Port Authority Lease No. L-PN-195 Supplement No. 1

SUPPLEMENTAL AGREEMENT

THIS AGREEMENT, made as of August 2, 1994 (hereinafter called the "Effective Date") by and between THE PORT AUTHORITY OF NEW YORK AND NEW JERSEY (hereinafter called the "Port Authority") and NAPORANO IRON & METAL COMPANY INC. (hereinafter called the "Lessee"),

WITNESSETH, that:

WHEREAS, heretofore and as of August 2, 1994, the Port Authority and the Lessee entered into an agreement of lease (hereinafter, as the said agreement of lease has been heretofore amended, modified and supplemented, called the "Lease") covering premises at Port Newark, in the City of Newark, County of Essex and State of New Jersey; and

WHEREAS, the Port Authority and the Lessee desire to amend the Lease;

NOW, THEREFORE, for and in consideration of the mutual agreements hereinafter contained the Port Authority and the Lessee hereby agree effective as of the Effective Date, unless otherwise stated, as follows:

(a) That portion of the permanent premises shown 1. in stipple on Exhibit A-3 attached hereto and hereby made a part hereof (which portion of the permanent premises is hereinafter called the "Continuous Permanent Premises") is a part of the temporary premises and is also a part of the permanent premises and, further, was previously occupied by the Lessee under that certain agreement of lease between the Port Authority and the Lessee dated as of February 1, 1990 and identified by Port Authority Lease No. L-PN-144. It is hereby recognized that the Continuous Permanent Premises constitutes a part of both the temporary premises and the permanent premises and that the term of the letting under the Lease for the Continuous Permanent Premises commenced on August 2, 1994. Further, it is hereby agreed that notwithstanding the terms and conditions of Section 2 of the Lease, the term of the letting of the Continuous Permanent Premises shall not expire upon the expiration of the letting of the temporary

premises but shall continue in full force and effect as part of the permanent premises unless the term of the letting of the Continuous Permanent Premises shall have sooner terminated

- times the recaptured premises shall constitute a part of the portion of the permanent premises.
- follows: 2. Section 2 of the Lease shall be deemed amended as
- in the third line thereof shall no longer be capitalized and the phrase, "Except as set forth with respect to the Continuous Permanent Premises in paragraph 1 of Supplement No. 1 to the Lease and the Extended Temporary Premises as set forth in Section 51 of the Lease appearing in Supplement No. 1 of the Lease and inserted immediately before the word "unless" and after the period appearing in the third line thereof.
- third to the last line thereof shall be deemed deleted therefrom and the number "twenty-first (21st)" shall be deemed to have been
- line of Section 2 of the Lease shall be deemed deleted therefrom and the date "February 29, 2020" shall be deemed inserted in lieu
- 3. The date "July 1, 1995" appearing in subdivision (i) of subparagraph (3) of paragraph (a) of Section 3 of the Lease shall be deemed deleted therefrom and the date "March 1, 1999"
- 4. Notwithstanding the provisions of paragraph (b) of Section 3 of the Lease, the Lessee shall pay a basic rental for the temporary premises exclusive of the Extended Temporary Premises (as defined in Section 51 of the Lease as herein amended) during the period from May 16, 1997 through the last day of the Construction Period at the annual rate of Seven Hundred Eleven Thousand Five Hundred Nine Dollars and Fifty-three Cents (\$711,509.53) payable in advance in equal monthly installments of Cents (\$59,292.46) on May 16, 1997 and on the first day of each calendar month thereafter during such period. If any installment of basic rental payable hereunder shall be for less than a full calendar month then the basic rental payment for the portion of the

month for which such payment is due shall be the monthly installment prorated on a daily basis using the actual number of days in such month.

5. Paragraph (f) of Section 3 of the Lease shall be deemed deleted therefrom and the following paragraph (f) shall be inserted in lieu thereof.

"(f) <u>Effective Date of Permanent Premises</u> <u>Rental Payment Start Date for Purposes of</u> <u>Escalations</u>

Notwithstanding any provision of this Section to the contrary, the Port Authority and the Lessee agree that for purposes of computation of the rate at which the basic rentals for the Open Area and the Berthing Area as set forth in paragraph (c) of this Section shall be payable (as opposed to the determination of the time that such rentals shall initially commence) and for purposes of the determination of the time at which such rentals shall escalate pursuant to provisions of subparagraphs (1) and (3) of said paragraph (c) and shall be adjusted pursuant to the provisions of subparagraphs and (4) of said paragraph (c), Permanent Premises Rental Payment Start Date shall be and be deemed to have occurred on July 1, 1995 and such rentals shall commence at the rate, and shall be subject to such escalation and adjustment at the time, would have been the case had the Permanent Premises Rental Payment Start Date occurred on July 1, 1995. For example, if the Permanent Premises Rental Payment Start Date as defined in subparagraph (3) of paragraph (a) of this Section shall occur on September 1, 1998, the basic rentals for the Open Area and the Berthing Area shall commence to be payable on September 1, 1998 at the escalated rate per annum respectively of Five Hundred Thirtyseven Thousand Nine Hundred Sixty-six Dollars and No Cents (\$537,966.00) and Four Hundred Ninety-five Thousand Dollars and No Cents (\$495,000.00), as such escalated rates per annum shall be adjusted respectively as set in subparagraphs (2) and paragraph (c) of this Section (for purposes of

which adjustment the "Base Period" shall be June, 1996; the "Adjustment Period" shall be June, 1998 [the Adjustment Period of June, 1997 having passed] and each June as shall occur thereafter; and the "Anniversary Date" shall be July 1, 1998 [the Anniversary Date of July 1. 1997 having passed] and anniversary of such date as shall occur thereafter). Thus if the increase in the Consumer Price Index for the Adjustment Period of June, 1998 (calculated for the period from 1996 through June, 1998) shall seventeen per cent (17%), then the basic rentals for the Open Area and the Berthing Area shall be payable for the period from September 1, 1998 through June 30, 1999 at the rate per annum respectively of Five Hundred Eighty-three Thousand Six Hundred Ninetythree Dollars and Eleven Cents (\$583,693.11) Five Hundred Thirty-seven Thousand Seventy-five Dollars and No Cents (\$537,075.00); but if (1) said increase is shown to be eight per cent (8%) then the basic rentals for that period shall be payable at rate per annum respectively of Hundred Seventy Thousand Seven Hundred Twentyeight Dollars and No Cents (\$570,728.00) and Five Hundred Twenty-five Thousand One Hundred Forty-six Dollars and No Cents (\$525,146.00), and if (2) said increase is shown to be twenty-five per cent (25%) then the basic rentals for that period shall be payable at rate per annum respectively of Hundred Ninety-three Thousand One Hundred Eight Dollars and No Cents (\$593,108.00) and Five Hundred Forty-five Thousand Seven Hundred Thirty-eight Dollars and No Cents (\$545,738.00)."

- 6. The following provision shall be inserted in Section 9 of the Lease as paragraph (n) thereof:
 - "(n) Without limiting the generality of any provision of the Lease and without reducing or affecting in any way any other obligations of the Lessee under the Lease, effective March 1, 1998 the Lessee shall promptly raise and remove or cause to be raised and removed any material discharged or

deposited from the premises or from vessels berthing in the Berthing Area or the Temporary Berthing Area into or upon the waters of or about the Facility. In the event that the Port Authority shall incur any additional cost in the performance of any dredging, including without limitation the performance of sampling or soundings, at the Facility as a result of the presence of any said material discharged or deposited into or upon the waters of or about the Facility, the Lessee shall pay to the Port Authority an amount equal to such additional cost upon demand."

- 7. Section 12 of the Lease shall be deemed amended as follows:
- (a) The following sentence shall be added at the end of paragraph (c) thereof to read as follows:

"It is hereby agreed and understood that the provisions of this paragraph (c) and Section 5(h) with respect to reasonable wear shall not apply to the environmental condition of the premises."

(b) The following new paragraph (h) shall be inserted after paragraph (g) thereof to read as follows:

"Without limiting the generality of any other term or provision of this Section or Section 5(h) and in addition thereto, at all times throughout the letting hereunder the Lessee shall ensure at its sole cost and expense, except as provided in Section 5(p), that the entire permanent premises shall be capped by pavement so as to provide a barrier to contamination of soil and ground water."

8. Paragraph (b)(3) of Section 24 of the Lease shall be deemed amended by inserting the phrase, "(as amended by paragraph 4 of Supplement No. 1 of the Lease)" immediately after the reference to paragraph "(b)" and before the word "and" appearing in the second (2nd) line thereof and by further inserting the phrase, "and under Section 51 of the Lease appearing in Supplement No. 1 of the Lease" immediately after the word "Agreement" and before the comma appearing in the third (3rd) line thereof.

- 9. Paragraph (a) of Section 27 of the Lease shall be deemed amended by inserting the phrase "and Section 46" immediately after the number and letter "12(c)" and before the word "hereof" appearing in the penultimate line thereof.
- 10. Paragraph (a) of Section 36 of the Lease shall be deemed amended as follows:
- (a) Subparagraph (1) thereof shall be deemed deleted in its entirety and the following new subparagraph (1) shall be deemed to have been inserted in lieu thereof to read as follows:
- "(1) for each square foot of open area constituting a part of the temporary premises the use of which is denied to the Lessee, at the annual rate of \$0.57 during the period from the Commencement Date through May 15, 1997, both dates inclusive, and for each square foot of open area constituting that part of the temporary premises which does not include the Extended Temporary Premises the use of which is denied to the Lessee, at the annual rate of \$0.60 during the period from May 16, 1997 through the last day of the Construction Period;"
- (b) Subparagraph (2) thereof shall be deemed deleted in its entirety and the following new subparagraph (2) shall be deemed to have been inserted in lieu thereof to read as follows:
- "(2) for each linear foot of the Temporary Berthing Area the use of which is denied to Lessee, at the annual rate of \$350.00 for the period from the Commencement Date through May 15, 1997, both dates inclusive, and for each linear foot of the Temporary Berthing Area the use of which is denied to Lessee, at the annual rate of \$367.50 for the period from the May 16, 1997 through the last day of the Construction Period, both dates inclusive;"
- (c) The period appearing at the end of subparagraph (4) thereof shall be deleted therefrom and a semicolon and the word "and" inserted in lieu thereof and the following new subparagraph (5) shall be added thereafter to read as follows:
- "(5) for each square foot of Area A the use of which is denied to the Lessee at the annual rate of \$1.00 during the period from March 1, 1998 through February 28, 1999, both dates inclusive, and for each square foot of Area B the use of which is denied to the Lessee at the annual rate of \$0.60 during the period from May 16, 1997 through February 28, 1999, both dates inclusive, and for each square foot of the Extended Temporary Premises the use of which is denied to the Lessee at the annual rate of \$1.04 during the period from March 1, 1999 through February 29, 2000, both dates

inclusive, and for each square foot of the Extended Temporary Premises the use of which is denied to the Lessee at the annual rate of \$1.08 during the period from March 1, 2000 through February 28, 2001, both dates inclusive."

- 11. Section 38 of the Lease, entitled "Termination Rights" shall be deemed amended by deleting paragraph (b) thereof in its entirely and by substituting the following new paragraph (b) in lieu thereof to read as follows:
 - "(b) The Port Authority shall have the right to terminate the letting under this Agreement, without cause, on the last day of the eleventh (11th) or sixteenth (16th) annual period to occur during the term of the letting on two (2) year's prior written notice to the Lessee. The Lessee shall have the right to terminate the letting under this Agreement, without cause. on the last day of the eleventh (11th) or sixteenth 16th) annual period to occur during the term of the letting on two (2) year's prior written notice to the Port Authority; provided, that, the Lessee shall not be under notice of default as to which any applicable period to has passed, or under notice termination, from the Port Authority, either on the date of its giving of such notice to the Port Authority or on the effective date thereof. Termination pursuant provisions of this paragraph shall have the effect as if the effective date of termination stated in the notice were the date of expiration of the term of the letting under this Agreement."
- 12. The final fourteen (14) lines of paragraph (c) of Section 38 of the Lease shall be deemed deleted therefrom and the following provision shall be deemed inserted in lieu thereof:

"amounts: (1) One Million Sixty-four Thousand Two Hundred Twelve Dollars and Forty-eight Cents (\$1,064,212.48) if the effective date of the termination of the letting shall occur during the first annual period; (2) Eight Hundred Thirty Thousand Eighty-five Dollars and Seventy-four Cents (\$830,085.74) if the effective date of the termination of the letting shall occur during the second annual period; (3) Five Hundred Seventy-five Thousand

Five Hundred Twenty-six Dollars and Eleven Cents (\$575,526.11) if the effective date of the termination of the letting shall occur during the third annual period; and (4) Two Hundred Ninety-nine Thousand Two Hundred Seventy-three Dollars and Fifty-eight Cents (\$299,273.58) if the effective date of the termination of the letting shall occur during the fourth annual period."

- 13. Except to the extent modified by paragraphs 1, 3 and 16 hereof, all terms defined in the Lease, including without limitation "the Permanent Premises Rental Payment Start Date", "the Berthing Area", "the Temporary Berthing Area", "the Open Area", "the Lessee's construction work", "the temporary premises", "the permanent premises' and "the Construction Period", shall have the same meaning in this Agreement as in the Lease.
- 14. Effective upon the execution of this Supplemental Agreement by the Port Authority and the Lessee and delivery thereof to the Lessee by the Port Authority, paragraph (a) of Section 38 of the Lease shall be deemed to be deleted from the Lease in its entirety.
- 15. Section 46 of the Lease entitled "Baseline Survey" shall be deemed deleted therefrom in its entirety and the following new Section 46 shall be deemed to have been inserted in lieu thereof to read as follows:

"Section 46: <u>Environmental Responsibilities</u>

- (a) For purposes of the Lease, the following terms shall have the respective meanings provided below:
- (1) 'Area X' shall mean that portion of the permanent premises shown in stippled diagonal hatching on Exhibit B.
- (2) 'Area X Remediation Costs' shall mean the following costs actually paid by the Lessee for Area X Remediation Work provided and to extent that the inclusion of the same is permitted by sound accounting practices consistently applied, such Area X Remediation Work has been performed and the performance thereof by the Lessee has been in accordance with all the terms and provisions φf this Agreement and the Lessee's plans specifications and/or remedial action work plan for such Area X Remediation Work as approved by the Port Authority pursuant to Section 16 of the Lease:

- (i) The Lessee's payments to environmental consultants, testing laboratories, and environmental contractors, not including services of the types mentioned in items (iv) and (v) of this subparagraph;
- (ii) The Lessee's payments for supplies and materials;
- (iii) The Lessee's payments to persons, firms or corporations other than environmental consultants, testing laboratories, and environmental contractors orsuppliers materials and supplies, for services rights granted rendered or connection with Area X Remediation Work, not including services of the types mentioned in items (iv) and (v) of this subparagraph;
- (iv) The Lessee's payments for engineering services in connection with Area X Remediation Work provided during the period that such Area X Remediation Work is being performed and only during such period;
- (v) The Lessee's payments for preparation of health and safety plans, sampling and analysis plans, remedial action plans, and architectural, planning and design services in connection with Area X Remediation Work; and
- (vi) The sum of the payments under items (iv) and (v) of this subparagraph for each Remediation Project shall not exceed 20% of the sum of the payments under items (i), (ii) and (iii) of this subparagraph for such Remediation Project; and if in fact there is any such excess, such excess shall not be a part of the Area X Remediation Costs.

Notwithstanding the foregoing, the Area X Remediation Costs shall not include:

- (i) any amounts paid for or in connection with any trade fixtures or other personal property of the Lessee; or
- (ii) any amounts for administrative or other overhead costs of the Lessee or amounts paid to employees of the Lessee whether or not allocated to the cost of the Area X Remediation Work by the Lessee's own accounting practices; or
- (iii) any amounts paid to a firm or corporation wholly or partially owned by or in common ownership with the Lessee; or
- (vi) any equipment, fixture or improvements which are secured by liens, mortgages, other encumbrances or conditional bills of sale; or
- (v) any amounts for or in connection with the Repaving Work as defined in Section 50 hereof.
- (3) 'Area X Remediation Work' shall mean remediation of soil in Area X performed by the Lessee to deliver any Area X Surrendered Premises to the Port Authority on the Surrender Date therefor in a Clean condition and Initial Cleanup Work. Area X Remediation Work shall not mean or include any remediation required by any Enforcement Agency except for Initial Cleanup Work or as a result of the failure to implement a DER except the Initial DER.
- (4) 'Area X Surrender Date' shall mean with respect to any Area X Surrendered Premises the date that the letting of such Area X Surrendered Premises shall have ceased, whether by expiration, termination or otherwise.
- (5) 'Area X Surrendered Premises' shall mean Area X and/or any portion thereof, as the case shall be, the letting of which has ceased, whether by termination, expiration or otherwise.
- (6) 'Clean' shall mean that with respect to the levels of Hazardous Substances in the soil on any Surrendered

Premises, no or no further remediation of or clean-up or removal of Hazardous Substances from the soil on such Surrendered Premises is required by or as a condition of any Enforcement Agency or any Environmental Requirement and no restrictions of any nature whatsoever arising out of the presence of one or more Hazardous on such Surrendered Premises, including without limitation no engineering or institutional controls, have been or are required by or as a condition of any Enforcement Agency or Environmental Requirement to be placed upon or apply to such Surrendered Premises, the permanent premises or the Facility, or the use or occupancy of such Surrendered Premises, the permanent premises or any other portion of the Facility, or upon any operations or activities conducted or to be conducted on such Surrendered Premises, the permanent premises or the Facility, or upon the transfer of the Surrendered Premises, the permanent premises or the Facility.

- (7) 'DEP' shall mean the New Jersey Department of Environmental Protection or its successors with equivalent jurisdiction and authority.
- (8) 'DER' shall mean a declaration of environmental restrictions as defined by NJAC7:26E-1.8.
- (9) 'Enforcement Agency' shall mean with respect to each Surrendered Premises the Governmental Authority with jurisdiction to determine if such Surrendered Premises is Clean under the law applicable to such Surrendered Premises.
- (10) 'Environmental Damages' shall mean any one or more of the following:
 - (i) the presence on, about or under the permanent premises of any Hazardous Substance during the term of the Lease and/or the Lessee's use or occupancy of the permanent premises, whether such presence occurred prior to or during the term of the letting of the permanent premises under the Lease or resulted from any act or omission of the Lessee or others, and/or
 - (ii) the disposal, release or threatened release of any Hazardous Substance at or from the permanent premises during the term of the Lease and/or the Lessee's use or occupancy of the permanent premises, and/or
 - (iii) the presence of any Hazardous Substance

- on, about or under other property at the Facility as a result of the Lessee's use or occupancy of the permanent premises, and/or
- (iv) a Hazardous Substance which migrates from the permanent premises during the term of the Lease and/or the Lessee's use or occupancy of the permanent premises, and/or
- (v) any personal injury, including wrongful
 death, or property damage, arising out of or
 related to any Hazardous Substance described
 in (i), (ii) or (iii) or (iv) above, and/or
- (vi) the violation of any Environmental Requirement.
- (11) 'Environmental Requirements' and 'Environmental Requirement' shall mean all applicable present and future laws, statutes, enactments, resolutions, regulations, rules, ordinances, codes, licenses, permits, orders, approvals, plans, authorizations, concessions, franchises, requirements and similar items of all Governmental Authorities and all applicable judicial, administrative and regulatory decrees, judgments and orders relating to the protection of human health or the environment which are applicable to or which affect (i) the permanent premises during the term of the Lease and/or the Lessee's use or occupancy of the permanent premises and/or (ii) the Lessee's use or occupancy of the permanent premises and/or the use or occupancy of the permanent premises by others with its consent, and/or (iii) the operations of the Lessee or of others with the consent of the Lessee on the permanent premises and/or (iv) any action or inaction by the Lessee at the permanent premises during the term of the Lease and/or the Lessee's use or occupancy of the permanent premises (v) or any Hazardous Substance described in paragraph (a)(10) above, the foregoing to include, without limitation:
- (i) All requirements pertaining to reporting, licensing, permitting, investigation and remediation of emissions, discharges, releases or threatened releases of Hazardous Substances into the air, surface water, groundwater or land, or relating to the manufacture, processing, distribution, use, treatment, storage, disposal, transport or handling of Hazardous Substances; and
- (ii) All requirements pertaining to the protection of the health and safety of employees or the public.
- (12) 'Exhibit B' shall mean the exhibit attached hereto, hereby made a part hereof and marked 'Exhibit B'.

- (13) 'Exhibit C' shall mean the exhibit attached hereto, hereby made a part hereof and marked 'Exhibit C.
- (14) 'Final Certificate' shall mean with respect to each Remediation Project, a final certificate described in paragraph (c)(3) which meets all the requirements therefor set forth in paragraph (c) which has been submitted by the Lessee to the Port Authority for such Remediation Project.
- (15) 'Final Date' shall mean the earlier to occur of the day immediately preceding the first anniversary of the last Area X Surrender Date or the day immediately preceding the first anniversary of the expiration date of the Lease.
- (16) 'Final Payment' shall mean with respect to each Remediation Project, the payment made by the Port Authority pursuant to the Final Certificate for such Remediation Project in accordance with paragraph (c)(4)(i)(bb).
- (17) 'Governmental Authority' and 'Governmental Authorities' shall mean all governmental agencies, authorities, departments, commissions, boards, bureaus or instrumentalities of the United States, states and political subdivisions thereof, except that it shall not be construed to include The Port Authority of New York and New Jersey, the lessor under the Lease.
- (18) 'Hazardous Substances' 'Hazardous and Substance' shall mean and include, without limitation, pollutant, contaminant, toxic or hazardous waste, dangerous noxious substance, substance, toxic substance, inflammable, orradioactive material, explosive formaldehyde urea insulation, asbestos, polychlorinated biphenyls ("PCBs"), chemicals known to cause cancer or reproductive toxicity, petroleum and petroleum products and other substances which as of or after the Effective Date are declared to be hazardous or toxic, or the removal of which is required, or the manufacture, preparation, production, generation, use, maintenance, treatment, storage, transfer, handling or ownership of which as of or after the Effective Date is restricted, prohibited, regulated or penalized by any Environmental Requirement.
- (19) Initial Cleanup Work' shall mean remediation of Area X performed by the Lessee during the term of the Lease after the Effective Date until an Initial DER shall be implemented with respect to Area X, which remediation is either required by the DEP only as the result of the Initial DER not having been implemented with respect to Area X or is required by the Port Authority by notice given by it to the Lessee in order to comply

with the terms of an Initial DER acceptable to the DEP, the City of Newark and the Port Authority.

- (20) 'Initial DER' shall mean a DER required by the DEP on Area X only as a result of the submission to the DEP by the Port Authority of the document dated May 1997 prepared by Killam Associates for the Port Authority and entitled "Environmental Baseline Investigation and Remedial Action Work Plan, Berths 30 and 32, Upland, Port Newark, New Jersey" and the levels in the soil of Area X of one or more Hazardous Substances as shown in the test results included in such document and/or the levels in the soil of Area X of one or more Hazardous Substances as shown in the test results submitted by the Port Authority to the DEP as part of or upon completion of the work performed by the Port Authority described in Exhibit C.
- (21) 'Port Authority Contribution' shall mean the amount of One Million Two Hundred Fifty Thousand Dollars and No Cents (\$1,250,000.00) as the same shall be adjusted pursuant to the terms and provisions of paragraph (c)(9) below.
- (22) 'Refund Payment' shall mean each payment made by the Lessee to the Port Authority pursuant to paragraphs (c)(4)(i)(bb) and (c)(4)(v) of this Section.
- (23) 'Remediation Payment' shall mean each payment made by the Port Authority to the Lessee pursuant to paragraph (c) of this Section for Area X Remediation Costs.
- (24) 'Remediation Project" shall mean Area X Remediation Work that is discrete both in time and location and Initial Cleanup Work.
- (25) 'Surrendered Premises' shall mean the permanent premises and/or any portion thereof, as the case shall be, the letting of which has ceased, whether by termination, expiration or otherwise.
- (26) 'Surrender Date' shall mean with respect to each Surrendered Premises the date that the letting shall have ceased with respect to such Surrendered Premises, whether by termination, expiration or otherwise.
- (27) 'Unadjusted Remediation Payment' shall mean the amount of each Remediation Payment plus the amount of the deduction made thereto pursuant to item (z) of paragraphs (c)(4)(i) (aa) and (c)(4)(i) (bb) of this Section.
- (b) (1) Without limiting the generality of any of the other terms and provisions of the Lease, the Lessee agrees to take

the permanent premises in the condition they are in as of the commencement of the term of the letting of the permanent premises hereunder and, during the term of the letting of the permanent premises and/or the Lessee's use or occupancy of the permanent premises and after the term of the Lease and the Lessee's use or occupancy of the permanent premises if arising during or related to any discharge on or from the permanent premises that occurred during the term of the Lease and/or the Lessee's use or occupancy of the permanent premises, to assume all responsibility for and relieve the Port Authority from any responsibility for the condition of the permanent premises and any and all risks, claims, penalties, costs and expenses (except to the extent that the Port Authority Contribution shall be made available to the Lessee pursuant to and in accordance with the terms and provisions of this Section, and except for the work performed by the Port Authority as set forth in Exhibit C, and except for the Repaving Work Reimbursement Amount as defined in Section 50 (m) of the Lease) of any kind whatsoever related thereto including without limitation all Environmental Requirements and all Environmental Damages and the performance of all Initial Cleanup Work, whether any such condition existed on the permanent premises prior to, on or after the effective date of the letting of the permanent premises to the Lessee.

(2) addition to and without In limiting obligations of the Lessee set forth in subparagraph (1) of this paragraph (b), the Lessee shall at its cost and expense (except to the extent the Port Authority Contribution shall be made available to the Lessee pursuant to and in accordance with the terms and provisions of this Section) and in accordance with and subject to the provisions of Section 16 of the Lease deliver to the Port Authority each Surrendered Premises on the Surrender Date therefor in a Clean condition. The Lessee shall submit to the Port on or before each Surrender Date documentation satisfactory to the Port Authority that the Surrendered Premises for such Surrender Date is Clean together with a report and test results of soil samples taken from the Surrendered Premises, which samples shall be taken and tested in accordance with the protocol established by the Enforcement Agency. A 'No Further Action Letter' or 'Certification of Completion' from the DEP shall be conclusive proof of documentation satisfactory to the Port Authority that any Surrendered Premises is Clean notwithstanding any Environmental Requirement to the contrary provided that no or no further remediation, clean-up or removal of any Hazardous Substance from the soil on such Surrendered Premises is required by or is a condition of such No Further Action Letter or Certification of Completion or by any Enforcement Agency and no restrictions of any nature whatsoever arising out of the presence of one or more Hazardous Substances on such Surrendered Premises,

including without limitation, no engineering or institutional controls, have been or are required to be placed upon or apply to such Surrendered Premises, the permanent premises or the Facility, or the use or occupancy of such Surrendered Premises, the permanent premises or any other portion of the Facility, or upon any operations or activities conducted or to be conducted on such Surrendered Premises, the permanent premises or the Facility, or upon the transfer of the Surrendered Premises, the permanent premises or the Facility as the result of the presence of one or more Hazardous Substances in the soil of such Surrendered Premises by or as a condition of such No Further Action Letter Certification of Completion or by or as a condition of any Enforcement Agency (such 'No Further Action Letter' 'Certification of Completion' meeting all of the foregoing requirements being hereinafter referred to as the 'Documentation'). the Enforcement Agency for reasons other than Surrendered Premises is not Clean does not or is unwilling to provide the Documentation, then the Lessee shall provide the Port Authority with such other documentation, reports and test results as the Port Authority shall require to determine if the Surrendered Premises is Clean.

If the Lessee has not in accordance with subparagraph (2) of this paragraph (b) established on or before the Surrender Date for a Surrendered Premises that such Surrendered Premises was Clean on its Surrender Date, and if the Port Authority, in its sole discretion, shall give notice to the Lessee permitting or requiring the Lessee to effect performance of its obligations under subparagraph (2) of this paragraph (b), the Lessee shall pay to the Port Authority as liquidated damages on the day immediately following the Surrender Date for such Surrendered Premises and on the first day of each and every calendar month occurring after such Surrender Date until the earlier of (i) the day the Lessee establishes pursuant to subparagraph (2) of this paragraph (b) that such Surrendered Premises is Clean or (ii) the date the Lessee shall have paid to the Port Authority amounts totaling One Million Two Hundred Thousand Dollars and No Cents (\$1,250.000.00) (the date such amounts totalling \$1,250,000.00 have been so paid to the Port Authority being hereinafter called the "End Date"), an amount equal to the rental for the Surrendered Premises in effect on the Surrender Date therefor, which amount shall thereafter increase in the same manner and at the same intervals provided in the Lease for the increase in the basic rental for the permanent premises as if the letting of the Surrendered Premises had not ceased and had continued or been extended beyond the expiration date, as the case shall be, upon the basic rental terms and conditions, it being understood and agreed that in no event shall the Lessee use or occupy any Surrendered Premises beyond the Surrender Date therefor unless it shall have

received notice from the Port Authority permitting or requiring the Lessee to effect performance of its obligations under subparagraph (2) of this paragraph (b) and such permitted use or occupancy shall be to the extent, and only such extent, as shall be required to remediate such Surrendered Premises in accordance with subparagraph (2) of paragraph (b). Except for claims of loss of rental income for which and to the extent that the Port Authority has been paid liquidated damages under this subparagraph (3), nothing in the Lease including without limitation this paragraph (b) (3) shall have limited, affected or waived or be deemed to have limited, affected or waived any rights, remedies or damages of the Port Authority at law, equity or otherwise upon breach of the Lease by the Lessee including without limitation the failure of the Lessee to have delivered any Surrendered Premises in a Clean condition on the Surrender Date therefor.

(4)In the event that in accordance with and pursuant to the terms of the Lease the letting of the entire permanent premises shall be terminated without cause by the Lessee or the Port Authority on at least two years' prior written notice to the other or in the event of the expiration of the letting of the entire permanent premises then, if the Port Authority has determined that the permanent premises is Clean on the Surrender Date therefor, the Port Authority shall pay to the Lessee within sixty (60) days after demand therefor by the Lessee after such Surrender Date an amount equal to the product obtained by multiplying the decimal .375 by the amount of basic rental for the Surrendered Premises payable hereunder for the year immediately preceding such Surrender Date which the Lessee as paid to the Port Authority, provided, however, in the event that the term of the letting hereunder shall be terminated by the Lessee pursuant to paragraph (b)(5) below then, if the permanent premises is Clean on Surrender the Date therefor, upon the Port Authority's determination that the permanent premises is Clean, the Port Authority shall pay to the Lessee within sixty (60) days after demand therefor by the Lessee after such Surrender Date an amount equal to the product obtained by multiplying the decimal .375 by the amount of basic rental for the Surrendered Premises payable hereunder from and after March 1, 2019 which has been paid by the Lessee to the Port Authority.

(5) If at anytime during that portion of the term of the letting under this Lease occurring from and after March 1, 2019 the Lessee shall have submitted to the Port Authority Documentation that the premises is Clean together with a report and current test results of soil samples taken from the premises, which soil samples were taken and tested in accordance with the protocol established by the Enforcement Agency, then upon such submission to the Port Authority, and only then, the Lessee shall have the

right to terminate the letting under this Lease on thirty (30) days' written notice to the Port Authority, provided, however, the Lessee shall have no such right to terminate the letting hereunder nor shall any termination notice given pursuant to this paragraph (b)(5) be effective if the Lessee has received a notice of termination from the Port Authority, either on the date of its giving such notice to the Port Authority or on the effective date of such notice. Termination pursuant to the provisions of this paragraph (b)(5) shall have the same effect as if the effective date of termination stated in the notice were the date of expiration of the term of the letting under this Lease.

- (c) In the event either (i) Initial Cleanup Work is performed by the Lessee or (ii) the Lessee must remediate Area X or any portion in order for the Lessee to deliver any Area X Surrendered Premises or any portion thereof on the Surrender Date therefor in a Clean condition, and only in such events, the Port Authority shall to the extent of the Port Authority Contribution and only to such extent reimburse the Lessee for Area X Remediation Costs, subject to and in accordance with the terms and provisions hereinafter set forth.
- (1)Prior to the commencement of any Area X Remediation Work, the Lessee shall subject to and in accordance with Section 16 hereof submit to the Port authority for its approval a Construction Application in the form supplied by the Port Authority, and containing such terms and conditions as the Port Authority may include, setting forth in such detail as shall be required by the Port Authority by appropriate plans specifications and/or a remedial action work plan for the Area x Remediation Work the Lessee proposes to perform and the manner of and time periods for performing the same. Whether the Lessee shall be required hereunder to submit both plans and specifications and a remedial action work plan, or just plans and specifications or just a remedial action work plan shall be at the sole discretion of the Port Authority. Whenever the phrase or similar phrase, 'plans and specifications and/or remedial action work plan' is used in this Section 46 it shall mean and refer to those plans and specifications, if any, and that remedial action work plan, if any, required by the Port Authority pursuant to this paragraph (c)(1). Nothing in this Section 46 shall be or be deemed to constitute Port Authority approval of any Area X Remediation Work pursuant to Section 16 hereof. Additionally, if all or a part of Area X has been paved as part of the Lessee's construction work (as defined in Section 5 of the Lease), then the Lessee shall include in its submission of any Construction Application for the Initial Cleanup Work for approval by the Port Authority, the identification of all paving on Area X which it believes is in the condition required by In the Port Authority's approval of such Construction

Application, it shall identify that portion of paving on Area X that is in the condition required by the Lease (which paving that is so identified by the Port Authority is hereinafter in this Lease called the 'Reimbursable Paving') for the purposes of reimbursement as provided in Section 50 of the Lease.

- (2) On or about the tenth day of the calendar month following each month occurring prior to the Final Date in which the Lessee shall incur any Area X Remediation Costs, but no more than once in each such month, the Lessee shall deliver to the Port Authority a certificate which shall be signed by a responsible officer of the Lessee and shall:
- (i) describe the Area X Remediation Work performed by the Lessee in the preceding month and certify that such Area X Remediation Work has been accomplished, that the amounts requested therefor have been paid by the Lessee or are due and payable from the Lessee, that, subject to the concurrence of the Port Authority, such work has a value of not less than the amount requested to be paid, and that amounts requested constitute Area X Remediation Costs;
- (ii) identify with respect to each Remediation Project covered by such certificate the costs and certify the amount requested on account of Area X Remediation Costs for such Remediation Project qualifying as such pursuant to paragraphs (a)(2)(i), (a)(2)(ii) and (a)(2)(iii) of this Section, the amount of such costs incurred by the Lessee during such preceding month and the amount paid by the Lessee on account of such costs during such previous month, if any, and the cumulative amount of such costs incurred by the Lessee and the cumulative amount of such costs paid by the Lessee as of the end of such previous month with respect to each Remediation Project covered by such certificate;
- (iii) identify with respect to each Remediation Project covered by such certificate the costs and certify the amount requested on account of Area X Remediation Costs for such Remediation Project qualifying as such pursuant to paragraphs (a)(2)(iv) and (a)(2)(v) of this Section, the amount of such costs incurred by the Lessee during such preceding month and the amount paid by the Lessee on account of such costs during such previous month, if any, and the cumulative amount of such costs incurred by the Lessee and the cumulative amount of such costs paid by the Lessee as of the end of such previous month with respect to each Remediation Project covered by such certificate;
- (iv) certify all due and payable amounts included by the Lessee in previous certificates against which a Remediation Payment has been made by the Port Authority to the

Lessee and which have been paid by the Lessee since the submission of each such previous certificate and attach thereto or include therein such verification as shall be required by the Port Authority, that such amounts have been paid;

(v) certify (x) the total cumulative Area X Remediation Costs incurred by the Lessee and (y) the total cumulative payments made by the Lessee, for Area X Remediation Work from the commencement of the date of the first Area X Remediation Work performed by the Lessee to the last date covered by such certificate;

(vi) contain a representation by the Lessee that the Lessee will apply the Remediation Payment only against expenses actually incurred as Area X Remediation Costs and for no other purpose whatsoever;

(vii) certify that each portion of the Area X Remediation Work covered by such certificate has been performed in accordance with the terms of this Agreement and the plans and specifications and/or the remediation action work plan therefor as approved by the Port Authority pursuant to Section 16 of the Lease, which certification shall be made by a responsible officer of the Lessee and with respect to each Remediation Project covered by the certificate, the environmental engineer, architect or other engineer who sealed the Lessee's plans and specifications and/or remediation action work plan for such Remediation Project;

(viii) have attached thereto reproduction copies or duplicate originals of the invoices covering the portion of the Area X Remediation Work described in and covered by such certificate for which reimbursement is being requested (whether such invoices are paid or unpaid) and for such invoices which have been paid, an acknowledgment by the consultants and contractors and other persons issuing such invoices of the receipt by them of such amounts and payments;

(ix) that except for the amount, if any, stated in such certificate to be due for services and materials, there is no outstanding indebtedness known to the persons signing such certificate, after due inquiry, then due on account of the purchase of any equipment or fixtures described in the certificate or for labor, wages, materials, supplies or services in connection with any Area X Remediation Work whether or not described in or covered by such certificate which, if unpaid, might become the basis of a vendor's, mechanic's, laborers or materialmen statutory or similar lien or alleged lien upon such work or upon the permanent premises or any part thereof, or upon the Lessee's leasehold interest therein, nor are any of the equipment or fixtures described in such

certificate secured by any liens, mortgages, security interests or other encumbrances, provided, however, nothing contained herein shall be deemed or construed as a submission by the Port Authority to the application to itself of any such lien; and

- (x) contain such further information and documentation with respect to the Area X Remediation Costs as the Port Authority may from time to time require, which information, documentation and certification shall be given on such forms as may be adopted by the Port Authority.
- (3) Upon completion of each Remediation Project performed by the Lessee, the Lessee shall indicate on the last certificate submitted by the Lessee for such Remediation Project that it is the final certificate for such Remediation Project (it being understood and agreed that after submitting said final certificate the Lessee shall not include any Area X Remediation Costs for such Remediation Project in any future certificate), which certificate shall in addition to the requirements set forth in paragraph (c)(2) above:
- (i) certify that all the Area X Remediation Work to be performed as part of such Remediation Project has been completed;
- (ii) certify the final Area X Remediation Costs for that Remediation Project, the cumulative payments made by the Lessee on account of such costs, and the cumulative amounts due and payable from the Lessee on account of Area X Remediation Costs for such Remediation Project;
- (iii) certify that all of the Area X Remediation Work for such Remediation Project has been performed in accordance with the final plans and specifications and/or remedial action work plan therefor as approved by the Port Authority pursuant to Section 16 of the Lease and in accordance with the provisions of this Agreement, which certification shall be made by a responsible officer of the Lessee and by the environmental engineer, architect or other engineer who sealed the Lessee's plans and specifications and/or remediation work plan for such Remediation Project; and
- (iv) certify that except for the amount, if any, stated in such certificate to be due for services and materials, there is no outstanding indebtedness known to the persons signing such certificate, after due inquiry, then due on account of the purchase of any equipment or fixtures in connection with such Remediation Project for labor, wages, materials, supplies or services which, if unpaid, might become the basis of a vendor's, mechanic's, laborers or materialmen statutory or similar lien or

alleged lien upon such work or upon the permanent premises or any part thereof, or upon the Lessee's leasehold interest therein, nor are any of the equipment or fixtures described in any of the certificates submitted by the Lessee in connection with such Remediation Project secured by any liens, mortgages, security interests or other encumbrances, provided, however, nothing contained herein shall be deemed or construed as a submission by the Port Authority to the application to itself of any such lien.

(4)(i) (aa) Subject to the provisions of paragraphs (c)(4)(ii) through (c)(4)(v) of this Section and except with respect to amounts covered by the Final Certificate for each Remediation Project, within thirty (30) days after the receipt by the Port Authority of each duly submitted certificate satisfying in full the requirements set forth of this Section, the Port Authority shall remit to the Lessee an amount equal to the lesser of (i) the amount of the Port Authority Contribution or (ii) the Area XRemediation Costs incurred by the Lessee for the portion of the Area X Remediation Work performed by the Lessee in the preceding month as shown in such certificate to the extent that such amount or any portion thereof has not theretofore been included in any Remediation Payment (x) less ten percent (10%) thereof and (y) less the amount of claims, if any, made against the Port Authority by subcontractors, materialmen or workmen on account of any of the work described in the certificate and (z) less any amounts owed by the Lessee to the Port Authority.

Payment with respect to amounts (bb) covered by the final certificate submitted by the Lessee for a Remediation Project shall be made as follows: After examination approval of such final certificate and such supporting documents and records as the Port Authority shall deem necessary to substantiate the certificate, the Port Authority shall finally inspect Area X and such Remediation Project and after inspection the Port Authority shall notify the Lessee if such Remediation Project has been performed in accordance with the plans and specifications and/or remedial action work plan therefor as approved by the Port Authority and the provisions If all of the Area X Remediation Work for such Remediation Project has been completed in accordance with the plans and specifications and/or remedial action work plan therefor as approved by the Port Authority pursuant to Section 16 of the Lease and the provisions of this Agreement, the Port Authority, subject to the conditions set forth in paragraphs (c)(4)(ii) through (c)(4)(v) below, will remit to the Lessee on account of the Area X Remediation Costs for such Remediation Project the lesser of (i) the Port Authority Contribution or amount of (ii) difference obtained by subtracting (aa) the sum of all prior Unadjusted Remediation Payments made by the Port Authority to the

Lessee on account of such Remediation Project (bb) from the Area X Remediation Costs for such Remediation Project (y) less the amount of claims, if any, made against the Port Authority by subcontractors, materialmen or workmen on account of any of the work described in the certificate and (z) less any amounts owed by the Lessee to the Port Authority. If the sum of all of the previous Unadjusted Remediation Payments made by the Port Authority to the Lessee on account of such Remediation Project shall exceed the Area X Remediation Costs for such Remediation Project, the Lessee shall pay to the Port Authority the amount of such excess on demand.

(ii) At the election of the Port Authority no payment will be made if the Port Authority's inspection or audit does not substantiate the contents of any such certificate and until such matters have been resolved to the satisfaction of the Port Authority, but the Port Authority shall have no obligation to conduct any such inspection or audit, provided however, if the Lessee desires that an audit for a Remediation Project commence no later that ninety (90) days after the receipt by the Port Authority of the Final Certificate for such Remediation Project, the Lessee shall give notice to the Port Authority to such effect at the time the Lessee delivers such Final Certificate to the Port Authority or at any time sixty (60) days thereafter, which notice shall be given in accordance with Section 29 of the Lease and additionally a copy such notice shall be given to the Director of the Port Authority's Audit Department at the address to which notices are to be given to the Port Authority, and upon receipt of both such notices by the Port Authority and only in such event, the Port Authority shall be obligated hereunder to commence such audit not later that ninety (90) days after receipt by it of such Final Certificate, provided, further, however, any audit relied upon by the Port Authority to so delay or not make any Remediation Payment for any Remediation Project shall be concluded within one year after the conditions set forth in paragraph (c)(4)(i)(bb) for a Final Payment above have been met for such Remediation Project, provided, further, however, that the foregoing one year time limit shall automatically be made void and of no further force nor effect with respect to all audits hereunder upon the breach or default by the Lessee of any term, provision or condition of paragraphs (c)(6)(i), (c)(7) and (c)(8) below in which case from and after such breach or default any audit conducted at any time during the time period provided for in paragraph (c)(8) below may be relied upon by the Port Authority to so delay or not make any Remediation Payment.

(iii) No Remediation Payment shall be made by the Port Authority to the Lessee until all due and payable amounts included on all previously submitted certificates have been paid by the Lessee and the payment thereof verified to the satisfaction of the Port Authority in accordance with this Agreement.

(iv) The obligation of the Port Authority under this Agreement for Area X Remediation Costs shall be limited in amount on any particular date to the amount of the Port Authority Contribution as of such date and limited in time to Area X Remediation Costs incurred by the Lessee on or before the last day of the calendar month immediately preceding the month in which the Final Date shall occur and covered by certificates of the Lessee submitted in accordance with paragraphs (c)(2) and (c)(3) of this Section no later than on the Final Date.

(v) No Remediation Payment for any Remediation Project made by the Port Authority hereunder shall mean or be deemed to mean that the amount of such Remediation Payment is correct or that all the requirements set forth herein with respect to the payment to the Lessee of Area X Remediation Costs have been met. the event that the Port Authority shall determine by audit or otherwise that a Remediation Payment should not have been made or that the amount of any Remediation Payment was in excess of what should have been paid to the Lessee pursuant to the terms and conditions of this paragraph (c), the Lessee shall pay to the Port Authority within thirty (30) days after demand therefor the amount of such improperly made payment or the amount of such excess, as the case shall be, provided however, if the Lessee desires that an audit for a Remediation Project commence no later that ninety (90) days after the receipt by the Port Authority of the Final Certificate for such Remediation Project, the Lessee shall give notice to the Port Authority to such effect at the time the Lessee delivers such Final Certificate to the Port Authority or at any time sixty (60)days thereafter, which notice shall be given in accordance with Section 29 of the Lease and additionally a copy of such notice shall be given to the Director of the Port Authority's Audit Department at the address to which notices are to be given to the Port Authority, and upon receipt of both such notices by the Port Authority and only in such event, the Port Authority shall be obligated hereunder to commence such audit not later that ninety (90) days after receipt by it of such Final Certificate, provided, further, however, that any audit relied upon by the Port Authority to reduce or eliminate any Remediation Payment made by the Port Authority for a Remediation Project shall be concluded within one year after the conditions set forth in paragraph (c)(4)(i)(bb) for a Final Payment above have been met for such Remediation Project, provided, further, however, that the foregoing one year time limit shall automatically be made void and of no further force nor effect with respect to all audits hereunder upon the breach or default by the Lessee of any term, provision or condition of paragraphs (c)(6)(i), (c)(7) and (c)(8) below, in which case from and after such breach or default any audit

conducted at any time during the time period provided for in paragraph (c)(8) below may be relied upon by the Port Authority to reduce or eliminate any Remediation Payment.

- (5) It is hereby understood and agreed that nothing in this Section shall be or be deemed to be for the benefit of any contractor of the Lessee or other third party and no contractor or third party shall or shall be deemed to have acquired any rights against the Port Authority by virtue of the execution of this Agreement and nothing contained herein shall operate or give to any such contractor or third party any claim or right of action against the Port Authority and its Commissioners, officers, agents and employees.
- (i) The parties recognize that one or more of the contracts to be entered into by the Lessee for Area X Remediation Work may cover the remediation of areas of the permanent premises other than Area X. The Lessee shall, at all times maintain, and each certificate submitted to the Port Authority hereunder shall set forth, a proper breakdown and allocation of costs and payments as between the Area X Remediation Work and such other remediation work, and the Lessee shall ensure that each applicable contract provides for such breakdown and allocation. submitting the statements and certificates required of the Lessee the Lessee shall in such event specifically separately state the amounts covered by said contracts which are not Area X Remediation Work. Moreover, the Lessee specifically and separately set forth therein the Area X Remediation Costs.
- (ii) In the event the Port Authority questions the appropriateness or correctness of the amounts set forth by the Lessee in any certificate submitted by the Lessee pursuant to this paragraph (c), the Port Authority shall advise the Lessee to such effect and the Port Authority and the Lessee shall meet with each other in an attempt to agree upon and resolve their differences with respect thereto. If the Lessee has included in any portion of the Area X Remediation Costs any item which should not have been included therein, as for example the Lessee has included in any portion of the Area X Remediation Costs any item as having been incurred, but which in the opinion of the Port Authority was not so incurred, or which in the opinion of the Port Authority if so incurred is not an item properly chargeable to such element of the Area X Remediation Costs under sound accounting practice or to Area Remediation Costs, or does not represent an appropriate allocation of the costs of a particular contract which are required to be designated in accordance with paragraph (c)(6)(i) above, and the parties have been unable to resolve their differences within 90 days after the Port Authority gave its notice objecting to the

same, the Port Authority's decision as to the nature of the item of the Area X Remediation Costs shall be final, subject to the Lessee's rights to pursue payment in any court of competent jurisdiction.

- (7)The Lessee shall promptly submit to the Port Authority further information regarding Area X Remediation Work and Area X Remediation Costs as the Port Authority may from time to time and at any time request, including, but not limited to, the Lessee's estimate of the amounts and times of the various payments it will be making for Area X Remediation Costs, detailed cost projections for each Remediation Project accompanied by certification signed by an independent engineering consultant to the effect that the cost projections submitted by the Lessee are accurate and that the same represent a reasonable price for such Remediation Project and a certification signed by the Lessee's environmental engineer, architect or other engineer who sealed the approved plans and specifications and/or remedial action work plan for a Remediation Project certifying the value of work performed, and the Lessee shall be available itself or cause its environmental engineer, architect or other engineer, as the case may be, to be available for consultation in connection with payment certificates submitted pursuant to paragraph (c) of this Section.
- Without limiting any other provision of this Agreement, the Port Authority shall have the right with respect to each Remediation Project, at any time and from time to time within five (5) years of the submission by the Lessee to the Port Authority of the Final Certificate for such Remediation Project, by its agents, employees and representatives to audit and inspect during regular business hours the books, records and other data of the Lessee relating to the Area X Remediation Work and Area X Remediation Costs including without limitation any remediation work performed in connection therewith, it being understood that the Port Authority shall not be bound by any prior audit conducted by it. The Lessee agrees to keep such books, records and other data within the Port of New York District. Lessee shall maintain such books, records and other data for five (5) years after the Lessee has delivered the last Final Certificate to the Port Authority.
- (9) The amount of the Port Authority Contribution shall be adjusted from time to time in accordance with the following:
- (aa) The amount of the Port Authority Contribution shall be reduced by each of the following:
 - (i) the amount of each Unadjusted Remediation

(ii) all costs and expenses incurred or paid by the Port Authority for remediation of all or any portion of Area X, which costs and expenses it is hereby understood and agreed shall not include costs and expenses incurred or paid by the Port Authority with respect to the investigation and remediation work set forth and described in Exhibit C; it being further understood and agreed that nothing in this item (ii) shall have or be deemed to have imposed any obligations on or granted any rights in the Port Authority to perform any remediation of Area X.

(bb) The amount of the Port Authority Contribution shall be increased by the amount of each Refund Payment made by the Lessee to the Port Authority.

Without limiting any other of the Lessee's (d) obligations under the Lease, the Lessee agrees, unless otherwise directed by the Port Authority, to provide the Manager of the Facility, upon written request therefor, at the cost and expense of the Lessee and at any time during or within five (5) years subsequent to the term of the letting of the permanent premises under the Lease, with such information, documentation, records, correspondence, notices, reports, test results, certifications and any other information as the Port Authority shall request in connection with any Environmental Requirements or Environmental Damages, and with respect to any of the foregoing which are required by any Governmental Authority to be acknowledged, sworn to, signed or executed, the Lessee shall promptly and in a manner satisfactory to such Governmental Authority acknowledge, swear to, sign and execute the same when and as directed by the Port Authority during the term of the Lease and the Lessee's use or occupancy of the permanent premises and thereafter if in connection with any matter arising during the term of the Lease or the Lessee's use or occupancy of the permanent premises or related to any discharge that occurred on or from the permanent premises during the term of the Lease or the Lessee's use or occupancy of the permanent premises. The Lessee agrees that any of the foregoing may be filed by the Port Authority with the appropriate Governmental Authority on behalf of the Lessee at the Lessee's cost and expense. Further, the Lessee agrees, unless otherwise directed by the Port Authority, to provide the Manager of the Facility with copies of all information, documentation, records, correspondence, certifications, reports, test results and all other submissions with respect to any Environmental Requirements provided by the Lessee to a Governmental Authority and by a Governmental Authority to the Lessee within five (5) business days that the same are made available to or received by the Lessee.

- (e) Without limiting the generality of any other provision contained in the Lease, the Lessee shall indemnify, hold harmless and reimburse the Port Authority, its Commissioners, officers, employees and representatives from all claims, demands, penalties, fines, liabilities (including strict liability). settlements, attorney and consultant fees, investigation and laboratory fees, cleanup and remediation costs, court costs and litigation expenses, damages, judgments, losses, costs and expenses of whatsoever kind or nature and whether known or unknown, contingent or otherwise, just or unjust, groundless, unforeseeable or otherwise, arising or alleged to arise out of or in any way Environmental related to any Environmental Damages or any Requirements, or the risks and responsibilities assumed hereunder by the Lessee for the condition of the permanent premises or out of a breach or default of the Lessee's obligations under this Section If so directed, the Lessee shall at its own expense defend any suit based upon the foregoing, and in handling such it shall not, without obtaining express advance permission from the General Counsel of the Port Authority, raise any defense involving in any way the jurisdiction of the tribunal over the person of the Port Authority, the immunity of the Port Authority, its Commissioners, officers, agents or employees, the governmental nature of the Port Authority or the provisions of any statutes respecting suits against the Port Authority.
- (f) (1) Without limiting the Lessee's obligations elsewhere under this Agreement to comply with all governmental laws, rules, regulations, requirements, orders and directions and as part of the Lessee's fulfillment of the foregoing obligations, the Lessee understands and agrees that it shall be obligated, at its cost and expense, to comply with all Environmental Requirements.
- (2) Without limiting the generality of any provision of the Lease, in the event that any Environmental Requirement sets forth more than one compliance standard with respect to levels or levels of Hazardous Substances that can remain without remediation or clean-up of thereof, the Lessee agrees that the standard(s) or criteria to be applied in connection with any obligation that it may have under the Lease with respect Hazardous Substances shall be that standard which does not require. permit or allow, whether at the present time or in the future, the imposition of any restriction of any nature whatsoever, including without limitation any engineering or institutional controls, upon the transfer of the premises or the Facility or the use or occupancy of the premises or any other portion of the Facility or upon any operations or activities conducted or to be conducted on the premises or the Facility without the prior written permission of the Port Authority.

- (g) Without limiting the generality of any other term or provision of the Lease, all of the obligations of the Lessee under this Section shall survive the expiration or earlier termination of the letting of the premises.
- (1)Upon the execution of Supplement No. 1 to the Lease by the Lessee and delivery thereof to the Port Authority, the Lessee shall cause to be delivered to the Port Authority and caused to be maintained for a period from such delivery throughout the remainder of the term of this Lease and for a further period ending on the last day of the sixth full calendar month to occur after the date on which the Lessee shall have fulfilled all its obligations pursuant to paragraph (b)(2) of this Section (the aforesaid period being hereinafter referred to as the 'Effective Period') security for the full, faithful and prompt performance of and compliance with, on the part of the Lessee, all of the provisions, terms, covenants and conditions of paragraph (b)(2) of this Section 46 on its part to be fulfilled, kept, performed or observed (hereinafter collectively referred to as the 'Secured Environmental Obligations') a letter of credit or letters of credit in the amount of One Million Nine Hundred Thousand Dollars and No Cents (\$1,900,000.00) meeting all the requirements set forth subparagraph (2) below.
- (2) Each letter of credit delivered pursuant to this paragraph (h) (hereinafter singularly referred to as a "Letter of Credit" and in the plural referred to as "Letters of Credit") shall be clean, irrevocable and issued to and in favor of the Port Authority by a banking institution acceptable to the Port Authority and having an office in the Port of New York District and shall be payable in the Port of New York District. The form and terms of each Letter of Credit, as well as the institution issuing it, shall be subject to the prior and continuing approval of the Port Each Letter of Credit shall provide that it shall continue until the last day of the Effective Period. continuance may be by provision for automatic renewal delivery to the Port Authority of a substitute letter of credit satisfactory to the Port Authority and meeting all the requirements set forth in this subparagraph (2) in an amount equal to the amount of the Letter of Credit it is replacing. If requested by the Port Authority, and at the cost and expense of the Port Authority, any letter of credit delivered pursuant to this paragraph (h) shall be accompanied by a letter expressing the opinion of counsel for the banking institution issuing the letter of credit that the issuance of said clean, irrevocable letter of credit is an appropriate and valid exercise by the banking institution of the corporate power conferred upon it by law.
 - (3) Upon notice of cancellation of a Letter of

Credit or upon notice that a Letter of Credit will not be extended the Lessee agrees that unless, by a date sixty (60) days prior to the effective date of such cancellation or expiration, such Letter of Credit is replaced by another letter of credit satisfactory to the Port Authority and meeting all the requirements of paragraph (h)(2) above in the amount of the Letter of Credit that is being replaced, the Port Authority may draw down the full amount thereof and thereafter the Port Authority will hold the same as security under this paragraph (h).

- (4) In addition to any and all other remedies available to it, the Port Authority shall have the right, at its option at any time and from time to time, with or without notice, to draw upon each Letter of Credit or any part thereof in whole or partial satisfaction of any of its claims or demands against the Lessee for the Secured Environmental Obligations. There shall be no obligation on the Port Authority to exercise such right and neither the existence of such right nor the holding of one or more Letters of Credit shall cure any default or breach of the Secured Environmental Obligations.
- (5) Each drawing made by the Port Authority pursuant to this paragraph (h) shall be accompanied by a statement to the issuer of the Letter of Credit that the amount of the drawing is due to the Port Authority pursuant to the obligations of the Lessee under Section 46(b)(2) or Section 46(h) of this Lease.
- (6) If at any time any bank shall fail to make any payment to the Port Authority in accordance with any Letter of Credit, the Lessee shall cause to be delivered to the Port Authority on demand another letter of credit satisfactory to the Port Authority meeting all the requirements set forth in subparagraph (2) above in an amount equal to the amount of the said Letter of Credit.
- (7) Failure to provide or maintain a Letter of Credit or Letter of Credits in accordance with the terms and provisions of this paragraph (h) at any time during the Effective Period valid and available to the Port Authority and any failure of any banking institution issuing a Letter of Credit to make one or more payments as provided in such Letter of Credit, shall be and be deemed to be a breach of the Lease.
- (8) No action by the Port Authority pursuant to the terms of any Letter of Credit, or receipt by the Port Authority of funds from any bank issuing any Letter of Credit, shall be or be deemed to be a waiver of any breach or default by the Lessee of the Secured Environmental Obligations and all remedies under the Lease or otherwise consequent upon such breach or default shall not be

affected by the existence of or recourse to any such Letter of Credit.

- (9) The provisions of this paragraph (h) (herein the 'Security Provisions') shall survive the expiration or earlier termination of this Lease and upon such event the Security Provisions shall continue in full force and effect and no part of such security shall then or thereafter be returned to the Lessee until the day after the Effective Period and upon written request of the Lessee, the Port Authority will return the said security in the possession of the Port Authority less the amount of all drawings that have been made by the Port Authority pursuant to this paragraph (h) which have been applied to the Secured Environmental Obligations.
- (10) For purposes of this paragraph (h), the Lessee hereby certifies that its I.R.S. Employee Identification No. is 22-1449923.
- (i) The terms and conditions of this Section 46 of the Lease shall not be used to construe or imply any meaning or interpretation of the terms and conditions of the Lease with respect to the temporary premises, including without limitation, the Continuous Permanent Premises prior to it becoming a part of the permanent premises or the terms and conditions of any other past, present or future agreement between the Lessee and the Port Authority.
- (j) The Lessee shall be entitled to an abatement of rental for Area X as provided for in Section 36 of this Agreement during the performance of Initial Cleanup Work.
- 16. The following new Sections 49, 50 and 51 shall be deemed to have been added immediately after Section 48 of the Lease to read as follows:

"Section 49. No Waiver

No failure by the Port Authority to insist upon the strict performance of any agreement, term, covenant or condition of the Lease or to exercise any right or remedy consequent upon a breach or default thereof, and no extension, supplement or amendment of the Lease during or after a breach thereof, unless expressly stated to be a waiver, and no acceptance by the Port Authority of rentals, fees, charges or other payments in whole or in part after or during the continuance of any such breach or default, shall constitute a waiver of any such breach or default of such agreement, term, covenant or

condition. No agreement, term, covenant or condition of the Lease to be performed or complied with by the Lessee, and no breach or default thereof, shall be waived, altered or modified except by a written instrument executed by the Port Authority. No waiver by the Port Authority of any default or breach on the part of the Lessee in performance of any of agreement, term, covenant or condition of this Lease shall affect or alter the Lease, but each and every agreement, term, covenant and condition thereof shall continue in full force and effect with respect to any other then existing or subsequent breach or default thereof."

