
George Barrett, President	Kirsten E. Bauer, Esq.
Teva Pharmaceuticals USA Inc.	Teva North America
1090 Horsham Road	1090 Horsham Road
North Wales, Pennsylvania 19454	North Wales, PA 19454
Robert Senior, President Three County Volkswagen 701 Riverside Ave. Lyndhurst, New Jersey 07071	Robert DiLascio, Esq. 30 Park Avenue, Suite 101 Lyndhurst, NJ 07071
Michael Jordan, President	Roger Willis, Esq.
Westinghouse Electric Corp.	Westinghouse Electric Corp.
11 Stanwix Street	11 Stanwix Street
Pittsburgh, Pennsylvania 15222	Pittsburgh, PA 15222
Isaac Weinberger, President Wiggins Plastics Inc. 547 Maitland Ave. Teaneck, New Jersey 07666	None