"Section 50. Repaying Work

- In the event the Lessee has performed some or (i) all of the Lessee's construction work (as defined in Section 5 of the Lease) in Area X and Initial Cleanup Work is required and a result thereof any pavement in Area X constituting all or a portion of the Lessee's construction work, as the case shall be, or any pavement installed by the Lessee in replacement of pavement which was part of the Lessee's construction work is damaged or removed from Area X, the Lessee shall repair all such damaged pavement to the condition required by the Lease and shall replace all such pavement which is removed with pavement installed in accordance with the plans and specifications for such pavement that was removed unless the Port Authority shall consent to pavement having plans specifications different from the plans and specifications of the pavement that was removed (the work to so repair and/or so replace such pavement is hereinafter called the 'Repaying Work'.
- (ii) The Repaving Work performed by the Lessee to replace and repair Reimbursable Pavement (as defined in Section 46(c)(1) of the Lease) is hereinafter called the 'Reimbursable Repaving Work'). The Reimbursable Repaving Work shall be paid for by the Port Authority to the extent and as provided for in paragraphs (m), (n) and (o) of this Section.
- (iii) The parties recognize that one or more of the contracts to be entered into by the Lessee for Repaving Work may cover both Reimbursable Repaving Work and Repaving Work for which the Lessee shall not be entitled to reimbursement hereunder because the pavement being repaired or replaced is not Reimbursable Pavement (which Repaving Work is hereinafter called the "Non-reimbursable Repaving Work"). The Lessee shall, at all times maintain, and each certificate submitted to the Port Authority pursuant this Section 50 shall set forth

a proper breakdown and allocation of costs and payments as between the Non-reimbursable Repaving Work Reimbursable Repaying Work, and the Lessee shall ensure that each applicable contract provides for such breakdown and allocation. In submitting the statements and certificates required of the Lessee pursuant to this Section 50, the Lessee shall in such event specifically and separately state the amounts covered by said contracts which are for reimbursable Repaying Work. Moreover, the Lessee shall specifically and separately set forth therein the Cost of the Reimbursable Repaving Work (as defined in paragraph (m) below).

- (b) With respect to the Repaving Work the Lessee shall be the insurer of the Port Authority, and its Commissioners, officers, agents and employees against the following distinct and several risks, whether they arise from acts or omissions of the Lessee, any contractors of the Lessee, the Port Authority, third persons, or from acts of God or the public enemy, or otherwise, excepting only risks which result solely from affirmative wilful acts done by the Port Authority subsequent to commencement of the Repaving Work:
 - (i) The risk of loss or damage to all such construction prior to the completion thereof. In the event of such loss or damage, the Lessee shall forthwith repair, replace and make good the Repaving Work without cost to the Port Authority;
 - (ii) The risk of death, injury or damage, direct or consequential, to the Port Authority, and its Commissioners, officers, agents and employees, and to its or their property, arising out of or in connection with the performance of the Repaving Work. The Lessee shall indemnify the Port Authority, and its Commissioners, officers, agents and employees, for all such injuries and damages, and for all loss suffered by reason thereof;
 - (iii) The risk of claims and demands, just or unjust, by third persons against the Port Authority, and its Commissioners, officers, agents and employees, arising or alleged to arise out of the performance of the Repaving Work. The Lessee shall indemnify the Port Authority, and its Commissioners, officers, agents and employees, against and from all such claims and demands, and for all loss and expense incurred by it and by them in the defense, settlement or satisfaction thereof including without limitation thereto, claims and demands

for death, for personal injury or for property damage, direct or consequential.

(C) Prior to the commencement of any of the Repaying Work, the Lessee shall submit to the Port Authority for its approval a Construction Application in the form supplied by the Port Authority, and containing such terms and conditions as the Port Authority may include, setting forth in detail by appropriate plans and specifications the work the Lessee proposes to perform, separately identifying the Non-reimbursable Repaving Work and the Reimbursable Repaving Work and the manner of and time periods for performing the Repaving Work, including without limitation a schedule listing each contract proposed to be entered into for the performance of the Repaving Work and the estimated cost of the Non-Reimbursable Repaving Work and the estimated cost of the Reimbursable Repaying Work to be performed under each such If the Lessee wishes to install on Area X replacement paving having plans and specifications different from that paving which was removed (such Repaving Work is hereinafter called 'Alternative Repaving Work'), it shall make such request in the Construction Application submitted by it to the Port Authority stating the reasons for such request and providing the Port Authority with estimates from an independent professional engineer licensed to practice in the State of New Jersey of the cost to perform the Alternative Repaving Work as requested by the Lessee and of the cost to perform the Repaving Work by installing paving identical to the pavement that is being replaced (such Repaving Work is hereinafter called 'Replacement Repaving Work'). In the event that repair as well as replacement work is required, all estimates required hereunder shall include the cost of both replacement and repair work. If the Repaving Work approved by the Port Authority is Replacement Repaving Work, the Port Authority shall retain an independent professional engineer licensed to practice in the State of New Jersey to provide an estimate of the Cost of the Reimbursable Repaving Work as defined in paragraph (m) below based upon the Lessee's plans and specifications for the Reimbursable Repaying Work as approved by the Port Authority (which estimate is hereinafter referred to as "Reimbursable the Replacement Repaying Estimate") and in such instance Reimbursable Replacement Repaving Estimate shall be the Approved Repaving Estimate used pursuant to the terms of paragraph (m) below to calculate the Repaving Work Reimbursement Amount. If the Paving Work approved by the Port Authority is Alternative Repaving Work, the Port Authority shall retain an independent professional engineer licensed to practice in the State of New Jersey to provide an estimate of the Cost of the Reimbursable Repaving Work based upon the Lessee's plans and specifications for the Reimbursable Repaying Work as approved by the Port Authority (which estimate is hereinafter referred to as the "Reimbursable Alternate Repaving

Estimate") as well as an estimate of the Cost of the Reimbursable Repaying Work based upon Replacement Repaying Work and the lower of the two estimates shall be the Approved Repaving Estimate used pursuant to the terms of paragraph (m) below to calculate the Repaying Work Reimbursement Amount. The data to be supplied by the Lessee shall identify each of the items constituting the Repaying and shall describe in detail the systems. improvements, fixtures and equipment to be installed by the Lessee. The Lessee shall be responsible at its sole expense for retaining all architectural, engineering and other technical consultants and services as may be directed by the Port Authority and for developing. completing and submitting detailed plans specifications for the Repaving Work. The plans and specifications to be submitted by the Lessee shall be in sufficient detail for a contractor to perform the Repaving Work and shall bear the seal of qualified architect or professional engineer who shall responsible for the administration of the Repaving Work accordance with the Port Authority's requirements. In connection with review by the Port Authority of the Lessee's submissions under this Section, the Lessee shall submit to the Port Authority, at the Authority's request, such additional data, detail information as the Port Authority may find necessary. Following Authority's receipt of the Lessee's Construction Application and complete plans and specifications and the estimates required to be provided by the Lessee above, the Port Authority shall give its written approval or rejection thereof, or shall request such revisions or modifications thereto as the Port Authority may find necessary. The Lessee shall not engage any contractor or permit the use of any subcontractor unless and until each such contractor or subcontractor, and the contract such contractor is operating under, have been approved by the Port The Lessee shall include in any such contract or subcontract such provisions as are required in accordance with the provisions of this Agreement and the Construction Application approved by the Port Authority. The Lessee shall obtain and maintain or cause each contractor to obtain and maintain in force such insurance coverage as is described in paragraphs (h) through of this Section and such performance bonds as the Port Authority may specify. All of the Repaving Work shall be performed by the Lessee in accordance with the Construction Application and final plans and specifications approved by the Port Authority, shall be subject to inspection by the Port Authority during the progress of the work and after the completion thereof, and the Lessee shall redo or replace at its own expense any work not done in accordance therewith. Upon final completion of all of the Repaying Work the Lessee shall deliver to the Port Authority a certificate to such effect signed by a responsible officer of the Lessee and by the architect or engineer who sealed the Lessee's plans pursuant to the provisions of this paragraph certifying that

- all of the Repaving Work has been performed in accordance with the approved plans and specifications and the provisions of this Agreement, and the Lessee shall supply the Port Authority with one (1) set of as-built drawings of the Repaving Work in such form as the Port Authority shall determine. The Lessee shall keep said drawings current during the term of the letting under this Agreement. No changes or modifications to the Repaving Work shall be made without prior Port Authority consent. Following its receipt of the Lessee's certificate, the Port Authority shall inspect the Repaving Work and, unless such certification is not correct, or the Port Authority determines that Area X is unsuitable for occupancy and use by the Lessee, a certificate of final completion shall be delivered to the Lessee by the Port Authority.
- (d) The Lessee shall not commence any portion of the Repaving Work until the Construction Application and plans and specifications covering such work, referred to in paragraph (c) of this Section, have been finally approved by the Port Authority.
- Without limiting the generality of any of the provisions of this Agreement, the Repaving Work shall be performed such a manner that there will be at all times during construction a minimum of air pollution, water pollution or any other type of pollution, and a minimum of noise emanating from, arising out of, or resulting from construction. Subject to the provisions of this Agreement, the Lessee shall construct such reasonable structures, fences, equipment, devices and other facilities as may be necessary or appropriate to accomplish the objectives set forth in this paragraph, and, without limiting the generality of the foregoing, such construction shall be subject to the Port Authority's review and approval in accordance with the provisions of this Section.
- Without limiting the generality of paragraph (c) of this Section the Lessee shall be solely responsible for the plans and specifications used by it and for the adequacy or sufficiency of such plans, specifications and all the improvements, fixtures, and equipment depicted thereon or covered thereby, regardless of the consent thereto or approval thereof by the Port Authority or the incorporation therein of any Port Authority requirements or recommendations. The Port Authority shall have no obligation or liability in connection with the performance of any of the Repaving Work or for the contracts for the performance thereof entered into by the Lessee. Any warranties extended or available to the Lessee in connection with the aforesaid work shall be for the benefit of the Port Authority as well as the Lessee. The Lessee shall conduct no public operations in Area X with respect to any improvements, fixtures or equipment constituting the Repaying Work until the Port Authority shall have notified the Lessee in writing that the

Repaying Work has been completed or substantially completed to its satisfaction. In the event of any inconsistency between the provisions of this Agreement and those of the Construction Application referred to in paragraph (c) of this Section the provisions of this Agreement shall control.

- (g) The Lessee shall pay all claims lawfully made against it by its contractors, subcontractors, materialmen and workmen, and all claims lawfully made against it by other third persons arising out of or in connection with or because of the performance of the Repaving Work, and shall cause its contractors and subcontractors to pay all such claims lawfully made against them. Nothing herein contained shall be deemed to constitute consent to the creation of any lien or claim against the permanent premises or any part thereof, nor to prevent the Lessee from contesting claims in good faith.
- (h) In addition to all policies of insurance otherwise required by this Agreement, the Lessee shall procure and maintain or cause to be procured and maintained in effect during the performance of the Repaving Work the following:
 - (i) Comprehensive General Liability Insurance including but not limited to coverage for Products Liability-Completed Operations and for Broad Form Property Damage and Independent Contractor coverage, with a contractual liability endorsement covering the obligations assumed by the Lessee under paragraph (b) of this Section, which coverage shall not exclude claims arising out of or in connection with work performed within fifty feet of railroad property, and which are customarily insured under such a policy, with a minimum combined single limit coverage for bodily injury and property damage of \$5 million or such other limit as the Port Authority shall require. Said insurance shall also include coverage for explosion, collapse and underground property damage hazards.
 - (ii) Protection and Indemnity Insurance, if the Repaving Work involves the ownership, maintenance, operation, use, loading or unloading of watercraft, with a minimum combined single limit coverage for bodily injury and property damage of \$5 million or such other limit as the Port authority shall require.
 - (iii) Comprehensive Automobile Liability Insurance covering all owned, non-owned or hired vehicles used in connection with the Repaving Work with a minimum combined single limit coverage for bodily injury and property damage of \$2 million or in such other limit as the Port Authority shall require.

- (iv) Workers' Compensation and Employers' Liability Insurance in accordance with the requirements of law and in limits of not less than \$1 million per accident or in such other limit as the Port Authority shall require. The Workers' Compensation Policy shall be specially endorsed to include coverage afforded by the U.S. Longshoremen's and Harbor Workers' Compensation Act and Coverage B "Jones Act", maritime (including coverage for Masters or Members of the Crew of Vessels).
- (i) In addition to the insurance required pursuant to the provisions of paragraph (h) of this Section, the Lessee shall procure or cause to be procured prior to the commencement of any Repaying Work Builder's Risk Insurance (All Risk) covering loss or damage (including any loss or damage resulting from flood or earthquake) to any structures, improvements, fixtures and equipment and furnishing and materials on the permanent premises during said construction, whether or not attached to the land, in an amount equal to the full replacement cost. Such insurance shall name the Port Authority as an insured and such policy shall provide that the loss shall be adjusted with the Port Authority, and that the proceeds thereof shall be paid to the Port Authority and shall be made available to the Lessee for and applied strictly and solely to the payment of the cost of the repair, replacement, rebuilding or other performance of the Repaying Work.
- (j) With the exception of the Workers' Compensation and Employers' Liability Insurance policy each policy of insurance described in paragraph (h) of this Section shall include the Port Authority as an additional insured, and no such policy shall contain any care, custody or control exclusions, or any exclusion for bodily injury to or sickness, disease or death of any employee of the Lessee or of any of its contractors which would conflict with or in any way impair the coverages resulting from the Port Authority's status as an additional insured or the coverage under the contractual liability endorsement described in subdivision (i) of paragraph (h) of this Section. Such insurance shall also contain an endorsement providing that the protection afforded the Lessee thereunder with respect to any claim or action against the Lessee by a third party shall pertain and apply with like effect with respect to any claim or action against the Lessee by the Port Authority and against the Port Authority by the Lessee, but said endorsement shall not limit, vary, change or affect the protections afforded the Port Authority as an additional insured. insurance shall contain a provision that the insurer shall not, without obtaining express advance permission from the General Counsel of the Port Authority, raise any defense involving in any way the jurisdiction of the tribunal over the person of the Port

Authority, the immunity of the Port Authority, its Commissioners, officers, agents or employees, the governmental nature of the Port Authority or the provisions of any statutes respecting suits against the Port Authority.

- (k) Unless otherwise set forth herein, each policy of insurance described in paragraphs (h) and (i) of this Section shall be subject to the applicable provisions of Section 11 of this Agreement. In addition, the Port Authority may require additions, deletions, amendments or modifications to the insurance described in paragraphs (h) and (i) of this Section, or may require such other and additional insurance in connection with the Repaving Work, in such reasonable amounts, against such other insurable hazards, as the Port Authority may deem required.
- In the performance of the Repaving Work the Lessee shall not permit any situation or condition to continue that may cause or be conducive to any labor troubles at the Facility which interferes with the progress of other construction work at the The determinations of the Port Authority shall be conclusive on the Lessee and, upon notice from the Port Authority, the Lessee shall or shall cause its contractor to immediately rectify any condition specified in the notice. In the event of failure by the Lessee or any of its contractors to immediately comply with the requirements of this paragraph (whether or not such failure is due to the Lessee's fault) the Port Authority by notice shall have the right to suspend the Port Authority's permission to the Lessee to proceed with any portion of the Repaving Work being performed by or on behalf of the Lessee, and the Lessee shall thereupon immediately cease the same. When labor troubles shall be so settled that such interference or the danger thereof no longer exists, the Port Authority by notice to the Lessee shall reinstate the permission to the Lessee to perform the Repaving Work on all the same terms and conditions as before the suspension. "Labor troubles" shall mean and include strikes. work-stoppages, slowdowns, complaints, disputes, controversies or any other type of labor trouble, regardless of the employer of the person involved or their employment status, if any.
- (m) Upon performance by the Lessee of the Repaving Work in accordance with the provisions of this Section, the Port Authority will pay to the Lessee a sum (which sum is hereinafter referred to as the 'Repaving Work Reimbursement Amount') equal to the lesser of: (1) the Approved Repaving Estimate or (2) the Cost of the Reimbursable Repaving Work, as hereinafter defined. To the extent permitted by sound accounting practice, the sum of the following items of cost incurred by the Lessee in performing the Reimbursable Repaving Work shall constitute the Cost of the Reimbursable Repaving Work, which is hereinafter sometimes referred

to as just the 'Cost', for the purposes of this Agreement:

- (1) The Lessee's payments to contractors;
- (2) The Lessee's payments for supplies and materials;
- (3) The Lessee's payments to persons, firms or corporations other than construction contractors or suppliers of materials, for services rendered or rights granted in connection with construction, not including services of the types mentioned in items (4), (5) and (6) of this paragraph;
- (4) The Lessee's payments of premiums for performance bonds and for the insurance the Lessee is required to maintain in effect in accordance with the provisions of paragraphs (h) through (k) of this Section during the period of construction only;
- (5) The Lessee's payments for engineering services in connection with the Reimbursable Repaving Work, and during the period of the construction only;
- (6) The Lessee's payments for architectural, planning and design services in connection with the Reimbursable Repaying Work;
- (7) The sum of the costs approved under items (4), (5) and (6) of this paragraph shall not exceed 20% of the sum of the costs approved under items (1), (2) and (3) of this paragraph; if in fact there is any such excess, such excess shall not be a part of the Cost of the Reimbursable Repaying Work for the purposes of this Section.

No payment or payments on account of administrative or other overhead costs and no payment to employees of the Lessee shall be included in the Cost of the Reimbursable Repaving Work whether or not allocated to the cost of the work by the Lessee's own accounting practices. No payment to a firm or corporation wholly or partially owned by or in common ownership with the Lessee shall be included in the Cost of the Reimbursable Repaving Work.

(n) On or about the tenth day of the first calendar month following the commencement of the Reimbursable Repaving Work the Lessee shall certify to the Port Authority by written certification subscribed by a responsible officer of the Lessee: (i) the amount of the Reimbursable Repaving Work performed by the Lessee in the preceding month, the Cost of the Reimbursable Repaving Work of the Reimbursable Repaving Work described in the

certificate, the amount of such Cost incurred by the Lessee during such month, and the amount paid by the Lessee on account of such (ii) that except for the amount, if any, stated in such certificate to be due for services and materials, there is no outstanding indebtedness known to the persons signing certificate, after due inquiry, then due on account of the purchase of any equipment or fixtures described in the certificate or for labor, wages, materials, supplies or services in connection with any work described therein which, if unpaid, might become the basis of a vendor's, mechanic's, laborer's or materialmen statutory or similar lien or alleged lien upon the Repaving Work or upon the permanent premises or any part thereof, or upon the Lessee's leasehold interest therein, nor are any of the equipment, or fixtures described in such certificate secured by any liens, mortgages, security interests or other encumbrances. contained herein shall be deemed or construed as a submission by the Port Authority to the application to itself of any such lien; and (iii) that the Reimbursable Repaving Work for which the amount forth in the certificate is due has been performed in accordance with the Lessee's approved plans and specifications for Reimbursable Repaving Work and the provisions of this Agreement. Such certificate shall also contain a certification by the Lessee and by the architect or engineer who sealed the Lessee's plans pursuant to the provisions of paragraph (c) of this Section certifying that all of the Reimbursable Repaving Work described in the certificate has been performed in accordance with the final plans and specifications for the Reimbursable Repaying Work approved by the Port Authority and in accordance with the provisions of this Agreement. Following its receipt of the Lessee's certificate, the Port Authority shall remit to the Lessee an amount equal to the Cost of the Reimbursable Repaying Work incurred by the Lessee for the portion of the Reimbursable Repaving Work performed by the Lessee in the preceding month as shown in the certificate less ten percent (10%) thereof and also less the amount of any claims made against the Port Authority by subcontractors, materialmen or workmen, if any, in connection with any of the Reimbursable Repaving Work described in the certificate. about the tenth day of each month thereafter during the period of the performance of the Reimbursable Repaving Work the Lessee shall deliver a similar certificate to the Port Authority signed by a responsible officer of the Lessee which certificate shall certify the amount of the Reimbursable Repaving Work performed by the Lessee in the preceding month, the Cost of the Reimbursable Repaying Work of the Reimbursable Repaying Work described in the certificate performed by the Lessee in the preceding month, the amount of such Cost incurred by the Lessee during such month, the amount paid by the Lessee on account of such Cost, the cumulative amount of such Cost incurred by the Lessee on account of the Reimbursable Repaving Work described in the certificate from the

date of the commencement of the Reimbursable Repaving Work, and the cumulative amount of all payments made on account of such cost from the date of the commencement of the Reimbursable Repaying Work, and such certificate shall also contain the statements set forth in subdivisions (ii) and (iii) of this paragraph (n) both with respect to the Reimbursable Repaying Work described in the certificate and all Reimbursable Repaving Work previously performed by the Lessee. Each such certificate shall also contain a certification by the Lessee and by the architect or engineer who sealed the Lessee's plans pursuant to the provisions of paragraph (c) of this Section certifying that all of the work described in the certificate has performed in accordance with the final specifications for the Reimbursable Repaving Work approved by the Port Authority and in accordance with the provisions of this Agreement. Following its receipt of such certificate the Port Authority shall remit to the Lessee an amount equal to the Cost of the Reimbursable Repaving Work incurred by the Lessee for the portion of the Reimbursable Repaving Work performed by the Lessee in the preceding month as shown in the certificate less ten percent (10%) thereof and less the amount of claims, if any, made against the Port Authority by subcontractors, materialmen or workmen on account of any of the work described in the certificate. final completion of all of the Reimbursable Repaving Work to be performed by the Lessee as set forth in the Lessee's approved plans and specifications for the Reimbursable Repaving Work, the Lessee shall submit to the Port Authority a final certification signed by a responsible officer thereof that all the Reimbursable Repaving Work has been completed, which certificate shall certify separately the final Cost of the Reimbursable Repaving Work for all the Reimbursable Repaving Work performed by the Lessee, the cumulative payments made by the Lessee on account of such Costs, and shall also certify the items set forth in subdivisions (ii) and (iii) of this paragraph (n) with respect to all of the Reimbursable Repaving Work. In addition, the architect or engineer who sealed the Lessee's plans and specifications for the Reimbursable Repaving Work pursuant to the provisions of paragraph (c) of this Section shall certify that all of the Reimbursable Repaving Work has been performed in accordance with the final plans and specifications for the Reimbursable Repaying Work approved by the Port Authority and in accordance with the provisions of this Agreement. examination and approval of such certificate, and such supporting documents and records as the Port Authority shall deem necessary to substantiate the certificate, the Port Authority shall finally inspect Area X and the Reimbursable Repaving Work and after such inspection the Port Authority shall notify the Lessee if all of the Reimbursable Repaving Work has been performed in accordance with the approved plans and specifications therefor and the provisions of this Agreement. If all of the Reimbursable Repaying Work has completed in accordance with the approved plans

specifications therefor and the provisions of this Agreement, the Port Authority will pay to the Lessee on account of the Cost of the Reimbursable Repaving Work the difference between the sum obtained by adding together all prior payments made by the Port Authority to the Lessee on account of the Cost of the Reimbursable Repaying Work and the Repaving Work Reimbursement Amount. If the sum of all of the previous payments made by the Port Authority to the Lessee on account of the Cost of the Reimbursable Repaying Work exceeds the Repaving Work Reimbursement Amount, the Lessee shall pay to the Port Authority the amount of such excess on demand. No payment made by the Port Authority to the Lessee pursuant to the provisions of this paragraph, including, without limitation, any payment made to the Lessee following the Port Authority's receipt of the Lessee's final certification of cost, shall be deemed final until the Cost of the Reimbursable Repaving Work has been finally determined by the Port Authority. Any payment made to the Lessee following the Port Authority's receipt of the Lessee's final certification of cost shall not be deemed a final determination of the Reimbursable Repaving Work. Such determination shall occur only after the Port Authority has examined and approved the Lessee's final certificate setting forth the Cost of the Reimbursable Repaving Work and such records and other documentation of the Lessee as the Port Authority shall deem necessary to substantiate such Cost. The Lessee shall permit the Port Authority by its agents, employees and representatives at all reasonable times prior to a final determination of the Cost of the Reimbursable Repaving Work to examine and audit the records and other documentation of the Lessee which pertain to and will substantiate such Cost. In no event whatsoever shall the Cost of the Reimbursable Repaving Work as finally determined and computed in accordance with the provisions of paragraph (m) of this Section and in accordance with the provisions of this paragraph include any expenses, outlays or charges whatsoever by or for the account of the Lessee for or in connection with any improvements, equipment or fixtures or the performance of any Reimbursable Repaving Work unless such are actually and completely installed in and or made to Area X nor shall cost include the costs of any equipment, fixtures or improvements which are secured by liens, mortgages, other encumbrances or conditional bills of sale.

(o) The Port Authority's entire obligation under this Agreement to make payments to the Lessee on account of the Cost of the Reimbursable Repaying Work shall be limited in amount to the Repaying Work Reimbursement Amount. No contractor or third party shall or shall be deemed to have acquired any rights against the Port Authority by virtue of the execution of this Agreement and nothing contained herein shall operate or give to any such contractor or third party any claim or right of action against the Port Authority and its Commissioners, officers, agents and

employees.

- (p) Without limiting any of the terms and conditions hereof, the Lessee understands and agrees that it shall put into effect prior to the commencement of the Repaving Work affirmative action program and Minority Business Enterprise (MBE) program and Women-owned Business Enterprise (WBE) program in accordance with the provisions of Schedule E, attached to the Lease, or such substitute Schedule E then in effect as shall be delivered to the Lessee by the Port Authority. The provisions of Schedule E shall be applicable to the Lessee's contractor or contractors and subcontractors at any tier of construction as well as to the Lessee, and the Lessee agrees to include the provisions of Schedule E in all of its construction contracts so as to make the provisions and undertakings set forth in Schedule E the direct obligation of the construction contractor or contractors and subcontractors at any tier of construction. The Lessee agrees to and shall require its contractors and subcontractors to furnish to the Port Authority such data, including but not limited to compliance reports, relating to the operation and implementation of the affirmative action, MBE, and WBE programs of the Lessee and its contractor, contractors, and subcontractors at any tier of construction called for under the provisions of this paragraph and Schedule E as the Port Authority may request at any time and from time to time and the Lessee agrees to and shall also require that its contractors and subcontractors at any tier of construction make and put into effect such modifications and additions thereto as may be directed by the Port Authority pursuant to the provisions of paragraph and Schedule E to effectuate the goals affirmative action, MBE, and WBE programs. The obligations imposed on the Lessee under this paragraph and Schedule E shall not be construed to impose any greater requirements on the Lessee than those which may be imposed on the Lessee under applicable law.
- (q) In addition to and without limiting any terms and provisions hereof, the Lessee shall provide in all of its contracts and subcontracts covering the Repaving Work, or any portion thereof, that:
- (1) The contractor shall not discriminate against employees or applicants for employment because of race, creed, color, national origin, sex, age, disability or marital status, and shall undertake or continue existing programs of affirmative action to ensure that minority group persons are afforded equal employment opportunity without discrimination. Such programs shall include, but not be limited to, recruitment, employment, job assignment, promotion, upgrading, demotion, transfer, layoff, termination, rates of pay or other forms of compensation, and selections for training or retraining, including apprenticeships

and on-the-job training;

- (2) At the request of either the Port Authority or the Lessee, the contractor shall request such employment agency, labor union, or authorized representative of workers with which it has a collective bargaining or other agreement or understanding and which is involved in the performance of the contract with the Lessee to furnish a written statement that such employment agency, labor union or representative shall not discriminate because of race, creed, color, national origin, sex, age, disability or marital status and that such union or representative will cooperate in the implementation of the contractor's obligations hereunder;
- (3) The contractor will state, in all solicitations or advertisements for employees placed by or on behalf of the contractor in the performance of the contract, that all qualified applicants will be afforded equal employment opportunity without discrimination because of race, creed, color, national origin, sex, age, disability or marital status;
- (4) The contractor will include the provisions of subdivisions (1) through (3) of this paragraph in every subcontract or purchase order in such a manner that such provisions will be binding upon each subcontractor or vendor as to its work in connection with the contract;
- (5) "Contractor" as used in paragraph (p) and in this paragraph shall include each contractor and subcontractor at any tier of construction."

"Section 51. Extended Temporary Premises

Effective at 12:01 o'clock A.M. on March 1, 1998, in addition to the premises heretofore let to the Lessee under the Lease, the letting of which shall continue in full force and effect, the Port Authority hereby lets to the Lessee and the Lessee hires and takes from the Port Authority upon all the terms, provisions, covenants and conditions of the Lease, at Port Newark in the City of Newark, in the County of Essex and State of New Jersey, the open area shown in stipple on the sketch attached hereto, hereby made a part hereof, and marked 'Exhibit A-4', together with the buildings, structures, fixtures, improvements, and other property, if any, of the Port Authority located or to be located or constructed therein or thereon (all of the foregoing being herein collectively called 'Area A'), all of Area A to be and become a part of the temporary premises let under the Lease subject to all the terms, provisions, covenants and conditions of the Lease.

- (b) That portion of the temporary premises shown in stipple on the sketch attached hereto, hereby made a part hereof and marked 'Exhibit A-5' is herein called 'Area B', and Area A and Area B are herein called the 'Extended Temporary Premises'. Unless sooner terminated, the term of the letting of the Extended Temporary Premises shall expire at 11:59 o'clock P.M. on the earliest of (i) February 28, 2001, (ii) the date of the 'No Further Action Letter' or 'Certification of Completion' issued by the DEP upon completion of clean-up of Area X by the Lessee required by the DEP due to the failure to have implemented an Initial DER on Area X, or (iii) upon implementation of an Initial DER on Area X.
- (c) The Port Authority and the Lessee shall each have the right to terminate the letting of the Extended Temporary Premises, without cause, at any time, on thirty (30) days' prior written notice to the other; provided, that, with respect to the Lessee's exercise of its termination right it shall not be under notice of default as to which any applicable period to cure has passed, or under notice of termination, from the Port Authority, either on the date of its giving of such notice to the Port Authority or the effective date thereof. Termination pursuant to the provisions of this paragraph shall have the same effect as if the effective date of termination stated in the notice were the date of expiration of the term of the letting of the Extended Temporary Premises under this Agreement.
- (d) The Lessee may use the Extended Temporary Premises for the purpose set forth in paragraph (a) of Section 4 of the Lease and for no other purpose whatsoever.
- (e) (i) The Lessee shall pay to the Port Authority the following basic rentals for Area A:
- (aa) For the period from March 1, 1998 through February 28, 1999, both dates inclusive, at the annual rate of Seventy Thousand Two Hundred Dollars and No Cents (\$70,200.00) payable in advance in equal monthly installments of Five Thousand Eight Hundred Fifty Dollars and No Cents (\$5,850.00) on March 1, 1998 and on the first day of each calendar month thereafter during such period;
- (bb) For the period from March 1, 1999 through February 29, 2000, both dates inclusive, at the annual rate of Seventy-three Thousand Dollars and No Cents (\$73,000.00) payable in advance in equal monthly installments of Six Thousand Eighty-three Dollars and Thirty-three Cents (\$6,083.33) on March 1, 1999 and on the first day of each calendar month thereafter during such period; and

(cc) For the period from March 1, 2000 through February 28, 2001, both dates inclusive, at the annual rate of Seventy-five Thousand Nine Hundred Twenty-eight Dollars and Thirty-two Cents (\$75,928.32) payable in advance in equal monthly installments of Six Thousand Three Hundred Twenty-seven Dollars and Thirty-six Cents (\$6,327.36) on March 1, 2000 and on the first day of each calendar month thereafter during such period.

(ii) The Lessee shall pay to the Port Authority the following basic rentals for Area B:

(aa) For the period from May 16, 1997 through February 28, 1999, both dates inclusive, at the annual rate of Ninety-one Thousand Four Hundred Seventy-six Dollars and No Cents (\$91,476.00) payable in advance in equal monthly installments of Seven Thousand Six Hundred Twenty-three Dollars and No Cents (\$7,623.00) on May 16, 1997 and on the first day of each calendar month thereafter during such period.

(bb) For the period from March 1, 1999 through February 29, 2000, both dates inclusive, at the annual rate of One Hundred Fifty-eight Thousand Five Hundred Fifty-eight Dollars and Forty Cents (\$158,558.40) payable in advance in equal monthly installments of Thirteen Thousand Two Hundred Thirteen Dollars and Twenty Cents (\$13,213.20) on March 1, 1999 and on the first day of each calendar month thereafter during such period; and

(cc) For the period from March 1, 2000 through February 28, 2001, both dates inclusive, at the annual rate of One Hundred Sixty-four Thousand Nine Hundred Dollars and Seventy-four Cents (\$164,900.74) payable in advance in equal monthly installments of Thirteen Thousand Seven Hundred Forty-one Dollars and Seventy-three Cents (\$13,741.73) on March 1, 2000 and on the first day of each calendar month thereafter during such period.

(iii) If any installment of basic rental payable hereunder shall be for less than a full calendar month, then the rental payment for the portion of the month for which such payment is due shall be the monthly installment prorated on a daily basis using the actual number of days in the said month.

(f) The Lessee acknowledges that is has not relied upon any representation or statement of the Port Authority or its Commissioners, officers, employees or agents as to the condition of Area A or the suitability thereof for the operations permitted on Area A by this Agreement. The Port Authority shall deliver Area A in its presently existing 'as is' condition. The Lessee, prior to the execution of Supplement No. 1 to this Lease, has thoroughly examined Area A as existing and has found the same to be suitable

and satisfactory for the operations of the Lessee contemplated and permitted under this Agreement. The Lessee agrees to and shall take Area A in its 'as is' condition and the Port Authority shall have no obligations under this Agreement for finishing work or preparation of any portion of Area A for the Lessee's use. Without limiting any obligation of the Lessee to commence operations under this Agreement at the time and in the manner stated elsewhere in this Agreement, the Lessee agrees that no portion of Area A will be used initially or at any time during the letting which is in a condition unsafe or improper for the conduct of the operations of the Lessee, so that there is possibility of injury or damage to life or property, and the lessee further agrees that before any use it will immediately correct any such unsafe or improper condition."

- 17. Exhibit Y to the Lease is hereby amended by inserting the phrase, ", any Area X Remediation Work as defined in Section 46 of the Lease and the Repaving Work as defined in Section 50 of the Lease" immediately after the word "Lease" and before the period appearing in the eighth (8th) line of the fifth (5th) paragraph thereof.
- 18. As hereby amended, all the terms, provisions, covenants and conditions of the Lease shall continue in full force and effect.
- 19. The Lessee represents and warrants that no broker has been concerned in the negotiation of this Agreement and that there is no broker who is or may be entitled to be paid a commission in connection therewith. The Lessee shall indemnify and save harmless the Port Authority of and from all claims for commission or brokerage made by any and all persons, firms or corporations whatsoever for services in connection with the negotiation or execution of this Agreement.
- 20. Neither the Commissioners of the Port Authority nor any of them, nor any officer, agent or employee thereof, shall be charged personally by the Lessee with any liability, or held liable to the Lessee under any term or provision of this Agreement, or because of its execution or attempted execution, or because of any breach, or attempted or alleged breach thereof.
- 21. This Agreement, together with the Lease (to which it is supplementary) constitutes the entire agreement between the Port Authority and the Lessee on the subject matter, and may not be changed, modified, discharged or extended except by instrument in writing duly executed on behalf of both the Port Authority and the Lessee. The Lessee agrees that no representations or warranties shall be binding upon the Port Authority unless expressed in writing in the Lease or in this Agreement.

IN WITNESS WHEREOF, the Port Authority and the Lessee have executed these presents as of the date first above written.

ATTEST:

Secretary

ATTEST:

last 1

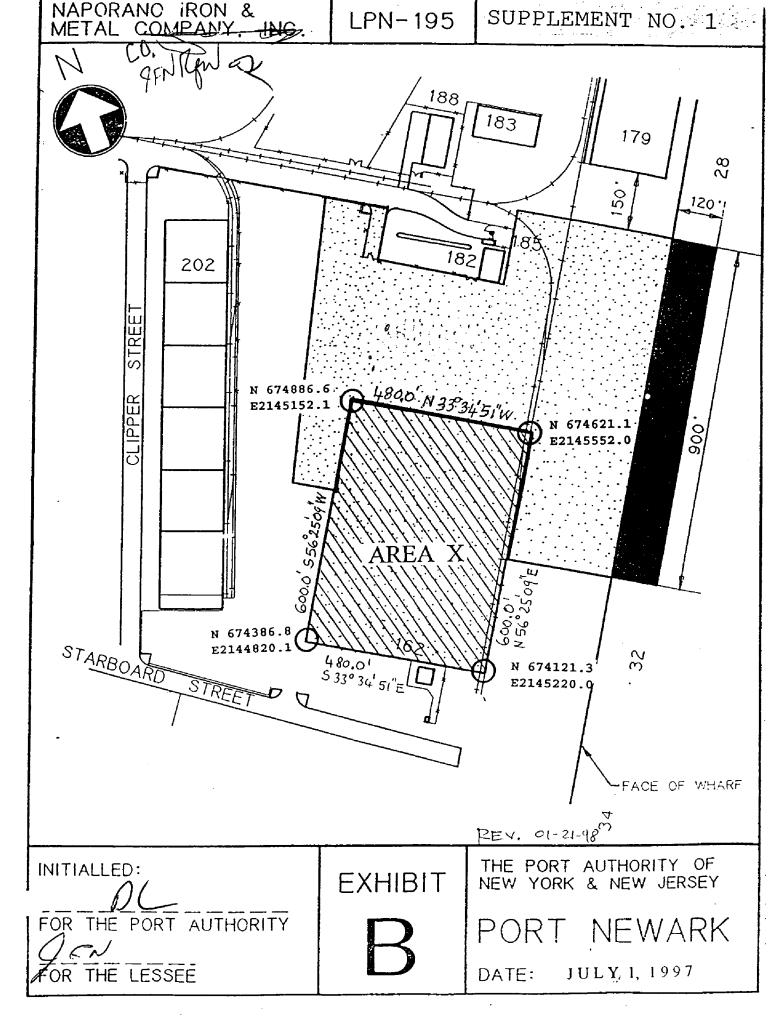
THE PORT AUTHORITY OF NEW YORK AND NEW JERSEY

y Charme.
Director

(Title)____

NAPORANO IRON & METAL (

COMPANY, INC. 15


(Title) President (corporate seal)

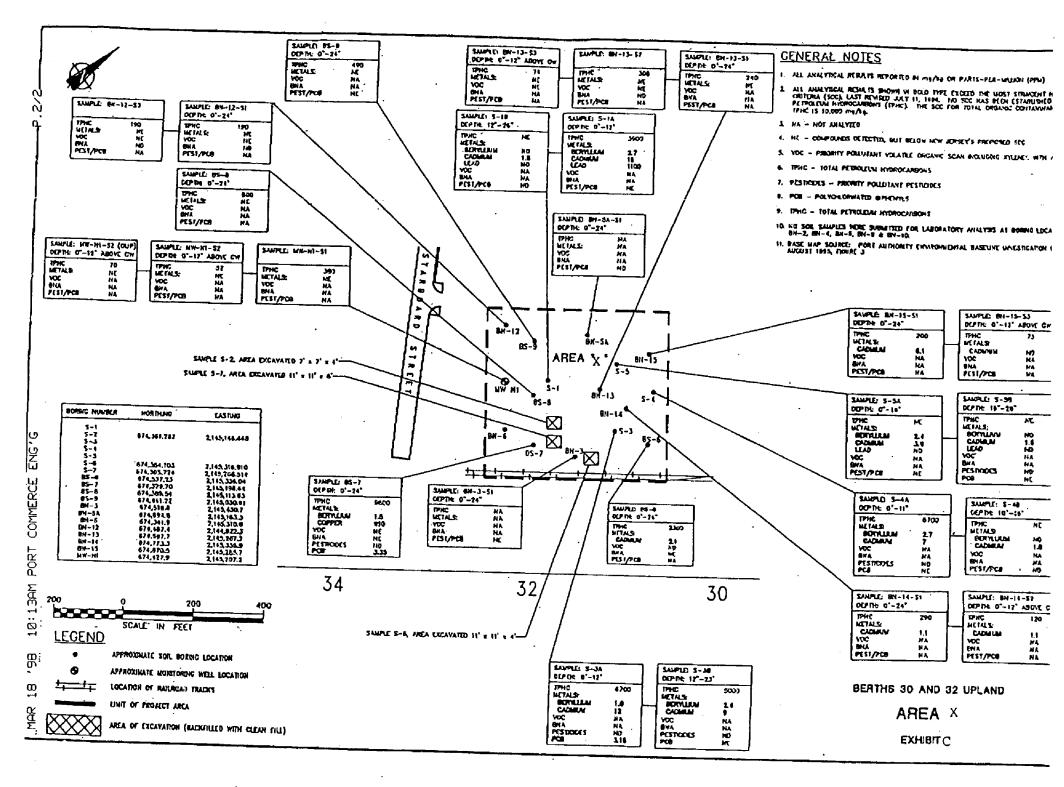
APPRO	WED:
FORM PRO	TERMS

THE LESSEE

JAN 1, 1998

DATE:

EXHIBIT C


REMEDIATION WORK PERFORMED BY THE PORT AUTHORITY ON AREA X

The three locations, S-2, S-6 and S-7 as shown on the drawing bearing the legend Berths 30 and 32 Upland Area X, Exhibit C and attached hereto and hereby made a part hereof were excavated on August 28, 1997 by a backhoe to a depth of three feet below the ground surface. The area of each excavation was approximately two feet by two feet. Five soil samples were collected from each excavation: one from each side of the pit and one from the bottom of the pit. A total of 15 soil samples were collected from Area X.

Soil samples collected from locations S-2 and S-7 were analyzed for polychlorinated biphenyls (PCB's) while soil samples collected from location S-6 were analyzed for PCB's and total petroleum hydrocarbons.

All soil excavated (approximately 2 cu. yds.) from Area X was stockpiled on a plastic liner. Five grab samples were taken and composited to one sample for analysis. The sample was tested for TCLP, TPHC, PCB's, ignitibility, corrosivity and reactivity. The results indicated that the material was non-hazardous for disposal. The material was disposed of off site.

New Jersey Department of Environmental Protection required additional removal from locations S-2 and S-6 to approve a Declaration of Environmental Restriction without engineering controls. The Port Authority completed the additional remediation in these locations on January 20, 1997. A total of 25 cubic years of soil was excavated in the vicinity of sample locations S-2 and S-6. The dimensions of the excavated area for location S-2 and S-6 was 7 ft. X 7 ft. X 4 ft. and 11 ft. X 11 ft. X 4 ft., respectively. There were five samples were taken from each excavation. A sample was taken from each side of the excavation and one from the bottom. All ten samples were analyzed for PCB's.

OR THE LESSEE

TIERRA-B-012355

DATE: FEB 1, 1998

PN195-1 02-13-98 C

(emercial seel seel stemp)

(609) 478-6645 Fax: (609) 478-0150

FILE COPY

REPORT OF SOILS

SAMPLING

AND ASSESSMENT

Berths 30 and 32 Upland Port Newark, NJ

March 30, 1995

Prepared for:

Naporano Iron and Metal Company

P.O. Box 5158

Newark, NJ 07105-8155

Respectfully submitted,

Max J. Sandler Principal Consultant NAPORANO IRON & METAL CO.
Foot of Hawkins St.
Newark, NJ 07105

To

EXHIBIT

B-4

P.O. Box 239 van, NJ 08025

(609) 478-6645

Fax: (609) 478-0150

REPORT OF SOILS SAMPLING AND ASSESSMENT

Berths 30 & 32 Upland Port Newark, NJ

March 30, 1995

INTRODUCTION:

Our investigation was designed to assist in establishing baseline soil conditions for a pending lease agreement. A total of seven locations were investigated, with 14 soil samples obtained at varying depths corresponding to site-specific conditions. A de-ionized water Field Blank, and a duplicate soil sample were also analyzed as a quality control measure. The Soil Boring Location Plan was prepared by James R. Watson, A.J.P.L.S. of EKA Associates, PA. A copy of this plan indicating sampling locations is included in the Appendix of this report.

Soil samples were taken at depths ranging from 0" to 24" utilizing a truck-mounted well drilling unit provided by the Craig Test Boring Company, a New Jersey-licensed well drilling contractor. The soil samples were conveyed to the Northeastern Analytical Corporation (NJDEP Certified Laboratory No. 03117) in Marlton, NJ for analysis. The complete analytical data results may be found in the Appendix of this report.

SITE DESCRIPTION:

All site work was initiated and completed on February 23, 1995. The weather was chilly, and site conditions were generally damp from recent precipitation. Areas of low elevation, which tended to be collection areas for surface water runoff, were somewhat muddy. A variety of small metal parts and debris were found to be embedded in the soils to a depth of approximately 4"-6" throughout the site. Every effort was made to remove this debris prior to soil boring operations at each location to preserve the analytical credibility of the sample.

Report of Soils Sampling and Assessment Port Newark, Berths 30 & 32 Upland Page Two

SCOPE OF WORK:

All soil samples were obtained utilizing procedures and guidelines outlined in the May, 1992 edition of the Field Sampling Procedures Manual published by the New Jersey Department of Environmental Protection. These procedures, as described below, ensure the objectivity and credibility of the individual sample by preventing their contamination from tools and equipment previously utilized. Subsequent handling and storage procedures ensure the preservation of sample media in environmental conditions which limit the escape of volatile compounds. Laboratory detection methodology conforms to standard USEPA protocols for each of the compounds shown, and is described in NAC's laboratory report.

Cleaned, preserved laboratory glassware was picked up from NAC laboratories on February 22, 1995. The glassware consisted of wide-mouth sample jars for soil samples, preserved amber bottles for the Field Blank, and bottles of de-ionized water. All materials were received in insulated coolers containing ice packs to maintain a diminished interior temperature. The coolers were stored in a locked sutside cabinet overnight. The insulated coolers were transported to the subject property on the morning of February 23, 1995.

The soil samples were labeled S-1 through S-7 reflecting the seven separate locations from which they were obtained. The suffix "A" indicates that it was taken at a depth of 0-12". The suffix "B" indicates that it was taken at a depth of 12-24". The sample designated S-7AD was collected at a depth of 0-12", approximately 1 foot away from the boring at location 7. The differences in the sampling depths shown in the table below reflect the presence of varying amounts of incompatible media (gravel, rocks, etc.) in the soil matrix, which were removed prior to the filling of the sample jars.

Report of Soils Sampling and Assessment Port Newark, Berths 30 & 32 Upland Page Three

Each soil sample was obtained in the following manner:

- 1. A 3" split-spoon sampling device was driven to depth by a truck mounted vertical hammer.
- 2. The split-spoon was retrieved, opened, and the length of the sample in the spoon measured to confirm sampling depth.
- 3. New latex gloves and a clean hand spade were utilized to manually remove gravel and metal debris from the sample, which was then split into two new glass jars.
- 4. The jars were then sealed, labeled, and replaced in the insulated cooler.
- 5. After each sample, the latex gloves were disposed of, and the split-spoon sampler and hand spade were washed in an Alconox cleaning solution and rinsed in clean water to prevent the introduction of extraneous contaminants materials to the next sample. Both the Alconox solution and the rinse water were also replaced at every third sampling location.

After all samples were obtained, the tools were washed in the Alconox solution. The de-ionized water provided by the laboratory was poured over the cleaned tools and accumulated in sample jars for analysis as a Field Blank. A Chain of Custody Record was completed describing the depths at which individual samples were obtained, and the samples were conveyed and accepted by NAC laboratories at 3:04 PM on February 23, 1995.

The soil samples obtained from the site were analyzed for the following:

Total Petroleum Hydrocarbons
Priority Pollutant Metals
Volatile Organic Compounds

PCB's (Polychlorinated Biphenyls)

Report of Sc 'ampling and Assessment Port Newark, Lerths 30 & 32 Upland Page Four

TABLE I - CONTAMINANTS EXCEEDING NJDEP NON-RESIDENTIAL SOIL CLEANUP CRITERIA

Parameter	Sample Depth (inches)	Arsenic (ppm)	Beryllium (ppm)	Cadmium (ppm)	Copper (ppm)	Lead (ppm)	Antimony (ppm)	Zinc (ppm)	Chromium (ppm)	PCB's (ppm)	Petroleum Hydrocarbons (ppm)
NJ Non-											4.1
Residential	-	20	1	100	600	600	340	1,500	See Note 3	2	1,000
Soil Criteria						İ		-,		_	1,000
Sample S-1A	0-12"	-	2.7	-	-	1,100	-		-		3,900
Sample S-1B	12-26"	-	ND	-	-	ND	ND	-	-	ND	-
Sample S-2A	0-12"	-	2.6	-	_	1,800	-	-	-	11.5	2,500
Sample S-2B	15-24"	•	3.7	-	830		-		-	3.7	1,700
Sample S-3A	0-12"	-	1.6	-	-	-	_	_	-	3.16	6,700
Sample S-3B	12-23"	-	2.4	-	-	-	ND	_	-	<.49	5,000
Sample S-4A	0-11"	-	2.7	-	-	-	-		_	<.49	6,700
	(taken from under 3" of asphalt)	į									0,700
Sample S-4B	10-16"	-	ND	-	_	ND	-	-	•	ND	•
Sample S-5A	0-16"	ND	2.4	-	_	-			_	<.49	
Sample S-5B	16-26"	-	ND	-	•	1,200	-	_		ND	
Sample S-6A	0-12"	ND	4.3	- ,	-	ND	-	_	-	<.49	12,000
Sample S-6B	12-24"	-	2.4	-	880	940	-	_	_	13.2	4,600
Sample S-7A	6-12"	22	1.3	-	-	-	-	-	-	2.05	-,000
Sample S-7B	12-24"	68	1.8	-	1,500	780		2,000	-	5.2	1,500
Sample S-7AD	0-12"	30	1.9	-		2,100	-	3,400		22.2	9,600
Field Blank	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. ND indicates that the anylate was not detected above the method detection limit. A dash (-) indicates that the level is below the applicable standard.
- 2. Traces of Methylene Chloride, a volatile organic compound, were found in all samples. Its presence was determined to be a laboratory contaminant.
- 3. NJDEP limits for total Chromium contamination in soil are normally determined on a site-by-site basis. A limit of 400 ppm has been imposed on certain urban non-residential areas. No total Chromium levels were detected in excess of 400 ppm.
- 4. PCB's levels in all samples are a cumulative total of Aroclor 1232 and Aroclor 1254. No other Aroclors were found in any of the samples.

Report of So Sampling and Assessment Port Newark, perths 30 & 32 Upland Page Five

TABLE II - CONTAMINANTS EXCEEDING NJDEP RESIDENTIAL SOIL CLEANUP CRITERIA

Parameter	Sample Depth (inches)	Arsenic (ppm)	Beryllium (ppm)	Cadmium (ppm)	Copper (ppm)	Lead (ppm)	Antimony (ppm)	Zinc (ppm)	Chromium (ppm)	PCB's (ppm)	Petroleum Hydrocarbons (ppm)
NJ Residential						<u> </u>					(1-1)
Soil Criteria	-	20	1	1	600	100	14	1,500	75	.49	1,000
Sample S-1A	0-12"	-	2.7	16	-	1,100		-		-	3,900
Sample S-1B	12-26"	-	ND	1.8	-	ND	ND	-	-	ND	3,700
Sample S-2A	0-12"	-	2.6	20	-	1,800	-		360	11.5	2,500
Sample S-2B	15-24"	*	3.7	86	830	280	28		370	3.7	1,700
Sample S-3A	0-12"	-	1.6	12	-	280	ND	<u> </u>	-	3.16	6,700
Sample S-3B	12-23"	-	2.4	9	-	- :	ND	-	-	<.49	5,000
Sample S-4A	0-11" (taken from under 3" of asphalt)	-	2.7	7	-	-	ND	-	-	<.49	6,700
Sample S-4B	10-16"	-	ND	1.8	-	ND	ND	-	_	ND	-
Sample S-5A	0-16"	ND	2.4	3.9	•	-	ND	_	-	<.49	-
Sample S-5B	16-20"	-	ND	1.8		1,200	-	_	_	ND	-
Sample S-6A	0-12"	ND	4.3	3.5	-	ND	_	-	-	<.49	12,000
Sample S-6B	12-24"	-	2.4	39	880	940	21	200	200	13.2	4,600
Sample S-7A	6-12"	22	1.3	9.4	-	_	ND	_	_	2.05	
Sample S-7B	12-24"	68	1.8	43	1,500	780	16	2,000	300	5.2	1,500
Sample S-7AD	0-12"	30	1.9	30	-	2,100	26	3,400	150	22.2	9,600
Field Blank	N/A	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND

Notes:

- 1. ND indicates that the anylate was not detected above the method detection limit. A dash (-) indicates that the level is below the applicable standard.
- 2. Traces of Methylene Chloride, a volatile organic compound, were found in all samples. Its presence was determined to be a laboratory contaminant.
- 3. NJDEP limits for total Chromium contamination in soil are normally determined on a site-by-site basis. A limit of 75 ppm has been imposed on certain urban residential areas.
- 4. PCB's levels in all samples are a cumulative total of Aroclor 1232 and Aroclor 1254. No other Aroclors were found in any of the samples.

Report of Soils Sampling and Assessment Port Newark, Berths 30 & 32 Upland Page Six

SUMMARY AND CONCLUSIONS:

The investigation of soil conditions on the subject property by our firm and its subcontractors was conducted in accordance with the May, 1992 edition of the Field Sampling Procedures Manual published by the New Jersey Department of Environmental Protection. The manual mandates specific guidelines to be followed in the collection, storage, and analysis of media samples obtained in the field, and are designed to ensure the credibility of the resulting analytical data. Consequently, we believe that the analytical values shown in Tables I and II of this report accurately reflect soil conditions on the site with respect to the New Jersey Department of Environmental Protection Residential and Non-Residential Direct Contact Soil Criteria.

Analytical testing results indicate an exceedance of NJDEP Non-Residential Direct Contact Cleanup Criteria in several samples (Table II, which references NJDEP Residential Direct Contact Soil Criteria, has been included for informational purposes only). Those parameters which most consistently exceeded the standard were Beryllium, Lead, PCB's and Petroleum Hydrocarbons. The contaminant levels for these materials, while in excess of the Non-Residential Direct Contact Criteria, are not present to an extent which represents a serious concern, given the continuing heavy industrial utilization of this and surrounding properties and the limited likelihood for direct personal contact. We do, however, recommend that the baseline values established by this investigation, be considered in any contemplated lease of the property.

Report of Soils Sampling and Assessment Port Newark, Berths 30 & 32 Upland Page Six

SUMMARY AND CONCLUSIONS:

The investigation of soil conditions on the subject property by our firm and its subcontractors was conducted in accordance with the May, 1992 edition of the Field Sampling Procedures Manual published by the New Jersey Department of Environmental Protection. The manual mandates specific guidelines to be followed in the collection, storage, and analysis of media samples obtained in the field, and are designed to ensure the credibility of the resulting analytical data. Consequently, we believe that the analytical values shown in Tables I and II of this report accurately reflect soil conditions on the site with respect to the New Jersey Department of Environmental Protection Residential and Non-Residential Direct Contact Soil Criteria.

Analytical testing results indicate an exceedance of NJDEP Non-Residential Direct Contact Cleanup Criteria in several samples (Table II, which references NJDEP Residential Direct Contact Soil Criteria, has been included for informational purposes only). Those parameters which most consistently exceeded the standard were Beryllium, Lead, PCB's and Petroleum Hydrocarbons. The contaminant levels for these materials, while in excess of the Non-Residential Direct Contact Criteria, are not present to an extent which represents a serious concern, given the continuing heavy industrial utilization of this and surrounding properties and the limited likelihood for direct personal contact. We do, however, recommend that the baseline values established by this investigation, be considered in any contemplated lease of the property.

P.O. Box 239 wan, NJ 08025

(609) 478-6645

Fax: (609) 478-0150

REPORT OF SOILS

SAMPLING

AND ASSESSMENT

Berths 30 and 32 Upland Port Newark, NJ

March 30, 1995

Prepared for:

Naporano Iron and Metal Company P.O. Box 5158 Newark, NJ 07105-8155

Respectfully submitted,

Max J. Sandler rincipal Consultant

TIERRA-B-012366

P.O. Box 239 van, NJ 08025

(609) 478-6645 Fax: (609) 478-0150

REPORT OF SOILS SAMPLING AND ASSESSMENT

Berths 30 & 32 Upland Port Newark, NJ

March 30, 1995

INTRODUCTION:

Our investigation was designed to assist in establishing baseline soil conditions for a pending lease agreement. A total of seven locations were investigated, with 14 soil samples obtained at varying depths corresponding to site-specific conditions. A de-ionized water Field Blank, and a duplicate soil sample were also analyzed as a quality control measure. The Soil Boring Location Plan was prepared by James R. Watson, A.J.P.L.S. of EKA Associates, PA. A copy of this plan indicating sampling locations is included in the Appendix of this report.

Soil samples were taken at depths ranging from 0" to 24" utilizing a truck-mounted well drilling unit provided by the Craig Test Boring Company, a New Jersey-licensed well drilling contractor. The soil samples were conveyed to the Northeastern Analytical Corporation (NJDEP Certified Laboratory No. 03117) in Marlton, NJ for analysis. The complete analytical data results may be found in the Appendix of this report.

SITE DESCRIPTION:

All site work was initiated and completed on February 23, 1995. The weather was chilly, and site conditions were generally damp from recent precipitation. Areas of low elevation, which tended to be collection areas for surface water runoff, were somewhat muddy. A variety of small metal parts and debris were found to be embedded in the soils to a depth of approximately 4"-6" throughout the site. Every effort was made to remove this debris prior to soil boring operations at each location to preserve the analytical credibility of the sample.

SCOPE OF WORK:

All soil samples were obtained utilizing procedures and guidelines outlined in the May, 1992 edition of the Field Sampling Procedures Manual published by the New Jersey Department of Environmental Protection. These procedures, as described below, ensure the objectivity and credibility of the individual sample by preventing their contamination from tools and equipment previously utilized. Subsequent handling and storage procedures ensure the preservation of sample media in environmental conditions which limit the escape of volatile compounds. Laboratory detection methodology conforms to standard USEPA protocols for each of the compounds shown, and is described in NAC's laboratory report.

Cleaned, preserved laboratory glassware was picked up from NAC laboratories on February 22, 1995. The glassware consisted of wide-mouth sample jars for soil samples, preserved amber bottles for the Field Blank, and bottles of de-ionized water. All materials were received in insulated coolers containing ice packs to maintain a diminished interior temperature. The coolers were stored in a locked jutside cabinet overnight. The insulated coolers were transported to the subject property on the morning of February 23, 1995.

The soil samples were labeled S-1 through S-7 reflecting the seven separate locations from which they were obtained. The suffix "A" indicates that it was taken at a depth of 0-12". The suffix "B" indicates that it was taken at a depth of 12-24". The sample designated S-7AD was collected at a depth of 0-12", approximately 1 foot away from the boring at location 7. The differences in the sampling depths shown in the table below reflect the presence of varying amounts of incompatible media (gravel, rocks, etc.) in the soil matrix, which were removed prior to the filling of the sample jars.

Report of Soils Sampling and Assessment Port Newark, Berths 30 & 32 Upland Page Three

Each soil sample was obtained in the following manner:

- 1. A 3" split-spoon sampling device was driven to depth by a truck mounted vertical hammer.
- 2. The split-spoon was retrieved, opened, and the length of the sample in the spoon measured to confirm sampling depth.
- 3. New latex gloves and a clean hand spade were utilized to manually remove gravel and metal debris from the sample, which was then split into two new glass jars.
- 4. The jars were then sealed, labeled, and replaced in the insulated cooler.
- 5. After each sample, the latex gloves were disposed of, and the split-spoon sampler and hand spade were washed in an Alconox cleaning solution and rinsed in clean water to prevent the introduction of extraneous contaminants materials to the next sample. Both the Alconox solution and the rinse water were also replaced at every third sampling location.

After all samples were obtained, the tools were washed in the Alconox solution. The de-ionized water provided by the laboratory was poured over the cleaned tools and accumulated in sample jars for unalysis as a Field Blank. A Chain of Custody Record was completed describing the depths at which individual samples were obtained, and the samples were conveyed and accepted by NAC laboratories at 3:04 PM on February 23, 1995.

The soil samples obtained from the site were analyzed for the following:

Total Petroleum Hydrocarbons

Priority Pollutant Metals

Volatile Organic Compounds

PCB's (Polychlorinated Biphenyls)

Report of Se 'ampling and Assessment Port Newark, Lerths 30 & 32 Upland Page Four

TABLE I - CONTAMINANTS EXCEEDING NJDEP NON-RESIDENTIAL SOIL CLEANUP CRITERIA

Parameter	Sample Depth (inches)	Arsenic (ppm)	Beryllium (ppm)	Cadmium (ppm)	Copper (ppm)	Lead (ppm)	Antimony (ppm)	Zinc (ppm)	Chromium (ppm)	PCB's (ppm)	Petroleum Hydrocarbons (ppm)
NJ Non- Residential	-	20	1	100	600	600	340	1,500	See Note 3	2	1,000
Soil Criteria		ļ									
Sample S-1A	0-12"		2.7	-	-	1,100	-		-	-	3,900
Sample S-1B	12-26"	-	ND	-	-	ND	ND		_	ND	-
Sample S-2A	0-12"	-	2.6	-	-	1,800	-	-	_	11.5	2,500
Sample S-2B	15-24"	-	3.7	-	830	_	-	-	_	3.7	1,700
Sample S-3A	0-12"	-	1.6	-	-	-	-	-	-	3.16	6,700
Sample S-3B	12-23"	-	2.4	-	•	_	ND	_	-	<.49	5,000
Sample S-4A	0-11" (taken from under 3" of asphalt)	-	2.7	-	-	-	-	-	-	<.49	6,700
Sample S-4B	10-16"	-	ND	-	_	ND	_	_	_	ND	-
Sample S-5A	0-16"	ND	2.4	-	-	-	_	-	_	<.49	
Sample S-5B	16-26"	-	ND	_	-	1,200	-	_		ND	
Sample S-6A	0-12"	ND	4.3	-	-	ND		_	-	<.49	12,000
Sample S-6B	12-24"	-	2.4	-	880	940	_	-	_	13.2	4,600
Sample S-7A	6-12"	22	1.3	-	_		-	_		2.05	1,000
Sample S-7B	12-24"	68	1.8	-	1,500	780	-	2,000	-	5.2	1,500
Sample S-7AD	0-12"	30	1.9	-		2,100		3,400	-	22.2	9,600
Field Blank	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. ND indicates that the anylate was not detected above the method detection limit. A dash (-) indicates that the level is below the applicable standard.
- 2. Traces of Methylene Chloride, a volatile organic compound, were found in all samples. Its presence was determined to be a laboratory contaminant.
- 3. NJDEP limits for total Chromium contamination in soil are normally determined on a site-by-site basis. A limit of 400 ppm has been imposed on certain urban non-residential areas. No total Chromium levels were detected in excess of 400 ppm. 4. PCB's levels in all samples are a cumulative total of Aroclor 1232 and Aroclor 1254. No other Aroclors were found in any of the samples

 TIERRA-B-012370

Report of So Sampling and Assessment Port Newark, Lerths 30 & 32 Upland Page Five

TABLE II - CONTAMINANTS EXCEEDING NJDEP RESIDENTIAL SOIL CLEANUP CRITERIA

Parameter	Sample Depth (inches)	Arsenic (ppm)	Beryllium (ppm)	Cadmium (ppm)	Copper (ppm)	Lead (ppm)	Antimeny (ppm)	Zinc (ppm)	Chromium (ppm)	PCB's (ppm)	Petroleum Hydrocarbons (ppm)
NJ Residential]					<u> </u>				 	
Soil Criteria	-	20	1	1	600	100	14	1,500	75	.49	1,000
Sample S-1A	0-12"	-	2.7	16	-	1,100	<u>-</u>	_	-	-	3,900
Sample S-1B	12-26"	-	ND	1.8	-	ND	ND	-	~	ND	-
Sample S-2A	0-12"	-	2.6	20	-	1,800	_	_	360	11.5	2,500
Sample S-2B	15-24"	•	3.7	86	830	280	28		370	3.7	1,700
Sample S-3A	0-12"	-	1.6	12	-	280	ND	-	-	3.16	6,700
Sample S-3B	12-23"	_	2.4	9	•	_	ND	-	_	<.49	5,000
Sample S-4A	0-11" (taken from under 3" of asphalt)	-	2.7	7	-	-	ND	-	-	<.49	6,700
Sample S-4B	10-16"	-	ND	1.8	-	ND	ND	-	_	ND	-
Sample S-5A	0-16"	ND	2.4	3.9	-	-	ND	_	-	<.49	
Sample S-5B	16-20"	-	ND	1.8	-	1,200	-	-	-	ND	
Sample S-6A	0-12"	ND	4.3	3.5		ND	-	-	-	<.49	12,000
Sample S-6B	12-24"	-	2.4	39	880	940	21	200	200	13.2	4,600
Sample S-7A	6-12"	22	1.3	9.4	-	-	ND	-		2.05	7,000
Sample S-7B	12-24"	68	1.8	43	1,500	780	16	2,000	300	5.2	1,500
Sample S-7AD	0-12"	30	1.9	30	-	2,100	26	3,400	150	22.2	9,600
Field Blank	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1. ND indicates that the anylate was not detected above the method detection limit. A dash (-) indicates that the level is below the applicable standard.
- 2. Traces of Methylene Chloride, a volatile organic compound, were found in all samples. Its presence was determined to be a laboratory contaminant.
- 3. NJDEP limits for total Chromium contamination in soil are normally determined on a site-by-site basis. A limit of 75 ppm has been imposed on certain urban residential areas.
- 4. PCB's levels in all samples are a cumulative total of Aroclor 1232 and Aroclor 1254. No other Aroclors were found in any of the samples.

Report of Soils Sampling and Assessment Port Newark, Berths 30 & 32 Upland Page Six

SUMMARY AND CONCLUSIONS:

The investigation of soil conditions on the subject property by our firm and its subcontractors was conducted in accordance with the May, 1992 edition of the Field Sampling Procedures Manual published by the New Jersey Department of Environmental Protection. The manual mandates specific guidelines to be followed in the collection, storage, and analysis of media samples obtained in the field, and are designed to ensure the credibility of the resulting analytical data. Consequently, we believe that the analytical values shown in Tables I and II of this report accurately reflect soil conditions on the site with respect to the New Jersey Department of Environmental Protection Residential and Non-Residential Direct Contact Soil Criteria.

Analytical testing results indicate an exceedance of NJDEP Non-Residential Direct Contact Cleanup Criteria in several samples (Table II, which references NJDEP Residential Direct Contact Soil Criteria, has been included for informational purposes only). Those parameters which most consistently exceeded the standard were Beryllium, Lead, PCB's and Petroleum Hydrocarbons. The contaminant levels for these materials, while in excess of the Non-Residential Direct Contact Criteria, are not present to an extent which represents a serious concern, given the continuing heavy industrial utilization of this and surrounding properties and the limited likelihood for direct personal contact. We do, however, recommend that the baseline values established by this investigation, be considered in any contemplated lease of the property.

Report of Soils Sampling and Assessment Port Newark, Berths 30 & 32 Upland Page Six

SUMMARY AND CONCLUSIONS:

The investigation of soil conditions on the subject property by our firm and its subcontractors was conducted in accordance with the May, 1992 edition of the <u>Field Sampling Procedures Manual</u> published by the New Jersey Department of Environmental Protection. The manual mandates specific guidelines to be followed in the collection, storage, and analysis of media samples obtained in the field, and are designed to ensure the credibility of the resulting analytical data. Consequently, we believe that the analytical values shown in Tables I and II of this report accurately reflect soil conditions on the site with respect to the New Jersey Department of Environmental Protection Residential and Non-Residential Direct Contact Soil Criteria.

Analytical testing results indicate an exceedance of NJDEP Non-Residential Direct Contact Cleanup Criteria in several samples (Table II, which references NJDEP Residential Direct Contact Soil Criteria, has been included for informational purposes only). Those parameters which most consistently exceeded the standard were Beryllium, Lead, PCB's and Petroleum Hydrocarbons. The contaminant levels for these materials, while in excess of the Non-Residential Direct Contact Criteria, are not present to an extent which represents a serious concern, given the continuing heavy industrial utilization of this and surrounding properties and the limited likelihood for direct personal contact. We do, however, recommend that the baseline values established by this investigation, be considered in any contemplated lease of the property.

P.O. Box 239 wan, NJ 08025

(609) 478-6645

Fax: (609) 478-0150

FILE COPY

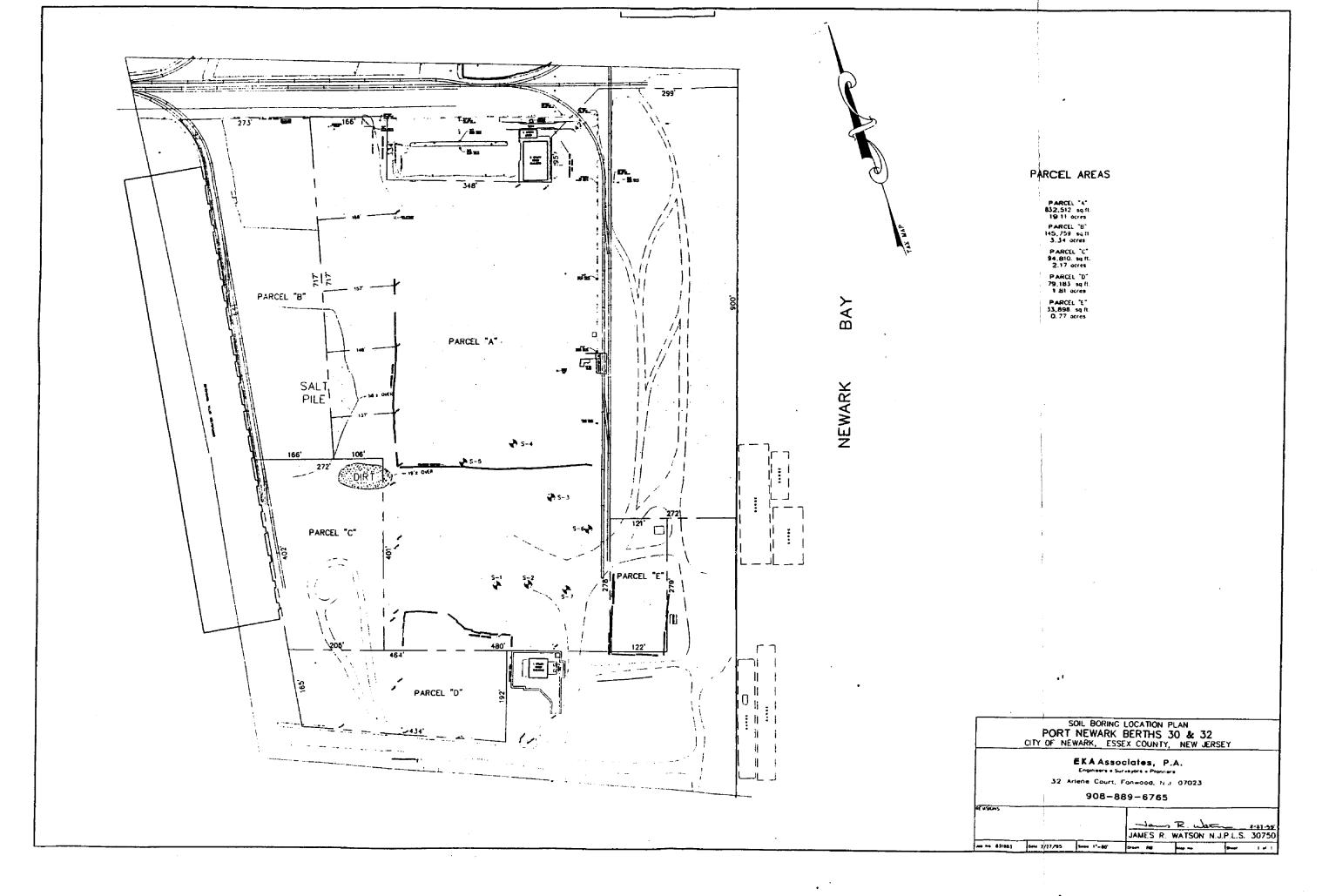
REPORT OF SOILS

SAMPLING

AND ASSESSMENT

Berths 30 and 32 Upland Port Newark, NJ

March 30, 1995


Prepared for:

Naporano Iron and Metal Company P.O. Box 5158 Newark, NJ 07105-8155

Respectfully submitted,

Max J. Sandler

rincipal Consultant

APPENDIX A

BORING DATA

Prepared By:
CRAIG TEST BORING CO., INC.
May Landing, New Jersey

FIELD SOIL TEST BORING DATA PORT NEWARK BERTHS 30-32

Submitted To: SANDLER & ASSOCIATES

P.O. Box 239 Ewan, NJ 08025

Submitted By: CRAIG TEST BORING CO., INC.

P.O. Box 427

Mays Landing, NJ 08330

LAB. NO.: C-0606

DATE: March 17, 1995

FIELD SOIL CLASSIFICATION SYSTEM

PARTICLE SIZE IDENTIFICATION

COHESIONLESS SOIL

(Gravel, sand, silt and combinations)

Boulders8 inch diameter or greater Cobbles3 to 8 inch diameter GravelCoarse1 to 3 inch medium1/2 to 1 inch
fine4.75 mm to $1/2$ inch
SandCoarse2.0 mm to 4.75 mm
(dia. of pencil lead)
medium0.425 mm to 2.0 mm
(dia. of broom straw)
fine0.075 mm to 0.425 mm
(dia. of human hair)
Silt & Claysmaller than 0.075 mm

Density

Very loose....5 blows/ft or less Loose......6 to 10 blows/ft Medium dense...11 to 30 blows/ft Dense......31 to 50 blows/ft Very dense.....51 blows/ft or more

COHESIVE SOIL

(Clay, silt and combinations)

Consistency

Very soft....1 blow/ft or less
Soft......2 to 4 blows/ft
Medium stiff..5 to 8 blows/ft
Stiff......9 to 15 blows/ft
Very stiff....16 to 30 blows/ft
Hard......31 blows/ft or greater

RELATIVE PROPORTIONS

Descriptive	Term	Percent
Trace - tr		1 - 10
Some - sm		11 - 20
Adjective -	ly	21 - 35
And - &		36 - 50

ROCK

R.O.D. Rock Quality*
0 - 25% Very poor
25 - 50% Poor
50 - 75% Fair
75 - 90% Good
90 - 100% Excellent

ABBREVIATIONS

Bn - brown Coarse grained - c Gy - gray Medium graned - m Blk - black Fine grained - f Rd - red Or - orange Bl - blue Lt - light Dk - dark Multi - multi colored	HSA - Hollow Stem Auger SS - Split Spoon Sampler WOR - Weight of Rods WOH - Weight of Hammer NR - No Recovery of Sample TBC - Test Boring Completed N/A - Not Available N/E - None Encountered N/D - None Detected
--	--

All Reports are the confidential property of clients, and information contained may not be published or reproduced, pending our written approved

P.O. Box 636 * Mays Landing, NJ 08330-2203 (609) 625-4862 * FAX (609) 625-4306

FIELD TEST BORING LOG

CLIENT SANDLER & ASSOCIATES

N - Standard Penetration Resistance per 6"

(140# Hammer, 30" drop)

DATE 2/23/95

PROJECT PORT NEWARK, BERTHS 30-32

LAB NO. C-0606

Boring No. B-1

Sheet 1 of 1

Ground Surface Elev.

	Gro	ound Wat	ter Data	* - Meth	od of Advancing Boring	Depth
Depth				After A 3" SP	PLIT SPOON SAMPLER	0 to 41
			Comple	etion B	Date Dr. Oct. Oct.	to
N/A	<u></u>	2/23/	/95 COI	н С		to
DEPTH	•		Sample		Soil Classification	Remarks
	1	No.	Depth	N	Jon Glacomodici	Helliaika
0	+		0"-2'	N/R	CF SAND, SM CF GRAVEL, TR SILT/BN, DRY	
-	† A	S-2	2'-4'		CF SAND, TR SILT/BN, DRY	
J	† †	113-2	2 -4	N/R	TEST BORING COMPLETED @ 4'	-
5 -	+	Ì	ĺ			
†					EXACT BORING LOCATION DETERMINED BY CLIENT	
<u>.</u> -	-		İ			
10 -	<u> </u>		İ			
	[
J	+		l			
Ļ	 		l			
15	†		1			
!	[]		1			
J			l			
J	+		l			
20	+		l		-	
†	<u> </u>		l			
.!	[]		l			
	+		İ			
25 -	+		l			
4	†		ĺ			
7	1		l			
.!	[]		İ			
30 -	+	}	I			
J	+		İ			
4	†		İ			
7	[]	1	İ			
35			<u> </u>	1	<u> </u>	
] S - 2"	O.D. Sr	plit Spoon	Sample =	, U - Undisturbed ទ	Sample, 3" Diameter 🛛 - Core Drilling	- No Recovery

All Reports are confidential property of clients, and information contained may not be published or reproduced, pending written approval

P.O. Box 636 * Mays Landing, NJ 08330-2203 (609) 625-4862 * FAX (609) 625-4306

FIELD TEST BORING LOG

CLIENT SANDLER & ASSOCIATES

N - Standard Penetration Resistance per 6*

(140# Hammer, 30" drop)

DATE 2/23/95

PROJECT PORT NEWARK, BERTHS 30-32

LAB NO. C-0606

Boring No. B-2

Sheet 1 of 1

Ground Surface Elev.

5		und Wate		* - Meth	od of Advancing Boring	Depth			
Depth	Hour	Date	Hrs. A	fter A 3" SP	PLIT SPOONS	0 to 4			
N/A		2/23/5	95 COH	tion B		to			
N/A		2/23/	Sample			to			
DEPTH	*	No		·	Soil Classification	Remarks			
0	 	No.	Depth	N					
٠.	↓				CF SAND, SM FC GRAVEL, TR				
_	ļ , ļ	S-1	0"-21	N/R	SILT/BN, DRY				
_	A				SAME, WET				
_	l l	S-2	2'-4'	N/R	SAME, WEI				
					TEST BORING COMPLETED @ 4'	7			
5 -	T				EVACT BORING LOCATION				
-	† I				EXACT BORING LOCATION DETERMINED BY CLIENT				
-	†								
-	† l								
-	†								
10 -	- 1								
-	+			•					
-	↓								
_	L								
_	1								
15 -									
-	t l								
-	t i								
-	+ 1				<u> </u>				
-	+								
20 -	 								
	↓			·					
_	l l								
	T								
-	†	1							
25 -	†	İ							
-	† 1	1							
-	+ !			1		ŀ			
-	+								
-	├								
30 -	⊢ ∣			ļ					
	↓								
_	 								
•		1							
•	†								
	†								
35	<u>.</u>	plit Spoon		٠	Sample, 3" Diameter	- No Recovery			

All Reports are confidential property of clients, and information contained may not be published or reproduced, pending written approval

P.O. Box 636 * Mays Landing, NJ 08330-2203 (609) 625-4862 * FAX (609) 625-4306

FIELD TEST BORING LOG

CLIENT SANDLER & ASSOCIATES

DATE 2/23/95

PROJECT PORT NEWARK, BERTHS 30-32

LAB NO. C-0606

Boring No. B-3

Sheet 1 of 1

Ground Surface Elev.

Ground Water Data						* - M	ethod of Advancing Boring	Depth			
Depth	Hour	IT Date		Hrs. A Comple	fter	<u>A 3"</u>	SPLIT SPOONS	0 to 4'			
3 '	 	2/23/	95	Comple		В		to			
				Sample		-					
DEPTH	*	No.	D	epth	<u></u>	N	Soil Classification	Remarks			
0		11		optii	 						
٠.	+						CF GRAVEL, SM CF SAND, TR SILT/BN, WET				
-	A	S-1	0,	"-2'		N/R					
-	<u> </u>						MF SAND, TR SILT/BN, WET				
-	-	S-2	2 '	'-4'		N/R		_			
5 -	├						TEST BORING COMPLETED @ 4'				
_	Ļ						EXACT BORING LOCATION				
_	. ∣						DETERMINED BY CLIENT				
_	Li										
_											
10 -											
-	†						·				
-	t l				-						
-	t										
-	-										
15 -	<u> </u>										
-	-										
-	ļ ļ										
_	1						:				
							·				
20 -	L							}			
20											
-	Ţ ļ										
•	T										
-	†		•								
25 -	†										
-	†										
	+										
-	+										
	 				-						
30 -	⊢ ∣							-			
	↓										
	↓ ∣										
					1						
35 _	Ţ	ļ]			
		Split Spoon	C	is E	11 14-	odio e cel	ed Sample, 3" Diameter 🗵 - Core Drilling	- No Recovery			

N - Standard Penetration Resistance per 6"

(140# Hammer, 30" drop)

Driller G. MCANENY

All Reports are confidential property of clients, and information contained may not be published or reproduced, pending written approval

P.O. Box 636 * Mays Landing, NJ 08330-2203 (609) 625-4862 * FAX (609) 625-4306

FIELD TEST BORING LOG

* - Method of Advancing Boring

CLIENT SANDLER & ASSOCIATES

DATE 2/23/95

PROJECT PORT NEWARK, BERTHS 30-32

Ground Water Data

LAB NO. C-0606

Boring No. B-4

(140# Hammer, 30" drop)

Sheet 1 of 1

Ground Surface Elev.

Depth

Depth	Hour	Date		Hrs. Af	ter	A 3" S	PLIT SPOONS	0 to 4'
N/A		2/23/	/05	Comple COH		B C		to to
		<u> </u>		Sample		<u> </u>		
DEPTH	*	No.		epth		N	Soil Classification	Remarks
0 -	-		•			/	CF SAND, SM CF GRAVEL, TR SILT/BN, DRY	
-	A	S-1	0"	-2'		N/R	-	
-	-	S-2	2 '	-4'		N/R	MF SAND, TR SILT/BN, DRY TEST BORING COMPLETED @ 4'	_
5 -	-						EXACT BORING LOCATION	
-	-						DETERMINED BY CLIENT	
-	-							
10 -	-							
_	-						·	
7	-							
	-							
15 - -	-							
=	-							
_	-				ļ			
20 -		i	! 					
_								
_								
25 -	_							
-								
-	-							
30 -								
30 -								
-								
35		plit Spoon	Camel		11 - 544	ndieturha	d Sample, 3" Diameter ⊠ - Core Drilling	- No Recovery

All Reports are confidential property of clients, and information contained may not be published or reproduced, pending written approval

P.O. Box 636 * Mays Landing, NJ 08330-2203 (609) 625-4862 * FAX (609) 625-4306

FIELD TEST BORING LOG

CLIENT SANDLER & ASSOCIATES

DATE 2/23/95

PROJECT PORT NEWARK, BERTHS 30-32

LAB NO. C-0606

Boring No. B-5

(140# Hammer, 30" drop)

Sheet 1 of 1

Ground Surface Elev.

		und Wat			thod of Advancing Boring	Depth		
Depth	Hour	Date	Hrs	s. After A 3"	SPLIT SPOONS	0 to 4'		
N/A		2/23/		npletion B СОН C		to to		
				nple				
DEPTH	*	No.	Depth		Soil Classification	Remarks		
0	-				CF SAND, SM CF GRAVEL, TR SILT/BN, DRY			
-	A	S-1	0"-21	N/R	SAME			
_		S-2	2'-4'	N/R	GANIL			
5 -	-				TEST BORING COMPLETED @ 4'			
-	-				EXACT BORING LOCATION DETERMINED BY CLIENT			
-								
10 -					-			
-								
15 -	-							
-								
-					<u>:</u>			
20 -	-							
-	-							
- 25								
						1		
-								
30 -	-							
-	†							
-								
35					ed Sample, 3" Diameter 🛛 - Core Drilling	- No Recovery		

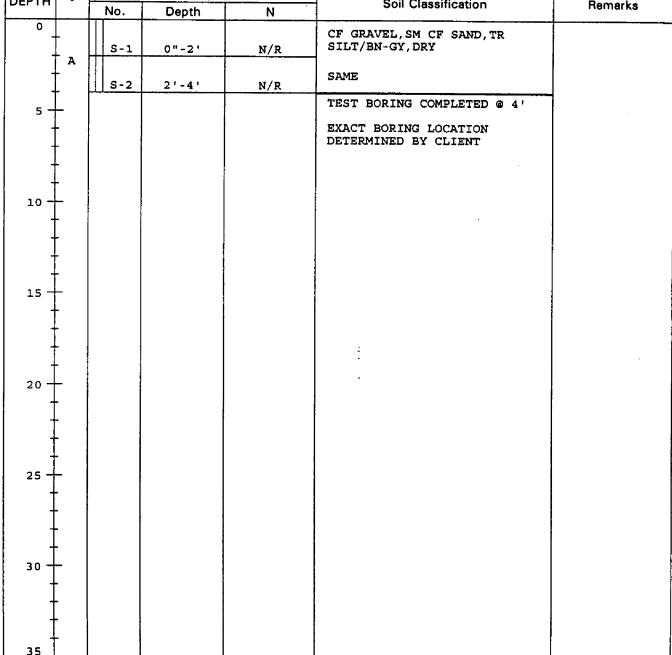
All Reports are confidential property of clients, and information contained may not be published or reproduced, pending written approval

P.O. Box 636 * Mays Landing, NJ 08330-2203 (609) 625-4862 * FAX (609) 625-4306

FIELD TEST BORING LOG

CLIENT SANDLER & ASSOCIATES

DATE 2/23/95


PROJECT PORT NEWARK, BERTHS 30-32

LAB NO. C-0606

Boring No. B-6

Sheet 1 of 1

Ground Surface Elev. Ground Water Data * - Method of Advancing Boring Depth Depth Hour Date A 3" SPLIT SPOON Hrs. After to Completion В to N/A 2/23/95 С COH to Sample **DEPTH** Soil Classification Remarks No. Depth Ν 0 CF GRAVEL, SM CF SAND, TR SILT/BN-GY, DRY S-1 0"-2' N/R Α SAME S-2 21-41 N/R

□ S - 2* O.D. Split Spoon Sample

■ U - Undisturbed Sample, 3" Diameter

□ - Core Drilling

☐ - No Recovery

N - Standard Penetration Resistance per 6" (140# Hammer, 30" drop)

P.O. Box 636 * Mays Landing, NJ 08330-2203 (609) 625-4862 * FAX (609) 625-4306

FIELD TEST BORING LOG

CLIENT SANDLER & ASSOCIATES

DATE 2/23/95

PROJECT PORT NEWARK, BERTHS 30-32

N - Standard Penetration Resistance per 6"

(140# Hammer, 30" drop)

LAB NO. C-0606

Boring No. B-7A

Sheet 1 of 1

Ground Surface Elev.

Ground Water Data							* - Method of Advancing Boring Dept						
Depth								SPL	0 to 2'				
Jop				Comple	tion	В					to		
N/A		2/23/	95	Complet COH		Ĉ					to		
				Sample					Soil Classification		Rema	eko	
DEPTH	·	No.		epth		- 1	1		Soil Classification		161110	1 1 2	
0 ~	- A	S-1	0	"-2'		N,	/R		CF SAND, SM CF GRAVEL/BN, DRY	-			
		11			1				TEST BORING COMPLETED @ 2'				
1	⁻							ļ	EXACT BORING LOCATION				
5 -	-				ļ				DETERMINED BY CLIENT				
-	-			ļ									
-	- 1												
-		į		!									
-				İ									
10 -	-							1					
-													
-													
-													
15 ~													
-													
_								}		:			
	[:				
20 -	L								•				
20 -								ł					
			i							Ì			
	$[\hspace{0.1cm} \hspace{0.1cm}]$												
								- 1					
25 -								ŀ					
23			ŀ		1								
	1							1					
			ŀ										
	↓ I		İ										
30 -	L ∣												
30	1												
,	↓												
	↓												
	↓												
35	}		1		<u> </u> ပ -					<u>L</u>	No Rec		

All Reports are confidential property of clients, and information contained may not be published or reproduced, pending written approval

APPENDIX B COMPLETE ANALYTICAL DATA PACKAGE

Prepared By:
NORTHEASTERN ANALYTICAL CORPORATION
Marlton, New Jersey

ANALYTICAL DATA PACKAGE FOR:

KENNETH L. WOODRUFF ASSOCIATES 182 WALTON DRIVE P.O. BOX 42 MORRISVILLE, PA 19067

ATTN: KENNETH WOODRUFF

Project: NAP-005/PORT NEWARK TERMINAL BERTHS 30 & 32

Test Report Date: March 16, 1995

NAC Job Number: L950626

Lab Sample Number	Client Sample Designa	100
L950626-1	S-1A S-1B S-2A S-2B S-3A S-3B S-4A S-4B S-5A S-5B S-6A S-6B S-7A S-7B S-7B	23-FEB-95
L950626-2	S-1B	23-FEB-95
L950626-3	S-2A	23-FEB-95
L950626-4	S-2B	23-FEB-95
L950626-5	S-3A	23-FEB-95
L950626-6	S-3B	23-FEB-95
L950626-7	S-4A	23-FEB-95
L950626-8	S-4B	23-FFD-05
L950626-9	S-5A	23-FEB-95 23-FEB-95
L950626-10	S-5B	23-FEB-95
L950626-11	S-6A	23-FEB-95 23-FEB-95
L950626-12	S-6B	23-EED 05
L950626-13	S-7A	23-FEB-95
L950626-14	S-7B	23-FEB-95 23-FEB-95
L950626-15	S-7AD	23-FEB-95
L950626-16	FIELD BLANK	23-FEB-95
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23-FEB-95
		23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95

Ian Lambert Laboratory Director Signature

Certifications:

PH-0726(CT), 203594A+B(NH), 03117(NJ), 11022(NY), 68+379(PA)

Environmental Analysis and Asbestos Services

Evesham Corporate Center, 4 East Stow Road, Mariton, New Jersey 08053 (609) 985-8000 FAX (609) 985-9700

TABLE OF CONTENTS

Page N	10.
Conformance/Non-Conformance Summary	3
Chain of Custody Documentation	LO
Methodology	L7
Laboratory Chronicle	21
Organic Results Summary Section	30
Inorganic Results	79
GC/MS Data Package by Fraction	.2
Tunes Initial Calibrations Continuing Calibrations Method Blanks Surrogates MS/MSD Internal Summary Sample Chromatograms and Quantitation Reports	
GC Data Package by Fraction	6
Method Blanks Calibrations Surrogates MS/MSD Sample Chromatograms and Quantitation Reports	
Inorganic Quality Control Section	0
Method Blanks MS/MSD IR Spectra	

File: 51L\TEST\950626

CONFORMANCE/NON-CONFORMANCE SUMMARY

The following report contains the results of sample(s) sent to Northeastern Analytical Corporation by Kenneth L. Woodruff Associates. The samples were received on February 23, 1995 and were analyzed for various organic and inorganic parameters. A laboratory chronicle follows and lists the samples associated with this project.

All Quality Assurance and Quality Control measurements for sample analysis have been reviewed.

Exceptions

See checklist.

Reviewed by:	11	Date:	1/4/96
-		Date.	

LABORATORY DELIVERABLES

THIS FORM MUST BE COMPLETED BY THE LABORATORY OR ENVIRONMENTAL CONSULTANT AND ACCOMPANY ALL DATA SUBMISSIONS

The following laboratory deliverables shall be included in the data submission. All deviations from the accepted methodology and procedures or performance values outside acceptable ranges shall be summarized in the Non-Conformance Summary. The proposed "Technical Requirements for Site Remediation" rules, which appeared in the May 4, 1992 New Jersey Register, provides further details. The document shall be bound and paginated, contain a table of contents, and all pages shall be legible. Incomplete packages will be returned or held without review until the data package is completed.

It is recommended that the analytical results summary sheets listing all targeted and non-targeted compounds with the method detection limits be included in one section of the data package and in the main body of the report.

		Check if Complete
1.	Cover Page, Title Page listing Lab Certification #, facility name & address and date of report	
2.	Table of Contents	
3.	Summary Sheets listing Analytical Results for all targeted and non-targeted compounds	
4.	Summary Table cross-referencing field ID #'s vs. Lab iD #'s	
5.	Document paginated and legible	
6.	Chain of Custody	
7.	Methodology Summary	
8.	Laboratory Chronicle and Holding Time Check	
9.	Results submitted on a dry weight basis (if applicable)	
10.	Method Detection Limits	
11.	Lab certified by NJDEPE for parameters or appropriate category of parameters or a member of the USEPA CLP	<u> </u>
12.	Non-Conformance Summary	
	Laboratory Director of Environmental	3/16/55 Date
	Consultant's Signature \	

GC/MS VOLATILE ORGANICS ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY CHECKLIST

		No	<u>Yes</u>
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)		
2.	GC/MS Tune Specifications BFB passed		
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 series		
4.	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours of sample analysis for 600 series and 12 hours for 8000 series	· .	
5.	GC/MS Calibration Requirements a. Calibration Check Compositeds		,
	 a. Calibration Check Compounds b. System Performance Check Compounds 		
ò.	Blank Contamination - If yes, list compounds and concentrations in each blank;	<u></u>	
	VOA Fraction		
	Surrogate Recoveries Meet Criteria		
	If not met, list those compounds and their recoveries which fall outside the acceptable range		
	VOA Fraction -3 TOL @ 133 ; -11 PEF	3 2 61	
	If not met, were the calculations checked and the results qualified as "estimated"?	*****	
	Matrix Spike/Matrix Spike Duplicate Recoverles Meet Criteria (If not met, list those compounds and their recoverles which fall outside the acceptable range)		
	VOA Fraction		
9.	Internal Standard Area/Retention Time Shift Meet Criteria		
Q.	Analysis Holding Time Met		
	If not met, list number of days exceeded for each sample;		
	Additional Comments:		

3/95: chkistms.voa

NAC JOB NO. 4950 636

. •		
	V. GC ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY CHECKLIST	
1.	Chromatograms Labeled/Compounds Identified (Field Samples and Method Blanks)	
2.	Standards Summary Submitted	
3.	Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours before sample analysis	
4.	Blank Contamination - If yes, list compounds and concentrations in each blank;	
	a. VOA Fraction	
	5. B/N FIGCTION	
	d. Postisidas Port	
	d. Pesticides/PCB's	
	e. Cirie	
5 .	Surrogate Recoveries Meet Criteria (if applicable) If not met, list those compounds and their recoveries which fall outside the acceptable range: a. VOA Fraction b. B/N Fraction	
	A sid Franklan	
	d. Pesticides/PC8's	
	e. Other	
	If not met, were the calculations checked and the results qualified as "estimated"?	
	· · · · · · · · · · · · · · · · · · ·	
).	Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria (if applicable)	
	If not met, list those compounds and their recoveries which fall outside the acceptable range:	
	a. VOA Fraction	
	DA Frank	
	C. Acid Fraction d. Pesticides/PC8's	

NAC JOB NO. (950626

V. GC AMALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY CHECKLIST (CO	ontinued)
--	-----------

Retention Time Shift Meet Citteria (if applicable)	<u></u>	Yes
Extraction Holding Time Met		
If not met, list number of days exceeded for each sample:		
Analysis Holding Time Met		
If not met, list number of days exceeded for each sample:		
Additional Comments:		

NAC JOB NO.	0626
1470 300 110.	<u></u>

ICP ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY CHECKLIST

	<u>No</u>	<u>Yeş</u>
Calibration Data Meet Criteria		<u> </u>
ICP Interferènce Check Sample Results Meet Criteria		<u> </u>
Serial Dilution Meet Criteria		$\underline{\nu}'$
Laboratory Control Sample Meet Criteria		<u> </u>
Blank Contamination - If yes, list compounds and concentration in each blank:	ions <u>V</u>	
Matrix Spike and Dunilogte Decoupling March Catalan	./	
Matrix Spike and Duplicate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)		
No Recovery for Lo 2n Due to High ANHAYA	To, CR 10	12 N. 17%
Digestion Holding Time Met		V
If not met, list number of days exceeded for each sample: _		
		V
Analysis Holding Time Met		
Analysis Holding Time Met If not met, list number of days exceeded for each sample:	<u> </u>	
-		
If not met, list number of days exceeded for each sample:		
If not met, list number of days exceeded for each sample:		

3/95: chklst.icp

NAC JOB NO0626

3/95: chkst.aa

GF/AA ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY CHECKLIST

	<u>No</u>	<u>Yes</u>
Calibration Data Meet Citterla		<u> </u>
Serial Dilution Meet Citteria		<u></u>
Laboratory Control Sample Meet Criteria		<u> </u>
Blank Contamination - If yes, list compounds and concentration in each blank;	ons _V	
Matrix Spike and Duplicate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)	<u></u>	
1950626-1 As 1517 Se 3470		
Digestion Holding Time Met		~
f not met, list number of days exceeded for each sample:		
Analysis Holding Time Met		~
f not met, list number of days exceeded for each sample:		
Additional Comments:	- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·
		-
Reviewed by: Date: _3/16		

TIERRA-B-012395

NAC JOB NO.	_ 0626	
1 10 000 110,	<u> </u>	

3/95: chklst.hg

MERCURY ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY CHECKLIST

0.11	<u>No</u>	<u>Yes</u>
Calibration Data Meet Criteria		
Laboratory Control Sample Meet Criteria		
Blank Contamination - If yes, list compounds and concent in each blank:	rations <u>L</u>	
	· · · · · · · · · · · · · · · · · · ·	
Matrix Spike and Duplicate Recoveries Meet Criteria (If not met, list those compounds and their recoveries which fall outside the acceptable range)	<u>U</u>	
L 950626-1 HS 133/0		
Digestion Holding Time Met		_V
f not met, list number of days exceeded for each sample:		
Analysis Holding Time Met	-	V
not met, list number of days exceeded for each sample;		
Additional Comments:		

TIERRA-B-012396

4

NAC JOB NO. 04 2 CU

V. PHC ANALYSIS CONFORMANCE/NON-CONFORMANCE SUMMARY CHECKLIST

		NO	<u>YES</u>
1.	Blank Contamination - If yes, list sample and the corresponding concentrations in each blank:		
2.	Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria		
	(If not met, list the sample and corresponding recovery which falls outside the acceptable range)		
3.	IR Spectra submitted for all standards, blanks & samples		1
4.	Chromatograms submitted for all standards, blanks & samples if GC fingerprinting was conducted		
5.	Extraction Holding Time Met		
	If not met, list number of days exceeded for each sample:		·
5.	Analysis Holding Time Met		_/
	If not met, list number of days exceeded for each sample:		
	Additional Comments:		

TIERRA-B-012398

1/-NORTHEASTERN ANALYTICAL CORPORATION ______ CHAIN OF CUSTODY RECORD PROJ. NO. PROJECT NAME P. . BERTHS 30832 Upland CONTAINER TYPE NAP 005 NO. SAMPLERS: KLL. WOODEVER OF M. SANDLER REMARKS CON-**TAINERS** SAMPLE DATE TIME SAMPLE LOCATION ANACYTE FOR: 5-1 15" 5490CE Z 8-14 0-12" Sample Concers Much Gravel TPHC DOB PPM-Lols VOC 7 5-1B 2/23 9:15 × (t' TOTAL DEOTH 5-24 15" SAMPLE 8-12" 5-p/2 10-12" 5-p/2 5-23 12" 57-742 XX X 5-33 Z 12-23" LABOUR Relinquished by: (Agnature) Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Received for Laboratory by: Date/Time Remarks

(Signature)

NORTHEASTERN ANALYTICAL CORPORATION

CHAIN OF CUSTODY RECORD

PROJ.	NO.	PROJE	CT N	AME	PONT NEWARK TERMINAL HS 30132 Deland	NO.	CONTAINER TYPE									
SAMPLE	RS:	M. S.	۔ ب	20	LER	OF								DEMARKS	ļ.	
SAMPLE	ţ.	1		AQ.		CON- TAINERS									REMARKS	
5-41	2/23	10:4	X		S-1A 11" Total Simple UNDER 3" Aspholt Sond of Both of	Z	×	×								
	<u> </u>	ļ	_		UNDER 3" Asplich		<u> </u>					ļ				
		1	1								_ _	ļ				
5-43	2/23	10:50	×		5-48 10"-18"	2	X	×		_	_					_
	-/	<u> </u>			Sundy makerial		<u> </u>			_ _	_					_
5.54	1/23	11:10	X		5-54 0-23" 70746 0-16" LAB SAVICE	2	<u> </u>	×		- -	\bot	-	 			
5- 3 73	z/				0-16 GANGEL				-	_		ļ				
5- 3 73	723	11:15	*		5-5 B 16"-28"	7_	×	×		_		 				_
0 (1	ح/	11:3			5-6A 0-2+" South - Share 0-12" S-6: 12-24" Druk Woln - 14 50-12		X	<u></u>		-						-
3-64	/23				G-64 0-67	<u> </u>		X		╁	+-	ļ				_
5-61	3 =/	7774	5		S-12 17 -14	/e	メ	×		_	-					-
	72	·	/~		Dank All Sumple				\dashv			<u> </u>				-
				\dashv	201000111 6 52001					+						
	-			7	^					-	-					-
Relinquish	red Ky:	pignatu Tark		2/2	Date/Time Received by (Signature)	JAK CH	Reli	nquis	hed by	: (Sigi	ature		Date/Ti	me	Received by: (Signature)	
Relinquish	ned by:	(Signatu	re)		Date/Time Received by: (Signatu	ire)	Reli	nquis	hed by	(Sign	ature	,	Date/Ti	me	Received by: (Signature)	
Relinquish	ed by:	(Signetu	re)		Date/Time Received for Laborate (Signature)	ory by:		Da	ite/Tim	ie	Rema	rks		-		-
				·		L			<u> </u>						TIERRA-B-	 ∙0123

CHAIN OF CUSTODY RECORD

~	/	,
>	/	3
/	•	

	PROJ.	NO.	PROJE	CT N	AME	Pont	NEUNER				/	CO	NTAIN	ER TYPE	7	·····
ļ	c 0	> 1		, > 2	- /:	リタン・さいり	<u> </u>	NO.			/_	7	77	77/	•	
	SAMPLE	RS:	и.	Sa	(*	111		OF						///		
			K.			doubt				/。'	/1		/ /			REMARKS
Ĺ	SAMPLE			<u> </u>			E LOCATION	CON- TAINERS	1	13/x						,
3	>-74	2/23	11:55	X		5-74	0.15" 5 110	2_	×	×						
,						C	- (ZI EAD)	_								
	5-7B	2/23	12:05	X		5-73	0.15" 5"- 110 0-12" EAPLE 9" 50-16 24" SAMPLE	N_	X	×						
4						12-	Z4" SHOPLE									
֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	5-745	2/23	125/6	×		シーフル ロ・	splic-Le	Z _	×	\times						
.							0-1211 200	~								
1	GEC!	0	72:20	b	X			7							-	
ļ.	13-11	~					()									
-								·· <u></u>								
-																
L					_											
-					\perp								_			
F					-	· · · · · · · · · · · · · · · · · · ·					.	_				
-					_							_				
L				ام.				11								
	Pinquish Way	led by:	rell 1	ref	2/2	Date/Time 23/95/150	Received by: (Signature	1504	Relin	quisi	ned b	y: (Si	ignature	Date	/Time	Received by: (Signature)
F	elinguis j	ed by:	(Signatu	re)		Date/Time	Received by: (Signature	e)	Relin	quist	ned b	y: (Si	gnature) Date	/Time	Received by: (Signature)
R	elinquish	ed by: ((Signatu	re)		Date/Time	Received for Laborator (Signature)	ry by:	·	Da	te/Ti	me	Rema	arks		

012

TIERRA-B-012400

NAC PRESERVATIVE CHECKLIST

TO BE COMPLETED UPON SAMPLE RECEIPT

INSTRUCTIONS:

- 1. Place an X in box if okay
- 2. Record actual pH if outside acceptable range
- Record temperature of cooler blank or note Y/N if samples are cooled
- 4. Record corrective action in remarks.

SIGNATURE:

DATE PERFORMED:

TKN	TOX	VOA*	DUTTON				_		>9	<u>></u> 12	°C	SAMPLES	
			FRENCE	700	PHC/ORG	METALS	HARD	TPO ₄	30 ₂	CYAN	TEMP	NAC #	REMARKS
		VIC									43	00261	this Kale
		*				Λ			<u> </u>		V	-16	FB
 													
									 				
													

*All VOA vials received with no headspace and septum was Teflon side down, except where noted.

SPECIAL INSTRUCTIONS/NONCOMPLIANCE NOTATIONS

0 1 3

NAC JOB#: L950626 SHELF#: B5,AA,MS

INTERNAL CHAIN OF CUSTODY SAMPLE ALIQUOT(S)

CLIENT: KENNETH L. WOODRUFF ASSOCIATES PROJECT: NAP-005/PORT NEWARK TERMI

AQ: Parameters/Sample: | PCB-8080 16 | PHC 16 | AG 16 | AS 16 | BE

16 | CD 16 | CR 16 | CU 16 | HG 16 | NI 16

| PB 16 | SB 16 | SE 16 | TL 16 | ZN 16

| VOA-8240 16 | VOA-XYLE 16

Soil: Parameters/Sample: | PCB-8080 1 - 15 | PHC 1 - 15 | NC 1 - 15

Soil: Parameters/Sample: | PCB-8080 1 - 15 | PHC 1 - 15 | AG 1 - 15 | AS 1 - 15 | BE 1 - 15 | CD 1 - 15 | CR 1 - 15 | CU 1 - 15 | HG 1 - 15 | NI 1 - 15 | PB 1 - 15 | BB 1 - 15 | BE 1 - 15 | TL 1 - 15 | ZN 1 - 15 | TS 1 - 15 | VOA-8240 1 - 15 | VOA-XYLE 1 - 15

=======================================	========			
DATE	TIME	SAMPLE(S) RELINQUISHED BY	SAMPLE(S) RECEIVED BY	REASON FOR CHANGE OF CUSTODY
207/5	1000	Mata CON +4	1 Patell	H6 8290
12(28/15)	0915	Chile	Wester July	1-16 Metal 5
12/28/5	1410	1 Chot	1 Dhuring	PHC, 73 1-15
13/16	OD6,	Olivert .	Kansis	PCB-16
13/1/5	0928	Cloto	Shuth	1-15 Metals
13/3/95	1330	1 1 CARONA .	1 14/1/2/19	Iranster 1-15 4CB .
13/3/95	1415	Muld mister	/ (Delde	175 RETURN
lI				
 	<u></u>			

REFER TO EXTERNAL COC FOR DESIGNATED SAMPLE INFORMATION

NAC ORGANIC	asEb FC	XG DE	SCRIF	IAB	INITAMT.	3080	<u> </u>	ВА			210	0/	P.S	015
SAMPLE #		RE	20 .	05	g or mL	FINAL	DATE	CTION IN	DATE	NC.	Ι Ψ'		CO	MMENTS
O BLK		PC	<u>rs</u>		30.0g	10ml	3-03-45	os	3-86-45	05/1	}	1,00	بريت /	
0626 -8					30.05	10/-1					M250-/H2	1-1	Surr +	SAR
0626-8					30.09	10ml					b	101	Sur +	5 P C-
ac SAK		-	-	27	30.09	10,41						1/1/	لا ريسې	
950626		 	-	3/10	30.09	10,1					M2 SON/MO	1001	Su. /	
	<u>-੨</u>	-	-		30.04	10,,1						1	SUFF	
	-3	_	-		30.09	10 1-1			+			In	surr	
	- 4				30.09							1-1	\$400	
	5				30.0g		_ _					1 m1	Surr	
	6				30.0 g								3011	
	7				30,03			_					م م سو	
	8				30.0g		_					101	Surr	
	Ġ			_	30.0g	10m1						1,1	Surr	
	10				30.0g								8411	
	11			_	30.05	10 ml						111	surr	
	12	_			30.00								surr	
	/3	_		\perp	30.09	10,11							Sur	
	14				30.0,	10m1		_					Serr	
	15				30.00	101							sull	
950674	4-1				30,0g	10m1							surr	
950686	-1			Y	30.09	10m1	4	1	4	¥	1		surr	· · · · · · · · · · · · · · · · · · ·
								_						
														· · · · · · · · · · · · · · · · · · ·
Blank 2														
Blank3														
Blank 4												•		
Black 5		-												
Blank 6														
									<u> </u>			MLS	CONC.	LOTA
. A-, 5. 2-, ('F = FEST/FCS	19A = :	I, F	- FU	EL CHAI	7 - TCL	je. F/ •	*19*		SURROGAZ	3AC /	TOM	1.0	2/,	020 745 50
						,			SHIRE	<i>μ</i> Λ	1660	1.0	10	011745 JEF
EXTR MET: !	SEPF ,		LI	ودئامه	SONC	<u>V</u> 50:	CHLET _	「	SPIKE C	ur.	4	4	1	4
													L	1
	REL	INO	UISH	ED BY	r RECEI	VEB BY	SUPRV	210	DATE	TIME		REAS	100	
	 	^	<u>ئەدر</u>	9	+ +	1			£ 7 15	li.a	Blet, h	sinsp	60,1-17	
	ļ <u></u>						-							
	<u> </u>						1							
	<u></u>						1		1					

NAC ORGANIC PREP LOG DESCRIPTION_PUB SUSC BATCH NO. (36-2082 /PL INIT.AMT. ANAL. LAB FINAL EXTRACTION CONC. SAMPLE # CLN RECO. OUT ဋ္ဌ တကြာ mL DATE DATE IN UP CCMMENTS 9 BLK HY'B 10 ICCC ML 216951115 IN SLLIN 5 SO CC SUKés | +(10 1CLC-ML 10 21649 inc Iml Stury+spk CIC SPK DID 1000ml 10 Ind Stein suk 485-4 1000 mL 10 Inc Stur 3 4717-22 10 LOCCOL lmsun PCB HSHN TEA PANY 2-2-45 AR 2009 al surv 5 0547-1 PETER to OF 2085 /PE 1 ml sur changed to 60 PCB 2.23.45 05 6 -2 1000 m1 1-1 surr 7 COOMI 1 ml suir 8 1000m1 Im1 surr .3 In 1 surr 10 -6 1000ml Iml surr इत्भर्ग 11 10 C 12 3/10 PPR 201-162 1000 10 3195117KS 3-7-95 OS In Suw 3/2 660-3 PCB 1000 1 ON L 2195 PN Ind Szer 31₂₀ . 4 :37-1 ЮB toul bully 3695 LNS 15 17 18 13 20 *የ*ቦ አ Blank 2 1000 ار4 کر (رار HK 22795 AR MUSICIY Blank 3 PGB 1000 -es trus succ 02234505 化わ Blank 4 1000 IomL 31.45 LIKS 3.1.95 PN Intsur Black 5 40B 1000 3645 INV SULV Blank 6 CONC LOTA A. A. B. B., C = APN, F = FUEL CHAR., T = TCLP. P/ = FEST. /F = PS SURROGATE COTOMY 1 CML Lua Inc COCX15 SDT SPIKE ARILLEO 1. CML 10 milant CHYISTRE EXTR MET: SEPF ____ LIG/LIG SONG SPIKE OUP. SOXHLET 3 .7.8 15:00 # 12 RELINDUISHED BY PECEIVED BY SUPRY SIG DATE TIME REASON BIX#-+74 1430 PLKING GC CYCBUY 2 13 BICH / 6:042 16:45 45- 10 P20 1316 45 13

METHODOLOGY

Purgeables by GC/MS - Aqueous/Solid

Method 8240 - This is a purge and trap gas chromatograph/mass spectrometer (GC/MS) method. The organic compounds are separated by the gas chromatograph and detected using the mass spectrometer. Test Methods for Evaluating Solid Waste, SW846, 3rd Edition, November, 1986.

Report detection limits are as stated.

PCB's by GC

Method 8080 - This method covers the determination of pesticides and polychlorinated biphenyls (PCB's) in samples by extraction/concentration with organic solvents and subsequent qualification/quantification by Gas Chromatography. The gas chromatograph utilizes an electron capture detector (ECD) which is applicable for the determination of the compounds listed for this method in Test Methods for Evaluating Solid Waste, SW846, 3rd Edition, November, 1986.

Soil samples were prepared for analysis as prescribed in sonication Method 3550 from SW846.

Metals - Solid

This is a procedure used to determine metals concentrations in soils. It involves an acidic digestion under oxidizing conditions of approximately one (1) gram of soil. Nitric and hydrochloric acids as well as hydrogen peroxide are employed in the digestion. The digested sample is filtered and diluted to 100 milliliters. The analysis is performed by Inductively Coupled Plasma (ICP) atomic emission spectrometry. Reference methods include the CLP Statement of Work for Inorganics and Test Methods for Evaluating Solid Waste, SW846, 3rd Edition, November, 1986.

METHODOLOGY (Continued)

Metals - Aqueous

This is a procedure used to determine metals concentrations in aqueous matrices. It involves an acidic digestion under oxidizing conditions of approximately 25 milliliters of sample. Nitric and hydrochloric acids as well as hydrogen peroxide are employed in the digestion. The digested sample is filtered and diluted to 25 milliliters. The analysis is performed by ICP, furnace atomic absorption and manual coldvapor if mercury is requested. Reference methods are Methods for the Chemical Analysis of Water and Wastes, Revised, March 1983, and Methods for the Determination of Metals in Environmental Samples: EPA/600/4-91/010, June 1991.

Petroleum Hydrocarbons by IR - Aqueous (PHC)

The sample is extracted with freon and an Infrared Spectrophotometer (IR) method is used to determine petroleum hydrocarbon levels in aqueous matrices. The non-petroleum hydrocarbons are removed with silica gel and the extract is analyzed by IR against a series of standard mixtures. Reference method is EPA Methods for the Chemical Analysis of Water and Wastes, Revised, March 1983, Method 418.1.

Petroleum Hydrocarbons by IR - Solid (PHC)

This is a soxhlet extraction and Infrared Spectrophotometer (IR) method used to determine petroleum hydrocarbon levels in solid matrices. An aliquot of the sample is soxhlet extracted with freon, the non-petroleum hydrocarbons are removed with silica gel and the extract is analyzed by IR against a series of standard mixtures. Reference method is EPA Methods for the Chemical Analysis of Water and Wastes, Revised, March 1983, Method 418.1.

METHODOLOGY (Continued)

Total Solids, Percent (TS)

This is a gravimetric analytical method used to determine the moisture content present in either aqueous or solid matrices. An aliquot of the sample is weighed into a tared beaker and then dried at 103°-105°C. The final weight is subtracted from the initial weight and then the percent total solids present in the sample is calculated. Reference method is Standard Methods for the Examination of Water and Wastewater, 16th Edition, Method 209A.

The following is a list of symbols an/or abbreviations which may be found in NAC reports.

<u>Symbols</u>	Description
U	Analyte is not detected above the method detection limit
ND ·	Analyte is not detected above the method detection limit
<	Analyte is present in the sample at an amount less than the reported result
>	Analyte is present in the sample at an amount greater than the reported result
MDL	Method Detection Limit
RDL	Report Detection Limit
PQL	Practical Quantitation Limit
TNTC	Coliform growth is too numerous to count (above 200)
dw	Dry Weight
В	Analyte is present in the associated method blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
RSD	Relative % Standard Deviation
CF	Calibration Factor
МІ	Matrix Interference
НА	High Analyte
J	Estimated Value
D	Standard spike or surrogate diluted out
<=	Less than or equal to
>=	Greater than or equal to
N/A	Not Applicable

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
L950626-1 950626-2 L950626-3 L950626-4 L950626-5 L950626-6	S-1A S-1B S-2A S-2B S-3A S-3B	23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95	Soil Soil Soil Soil Soil Soil

EXTRACT DATE

PARAMETER	-1	-2	-3	-4	- 5	-6
ARSENIC						
HG-A					· · · · · · · · · · · · · · · · · · ·	
HG-S	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95
METALS (ICAP)-A						00/00/00
METALS (ICAP)-S	03/01/95	03/01/95	03/01/95	03/01/95	03/01/95	03/01/95
LEAD						
SELENIUM						

ANALYSIS DATE

ARAMETER	-1	-2	-3	-4	- 5	-6
ARSENIC						
HG-A						
HG-S	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95
METALS (ICAP)-A						
METALS (ICAP)-S	03/02/95	03/02/95	03/02/95	03/02/95	03/02/95	03/02/95
LEAD						
SELENIUM						

L950626-1 S-1A 23-FEB-95 950626-2 S-1B 23-FEB-95	_	
L950626-3 S-2A 23-FEB-95 L950626-4 S-2B 23-FEB-95 L950626-5 S-3A 23-FEB-95 L950626-6 S-3B 23-FEB-95	5 Soil 5 Soil 5 Soil 5 Soil 5 Soil	

EXTRACT DATE

PARAMETER	-1	-2	-3	-4	-5	-6
THALLIUM						<u>v</u>
PCB'S-A						· · · · · · · · · · · · · · · · · · ·
PCB'S-S	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95
VOL. ORG.					- 50/ 53/ 53	03/03/93
VOL. ORG.						 -
PHC-A						
PHC-S	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95
						02/20/93

ARAMETER	-1	-2	- 3	-4	-5	-6
THALLIUM						
PCB'S-A						
PCB'S-S	03/09/95	03/08/95	03/09/95	03/13/95	03/09/95	03/13/95
VOL. ORG.						
VOL. ORG.	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95	03/06/95
PHC-A						
PHC-S	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95
						· · · · · · · · · · · · · · · · · · ·

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
1,950626-1	S-1A	23-FEB-95	Soil Soil Soil Soil Soil Soil
950626-2	S-1B	23-FEB-95	
1,950626-3	S-2A	23-FEB-95	
1,950626-4	S-2B	23-FEB-95	
1,950626-5	S-3A	23-FEB-95	
1,950626-6	S-3B	23-FEB-95	

EXTRACT DATE

PARAMETER		-2	-3	-4	-5	-6
S						
		-				
	-					
					i	
				1	1	

ARAMETER	-1	-2	-3	-4	- 5	-6
rs	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95
		· 				···
		,				

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
†. <u>950626-7</u>	S-4A	23-FEB-95	Soil
150626-8	S-4B	23-FEB-95	Soil
<u> 1950626-9</u>	S-5A	23-FEB-95	Soil
L950626-10	S-5B	23-FEB-95	Soil
L950626-11	S-6A	23-FEB-95	Soil
L950626-12	S-6B	23-FEB-95	Soil

EXTRACT DATE

PARAMETER		-8	- 9	-10	-11	-12
ARSENIC						
HG-A						
HG-S	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95
METALS (ICAP)-A						
METALS (ICAP)-S	03/01/95	03/01/95	03/01/95	03/01/95	03/01/95	03/01/95
LEAD						
SELENIUM						

ARAMETER		-8	-9	-10		-12
ARSENIC						-
HG-A						-
HG-S	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95
METALS (ICAP)-A						
METALS (ICAP)-S	03/02/95	03/02/95	03/02/95	03/02/95	03/02/95	03/02/95
LEAD						
SELENIUM						

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
950626-7	S-4A	23-FEB-95	Soil
<u> 350626-8</u>	S-4B	23-FEB-95	Soil
L950626-9	S-5A	23-FEB-95	Soil
L950626-10	S-5B	23-FEB-95	Soil
L950626-11	S-6A	23-FEB-95	Soil
L950626-12	S-6B	23-FEB-95	Soil

EXTRACT DATE

PARAMETER	-7	-8	-9	-10	-11	-12
THALLIUM						
PCB'S-A						
PCB'S-S	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95	03/03/95
VOL. ORG.						
VOL. ORG.						
PHC-A						
PHC-S	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95
			}			

_ ∴ ARAMETER	-7	-8	-9	-10	-11	-12
THALLIUM						
PCB'S-A						
PCB'S-S	03/13/95	03/08/95	03/13/95	03/08/95	03/13/95	03/09/95
VOL. ORG.						
VOL. ORG.	03/03/95	03/07/95	03/06/95	03/06/95	03/07/95	03/07/95
PHC-A						
PHC-S	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
T 950626-7	S-4A	23-FEB-95	Soil
)50626-8	S-4B	23-FEB-95	Soil
<u> 1950626-9</u>	S-5A	23-FEB-95	Soil
L950626-10	S-5B	23-FEB-95	Soil
L950626-11	S-6A	23-FEB-95	
L950626-12	S-6B	23-FEB-95	Soil
		ZJ-FED-95	Soil

EXTRACT DATE

PARAMETER	-7	-8	-9	-10	-11	-12
S						
					-	
	 					
				İ		
						-

ARAMETER	<u>-7</u>	-8	-9	-10	-11	-12
rs	02/28/95	02/28/95	02/28/95	02/28/95	02/28/95	
				·		
						···

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
50626-13	S-7A	23-FEB-95	Soil
50626-14	S-7B	23-FEB-95	Soil
50626-15	S-7AD	23-FEB-95	Soil
L950626-16	FIELD BLANK	23-FEB-95	Aqueous

FILE COPY

EXTRACT DATE

PARAMETER	-13	-14	-15	-16	-17	-18
ARSENIC				02/28/95		
HG-A				03/07/95		
HG-S	03/03/95	03/03/95	03/03/95			
METALS (ICAP)-A				02/28/95		
METALS (ICAP)-S	03/01/95	03/01/95	03/01/95			
LEAD				02/28/95		
SELENIUM				02/28/95		

RAMETER	-13	-14	-15	-16	-17	-18
ARSENIC				03/02/95		
HG-A				03/07/95		
HG-S	03/03/95	03/03/95	03/03/95			
METALS (ICAP)-A				03/01/95		
METALS (ICAP)-S	03/02/95	03/02/95	03/02/95			
LEAD		· · · · · · · · · · · · · · · · · · ·		03/02/95		
SELENIUM				03/03/95		

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
7 1 2 5 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	S-7A S-7B S-7AD FIELD BLANK	23-FEB-95 23-FEB-95 23-FEB-95 23-FEB-95	Soil Soil Soil Aqueous

EXTRACT DATE

PARAMETER	-13	-14	- 15	-16	-17	-18
THALLIUM				02/28/95		
PCB'S-A				03/01/95		
PCB'S-S	03/03/95	03/03/95	03/03/95	03/13/95		
VOL. ORG.						
VOL. ORG.						
PHC-A				02/27/95		
PHC-S	02/28/95	02/28/95	02/28/95			

RAMETER	-13	-14	-15	-16	-17	-18
THALLIUM				03/02/95		
PCB'S-A				03/08/95	<u> </u>	
PCB'S-S	03/09/95	03/09/95	03/13/95			
VOL. ORG.				03/06/95		
VOL. ORG.	03/07/95	03/07/95	03/08/95			
PHC-A				02/28/95		
PHC-S	02/28/95	02/28/95	02/28/95			

LAB SAMPLE ID	CLIENT ID	SAMPLING DATE	MATRIX
^50626 - 13	_ S-7A	23-FEB-95	Soil
0626-14	S-7B	23-FEB-95	Soil
Ly50626-15	S-7AD	23-FEB-95	Soil
L950626-16	FIELD BLANK	23-FEB-95	Aqueous
			

EXTRACT DATE

PARAMETER	-13	-14	-15	-16	-17	-18
S	1					
<u> </u>						
				j		
						·

RAMETER	-13	-14	-15	-16	-17	-18
TS	02/28/95	02/28/95	02/28/95			
				·		
				, , <u>, , , , , , , , , , , , , , , , , </u>		
				-		

ORGANIC RESULTS SUMMARY SECTION

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID: S-1A

Lab Sample ID: L950626-1

Total Solids: 93.19%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	4.0		
Bromomethane	ND	4.0 6.5		ug/kg dw
Vinyl Chloride	ND	5.4		ug/kg dw
Chloroethane	ND	3.4		ug/kg dw
Methylene Chloride	5.9	3.3		ug/kg dw
Acrolein	ND	54		ug/kg dw
Acrylonitrile	ND	54		ug/kg dw
Trichlorofluoromethane	ND	2.3		ug/kg dw
1,1-Dichloroethene	ND	2.7		ug/kg dw
1,1-Dichloroethane	ND	2.4		ug/kg dw
Trans-1,2-Dichloroethene	ND	3.0		ug/kg dw
Chloroform	ND	2.8		ug/kg dw
1,2-Dichloroethane	ND	2.0		ug/kg dw
1,1,1-Trichloroethane	ND	4.1		ug/kg dw
Carbon Tetrachloride	ND	2.9		ug/kg dw
Bromodichloromethane	ND	3.6		ug/kg dw
1,2-Dichloropropane	ND	4.7		ug/kg dw
Cls-1,3-Dichloropropene	ND	4.5		ug/kg dw
Trichloroethene	ND	8.7		ug/kg dw ug/kg dw
Dibromochloromethane	ND	3.1		ug/kg dw
1,1,2-Trichloroethane	ND	3.8		ug/kg dw
Benzene	ND	4.5		ug/kg dw
trans-1,3-Dichloropropene	ND	3.0		ug/kg dw
2-Chloroethylvinylether	ND	4.0		ug/kg dw
Bromoform	ND	2.8		ug/kg dw
Tetrachloroethene	ND	2.3		ug/kg dw
1,1,2,2-Tetrachloroethane	ND	4.0		ug/kg dw
Toluene	ND	3.0		ug/kg dw
Chlorobenzene	ND	2.5		ug/kg dw
Ethylbenzene	ND	3.0		ug/kg dw
Xylenes (Total)	ND	5.7		ug/kg dw
				ug/kg uw

Date Extracted:

Date Analyzed: Dilution: 1

03-MAR-95

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID:95L-0626-1

LAB FILE ID:>E1923

DATE RECEIVED: 02/23/95

DATE ANALYZED: 950303

SAMPLE WI/VOL:5.0GR/5.0ML

LEVEL:LOW

DRY WT: .9319

CUMPOUND

RET TIME(MIN)

CONC

NONE FOUND

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

Date Received: Peb 23, 1995

NAC Job Number: L950626

Client ID: S-1A

Lab Sample ID: L950626-1

Total Solids: 93.19%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 850 ND ND 750 ND	180 360 180 180 180 180		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 09-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: 1950626

Date Received:

Peb 23, 1995

Client ID: S-1B

Lab Sample ID: L950626-2

Total Solids: 95.25%

Chloromethane ND 3.9 ug/kg dw Bromomethane ND 6.4 ug/kg dw Vinyl Chloride ND 5.2 ug/kg dw Chloroethane ND 3.4 ug/kg dw Methylene Chloride 6.2 3.3 ug/kg dw Acrolein ND 52 ug/kg dw Acrylonitrile ND 52 ug/kg dw Trichlorofluoromethane ND 2.2 ug/kg dw 1.1-Dichloroethane ND 2.2 ug/kg dw	PARAMETER	RESULTS	MDL	QUAL	UNITS
Bromomethane ND 6.4 ug/kg dw Vinyl Chloride ND 5.2 ug/kg dw Chloroethane ND 3.4 ug/kg dw Methylene Chloride 6.2 3.3 ug/kg dw Acrolein ND 52 ug/kg dw Acrylonitrile ND 52 ug/kg dw Trichlorofluoromethane ND 2.2 ug/kg dw Lapichloroethane ND 2.2 ug/kg dw	Chloromethane	ND	3.9		ua/ka du
Vinyl Chloride Chloroethane ND Solve State	Bromomethane	- · -			
Chloroethane ND 3.4 ug/kg dw Methylene Chloride 6.2 3.3 ug/kg dw Acrolein ND 52 ug/kg dw Acrylonitrile ND 52 ug/kg dw Trichlorofluoromethane ND 2.2 ug/kg dw ug/kg dw	Vinyl Chloride				
Methylene Chloride 6.2 3.3 ug/kg dw Acrolein ND 52 ug/kg dw Acrylonitrile ND 52 ug/kg dw Trichlorofluoromethane ND 2.2 ug/kg dw					
Acrolein ND 52 ug/kg dw Acrylonitrile ND 52 ug/kg dw Trichlorofluoromethane ND 2.2 ug/kg dw ug/kg dw	Methylene Chloride				
Acrylonitrile ND 52 ug/kg dw Trichlorofluoromethane ND 2.2 ug/kg dw ug/kg dw					
Trichlorofluoromethane ND 2.2 ug/kg dw					
1 l-Dichloroothone	Trichlorofluoromethane				
1,1 Dichiologicale ND 2.6 na/ka dw	1,1-Dichloroethene	ND	2.6		ug/kg dw
1,1-Dichloroethane ND 2.3	1,1-Dichloroethane				
Trans-1,2-Dichloroethene ND 2.9	Trans-1,2-Dichloroethene	ND			
Chloroform ND 2.7	Chloroform				
1,2-Dichloroethane ND 2.0	1,2-Dichloroethane				
1,1,1-Trichloroethane ND 4.0	1,1,1-Trichloroethane				
Carbon Tetrachloride ND 2.8	Carbon Tetrachloride				
Bromodichloromethane ND 3.6	Bromodichloromethane	ND			
1,2-Dichloropropane ND 4.6	1,2-Dichloropropane	ND			
cis-1,3-Dichloropropene ND 4.4	cis-1,3-Dichloropropene	ND			
Trichloroethene ND 8.5	Trichloroethene				
Dibromochloromethane ND 3.0					
1,1,2-Trichloroethane ND 3.7 ug/kg dw	1,1,2-Trichloroethane	ND			
Benzene ND 4.4 ug/kg dw		ND			
trans-1,3-Dichloropropene ND 2.9	trans-1,3-Dichloropropene	ND			
2-Chloroethylvinylether ND 3.9 ug/kg dw	2-Chloroethylvinylether	ND			
Bromotorm ND 2.7 ug/kg dw		ND	2.7		
Tetrachloroethene ND 2.2 Ng/kg dw		ND			
1,1,2,2-Tetrachloroethane ND 3.9 ug/kg dw		ND			
Toluene ND 2.9 ug/kg dw		ND	2.9		ug/kg dw
Chlorobenzene ND 2.4 ng/kg dw		ND			
Ethylbenzene ND 2.9 ng/kg dw		ND			
Xylenes (Total) ND 5.6 ug/kg dw	Xylenes (Total)	ND			

Date Extracted: Date Analyzed: Dilution: 1

N/A

03-MAR-95

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID:95L-0626-2

LAB FILE ID:>E1921

DATE RECEIVED: 02/23/95

DATE ANALYZED:950303

SAMPLE WT/VOL:5.0GR/5.0ML

LEVEL:LOW

DRY WT: .9525

COMPOUND

RET TIME(MIN)

CONC

NUNE FOUND

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-1B

Lab Sample ID: L950626-2

Total Solids: 95.25%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	35 70 35 35 35 35 35		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 08-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

5-2A

Lab Sample ID: L950626-3

Total Solids: 89.73%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	4.1		ug/kg dw
Bromomethane	ND	6.8		ug/kg dw
Vinyl Chloride	ND	5.6		ug/kg dw
Chloroethane	ND	3.6		ug/kg dw
Methylene Chloride	9.5	3.5		ug/kg dw
Acrolein	ND	56		ug/kg dw
Acrylonitrile	ND	56		ug/kg dw
Trichlorofluoromethane	ND	2.3		ug/kg dw
1,1-Dichloroethene	ND	2.8		ug/kg dw
1,1-Dichloroethane	ND	2.5		ug/kg dw
Trans-1,2-Dichloroethene	ND	3.1		ug/kg dw
Chloroform	ND	2.9		ug/kg dw
1,2-Dichloroethane	ND	2.1		ug/kg dw
1,1,1-Trichloroethane	ND	4.2		ug/kg dw
Carbon Tetrachloride	ND	3.0		ug/kg dw
Bromodichloromethane	ND	3.8		ug/kg dw
1,2-Dichloropropane	ND	4.9		ug/kg dw
cis-1,3-Dichloropropene	ND	4.7		ug/kg dw
Trichloroethene	ND	9.0		
Dibromochloromethane	ND	3.2		ug/kg dw ug/kg dw
1,1,2-Trichloroethane	ND	3.9		ug/kg dw
Benzene	ND	4.7		ug/kg dw
trans-1,3-Dichloropropene	ND	3.1		
2-Chloroethylvinylether	ND	4.1		ug/kg dw ug/kg dw
Bromoform	ND	2.9		
Tetrachloroethene	110	2.3		
1,1,2,2-Tetrachloroethane	ND	4.1		ug/kg dw
Toluene	6.4	3.1		ug/kg dw
Chlorobenzene	ND	2.6		ug/kg dw
Ethylbenzene	3.8	3.1		ug/kg dw
Xylenes (Total)	16	5.9		ug/kg dw
_ ,,		J. J		ug/kg dw

Date Extracted: Date Analyzed: Dilution: 1

N/A 03-MAR-95

LAB SAMPLE ID:95L-0626-3

DATE RECEIVED:02/23/95

SAMPLE WT/VOL:5.0GR/5.0ML

DRY WT:.8973

LAB FILE ID:>E1925
DATE ANALYZED:950303

LEVEL: LOW

COMPOUND	RET TIME	CONC
1.Unknown	23.80	7 UG/KG J
2.Dimethylbenzene Isomer	24.65	7 UG/KG J
3.Unknown Aromatic	25.81	6 UG/KG J
4.Unknown Aromatic	26.11	19 UG/KG J
5.Ethyldimethylbenzene Isomer	26.29	10 UG/KG J
6.Tetramethylbenzene Isomer	27.90	7 UG/KG J
7.Unknown Alkane	28.16	11 UG/KG J
8.Unknown	29.46	15 UG/KG J
9.Unknown Alkane	30.09	19 UG/KG J
10.Unknown	31.39	9 UG/KG J
11.Unknown Alkene	31.89	19 UG/KG J
12.Unknown Aromatic	32.21	8 UG/KG J
13.Unknown Alkane	32.86	7 UG/KG J
14.Unknown Alkane	33.58	8 UG/KG J
15.Dimethylnaphthalene Isomer	34.58	9 UG/KG J

J; Estimated Concentration

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES Date Sampled: Feb 23, 1995

039

NORTHEASTERN ANALYTICAL CORPORATION

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID: S-2A

Lab Sample ID: L950626-3

Ttal Solids: 89.73%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 8800 ND ND 2700 ND	180 370 180 180 180 180		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

NURTHEASTERN ANALYTICAL CURPURATION VULATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID:95L-0626-4

LAB FILE ID:>E1926

DATE RECEIVED: 02/23/95

DATE ANALYZED:950303

SAMPLE WIZUOL:5.0GRZ5.0ML

LEVEL: LUW

URY WI: .8758

COMPOUND

RET TIME(MIN)

CONC

NUNE FOUND

		and the second second	
	NORTHEASTERN ANALYTICAL CO REPORT OF RESULTS		
Client: KENNET	H L. WOODRUFF ASSOCIATES		Feb 23, 1995
NAC Job Number:	L950626	Date Received:	Feb 23, 1995
Client ID:	5-2B		
Lab Sample ID:	L950626-4		
Total Solids:	87.58%		

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 2500 ND ND 1200 ND	190 380 190 190 190 190		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed: 03-MAR-95 13-MAR-95

TIERRA-B-012429

NURTHEASTERN ANALYTICAL CURPORATION VULATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID: 95L-0626-5

LAB FILE ID:>E1931

DATE RECEIVED: 02/23/95

DATE ANALYZED: 950303

SAMPLE WIZVOL:5.0GRZ5.0ML

LEVEL:LOW

DRY WI: .9815

CUMPUUND

RET TIME(MIN)

CUNC

NUNE FOUND

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

5-3A

Lab Sample ID: L950626-5

Total Solids: 98.15%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 2200 ND ND 960 ND	170 340 170 170 170 170		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed: 09-MAR-95

03-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

5-3B

Lab Sample ID:

L950626-6

Total Solids: 90.63%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	4.1		ug/kg dw
Bromomethane	ND	6.7		ug/kg dw
Vinyl Chloride	ND	5.5		ug/kg dw
Chloroethane	ND	3.5		ug/kg dw
Methylene Chloride	6.4	3.4		ug/kg dw
Acrolein	ND	55		ug/kg dw
Acrylonitrile	ND	55		ug/kg dw
Trichlorofluoromethane	ND	2.3		ug/kg dw
1,1-Dichloroethene	ND	2.8		ug/kg dw
1,1-Dichloroethane	ND	2.4		ug/kg dw
Trans-1,2-Dichloroethene	ND	3.1		ug/kg dw
Chloroform	ND	2.9		ug/kg dw
1,2-Dichloroethane	ND	2.1		ug/kg dw
1,1,1-Trichloroethane	ND	4.2		ug/kg dw
Carbon Tetrachloride	ND	3.0		ug/kg dw
Bromodichloromethane	ND	3.8		ug/kg dw
1,2-Dichloropropane	ND	4.9		ug/kg dw
cis-1,3-Dichloropropene	ND	4.6		ug/kg dw
Trichloroethene	ИD	8.9		ug/kg dw
Dibromochloromethane	ND	3.2		ug/kg dw
1,1,2-Trichloroethane	ND	3.9		ug/kg dw
Benzene	ND	4.6		ug/kg dw
trans-1,3-Dichloropropene	ND	3.1		ug/kg dw
2-Chloroethylvinylether	ND	4.1		ug/kg dw
Bromoform	ND	2.9		ug/kg dw
Tetrachloroethene	ND	2.3		ug/kg dw
1,1,2,2-Tetrachloroethane	ND	4.1		ug/kg dw
Toluene	ND	3.1		ug/kg dw
Chlorobenzene	ND	2.5		ug/kg dw
Ethylbenzene	ND	3.1		ug/kg dw
Xylenes (Total)	ND	5.8		ug/kg dw

Date Extracted: Date Analyzed: Dilution: 1

06-MAR-95

NURTHEASTERN ANALYTICAL CURPURATION VULATILE UNKNOWN IDENTIFICATION

LAB SAMPLE 10:95L-8626-6

LAB FILE ID:>E1943

DATE RECEIVED: 02/23/95

DATE ANALYZED: 950306

SAMPLE WI/VUL:5.0GR/5.0ML

LEVEL: LOW

DRY WI: .9063

COMPOUND

RET TIME (MIN)

CONC

NUNE FUUND

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number:

L950626

Date Received:

Feb 23, 1995

Client ID:

S-3B

Lab Sample ID: L950626-6

Total Solids: 90.63%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 42 ND ND 44 ND	36 74 36 36 36 36 36		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95

13-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

5-4A

Lab Sample ID: L950626-7

Total Solids: 94.89%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	3.9		na/ka du
Bromomethane	ND	6.4		ug/kg dw ug/kg dw
Vinyl Chloride	ND	5.3		ug/kg dw
Chloroethane	ND	3.4		ug/kg dw
Methylene Chloride	ND	3.3		ug/kg dw
Acrolein	ND	53		ug/kg dw
Acrylonitrile	ND	53		ug/kg dw
Trichlorofluoromethane	ND	2.2		ug/kg dw
1,1-Dichloroethene	ND	2.6		ug/kg dw
1,1-Dichloroethane	ND	2.3		ug/kg dw
Trans-1,2-Dichloroethene	ND	3.0		ug/kg dw
Chloroform	ND	2.7		ug/kg dw
1,2-Dichloroethane	ND	2.0		ug/kg dw
1,1,1-Trichloroethane	ND	4.0		ug/kg dw
Carbon Tetrachloride	ND	2.8		ug/kg dw
Bromodichloromethane	ND	3.6		ug/kg dw
1,2-Dichloropropane	ND	4.6		ug/kg dw
cis-1,3-Dichloropropene	ND	4.4		ug/kg dw
Trichloroethene	ND	8.5		ug/kg dw
Dibromochloromethane	ND	3.1		ug/kg dw
1,1,2-Trichloroethane	ND	$3.\overline{7}$		ug/kg dw
Benzene	ND	4.4		ug/kg dw
trans-1,3-Dichloropropene	ND	3.0		ug/kg dw
2-Chloroethylvinylether	ND	3.9		ug/kg dw
Bromoform	ND	2.7		ug/kg dw
Tetrachloroethene	ND	2.2		ug/kg dw
1,1,2,2-Tetrachloroethane	ND	3.9		ug/kg dw
Toluene	ND	3.0		ug/kg dw
Chlorobenzene	ND	2.4		ug/kg dw
Ethylbenzene	ND	3.0		ug/kg dw
Xylenes (Total)	ND	5.6		ug/kg dw

Date Extracted:

N/A

Date Analyzed: Dilution: 1

03-MAR-95

NORTHEASTERN ANALYTICAL CURPORATION VULATILE UNKNOWN IDENTIFICATION

LAB SAMPLE 10:95L-0626-7

LAB FILE ID:>E1930

DATE RECEIVED: 02/23/95

DATE ANALYZED:950303

SAMPLE WIZUL:5.06RZ5.0ML

LEVEL: LUW

DRY WI: . 9489

COMPOUND

RET TIME(MIN)

CONC

NUNE FOUND

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES Date Sampled: Feb 23, 1995

NAC Job Number: L950626 Date Received: Feb 23, 1995

Client ID: 5-4A

Lab Sample ID: L950626-7

Total Solids: 94.89%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 160 ND ND 98 ND	35 71 35 35 35 35 35		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: 03-MAR-95 Date Analyzed: 13-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

5-4B

Lab Sample ID: L950626-8

Total Solids: 92.69%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein Acrylonitrile Trichlorofluoromethane 1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Enzene trans-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene	ND ND ND 4.3 ND ND	MDL 4.6 5.4 5.7 2.4 2.7 2.0 2.7 4.5 3.8 5.1 3.8 5.1 3.8 5.1 3.8 5.0 2.1 3.8 5.0 2.5	QUAL	UNITS ug/kg dw
Ethylbenzene Xylenes (Total)	ND ND	3.0 5.7		ug/kg dw ug/kg dw

Date Extracted:
Date Analyzed:
Dilution: 1

N/A

07-MAR-95

NURTHEASTERN ANALYTICAL CURPURATION VULATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID: 95L-0626-8

LAB FILE ID:>E1958

DATE RECEIVED: 82/23/95

DATE ANALYZED:950307

SAMPLE WI/VUL: 5. UGR/5. UML

LEVEL: LOW

DRY WI: .9269

CUMPUUND

RET TIME(MIN)

CONC

NUNE FOUND

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-4B

Lab Sample ID: L950626-8

Total Solids: 92.69%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	36 72 36 36 36 36 36		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 08-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-5A

Lab Sample ID: L950626-9

Total Solids: 94.51%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	3.9		sam /leas also
Bromomethane	ND	6.5		ug/kg dw
Vinyl Chloride	ND	5.3		ug/kg dw
Chloroethane	ND	3.4		ug/kg dw
Methylene Chloride	9	3.3		ug/kg dw
Acrolein	ND	53		ug/kg dw
Acrylonitrile	ND	53		ug/kg dw
Trichlorofluoromethane	ND	2.2		ug/kg dw
1,1-Dichloroethene	ND	2.6		ug/kg dw
1,1-Dichloroethane	ND	2.3		ug/kg dw
Trans-1,2-Dichloroethene	ND	3.0		ug/kg dw
Chloroform	ND	2.8		ug/kg dw
1,2-Dichloroethane	ND	2.0		ug/kg dw
1,1,1-Trichloroethane	ND	4.0		ug/kg dw
Carbon Tetrachloride	ND	2.9		ug/kg dw
Bromodichloromethane	ND	3.6		ug/kg dw
1,2-Dichloropropane	ND	4.7		ug/kg dw
cis-1,3-Dichloropropene	ND	4.4		ug/kg dw
Trichloroethene	ND	8.6		ug/kg dw
Dibromochloromethane	ND	3.1		ug/kg dw
1,1,2-Trichloroethane	ND	3.7		ug/kg dw
Benzene	ND	4.4		ug/kg dw ug/kg dw
trans-1,3-Dichloropropene	ND	3.0		ug/kg dw
2-Chloroethylvinylether	ND	3.9		ug/kg dw
Bromoform	ND	2.8		ug/kg dw
Tetrachloroethene	ND	2.2		ug/kg dw
1,1,2,2-Tetrachloroethane	ND	3.9		
Toluene	6.4	3.0		ug/kg dw
Chlorobenzene	ND	2.4		ug/kg dw
Ethylbenzene	ND	3.0		ug/kg dw
Xylenes (Total)	9.2	5.6		ug/kg dw
•	-	3.0		ug/kg dw

Date Extraction: 1 Date Extracted:

N/A 06-MAR-95

NURTHEASTERN ANALYTICAL CURPORATION OUGATILE UNKNOWN TOENTIFICATION

LAB SAMPLE 10:95L-0626-9

LAB FILE ID:>E1951

DATE RECEIVED: 02/23/95

DATE ANALYZED: 950306

SAMPLE WIZUULIS.UGRZS.UML

LEVEL: LUW

URY WI: . 9451

EUMPIJUNO	RET TIME	UUNU
1.Unknown	22.85	6 UG/KG J

d; Estimated Concentration

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 199

NAC Job Number:

L950626

Date Received:

Feb 23, 199

Client ID:

S-5A

Lab Sample ID:

L950626-9

Total Solids:

94.51%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 130 ND ND 68 ND	35 71 35 35 35 35 35		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 13-MAR-95

TIERRA-B-012443

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Peb 23, 1995

Client ID:

S-5B

Lab Sample ID: L950626-10

Total Solids: 95.29%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	3.9		11 <i>m</i> /1+m -3
Bromomethane	ND	6.4		ug/kg dw
Vinyl Chloride	ND	5.2		ug/kg dw
Chloroethane	ND	3.4		ug/kg dw
Methylene Chloride	7.1	3.3		ug/kg dw
Acrolein	ND	52		ug/kg dw
Acrylonitrile	ND	52		ug/kg dw
Trichlorofluoromethane	ND	2.2		ug/kg dw
1,1-Dichloroethene	ND	2.6		ug/kg dw
1,1-Dichloroethane	ND	2.3		ug/kg dw
Trans-1,2-Dichloroethene	ND	2.9		ug/kg dw
Chloroform	ND	2.7		ug/kg dw
1,2-Dichloroethane	ND	2.0		ug/kg dw
1,1,1-Trichloroethane	ND	4.0		ug/kg dw
Carbon Tetrachloride	ND	2.8		ug/kg dw
Bromodichloromethane	ND			ug/kg dw
1,2-Dichloropropane	ND	3.6		ug/kg dw
cis-1,3-Dichloropropene	ND	4.6		ug/kg dw
Trichloroethene	ND	4.4		ug/kg dw
Dibromochloromethane	ND	8.5		ug/kg dw
1,1,2-Trichloroethane	ND	3.0		ug/kg dw
Benzene	ND ND	3.7		ug/kg dw
trans-1,3-Dichloropropene	ND ND	4.4		ug/kg dw
2-Chloroethylvinylether	ND	2.9		ug/kg dw
Bromoform		3.9		ug/kg dw
Tetrachloroethene	ND	2.7		ug/kg dw
1,1,2,2-Tetrachloroethane	ND	2.2		ug/kg dw
Toluene	ND	3.9		ug/kg dw
Chlorobenzene	ND	2.9		ug/kg dw
Ethylbenzene	ND	2.4		ug/kg dw
Xylenes (Total)	ND	2.9		ug/kg dw
	ND	5.6		ug/kg dw
				-

Date Extracted:
Date Analyzed:
Dilution: 1

N/A 06-MAR-95

TIERRA-B-012444

NURTHEASTERN ANALYTICAL CORPORATION VULATILE UNKNOWN IDENTIFICATION

LAH SAMPLE ID:95L-0626-10

LAB FILE 1D:>E1952

DATE RECEIVED: 02/23/95

DATE ANALYZED:950306

SAMPLE WIZUOL:5.0GRZ5.0ML

LEVEL: LOW

DRY WI: .9529

CUMPUUND

RET TIME(MIN)

CONC

NUNE FOUND

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-5B

Lab Sample ID: L950626-10

Total Solids: 95.29%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	35 70 35 35 35 35 35		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 08-MAR-95

REPORT OF RESULTS

KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-6A

Lab Sample ID: L950626-11

Total Solids: 97.57%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	3.8		nor/lear also
Bromomethane	ND	6.3		ug/kg dw
Vinyl Chloride	ND	5.1		ug/kg dw
Chloroethane	ND	3.3		ug/kg dw
Methylene Chloride	7.9	3.2		ug/kg dw
Acrolein	ND	51		ug/kg dw
Acrylonitrile	ND	51		ug/kg dw ug/kg dw
Trichlorofluoromethane	4.9	2.2		
1,1-Dichloroethene	ND	2.6		
1,1-Dichloroethane	ND	2.3		ug/kg dw ug/kg dw
Trans-1,2-Dichloroethene	ND	2.9		ug/kg dw
Chloroform	ND	2.7		ug/kg dw
1,2-Dichloroethane	ND	1.9		ug/kg dw
1,1,1-Trichloroethane	ND	3.9		ug/kg dw
Carbon Tetrachloride	ND	2.8		ug/kg dw
Bromodichloromethane	ND	3.5		ug/kg dw
1,2-Dichloropropane	ND	4.5		ug/kg dw
Cis-1,3-Dichloropropene	ND	4.3		ug/kg dw
Trichloroethene	ND	8.3		ug/kg dw
Dibromochloromethane	ND	3.0		ug/kg dw
1,1,2-Trichloroethane	ND	3.6		ug/kg dw
Benzene	ND	4.3		ug/kg dw
trans-1,3-Dichloropropene	ND	2.9		ug/kg dw
2-Chloroethylvinylether	ND	3.8		ug/kg dw
Bromoform	ND	2.7		ug/kg dw
Tetrachloroethene	ND	2.2		ug/kg dw
1,1,2,2-Tetrachloroethane	ND	3.8		ug/kg dw
Toluene	ND	2.9		ug/kg dw
Chlorobenzene	ND	2.4		ug/kg dw
Ethylbenzene	ND	2.9		ug/kg dw
Xylenes (Total)	ND	5.4		ug/kg dw
				5/ 5

Date Extraction: 1 Date Extracted:

N/A 07-MAR-95

NURTHEASTERN ANALYTICAL CURPURATION VULLATILE UNKNOWN IDENTIFICATION

LAB SAMPLE 10:95%-0626-11

LAB FILE ID:>E1953

DATE RECEIVED: 02/23/95

DATE ANALYZED:95030/

SAMPLE WIZUBL:5.UGRZ5.UML

LEVEL: LUW

DRY MILL.9757

CUMPUBND	REI IIME	CUNC
l.Unknown Alkane	28.16	9 U6/KG J
2.1-Hexene, 5,5-dimethy1-	28.38	18 UG/KG J
3.Unknown	29.18	6 UG/KG J
4.Unknown	29.47	20 UG/KG J
ծ.Unknown	30.10	6 UG/KG J
6.Unknawn	51.41	5 U6/K6 J

J; Estimated Concentration

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 199

NAC Job Number: L950626

Date Received:

Feb 23, 199!

Client ID:

S-6A

Lab Sample ID:

L950626-11

Total Solids: 97.57%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 170 ND ND 250 ND	68 140 68 68 68 68		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95

13-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-6B

Lab Sample ID: L950626-12

Total Solids: 81.94%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	4.5		ug/kg dw
Bromomethane	ND	7.4		ug/kg dw
Vinyl Chloride	ND	6.1		ug/kg dw
Chloroethane	ND	3.9		ug/kg dw
Methylene Chloride	9.7	3.8		ug/kg dw
Acrolein	ND	61		ug/kg dw
Acrylonitrile	ND	61		ug/kg dw
Trichlorofluoromethane	ND	2.6		ug/kg dw
1,1-Dichloroethene	ND	3.1		ug/kg dw
1,1-Dichloroethane	ND	2.7		ug/kg dw
Trans-1,2-Dichloroethene	ND	3.4		ug/kg dw
Chloroform	ND	3.2		ug/kg dw
1,2-Dichloroethane	ND	2.3		ug/kg dw
1,1,1-Trichloroethane	ND	4.6		ug/kg dw
Carbon Tetrachloride	ND	3.3		ug/kg dw
Bromodichloromethane	ND	4.1		ug/kg dw
1,2-Dichloropropane	ND	5.4		ug/kg dw
cis-1,3-Dichloropropene	ND	5.1		ug/kg dw
Trichloroethene	ND	9.9		ug/kg dw
Dibromochloromethane	ND	3.5		ug/kg dw
1,1,2-Trichloroethane	ND	4.3		ug/kg dw
Benzene	ND	5.1		ug/kg dw
trans-1,3-Dichloropropene	ND	3.4		ug/kg dw
2-Chloroethylvinylether	ND	4.5		ug/kg dw
Bromoform	ND	3.2		ug/kg dw
Tetrachloroethene	ND	2.6		ug/kg dw
1,1,2,2-Tetrachloroethane	ND	4.5		ug/kg dw
Toluene	ND	3.4		ug/kg dw
Chlorobenzene	ND	2.8		ug/kg dw
Ethylbenzene	ND	3.4		ug/kg dw
Xylenes (Total)	ND	6.5		ug/kg dw
<u> </u>		0. 5		ug/kg uw

Date Extracted: Date Analyzed: Dilution: 1

N/A 07-MAR-95

TIERRA-B-012450

NURTHEASTERN ANALYTICAL CURPORATION UNLATTLE UNKNOWN TOENTTETCATION

LAB SAMPLE 10:95L-0626-12

LAB FILE ID:>E1954

DATE RECEIVED: 02/23/95

DATE ANALYZED:950307

SAMPLE WIZUUL:5.0GRZ5.0ML

LEVEL: LUW

DRY MI:.8194

CUMPUUNO	KEI TIME	CONC
1.Acetone	4.85	11 UG/KG J
2.Unknown Alkene	22.90	280 UG/KG J
5.Unknown Alkene	24.29	62 UG/KG J
4.Unknown Alkene	25.40	28 UG/KG J
ხ.Unknown Eyeloalkane	27.13	8 UG/KG J
6.Unknown	27.47	10 US/KG J
∕.Unknown	29.18	10 UG/KG J
შ.Naphthalene	50.13	20 UG/KG J
Y.Methylnaphthalene Isomer	32.23	9 UG/KG J
U.Methylnaphthalene Isomer	32.68	12 U6/K6 J

d; Estimated Concentration

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-6B

Lab Sample ID:

L950626-12

Total Solids: 81.94%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 2200 ND ND 11000 ND	200 410 200 200 200 200 200		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 09-MAR-95

TIERRA-B-012452

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-7A

Lab Sample ID: L950626-13

Total Solids: 79.12%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein Acrylonitrile Trichlorofluoromethane 1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene	RESULTS ND ND ND 7.3 ND ND ND ND ND ND ND ND ND ND ND ND ND	MDL 4.7 7.3 4.0 3.3 6.3 7.2 8.3 8.4 8.4 8.4 8.5 8.5 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	QUAL	ug/kg dw ug/kg dw
Xylenes (Total)	13	6.7		ug/kg dw ug/kg dw

Date Extracted:
Date Analyzed:
Dilution: 1

N/A

07-MAR-95

NURTHEASTERN ANALYTICAL CURPURATION OULATTLE UNKNOWN TOENTTETICATION

LAB SAMPLE ID:95L-0626-13

LAB FILE 10:>E1960

DATE RECEIVED: 02/23/95

DATE ANALYZED:950307

SAMPLE WIZUL:5.0GR/5.0ML

LEVEL: LUW

DRY WI:.7912

CUMPUUND	REI TIME	CUNC
1.Unknown Alkene	22.40	45 UG/KG J
2.Unknown	26.13	/ U6/K6 J
⊅.Naphthalene	30.12	29 UG/KG J
4.Methylnaphthalene isomer	32.22	13 UG/KG J
ל.Methylnaphthalene isomer	32.68	24 U6/KG J
6.DimethyInaphthalene isomer	34.61	19 UG/KG J

³⁾ Estimated Concentration

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 199

NAC Job Number: L950626

Date Received:

Feb 23, 199!

Client ID:

S-7A

Lab Sample ID:

L950626-13

Total Solids:

79.12%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 1100 ND ND 950 ND	210 420 210 210 210 210 210	,	ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 09-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 199

NAC Job Number: L950626

Date Received: Feb 23, 199!

Client ID:

S-7B

Lab Sample ID: L950626-14

Total Solids: 86.41%

Date Extracted:
Date Analyzed:
Dilution: 1

N/A

07-MAR-95

NURTHEASTERN ANALYTICAL CURPORATION UULATILE UNKNOWN TOENTEFICATION

LAB SAMPLE 10:95L-0626-14

LAB FILE ID:>E1962

DATE RECEIVED: 02/23/95

DATE ANALYZED: 950307

SAMPLE WIZUUL:5.0GRZ5.0ML

LEVEL: LUW

DRY WI: 8641

CUMPUUND	REI IIME	CUNC
1.Unknown	27.46	8 UG/KG J
7.Naphthalene	30.12	10 UGZKG J

d; Estimated Concentration

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 199

NAC Job Number: L950626

Date Received: Feb 23, 199

Client ID:

5-7B

Lab Sample ID:

L950626-14

Total Solids: 86.41%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 2700 ND ND 2500 ND	190 390 190 190 190 190		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 09-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Peb 23, 1995

Client ID:

S-7AD

Lab Sample ID: L950626-15

Total Solids:

80.95%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acrolein Acrylonitrile Trichlorofluoromethane 1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane Cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 2-Chloroethylvinylether Bromoform Tetrachloroethene 1,1,2,2-Tetrachloroethane	RESULTS ND ND ND ND ND ND ND ND ND ND ND ND ND	4.6 7.5 6.2 4.0 3.8 62 2.6 3.1 2.7 3.2 2.3 4.7 3.3 4.2 5.4 5.2 10 3.6 4.3 5.2 4.6 3.6 3.6 4.3	QUAL	UNITS ug/kg dw
Toluene Chlorobenzene Ethylbenzene Xylenes (Total)	4.8 ND 5.3 68	4.6 3.5 2.8 3.5 6.5		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

N/A

Date Extracted: Date Analyzed: Dilution: 1

08-MAR-95

NURTHEASTERN ANALYTICAL CORPORATION VOLATILE UNKNOWN IDENTIFICATION

198 SAMPLE ID:95L-0626-15

DATE RECEIVED: 02/23/95

SAMPLE WIZVUL:5.UGRZ5.UML

DRY W1:.8095

LAB FILE ID:>A8661
DATE ANALYZED:950308

LEVEL: LUW

CUMPOUND	RET TIME	CONC
1.Unknown Alkane	22.68	19 UG/KG J
2.Ethylmethylbenzene Isomer	23.99	38 UG/KG J
3.Ethylmethylbenzene Isomer	24.00	38 UG∕KG J
4. Ethylmethylbenzene isomer	24.56	21 UG/KG J
5. Ethylmethylbenzene Isomer	24.84	70 UG∕KG J
6.Unknown Alkane	25.16	46 UG/KG J
7.Ethylmethylbenzene Isomer	25.71	22 UG/KG J
8.Metylpropylbenzene Isomer	26.06	14 UG/KG J
.Ethyldimethylbenzene Isomer	26.20	27 UG/KG J
10.Unknown Aromatic	27.53	14 UG/KG J
11.Unknown Aromatic	29.33	25 UG/kG J
12.Naphthalene	30.U4	35 UG/KG J
13.Methylnaphthalene Isomer	32.10	19 UG/KG J
14.Methylnaphthalene isomer	32.98	30 UG∕KG J
15.Dimethylnaphthalene Isomer	34.49	30 UG/KG J

J; Estimated Concentration

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-7AD

Lab Sample ID:

L950626-15

Total Solids:

80.95%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND 16000 ND ND 6200 ND	820 1700 820 820 820 820 820		ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw ug/kg dw

Date Extracted: Date Analyzed:

03-MAR-95 13-MAR-95

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

FIELD BLANK

Lab Sample ID:

L950626-16

PARAMETER	RESULTS	MDL	QUAL	UNITS
Chloromethane	ND	3.7		ug/l
Bromomethane	ND	6.1		ug/l
Vinyl Chloride	ND	5.0		ug/l
Chloroethane	ND	3.2		ug/l
Methylene Chloride	ND	3.1		ug/l
Acrolein	ND	50		ug/1
Acrylonitrile	ND	50		ug/1
Trichlorofluoromethane	ND	2.1		ug/l
1,1-Dichloroethene	ND	2.5		ug/1
1,1-Dichloroethane	ND	2.2		ug/l
Trans-1,2-Dichloroethene	ND	2.8		ug/1
Chloroform	ND	2.6		ug/1
1,2-Dichloroethane	ND	1.9		ug/1
1,1,1-Trichloroethane	ND	3.8		ug/1
Carbon Tetrachloride	ND	2.7		ug/1
Bromodichloromethane	ND	3.4		ug/l
1,2-Dichloropropane	ND	4.4		ug/1
cis-1,3-Dichloropropene	ND	4.2		ug/l
Trichloroethene	ND	2.3		ug/1
Dibromochloromethane	ND	2.9		ug/l
1,1,2-Trichloroethane	ND	3.5		ug/1
Benzene	ND	4.2		ug/l
trans-1,3-Dichloropropene	ND	2.8		ug/l
2-Chloroethylvinylether	ND	3.7		ug/l
Bromoform	ND	2.6		ug/l
Tetrachloroethene	ND	2.1		ug/l
1,1,2,2-Tetrachloroethane	ND	3.7		ug/l
Toluene	ND	2.8		ug/l
Chlorobenzene	ND	2.3		ug/1
Ethylbenzene	ND	2.8		ug/l
Xylenes (Total)	ND	5.3		ug/l

Date Extracted: Date Analyzed: Dilution: 1

N/A

06-MAR-95

NURTHEASTERN ANALYTICAL CURPORATION VULATILE UNKNOWN IDENTIFICATION

LAU SAMPLE ID:95L-0626-16

LAB FILE ID:>E1942

DATE RECEIVED: 02/23/95

DATE ANALYZED:950306

SAMPLE WT/VOL:5.0ML

LEVEL: LOW

CUMPOUND

RET TIME (MIN)

CUNC

NUNE FUUND

REPORT OF RESULTS

KENNETH L. WOODRUFF ASSOCIATES Client:

Date Sampled: Feb 23, 199

NAC Job Number: L950626

Date Received: Feb 23, 199

Client ID:

FIELD BLANK

Lab Sample ID: L950626-16

PARAMETER	RESULTS	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	1.0 2.0 1.0 1.0 1.0		ug/l ug/l ug/l ug/l ug/l ug/l ug/l

Date Extracted: Date Analyzed:

01-MAR-95 08-MAR-95

TIERRA-B-012464

INORGANIC RESULTS

REPORT OF RESULTS

KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-1A

Lab Sample ID: L950626-1

Total Solids: 93.19%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	11	6.4		mg/kg dw
Arsenic	2.7	0.54		mg/kg dw
Beryllium	2.7	0.54		mg/kg dw
Cadmium	16	0.32		mg/kg dw
Chromium	79	1.1		mg/kg dw
Copper	330	2.7		mg/kg dw
Lead	1100	11		mg/kg dw
Mercury	0.38	0.11		mg/kg dw
Nickel	100	4.3		mg/kg dw
Selenium	ND	0.54		mg/kg dw
Silver	ND	1.1		mg/kg dw
Thallium	ИД	0.54		mg/kg dw
Zinc	630	2.1		mg/kg dw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-1A

Lab Sample ID: L950626+1

Total Solids: 93.19%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

3900

21

mg/kg dw

Date Extracted: Date Analyzed:

N/A

See Laboratory Chronicle

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-1B

Lab Sample ID:

L950626-2

Total Solids:

95.25%

dw
uw
dw
đw
dw
dw
dw
đw
dw
dw
đw
dw
dw
w£

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: **Peb 23, 1995**

Client ID:

S-1B

Lab Sample ID: L950526-2

Total Solids: 95.25%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

130

21

mg/kg dw

Date Extracted:

N/A

Date Analyzed: See Laboratory Chronicle

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number:

L950626

Date Received: Feb 23, 1995

Client ID:

S-2A

Lab Sample ID:

L950626-3

Total Solids:

89.73%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	13	6.7		mg/kg dw
Arsenic	8.0	0.56		mg/kg dw
Beryllium	2.6	0.56		mg/kg dw
Cadmium	20	0.33		mg/kg dw
Chromium	360	1.1		mg/kg dw
Copper	600	2.8		mg/kg dw
Lead	1800	11		mg/kg dw
Mercury	0.6	0.11		mg/kg dw
Nickel	110	4.5		mg/kg dw
Selenium	ND	0.56		mg/kg dw
Silver	ND	1.1		mg/kg dw
Thallium	ND	0.56		mg/kg dw
Zinc	1400	2.2		mg/kg dw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Peb 23, 1995

Client ID:

5-2A

Lab Sample ID:

L950626-3

Total Solids: 89.73%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

2500

22

mg/kg dw

Date Extracted: Date Extracted: N/A
Date Analyzed: See Laboratory Chronicle

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES Date Sampled: Feb 23, 1995
NAC Job Number: L950626 Date Received: Feb 23, 1995

Client ID: S-2B

Lab Sample ID: L950626-4

Total Solids: 87.58%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	28	6.9		mg/kg dw
Arsenic	6.2	0.57		mg/kg dw
Beryllium	3.7	0.57		mg/kg dw
Cadmium	86	0.34		mg/kg dw
Chromium	370	1.1		mg/kg dw
Copper	830	2.9		mg/kg dw
Lead	280	11		mg/kg dw
Mercury	0.22	0.11		mg/kg dw
Nickel	190	4.6		mg/kg dw
Selenium	ND	0.57		mg/kg dw
Silver	ND	1.1		mg/kg dw
Thallium	ND	0.57		mg/kg dw
Zinc	1000	2.3		mg/kg dw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

5-2B

Lab Sample ID: L950626-4

Total Solids: 87.58%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

1700

23

mg/kg dw

Date Extracted: Date Analyzed:

N/A

See Laboratory Chronicle

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-3A

Lab Sample ID:

L950626-5

Total Solids:

98.15%

RESULTS	MDL	QUAL	UNITS	
ND	6.1		mg/kg	dw
4.3	0.51		mg/kg	dw
1.6	0.51		mg/kg	dw
12	0.31		mg/kg	dw
46	1.0		mg/kg	dw
280	2.5		mg/kg	dw
280	10		mg/kg	đw.
0.3	0.1		mg/kg	dw
42	4.1		mg/kg	dw
ND	0.51		mg/kg	dw
ND	1.0		mg/kg	dw
ND	0.51		mg/kg	dw
980	2.0		mg/kg	dw
	ND 4.3 1.6 12 46 280 280 0.3 42 ND ND ND	ND 6.1 4.3 0.51 1.6 0.51 12 0.31 46 1.0 280 2.5 280 10 0.3 0.1 42 4.1 ND 0.51 ND 1.0 ND 0.51	ND 6.1 4.3 0.51 1.6 0.51 12 0.31 46 1.0 280 2.5 280 10 0.3 0.1 42 4.1 ND 0.51 ND 0.51	ND 6.1 mg/kg 4.3 0.51 mg/kg 1.6 0.51 mg/kg 12 0.31 mg/kg 46 1.0 mg/kg 280 2.5 mg/kg 280 10 mg/kg 0.3 0.1 mg/kg 42 4.1 mg/kg ND 0.51 mg/kg ND 0.51 mg/kg ND 0.51 mg/kg

Date Extracted: Date Analyzed:

REPORT OF RESULTS

KENNETH L. WOODRUFF ASSOCIATES Client:

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-3A

Lab Sample ID: L950626-5

Total Solids: 98.15%

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

PARAMETER

6700

20

mg/kg dw

Date Extracted: Date Analyzed:

N/A

See Laboratory Chronicle

NORTHEASTERN ANALYTICAL CORPORATION REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-3B

Lab Sample ID: L950626-6

Total Solids: 90.63%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	ND	6.6		mg/kg dw
Arsenic	2.3	0.55		mg/kg dw
Beryllium	2.4	0.55		mg/kg dw
Cadmium	9.0	0.33		mg/kg dw
Chromium	11	1.1		mg/kg dw
Copper	53	2.8		mg/kg dw
Lead	48	11		mg/kg dw
Mercury	ND	0.11		mg/kg dw
Nickel	19	4.4		mg/kg dw
Selenium	ND	0.55		mg/kg dw
Silver	ND	1.1		mg/kg dw
Thallium	ND	0.55		mg/kg dw
Zinc	180	2.2		mg/kg dw

uate Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-3B

Lab Sample ID: L950626-6

Total Solids: 90.63%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

5000

22

mg/kg dw

Date Extracted: Date Analyzed:

See Laboratory Chronicle

Feb 23, 1995

NORTHEASTERN ANALYTICAL CORPORATION

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES L950626

NAC Job Number:

Date Received: Feb 23, 1995

Date Sampled:

Client ID: S-4A

Lab Sample ID: L950626-7

Total Solids: 94.89%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	ND	6.3		mg/kg dw
Arsenic	1.1	0.53		mg/kg dw
Beryllium	2.7	0.53		mg/kg dw
Cadmium	7.0	0.32		mg/kg dw
Chromium	7.4	1.1		mg/kg dw
Copper	48	2.6		mg/kg dw
Lead	22	11		mg/kg dw
Mercury	ND	0.11		mg/kg dw
Nickel	15	4.2		mg/kg dw
Selenium	ND	0.53		mg/kg dw
Silver	ND	1.1		mg/kg dw
Thallium	ND	0.53		mg/kg dw
Zinc	75	2.1		mg/kg dw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-4A

Lab Sample ID: L950626-7

Total Solids: 94.89%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

6700

21

mg/kg dw

Date Extracted: N/A
Date Analyzed: See Laboratory Chronicle

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number:

L950626

Date Received:

Feb 23, 1995

Client ID:

S-4B

Lab Sample ID:

L950626-8

Total Solids: 92.69%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	ND	6.5		mg/kg dw
Arsenic	1.4	0.54		mg/kg dw
Beryllium	ND	0.54		mg/kg dw
Cadmium	1.8	0.32		mg/kg dw
Chromium	8.9	1.1		mg/kg dw
Copper	3.7	2.7		mg/kg dw
Lead	ND	11		mg/kg dw
Mercury	ND	0.11		mg/kg dw
Nickel	7.0	4.3		mg/kg dw
Selenium	ND	0.54		mg/kg dw
Silver	ND	1.1		mg/kg dw
Thallium	ND	0.54		mg/kg dw
Zinc	15	2.2		mg/kg dw
				mg/ ng uw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-4B

Lab Sample ID: L950626-8

Total Solids: 92.69%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

320

22

mg/kg dw

Date Extracted:

N/A

Date Analyzed:

See Laboratory Chronicle

FILE COPY

NORTHEASTERN ANALYTICAL CORPORATION

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-5A

Lab Sample ID:

L950626-9

Total Solids:

94.51%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	ND	6.3		mg/kg dw
Arsenic	ND	0.53		mg/kg dw
Beryllium	2.4	0.53		mg/kg dw
Cadmium	3.9	0.32		mg/kg dw
Chromium	12	1.1		mg/kg dw
Copper	35	2.6		mg/kg dw
Lead	17	11		mg/kg dw
Mercury	ND	0.11		mg/kg dw
Nickel	10	4.2		mg/kg dw
Selenium	ND	0.53		mg/kg dw
Silver	ND	1.1		mg/kg dw
Thallium	ND	0.53		mg/kg dw
Zinc	47	2.1		mg/kg dw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Peb 23, 1995

Client ID:

S-5A

Lab Sample ID: L950626-9

Total Solids: 94.51%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

560

21

mg/kg dw

Date Extracted:

N/A

Date Analyzed:

REPORT OF RESULTS

KENNETH L. WOODRUFF ASSOCIATES Client:

Date Sampled:

Feb 23, 1995

NAC Job Number:

L950626

Date Received:

Feb 23, 1995

Client ID:

S-5B

Lab Sample ID:

L950626-10

Total Solids:

95.29%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	7.4	6.3	~	mg/kg dw
Arsenic	1.7	0.52		mg/kg dw
Beryllium	ND	0.52		mg/kg dw
Cadmium	1.8	0.31		mg/kg dw
Chromium	8.3	1.0		mg/kg dw
Copper	4.4	2.6		mg/kg dw
Lead	1200	10		mg/kg dw
Mercury	ND	0.1		mg/kg dw
Nickel	9.1	4.2		
Selenium	ND	0.52		mg/kg dw
Silver	ND	1.0		mg/kg dw
Thallium	ND	0.52		mg/kg dw
Zinc	16			mg/kg dw
	10	2.1		ma/ka dw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-5B

Lab Sample ID: L950626-10

Total Solids: 95.29%

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

PARAMETER

130

21

mg/kg dw

Date Extracted: Date Analyzed:

N/A

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number:

L950626

Date Received:

Feb 23, 1995

Client ID:

5-6A

Lab Sample ID:

L950626-11

Total Solids:

97.57%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	6.2	6.1		mg/kg dw
Arsenic	ND	0.51		mg/kg dw
Beryllium	4.3	0.51		mg/kg dw
Cadmium	3.5	0.31		mg/kg dw
Chromium	8.6	1.0		mg/kg dw
Copper	63	2.6		mg/kg dw
Lead	ND	10		mg/kg dw
Mercury	ND	0.1		mg/kg dw
Nickel	17	4.1		mg/kg dw
Selenium	ND	0.51		mg/kg dw
Silver	ND	1.0		mg/kg dw
Thallium	ND	0.51		<u>-</u>
Zinc	24	2.0		mg/kg dw
	<i>2</i> 7	2.0		mg/kg dw

Date Extracted: Date Analyzed:

REPORT OF RESULTS

KENNETH L. WOODRUFF ASSOCIATES Client:

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-6A

Lab Sample ID:

L950626-11

Total Solids: 97.57%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

12000

20

mg/kg dw

Date Extracted:

Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number:

L950626

Date Received:

Feb 23, 1995

Client ID:

S-6B

Lab Sample ID:

L950626-12

Total Solids:

81.94%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	21	7.3		mg/kg dw
Arsenic	15	0.61		mg/kg dw
Beryllium	2.4	0.61		mg/kg dw
Cadmium	39	0.37		mg/kg dw
Chromium	200	1.2		mg/kg dw
Copper	880	3.1		mg/kg dw
Lead	940	12		mg/kg dw
Mercury	0.87	0.12		mg/kg dw
Nickel	200	4.9		mg/kg dw
Selenium	ND	0.61		mg/kg dw
Silver	ND	1.2		mg/kg dw
Thallium	ND	0.61		mg/kg dw
Zinc	1200	2.4		mg/kg dw

Date Extracted:
Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Peb 23, 1995

Client ID:

S-6B

Lab Sample ID: L950626-12

Total Solids: 81.94%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

4600

24

mg/kg dw

Date Extracted:

N/A

Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

S-7A

Lab Sample ID:

L950626-13

Total Solids: 79.12%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	ND	7.6		mg/kg dw
Arsenic	22	0.63		mg/kg dw
Beryllium	1.3	0.63		mg/kg dw
Cadmium	9.4	0.38		mg/kg dw
Chromium	70	1.3		mg/kg dw
Copper	170	3.2		mg/kg dw
Lead	160	13		mg/kg dw
Mercury	0.55	0.13		mg/kg dw
Nickel	51	5.1		mg/kg dw
Selenium	ND	0.63		mg/kg dw
Silver	ND	1.3		mg/kg dw
Thallium	ND	0.63		mg/kg dw
Zinc	200	2.5		mg/kg dw
				- · · · -

Date Extracted: See Laboratory Chronicle Date Analyzed: See Laboratory Chronicle

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-7A

Lab Sample ID: L950626-13

Total Solids: 79.12%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

600

25

mg/kg dw

Date Extracted: Date Analyzed:

N/A

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-7B

Lab Sample ID: L950626-14

Total Solids: 86.41%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	16	6.9		mg/kg dw
Arsenic	68	0.58		mg/kg dw
Beryllium	1.8	0.58		mg/kg dw
Cadmium	43	0.35		mg/kg dw
Chromium	300	1.2		mg/kg dw
Copper	1500	2.9		mg/kg dw
Lead	780	12		mg/kg dw
Mercury	1.3	0.12		mg/kg dw
Nickel	250	4.6		mg/kg dw
Selenium	ND	0.58		mg/kg dw
Silver	ND	1.2		mg/kg dw
Thallium	ND	0.58		mg/kg dw
Zinc	2000	2.3		mg/kg dw

Date Extracted: See Laboratory Chronicle Date Analyzed: See Laboratory Chronicle

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 199

NAC Job Number: L950626

Date Received: Feb 23, 1995

Client ID:

S-7B

Lab Sample ID:

L950626-14

Total Solids: 86.41%

PARAMETER

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

1500

23

mg/kg dw

Date Extracted: Date Analyzed:

N/A

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 199

NAC Job Number: L950626

Date Received:

Client ID:

S-7AD

Feb 23, 199

Lab Sample ID:

L950626-15

Total Solids:

80.95%

PARAMETER	RESULTS	MDL	QUAL	UNITS
Antimony	26	7.4		mg/kg dw
Arsenic	30	0.62		mg/kg dw
Beryllium	1.9	0.62		mg/kg dw
Cadmium	30	0.37		mg/kg dw
Chromium	150	1.2		mg/kg dw
Copper	460	3.1		mg/kg dw
Lead	2100	12		mg/kg dw
Mercury	1.5	0.12		mg/kg dw
Nickel	270	4.9		mg/kg dw
Selenium	ND	0.62		mg/kg dw
Silver	ND	1.2		mg/kg đw
Thallium	ND	0.62		mg/kg dw
Zinc	3400	2.5		mg/kg dw
				_

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 199

NAC Job Number: L950626

Date Received: Peb 23, 199

Client ID:

S-7AD

Lab Sample ID: L950626-15

Total Solids: 80.95%

RESULTS

MDL

QUAL

UNITS

Petroleum Hydrocarbons

PARAMETER

9600

25

mg/kg dw

Date Extracted: Date Analyzed:

N/A

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled: Feb 23, 1995

NAC Job Number:

L950626

Date Received: Pab 23, 1995

Client ID:

FIELD BLANK

Lab Sample ID:

L950626-16

PA	RAMETER	RESULTS	MDL	QUAL	UNITS
Antimony		ND	0.06	_	mg/l
Arsenic		ND	0.005		mg/1
Beryllium		ND	0.005		mg/l
Cadmium		ND	0.003		mg/l
Chromium		ND	0.01		mg/1
Copper		ND	0.025		mg/1
Lead		ND	0.005		mg/1
Mercury		ND	0.0002		mg/l
Nickel		ND	0.04		mg/l
Selenium		ИD	0.005		mg/l
Silver		ND	0.01		mg/l
Thallium		ND	0.005		mg/1
Zinc		ND	0.02		mg/l

Date Extracted: Date Analyzed:

REPORT OF RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Sampled:

Feb 23, 1995

NAC Job Number: L950626

Date Received:

Feb 23, 1995

Client ID:

FIELD BLANK

Lab Sample ID:

L950626-16

PARAMETER RESULTS MDL QUAL UNITS Petroleum Hydrocarbons ND 1.0 mg/1

Date Extracted:

Date Analyzed:

GC/MS DATA PACKAGE BY FRACTION

NORTHEASTERN ANALYTICAL CORPORATION BFB GC/MS TUNE SUMMARY SHEET

INSTRUMENT A

LAB FILE ID:>A8651

DATE:03/08/95

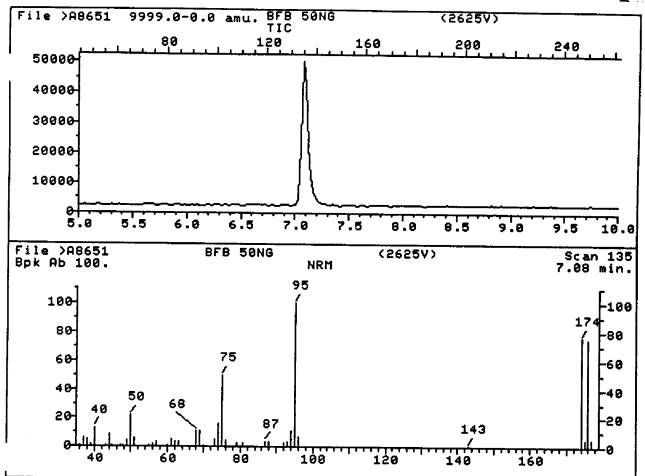
TIME:11:39

This Performance tune applies to the following Samples, Blanks and Standards.

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
VSTD050	>A8652	03/08/95 12:37
VSTD010	>A8654	03/08/95 14:09
VSTD020	>A8655	03/08/95 14:54
VSTD100	>A8656	03/08/95 15:46
VSTD200	>A8657	03/08/95 16:41
METHOD BLANK	>A8658	03/08/95 17:46
95L-0687-4	>A8659	03/08/95 18:54
95L-0687-5	>A8660	03/08/95 19:44
95L-0626-15	> A 8661	03/08/95 20:34
95L-0698-2	>A8663	03/08/95 22:02
95L-0698-3	>A8664	03/08/95 22:45
95L-0698-4	>A8665	03/08/95 23:27

Bromofluorobenzene (BFB)

m/z	Ion Abundance Criteria		Abundance Appropriate Peak	Status
50	15-40% of mass 95	21.98	21.98	
75	30-60% of mass 95	49.54	49.54	Ok
95	Base peak, 100% relative abundance	100.00	100.00	Ok
96	5-9% of mass 95	6.59	6.59	Ok
173	Less than 2% of mass 174	0.00		Ok
174	Greater than 50% of mass 95	76.41	0.00	Ok
175	5-9% of mass 174	5.49	76.41 7.19	Ok
176	95-101% of mass 174	75.07		Ok
177	5-9% of mass 176		98.24	0k
- , ,	5 5 61 MG55 170	5.1 9	6.91	Ok


Injection Date: 03/08/95 Injection Time: 11:34 Data File: >A8651 Scan: 135

NRM,100 FMGR : TAB

>A8651 BFB 50NG (2625V) 135 NRM

File: >A8651 Scan #: 135 Retn. time: 7.08

m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
36.00 37.00 38.00 39.00 39.90 43.00 44.00	1.010 5.905 5.316 2.276 12.938 1.000 8.622	47.90 49.00 50.00 51.00 54.90 56.00 57.00	.716 4.453 21.981 6.376 .804 1.815 3.855	61.00 62.00 63.00 68.00 69.00 70.00 73.00 74.00	5.179 3.933 3.502 10.897 11.309 1.010 5.199	75.00 76.00 78.90 80.90 87.00 88.00 92.00	49.544 4.365 2.550 2.845 3.796 3.198 2.668	94.00 95.00 96.00	11.388

NORTHEASTERN ANALYTICAL CORPORATION BFB GC/MS TUNE SUMMARY SHEET

INSTRUMENT X E 2 22.95

LAB FILE ID:>E1709

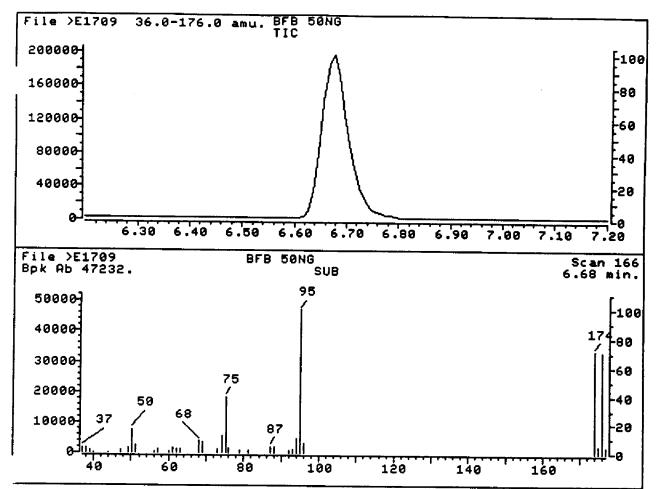
DATE:02/20/95

TIME:11:23

This Performance tune applies to the following Samples, Blanks and Standards.

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
VSTD050	>E1710	02/20/95 11:43
VSTD010	>E1711	02/20/95 24:27
VSTD020	>E1712	02/20/95 13:10
VSTD100	>E1713	02/20/95 13:53
VSTD200	>E1714	02/20/95 14:36
METHOD BLANK	>E1715	02/20/95 15:45
QC SPIKE S-397	>E1716	02/20/95 17:09
95L-0464-6MS S-397	>E1717	02/20/95 17:53
95L-0464-6MSD S-397	>E1718	02/20/95 18:36
95L-0465-4	>E1719	02/20/95 19:19
95L-0465-9	>E1720	02/20/95 20:01
95L-0468-1	>E1722	02/20/95 21:27
		

Bromofluorobenzene (BFB)


m/z	Ion Abundance Criteria	% Relativ Base Peak	e Abundance Appropriate Peak	Status
50	15-40% of mass 95	16 62	*******	
75	30-60% of mass 95	16.52	16.52	Ok
	30-604 OI mass 95	39.06	39.06	Ok
95	Base peak, 100% relative abundance	100.00	100.00	0k
96	5-9% of mass 95			
173	Less than 2% of mass 174	6.96	6.96	Ok
	Dess Chan 26 Of mass 1/4	0.00	0.00	Ok
174	Greater than 50% of mass 95	71.61	71.61	Ok
175	5-9% of mass 174	5.58	7.79	O/C
176	95-101% of mass 174			Ok
	50° -6 454	70.83	98.91	Ok
177	5-9% of mass 176	4.57	6.45	Ok

Injection Date: 02/20/95 Injection Time: 11:23 Data File: >E1709 Scan: 166

>E1709 BFB 50NG SUB NRM 166

File: >E1709 Scan #: 166 Retn. time: 6.68

m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
37.05 38.05 39.05 40.05 43.95 47.05 49.05	3.794 3.720 1.685 .025 .277 1.702 3.762	50.05 51.05 56.00 57.00 60.00 61.10 62.00	16.525 4.971 1.217 2.407 .817 3.646 3.085	63.00 68.00 69.00 73.00 74.10 75.10	2.437 8.456 7.694 3.015 12.180 39.058 3.250	78.95 81.05 87.05 87.95 92.05 93.05	4.723 4.135 2.088	95.05 96.05 173.95 174.95 175.95	71.612 5.579

NORTHEASTERN ANALYTICAL CORPORATION BFB GC/MS TUNE SUMMARY SHEET

INSTRUMENT XE 3.7.95

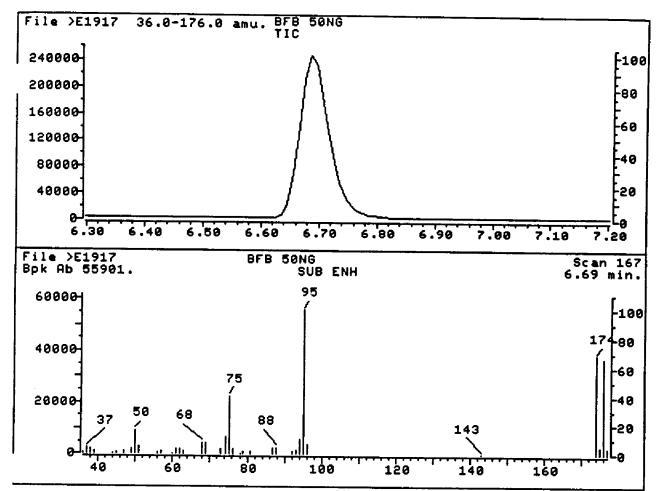
LAB FILE ID:>E1917

DATE: 03/03/95

TIME: 08:01

This Performance tune applies to the following Samples, Blanks and Standards.

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
VSTD050	>E1918	03/03/95 08:20
METHOD BLANK	>E1919	03/03/95 09:19
95L-0626-2	>E1921	03/03/95 11:07
95L-0627-1	>E1922	03/03/95 24:25
95L-0626-1	>E1923	03/03/95 13:20
95L-0626-3	>E1925	03/03/95 15:01
95L-0626 - 4	>E1926	03/03/95 15:55
95L-0626-3R	>E1927	03/03/95 16:39
95L-0626-7	>E1930	03/03/95 18:58
95L-0626-5	>E1931	03/03/95 19:42


Bromofluorobenzene (BFB)

m/z	Ion Abundance Criteria	% Relativ Base Peak	e Abundance Appropriate Peak	Status
50 75 95 96 173 174 175 176	15-40% of mass 95 30-60% of mass 95 Base peak, 100% relative abundance 5-9% of mass 95 Less than 2% of mass 174 Greater than 50% of mass 95 5-9% of mass 174 95-101% of mass 174 5-9% of mass 176	16.17 39.87 100.00 6.84 0.00 68.68 4.95 66.66 4.50	16.17 39.87 100.00 6.84 0.00 68.68 7.21 97.05	Ok Ok Ok Ok Ok Ok Ok Ok Ok

Injection Date: 03/03/95 Injection Time: 08:01 Data File: >E1917 Scan: 167

>E1917 BFB 50NG SUB NRM ENH 167

riie:	>E191/	Scan #:	167	Retn.	time:	6.69			
m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
36.05 37.05 38.05 39.05 44.05 47.05 49.05	4.306 3.438 1.679 5.503 6.877	51.05 56.00 57.00 60.00 61.00 62.00	16.171 4.941 1.092 2.240 .574 3.649 3.400 2.259	68.00 69.00 73.00 74.10 75.10 76.05 78.05	8.178 7.771 3.307 11.904 39.870 3.565 .253	78.95 80.95 86.95 87.95 92.05 93.05 94.05	4.825 2.150 3.029	95.05 96.05 142.90 173.95 174.95 175.95	100.000 6.840 .199 68.678 4.951 66.656 4.500

NORTHEASTERN ANALYTICAL CORPORATION BFB GC/MS TUNE SUMMARY SHEET

3-7-95 INSTRUMENT AE

JEF

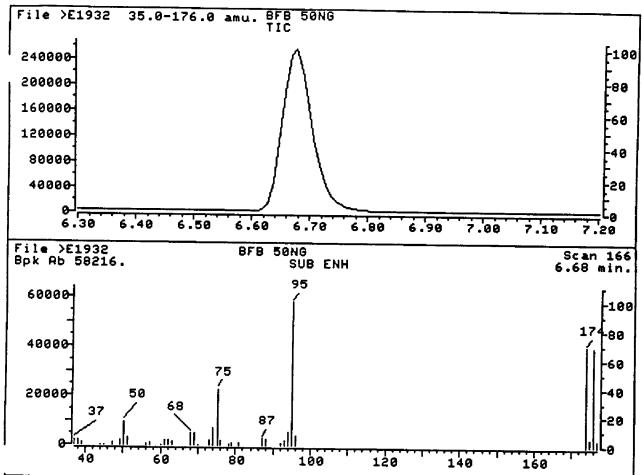
LAB FILE ID:>E1932

DATE: 03/06/95

TIME:07:43

This Performance tune applies to the following Samples, Blanks and Standards.

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
VSTD050	>E1933	03/06/95 08:02
METHOD BLANK	>E1934	03/06/95 09:14
95L-0682-5	>E1935	03/06/95 10:03
95L-0682-5MS A-722	>E1936	03/06/95 10:49
95L-0682-5MSD A-722	>E1937	03/06/95 11:35
QC SPIKE A-722	>E1938	03/06/95 24:31
95L-0626-2MS S-400	>E1939	03/06/95 13:14
95L-0626-2MSD \$-400	>E1940	03/06/95 14:01
QC SPIKE S-400	>E1941	03/06/95 14:44
95L-0626-16	>E1942	03/06/95 15:40
95L-0626-6	>E1943	03/06/95 16:49


Bromofluorobenzene (BFB)

m/z	Ion Abundance Criteria		Abundance Appropriate Peak	Status
50 75 95 96 173 174 175 176	15-40% of mass 95 30-60% of mass 95 Base peak, 100% relative abundance 5-9% of mass 95 Less than 2% of mass 174 Greater than 50% of mass 95 5-9% of mass 174 95-101% of mass 174 5-9% of mass 174	16.33 39.07 100.00 6.79 0.00 69.62 5.08 69.35	16.33 39.07 100.00 6.79 0.00 69.62 7.29 99.61	Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok
		4.66	6.71	Ok

Injection Date: 03/06/95 Injection Time: 07:43 Data File: >E1932 Scan: 166

BFB 50NG SUB NRM ENH >E1932 166

File:	>E1932	Scan #:	166	Retn.	time:	6.68			
m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
37.05 38.05 39.05 43.95 45.05 47.05 50.05 FMGR:	3.526 1.603 .099 .616 1.851 3.533	5 56.00 57.00 60.00 61.00 62.00 63.10	4.966 1.260 2.287 .636 3.512 3.307 2.360	68.00 69.00 70.10 73.00 74.00 75.10 76.05	8.519 8.239 .319 3.311 12.065 39.073 3.472	78.05 78.95 80.95 86.95 87.95 92.05 93.05	4.645 2.160	94.05 95.05 96.05 173.95 174.95 175.95	9.719 100.000 6.794 69.621 5.076 69.346 4.656

NORTHEASTERN ANALYTICAL CORPORATION BFB GC/MS TUNE SUMMARY SHEET

INSTRUMENT XE 3 1.95

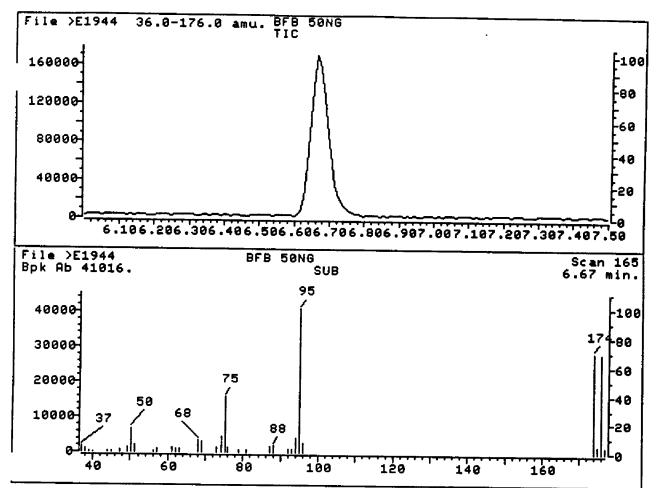
DATE: 03/06/95

LAB FILE ID:>E1944

TIME:17:36

This Performance tune applies to the following Samples, Blanks and Standards.

LAB FILE ID	INJECT DATE AND TIME
>E1945	03/06/95 17:57
>E1946	03/06/95 19:04
>E1947	03/06/95 19:57
>E1948	03/06/95 20:41
>E1951	03/06/95 22:52
>E1952	03/06/95 23:36
>E1953	03/07/95 00:19
>E1954	03/07/95 01:04
	>E1945 >E1946 >E1947 >E1948 >E1951 >E1952 >E1953


Bromofluorobenzene (BFB)

m/z	Ion Abundance Criteria	% Relative Base Peak	Abundance Appropriate Peak	Status
50 75 95 96 173 174 175 176	15-40% of mass 95 30-60% of mass 95 Base peak, 100% relative abundance 5-9% of mass 95 Less than 2% of mass 174 Greater than 50% of mass 95 5-9% of mass 174 95-101% of mass 174 5-9% of mass 176	16.18 38.62 100.00 7.29 0.00 70.26 5.12 68.73 4.46	16.18 38.62 100.00 7.29 0.00 70.26 7.29 97.83 6.49	Ok Ok Ok Ok Ok Ok Ok Ok

Injection Date: 03/06/95 Injection Time: 17:36 Data File: >E1944 Scan: 165

>E1944 BFB 50NG 165 SUB NRM

File: >	E1944 S	can #:	165	Retn.	time:	6.67			
m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
37.05 38.05 39.05 39.95 44.05 45.05 47.05	4.045 3.118 1.370 .032 .692 1.114 1.733	49.05 50.05 51.05 56.00 57.00 61.00 62.00	3.218 16.184 5.069 1.143 2.531 3.482 2.967	63.00 68.00 69.10 73.00 74.10 75.10 76.05	2.660 8.287 7.926 3.313 11.186 38.617 3.533	78.85 80.95 87.05 87.95 92.05 93.05 94.05	4.842 2.477	96.05	100.000 7.287 70.256 5.125 68.734 4.459

NORTHEASTERN ANALYTICAL CORPORATION BFB GC/MS TUNE SUMMARY SHEET

INSTRUMENT & E 3945

LAB FILE ID:>E1955

DATE: 03/07/95

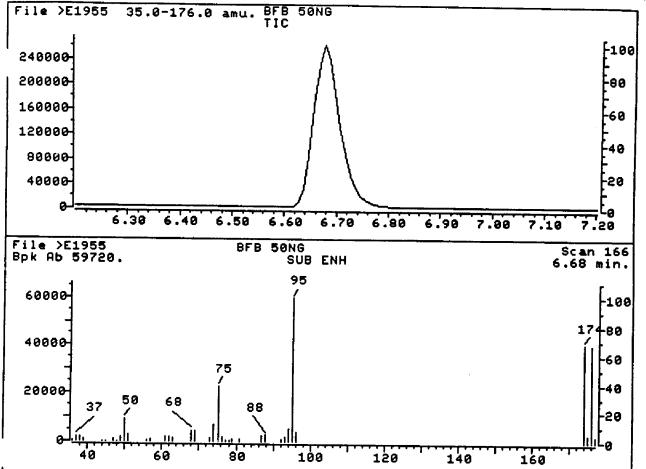
TIME: 07:37

JRF

This Performance tune applies to the following Samples, Blanks and Standards.

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
VSTD050	>E1956	03/07/95 07:58
METHOD BLANK	>E1957	03/07/95 09:06
95L-0626-8	>E1958	03/07/95 10:09
95L-0626-11R	>E1959	03/07/95 11:04
95L-0626-13	>E1960	03/07/95 24:03
95L-0626-14	>E1962	03/07/95 13:48
95L-0687-1	>E1963	03/07/95 14:45
95L-0687-2	>E1964	03/07/95 15:46
95L-0687-3	>E1965	03/07/95 16:39
		

Bromofluorobenzene (BFB)


m/z	Ion Abundance Criteria	% Relativ Base Peak	e Abundance Appropriate Peak	Status
50 75 95 96 173 174 175 176	15-40% of mass 95 30-60% of mass 95 Base peak, 100% relative abundance 5-9% of mass 95 Less than 2% of mass 174 Greater than 50% of mass 95 5-9% of mass 174 95-101% of mass 174 5-9% of mass 176	15.50 38.19 100.00 6.57 0.00 68.40 5.05 67.31 4.40	15.50 38.19 100.00 6.57 0.00 68.40 7.39 98.41 6.54	Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok Ok

Injection Date: 03/07/95 Injection Time: 07:37 Data File: >E1955 Scan: 166

>E1955 BFB 50NG 166 SUB NRM ENH

File:	>E1955	Scan #:	166	Retn.	time:	6.68			
m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.	m/z	Int.
36.05 37.05 38.05 39.05 44.05 45.05 47.05	3.926 3.583 1.515 0.89 5.584 1.968	50.05 51.05 56.00 57.00 61.00 62.00	3.366 15.497 4.985 1.151 2.121 3.599 3.226 2.314	68.00 69.00 73.00 74.00 75.10 76.05 77.05	8.027 7.923 3.034 11.705 38.192 3.574 .851	78.05 78.95 80.95 86.95 87.95 92.05	4.969 2.078		9.600 100.000 6.566 68.399 5.055 67.314 4.400

Title: MP VOA Standards for 5 Point Calibration Curve Rev. E Calibrated: 950308 17:28

	Files:	>A8654		>A8652	>A8656	>A8657				
		RF	RF	RF	RF	RF		_		
Compound		10.00	20.00	50.00	100.00	200.00	RRT	RF	X RSD	
Chloromethane	•	.59593	.54974	50707		55044				
Bromomethane		.96799					. 234	.54261	7.151	
Vinyl Chloride		.73807		.66618			.300	.94640	1.538	
Chloroethane		.52092		.51098			.245	.69445	5.069	
Methylene Chloride				1.15103			.313	.52081	3,534	
Acrolein		.06134	.04656		.04470			1.17833	4.574	
Acrylonitrile		.21789		.21211	.17661	.04712	.413	.05116		(Conc=40.0,80.0,200.0,400.0,800.0)
Acetone		.46618				.19340	.567	. 19863		(Conc=40.0,80.0,200.0,400.0,800.0)
Carbon Disulfide				2.80638			.426	.38561 2.87126	14.833	
Trichlorofluoromethane				2.69325					5.453	
1,1-Dichloroethene				1.10346				2.62927	3.752 4.969	
1,1-Dichloroethane				2.09507			_	2.18373	3.992	
t-Butyl Alcohol		.23467		. 15132			.466	.16327	25.514	
Trans-1,2-Dichloroethene	•			1.21920				1.24042	5.208	
Chloroform	-			2.94062				3.05995	4.491	
1,2-Dichloroethane-d4				1.92424				1.83095	4.362	
Methyl t-Butyl Ether				3.20645				3.24937	3.917	
1,2-Dichloroethane				2.06123				2.09154	2.949	
2-Butanone		.15265	.11985	.12261	.10443	.11621	.690	.12315	14.527	
1,1,1-Trichloroethane		.68345	.66410	.65135	.67890	.70458	.855	.67648	2.983	
Carbon Tetrachloride		.46143	.43405	.49014	.53853	.57544	.903	.49992	11.452	
Vinyl Acetate		. 20503	.22141	.15350	.17419	.18909	.583	.18864	13.992	
cis-1,2-Dichloroethene		.33606	.33525	.33209	.33412	.36594	.726	.34069	4.165	
Bromodichloromethane		.71908	.68531	.69367	.73013	.80446	1.116	.72653	6.500	
1,2-Dichloropropane		.32395	.31535	. 29592	.32124	.34335	1.080	.31996	5.331	
cis-1,3-Dichloropropene		.52902	.50651	.50867	.53939	.57676	1.204	.53207	5.367	
Trichloroethene		.43722	.43950	.42518	.46108	.48727	1.050	.45005	5.444	
Dibromochloromethane		.47635	.44725	.45489	.49958	.55733	1.366	.48708	9.083	
1,1,2-Trichloroethane		.37615	.33750	.31616	.33729	.35886	1.299	.34519	6.653	
Benzene		.76017	.75131	.70193	.71850	.79492	,939	.74537	4.892	
trans-1,3-Dichloropropen	ıe	.52863	.49844	.49697	.52675	.58035	1,279	.52623	6,419	
2-Chloroethylvinylether		. 14592	.13298	.13518	.15112	.17721	1.175	.14848	11.935	
Bromoform		.48930	.41730	.48172	.50542	.57938	1.574	.49462	11.734	
2-Kexanone		.45483	.38255	.31419	.28747	.30972	.904	.34975	19.635	
4-Methyl-2-Pentanone		.77668	.58233	.56693	.55437	.60140	.816	.61634	14.820	
Tetrachloroethene		.52034	.50164	.48389	.52292	.55394	.926	.51654	5.069	
1,1,2,2-Tetrachloroethan	ie	.90164	.70268	.67788	.65731	.71050	1.105	.73000	13.455	
Toluene		.65554	.62162	.60974	.64546	.68927	.863	.64433	4.821	
Toluene-d8		1.01661	1.04510	1.10143	1.14329	1.14401	.856	1.09009	5.288	

RF - Response Factor (Subscript is amount in ug/L)

RRT - Average Relative Retention Time (RT Std/RT 1std)

RF - Average Response Factor

%RSD - Percent Relative Standard Deviation

Page 1 of 2

Compound	Files: >A8654 RF 10.00	>A8655 RF 20.00	>A8652 RF 50.00	>A8656 Rf 100.00	>A8657 RF 200.00	RRT	RF	% RSD	
Chlorobenzene Ethylbenzene Styrene Xylenes (Total) Bromofluorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	.99153 .42016 .90750 .52869 .82001 1.00953 1.03225	.92184 .39413 .84253 .50114 .80357 .90557 .95877 .88823	.39925 .81678 .49264 .86493 .86419	.45003 .87446 .52854 .82708 .95453	.96216 .54638 .88329 .99153 1.07947	1.004 1.010 1.060 1.018 1.112 1.210 1.220 1.252	.95869 .42081 .88069 .51948 .83978 .94507 1.00621 .93571	5.552 5.843 6.457 4.247 3.944 6.372 5.515 6.733	

Page 2 of 2

RF - Response Factor (Subscript is amount in ug/L)

RRT - Average Relative Retention Time (RT Std/RT Istd)

RF - Average Response Factor

[%]RSD - Percent Relative Standard Deviation

F	iles: >E1711	>E1712	>E1710	>E1713	>E1714				
	RF	RF	RF	RF	RF	_			
Compound	10.00	20.00	50.00	100.00	200.00	RRT	RF	% RSD	
Chloromethane	.77610	.65244	. 73998	.77387	.81216	.232	.75091	9 004	
Bromomethane				1.15920			1.16537	8.081	
Vinyl Chloride	.90264	.77993	.82687		.83124	.246	.83579	7.327 5.248	
Chloroethane	.65287		.64492		.66905	.311	.63683	6.974	
Methylene Chioride				1.19942			1.17932		
Acrolein	.05456		.04561	.03936	.04315	.411	.04414	7.800	(Canada A 40 A 20 A 40 A 40 A
Acrylonitrile	.23227		. 19213		.19040	.559	.19022	13 810	(Conc=40.0,80.0,200.0,400.0,800.0)
Acetone	. 29593			-	.20675	.423	.21827	21.180	(Conc=40.0,80.0,200.0,400.0,800.0)
Carbon Disulfide	3.27290	2.80061		3.33733			3.21412	7.649	
Trichlorofluoromethane				2,36602			2.23710	8.576	
1,1-Dichloroethene	1.12744			1.14613			1.10733	8.506	
1,1-Dichloroethane		1.89027	2.23542	2.24322	2.39401		2.19682	8.427	
t-Butyl Alcohol	.09921	.04674		.07597		.468	.07919	25.840	
Trans-1,2-Dichloroethene	1.22237	1.03208		1.23705			1.20317	8.387	
Chloroform				2,50488			2.51351	8.036	
1,2-Dichloroethane-d4				1.13588			1.10957	3.836	
Methyl t-Butyl Ether				2.23586			2.27211	9.641	
1,2-Dichloroethane	1.25198	1.01870	1.22614	1.18006	1.26336		1.18805	8.412	
Isopropyl Ether	•	-	•	•	•	•	-		
2-Butanone	. 12951	.07041	.10147	. 09435	.10081	.676	.09931	21.231	
1,1,1-Trichloroethane	.52007	.41993	.51398	.53499	.56851	.852	.51150	10.827	
Carbon Tetrachloride	.47327	.39674	.49440	.51339	.55031	.903	.48562	11.778	
Vinyl Acetate	.26085	.19143	. 26151	.24728	.26441	.573	.24509	12.535	
cis-1,2-Dichloroethene	.32950	.27196	.33856	.34396	.37364	.715	.33152	11.215	
Bromodichloromethane	.63118	.49202	.60183	.61099	.64495	1.118	.59620	10.170	
1,2-Dichloropropane	.37473	.30168	.36350	.37100	.39082	1.081	.36035	9.514	
cis-1,3-Dichloropropene	.49162	.39058	.48464	.49806	.53731	1.209	.48044	11.287	
Trichloroethene	.44926	.37218	.44283	.46468	.49198	1,053	.44419	10.016	
Dibromochloromethane	.45679	.34934	.42873	.43788	.46190	1.374	.42693	10.642	
1,1,2-Trichloroethane	.31809	.23576	.29232	.29510	.30795	1.305	28984	11.025	·
Benzene	. 83434	.68049	.80760	.82649	.87040	.935	.80386	9.036	
trans-1,3-Dichloropropene	.41323	.32328	.41382	.42823	.45415	1.285	.40654	12.155	
Ethylene Dibromide	•	-	-	-		•	•		
2-Chloroethylvinylether	.05083	.04059	.06168	.06576	.07627	1,179	.05903	23.303	
Bromoform	. 43594	.30867	.39606	.40776	.43123	1.585	.39593	13.002	
2-Hexanone	.32516	. 17252	.23742	.22700	.22865	.902	.23815	23.088	
4-Methyl-2-Pentanone	.47223	.27388	.36413	.35167	.37520	.813	.36742	19.271	
Tetrachloroethene	.43371	.37068	.41940	.43063	.47453	.927	.42579	8.740	
1,1,2,2-Tetrachloroethane	.64744	.44082	.55160	.53877	.56643	1.106	.54901	13.449	

RF - Response Factor (Subscript is amount in ug/L)

Page 1 of 2

RRT - Average Relative Retention Time (RT Std/RT Istd)

RF - Average Response Factor

[%]RSD - Percent Relative Standard Deviation

Compound	Files: >E1711 RF 10.00	>E1712 RF 20.00	>E1710 RF 50.00	>E1713 RF 100.00	>E1714 RF 200.00	RRT	RF	% RSD	
Toluene Toluene-d8 Chlorobenzene Ethylbenzene Styrene Xylenes (Total) Bromofluorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Naphthalene	.93325 .43009 .90007 .54229 .86755 .90640	1.03861 .75838 .36328 .75851 .45355 .78814 .74735	1.06358 .88145	1.13206 .91036 .41774 .92488 .50728 .87156 .90930	1.14623 .96996 .43643 .97497 .56717 .86162 .95786 1.98101	1.004 1.011 1.061 1.018 1.113 1.213	.62303 1.09584 .89068 .41105 .88695 .51886 .84186 .87520 1.79937 .82909	9.137 4.126 9.065 7.035 9.085 8.238 4.314 9.162 9.327 9.657	(Conc=30.0,60.0,150.0,300.0,600.0)

RF - Response Factor (Subscript is amount in ug/L)

RRT - Average Relative Retention Time (RT Std/RT Istd)

RF - Average Response Factor

%RSD - Percent Relative Standard Deviation

Page 2 of 2

Calibration Check Report

Title: MP VOA Standards for 5 Point Calibration Curve Rev. E Calibrated: 950220 15:39

Check Standard Data file: >E1918 Injection Time: 950303 08:20

Compound	RF	RF	XDiff	Calib Meth	
Chloromethane	.75091	.86932	15.77	Average	
Bromomethane		1.29889		Average	
Vinyl Chloride	.83579			Average	
Chloroethane	.63683			Average	
Methylene Chloride	1.17932	1.34865		Average	
Acrolein	.04414			Average	(Conc=200.00)
Acrylonitrile	.19022			Average	(Conc=200.00)
Acetone	.21827			Average	(404.00)
Carbon Disulfide	3.21412	3.64645		Average	
Trichlorofluoromethane		2.55149		Average	
1,1-Dichloroethene		1.27424		Average	
1,1-Dichloroethane		2.49133		Average	
t-Butyl Alcohol	.07919			Average	
Trans-1,2-Dichloroethene	1.20317	1.33244		Average	
Chloroform	2.51351	2.77434		Average	
1,2-Dichloroethane-d4	1.10957	1.23571		Average	
Methyl t-Butyl Ether	2.27211	2.53388		Average	
1,2-Dichloroethane		1.29985		Average	
Isopropyl Ether	-	•		Average	
2-Butanone	.09931	.11511		Average	
1,1,1-Trichloroethane	.51150	.56066		Average	
Carbon Tetrachloride	.48562	.53873		Average	
Vinyl Acetate	.24509	.20073		Average	
cis-1,2-Dichloroethene	.33152	.37433		Average	
Bromodichloromethane	.59620	.66363	11.31	Average	
1,2-Dichloropropane	.36035	.41179		Average	
cis-1,3-Dichlaropropene	.48044	.54651		Average	
Trichloroethene	.44419	. 48453		Average	
Dibromochloromethane	.42693	.46994	10.07	Average	
1,1,2-Trichloroethane	.28984	.33023		Average	
Benzene	.80386	.91444	13.76	Average	
trans-1,3-Dichloropropene	.40654	.46473		Average	
Ethylene Dibromide	-	-		Average	
2-Chloroethylvinylether	.05903	.08738		Average	
Bromoform	.39593	.44562		Average	
2-Hexanone	.23815	.27383	14.98	Average	
4-Methyl-2-Pentanone	.36742	.43354		Average	
Tetrachloroethene	.42579	.45385	6.59		
1,1,2,2-Tetrachloroethane	.54901	.63367	15.42	Average	
Toluene	.62303	.69341	11.30	Average	

RF - Response Factor from daily standard file at 50.00 wg/L

RF - Average Response Factor from Initial Calibration

XDiff - % Difference from original average or curve

Page 1 of 2

Check Standard Data File: >E1918 Injection Time: 950303 08:20

Compound	RF	RF	XDiff	Calib Meth	
Toluene-d8 Chlorobenzene	.89068		10.10	Average Average	
Ethylbenzene Styrene Xylenes (Total)	.41105 .88695 .51886	.44879 .98214 .58178	10.73	Average Average Average	(Conc=150.00)
Bromofluorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	.84186 .87520	.95534 .93661	13.48 7.02	Average Average	(care-150.00)
1,2-Dichtorobenzene Naphthalene	.82909	1.93699 .90808 -		Average Average Average	

Page 2 of 2

RF - Response Factor from daily standard file at 50.00 ug/L

RF - Average Response Factor from Initial Calibration

[%]Diff - % Difference from original average or curve

Check Standard Data File: >E1933 Injection Time: 950306 08:02

Compound	RF	RF	%Diff	Calib Meth	
Chloromethane	. 75091	.89892	19.71	Average	
Bromomethane	1.16537	1.33194		Average	
Vinyl Chloride		1.00501		Average	
Chloroethane		.78006		Average	
Methylene Chloride		1.38799		Average	
Acrolein		.04143		Average	(Conc=200.00)
Acrylonitrile		. 19625		Average	(Conc=200.00)
Acetone	.21827			Average	(
Carbon Disulfide	3.21412	3.76223		Average	
Trichlorofluoromethane	2.23710	2.63186		Average	
1,1-Dichloroethene	1.10733	1.32362		Average	
1,1-Dichloroethane	2.19682	2.61908		Average	
t-Butyl Alcohol	.07919	.07916		Average	
Trans-1,2-Dichloroethene	1.20317	1.38356		Average	
Chloroform	2.51351	2.94949	17.35	Average	
1,2-Dichloroethane-d4		1.28891		Average	
Methyl t-Butyl Ether		2.46584		Average	
1,2-Dichloroethane	1.18805	1.34092	12.87	Average	
Isopropyl Ether	-	•	-	Average	
2-Butanone	.09931			Average	
1,1,1-Trichloroethane	.51150	.55781	9.05	Average	
Carbon Tetrachloride	.48562	.53611		Average	
Vinyl Acetate	.24509	. 16255		Average	
cis-1,2-Dichloroethene	.33152	.37145		Average	
Bromodichloromethane	.59620			Average	
1,2-Dichloropropane	.36035			Average	
cis-1,3-Dichloropropene	.48044	.53417		Average	
Trichloroethene	.44419			Average	
Dibromochloromethane	.42693			Average	
1,1,2-Trichloroethane Benzene	.28984	.30012		Average	
	.80386	.90436		Average	
trans-1,3-Dichloropropene Ethylene Dibromide	.40654	.44880		Average	
2-Chloroethylvinylether				Average	
Bromoform	.05903	.07848		Average	
2-Hexanone	.39593	.39157		Average	
4-Methyl-2-Pentanone	.23815	.20906		Average	
Tetrachloroethene	.36742	.35195			
1,1,2,2-Tetrachloroethane	.42579	.44808 .54573		Average	
Toluene	.62303			Average	
	.02303	.07010	10,77	Average	

RF - Response Factor from daily standard file at 50.00 ug/L

RF - Average Response Factor from Initial Calibration

MDiff - % Difference from original average or curve

Page 1 of 2

Calibration Check Report

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Calibrated: 950220 15:39

Check Standard Data File: >E1933 Injection Time: 950306 08:02

Compound	RF	RF	XDiff	Calib Meth	
Toluene-d8	1.09584	1.21186	10.59	Average	
Chlorobenzene	.89068			Average	
Ethylbenzene	.41105	.45273		Average	
Styrene	. 88695	.95778		Average	
Xylenes (Total)	.51886	.57057		Average	(Conc=150.00)
Bromofluorobenzene	.84186	.90179	7.12	Average	, , , , , , , , , , , , , , , , , , , ,
1,3-Dichtorobenzene	.87520	.91045	4.03	Average	
1,4-Dichlorobenzene 1,2-Dichlorobenzene		1.87320		Average	
Naphthalene	.82909	.86788		Average	
	-	•	-	Average	

Page 2 of 2

RF - Response Factor from daily standard file at 50.00 ug/L

RF - Average Response Factor from Initial Calibration

[%]Diff - % Difference from original average or curve

Check Standard Data File: >E1945 Injection Time: 950306 17:57

Compound	RF	RF	XD iff	Calib Meth	
Chloromethane	.75091	.90185	20.10	Average	
Bromomethane	1.16537	1.30246		Average	
Vinyl Chloride	.83579	.99714		Average	
Chloroethane	.63683	.77016		Average	
Methylene Chloride	1.17932	1.39979	18.69	Average	
Acrolein	.04414			Average	(Conc=200,00)
Acrylonitrile	.19022	.20302		Average	(Conc=200.00)
Acetone	.21827	.21944		Average	
Carbon Disulfide	3.21412	3.69888	_	Average	
Trichiorofluoromethane	2.23710	2.54692		Average	
1,1-Dichloroethene	1.10733	1.29653		Average	
1,1-Dichloroethane	2.19682	2.56844		Average	
t-Butyl Alcohol	.07919	.08393		Average	
Trans-1,2-Dichloroethene	1.20317	1.39202		Average	
Chloroform	2.51351	2.87723		Average	
1,2-Dichloroethane-d4	1.10957	1.17987	6.34	Average	
Methyl t-Butyl Ether	2.27211	2.49939		Average	
1,2-Dichloroethane		1.32325		Average	
Isopropyl Ether	-	-	•	Average	
2-Butanone	.09931	.09517	4.17	Average	
1,1,1-Trichioroethane	.51150	.55274		Average	
Carbon Tetrachloride	.48562	.52395	7.89	Average	
Vinyl Acetate	.24509	.16476		Average	
cis-1,2-Dichloroethene	.33152	.36390		Average	
Bromodichioromethane	.59620	.64719		Average	
1,2-Dichloropropane	.36035	.40864	13.40	Average	
cis-1,3-Dichloropropene	.48044	.53369		Average	
Trichloroethene	.44419	.48469		Average	
Dibromochtoromethane	.42693			Average	
1,1,2-Trichtoroethane	.28984	.31314		Average	
Benzene	.80386			Average	
trans-1,3-Dichloropropene	.40654	.45187		Average	
Ethylene Dibromide	•	-	•	Average	
2-Chloroethylvinylether	.05903	.10170	72.29	Average	
Bromoform	.39593	.41516		Average	
2-Hexanone	.23815			Average	
4-Methyl-2-Pentanone	.36742			Average	
Tetrachloroethene	.42579			Average	
1,1,2,2-Tetrachloroethane	.54901			Average	
Taluene	.62303	.71226		Average	
***************************************				******	

RF - Response Factor from daily standard file at 50.00 ug/L

Page 1 of 2

RF - Average Response Factor from Initial Calibration

XDiff - X Difference from original average or curve

Check Standard Data File: >E1945
Injection Time: 950306 17:57

Compound	RF	RF	XD iff	Calib Meth	
Toluene-d8	1.09584	1.16190	6.03	Average	
Chlorobenzene	.89068	.99988		Average	
Ethylbenzene	.41105	.45273		Average	
Styrene	. 88695	.99129		Average	
Xylenes (Total)	.51886	.58462	12.67	Average	(Conc=150.00)
Bromofluorobenzene	.84186	.88404		Average	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,3-Dichlorobenzene	.87520	.94641		Average	
1,4-Dichlorobenzene	1,79937	1.94038		Average	
1,2-Dichlorobenzene	.82909	.88743		Average	
Naph tha Lene	-	-	-	Average	

RF - Response Factor from daily standard file at 50.00 ug/L

RF - Average Response Factor from Initial Calibration

XDiff - % Difference from original average or curve

Page 2 of 2

Check Standard Data File: >E1956
Injection Time: 950307 07:58

Compound	RF	RF	XD iff	Calib Meth	
Chloromethane	.75091	.77276	2.91	Average	
Bromomethane	1.16537	1.15402		Average	
Vinyl Chloride	.83579	.87750		Average	
Chloroethane	.63683			Average	
Methylene Chloride	1.17932	1.20921		Average	
Acrolein	.04414			Average	(Conc=200,00)
Acrylonitrile	. 19022			Average	(Conc=200.00)
Acetone	.21827			Average	(0016-200:00)
Carbon Disulfide	3.21412	3.24756		Average	
Trichlorofluoromethane		2.25811		Average	
1,1-Dichloroethene		1.14853		Average	
1,1-Dichloroethane	2.19682	2.28448		Average	
t-Butyl Alcohol	.07919	.06649		Average	
Trans-1,2-Dichloroethene	1.20317	1.25912		Average	
Chloroform	2.51351	2.57712		Average	
1,2-Dichloroethane-d4	1.10957	1.10550		Average	
Methyl t-Butyl Ether	2.27211	2.24944		Average	
1,2-Dichloroethane	1.18805	1.20008		Average	
isopropyl Ether	-	-	-	Average	
2-Butanone	.09931	.08615	13.26	Average	
1,1,1-Trichloroethane	.51150	.50391		Average	
Carbon Tetrachloride	.48562	.48032		Average	
Vinyl Acetate	. 24509	. 14707		Average	
cis-1,2-Dichloroethene	.33152	.33404		Average	
Bromodichloromethane	.59620	.58877		Average	
1,2-Dichloropropane	.36035	.36680		Average	
cis-1,3-Dichloropropene	.48044	.48491		Average	
Trichloroethene	.44419	.42563	4.18	Average	
Dibromochloromethane	.42693	.40389		Average	
1,1,2-Trichloroethane	.28984	.27887		Average	
Benzene	.80386	.81245		Average	
trans-1,3-Dichloropropene	.40654	.40163		Average	
Ethylene Dibromide	•	•		Average	
2-Chloroethylvinylether	.05903	.08382	42.01	Average	
Bromoform	.39593	.36241		Average	
2-Hexanone	.23815	.19920	16.35	Average	
4-Methyl-2-Pentanone	.36742	.34646		Average	
Tetrachloroethene	.42579	.40568		Average	
1,1,2,2-Tetrachloroethane	.54901	.50740		Average	
Toluene	.62303	.61705		Average	

RF - Response Factor from daily standard file at 50.00 ug/L

RF - Average Response Factor from Initial Calibration

XDiff - % Difference from original average or curve

Page 1 of 2

Check Standard Data File: >E1956 Injection Time: 950307 07:58

Compound	RF	RF	%Diff	Calib Meth	
***************************************			•••••		
Toluene-d\$	1.09584	1.04025	5.07	Average	
Chlorobenzene	.89068	.87244	2.05	Average	
Ethylbenzene	.41105	.40122	2.39	Average	
Styrene	. 88695	.85965	3.08	Average	
Xylenes (Total)	.51886	.51330		Average	(Conc=150.00)
Bromofluorobenzene	.84186	.80578	4.29	Average	
1,3-Dichlorobenzene	.87520	.82097	6.20	Average	
1,4-Dichlorobenzene	1.79937	1.68795		Average	
1,2-Dichlorobenzene	.82909	.79045		Average	
Naph that ene	•	-	-	Average	

Page 2 of 2

RF - Response Factor from daily standard file at 50,00 ug/L

RF - Average Response Factor from Initial Calibration

[%]Diff - % Difference from original average or curve

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE METHOD BLANK SUMMARY SHEET

LAB SAMPLE ID: METHOD BLANK

LAB FILE ID:>A8658

MATRIX: AQUEOUS

LEVEL: LOW

DATE ANALYZED:03/08/95

TIME ANALYZED:17:46

This method blank applies to the following Samples, MS and MSD

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
95L-0626-15	>A8661	03/08/95 20:34

NORTHEASTERN ANALYTICAL CORPORATION

METHOD BLANK RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Analyzed: 08-MAR-95

NAC Job Number: L950626

Date Received: NA

Lab Sample ID: 08-MAR-95

Client ID: BLANK

File ID: A8658

PARAMETER	RESULT	MDL	QUAL	UNITS
Chloromethane	ND	3.7	5	ug/kg
Bromomethane	ND	6.1		ug/kg
Vinyl Chloride	ND	5		ug/kg
Chloroethane	ND	3.2		ug/kg
Methylene Chloride	ND	3.1		ug/kg
Acrolein	ND	50		ug/kg
Acrylonitrile	ND	50		ug/kg
Acetone	ND	6.9		ug/kg
Carbon Disulfide	ND	2.4		ug/kg
Trichlorofluoromethane	ND	2.1		ug/kg
1,1-Dichloroethene	ND	2.5		ug/kg
1,1-Dichloroethane	ND	2.2		ug/kg
t-Butyl Alcohol	ND	50		ug/kg
Trans-1,2-Dichloroethene	ND	2.8		ug/kg
Chloroform	ND	2.6		ug/kg
Methyl t-Butyl Ether	ИD	4.1		ug/kg
1,2-Dichloroethane	ND	1.9		ug/kg
Isopropyl Ether	ND	5		ug/kg
2-Butanone	ND	10		ug/kg
1,1,1-Trichloroethane	ND	3.8		ug/kg
Carbon Tetrachloride	ND	2.7		ug/kg
Vinyl Acetate	ND	4.7		ug/kg
Bromodichloromethane	ND	3.4		ug/kg
1,2-Dichloropropane	ND	4.4		ug/kg
cis-1,3-Dichloropropene	ND	4.2		ug/kg
Trichloroethene	ND	2.3		ug/kg
Dibromochloromethane	ND	2.9		ug/kg
1,1,2-Trichloroethane	ND	3.5		ug/kg
Benzene	ND	4.2		ug/kg
trans-1,3-Dichloropropene	ND	2.8		ug/kg
2-Chloroethylvinylether	ND	3.7		ug/kg
Bromoform	ND	2.6		ug/kg
2-Hexanone	ND	6.3		ug/kg
4-Methyl-2-Pentanone	ND	4.5		ug/kg
Tetrachloroethene	ND	2.1		ug/kg
1,1,2,2-Tetrachloroethane	ND	3.7		ug/kg
Toluene	ND	2.8		ug/kg
Chlorobenzene	ND	2.3		ug/kg
Ethylbenzene	ND	2.8		ug/kg
Styrene	ND	2.4		ug/kg
Xylenes (Total)	ND	5.3		ug/kg
Naphthalene	ND	3.4		ug/kg

ND - Not detected at or below the MDL

NURTHEASTERN ANALYTICAL CORPORATION VOLATILE UNKNOWN IDENTIFICATION

LAW SAMPLE ID: METHOD BLANK

LAB FILE ID:>A8658

DATE RECEIVED: NA

DATE ANALYZED: 950308

SAMPLE WI/VUL:5.0ML LEVEL:LOW

CUMPOUND

RET TIME (MIN)

CUNC

NUNE FOUND

QUANT REPORT

Page 1

 Uperator ID: LAURA
 Quant Rev: 7
 Quant Time: 950308 18:21

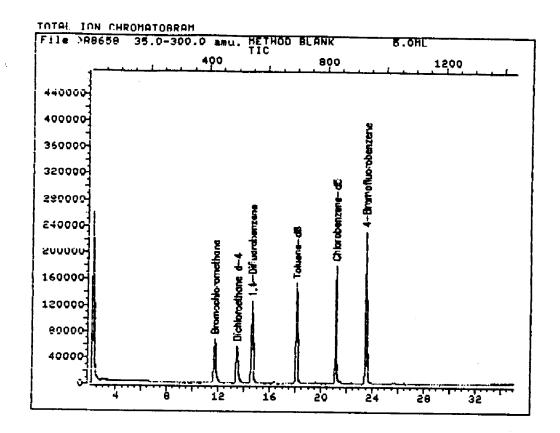
 Uutput File: ^A8658::A1
 Injected at: 950308 17:46

Data File: >A8658::A2 Dilution Factor: 1.00000

Name: METHUD BLANK Instrument ID: INST A

Misc: 5.UML

ID File: ID_AAA::QT


litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950308 17:34 Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
12) 20)	*Bromochloromethane 1,2-Dichloroethane-d4 *1,4-Difluorobenzene *Chlorobenzene-d5 loluene-d8 Bromofluorobenzene	11./1 13.45 14.6U 21.12 18.U7 23.47	422 498 548 832 699 934	118553 217637 427233 355055 420521M 312146	50.00 50.13 50.00 50.00 54.33 52.34	ug/L ug/L ug/L ug/L ug/L ug/L	95 68 95 99 99

* Compound is ISID

B/ 3-8-95

Data File: >A8658::A2 Name: METHUD BLANK

Quant Output File: ^A8658::A1

Instrument ID: INST A

Misc: 5.UML

ld File: ID_AAA::ផ្ទ

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950308 17:34 Last Ucal Time: (none)

Uperator ID: LAURA

Wuant Time : 950308 18:21 injected at: 950308 17:46

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE METHOD BLANK SUMMARY SHEET

LAB SAMPLE ID: METHOD BLANK

LAB FILE ID:>E1919

MATRIX: AQUEOUS

LEVEL: LOW

DATE ANALYZED:03/03/95

TIME ANALYZED:09:19

This method blank applies to the following Samples, MS and MSD

LAB FILE ID	INJECT DATE AND TIME
>E1923	03/03/95 13:20
>E1921	03/03/95 11:07
>E1925	03/03/95 15:01
>E1926	03/03/95 15:55
>E1931	03/03/95 19:42
>E1930	03/03/95 18:58
>E1927	03/03/95 16:39
	>E1923 >E1921 >E1925 >E1926 >E1931 >E1930

NORTHEASTERN ANALYTICAL CORPORATION

METHOD BLANK RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES Date Analyzed: 03-MAR-95

NAC Job Number: L950626 Date Received: NA

Lab Sample ID: 03-MAR-95 Client ID: BLANK

File ID: E1919

PARAMETER	RESULT	MDL	QUAL	UNITS
Chloromethane	ND	3.7	goil.	ug/kg
Bromomethane	ND	6.1		ug/kg
Vinyl Chloride	ND	5		ug/kg
Chloroethane	ND	3.2		ug/kg
Methylene Chloride	ND	3.1		ug/kg
Acrolein	ND	50		ug/kg
Acrylonitrile	ND	50		ug/kg
Acetone	ND	6.9		ug/kg
Carbon Disulfide	ND	2.4		ug/kg
Trichlorofluoromethane	ND	2.1		ug/kg
1,1-Dichloroethene	ND	2.5		ug/kg
1,1-Dichloroethane	ND	2.2		ug/kg
t-Butyl Alcohol	ND	50		ug/kg
Trans-1,2-Dichloroethene	ND	2.8		ug/kg
Chloroform	ND	2.6		ug/kg
Methyl t-Butyl Ether	ND	4.1		ug/kg
1,2-Dichloroethane	ND	1.9		ug/kg
Isopropyl Ether	ND	5		ug/kg
2-Butanone	ND	10		ug/kg
1,1,1-Trichloroethane	ND	3.8		ug/kg
Carbon Tetrachloride	ND	2.7		ug/kg
Vinyl Acetate	ND	4.7		ug/kg
Bromodichloromethane	ND	3.4		ug/kg
1,2-Dichloropropane	ND	4.4		ug/kg
cis-1,3-Dichloropropene	ND	4.2		ug/kg
Trichloroethene	ND	2.3		ug/kg
Dibromochloromethane	ND	2.9		ug/kg
1,1,2-Trichloroethane	ND	3.5		ug/kg
Benzene	ND	4.2		ug/kg
trans-1,3-Dichloropropene	ND	2.8		ug/kg
2-Chloroethylvinylether	ND	3.7		ug/kg
Bromoform	ND	2.6		ug/kg
2-Hexanone	ND	6.3		ug/kg
4-Methyl-2-Pentanone	ND	4.5		ug/kg
Tetrachloroethene	ND	2.1		ug/kg
1,1,2,2-Tetrachloroethane	ND	3.7		ug/kg
Toluene	ND	2.8		ug/kg
Chlorobenzene	ND	2.3		ug/kg
Ethylbenzene	ND	2.8		ug/kg
Styrene	ND	2.4		ug/kg
Xylenes (Total)	ND	5.3		ug/kg
Naphthalene	ND	3.4		ug/kg
	_	·		-7/ 1 7

ND - Not detected at or below the MDL

NORTHEASTERN ANALYTICAL CURPORATION VOLATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID: METHOD BLANK

LAB FILE ID:>E1919

DATE RECEIVED: NA

DATE ANALYZED:950303

SAMPLE WIZUOL:5.0ML

LEVEL:LOW

CUMPOUND

RET TIME (MIN)

CUNC

NUNE FOUND

QUANT REPORT

Page 1

Uperator ID: LAURA

Uutput File: ^E1919::A1 Data File: >E1919::UU

Name: METHUD BLANK

Misc: 5.UML

Quant Rev: 2

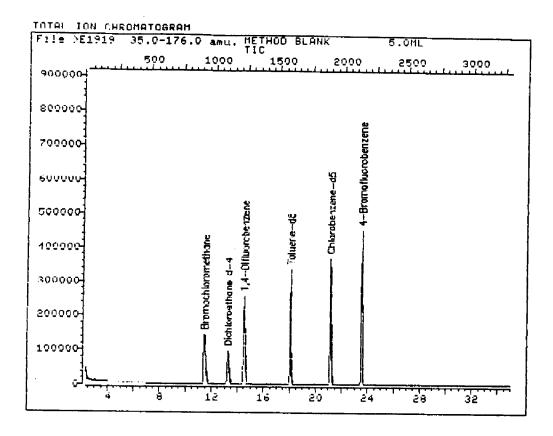
Quant Time:

950303 10:05 950303 09:19

Injected at:

1.00000

Dilution Factor:


Instrument ID: HPDOS05

ID File: ID_SEE::DB

litle: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Ualibration: 950220 15:41 Last Qcal Time: <none>

	Compound	۲.۲.	Scan#	Area	Conc	Units	q
$\frac{1}{2}$	*Bromochloromethane 1,2-Dichloroethane-d4 *1,4-Difluorobenzene *Uhlorobenzene-d5 loluene-d8 Bromofluorobenzene	11.42 13.26 14.49 21.11 18.03 23.50	1104 1228 1896 1585	220906 255637 942771 744199 874177 612869	50.00 52.15 50.00 50.00 53.60 48.91	ug/L ug/L ug/L ug/L ug/L ug/L	68 69 69 95 92 96

^{*} Compound is 1510

Data File: >E1919::DU

Name: METHUD BLANK

Misc: 5.UML

Quant Output File: ^E1919::A1 Instrument ID: HPDOS09

Id File: ID_SEE::UB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:41 Last Qcal Time: <none>

Uperator ID: LAURA

Wuant Time : 950303 10:05 Injected at: 950303 09:19

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE METHOD BLANK SUMMARY SHEET

LAB SAMPLE ID: METHOD BLANK

LAB FILE ID:>E1934

MATRIX: AQUEOUS

LEVEL: LOW

DATE ANALYZED:03/06/95

TIME ANALYZED:09:14

This method blank applies to the following Samples, MS and MSD

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
95L-0626-6	>E1943	03/06/95 16:49
95L-0626-16	>E1942	03/06/95 15:40
95L-0626-2MS	>E1939	03/06/95 13:14
95L-0626-2MSD	>E1940	03/06/95 14:01
QC SPIKE S-400	>E1941	03/06/95 14:44

NORTHEASTERN ANALYTICAL CORPORATION

METHOD BLANK RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES Date Analyzed: 06-MAR-95

NAC Job Number: L950626 Date Received: NA

Lab Sample ID: 06-MAR-95 Client ID: BLANK

File ID: E1934

PARAMETER	RESULT	MDL	QUAL	UNITS
Chloromethane	ND	3.7	QOAD	
Bromomethane	ND	6.1		ug/kg
Vinyl Chloride	ND	5		ug/kg
Chloroethane	ND	3.2		ug/kg
Methylene Chloride	ND	3.1		ug/kg
Acrolein	ND	50		ug/kg
Acrylonitrile	ND	50		ug/kg
Acetone	ND	6.9		ug/kg
Carbon Disulfide	ND	2.4		ug/kg
Trichlorofluoromethane	ND	2.1		ug/kg
1,1-Dichloroethene	ND	2.5		ug/kg
1,1-Dichloroethane	ND	2.2		ug/kg
t-Butyl Alcohol	ND	50		ug/kg
Trans-1,2-Dichloroethene	ND	2.8		ug/kg
Chloroform	ND	2.6		ug/kg
Methyl t-Butyl Ether	ND	4.1		ug/kg
1,2-Dichloroethane	ND	1.9		ug/kg
Isopropyl Ether	ND	5		ug/kg
2-Butanone	ND	10		ug/kg
1,1,1-Trichloroethane	ND	3.8		ug/kg
Carbon Tetrachloride	ND	2.7		ug/kg
Vinyl Acetate	ND	4.7		ug/kg
Bromodichloromethane	ND	3.4		ug/kg
1,2-Dichloropropane	ND	4.4		ug/kg
cis-1,3-Dichloropropene	ND	4.2		ug/kg
Trichloroethene	ND	2.3		ug/kg
Dibromochloromethane	ND	2.9		ug/kg
1,1,2-Trichloroethane	ND	3.5		ug/kg
Benzene	ND	4.2		ug/kg
trans-1,3-Dichloropropene	ND	2.8		ug/kg
2-Chloroethylvinylether	ND	3.7		ug/kg
Bromoform	ND	2.6		ug/kg
2-Hexanone	ND	6.3		ug/kg
4-Methyl-2-Pentanone	ND	4.5		ug/kg
Tetrachloroethene	ND	2.1		ug/kg
1,1,2,2-Tetrachloroethane	ND	3.7		ug/kg
Toluene	ND	2.8		ug/kg
Chlorobenzene	ND	2.3		ug/kg ug/kg
Ethylbenzene	ND	2.8		ug/kg
Styrene	ND	2.4		ug/kg
Xylenes (Total)	ND	5.3		ug/kg
Naphthalene	ND	3.4		ug/kg
	_			49/ 19

ND - Not detected at or below the MDL

NORTHEASTERN ANALYTICAL CORPORATION VULATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID: METHOD BLANK

LAB FILE ID:>E1934

DATE RECEIVED: NA

DATE ANALYZED:950306

SAMPLE WT/VOL:5.0ML

LEVEL: LOW

CUMPOUND

RET TIME(MIN)

CONC

NUNE FOUND

QUANT REPORT

Quant Rev: 7

Page 1

Jperator ID: LAURA Output File: ^E1934::A1 Data File: >E1934::D2

Quant Time: Injected at:

950306 09:59 950306 09:14

Name: METHOD BLANK

Dilution Factor:

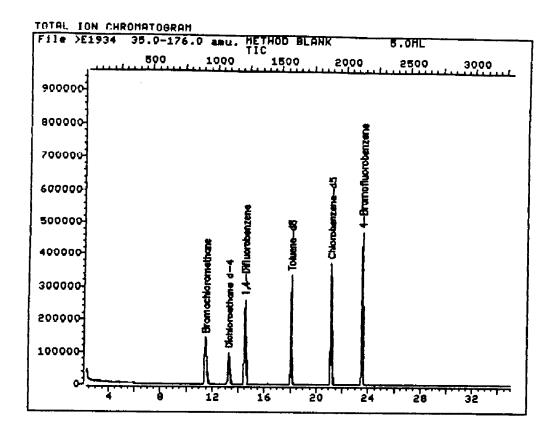
1.00000

Instrument ID:

HPDOS05

Misc: 5.8ML

ID File: ID_SEE::D8


litle: HP VOA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:41

Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
17) 20) 38) 44)	*Bromochloromethane 1,2-Dichloroethane-d4 *1,4-Difluorobenzene *Chlorobenzene-d5 Toluene-d8 Bromofluorobenzene	11.46 13.25 14.48 21.11 18.03 23.49	923 1103 1227 1896 1585 2136	223157 263379 955903 740832 879598 643099	50.00 53.18 50.00 50.00 54.17 51.56	ug/L ug/L ug/L ug/L ug/L	63 75 68 95 90

^{*} Compound is ISTD

Data File: >E1934::D2

Name: METHUD BLANK

Misc: 5.0ML

Id File: ID_SEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:41 Last Qcal Time: <none>

Quant Output File: ^E1934::A1

HPDOS05

Instrument ID:

Operator ID: LAURA

Quant Time: 950306 09:59 Injected at: 950306 09:14 NORTHEASTERN ANALYTICAL CORPORATION

VOLATILE METHOD BLANK SUMMARY SHEET

THE SAMPLED DE METHOD BLANK

LAB FILE ID:>E1946

MATRIX: AQUEOUS

LEVEL: LOW

DATE ANALYZED:03/06/95

TIME ANALYZED:19:04

This method blank applies to the following Samples, MS and MSD

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
95L-0626-9	>E1951	03/06/95 22:52
95L-0626-10	>E1952	03/06/95 23:36
95L-0626-11	>E1953	03/07/95 00:19
95L-0626-12	>E1954	03/07/95 01:04

NORTHEASTERN ANALYTICAL CORPORATION

METHOD BLANK RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES Dat

Date Analyzed: 06-MAR-95

NAC Job Number: L950626

Date Received: NA

Lab Sample ID: 06-MAR-95

Client ID: BLANK

File ID: E1946

PARAMETER	RESULT	MDL	QUAL	UNITS
Chloromethane	ND	3.7	QOAL	ug/kg
Bromomethane	ND	6.1		ug/kg
Vinyl Chloride	ND	5		ug/kg ug/kg
Chloroethane	ND	3.2		ug/kg ug/kg
Methylene Chloride	ND	3.1		ug/kg ug/kg
Acrolein	ND	50		ug/kg
Acrylonitrile	ND	50		
Acetone	ND	6.9		ug/kg
Carbon Disulfide	ND	2.4		ug/kg
Trichlorofluoromethane	ND	2.1		ug/kg
1,1-Dichloroethene	ND	2.5		ug/kg ug/kg
1,1-Dichloroethane	ND	2.2		
t-Butyl Alcohol	ND	50		ug/kg
Trans-1,2-Dichloroethene	ND	2.8		ug/kg
Chloroform	ND	2.6		ug/kg
Methyl t-Butyl Ether	ND	4.1		ug/kg
1,2-Dichloroethane	ND	1.9		ug/kg
Isopropyl Ether	ND	5		ug/kg
2-Butanone	ND	10		ug/kg
1,1,1-Trichloroethane	ND	3.8		ug/kg
Carbon Tetrachloride	ND	2.7		ug/kg
Vinyl Acetate	ND	4.7		ug/kg
Bromodichloromethane	ND	3.4		ug/kg
1,2-Dichloropropane	ND	4.4		ug/kg
cis-1,3-Dichloropropene	ND	4.2		ug/kg
Trichloroethene	ND	2.3		ug/kg
Dibromochloromethane	ND	2.9		ug/kg
1,1,2-Trichloroethane	ND	3.5		ug/kg ug/kg
Benzene	ND	4.2		
trans-1,3-Dichloropropene	ND	2.8		ug/kg ug/kg
2-Chloroethylvinylether	ND	3.7		
Bromoform	ND	2.6		ug/kg ug/kg
2-Hexanone	ND	6.3		ug/kg
4-Methyl-2-Pentanone	ND	4.5		ug/kg
Tetrachloroethene	ND	2.1		ug/kg
1,1,2,2-Tetrachloroethane	ND	3.7		ug/kg
Toluene	ND	2.8		ug/kg
Chlorobenzene	ND	2.3		ug/kg
Ethylbenzene	ND	2.8		ug/kg
Styrene	ND	2.4		ug/kg
Xylenes (Total)	ND	5.3		ug/kg
Naphthalene	ND	3.4		ug/kg
				49/ 14
			N 2000 CONTRACTOR (CONTRACTOR	

ND - Not detected at or below the MDL

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE UNKNOWN IDENTIFICATION

LAB SAMPLE ID: METHOD BLANK

LAB FILE ID:>E1946

DATE RECEIVED: NA

DATE ANALYZED:950306

SAMPLE WT/VOL:5.0ML

LEVEL: LOW

COMPOUND

RET TIME (MIN)

CUNC

NUNE FOUND

QUANT REPORT

Page 1

perator 10: LAURA Jutput File: ^E1946::A1

Data File: >E1946::02

Name: METHOD BLANK

Misc: 5.UML

Quant Rev: 7

Quant Time:

950306 19:49

Injected at:

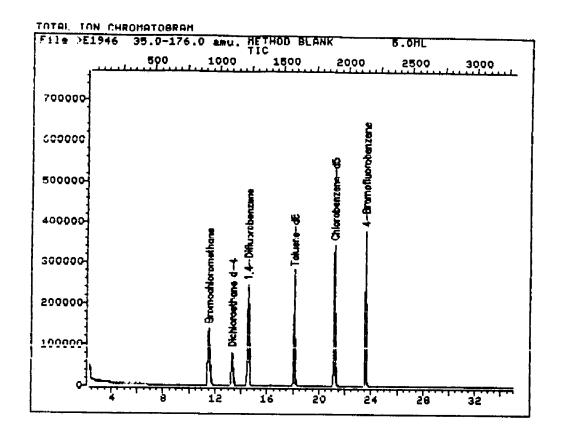
950306 19:04

Dilution Factor:

1.00000

Instrument ID: HP00505

ID File: ID_SEE::DB


litle: HP UUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:41

Last Qcal Time: <none>

	Compound	к.т.	Scan#	Area	Conc	Units	q
1/) 20)	*Bromochioromethane 1,2-Dichloroethane-d4 *1,4-Difluorobenzene *Chlorobenzene-d5 toluene-d8 Bromofluorobenzene	11.49 13.29 14.51 21.13 18.04 23.52	926 1107 1230 1898 1586 2139	208548 210203 900008 694930 740724 516733	50.U0 45.42 50.U0 50.00 48.63 44.16	ug/L ug/L ug/L ug/L ug/L	61 77 69 94 91

^{*} Compound 15 15(0)

Data File: >E1946::D2

Quant Output File: ^E1946::A1 Instrument ID: HP00505

Name: METHUD BLANK

Misc: 5.0ML

ld File: [D_SEE::DB

Title: HP VDA Standards for 5 Point Calibration Curve Rev. E Last Ualibration: 950220 15:41 Last Qcal Time: <none>

Operator ID: LAURA

Wuant Time : 950306 19:49 Injected at: 950306 19:04

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE METHOD BLANK SUMMARY SHEET

LAB SAMPLE ID: METHOD BLANK

LAB FILE ID:>E1957

MATRIX: AQUEOUS

LEVEL: LOW

DATE ANALYZED:03/07/95

TIME ANALYZED:09:06

This method blank applies to the following Samples, MS and MSD

LAB SAMPLE ID	LAB FILE ID	INJECT DATE AND TIME
95L-0626-8	>E1958	03/07/95 10:09
95L-0626-13	>E1960	03/07/95 24:03
95L-0626-14	>E1962	03/07/95 13:48
95L-0626-11R	>E1959	03/07/95 11:04

NORTHEASTERN ANALYTICAL CORPORATION

METHOD BLANK RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES Date Analyzed: 07-MAR-95

NAC Job Number: L950626 Date Received: NA

Lab Sample ID: 07-MAR-95 Client ID: BLANK

File ID: E1957

DADAMEMED				
PARAMETER Chloromethane	RESULT	MDL	QUAL	UNITS
Bromomethane	ND	3.7		ug/kg
Vinyl Chloride	ND	6.1		ug/kg
Chloroethane	ND	5		ug/kg
Methylene Chloride	ND	3.2		ug/kg
Acrolein	ND	3.1		ug/kg
Acrylonitrile	ND ND	50		ug/kg
Acetone	ND	50		ug/kg
Carbon Disulfide	ND ND	6.9		ug/kg
Trichlorofluoromethane		2.4		ug/kg
1,1-Dichloroethene	ND ND	2.1		ug/kg
1,1-Dichloroethane	ND ND	2.5		ug/kg
t-Butyl Alcohol		2.2		ug/kg
Trans-1,2-Dichloroethene	ND	50		ug/kg
Chloroform	ND	2.8		ug/kg
Methyl t-Butyl Ether	ND	2.6		ug/kg
1,2-Dichloroethane	ND	4.1		ug/kg
Isopropyl Ether	ND ND	1.9		ug/kg
2-Butanone	ND	5		ug/kg
1,1,1-Trichloroethane	ND ND	10		ug/kg
Carbon Tetrachloride	ND	3.8		ug/kg
Vinyl Acetate	ND	2.7		ug/kg
Bromodichloromethane	ND	4.7		ug/kg
1,2-Dichloropropane	ND	3.4		ug/kg
cis-1,3-Dichloropropene	ND	4.4		ug/kg
Trichloroethene	ND	4.2 2.3		ug/kg
Dibromochloromethane	ND	2.9		ug/kg
1,1,2-Trichloroethane	ND	3.5		ug/kg
Benzene	ND	4.2		ug/kg
trans-1,3-Dichloropropene	ND	2.8		ug/kg
2-Chloroethylvinylether	ND	3.7		ug/kg
Bromoform	ND	2.6		ug/kg
2-Hexanone	ND	6.3		ug/kg
4-Methyl-2-Pentanone	ND	4.5		ug/kg
Tetrachloroethene	ND	2.1		ug/kg
1,1,2,2-Tetrachloroethane	ND	3.7		ug/kg
Toluene	ND	2.8		ug/kg
Chlorobenzene	ND	2.3		ug/kg
Ethylbenzene	ND	2.8		ug/kg
Styrene	ND	2.4		ug/kg
Xylenes (Total)	ND	5.3		ug/kg
Naphthalène	ND	3.4		ug/kg
		J-7		ug/kg

ND - Not detected at or below the MDL

NURTHEASTERN ANALYTICAL CORPORATION VULATILE UNKNOWN IDENTIFICATION

LAH SAMPLE ID: METHOD BLANK

LAB FILE ID:>E1957

DATE RECEIVED: NA

DATE ANALYZED: 950307

SAMPLE WI/VOL:5.0ML

LEVEL: LOW

CUMPUUND

RET TIME (MIN)

CUNC

NUNE FUUND

QUANT REPORT

Quant Rev: 7

Page 1

perator ID: LAURA Jutput File: ^E1957::A1 Uata File: >E1957::D3

Name: METHOD BLANK

Injected at: Dilution Factor:

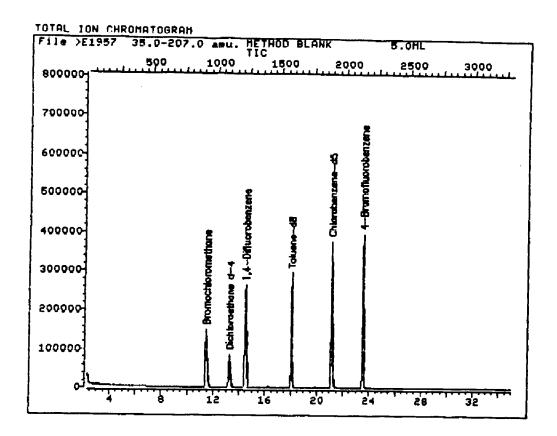
Quant Time: 950307 09:52 950307 09:06

1.00000

Instrument ID: HPDOS05

ID File: ID_SEE::DB

Misc: 5.0ML


Title: HP VOA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:41

Last Qcal Time: (none)

	Compound	R.T.	Scan#	Area	Conc	Units	q
17) 20)	*Bromochloromethane 1,2-Dichloroethane-d4 *1,4-Difluorobenzene *Chlorobenzene-d5 foluene-d8 Bromofluorobenzene	11.45 13.25 14.48 21.11 18.02 23.49	922 1103 1227 1896 1584 2136	224718 221387 962973 754246 768538 563784M	50.00 44.39 50.00 50.00 46.49 44.39	ug/L ug/L ug/L ug/L ug/L	64 76 69 96 88 99

^{*} Compound is ISTD

Data File: >E1957::D3 Name: METHUD BLANK

Quant Output File: ^E1957::A1
Instrument ID: HPDOS05

Misc: 5.UML

ld File: ID_SEE::D8

Title: HP UDA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:41 Last Qcal Time: <none>

Operator ID: LAURA

Wuant Time: 950307 09:52 Injected at: 950307 09:06

NURTHEASTERN ANALYTICAL CURPURATION

VULATTLE SUIL SURRUGATE SPIKE PERCENT RECOVERY

DATA FI	LE	DATE	SAMPLE 18	INFRE-48	BENZENE BRUMUFLUURU	1,2-DICHLORU ETHANE
				(81-11/)	(/4-121)	(/U-121)
>E1923	03/0	13/95	95L-0626-1	116	98	109
>E1921		13/95	Y 5L-0626-2	114	101	106
>E1925		13/95	95L-0626-3	155*	103	117
> モルタンノ	03/1	13/95	Y5L-0626-3R	155*	115	124*
>E1926	リタノレ	13/95	ダケレー0626ー4	94	74	90
>E1931	U3/(15/75	Y5L-0626-5	108	82	100
>E1943	リタイし	16/95	Y 5L-U626-6	93	81	88
>E1930		13/95	ソ ラレーひん26ーノ	102	93	98
>E1758	ひろくし	ノノタラ	Y 5L-0626-8	ሃሪ	89	94
>E1951	りタイし	16/95	Y 5L-U626-Y	113	នួន	108
>E.1952	ひろくし	16/95	95L-U626-1U	101	90	99
>E1953	03/1	//ソラ	95L-0626-11	91	61*	82
>E1959	りろくじ	12795	95L-0626-11R	112	29	92 92
>E1754	サ カノリ	1//45	95L-0626-12	102	92	103
>E1760	ほろ/し	12795	95L-0626-13	111	ອິນ	102
>E1962	U3/U	17745	Y5L-U626-14	110	84	102 77
>A8661	U3/U	18795	Y5L-U626-15	106	93	97 97

NURTHEASTERN ANALYTICAL CURPURATION

VULATILE AGUEDUS SURRUGATE SPIKE PERCENT RECOVERY

DATA FI	LE DATE	SAMPLE ID	ULUENE-d8 (88-110)	BRUMUFLUURU BENZENE (86-115)	1,2-DICHLURO ElHANE (/6-114)
>E1942	U3/U6/95	95L-0626-16	92	8/	90

NURTHEASTERN ANALYTICAL CORPORATION

VOLATILE AQUEOUS SURROGATE SPIKE PERCENT RECOVERY

DATA FI	LE DATE	SAMPLE 10	TOLUENE-d8	BRUMOFLUOKO BENZENE	1,2-01CHLURO ETHANE
			(88-110)	(86-115)	(/6-114)
>A8658	03/08/95	METHOD BLANK	109	105	100

NORTHEASTERN ANALYTICAL CORPORATION

VOLATILE AQUEDUS SURROGATE SPIKE PERCENT RECOVERY

DATA FIL	E DATE	SAMPLE ID	TULUENE-d8	BROMOFLUORO BENZENE	1,2-DICHLURD ETHANE
			(88-110)	(86-115)	(76-114)
>E1919	03/03/95	METHOD BLANK	107	98	104

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE AQUEOUS SURROGATE SPIKE PERCENT RECOVERY

DATA FI	LE DATE	SAMPLE ID	TOLUENE-d8	BROMOFLUORO BENZENE	1,2-DICHLORO
			(88-110)	(86-115)	ETHANE (76-114)
>E1934	03/06/95	METHOD BLANK	108	103	106

NORTHEASTERN ANALYTICAL CORPORATION

VOLATILE AQUEDUS SURROGATE SPIKE PERCENT RECOVERY

DATA FI	LE DATE	SAMPLE ID	TULUENE-d8	BRÚMOFLUORO BENZENE	1,2-DICHLORD ETHANE
			(88-110)	(86-115)	(76-114)
>E1946	03/06/95	METHOD BLANK	97	88	91

NURTHEASTERN ANALYTICAL CORPORATION

VULATILE AQUEOUS SURROGATE SPIKE PERCENT RECOVERY

DATA FI	LE DATE	SAMPLE ID	I ÚLUENE-48	BRUMUFLUORO	1,2-DICHLURO
			(88-110)	BENZENE (86-115)	ETHANE (76-114)
>E1957	03/07/95	METHOD BLANK	93	89	89

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE SOIL SURROGATE SPIKE PERCENT RECOVERY

DATA FIL	E DATE	NDICATES RECOV SAMPLE ID	ERY OUTSIDE TOLUENE-d8	BROMOFLOURO	1,2-DICHLORO
			(81-117)	BENZENE (74-121)	ETHENE (70-121)
>E1939	03/06/95	95L-0626-2MS	103	98	95
>E1940	03/06/95	95L-0626-2MSD	105	100	101

NORTHEASTERN ANALYTICAL CORPORATION SOIL VOLATILE MATRIX SPIKE AND MATRIX SPIKE DUPLICATE

SAMPLE NAME:95L-0626-2

ANALYSIS DATE://

BATCH NO:400

COMPOUND	SPIKE ADDED	MS CONC	MSD CONC	SAM CONC	MS% REC	MSD% REC	RPD
1,1-Dichloroethene	50	50	52	ND	100	104	4
Trichloroethene	50	45	46	ND	90	92	2
Benzene	50	51	51	ND	102	102	0
Toluene	50	52	52	ND	104	104	0
Chlorobenzene	50	50	50	ND	100	100	0

UNITS OF CONCENTRATION ARE UG/KG

QC LIMITS	%REC	RPD
1,1-Dichloroethene	59-172	22
Trichloroethene	59-137	24
Benzene	60-133	21
Toluene	60-139	21
Chlorobenzene	66-142	21

^{*} INDICATES RECOVERY OUTSIDE OF LIMITS

RPD: 0 OUT OF 5 OUTSIDE OF LIMITS SPIKE RECOVERY: 0 OUT OF 10 OUTSIDE OF LIMITS

PAGE 1 OF 1

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE SOIL SURROGATE SPIKE PERCENT RECOVERY

DATA FIL	E DATE	INDICATES RECOV SAMPLE ID	ERY OUTSIDE TOLUENE-d8 (81-117)	OF RANGE BROMOFLOURO BENZENE (74-121)	1,2-DICHLORO
>E2027	03/10/95	95L-0655-1MS	94	•	(70-121)
>E2028	03/10/95	2.10		84	82
	00/10/93	32F-0932-TW2D	107	106	85

NORTHEASTERN ANALYTICAL CORPORATION SOIL VOLATILE MATRIX SPIKE AND MATRIX SPIKE DUPLICATE

SAMPLE NAME:95L-0655-1

ANALYSIS DATE:03/10/95

BATCH NO:401

COMPOUND	SPIKE ADDED	MS CONC	MSD CONC	SAM CONC	MS% REC	MSD% REC	RPD
1,1-Dichloroethene	50	51	55	ND	102	110	8
Trichloroethene	50	43	48	ND	86	96	11
Benzene	50	49	55	ND	98	110	12
Toluene	50	55	58	3	104	110	6
Chlorobenzene	50	49	56	ND	98	112	13

UNITS OF CONCENTRATION ARE UG/KG

QC LIMITS	%REC	RPD
1,1-Dichloroethene	59-172	22
Trichloroethene	59-137	24
Benzene	60-133	21
Toluene	60-139	21
Chlorobenzene	66-142	žī

^{*} INDICATES RECOVERY OUTSIDE OF LIMITS

RPD: 0 OUT OF 5 OUTSIDE OF LIMITS SPIKE RECOVERY: 0 OUT OF 10 OUTSIDE OF LIMITS

PAGE 1 OF 1

NORTHEASTERN ANALYTICAL CORPORATION VOLATILE AQUEOUS SURROGATE SPIKE PERCENT RECOVERY

DATA FIL	E DATE	INDICATES RECOV SAMPLE ID	ERY OUTSIDE TOLUENE-d8	BROMOFLOURO	1,2-DICHLORO
			(88-110)	BENZENE (86-115)	ETHENE (76-114)
>E1936	03/06/95	95L-0682-5MS	108	101	105
>E1937	03/06/95	95L-0682-5MSD	105	100	101

3AMPLE NAME:95L-0682-5

ANALYSIS DATE:03/06/95

BATCH NO:722

COMPOUND	SPIKE ADDED	MS CONC	MSD CONC	SAM CONC	MS% REC	MSD% REC	RPD
1,1-Dichloroethene	50	52	49	ND	104	98	6
Trichloroethene	50	47	46	ND	94	92	2
Benzene	50	53	51	ND	106	102	4
Toluene	50	54	52	ND	108	104	4
Chlorobenzene	50	52	49	ND	104	98	6
				-1-	704	70	U

UNITS OF CONCENTRATION ARE UG/L

QC LIMITS 1,1-Dichloroethene Trichloroethene	%REC 61-145 71-120	RPD 14
Benzene Toluene	76 - 127	14 11
Chlorobenzene	76-125 75-130	13 13

INDICATES RECOVERY OUTSIDE OF LIMITS

RPD: 0 OUT OF 5 OUTSIDE OF LIMITS SPIKE RECOVERY: 0 OUT OF 10 OUTSIDE OF LIMITS

PAGE 1 OF 1

LAB SAMPLE ID:95L-0626-1

INSTRUMENT ID:A

SAMPLE FILE ID:>E1923

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:13:20

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	923	925	169708	216908	433816	108454
1,4-Difluorobenzene	1227	1229	739560	883560	1767120	441780
Chlorobenzene-d5	1897	1896	541347	735321	1470642	367660

LAB SAMPLE ID:95L-0626-2

INSTRUMENT ID:A

SAMPLE FILE ID:>E1921

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:11:07

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	924	925	170796	216908	433816	108454
1,4-Difluorobenzene	1229	1229	752514	883560	1767120	441780
Chlorobenzene-d5	1897	1896	593262	735321	1470642	367660

LAB SAMPLE ID:95L-0626-3

INSTRUMENT ID: A

SAMPLE FILE ID:>E1925

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:15:01

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	922	925	147883	216908	433816	108454
1,4-Difluorobenzene	1227	1229	572768	883560	1767120	441780
Chlorobenzene-d5	1897	1896	384417	735321	1470642	367660

LAB SAMPLE ID:95L-0626-3R

INSTRUMENT ID: A

SAMPLE FILE ID:>E1927

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:16:39

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	924	925	136344	216908	433816	108454
1,4-Difluorobenzene	1227	1229	565048	883560	1767120	441780
Chlorobenzene-d5	1896	1896	419472	735321	1470642	367660

LAB SAMPLE ID:95L-0626-4

INSTRUMENT ID:A

SAMPLE FILE ID:>E1926

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:15:55

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	925	925	186658	216908	433816	108454
1,4-Difluorobenzene	1228	1229	799466	883560	1767120	441780
Chlorobenzene-d5	1897	1896	574696	735321	1470642	367660

LAB SAMPLE ID:95L-0626-5

INSTRUMENT ID:A

SAMPLE FILE ID:>E1931

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:19:42

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	923	925	147924	216908	433816	108454
1,4-Difluorobenzene	1228	1229	603687	883560	1767120	441780
Chlorobenzene-d5	1896	1896	421174	735321	1470642	367660

LAB SAMPLE ID:95L-0626-6

INSTRUMENT ID:A

SAMPLE FILE ID:>E1943

STANDARD FILE ID:>E1933

DATE ANALYZED:03/06/95

TIME ANALYZED:16:49

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	927	924	171252	217436	434872	108718
1,4-Difluorobenzene	1230	1227	707262	955382	1910764	477691
Chlorobenzene-d5	1898	1895	540814	775381	1550762	387690

LAB SAMPLE ID:95L-0626-7

INSTRUMENT ID:A

SAMPLE FILE ID:>E1930

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:18:58

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	921	925	159395	216908	433816	108454
1,4-Difluorobenzene	1227	1229	708322	883560	1767120	441780
Chlorobenzene-d5	1897	1896	568113	735321	1470642	367660

LAB SAMPLE ID:95L-0626-8

INSTRUMENT ID:A

SAMPLE FILE ID:>E1958

STANDARD FILE ID:>E1956

DATE ANALYZED:03/07/95

TIME ANALYZED:10:09

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	921	924	204925	230590	461180	115295
1,4-Difluorobenzene	1226	1227	869702	976467	1952934	488233
Chlorobenzene-d5	1896	1895	695383	795741	1591482	397870

LAB SAMPLE ID:95L-0626-9

INSTRUMENT ID: A

SAMPLE FILE ID:>E1951

STANDARD FILE ID:>E1945

DATE ANALYZED:03/06/95

TIME ANALYZED:22:52

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	924	924	166308	202181	404362	101090
1,4-Difluorobenzene	1228	1227	623803	878309	1756618	439155
Chlorobenzene-d5	1896	1895	451839	692786	1385572	346393

LAB SAMPLE ID:95L-0626-10

INSTRUMENT ID:A

SAMPLE FILE ID:>E1952

STANDARD FILE ID:>E1945

DATE ANALYZED:03/06/95

TIME ANALYZED:23:36

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	924	924	168128	202181	404362	101090
1,4-Difluorobenzene	1228	1227	706832	878309	1756618	439155
Chlorobenzene-d5	1898	1895	574394	692786	1385572	346393

LAB SAMPLE ID:95L-0626-11

INSTRUMENT ID:A

SAMPLE FILE ID:>E1953

STANDARD FILE ID:>E1945

DATE ANALYZED:03/07/95

TIME ANALYZED:00:19

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	924	924	169225	202181	404362	101090
1,4-Difluorobenzene	1228	1227	629124	878309	1756618	439155
Chlorobenzene-d5	1897	1895	390965	692786	1385572	346393

LAB SAMPLE ID:95L-0626-11R

INSTRUMENT ID:A

SAMPLE FILE ID:>E1959

STANDARD FILE ID:>E1956

DATE ANALYZED:03/07/95

TIME ANALYZED:11:04

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	922	924	169189	230590	461180	115295
1,4-Difluorobenzene	1227	1227	611810	976467	1952934	488233
Chlorobenzene-d5	1896	1895	374156*	795741	1591482	397870

^{*} INDICATES AREA OUTSIDE OF LIMITS

LAB SAMPLE ID:95L-0626-12

INSTRUMENT ID:A

SAMPLE FILE ID:>E1954

STANDARD FILE ID:>E1945

DATE ANALYZED:03/07/95

TIME ANALYZED:01:04

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	925	924	123958	202181	404362	101090
1,4-Difluorobenzene	1228	1227	512103	878309	1756618	439155
Chlorobenzene-d5	1897	1895	372646	692786	1385572	346393

LAB SAMPLE ID:95L-0626-13

INSTRUMENT ID:A

SAMPLE FILE ID:>E1960

STANDARD FILE ID:>E1956

DATE ANALYZED:03/07/95

TIME ANALYZED:24:03

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	923	924	151289	230590	461180	115295
1,4-Difluorobenzene	1227	1227	660505	976467	1952934	488233
Chlorobenzene-d5	1896	1895	441895	795741	1591482	397870

LAB SAMPLE ID:95L-0626-14

INSTRUMENT ID:A

SAMPLE FILE ID:>E1962

STANDARD FILE ID:>E1956

DATE ANALYZED:03/07/95

TIME ANALYZED:13:48

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	923	924	159827	230590	461180	115295
1,4-Difluorobenzene	1227	1227	666520	976467	1952934	488233
Chlorobenzene-d5	1897	1895	459155	795741	1591482	397870

LAB SAMPLE ID:95L-0626-15

INSTRUMENT ID:A

SAMPLE FILE ID:>A8661

STANDARD FILE ID:>A8652

DATE ANALYZED:03/08/95

TIME ANALYZED:20:34

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	423	420	86113	110339	220678	55170
1,4-Difluorobenzene	549	547	356148	444587	889174	222294
Chlorobenzene-d5	833	831	250172	342161	684322	171080

LAB SAMPLE ID:95L-0626-16

INSTRUMENT ID:A

SAMPLE FILE ID:>E1942

STANDARD FILE ID:>E1933

DATE ANALYZED:03/06/95

TIME ANALYZED:15:40

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	929	924	230801	217436	434872	108718
1,4-Difluorobenzene	1231	1227	987796	955382	1910764	477691
Chlorobenzene-d5	1899	1895	742165	775381	1550762	387690

LAB SAMPLE ID: METHOD BLANK

INSTRUMENT ID: A

SAMPLE FILE ID:>A8658

STANDARD FILE ID:>A8652

DATE ANALYZED:03/08/95

TIME ANALYZED:17:46

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	422	420	118553	110339	220678	55170
1,4-Difluorobenzene	548	547	477233	444587	889174	222294
Chlorobenzene-d5	832	831	355055	342161	684322	171080

LAB SAMPLE ID: METHOD BLANK

INSTRUMENT ID:A

SAMPLE FILE ID:>E1919

STANDARD FILE ID:>E1918

DATE ANALYZED:03/03/95

TIME ANALYZED:09:19

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	924	925	220906	216908	433816	108454
1,4-Difluorobenzene	1228	1229	942771	883560	1767120	441780
Chlorobenzene-d5	1896	1896	744199	735321	1470642	367660

201

LAB SAMPLE ID: METHOD BLANK

INSTRUMENT ID: A

SAMPLE FILE ID:>E1934

STANDARD FILE ID:>E1933

DATE ANALYZED:03/06/95

TIME ANALYZED:09:14

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	923	924	223157	217436	434872	108718
1,4-Difluorobenzene	1227	1227	955903	955382	1910764	477691
Chlorobenzene-d5	1896	1895	740832	775381	1550762	387690

LAB SAMPLE ID: METHOD BLANK

INSTRUMENT ID:A

SAMPLE FILE ID:>E1946

STANDARD FILE ID:>E1945

DATE ANALYZED:03/06/95

TIME ANALYZED:19:04

INTERNAL STANDARD	SAM SCAN	STD SCAN	Sämple Area	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	926	924	208548	202181	404362	101090
1,4-Difluorobenzene	1230	1227	900008	878309	1756618	439155
Chlorobenzene-d5	1898	1895	694930	692786	1385572	346393

LAB SAMPLE ID: METHOD BLANK

INSTRUMENT ID:A

SAMPLE FILE ID:>E1957

STANDARD FILE ID:>E1956

DATE ANALYZED:03/07/95

TIME ANALYZED:09:06

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	922	924	224718	230590	461180	115295
1,4-Difluorobenzene	1227	1227	962973	976467	1952934	488233
Chlorobenzene-d5	1896	1895	754246	795741	1591482	397870

204

LAB SAMPLE ID:95L-0626-2MS S-400

INSTRUMENT ID:A

SAMPLE FILE ID:>E1939

STANDARD FILE ID:>E1933

DATE ANALYZED:03/06/95

TIME ANALYZED:13:14

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	927	924	181734	217436	434872	108718
1,4-Difluorobenzene	1230	1227	750971	955382	1910764	477691
Chlorobenzene-d5	1898	1895	599476	775381	1550762	387690

LAB SAMPLE ID:95L-0626-2MSD S-400

INSTRUMENT ID:A

SAMPLE FILE ID:>E1940

STANDARD FILE ID:>E1933

DATE ANALYZED:03/06/95

TIME ANALYZED:14:01

INTERNAL STANDARD	SAM SCAN	STD SCAN	Sample Area	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	926	924	193718	217436	434872	108718
1,4-Difluorobenzene	1229	1227	785825	955382	1910764	477691
Chlorobenzene-d5	1898	1895	654490	775381	1550762	387690

LAB SAMPLE ID:95L-0655-1MS S-401

INSTRUMENT ID: A

SAMPLE FILE ID:>E2027

STANDARD FILE ID:>E2024

DATE ANALYZED:03/10/95

TIME ANALYZED:11:49

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	923	923	209476	235134	470268	117567
1,4-Difluorobenzene	1228	1225	879685	981580	1963160	490790
Chlorobenzene-d5	1897	1894	697467	780292	1560584	390146

LAB SAMPLE ID:95L-0655-1MSD S-401

INSTRUMENT ID: A

SAMPLE FILE ID:>E2028

STANDARD FILE ID:>E2024

DATE ANALYZED:03/10/95

TIME ANALYZED:24:40

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	923	923	160560	235134	470268	117567
1,4-Difluorobenzene	1227	1225	645884	981580	1963160	490790
Chlorobenzene-d5	1897	1894	572930	780292	1560584	390146

LAB SAMPLE ID:95L-0682-5MS A-722

INSTRUMENT ID:A

SAMPLE FILE ID:>E1936

STANDARD FILE ID:>E1933

DATE ANALYZED:03/06/95

TIME ANALYZED:10:49

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	927	924	229894	217436	434872	108718
1,4-Difluorobenzene	1230	1227	965084	955382	1910764	477691
Chlorobenzene-d5	1898	1895	741814	775381	1550762	387690

LAB SAMPLE ID:95L-0682-5MSD A-722

INSTRUMENT ID: A

SAMPLE FILE ID:>E1937

STANDARD FILE ID:>E1933

DATE ANALYZED:03/06/95

TIME ANALYZED:11:35

INTERNAL STANDARD	SAM SCAN	STD SCAN	SAMPLE AREA	STAND AREA	UPPER LIMIT	LOWER LIMIT
Bromochloromethane	926	924	229250	217436	434872	108718
1,4-Difluorobenzene	1229	1227	957642	955382	1910764	477691
Chlorobenzene-d5	1898	1895	733443	775381	1550762	387690

Page 1

Uperator ID: LAURA

Uutput File: ^E1923::Al

Data File: >E1923::ยม

Name: 95L-0626-1 Misc: 5.06R/5.0ML Wuant Hev: /

750303 14:05 Wuant lime:

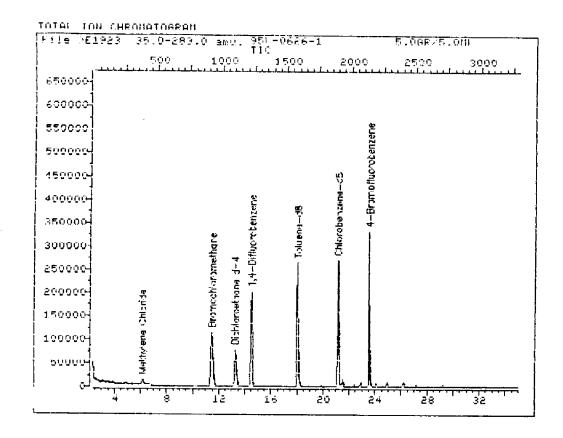
Injected at: 950303 13:20

Dilution Factor:

1.00000

Instrument 1D: HPDUS05

10 File: 1088EE::08


litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43

Last Qcal Time: <none>

	Lompound	R.T.	Scan#	Area	Uone 	Units	9
1 1	*Bromochloremethane	11.46	923	169/03	50.00	いはアドは	53
60	Methylene Chloride	6.12	384	22174	5.54	UGZKG	74
170	1,2-Uichloroethans-d4	15.29	1103	205181	54.48	UGZKG	.75
200	*1,4-Uifluorobenzene	14.48	1222	239560	50.00	UGZKG	69
3B)	*Uhlorobenzene−d5	21.12	1897	541347	50.00	UGZKG	96
441	loluene-d8	18.02	1585	689052	58.08	UG/KG	90
49)	Bromofluorobenzene	23.50	2138	44//0/	49.12	ひらとなら	97

Compound is ISID

Data File: >E1925::D0

Mars: 95L-8626-1

Misc: 5.0GR/5.0ML

ld File: 10555E::08

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Woal Time: <none>

Quant Output File: ^E1923::A1

Instrument ID: HPDUSUS

Uperator ID: LAURA

Wuant Time : 950303 14:05 Injected at: 950303 13:20

Woant Rev: 2

Page 1

Uperator IU: LAURA Uutput File: ^E1921;:A1

Injected at: 950303 11:02

- Quant Time: 950303 11:52

Data File: >£1921::D0

Dilution Factor:

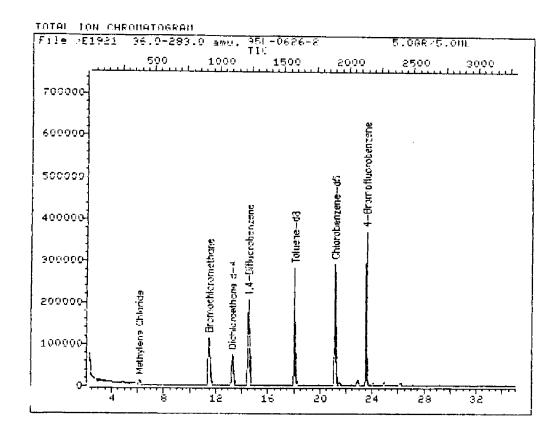
1.00000

Name: 95L-0626-2

Instrument ID: HPDUSUS

Misc: 5.0GR/5.0ML

ID File: IDSSEE::DE


Title: HP VOA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43

Last Ocal Time: <none>

	Compound	н.г.	Scan#	Area	Conc	Units	q
10	*Bromochloromethane	11.4/	924	170/96	50.UU	UGZKG	 59
6)	Methylene Chloride	6.12	384	23989	5.95	UG∠KG	60
12)	1,2-Dichloroethane-d4	13.26	1104	200550	52.91	UGZKG	71
	*1,4-Difluorobenzene	14.50	1229	752514	50.00	UGZKG	69
58)	*Chlorobenzene-db	21.12	1897	593262	50.00	UGZKG	95
441	Toluene-d8	18.03	1585	738808	56.82	UG/KG	90
49)	Bromofluorobenzene	23.50	2137	502557	50.31	UG/KG	98

Compound is 1810

Data File: >E1921::DU

Name: A2F-nexe-x

Misc: 5.868/5.8ML

Id File: (DSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Ocal Time: <none>

Quant Output File: ^E1921::A1

Instrument ID: HPDOS05

Operator ID: LAURA

Quant Time : 990303 11:52 Injected at: 950303 11:02

Page 1

 Uperator ID: LAURA
 Quant Rev: 7
 Quant Time: 950303 15:47

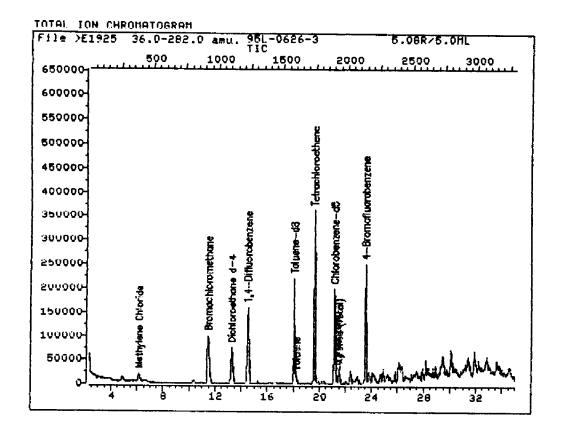
 Output File: ^E1925::A1
 Injected at: 950303 15:01

Data File: >E1925::D0 Dilution Factor: 1.00000

Name: 95L-0626+3 Instrument ID: HPDOS05

Misc: 5.0GR/5.0ML

ID File: IDSSEE::DB


Fitle: HP VDA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qcal Time: (none)

	Compound	R.T.	Scan#	Area	Conc	Units	q
4.5	#Onnoch const. co		000	4.73307			
	*Bromochloromethane	11.46	922	147883	50.00	UG/KG	52
6)	Methylene Chloride	6.12	384	29 <i>7</i> 85	8.54	UG/KG	60
17)	1,2-Dichloroethane-d4	13.26	1104	192052	58.52	UG/KG	<i>7</i> 3
20)	*1,4-Difluorobenzene	14.48	1227	572768	50.00	UG/KG	69
5B)	*Chlorobenzene-d5	21.13	1897	384417	50.00	UG/KG	95
41)	Tetrachloroethene	19.58	1741	315627	96.42	UG/KG	97
45)	Toluene	18.20	1602	27520	5.75	UG/KG	99
44)	Toluene-d8	18.03	1585	559313	66.39	UG/KG	92
46)	Ethylbenzene	21.34	1919	10723M	3.59	UG/KG	
48)	Xylenes (Total)	21.51	1936	56764M	14.23	UG/KG	92
49)	Bromofluorobenzene	23.51	2137	333763	51.57	UG/KG	99

^{*} Compound is ISTD

Of 3-3.45

Data File: >E1925::D0

Name: 95L-0626-3

Misc: 5.0GR/5.0ML

Id File: IDSSEE::DB

Title: HP VDA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Qcal Time: <none>

Quant Output File: ^E1925::A1

HPD0S05

Instrument ID:

Operator ID: LAURA

Quant Time: 950303 15:47 Injected at: 950303 15:01

Page 1

operator ID: LAURA Output File: ^E1927::A1

Data File: >E1927::00

Name: 95L-0626-3R Misc: 5.0GR/5.0ML

Quant Rev: 7

Quant Time: Injected at:

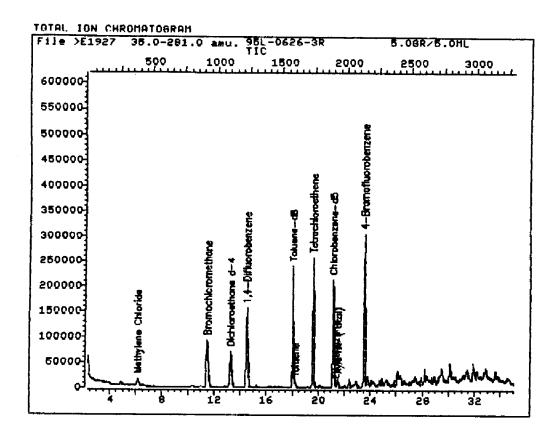
950303 17:24 950303 16:39

Dilution Factor:

1.00000

Instrument ID: HPDOS05

ID File: IDSSEE::DB


litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43

Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.47	924	136344	50.00	UG/KG	58
6)	Methylene Chloride	6.12	384	23941	7.44	UG/KG	63
12)	1,2-Dichloroethane-d4	13.26	1104	188142	62.18	UG/KG	72
20)	*1,4-Difluorobenzene	14.48	1227	565048	50.00	UG/KG	68
38)		21.11	1896	419472	50.00	UG/KG	95
41)	Tetrachloroethene	19.58	1741	228988	64.10	UG/KG	98
43)	Toluene	18.19	1601	15559	2.98	UG/KG	96
44)	Toluene-d8	18.02	1584	619251	67.36	UG/KG	90
46)	Ethylbenzene	21.34	1919	5789	1.68	UG/KG	66
48)	Xylenes (Total)	21.51	1936	32537M	7.47	UG/KG	86
49)	Bromofluorobenzene	23.51	2137	407376	57.68	UG/KG	97

^{*} Compound is ISID

Data File: >E1927::D0 Quant Dutput File: ^E1927::A1
Name: 95L-0626-3R Instrument ID: HPDOS05

Misc: 5.0GR/5.0ML

Id File: IDSSEE::DB

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Qcal Time: <none>

Operator ID: LAURA

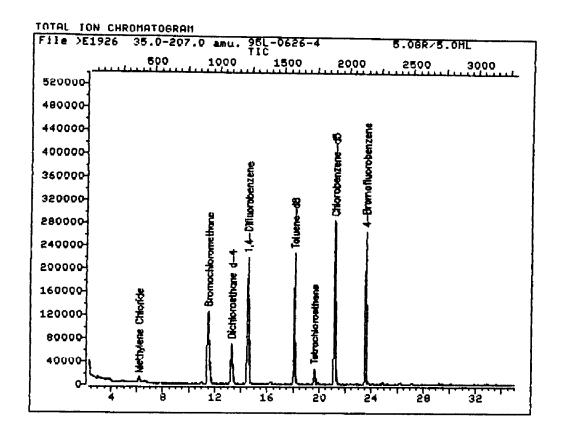
Quant Time : 950303 17:24 Injected at: 950303 16:39

Page 1

Output File: ^E1926::A1 Quant Rev: 7 Quant Time: 950303 16:40 Injected at: 950303 15:55

Data File: >E1926::D0 Dilution Factor: 1.00000

Name: 95L-0626-4 Instrument ID: HPDOS05
Misc: 5.0GR/5.0ML


ID File: IDSSEE::DB

Title: HP VDA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qcal Time: (none)

	Compound	R.T.	Scan#	Area	Conc	Units	9
1)	*Bromochloromethane	11.48	925	186658	50.00	UG/KG	56
6)	Methylene Chloride	6.14	386	16271	3.70	UG/KG	61
17)	1,2-Dichloroethane-d4	13.27	1105	186504	45.03	UG/KG	73
20)	*1,4-Difluorobenzana	14.49	1228	799466	50.00	UG/KG	69
	*Chlorobenzene-d5	21.12	1897	574696	50.00	UG/KG	95
41)	Tetrachloroethene	19.59	1742	23389	4.78	UG/KG	96
44)	Toluene-d8	18.04	1586	594190	47.17	UG/KG	90
49)	Bromofluorobenzene	23.51	2138	357387M	36.93	UG/KG	98

^{*} Compound is ISTD

Data File: >E1926::D0

Name: 95L-0626-4

Misc: 5.0GR/5.0ML

Quant Output File: ^E1926::A1
Instrument ID: HPDOS05

Id File: IDSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Qcal Time: <none>

Operator ID: LAURA

Quant Time: 950303 16:40 Injected at: 950303 15:55

Quant Rev: 7

Page 1

perator ID: LAURA Jutput File: ^E1931::A1 Data File: >E1931::D0

Name: 95L-0626-5

Injected at:

950303 20:26 950303 19:42

Dilution Factor:

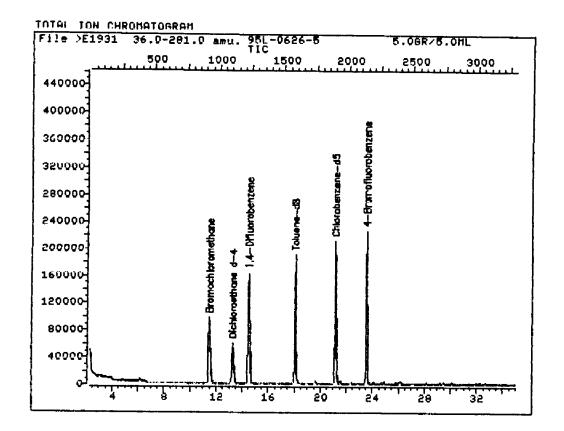
Quant Time:

1.00000

Instrument ID: HPD0S05

Misc: 5.0GR/5.UML

ID File: IDSSEE::DB


litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43

Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.46	923	147924	50.00	UG/KG	56
	1,2-Dichloroethane-d4	13.25	1103	163785	49.89	UG/KG	76
20)	*1,4-Difluorobenzene	14.49	1228	603687	50.00	UG/KG	68
38)	*Chlorobenzene-d5	21.11	1896	421174	50.00	UG/KG	93
44)	foluena-d8	18.02	1584	496460	53./8	UG/KG	91
49)	Bromofluorobenzene	23.5ü	2137	307323	43.34	UG/KG	96

^{*} Compound is ISTD

Data File: >£1931::DU

Name: 95L-0626-5

Misc: 5.0GR/5.0ML

Id File: IDSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Qcal Time: <none>

Quant Output File: ^E1931::A1

Instrument ID: HPD0S05

Operator ID: LAURA

Wuant Time: 950303 20:26 Injected at: 950303 19:42

Wuant Rev: 2

Page 1

perator 10: LAURA Sutput File: ^E1943::A1

Uata File: >E1943::U2

Injected at:

9503U6 17:35 950306 16:49

Name: 95L-0626-6

Dilution Factor:

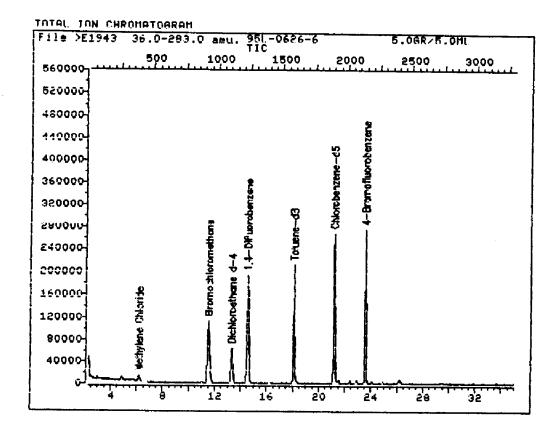
1.00000

Misc: 5.UGR/5.UML

Instrument ID: HPDGS05

Quant Time:

ID File: IDSSEE::DB


litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43

Last Qcal Time: <none>

	Compound	к.T.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.50	927	171252	50.00	UG/KG	 52
6)	Methylene Chloride	6.16	388	23426	5.8u	UG/KG	72 70
17)	1,2-Dichloroethane-d4	13.29	1102	167362	44.U4	UG/KG	72
20)	*1,4-Difluorobenzene	14.51	1230	707262	50.00	UG/KG	70
3B)	*Lhlorobenzene-d5	21.13	1878	540814	50.00	UG/KG	95
44)	Toluene-d8	18.05	1587	548432	46.27	UG/KG	90
49)	Bromofluorobenzene	23.52	2139	367311	40.34	UG/KG	95

^{*} Compound is ISID

Data File: >E1943::D2

Name: 95L-0626-6

Misc: 5.0GR/5.0ML

1d File: IDSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Qcal Time: <none>

Quant Output File: ^E1943::A1

Instrument ID: HPDOSU5

Uperator ID: LAURA

Wuant Time: 950306 12:35 Injected at: 950306 16:49

Page 1

perator ID: LAURA Output File: ^E1930::A1

Quant Rev: 7 Injected at: 950303 18:58

Quant Time: 950303 19:43

Data File: >E1930::00

Dilution Factor:

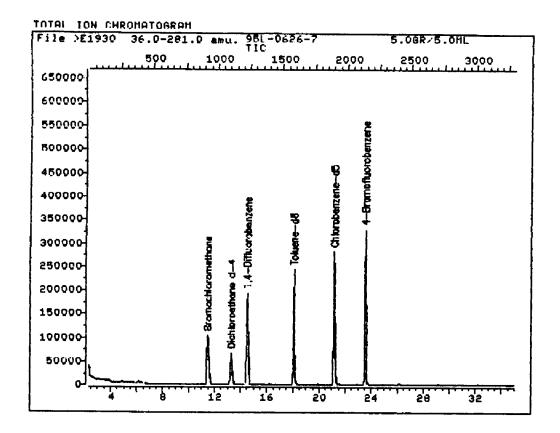
1.00000

Name: 95L-0626-7

Instrument ID: HPDOS05

Misc: 5.0GR/5.UML

ID File: IDSSEE::DB


litie: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43

Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
	*Bromochloromethane 1,2-Dichloroethane-d4	11.44 13.26	921 1104	159395 172790	50.UO 48.85	UG/KG	54
20)	*1,4-Difluorobenzene *Chlorobenzene-d5	14.48	1227	708322	50.00	UG/KG UG/KG	72 69
44)	Toluene-d8	21.12 18.03	1897 1585	568113 634405	50.00 50.95	UG/KG UG/KG	97 91
49)	Bromofluorobenzene	23.50	2137	445886	46.61	UG/KG	98

^{*} Compound is ISID

Data File: >E1930::D0 Quant Output File: ^E1930::A1
Name: 95L-0626-7 Instrument ID: HPDOS05

Misc: 5.0GR/5.0ML

Id File: IDSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Qcal Time: <none>

Operator ID: LAURA

Quant Time : 950303 19:43 Injected at: 950303 18:58

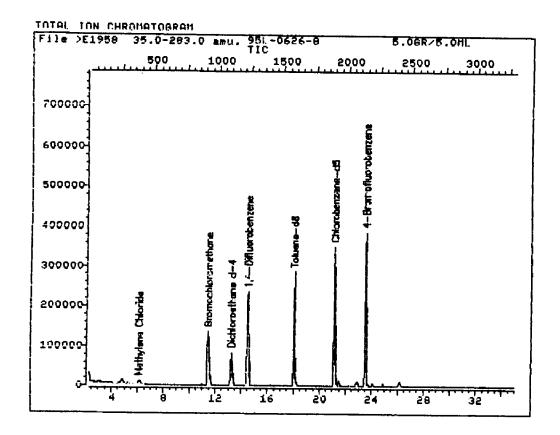
Page 1

Uperator ID: LAURA Quant Rev: 7 Wuant Time: 950307 10:55 950307 10:09 Injected at:

Uutput File: ^E1958::A1 Data File: >E1958::U3 Dilution Factor: 1.00000

Name: 95L-0626-8 Instrument ID: HPDOS05

Misc: 5.0GR/5.UML


ID File: IDSSEE::DB

litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11,44	921	204925	50.00	UG/KG	58
6)	Methylene Chloride	6.11	383	19148	3.96	UG/KG	59
1/)	1,2-Dichloroethane-d4	13.24	1102	214191	47.10	UG/KG	14
20)	*1,4-Difluorobenzene	14.47	1226	869702	50.00	UG/KG	69
3B)	*Chlorobenzene-db	21.11	1896	695383	50.00	UG/KG	96
44)	loluene-d8	18.02	1584	743738	48.80	UG/KG	90
49)	Bromofluorobenzene	23.49	2136	521464	44.54	UG/KG	99

^{*} Compound is ISTD

Data File: >E1958::D3

Quant Output File: ^E1958::A1

Name: 951-0626-8

Instrument ID: HPDUS05

Misc: 5.0GR/5.0ML

Id File: IDSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E.

Last Calibration: 958220 15:43

Last Ucal Time: <none>

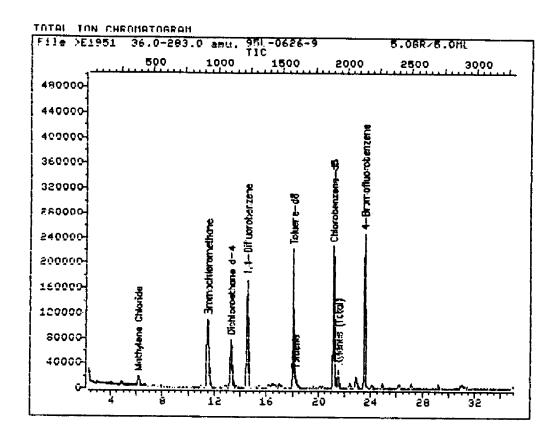
Operator ID: LAURA

Wuant lime: 950302 10:55 Injected at: 950302 10:09

Page 1

Uperator ID: LAURA Wuant Rev: / Quant Time: **950306 23:38** Output File: ^£1951::Al Injected at: 950306 22:52 Data File: >E1951::U2 Dilution Factor: 1.00000 Name: 95L-0626-9 Instrument ID: HPD0S05

Misc: 5.UGR/5.UML


ID File: IDSSEE::DB

litle: HP UUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.48	924	166308	ט.ט.טל	UG/KG	59
6)	Methylene Chloride	6.13	385	33190	8.46	UG/KG	70
1/)	-,	13.26	1104	199542	54.U2	UG/KG	24
20)	*1,4-Difluorobenzene	14.49	1228	623803	50.00	UG/KG	69
	*Uhlorobenzene-d5	21.12	1896	451839	50.00	UG/KG	95
45)	Toluene	18.20	1602	34084	6.05	UG/KG	97
44)	loluene-d8	18.03	1585	558662	56.41	UG/KG	90
48)	Xylenes (Total)	21.52	1937	40986M	8.74	UG/KG	91
49)	Bramofluorobenzene	23.51	2137	335215	44.06	UG/KG	97

^{*} Compound is 1510

Data File: >E1951::D2

Quant Output File: ^E1951::A1

Name: 95L-8626-9 Misc: 5.0GR/5.0ML Instrument 10: HPDOS05

ld File: IDSSEE::DB

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Wcal Time: <none>

Uperator ID: LAURA

Wuant Time: 950306 23:38 Injected at: 950306 22:52

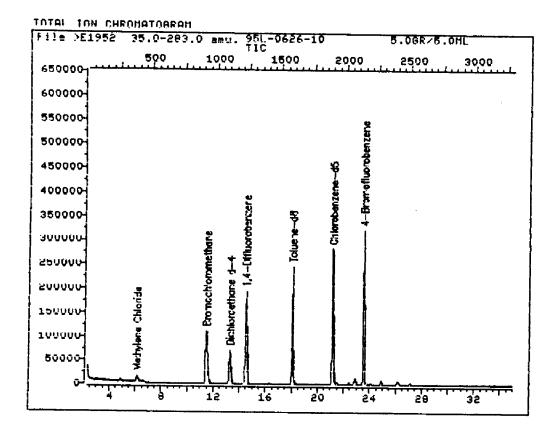
Page 1

sperator 10: LAURA Wuant Rev: 7 **Quant Time:** 950307 00:21 Injected at: 950306 23:36

Output File: ^E1952::A1 Data File: >E1952::U2 Dilution Factor: 1.00000

Name: 95L-0626-10 Instrument ID: HPDUS05

Misc: 5.0GR/5.UML


ID File: IDSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	9
1)	*Bromochloromethane	11.47	924	168128	50.u0	UG/KG	 55
6)	Methylene Chloride	6.11	383	26858	6.77	UG/KG	73
1/)	1,2-Dichlorosthans-d4	13.27	1105	184586	49.42	UGZKG	23
	*1,4-Difluorobenzene	14.49	1228	206832	50.00	UG/KG	69
380	*Uhlorobenzene-db	21.13	1878	524394	50.00	UG/KG	94
441	Toluene-d8	18.03	1585	635182	50.46	UG/KG	89
49)	Bromofluorobenzana	23.51	2138	435417	45.U2	UG/KG	98

^{*} Compound is ISID

Data File: >E1952::D2

Name: 95L-0626-10

Misc: 5.8GR/5.UML

Id File: IDSSEE::DB

Last Calibration: 950220 15:43 Last Weal Time: <none>

Quant Output File: ^E1952::A1

HPD0S05

Instrument ID:

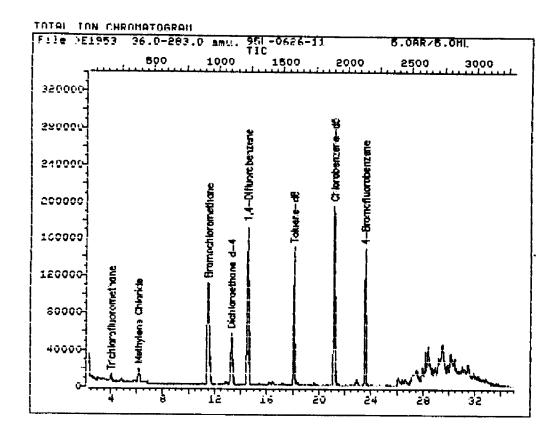
Uperator ID: LAURA

Wuant Time: 950307 00:21 Injected at: 950306 23:36

Page 1

| Perator ID: LAURA | Quant Rev: / Quant Fine: 950302 01:05 | Unique File: ^E1953::A1 | Injected at: 950302 00:19

Misc: 5.UGR/5.UML Instrument ID: HPDOS05


ID File: IDSSEE::DB

litle: HP VUA Standards for > Point Calibration Curve Rev. E

Last Ualibration: 950220 15:43 Last Qcal Time: (none)

	Campound	R.T.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.4/	924	169225	50.00	UG/KG	51
6)	Methylene Chloride	6.13	385	30906	7.74	UG/KG	67
11)	Irichiorofluoromethane	4. 03	1/3	36071	4.76	UG/KG	70
1/)	1,2-Dichloroethane-d4	13.26	1104	153426	40.86	UG/KG	76
20)	*1,4-Uifluorobenzene	14.49	1228	629124	50.UU	UG/KG	69
3H)	#Uhlorobenzene-db	21.12	1897	390965	50.0u	UG/KG	96
44)	loluene-d8	18.04	1586	391428	45.68	UG/KG	92
49)	Bromofluorobenzene	23.5U	2137	200694	30.49	UG/KG	99

^{*} Compound is ISID

Uata File: >E1953::U2

Name: 95L-0626-11

Misc: 5.06R/5.UML

Wuant Dutput File: ^E1953::A1
Instrument 1D: HPDUSUS

ld File: IDSSEE::DB

little: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Woal Time: Knone>

Operator 10: LAURA

Www. Time: 950502 01:05 Injected at: 950502 00:19

Quant Rev: /

Page 1

perator 10: LAUMA Jumput File: ^E1959::A1 Data File: >E1959::03

Injected at:

950307 11:50 950307 11:04

Name: 95L-0626-11R Misc: 5.UGR/5.UML

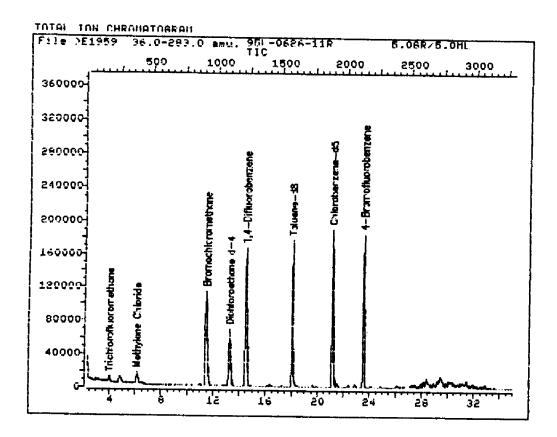
Dilution Factor:

Wuant Time:

1.00000

Instrument ID: HPDOS05

10 File: IDSSEE::DB


litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43

Last Qcal Time: <none>

	Compound	к.т.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.46	922	169189	50.00	UG/KG	 58
6)	Methylene Chloride	6.11	383	27789	6.96	UG/KG	69
CLF	inichiorofluoromethane	3.99	169	29468	3.89	UG/KG	97
1/)	1,2-Dichloroethane-d4	13.25	1103	182971	48.73	Uls/Kls	71
	*1,4-Difluorobenzene	14.48	1227	611810	50.UO	UG/Kis	69
	*Chlorobenzene-db	21.11	1876	374156	50.00	UG/KG	98
44)	loluene-d8	18.02	1584	457930	56.09	UG/KG	91
491	Bromofluorobenzene	23.50	2137	249629	39.63	UG/KG	98

^{*} Compound is ISID

Data File: >E1959::D3 Name: 95L-8626-11R

Misc: 5.868/5.8ML

Wuant Output File: ^E1959::A1
Instrument ID: HPDOSUS

ld File: IDSSEE::DH

litle: HP UUA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:45 Last Ucal Time: <none>

Operator ID: LAUKA

Wuant Time: 950507 11:50 Injected at: 950307 11:04

Page 1

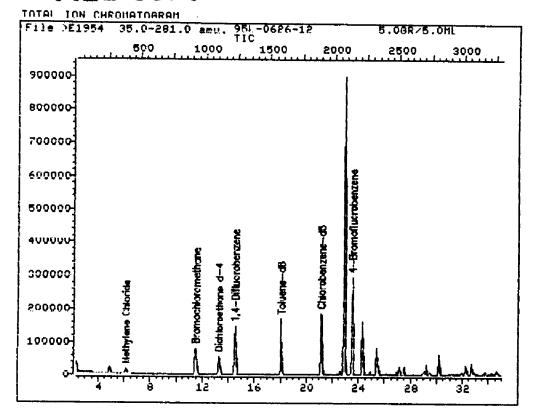
Output File: ^E1954::A1 Quant Rev: 7 Quant Time: 950307 01:50 Injected at: 950307 01:04

Data File: >E1954:: D2 Dilution Factor: 1.00000

Name: 95L-0626-12 Instrument ID: HPD0S05

Misc: 5.UGR/5.UML

ID File: IDSSEE::DB


Title: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qual Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	9
1)	*Bromochloromethane	11.48	925	123958	50.00	UG/KG	50
6)	Methylene Chloride	6.13	385	23274	7.96	UG/KG	69
1/)	1,2-Dichloroethane-d4	13.26	1104	141960	51.61	UG/KG	71
200	*1,4-Difluorobenzene	14.49	1228	512103	50.0v	UG/KG	68
38)	*Uhlorobenzene-d5	21.12	1897	372646	50.00	UG/KG	95
44)	Toluene-d8	18.03	1585	438060	53.64	UG/KG	90
49)	Bromofluorobenzene	23.52	2138	284975	46.22	UG/KG	97

^{*} Compound is ISTD

FILE COPY

Data File: >E1954::D2

Name: Y5L-U626-12

Misc: 5.0GR/5.0ML

Id File: IDSSEE::DB

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 19:43 Last Weal Time: <none>

Quant Output File: ^E1954::A1

HPDUS05

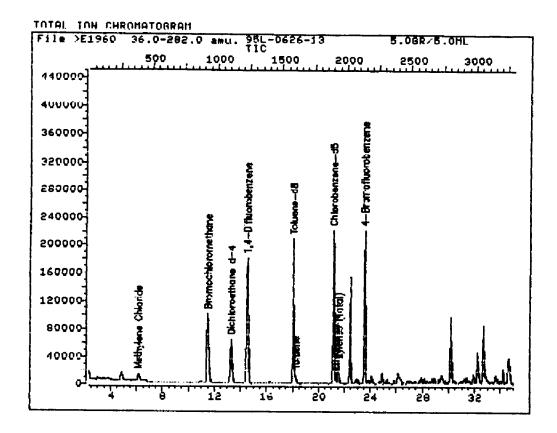
Instrument ID:

Operator ID: LAURA

Wuant lime: 950307 01:50 Injected at: 950307 01:04

Page 1

Derator ID: LAURA | Quant Rev: / Quant Time: 950507 12:49 Lutput File: ^E1960::A1 | Injected at: 950307 24:03


ID File: IDSSEE::DB

litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.42	923	151289	50.UD	UG/KG	 55
6)	Methylene Chloride	6.10	382	20516	5. <i>7</i> 5	UG/KG	74
12)	1,2-Dichloroethane-d4	13.26	1104	17164U	51.12	UG/KG	74
20)	*1,4-Difluorobenzene	14.48	1227	660505	50.00	UG/KG	69
38)	*Uhlorobenzene-db	21.11	1896	441875	50.00	UG/KG	95
43)	Toluene	18.19	1601	19940	3.62	UG/KG	93
44)	Toluene-d8	18.02	1584	538224	55.57	UG/KG	91
46)	Ethylbenzene	21.35	1920	10232M	2.82	UG/KG	
48)	Xylenes (lotal)	21.52	1937	45531M	9.93	UG/KG	88
49)	Bromofluorobenzene	23.51	2137	298355	40.10	UG/KG	96

^{*} Compound is ISID

Data File: >E1960::D3

Quant Output File: ^E1960::A1

Name: YbL-U626-13 Misc: 5.0GR/5.0ML

Instrument ID: HPD0S05

ld File: IDSSEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:43 Last Qcal Time: (none)

Operator ID: LAURA

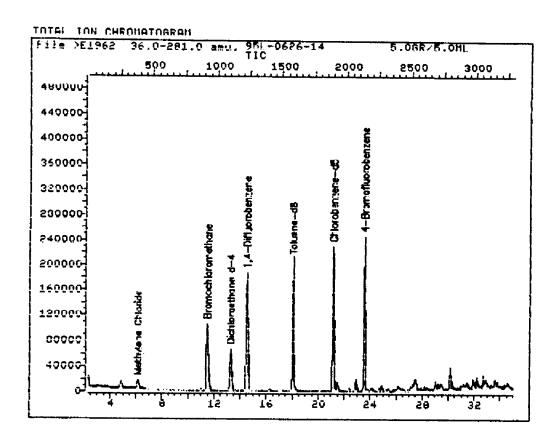
Quant Time: 950307 12:49 Injected at: 950302 24:03 QUANT REPORT

Page 1

perator ID: LAURA Woant Rev: / Woant Time: 950307 14:34
Unitput File: ^E1962::A1 Injected at: 950307 13:48
Data File: >E1962::D3 Dilution Factor: 1.00000

Name: 95L-0626-14 Instrument ID: HPD0S05

Misc: 5. UER/5. UML


ID File: IDSSEE::DB

litle: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:43 Last Qcal Time: <none>

	Compound	к.т.	Scan#	Area	Lone	Units	9
1)	*Bromochloromethane	11.42	923	159822	50.00	UG/KG	55
6)	Methylene Chloride	6.13	385	23703	6.29	U6∕K6	64
	1,2-Dichloroethane-d4	13.25	1103	175173	49.39	UGZKG	75
200	*1,4-Difluorobenzene	14.48	1227	666520	50.00	U6/K6	69
3B3	*Uhlorobenzene-db	21.12	1897	457155	50.00	UG/KG	96
44)	loluene-d8	18.02	1584	551409	54.79	UG/KG	92
49)	Bromofluorobenzene	23.51	2137	325009	42.04	UG/KG	98

^{*} Compound is ISID

Data File: >E1962::D3 Name: Y5L-U626-14

Wuant Output File: ^E1962::A1

Misc: 5.0GR/5.0ML

Instrument ID: HPD0SU5

Id File: IDSSEE::DB

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Ualibration: 950220 15:43 Last Ucal Time: <none>

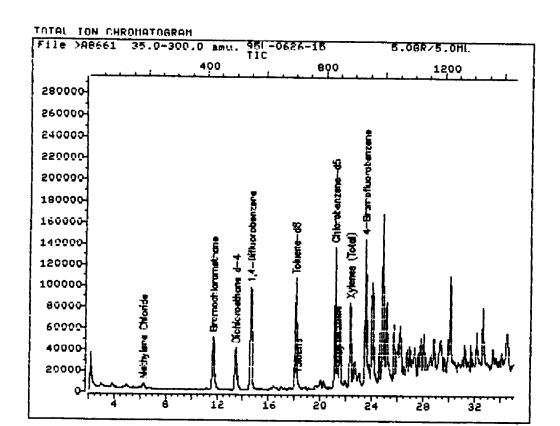
Operator ID: LAURA

Wuant lime: 950307 14:34 Injected at: 950302 13:48 QUANT REPORT

Page 1

| Detail | D

Misc: 5.86R/5.8ML


ID File: IDSAAA::QI

Title: HP VUA Standards for 5 Point Calibration Eurve Rev. E

Last Calibration: 950308 17:35 Last Qcal Time: (none)

	Lompound	к.г.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.69	423	86113	טט.טל	UG/KG	87
6)	Methylene Chloride	6.23	185	9159	4.51	UG/KG	68
1/)	1,2-Dichloroethane-d4	13.44	477	152252	48.44	UG/KG	95
20)	*1,4-Difluorobenzene	14.59	549	356148	50.00	UG/KG	68
<i>5</i> 6)	*Uhlorobenzene-d5	21.11	833	250172	50.00	UG/KG	93
41)	Toluene	18.24	208	12421	3.85	UG/KG	97
42)	Toluene-d8	18.06	20U	289658	53.11	UG/KG	95
44)	£thylbenzene	21.32	842	9090	4.32	UG/KG	93
46)	Xylenes (lotal)	22.31	885	142679M	54.89	UG/KG	90
4/)	Bromofluorobenzene	23.48	936	196035	46.66	UG/KG	90

⁵ Compound is ISID

Data File: >A8661::D1

Quant Output File: ^A8661::A1

Name: 95L-0626-15

Instrument ID: INST A

Misc: 5.UGR/5.OML

ld File: IUSAAA::UI

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950308 12:35 Last Weal Time: <none>

Operator ID: LAURA

Quant Time: 950308 21:10 Injected at: 950308 20:34 QUANT REPORT

Page 1

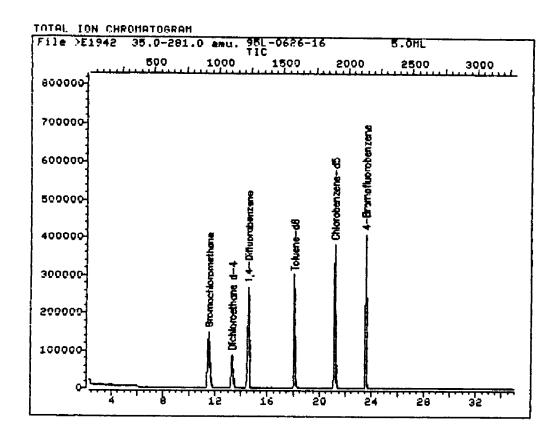
 perator ID: LAURA
 Quant Rev: 7
 Quant Time: 950306 16:26

 Output File: ^E1942::A1
 Injected at: 950306 15:40

 Data File: >E1942::D2
 Dilution Factor: 1.00000

Name: 95L-0626-16 instrument ID: HPDDS05

Misc: 5.UML


ID File: ID_SEE::DB

Title: HP VUA Standards for 5 Point Calibration Curve Rev. E

Last Calibration: 950220 15:41 Last Qcal Time: (none)

	Compound	к. т.	Scan#	Area	Conc	Units	q
1)	*Bromochloromethane	11.52	929	230801	50.00	ug/L	57
17)	1,2-Dichloroethane-d4	13.30	1108	230077	44.92	ug/L	71
20)	*1,4-Difluorobenzene	14.52	1231	987796	50.00	uq/L	69
38)	#Uhlorobenzene-d5	21.14	1899	742165M	50.00	ug/L	97
44)	loluene-d8	18.05	1587	788792	48.49	ug/L	90
49)	Bromofluorobenzene	23.52	2139	542132	43.38	ua/L	97

^{*} Compound is ISID

Data File: >E1942::D2

Name: 95L-0626-16

Misc: 5.0ML

Quant Output File: ^E1942::A1 Instrument ID: HPDOS05

ld File: ID_SEE::DB

Title: HP VOA Standards for 5 Point Calibration Curve Rev. E Last Calibration: 950220 15:41 Last Qcal Time: <none>

Operator ID: LAURA

Wuant Time: 950306 16:26 Injected at: 950306 15:40 GC DATA PACKAGE BY FRACTION

NORTHEASTERN ANALYTICAL CORPORATION

METHOD BLANK RESULTS

Client: KENNETH L. WOODRUFF ASSOCIATES

Date Analyzed: 08-MAR-95

NAC Job Number: L950626

Date Received: NA

Lab Sample ID: BLK#1 2100/

Client ID: BLANK

Date Extracted: 03-MAR-95

PARAMETER	RESULT	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	33 67 33 33 33 33	บ บ บ บ บ	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg

Associated Samples:L950626-1 L950626-10 L950626-11 L950626-12 L950626-13 L950626-14 L950626-15 L950626-2 L950626-3 L950626-4 L950626-5 L950626-6 L950626-7 L950626-8 L950626-9

L950674-1 L950686-1 WGP2100-1 WGP2100-2 WGP2100-3

ND - Not detected at or below the MDL

Software Version: 3.3 <4B11>

Sample Name : BLK #1 2100

: 3/8/95 01:29 PM Study : pppcn

Sample Number: 5

Operator

Instrument : HP5890 toSampler : NONE

Channel: A A/D mV Range: 1000

'Vial : 0/0

Interface Serial #: 8055910402 Data Acquisition Time: 3/8/95 12:56 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Date File : C:\2700\HP5890\PA38005.RAW Result File : C:\2700\HP5890\PA38005.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA

Sample File : PESTA058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

tal run time : 33.00 min

Timed Events:

There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area (uV*sec)	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [X]	Cal. Range
1		1.105	878693.32	119532.24	30.7890	30.7890	878693	•••••	
2		1.376	709559.26	82661.12	25.5064	25.5064	709559		
3		1.522	59650.42		5.2078	5.2078	59650		
4		1.625	1572999.50		52.4743	52.4743	1573000		
5		1.938	1638691.00		54.5260	54.5260	1638691		
6		2.219	36737.50		4.4921	4.4921	36737		
7		2.359	15308.00		3.8228	3.8228	15308		
8		2.439	5611.00		3.5199	3.5199	5611	******	
9		2.498	8228.00		3.6017	3.6017			
10		2.634	36281.50	8765.42			8228		
11		2.791			4.4779	4,4779	36282		
12			7095.00	2161.98	3.5663	3.5663	7095	•••••	
13		2.914	9098.50	1693.98	3.6289	3.6289	9098		
		3.019	5470.00	2330.41	3.5155	3.5155	5470		
14		3.133	32129.00	9982.21	4.3482	4.3482	32129		
		3.251	13948.00	2945.36	3.7803	3.7803	13948		
		3.513	16163.00	3010.60	3.8495	3.8495	16163		
17		3.714	8366.00	2360.84	3.6060	3.6060	8366		
18		3.781	4369.00	1837.88	3.4811	3.4811	4369		
19		4.157	10951.00	1655.24	3.6867	3.6867	10951	•••••	
20		4.315	7646.00	2237.46	3.5835	3.5835	7646	•••••	

248

	_									£ 14 5	J	peg
Peak #	Component Name	Time	Area	Height	Raw	Adjusted	Calibration	Delta RT	Cal.			
••••	Nann:	(min)	{uV*sec}	[uV]	Amount	Amount	Factor	[X]	Range			
21		4.944	13524.00	1747.76	3.7671		47004	••••••		•••		• • • • •
22		6.246			7.9048	3.7671 7.9048	13524					
?3	TCMX	7.576			92.2261	0.0000						
		8.145			3.5313			0.3262				
		8.311			3.7365	3.5313	5974					
40		8.706			3.7900	3.7365 3.7900	12545 14256	******				
27		9.147	21109.00		4.0040	4.0040		•••••				
28		10.219			3.5371	3.5371	21109 6161					
0	APLNA BHC	10.797			0.0000	0.0000	9101					
29	- 1	11.676			2.8100	2.8100	4075					
30	l l	11.816			3.5489	3.5489	26544					
0	GAMMA BHC	12.257			0.0000	0.0000						
0	HEPTACHLOR	12.914			0.0000	0.0000	0					
31	ľ	13.247			1.1394	1.1394	5804					
Ð	ALDRIN	13.842			0.0000	0.0000	3604 Û					
32	- 1	14.885			3.9804	3.9804	522 8 7					
0	BETA BHC	15.144			0.0000	0.0000	36501 0					
0	DELTA SHC	15.903			0.0000	0.0000	ŏ					
0	HEPTACHLOR EXPOXIDE	16.381			0.0000	0.0000	0					
0	ENDOSULFAN I	17,321			0.0000	0.0000	Ŏ					
0	GAMMA CHLORDANE	17.568		0.00	0.0000	0.0000	Ď					
0	ALAHA CHLORDANE	17.786		0.00	0.0000	0.0000	ň					
	DDE	18.101	0.00	0.00	0.0000	0.0000	ň					
	DIELDRIN	18.601	0.00	0.00	0.0000	0.0000	ň	******				
	ENDRIN	19.336	0.00	0.00	0.0000	0.0000	ň	******				
	DDQ (,	20.925	0.00	0.00	0.0000	0.0000	ň					
0	ENDOSULFAN II	21.090	0.00	0.00	0.0000	0.0000	ŏ					
	DDT\ \\ \/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	21.451	0.00	0.00	0.0000	0.0000	ň					
33	_ \ V = 1	21.952	16073.00	2760,17	7.8586	7.8586	16073					
	ENDRIN ALDEHYDE	22.603	0.00	0.00	0.0000	0.0000	.55.5					
34	į	23.265	7273.50	1316.92	-11.4065	-11.4065	7274					
35	1	23.516	25269.00	4068.68	-6.9746	-6.9746	25269					
	METHOXYCHLOR	23.640	23528.50	5028.79	-7.4033	-7.4033	23528	0.0614				
_0	ENDOSULFAN SULFATE	23.726	0.00	0.00	0.0000	0.0000	0					
	DBC 1	23.940	3159601.50	593576.41	224.2231	224.2231	3159601	0.1502	•			
	ENDRIN KETONE	25.019	0.00	0.00	0.0000	0.0000	0	******	•			
0	DCB /	28.203	0.00	0.00	0.0000	0.0000	Ď	*****				
	f	• • • • • • • • •	••••••		•••••••	•••••••				• • • • • • • • • • • • • • • • • • • •		
			10582392.50	2.142e+06	565.7366	473.5105						

Missing Component Report Component	Expected Retention (Sample File)
APLHA BHC	10.797
GAMMA BHC	12,257
HEPTACHLOR	12.914
ALDRIN	13.842
BETA BHC	15.144
DELTA BHC	15.903
	16.381
ENDOSULFAN I	17.321
GAMMA CHLORDANE	17.568
ALPHA CHLORDANE	17.786
DDE	18.101
DIELDRIN	
ENDRIN	18.601
DDD	19.336
	20.925
ENDOSULFAN II	21.090
DDT	21.451
ENDRIN ALDEHYDE	22.603
ENDOSULFAN SULFATE	23.726
ENDRIN KETONE	25.019
DCB	28.20%

HP5890 DETECTOR A

c Stored in ASCII File: C:\2700\HP5890\PA38005.7x0

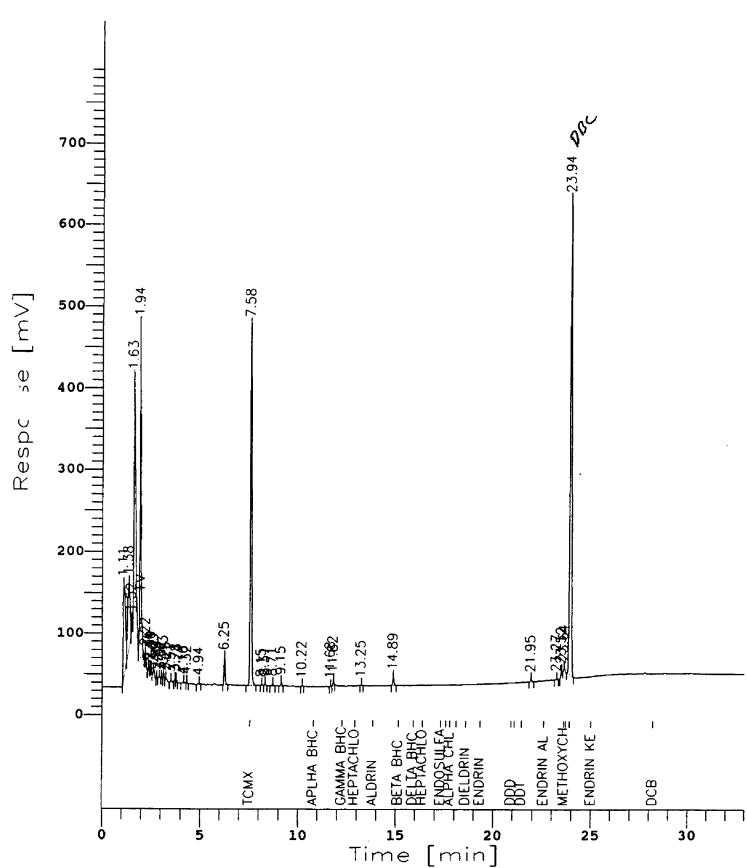
Page 1 of 1

Sample Name: BLK #1 2100

: c:\2700\hp5890\PA38005.raw

: HPPESTB.ins Method

Start Time : 0.00 min


End Time : 33.00 min frale Factor: -1.0 Plot Offset: -6 mV

Sample #: 5 Date: 3/8/95 01:29 PM

12:56 PM

Time of Injection: 3/8/95 Low Point : -6.03 mV High Point : 793.97 mV

Plot Scale: 800.0 mV

Software Version: 3.3 <4811>

Sample Name : BLK #1 2100

Sample Number: 5

Time Time : 3/8/99
Study : PPPCB

: 3/8/95 01:29 PM

Operator

Instrument : HP5890 "nSampler : NONE Vial : 0/0

A/D mV Range : 1000 Channel : 8

Interface Serial # : 8055910402 Data Acquisition Time: 3/8/95 12:56 PM Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38005.RAW Result File : C:\2700\HP5890\PB38005.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process file : HPPESTB Sample file : PESTB058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : MP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet 8:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

stal run time : 33.00 min

Timed Events:

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak	Component	Time	Area	Height	Raw	Adjusted	Calibration	Cal.
#	Kame	(min)	[uV*sec]	(uV)	Amount	Amount	fector	Range
1		1.126	433025.29	57412.40	27.2266	27.2266	433025	******************************
2		1.297	651096.92	86691.95	43,4408	43.4408		
3		1.409	431072.47	94941.69	27.0814	27.0814	431072	
4		1.542	1472210.13		104.4928	104.4928	1472210	
5		1.636	1523492.68	337379.93	108.3058	108.3058	1523493	
6		1.875	35073.00		-2.3622	-2.3622	35073	
7		1.974	54586.00	20315.59	-0.9114	-0.9114	54586	
8		2.150	21365.00	7233.10	-3.3814	-3.3814	21365	
9		2.360	65393.00	14250.63	-0.1079	-0.1079	65393	
10		2.598	23851.00	9671.68	-3.1966	-3.1966	23851	
11		2.751	56499.00	10047.19	-0.7691	-0.7691	56499	
12		3.106	19113.00	2627.15	-3.5489	-3.5489	19113	
13		3.286	16668.50	3854.15	-3.7306	-3.7306	16668	
14		3.449	2228.00	1060.30	-4.8043	-4.8043	2228	
4-		3.571	15100.00	4014.09	-3.8473	-3.8473	15100	
		4.468	3662.50	1277.94	-4.6977	-4.6977	3662	
		4.588	50230.50	10459.59	-1.2352	-1.2352	50230	
18		4.877	2519.00	613.67	-4.7827	-4.7827	2519	
19		5.444	3084.00	915.19	-4.7407	-4.7407	3084	
20		6.042	2318.50	881.16	-4.7976	-4.7976	2318	
21		6.195	5793.00	667.49	-4.5393	-4.5393	5793	

									to (1) Salah
Peak #	Component Name	Time (min)	Aren [UV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range	·
22		7.031	7143.00	1629.46	-4.4389	-4.4389	7143		
23	TCHX	8.260		320571.52	103.3569	103.3569	1456933		
4		8.798			-4.1735	-4.1735			
		9.616			1.8201	1.8201	10712 11582		
		9.766			2.1694	2.1694	19628		
61		10.064	6076.00		1.5811	1.5811			
0	ALPHA BHC	10.753			0.0000	0.0000	6076		
28	İ	11.986			1.7780	1.7780	0		
0	BETA SHC	12.324	0.00		0.0000	0.0000	22667		
29	i	12.750	9246.50		1.1531	1.1531	0 9246		
30	l	13.070	11074.00		-0.2336	-0.2336			
31	GAMMA√ BHC	13.320	14518.00	2990.90	-0.1053	-0.1053	11074 14518		
0	DELTA BHC	14.214	0.00		0.0000	0.0000	0	•	
32	HEPTACHLOR	14.697	10837.00	2139.95	1.7238	1.7238	10837	_	
0	ALDRIŅ	16.123	0.00		0.0000	0.0000	0	-	
0	HEPTACHLOR EPOXIDE	16.791	0.00	0.00	0.0000	0.0000	ŏ		
0	GAMMA CHLORDANE	17.459	0.00		0.0000	0.0000	ŏ		
33	ALPHA CHLORDANE/ENDO	18.004	12001.00		-0.8025	-0.8025	12001	_	
0	DIELDRIN	18.924	0.00	0.00	0.0000	0.0000	0		
0	DDE _ \\	19.286	0.00	0.00	0.0000	0.0000	ň		
0	ENDR IN	20.520	0.00	0.00	0.0000	0.0000	ŏ		
0	ENDOSULFAN II)	21.081	0.00	0.00	0.0000	0.0000	ŏ		
0	000	21.479	0.00	0.00	0.0000	0.0000	ŏ		
_0	ENDR IN ALBEHYDE	22.091	0.00	0.00	0.0000	0.0000	ŏ		
34		22.722	5455.00	1100.94	0.3190	0.3190	5455		
35	ENDOSULFAN SULFATE	22.861	17232.00	3388.63	1.5531	1.5531	17232	•	
36	DDT	23.082	27284.50	4808.22	1.5550	1.5550	27285		
37	ENDRIN KETONE	23.891	2040640.00	359572.18	164.3604	164.3604	2040640	•	
0	METHOKYCHLOR	25.263	0.00	0.00	0.0000	0.0000	0		
0	DBC	25.626	0.00	0.00	0.0000	0.0000	ŏ		
0	DOB	31.152	0.00	0.00	0.0000	0.0000	ŏ		
			8571411.00	1.725e+06	530.7104	530.7104	8571411		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Missing Component Report

mponent	Expected Retention (Sample File)
. BHC	10.753
BEIA BHC	12,324
DELTA BHC	14.214
ALDRIN	16.123
HEPTACHLOR EPOXIDE	16.791
GANNA CHLORDANE	17.459
DIELDRIN	18.924
DDE	19.286
ENDRIN	20,520
ENDOSULFAN II	21.081
DDD	21.479
ENDRIN ALDEHYDE	22.091
METHOXYCHLOR	25.263
DBC	25.626
DCB	31,152
770	31.136

Report Stored in ASCII File: C:\2700\HP5890\PB38005.TX0

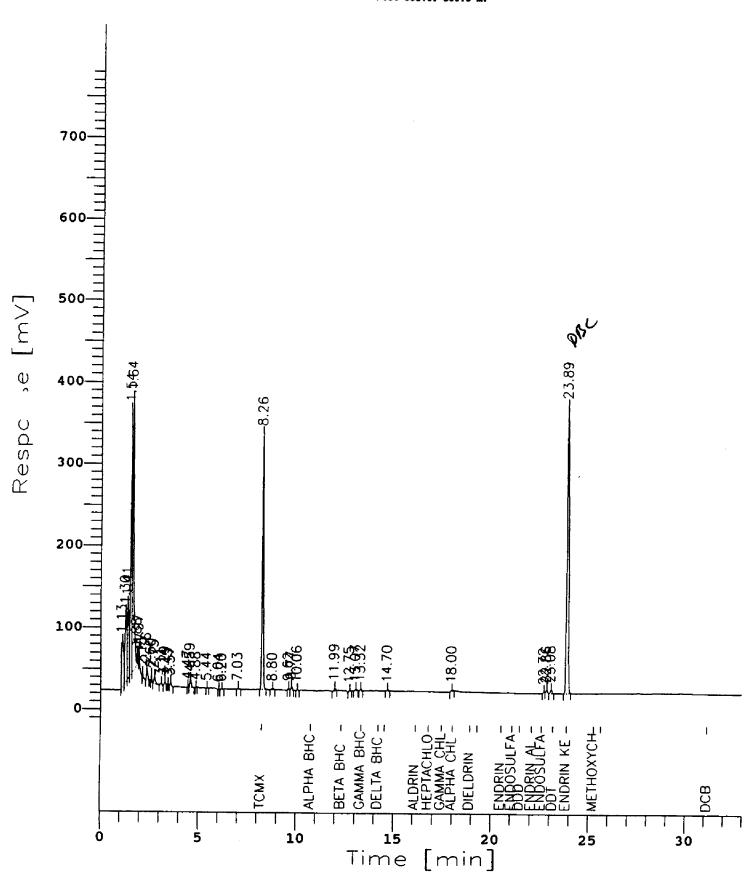
Sample Name : BLK #1 2100

FileName : c:\2700\hp5890\PB38005.raw

Method : HPPESTB.ins

Start Time : 0.00 min rale Factor: -1.0

End Time : 33.00 min Plot Offset: -17 mV Sample #: 5


Date: 3/8/95 01:29 PM Time of Injection: 3/8/95

Low Point : -17.06 mV

Plot Scale: 800.0 mV

12:56 PM Nigh Point : 782.94 mV

Page 1 of 1

NORTHEASTERN ANALYTICAL CORPORATION

METHOD BLANK RESULTS

Client:

KENNETH L. WOODRUFF ASSOCIATES Date Analyzed: 01-MAR-95

NAC Job Number: L950626

Date Received: NA

Lab Sample ID: BLK#4 2082/

Client ID: BLANK

Date Extracted: 01-MAR-95

PARAMETER	RESULT	MDL	QUAL	UNITS
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	1 2 1 1 1	บ บ บ บ บ	ug/l ug/l ug/l ug/l ug/l ug/l

Associated Samples:L950626-16 WGP2082-6

ND - Not detected at or below the MDL

Software Version: 3.3 <4811> Sample Name : BLK #22082 Sample Number: 9

Time Time : 3/14/95 11:20 AM Study : PPPEST

Sample Number: 9 Operator : KMW

Instrument : HP5890 itoSampler : NONE ''Vial : 0/0

Channel : A A/D mV Range : 1000

linarface Serial #: 8055910402 Data Acquisition Time: 3/1/95 02:00 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA31009.RAW Result File : C:\2700\HP5890\PA31009.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA Sample File : PESTA058

Sequence File : C:\2700\METHSEQS\0301PST.seq

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

tal run time : 33.00 min

Timed Events:

There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area [uV*sec]	Keight [UV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT {%]	Cal. Range
1		1.090	2178328.89	392638.42	71.3805	71.3805	2178329		
2		1.375	249294.56	52504.72	11.1309	11.1309	249295		
3		1.628	90723.05	17214.38	6.1782	6.1782	90723		
4		1.766	71574.50	24262.18	5.5802	5.5802	71574		
5		2.011	12090.00	4137.27	3.7223	3.7223	12090		
6		2.217	4304.00	1820.36	3.4791	3,4791	4304		
7		2.319	2576.00	1199.63	3.4251	3.4251	2576		
8		2.419	7826.00	2025.95	3.5891	3.5891	7826		
9		3.233	15396.00	4704.47	3.8256	3.8256	15396		
10		3.673	12523.00	3735.95	3.7358	3.7358	12523		
11		4.286	12870.00	2607.55	3.7467	3.7467	12870		
12		4.921	8463.00		3.6090	3.6090	8463		
13		5.684	5991.00		3.5318	3.5318	5991		
14		6.220	68870.00		5.4957	5.4957	68870		
	TCMX	7.543	2060100.00		96.8284	0.0000	2060100	-0.1002	
		8.327	21372.00		4.0122	4.0122	21372		
17		8.675	7559.00		3.5808	3.5808	7559		
17 18	6	9.113	26974.50		4.1872	4.1872	26974		
0	APLAK BHO	10,797	0.00		0.0000	0.0000	0		
19		11.890	9135.00		2.9764	2.9764	9135		

(min)

12.257

12.914

13.107

13.842

14.842

15.144

15.903

16.381

17.321

17.568

17.786

18.101

18.601

19.336

20.925

21.090

21.451

21.906

22.691

23.223

23.471

23.599

23.899

25.019

28.203

Area

[uV*sec]

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0,00

0.00

0.00

3408563.00 637343.83

0.00

0.00

13359.00

5304.00

8197.00

23854.00

11694.50

221249.00

17708.00

Height	Raw	Adjusted	Calibration	Delta RT	רבו	256	page ¿
[uV]	Amount	Amount	Factor	(%)	Range		
0.00	0.0000	0.0000	0	• • • • • • • •	•••••		
0.00	0.0000	0.0000	Ŏ				
31846.07	9.6625	9.6625	221249				
0.00	0.0000	0.0000	0				
3477.00	1.4922	1.4922	17708				
0.00	0.0000	0.0000	0				
0.00	0.0000	0.0000	ō				
0.00	0.0000	0.0000	ŏ				
0.00	0.0000	0.0000	Ŏ				
0.00	0.0000	0.0000	ō				
0.00	0.0000	0.0000	Ŏ				
0.00	0.0000	0.0000	ō				
0.00	0.0000	0.0000	0				
0.00	0.0000	0.0000	Ŏ				
0.00	0.0000	0.0000	0				
0.00	0.0000	0.0000	Ò				
0.00	0.0000	0.0000	Ď				
2362.68	7.6769	7.6769	13359				
1025.87	2.1620	2.1620	5304	0.3903	-		
1421.86	-11.1791	-11.1791	8197				
4194.56	-7.3231	-7.3231		-0.6511	•		
2498.01	-1.0026	-1.0026	11694	-0.5347	-		
/333/9 65							

-0.0192

3408563

0

0

8575899.00 1.712e+06 487.3511 390.5226

0.00

0.00

241.8471

0.0000

0.0000

241.8471

0.0000

0.0000

Missing Component Report

ENDRIN RETONE

Peak

0

0

0

0

0

0 DDE

0

0

n DDD

0

22

23

24

25

26

27 DBC

0

O DCB

#

Component

Name

DELTA BHC HEPTACHLOR EXPOXIDE

ALDEHYDE

METHOXYCHLOR ENDOSULFAN SULFATE

GAMMA BHC HEPTACHLOR

ALDRIN

BETA BHC

DIELDRIN

ENDRIN

ENDOS

ENDRIN

DOT

ENDOSUL FAN I

GAMMA CHLORDANE ALPHA CHLORDANE

Component	Expected Retention (Sample File)
APLHA BHC	10.797
GAMMA BHC	12.257
HEPTACHLOR	12.914
ALDRIN	13.842
TETA BHC	15.144
1 BHC	15.903
CHLOR EXPOXIDE	16.381
ENDUSULFAN I	17.321
GAMMA CHLORDANE	17.568
ALPHA CHLORDANE	17.786
DOE	18.101
DIELDRIN	18,601
ENDRIN	19.336
DDD	20.925
ENDOSULFAN II	21.090
DDT	21,451
ENDRIN KETONE	25,019
DCB	28.203

------HP5890 DETECTOR A

Report Stored in ASCII File: C:\2700\HP5890\PA31009.TX0

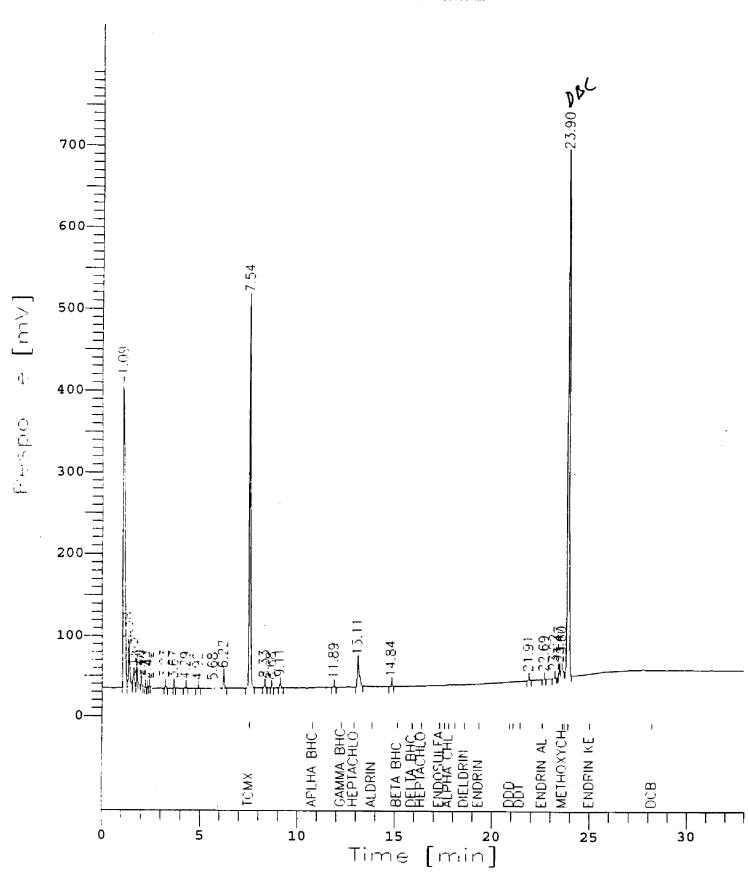
: BLK # 2082 : C:\2700\HP5890\PA31009.raw FileName

Method : MPPESTB.ins

: 0.00 min `hale Factor: 1.0

End Time : 33.00 min Plot Offset: -7 mV

Sample #: 9 Date : 3/14/95 11:20 AM


Time of Injection: 3/1/95 Low Point : -6.65 mV

Plot Scale: 800.0 mV

02:00 PM

Page 1 of 1

High Point : 793.35 mV

Software Version: 3.3, <4811>
Sample Name : BLK #7 2082
Sample Number: 9

Time : 3/14/95 11:21 AM Study : PPPEST

Operator

: KMW

Instrument : HP5890 'oSampler : NONE

Channel : B A/D mV Range : 1000

/ial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/1/95 02:00 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB31009.RAW Result File : C:\2700\HP5890\PB31009.RST Instrument File: c:\2700\methseqs\KPPESTB.ins

Process File : HPPEST8
Sample File : PEST8058

Sequence File : C:\2700\METHSEQS\0301PST.seq

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

cal run time : 33.00 min

Timed Events:

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time (min)	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range
1		1.090	1105087.77	181838.74	77.1962	77.1962	1105088	***************************************
2		1.300	143749.38	37378.18	5.7182	5.7182	143749	
3		1.409	92401.86	24684.19	1.9003	1.9003	92402	
4		1.555	82977.00	23048.88	1.1996	1.1996	82977	
5		1.808	6332.50	2530.37	-4.4992	-4.4992	6332	
6		1.946	18057.50	3598.82	-3.6274	-3.6274	18058	
7		2.046	3292.00	1801.37	-4.7252	-4.7252	3292	
8		2.314	3417.00	966.26	-4.7159	-4.7159	3417	
9		2.481	16520.00	5457,44	-3.7417	-3.7417	16520	
10		2.770	12639.00	3641.58	-4.0303	-4.0303	12639	
11		4.091	4829.50	1443.14	-4.6109	-4.6109	4830	
12		4.577	34683.00	6249.26	-2.3912	-2.3912	34683	
13	TCMX	8.246	1444142.00	320494.71	102.4058	102.4058	1444142	
14		9.600	8451.00	2013.05	1.6842	1.6842	8451	
15		9.764	31143.00	5505.94	2.6693	2.6693	31143	
		10.278	6995.00	589.11	1.6210	1.6210	6995	
	ALPHA BHC	10.753	0.00		0.0000	0.0000	0	
0	BETA 91/C) 2 14	12.324	0.00		0.0000	0.0000	Ŏ	
17	1110 441	13.059	37053.50		0.7342	0.7342	37054	
0	GAMMA BHC (13.331	0.00		0.0000	0.0000	0	
18		13.832	144261.00		8.2165	8.2165	144261	

Peak #	Component Name	Time [min]	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range	259
0	DELTA BHC	14.214	0.00	0.00	0.0000	0.0000	0	• • • • • • • • • • • • • • • • • • • •	
19	HEPTACHLOR	14.685	5840.00		1.4751	1.4751	5840	_	
n	ALDRIN	16.123	0.00		0.0000	0.0000	0	-	
	HEPTACHLOR EPOXIDE	16.791	0.00		0.0000	0.0000	Ů		
	GAMMA CHLORDANE	17.459	0.00		0.0000	0.0000	0		
0	ALPHA CHLORDANE/ENDO	18.019	0.00		0.0000	0.0000	0		
0	DIELDRIN	18.924	0.00		0.0000	0.0000	0		
0	DDE / 1 1/14	19.286	0.00		0.0000	0.0000	ŏ		
0	ENDRIM /) /) /) ('	20.520	0.00		0.0000	0.0000	ŏ		
0	ENDOSUN FAM ITY	21.081	0.00	0.00	0.0000	0.0000	Ů		
0	DDD / U	21.479	0.00	0.00	0.0000	0.0000	0		
0	ENDRIM ALDEHYDE	22.091	0.00	0.00	0.0000	0.0000	ŭ		
0	ENDOSULFAN SULFATE	22.599	0.00	0.00	0.0000	0.0000	Ů		
20	- 1	22.845	22327.00	2047,19	1.1269	1.1269	22327		
21	DDT	23.067	27592.50		1.5816	1.5816	27592		
22	ENDRIN KETONE	23.876	2137196.00		172.1691	172.1691	2137196	•	
0	METHOXYCHLOR	25.263	0.00		0.0000	0.0000	2131170	•	
0	DBC	25.626	0.00	0.00	0.0000	0.0000	ň		
0	DCB	31.152	0.00		0.0000	0.0000	Ö		
			5388987.50	1.035e+06	347.3561	347.3561	5388988	*************	

Missing Component Report

component	Expected Retention (Sample File)
ALPHA BHC	10.753
BETA BHC	12.324
GAMMA BHC	13.331
DELTA BHC	14.214
ALDRIN	16.123
HEPTACHLOR EPOXIDE	16.791
GAMMA CHLORDANE	17.459
ALPHA CHLORDANE/ENDO	18.019
DIELDRIN	18.924
DDE	19.286
-40-14	20.520
'LFAN II	21.081
	21,479
ENDRIN ALDEHYDE	22.091
ENDOSULFAN SULFATE	22.599
METHOXYCHLOR	25.263
DBC	25.626
DCB	31.152

HP5890 DETECTOR B

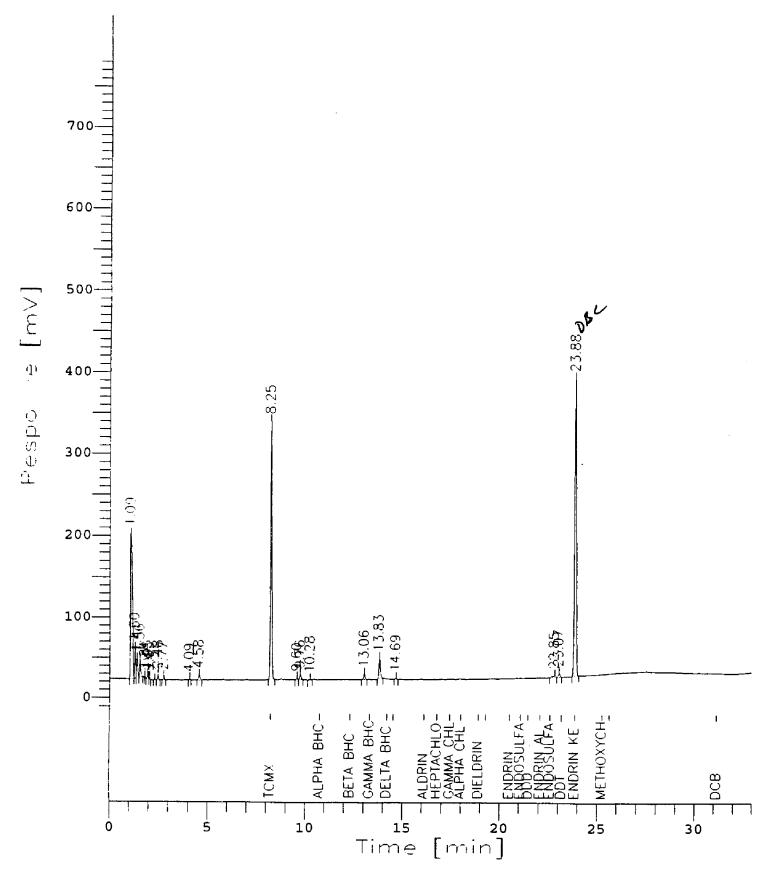
Report Stored in ASCII File: C:\2700\HP5890\PB31009.TX0

Sample Name : BLK #3

FileName C:\2700\HP5890\PB31009.raw

Method : MPPEST8.ins

Start Time : 0.00 min Scale Factor: 1.0


End Time : 33.00 min

Sample #: 9 Date : 3/14/95 11:21 AM

Page 1 of 1

02:00 PM

Instrument ID:	461890
hast. Channel:	FIB
Method File Name:	

Calibration File Name:

GC Column 1: GC Column 2:

1:7	`	-	7	70/
	-/			

· [Sample Name	Run/ ALS#	Injectior Date	n / Purge Time	Initial/Final Vol(mL) Wt.(g)	DF	Colum Surr-1	n 1 %D Surr-2	Colum Surr-1	n 2 %D Surr-2	Comments / Standard Info.
£	1660 4/2	t	3-8-55	10:29						Ì	
A	1271/1251/4	ري		11:06							
رکس	1232 6/4	3		11:43							
A	BIKH J 2091	ί/		12:19							
	14/12/60	5		12:06							
40	(5,2100	1,5	V	01:320							
19	450/57-1 PLS	7	3/8/45	02:09							
	450561-3	7"	1	02:41							
رم ک	50561-2	7		03:22							
1	950556-1	16		03,58							
6	15-0.556-1	11		04:31							
1/	950626-16	12		05:11							
A	950 626-80	, 3	1	05.98							
12	950 626-80	14		16:24					1		
1/	950 66670	15		07.01							
-	450616-9	1.		07:32						 	
6	50.626-6	17	V	68:14						····	

Pesticide/PCB: Surr 1 = DBC/DCB, Surr 2 = TCX (cap.col.criteria ± 0.3%)

Instrument ID: HP 5790
Inst. Channel: A/3
Method File Name:

Calibration File Name:

GC Column 1: GC Column 2:

11. 12. 1 -12. 1

Sample Name	Run/ ALS#	Injection Date	n / Purge Time	Initial/Final Vol(mL) Wt.(g)	DF	Column 1 %D Surr-1 Surr-2		Column 2 %D Surr-1 Surr-2		Comments / Standard Info.	
1.450626-8pmg (90626-3/15) 14e,cre 29.50474-1	18	3/8/45	08:50								
(90626-3/15)	15	1/1	9:26								
Leene	20		10:10						 - 		
29,0474-1	21	V	10:38						 		
"Stepone	22	3/8/15	11-14								
A1-221 / purife	73	1//	11:50								
1950686-1	24	3/9/95	12:26								
1450 6264.	25		01/06in		15						
1450626-1	26		0/.38		15						
j -3	27		02.14		X						
5	78		02 5/		XG						
- 6	79		03.21		15						
() - 7	3-	V	04:03		15						
- 9	31	3495	69 39		15						
Kline	32	11	0575								
A1260/1660/2	33		65:57								
-12	34	V	0621		1.5-						

Pesticide/PCB: Surr 1 = DBC/DCB, Surr 2 = FCX (cap.col.criteria ± 0.3%)

Instrument ID:	<u> </u>	Calibration File Name:	
Inst. Channel:	<u></u>	GC Column 1:	140-1001
Method File Name:	PCZ	GC Column 2:	パナく らき

Sample Name	Run/ ALS#	Injection Date	n / Purge Time	Initial/Final Vol(mL) Wt.(g)	DF	n 1 %D Surr-2	Colum Surr-1	n 2 %D Surr-2	Comments / Standard Info.
69562613	÷, 3		07:03		15				
V -15	36	1/1	07,46	!	115				
2950626-11	30		2016		XSE.				
lezere.	37	W	03/53		'				
1950626-11 2950626-11 Lene Anzilansylog	3°]	/[/	09:29						
/ '		<u> </u>							
·									

Pesticide/PCB: Surr 1 = DBC/DCB, Surr 2 = TCX (cap.col.criteria ± 0.3%)

maly	
Sis 35	
nature	
7	

Instrument ID:
Inst. Channel:

Method File Name:

| Pair |

Calibration File Name: GC Column 1:

GC Column 2:

RHL-1701

	Sample Name	Run∕ ALS#	Injection Date	r / Purge Time	Initial/Final Vol(mL) Wt.(g)	DF	Column Surr-1		Colum Surr-1	n 2 %D Surr-2	Comments / Standard Info.
7	458626-6	A	3/10/45	10:33/2	_	Liz					
	950625-71	19		10:58		1:2					
	950626-9	20	\bigvee	11.35		112					
	950625-11	કુ'(1			X5					
	950626-11 950626-15 950626-15	ント	7057			XZ.					
	950626-15	23	/ ,			X26					
2	950626-15	24	Cem	neut		X76					Mas Thur te Heine Seine
	A1221/A1254 44	25"	3/10/5	له کم <u>.</u>	-						
	A1721/A1254/44	26	31895	11:21Am				1			20003 13 75
2	436626 11	27		11:57m		12					,
3	(430636-15	28	V	12:34 EM		X200					1:2
	1950626-15	29		Otiff	3/15	1.10					LOSTBY Styste
4	450626-4	30		12.48	0/:47	X5					Ź
	450626-15	3,		12:28		X10					
4	450 626-7	37		0504							
	-6	33		63:41		1:2					
(1950626-9	34		64117							

Pesticide/PCB: Surr 1 = DBC/DCB, Surr 2 = TCX (cap.col.criteria ± 0.3%)

Analyst Signature: Supervisor Review
Date:

Instrument ID:	11628AB	Calibration File Name:	
Inst. Channel:	A/B	GC Column 1:	K+K-1701
Method File Name:	<u> </u>	GC Column 2:	KAT GO

Sample Name	ALS# Date Time		n / Purge Time	Initial/Final Vol(mL) Wt.(g)	DF	Column 1 %D Surr-1 Surr-2		rmn 2 %D Comments / Standard Inf	
(950 \$25-15- 6950626-6 1-1154 L/U A1772 L/U	35	3/13/55	05/7		سحلا				
6950626-6	36	3/13/15	06:06	-	SIL				
P1354 6/4	37	2/13/8	-66:48						
A1272 C/4	38	3/13/15							
,									
			_						
	<u></u>			··					
- · · · · · · · · · · · · · · · · · · ·									

Pesticide/PCB: Surr 1 = DBC/DCB, Surr 2 = {CX (cap.col.criteria ± 0.3%)

LABORATORY NAME:

CAL PERFORMED BY:

ANALYSIS DATE:

ANALYSIS TIME: LABORATORY ID:

NAC

KMW 01/06/95

22:49 A1260 GC COLUMN:

INSTRUMENT: METHOD:

RTX-1701

HP5890 8080

Pesticide/PCB Initial Calibration

Calibration Factor Summary

STANDARD	: ====	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4	LEVEL 5		STD	
AMOUNT, PPB	:	25	50	100	250	500	MEAN	DEV.	%RSD
ANALYTE (S)	: :								
A1260	:	9580	9757	9531	9507	13659	10407	1628	15.65
			=======		=======				

FILE:

54220

LABORATORY NAME: CAL PERFORMED BY:

NAC KMW

GC COLUMN: INSTRUMENT: METHOD:

RTX-1701 HP5890 8080

ANALYSIS DATE: ANALYSIS TIME: LABORATORY ID:

02/20/95 15:51 A1254

Pesticide/PCB Initial Calibration

Calibration Factor Summary

STANDARD	: ====	LEVEL 1		LEVEL 3	LEVEL 4 L	EVEL 5		STD	
AMOUNT, PPB	:	25	50	100	250	500	MEAN	DEV.	%RSD
ANALYTE (S)	:								
A1254	:	7277	7261	6767	5975	5990	6654	578	8.69
	-								

FILE:

PCBCRV

LABORATORY NAME: NAC CAL PERFORMED BY: KMW INIT. CAL. DATE: 02/20/95 INIT. CAL. TIME: 15:51 ANALYTE: A1254

INIT. CAL. CONC: 25/50/100/250/500 PPB

GC COLUMN: RTX-1701
GUANT/CONF.: GUANT
GC INSTRUMENT: HP5890
CHK. CAL. DATE: 3/08/95
CHK. CAL. TIME: 11:06
CHK. CAL. CONC: 250PPB

=====	22 12 12 14 12 14 16 16 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18										
222342		MEAN CAL. FACT		• •		INIT. CAL 1ST PK.RT	RT +/-	RT WINDOW FROM TO	CAL. CHK RT		
A1254	:	6654	6422	3.5	20.0	16.20		16.119 16.281	16.22		

LABORATORY NAME: NAC GC COLUMN: RTX-1701 CAL PERFORMED BY: KMW QUANT/CONF .: QUANT INIT. CAL. DATE: 02/20/95 GC INSTRUMENT: HP5890 INIT. CAL. TIME: 15:51 CHK. CAL. DATE: 3/08/95 ANALYTE: A1254 CHK. CAL. TIME: 17:48 INIT. CAL. CONC: 25/50/100/250/500 PPB CHK. CAL. CONC: 250PPB

*====:		CAL. FACT	CHK. CAL FACT.	% DIFF.	ALLOWED % DIFF	INIT. CAL 1ST PK.RT	RT +/-	RT WII	ADOM TO	CAL. CHK
A1254	:	6654	7019	-5.5	15.0		0.081	14,119	14, 291	14 213

LABORATORY NAME: NAC GC COLUMN: RTX-1701 CAL PERFORMED BY: KMW QUANT/CONF.: QUANT INIT. CAL. DATE: 02/20/95 GC INSTRUMENT: HP5890 INIT. CAL. TIME: 15:51 CHK. CAL. DATE: 3/08/95 ANALYTE: A1254 CHK. CAL. TIME: 22:50 INIT. CAL. CONC: 25/50/100/250/500 PPB CHK. CAL. CONC: 250PPB

	MEAN	CHK. CAL	X	ALLOWED	INIT. CAL	RT	RT WINDOW	CAL. CHIK
	CAL. FACT	FACT.	DIFF.	% DIFF	1ST PK.RT	+/-	FROM TO	RT
A1254	5975	5268	11.8	15.0	16.20	0.081	16.119 16.281	16.21

LABORATORY NAME: NAC
CAL PERFORMED BY: KMW
INIT. CAL. DATE: 01/06/95
INIT. CAL. TIME: 22:49
ANALYTE: A1260

ANALYTE: A1260 INIT. CAL. CONC: 25/50/100/250/500 PPB GC COLUMN: RTX-1701
GLIANT/CONF.: DLIANT
GC INSTRUMENT: HP5890
CHK. CAL. DATE: 3/09/95
CHK. CAL. TIME: 05:51
CHK. CAL. CONC: 50PP8

	MEAN	CHK. CAL	%	ALLOWED	INIT. CAL	RT	RT WINDOW	CAL. CHK
	CAL FACT	FACT.	DIFF.	% DIFF	1ST PK.RT	+/-	FROM TO	RT
A1260 :	9757	8366	14.3	15.0	18.54	0.092	18.448 18.6	32 18.513

LABORATORY NAME: NAC
CAL PERFORMED BY: KMW
INIT. CAL. DATE: 02/20/95
INIT. CAL. TIME: 15:51
ANALYTE: A1254
INIT. CAL. CONC: 25/50/100/250/500 PPB

GUANT/CONF.: GUANT
GC INSTRUMENT: HP5890
CHK. CAL. DATE: 3/09/95
CHK. CAL. TIME: 09:29
CHK. CAL. CONC: 250PPB

RTX-1701

GC COLUMN:

		MEAN CAL. FACT	CHK. CAL FACT.	% DIFF.	ALLOWED % DIFF	INIT. CAL 1ST PK.RT	RT +/-	_	CAL. CHK RT		
A1254	:	5 9 75	5590	6.4	15.0		0.081	16.119 16.281			

LABORATORY NAME: NAC CAL PERFORMED BY: KMW INIT. CAL. DATE: 02/20 INIT. CAL. TIME: 15:51

22/20/95 15:51 A1254

INIT. CAL. CONC:

ANALYTE:

25/50/100/250/500 PPB

GC COLLMN: QUANT/CONF.: GC INSTRUMENT:

RTX-1701 QUANT HP5890 3/13/95

CHK. CAL. DATE: 3/13/99
CHK. CAL. TIME: 11:21
CHK. CAL. CONC: 250PPB

Serre		MEAN CAL. FACT	OHK. CAL FACT.	DIFF.	% DIFF	INIT. CAL 1ST PK.RT	+/-	FROM	MODINI TO	CAL, CHK RT
A1254	: ===	5975		3.7	15.0	16.20			16.281	16.28

LABORATORY NAME: NAC
CAL PERFORMED BY: KMW
INIT. CAL. DATE: 02/20/95
INIT. CAL. TIME: 15:51
ANALYTE: A1254
INIT. CAL. CONC: 25/50/100/250/500 PPB

GC COLUMN: RTX-1701
GUANT/CONF.: QUANT
GC INSTRUMENT: HP5890
CHK. CAL. DATE: 3/13/95
CHK. CAL. TIME: 18:48
CHK. CAL. CONC: 250PPB

*****		MEAN CAL, FACT	CHK. CAL FACT.		ALLOWED % DIFF	INIT. CAL 1ST PK.RT	RT +/-	RT WIN	TO	CAL. CHK RT
A1254	: 	5975	5342	10.6		16.20				

LABORATORY NAME: CAL PERFORMED BY: ANALYSIS DATE:

ANALYSIS TIME:

LABORATORY ID:

NAC KMW 02/20/95 15:51 A1254

GC COLUMN:
INSTRUMENT:
METHOD:

RTX-1701 HP5890 9080

Pesticide/PCB Initial Calibration

Calibration Factor Summary

STANDARD	:	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4 (LEVEL 5		STD	# 223 <u>223 22</u> 2
AMOUNT, PPB	:	25	50	100	250	500	MEAN	DEV.	%RSD
ANALYTE (S)	: :								
A1254	:	7277	7261	6767 	5975	599 0	6654	578	8.69

FILE:

PCBCRV

LABORATORY NAME: NAC CAL PERFORMED BY: KMW INIT. CAL. DATE: 02/20/95 INIT. CAL. TIME: 15:51 ANALYTE: A1254

INIT. CAL. CONC: 25/50/100/250/500 PPB

GC COLLMN: RTX-1701
GLANT/CONF.: GLANT
GC INSTRUMENT: HP5890
CHK. CAL. DATE: 3/08/95
CHK. CAL. TIME: 11:06

250PPB

CHK. CAL. CONC:

DAILY CALIBRATION CHECK

		MEAN CAL. FACT	CHK. CAL	%	ALLOWED	INIT. CAL 1ST PK.RT	RT	RT WIN		CAL. CHK RT
A1254	: ===	6654	6422	3.5	15.0	16.20	0.081	16.119	16.281	16.22

LABORATORY NAME: NAC CAL PERFORMED BY: KMW INIT. CAL. DATE: 02/20/95 INIT. CAL. TIME: 15:51 ANALYTE: A1254 INIT. CAL. CONC: 25/50/100/

A1254 25/50/100/250/500 PPB GC COLUMN: RTX-1701
GUANT/CONF.: QUANT
GC INSTRUMENT: HP5890
CHK. CAL. DATE: 3/08/95
CHK. CAL. TIME: 17:48
CHK. CAL. CONC: 250PPB

DAILY CALIBRATION CHECK

					=== ==== :					
242422	CA	MEAN L. FACT	CHK. CAL FACT.		ALLOWED % DIFF	INIT. CAL 1ST PK.RT	RT +/-	RT WIN	4DOW TO	CAL, CHK RT
A1254	; =====	6654	7019	-5.5	20.0	16.20	0.081		16.281	16.213

NORTHEASTERN ANALYTICAL CORPORATION REPORT OF QUALITY CONTROL RESULTS

				000000000000000000000000000000000000000
NA	3,000000000		യെ കേട്ടേ	
		wo.	987 39 9742	 A 20

PARAMETER	MTX	LCS REC	MS REC			الماراد معدد RPD
Aroclor 1260	рA	138.			124.	10.7
Aroclor 1016	s	70.	62.	65.		4.72
Aroclor 1260	s	65.	45.	45.		0

Associated Samples: L950626-1 L950626-10 L950626-11 L950626-12 L950626-13 L950626-14 L950626-15 L950626-2 L950626-3 L950626-4 L950626-5 L950626-6 L950626-7 L950626-8 L950626-9

L950674-1 L950686-1

Sample used for Spike Analysis: L950626-8 Sample used for Duplicate Analysis: Not Applicable

NR - No Recovery NC - Not calculated, values below RDL HA - Interference due to high analyte ND - Not detected above the MDL MI - Matrix interference

NORTHEASTERN ANALYTICAL CORPORATION

REPORT OF PCB RESULTS SOIL SURROGATE RESULTS

NAC JOB #L950626

	HWC DOD #FRADOOS9				
LAB SAMPLE ID	DBC RECOVERY 20-150	TCMX TECOVERY 60-150			
L950626-1	D	79			
L950626-2	48	84			
L950626-3	D	72			
L950626-4	60	85			
L950626-5	D	74			
L950626-6	57	90			
L950626-7	84	93			
L950626-8	50	90			
L950626-9	59	83			
L950626-10	54	90			
L950626-11	48	96			
L950626-12	37	84			
L950626-13	35	79			
L950626-14	65	91			
L950626-15	112	107			
QCSPK/03-03-95	124	94			
BLK#1 2100/03-03-95	88	88			
L950626-8MS	64	117			
L950626-8MSD	65	88			

MI - Surrogate was not recovered due to matrix interference HA - Surrogate was not recovered due to high analyte D - Surrogate was diluted out

NORTHEASTERN ANALYTICAL CORPORATION

REPORT OF PCB RESULTS AQUEOUS SURROGATE RESULTS

NAC JOB #1950626

LAB SAMPLE ID	DBC *RECOVERY 24-154	TCMX \$RECOVERY
BLK#1 2082/02-16-95	118	92
QCSPK/02-16-95	118	94

MI - Surrogate was not recovered due to matrix interference
HA - Surrogate was not recovered due to high analyte
D - Surrogate was diluted out

Software Version: 3.3 <4811>

Sample Name : L950626-1 1:5

Sample Number: 26 Operator

Time : 3/9/95 02:12 AM

Study : PPPCB

Instrument : HP5890 AutoSampler : NONE k/Vial : 0/0

Channel: A A/D mV Range: 1000

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 01:38 AM Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000

Raw Data File : C:\2700\HP5890\PA38026.RAW Result File : C:\2700\HP5890\PA38026.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

pts/sec

Process File : HPPESTA Sample File : PESTA058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet 8:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

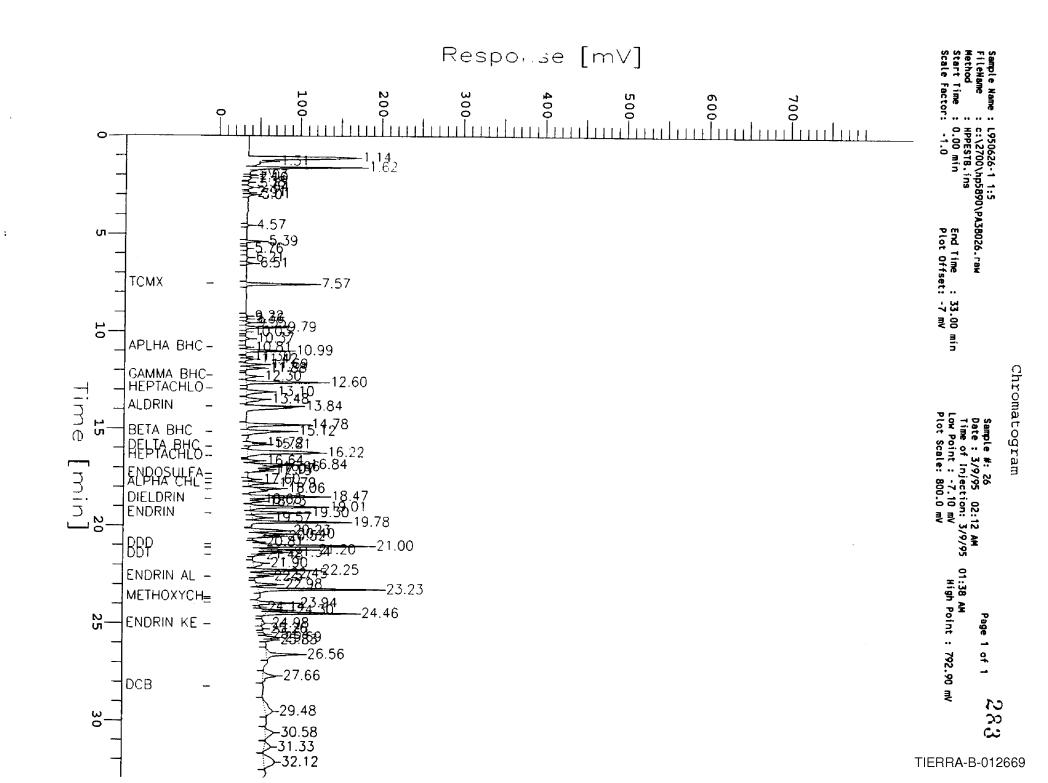
Total run time: 33.00 min

Timed Events:

There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.


Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range
1		1.135	1030666.50	128645.96	35.5355	35.5355	1030666		
2		1.313	62003.00	16809.48	5.2812	5.2812	62003		
3		1.623	527147.00		19.8091	19.8091	527147		
4		2.031	8134.00	3153.03	3.5987	3.5987	8134	•••••	
5		2.156	18611.00	3503.16	3.9260	3.9260			
6		2.382	8642.00	1704.80	3.6146		18611		
7		2.642	31550.00			3.6146	8642		
8				6571.25	4.3301	4.3301	31550		
9		2.908	5420.50	1737.85	3.5140	3.5140	5420		
-		3.010	26335.00	7196.28	4.1672	4.1672	26335		
10		4.569	12545.00	3626.79	3.7365	3.7365	12545		
11		5.386	69356.50	19331.97	5.510 9	5.5109	69356		
12		5.760	5894.50	1069.54	3.5288	3.5288	5894		
13		6.212	18595.50	2852.50	3.9255	3.9255	18596		
*4		6.510	35358,50	8509.04	4.4490	4.4490	35358		
	TCMX	7.572	353444.00	85556.33	13.9120	0.0000	353444	0.2741	
د.		9.220	12895.00	2586.43	3.7474	3.7474	12895		
17		9.359	13068.00	3205.37	3.7528	3.7528			
18		9.554	27461.00				13068		
19				5924.10	4.2024	4.2024	27461	• • • • • • • • • • • • • • • • • • • •	
20		9.789	191237_00		9.3176	9.3176	191237		
20		16.025	5224.00	1241.23	3.5079	3.5079	5224	• • • • • • •	

ak 	Component Name	Time (min)	Area [uV*sec]	Keight [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range	282
1	APLHA BHC	10.368	25806.00	5506.06	4.1507	4.1507	25806			
3		/ 10.814 / 10.987	11848.50	2910.78 53754.52	3.7148	3.7148	11848	0.1575	-	
4	.1	11.303	4123.00		11.2633	11.2633	253533			
5	THE O	UD:N	43661.00		3.4735 4.7084	3.4735	4123			
5			104949.00	22512.46	6.1271	4.7084 6.1271	43661			13 2.57
7		U1 88 Z	92916.00		5.7314	5.7314	104949 92916			47330
	GAMMA BHC	12.302	97788.50		5.8916	5.8916	97788	0.3632		\mathcal{L}_{I}
7	1	12.604	528532.00		20.0560	20.0560	528532	0.3632	•	912
	HEPTACHLOR	12.914	0.00	0.00	0.0000	0.0000	0			r
0	ļ	13.096	221361.00	29649.50	9.6669	9.6669	221361			
1	1	13.477	189427.00		8.6590	8.6590	189427	*****		
	ALDRIN	13.841	130538.00	27862.62	6.6380	6.6380	130538	-0.0091		
5	1	14.775	482109.00	73481.40	34.9088	34.9088	482109			
	BETA BHC	15.117	381587.00	54976.78	27.6756	27.6756	381587	-0.1771		
5		15.720	22708.00	5051.73	4.4028	4.4028	22708			
	DELTA BHC	15.805	54049.00	15188.40	5.4948	5.4948	54049	-0.6184	-	
7	HERTACHION EVPOVINE	16.217	845042.00	_	32.3137	32.3137	845042			
,	HEPTACHLOR EXPOXIDE	16.381	0.00	0.00	0.0000	0.0000	0			
	1	16.643	64597.00	13669.77	3.0085	3.0085	64597	*****		,
)		16.837	230606.50	52309.48	9.2420	9.2420	230607			
		16.956 17.073	37392.50	11237.49	2.1779	2.1779	37392			
!	- 1 1	17.073	18279.50	6492.04	1.4601	1.4601	18280			
	ENDOSULFAN I	17.321	21565.00	7726.89	1.5834	1.5834	21565			
	SAMMA CHLORDANE	17.600	0.00 45404.00	0.00	0.0000	0.0000	0			
	LPHA CHLORDANE	17.790	172555.50	9605.44 29516.53	2.2510	2.2510	45404	0.1797	-	
	DE	18.063	125466.50	27732.67	6.8741	6.8741	172556	0.0233		
	TEUDRIN \	18.472	546250.00	89768.88	6.0161	6.0161	125466	-0.2113	-	
_		18.634	2985:00	1451.82	23.8366 2.5154	23.8366	546250	-0.6952		
	\cup	18.731	40103.00	10284.49	3.9722	2.5154	2985			
	1	19.005	516168.00	90375.50	29.4013	3.9722	40103	*		
٤	ENDRIN 👇	19.302	343088.50	66489.44	20.1983	29.4013	516168 3/3088	0 47//		
		19.566	110585.00	18938 14	7.8355	20.1983 7.8355	343088	-0.1746		
	\wedge	19.780	607110.50	116566.00	34.2369	34.2369	110585 607111			
		20.225	258294.00	41345.59	18.2844	18.2844	258294			
		20.400	143650.00	34225.47	11.5750	11.5750	143650			
		20.515	81206.50	21623.47	7.9206	7.9206	81207			
		20.808	13402.00	2803.51	3.9524	3.9524	13402			
	00	21.003	833103.50	136508.50	51.9245	51.9245	833104	0.3728		
	NDOSULFAN 11	21.203	272628.00	61007.39	15.3377	15.3377	272628	0.5369		
D	DT TO	21.344	127423.50	31242.87	15.3155	15.3155	127424	-0,4981		
	1	21.480	12217.00	4013.52	7.6004	7.6004	12217			
	[21.896	154856.50	13473.07	12.5837	12.5837	154856			
_		22.247	384653.50	73996.20	28.5972	28.5972	384654			
E	NORIN ALDEHYDE	22.447	132640.50		11.0355	11.0355	132640	-0.6915		
		22.571	32087.00	9478.11	4.0284	4.0284	32087			
	1	22.982	147019.00		12.0375	12.0375	147019			
	ETHOVYE'' OD	23.225	833695.00		192.1219	192.1219	833695			
	ETHOXYCHLOR	23.625	0.00	0.00	0.0000	0.0000	0			
	NDCSULFAN SULFATE BC \	23.726	0.00	0.00	0.0000	0.0000	C			
U	PC	23.937	238748.00		17.4556	17.4556	238748	0.1360		
	1	24.144	7387.00	1644.01	1.0775	1.0775	7387			
	1	24.299	138243.00	30572.83	10.3408	10.3408	138243	•••••		
F	NDRIN KETONE	24.456 24.976	552838.00 37897.00		39.6900	39.6900	552838			
-	ALIVAE	25.256	7616.00	3920.09 1442.68	3.0222	3.0222		-0.1712	-	
	1	25.535	7204.00	1519.05	1.6239 1.6048	1.6239				
	1	25.693	59781.00	12415.01	4.0329	1.6048 4.0329	7204 59781			
		25.825	27045.00	6325.44	2.5211	2.5211	27045			
		26.562	340948.00	41930.28	17.0174	17.0174	340948			
		27.664	190897.00	16522.88	-3.5736	-3.5736	190897	*****		
D	СВ	28.203	0.00	0.00	0.0000	0.0000	0	•••••		
		29.476	256492.00	8727.62	-0.4021	-0.4021	256492	*****		
		30.584	200653.50	10256.26	-3.1019	-3.1019	200654	•••••		
		31.325	145863.00	7789.42	-5.7510	-5.7510	145863			
				12988.97	5.9894		388684			
		32.118	388684.50	12700.71	J. 7074	5.9894	30000			

sing Component Report

Expected Retention (Sample File)

HEPTACHLOR EXPOXIDE 12.914
HEPTACHLOR EXPOXIDE 16.381
ENDOSULFAN I 17.321

Software Version: 3.3 <4B11>

Sample Name : L950626-1 1:5

Time : 3/9/95 02:12 AM Sample Number: 26

Operator : KMW

Study : PPPCB

Instrument : HP5890
*utoSampler : NONE
:k/Vial : 0/0

Channel : B A/D mV Range : 1000

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 01:38 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data file : C:\2700\HP5890\PB38026.RAW Result File : C:\2700\HP5890\PB38026.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTB Sample File : PESTB058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

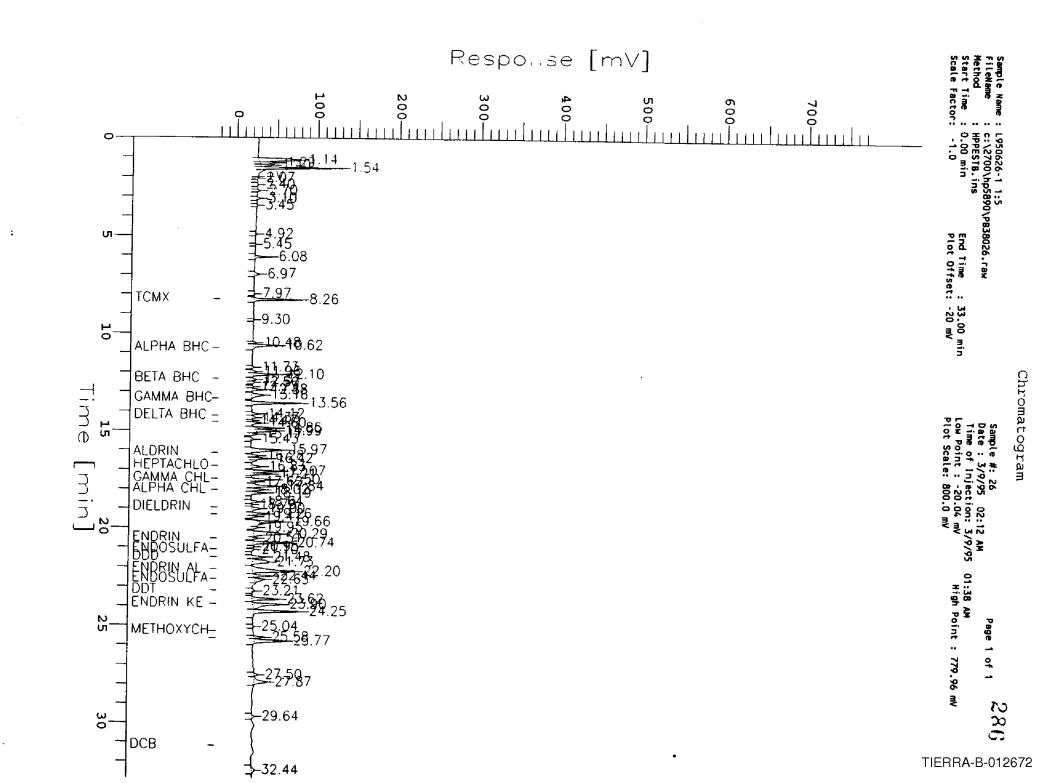
There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range	
1		1.137	403456.16	53322.14	25.0280	25.0280	403456		
2		1.288	111604.78	25027.77	3.3281	3.3281	111605		
3		1.403	73240.54		0.4756	0.4756	73241		
4		1.542	396293.51		24.4955	24.4955	396294		
5		2.066	3686.00	1549.71	-4.6959	-4.6959	3686		
6		2.399	8592.00	2042.55	-4.3312	-4.3312	8592		
7		2.701	17498.50	5147.70	-3.6689	-3.6689	17498		
8		3.103	25321.00	5383.34	-3.0873	-3.0873	25321		
9		3.453	5522.00	1558.83	-4.5594	-4.5594	5522		
10		4.921	10077.00	2720.55	-4.2207	-4.2207	10077		
11		5.449	3302.00	863.74	-4.7245	-4.7245	3302		
12		6.080	82448.00	20874.36	1.1602	1.1602	82448		
13		6.966	36617.00	7324.69	-2.2474	-2.2474	36617		
14		7.970	8012.00	1598.61	-4.3743	-4.3743	8012		
٠, ح	TCMX	8.261	268713.00	61452.17	15.0095	15.0095	268713		
		9.303	4082.00	1063.64	-4.6665	-4.6665	4082		
17		10.481	16793.00	4036.58	2.0463	2.0463	16793		
18		10.618	152531.00	31438.94	7.9394	7.9394	152531		
0	ALPHA BHC	10.753	0.00	0.00	0.0000	0.0000	0		
19	-	11.729	16086.00	3305.20	1.4716	1.4716	16086		
20		11.956	17330.50	3733.38	1.5295	1.5295	17330		

# Name Initial Curt Section Colore Col		ILT File : PB38U26.R\$1	, Frince	C (11 3/9/9)	UZ:12 AM					205	pago
21 1 21.03 16.3877 0. 33019 5.6 0. 3319 6. 3333 16.3877 2. 22533 0. 370.03 1					-	Raw	Adjusted	Calibration	Cal.	285	
21		Name	[min]	[uV*sec]							
22 BETA BIRC 12,371 22533,00 4767.84 1,7718 1,7718 27933 - 12,733 7775.00 1879.28 1,1784 1,1784 7770 12,733 7775.00 1879.28 1,1784 1,1784 7770 12,733 7775.00 1879.28 1,10938 1,0938 7774 26	21		12.103	163877.00			A 3535	147077			• • • • • • •
23		BETA BHC							_		
12. 733 7775.50 1879.28 1.0938 7774 12. 733 7775.50 1879.28 1.0938 7774 13. 12. 880 6678.40 16514.60 1.6418 1.8418 66784 13. 158 119332.00 1010.73 3.7994 3.7994 119332 13. 64 13. 331 0.00 0.00 0.0000 0.0000 0.0000 13. 331 0.00 0.0000 0.0000 0.0000 14. 331 3.502 3224.73.00 4066.54 11.3670 11.3670 12.2475 14. 335 3224.73.00 4066.54 11.3670 11.3670 12.2475 14. 331 26329.00 4655.25 2.6641 2.6329 14. 331 46PTACHLOR 1.4.64 60678.00 12535.64 2.0433 4.2043 60678 15. 16. 40678.00 12535.64 4.2043 4.2043 60678 15. 16. 833852.00 7972.37 1.3498 1.3498 15. 16. 833852.00 7970.51 1.24897 7.0899 118659 15. 16. 833852.00 7970.51 2.8697 7.7341 131603 15. 16. 833852.00 7970.51 2.8697 7.7341 131603 16. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	23								-		
12.880	74			-				-			
26	5										
0 GAMMA BRC 13.331 0.00 0.000 0.00000 0.000000	26										
27	0	GAMMA BHC									
14.122	27			322473.00							
14, 331	28	DELTA BHC									
14. 14. 14. 15.	29								-		
Section Sect	30										
14.840 18659.00 26482.54 7.0890 7.0890 7.0890 18659 3852	31	HEPTACHLOR									
14.989			_						-		
34 15.168 33952.00 7970.51 7.6871 7.6872 7.6872 33652											
35 15.430 28039.50 4602.40 74.5710 75.5710 280282 200 40012.16 73.6725 73.5725 280282 200 40012.16 73.6725 73.5725 280282 200 40012.16 73.6725 73.5725 280282 200 280282 200 280282 200 200000 20000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 2000000 20000000 200000000	34										
36											
0 ALDRIN 16.123											
37 16.277 38858.50 8903.76 70.3489 70.3489 38859 70.3489 70.3489 38859 70.3489 70.3489 38859 70.3489 70.3489 38859 70.3489 70.3489 70.3489 38859 70.3489 70.3489 38859 70.3489 70.3489 70.3489 80.345 70.3489 70.3489 80.345 70.3489 70.3489 80.345 70.3489 70.3489 80.345 70.3489 70.3489 80.345 70.3489 70.3489 80.345 80.3		ALDRIN									
38											
18											
## REPTACHLOR EPOXIDE											
41		HEPTACHLOR FPOXIDE			72724 77						
42 GAMMA CHLORDANE 17, 499 931839,50 27007,12 6.7590 6.7590 131839 946 4.7590 131839 131839 131839,50 27007,12 6.7590 6.7590 131839 946 4.7590 131839		THE THE PERSON EN ON THE		821/0 EO	20541.03						
43 4 ALPHA CHLORDANE/END 4 ALPHA CHLORDANE/END 5 18.021 7110.00 15464.18 2.6023 2.6023 71110 4 ALPHA CHLORDANE/END 5 18.021 7110.00 15464.18 2.6023 2.6023 71110 4 THE PROPERTY OF THE PROPERT		GAMMA CHLORDANE		131970 50	20341.92						
ALPHA CHLORDAME/ENDO 17:837 175988.50 33431.04 8.6434 8.6434 775988 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- The state of the									
45		ALPHA CHLORDANE/ENDO	17 837		3740.31 22/31 0/						
46	45	The state of the s							•		
47 48 48 48 48 48 48 48 48 48 48 48 48 48				9/731 50	10770 47						
18.790				50380 00	10104 27						
DIELDRIN 18.996 68845.00 11835.80 5.3084 5.3084 68845 -											
50 DDE		DIFLORIN									
51				87711 00	1000.00				-		
52 19.557 162089.00 34797.37 10.0216 10.0216 162089 53 19.954 14335.50 3504.52 0.9320 0.9320 14335 54 20.292 337926.00 38021.14 28.8164 337926 55 20.512 23579.00 5994.19 2.0094 2.0094 23579 5 ENDRIN 20.741 255879.00 48307.82 21.8196 21.8196 255879 20.946 10235.00 2613.20 1.6988 1.6988 10235 28 ENDOSULFAN II 21.098 12110.00 2890.29 1.8401 1.8401 12110 - 59 21.480 86605.00 17547.37 5.4114 5.4114 86605 60 DDD 21.728 217008.00 21846.23 15.3648 15.3648 217008 61 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 49.5317 471465 62 ENDOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 125112 63 22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 60 DBC 25.759 63344.00 12984.43 6.2863 6.2863 6.344 670 DBC 25.767 250332.50 39111.80 23.7549 23.7549 250332 671 27.498 28871.00 4752.40 3.0658 3.0658 28871 672 27.498 28871.00 4752.40 3.0658 3.0658 28871 673 29.641 31708.00 41743.88 13.8410 13.8410 144211 674 27.498 28871.00 41743.88 13.8410 13.8410 144211 675 20.00 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000									-		
19.954 14335.50 3504.52 0.9320 0.9320 14335 20.292 337926.00 38021.14 28.8164 337926 20.292 337926.00 38021.14 28.8164 28.8164 337926 20.512 23579.00 48307.82 21.8196 25879 20.741 255879.00 48307.82 21.8196 25879 20.946 10235.00 2613.20 1.6988 1.6988 10235 28 ENDOSULFAN II 21.098 12110.00 2890.29 1.8401 1.8401 12110 - 21.480 86605.00 17547.37 5.4114 5.4114 86605 20 DD 21.728 217008.00 21846.23 15.3648 15.3648 217008 21.801 49.5317 49.											
54 20.292 337926.00 38021.14 28.8164 28.8164 337926 55 20.512 23579.00 5994.19 2.0094 2.0094 23579 5 ENDRIN 20.741 255879.00 48307.82 21.8196 255879 20.946 10235.00 2613.20 1.6988 1.6988 10235 28 ENDOSULFAN I1 21.098 12110.00 2890.29 1.8401 1.8401 12110 - 5 ENDRIN 21.728 217008.00 21846.23 15.3648 15.3648 217008 60 DDD 21.728 217008.00 21846.23 15.3648 15.3648 217008 61 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 49.5317 471465 62 ENDOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 125112 63 22.627 89561.00 13424.60 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 34033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 0 0 0 0 0 0 0											
20.512 23579.00 5994.19 2.0094 23579 ENDRIN 20.741 255879.00 48307.82 21.8196 25.879 20.946 10235.00 2613.20 1.6988 1.6988 1.0235 ENDOSULFAN II 21.098 12110.00 2890.29 1.8401 1.8401 12110 - 21.480 86605.00 17547.37 5.4114 5.4114 86605 DDD 21.728 217008.00 21846.23 15.3648 15.3648 217008 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 471465 ENDRIN ALDEHYDE 22.400 125112.00 24573.78 12.8576 12.8576 12.8112 DDT 23.214 24267.00 13424.60 9.1323 9.1323 89561 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 281576 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 281576 METHOXYCHLOR 25.263 0.00 0.00 0.000 0.0000 0.0000 0 METHOXYCHLOR 25.263 0.00 0.00 0.000 0.0000 0.0000 0 METHOXYCHLOR 25.767 250332.50 39111.80 23.7549 23.7549 250332 7.11 27.498 28871.00 4752.40 3.0658 3.0658 28871 DCB 31.152 0.00 0.00 0.000 0.0000 0.0000 0.0000 0.0000 0 DCB 31.152 0.00 0.00 0.000 0.000					38021 1/						
SENDRIN 20.741 255879.00 48307.82 21.8196 21.8196 255879 20.946 10235.00 2613.20 1.6988 1.6988 10235 21.8196 21.8196 255879 21.480 86605.00 17547.37 5.4114 86605 21.8196 21.8196 21.8196 255879 21.480 86605.00 17547.37 5.4114 86605 21.8196 21.8196 21.8196 255879 21.480 86605.00 17547.37 5.4114 86605 21.8196 21.8196 21.8196 255879 21.480 86605.00 17547.37 5.4114 86605 21.8196 21.8196 21.8101 12110 - 2890.29 1.8401 1.8401 12110 - 21.480 86605.00 17547.37 5.4114 86605 21.8196 21.8196 255879 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 1.8401 12110 - 21.8101 1.8401 1.8401 1.8401 12110 - 21.8101 1.840											
20.946 10235.00 2613.20 1.6988 1.6988 10235 28 ENDOSULFAN II 21.098 12110.00 2890.29 1.8401 1.8401 12110 - 21.480 86605.00 17547.37 5.4114 5.4114 86605 60 DDD 21.728 217008.00 21846.23 15.3648 15.3648 217008 61 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 49.5317 471465 62 ENOOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 125112 63 22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 69 25.579 63344.00 12984.43 6.2863 6.2863 63344 70 DBC 25.767 250332.50 39111.80 23.7549 23.7549 250332 71 27.498 28871.00 4752.40 3.0658 3.0658 28871 72 27.487 28871.00 4752.40 3.0658 3.0658 28871 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.000 0.0000 0.0000 0 74 27 48 28871.00 4752.40 3.0658 3.0658 28871 75 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.000 0.0000 0.0000 0		ENDRIN			/9307 92						
28 ENDOSULFAN II 21.098 12110.00 2890.29 1.8401 1.8401 12110 - 59 21.480 86605.00 17547.37 5.4114 5.4114 86605 60 DDD 21.728 217008.00 21846.23 15.3648 15.3648 217008 61 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 471465 62 ENDOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 12.8576 12.5112 63 22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 69 25.579 63344.00 12984.43 6.2863 6.2863 63344 70 DBC 25.767 250332.50 39111.80 23.7549 23.7549 250332 71 27.498 28871.00 4752.40 3.0658 3.0658 28871 72 27.498 28871.00 4752.40 3.0658 3.0658 28871 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.000 0.0000 0.0000 0 0 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.	•										
59 21.480 86605.00 17547.37 5.4114 5.4114 86605 60 DDD 21.728 217008.00 21846.23 15.3648 15.3648 217008 61 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 49.5317 471465 62 ENDOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 125112 63 22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 69 25.579 63344.00 12984.43 6.2863 6.2863 63344 70 DBC 25.767 250332.50 39111.80 23.7549 23.7549 250332 71 27.498 28871.00 4752.40 3.0658 3.0658 28871 72 27.867 144211.00 17143.88 13.8410 13.8410 144211 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.000 0.0000 0	28	ENDOSUL FAN. 11									
60 DDD 21.728 217008.00 21846.23 15.3648 15.3648 217008 61 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 49.5317 471465 62 ENDOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 125112 63 22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.000 0.000 0.000 0 70 DBC 25.767 250332.50 39111.80 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>									-		
61 ENDRIN ALDEHYDE 22.200 471465.00 54661.03 49.5317 49.5317 471465 62 ENDOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 12.5112 63 22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 69 25.579 63344.00 12984.43 6.2863 6.2863 63344 70 DBC 25.767 250332.50 39111.80 23.7549 23.7549 250332 71 27.498 28871.00 4752.40 3.0658 3.0658 28871 72 27.486 144211.00 177143.88 13.8410 13.8410 144211 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.0000 0.0000 0		DDD		217008.00							
62 ENDOSULFAN SULFATE 22.440 125112.00 24573.78 12.8576 12.8576 12.5112 63 22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 0 METHOXYCHLOR 25.579 63344.00 12984.43 6.2863 6.2863 63344 0 DBC 25.579 63344.00 12984.43 6.2863 6.2863 63344 70 DBC 25.767 250332.50 39111.80 23.7549 23.7549 250332 71 27.498 28871.00 4752.40 3.0658 3.0658 28871 72 27.867 144211.00 177143.88 13.8410 13.8410 144211 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.0000 0.0000 0											
22.627 89561.00 13424.60 9.1323 9.1323 89561 64 DDT 23.214 24267.00 4143.34 1.2944 1.2944 24267 - 65 23.622 196235.50 35007.18 15.2006 15.2006 196236 66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 69 25.579 63344.00 12984.43 6.2863 6.2863 63344 70 DBC 25.767 250332.50 39111.80 23.7549 250332 71 27.498 28871.00 4752.40 3.0658 3.0658 28871 72 27.867 144211.00 17143.88 13.8410 13.8410 144211 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.000 0.0000 0				125112 00	24577 78						
64 DDT											
65		DDT									
66 ENDRIN KETONE 23.898 281576.50 37246.99 22.1022 22.1022 281576 67 24.252 344033.00 60738.60 27.1532 27.1532 344033 68 25.037 9503.50 1779.87 -2.2336 -2.2336 9504 0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 69 25.579 63344.00 12984.43 6.2863 6.2863 63344 70 DBC 25.767 250332.50 39111.80 23.7549 250332 71 27.498 28871.00 4752.40 3.0658 3.0658 28871 72 27.867 144211.00 17143.88 13.8410 13.8410 144211 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.0000 0.0000 0									-		
67		ENDRIN KETONE	23.898								
68	67										
0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0 0 0 0 0 0 0	68										
69		METHOXYCHLOR									
70 DBC 25.767 250332.50 39111.80 23.7549 23.7549 250332 71 27.498 26871.00 4752.40 3.0658 3.0658 26871 72 27.867 144211.00 17143.88 13.8410 13.8410 144211 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.0000 0.0000 0											
71		DBC									
72 27.867 144211.00 17143.88 13.8410 13.8410 144211 73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.00 0.0000 0.0000 0											
73 29.641 31708.00 4147.44 -10.4193 -10.4193 31708 0 DCB 31.152 0.00 0.000 0.0000 0											
0 DCB 31.152 0.00 0.00 0.0000 0.0000 0				177611.UU 31709 AA							
77		DCB									
	74										
					J471.10	-7.1/3/	-y.1/3/	47804			


7489407.50 1.362e+06 529.4103 529.4103 7489407

Missing Component Report

Component Expected Retention (Sample File)

ALPHA BHC 10.753
GAMMA BHC 13.331
ALDRIN 16.123
METHOXYCHLOR 25.263
DCB 31.152

HP5890 DETECTOR B

Software Version: 3.3 <4B11>

Sample Name : L950626-2

Sample Number: 16

Time

: 3/8/95 08:10 PM

Operator : KMW

Study : PPPCB

Instrument : HP5890 AutoSampler : NONE

Channel: A A/D mV Range: 1000

nck/Vial : 0/0

Interface Serial #: 8055910402 Data Acquisition Time: 3/8/95 07:37 PM

Delay Time : 0.00 min, End Time : 33.00 min, Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38016.RAW
Result File : C:\2700\HP5890\PA38016.RST
Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA Sample File : PESTA058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:
 Inlet A :

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

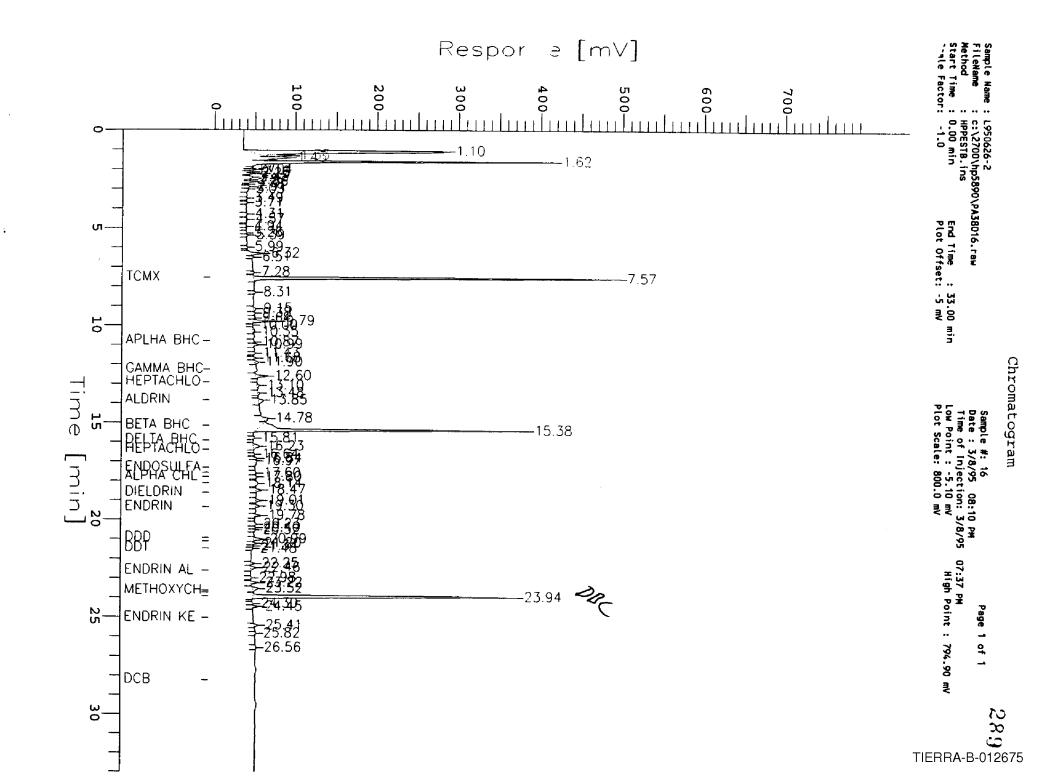
Total run time : 33.00 min

Timed Events:

There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.


Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta F	IT Cal. Range	
1		1.099	1929361.37	248356.80	63.6045	63.6045	1929361			
2		1.328	154483.00	33883.04	8.1697	8.1697				
3		1.429	114719.13		6.9277	6.9277				
4		1.624	1555292.00		51.9212	51.9212	1555292			
5		2.037	25311.00		4.1352	4.1352				
6		2.158	13384.00		3.7627	-	25311			
7		2.228	6586.00			3.7627	13384			
8		2.426			3.5504	3.5504	6586			
ŏ			29529.00	4313.00	4.2670	4.2670	29529			
10		2.565	2862.50	1237.04	3.4341	3.4341	2862			
10		2.661	11762.00	4120.35	3.7121	3.7121	11762			
11		2.782	1829.00	860.49	3.4018	3.4018	1829			
12		2.906	11064.00	2858.38	3.6903	3.6903	11064			
13		3.029	10264.00	1376.71	3.6653	3.6653	10264			
- 4		3.492	5891.00	1448.08	3.5287	3.5287	5891			
		3.714	6307.00	1315.19	3.5417					
٠,٥		4.306	9508.00	2448.67		3.5417	6307			
17					3.6417	3.6417	9508			
18		4.569	11275.00	2887.61	3.6968	3.6968	11275			
		4.937	4185.00	1082.43	3.4754	3.4754	4185			
19		5.263	2457.00	665.48	3.4214	3.4214	2457			
20		5.385	11926.00	3387.99	3.7172	3.7172	11926			

Pea #	k Component Name	Time (min)	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	n Delta RT [%]	Cal. Range	288
21		5.988	4939.0	0 1178.49	3,4990	3.4990	4939	• • • • • • • • • •		
22		6.315	89775.5		6.1487	6.1487	89776			
23 ?4		6.510	12506.0			3.7353	12506			
25 25		7.284	7113.0		3.5669	3.5669	7113			
26		7.570		0 452732.47	88.5721	0.0000	1890160	0.2550		
27		8.308 9.146	13301.0		3.7601	3.7601	13301			
28		9.379	30627.0 11436.5		4.3013	4.3013	30627			
29		9.637	7691.0		3.7019	3.7019	11436			
30		9.788	139703.00		3.5849 7.7080	3.5849	7691			
31	1	10.000	6897.0	1708.99	3.5601	7.7080 3.5601	139703			
32	1	10.349	29632.0		4.2702	4.2702	6897 29632			
33	APL#A BHC	10.865	10274,50		3.6656	3.6656	10274	0.6303	_	
34 35	j	10.988	30027.00	6284.14	4.2825	4.2825	30027	0.0303	-	
36	İ	11.429	10537.00		3.6738	3.6738	10537			
37		11.683 11.897	21524.50		3.3838	3.3838	21524			
Ō	GAMMA BHC	12.257	36153.00		3.8648	3.8648	36153			
38		12.602	0.00 92223.00		0.0000	0.0000	0			
0	HEPTACHLOR	12.914	0.00		4.5582 0.0000	4.5582	92223			
39	- 1	13.097	31449.50	3638.90	2.1540	0.0000 2.1540	71/50			
40		13.477	23276.50		2.9569	2.9569	31450 23276			
41	ALDRIN	13.845	63880.50		4.3504	4.3504	63880	0.0243	_	
42 0	DETA DUC	14.778	61047.50		4.6107	4.6107	61048			
43	BETA BHC	15.144	0.00		0.0000	0.0000	0			
44	DELTA BHC	15.381 15.805		333258.10	128.3942	128.3942	1781306			
45	210/1/20110	16.227	7660.00		3.8784	3.8784	7660	-0.6189	-	
0	HEPTACHLOR EXPOXIDE	16.381	81437.00 0.00		3.6408	3.6408	81437			
46		16.641	4759.00		0.0000 0.7616	0.0000	0			
47		16.838	15756.00		1.1745	0.7616 1.1745	4759 15756			
48		16.972	27206.50		1.7953	1.7953	27206			
0	ENDOSULFAN I	17.321	0.00		0.0000	0.0000	2,200			
49 50	GAMMA CHLORDANE	17.596	9813.00	1798.53	0.9039	0.9039	9813	0.1595		
51	ALPHA CHLORDANE	17.797	13588.00	2518.76	0.8984	0.8984	13588	0.0608		
52	DIELDRIN	18.137	32517.00	3195.67	2.3462	2.3462	32517	0.1964	•	
7	J. FORTH	18.469 19.005	42504.00	7243.77	4.0664	4.0664	42504	-0.7087	-	
•	ENDRIN	19.297	34206.00 29678.00	6725.28	3.7743	3.7743	34206			
55		19.780	39781.00	5189.33 7766.69	3.5335	3.5335	29678	-0.2014	-	
56	!	20.225	15725.50	2596.54	4.0707 4.0884	4.0707 4.0884	39781			
57	1	20.399	7781.50	1914.48	3.6234	3.6234	15726 7782			
58	1	20.516	6117.50	1525.98	3.5261	3.5261	6118			
	DOD	20.993	77964.00	11549.57	7.7308	7.7308	77964	0.3268		
60 61	DDT (1)	21.203	23237.00	5277.66	1.6150	1.6150	23237	0.5355		
62	4 1/1	21.341	6466.00	1727.99	7.2153	7.2153		-0.5134	-	
63	1 16/7	21.478 22.245	4435.50 25111.50	1187.94	7.0793	7.0793	4436			
64	ENDREN ALDEHYDE	22.457	49247.00	4908.86 6999.27	3.5423	3.5423				
65		22.979	9196.00	1748.37	5.2242 2.4332	5.2242		-0.6443	-	
66		23.224	51342.00	9617.89	-0.5535	2.4332 -0.5535		• • • • • • • • • • • • • • • • • • • •		
67	METHOXYCHLOR	23.524	64283.00	7882.56	2.6336	2.6336		-0.4262		
0	ENDOSULFAN SULFATE	23.726	0.00	0.00	0.0000	0.0000		-0.4202	•	
	DBC 1	23.935	1699672.00	325139.04	120.8745	120.8745	1699672	0.1296		
69 70	1	24.297	9195.00	1992.51	1.2055	1.2055				
	ENDRIN KETONE	24.454	35400.00	7057.03	3.0605	3.0605	35400			
71	************	25.019 25.408	0.00	0.00	0.0000	0.0000	0			
72	/	25.823	28996.00 7450.00	5627.65	2.6112	2.6112	28996	• • • • • • •		
73	1	26.557	14008.00	1457.37 2170.26	1.6162	1.6162	7450	• • • • • • • • • • • • • • • • • • • •		
-	DCB	28.203	0.00	0.00	1.9190 0.0000	1.9190	14008			
				3.00		0.0000	0 -	• • • • • • • • • • • • • • • • • • • •		

10798009.00 2.097e+06 701.8573 613.2852

Missing Component Report Component Expected Retention (Sample File

component	Expected Retention (Sample File)
GAMMA BHC	12.257
HEPTACHLOR	12.914
PETA BHC	15.144
'ACHLOR EXPOXIDE	16.381
OSULFAN I	17,321
ENDOSULFAN SULFATE	23.726
ENDRIN KETONE	25.019
DCB	28,203

Software Version: 3.3 <4B11>

Sample Name : L950626-2

Time : 3/8/95 08:11 PM Study

: PPPCB

Sample Number: 16 Operator

Channel : B A/D mV Range : 1000

Instrument : HP5890 AutoSampler : NONE k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/8/95 07:37 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38016.RAW Result File : C:\2700\HP5890\PB38016.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTB Sample File : PESTB058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000 Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet 8:

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

Total run time: 33.00 min

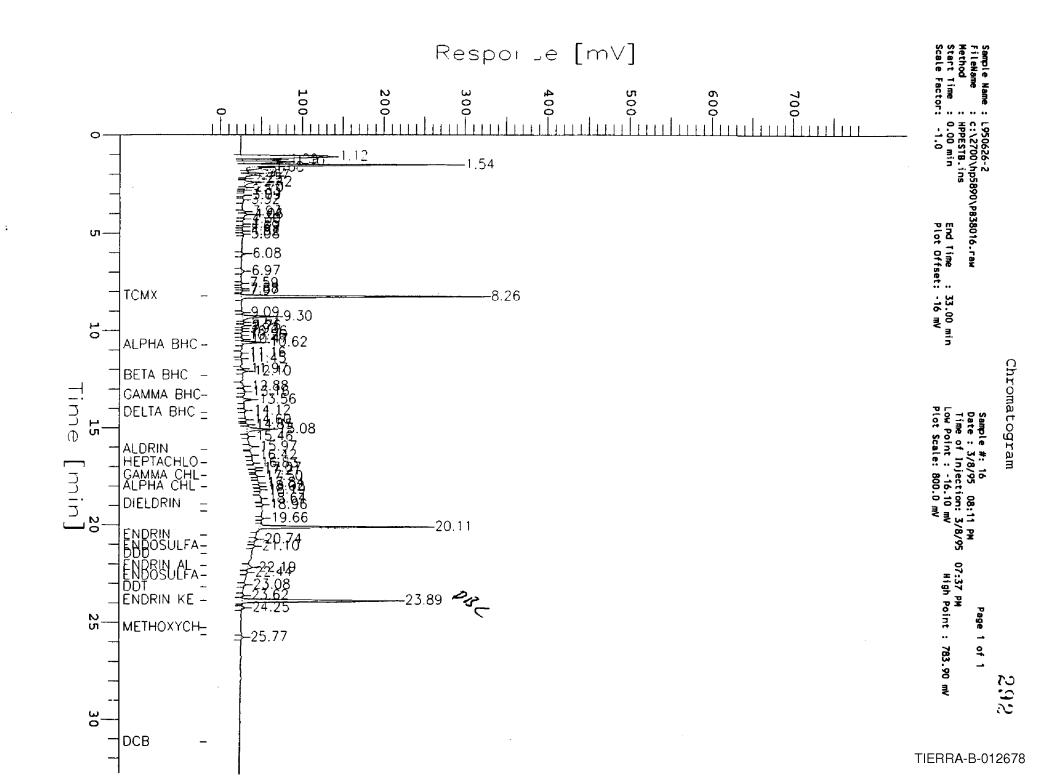
Timed Events:

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range
1		1.124	934288.08	111617.64	64.4968	64.4968	934288	
2		1.287	243907.00	49184.79	13.1651	13.1651	243907	
3		1.397	298040.67	55667.89	17.1901	17.1901	298041	
4		1.541	1133180.25	280009.95	79.2850	79.2850	1133180	
5		1.679	122978.00	24695.76	4.1737	4.1737	122978	
6		1.922	12504.00	3179.84	-4.0403	-4.0403	12504	
7		2.068	39302.00	8762.87	-2.0478	-2.0478	39302	
8		2.249	4831.00	2002.94	-4.6108	-4.6108	4831	
9		2.417	92953.00	14265.67	1.9413	1.9413	92953	
10		2.697	13988.00	3906.13	-3.9299	-3.9299	13988	
11		2.831	3300.00	1301.53	-4.7246	-4.7246	3300	
12		3.093	11831.00	2350.37	-4.0903	-4.0903	11831	
13		3.322	8171.00	1184.03	-4.3625	-4.3625	8171	
14		3.927	12939.00	2555.48	-4.0079	-4.0079	12939	
۲,		4.061	23249.50	3643.61	-3.2413	-3.2413	23250	
		4.303	6018.00	1846.92	-4.5225	-4.5225	6018	
17		4.549	9680.00	1814.40	-4.2503	-4.2503	9680	
18		4.691	3575.00	1163.35	-4.7042	-4.7042	3575	
19		4.923	7142.00	2091.66	-4.4390	-4.4390	7142	
20		5.082	6250.00	1359.52	-4.5053	-4.5053	6250	
21		6.080	19590.00	4694.37	-3.5134	-3.5134	19590	


Peak Component Time Area Height Raw Adjusted Calibration Cal.	291	page
Name	~~~ <u>~</u>	
22 6.967 25966.00 3717.92 -3.0394 -3.0394 25966 23 7.586 8982.50 1940.78 -4.3021 -4.3021 8982 24 7.877 4716.00 1247.44 -4.6193 -4.6193 4716 7.970 4245.50 1205.54 -4.6543 -4.6543 4246 7.970 4245.50 1205.54 -4.6643 -4.6543 4246 7.970 4245.50 1205.54 -4.66543 -4.6543 4246 7.970 4245.50 1205.54 -4.66543 -4.6543 4246 7.970 4245.50 1205.54 -4.6634 -4.6543 4246 7.970 4245.50 1205.54 -4.6203 -4.6031 10352 28 9.093 10352.00 2356.75 -4.2003 -4.2003 10352 28 9.295 243804.00 42105.99 13.1575 13.1575 243804 29 9.607 6801.00 1961.01 1.6125 1.6125 6801 30 9.764 15179.00 3698.84 1.9763 1.9763 15179 31 9.918 3727.00 870.15 1.4791 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 1.6354 7327 33 10.263 7102.00 1048.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 6.4774 118856 0 ALPHA BHC 10.753 0.00 0.00 0.000 0.0000 0 36 11.157 19966.00 1686.71 2.1841 2.1841 19966 37 11.450 5539.50 1078.08 1.5578 1.5578 5539 38 11.972 10603.00 1443.67 1.2162 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.000 0.0000 0 0 BETA BHC 13.331 0.00 0.00 0.000 0.0000 0 0 14874.00 0.000 0.000 0.0000 0.0000 0 0 0.0000 0		
22	••••••	•
7.586 8982.50 1940.78 -4.3021 -4.3021 8982 7.587 4716.00 1247.44 -4.6193 -4.6193 4716 7.970 4245.50 1205.54 -4.6543 -4.6193 4716 7.970 1380395.00 304492.75 97.6661 97.6661 1380395 7.587 9.093 10352.00 2355.75 -4.2003 10352 28 9.295 243804.00 42105.99 13.1575 13.1575 243804 29 9.607 6801.00 1961.01 1.6125 1.6125 6801 30 9.764 15179.00 3698.84 1.9763 1.9763 15179 31 9.918 3727.00 870.15 1.4791 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 1.6354 7327 33 10.263 7102.00 1048.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 (18856 0) 36 11.157 19966.00 1686.71 2.1841 2.1841 19966 37 11.450 5539.50 1007.08 1.5578 1.5578 5539 38 11.972 10603.00 1443.67 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 24661 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 33.157 14873.50 1709.45 -0.0921 1.8709 24661 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 33.157 14873.50 1709.45 -0.0921 1.6022 8394 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 205410 47 15.456 1279.00 1693.50 30708.31 11.4074 11.5774 205410 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 40 ALDRIN 16.23 0.00 0.00 0.0000 0.0000 0 40 ALDRIN 16.23 0.00 0.00 0.0000 0.0000 0 41 1.4851 11934.50 2727.61 1.7784 11935 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 40 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 40 0.0000 0.0		
7.877 4716.00 1247.44 -4.6193 -4.6193 4716 7.970 4245.50 1205.54 -4.6543 -4.6543 4246 7.970 4245.50 1205.54 -4.6543 -4.6543 4246 7.970 4245.50 1205.54 -4.6543 -4.6543 4246 7.970 9.093 10352.00 2356.75 -4.2003 -4.2003 10352 28 9.295 243804.00 42105.99 13.1575 13.1575 243804 29 9.607 6801.00 1961.01 1.6125 1.6125 6801 30 9.764 15179.00 3698.84 1.9763 1.9763 15179 31 9.918 3727.00 870.15 1.4791 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 1.6356 7102 33 10.263 7102.00 1048.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 6.4774 118856 0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0.0000 0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0.0000 0 ALPHA BHC 10.753 0.00 1068.07 1.21841 19966 37 11.450 5539.50 1087.08 1.5578 1.5578 5539 38 11.972 10603.00 1443.67 1.2162 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0.0000 0 0 BETA BHC 13.331 0.00 0.00 0.0000 0.0000 0.0000 0 0 BETA BHC 13.3517 14873.50 1709.45 -0.0921 -0.0921 14874 41 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 1.6254 1.6354		
TCMX 8.260 1380395.00 304492.75 97.6661 97.6661 1380395 97.6961 13.1575 13.1575 243804 97.6961 1380395 97.6961 13.1575 13.1575 243804 97.6961 13.1576 13.1575 243804 97.6961 13.1576 13.1575 243804 97.6961 13.1576 13.1575 243804 97.6961 13.1576 13.1579 97.6961 13.1576 13.1575 13.1575 243804 97.6961 13.1576 13.1579 97.6961 13.1576 13.1576 13.1579 97.6961 13.1576 13.1579 97.6961 13.6961 13.1576 13.1		
7 CMX 8.260 1380395.00 304492.75 97.6661 97.6661 1380395 7 9.093 10352.00 2356.75 -4.2003 -4.2003 10352 28 9.295 243804.00 42105.99 13.1575 13.1575 243804 29 9.607 6801.00 1961.01 1.6125 1.6125 6801 30 9.764 15179.00 3698.84 1.9763 1.9763 15179 31 9.918 3727.00 870.15 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 1.6354 7327 33 10.263 7102.00 1048.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 6.4774 118856 0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0 0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0 0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 GAMMA BHC 13.351 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 13.351 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 13.351 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 13.356 58265.00 1092.97 1.5244 1.5244 58265 1.6256		
27 9.093 10352.00 2356.75 -4.2003 -4.2003 10352 28 9.295 243804.00 42105.99 13.1575 13.1575 243804 29 9.607 6801.00 1961.01 1.6125 6801 30 9.764 15179.00 3698.84 1.9763 1.9763 15179 31 9.918 3727.00 870.15 1.4791 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 7327 33 10.263 7102.00 1648.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 6.4774 118856 0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0 36 11.157 19966.00 1686.71 2.1841 19966 37 11.450 5539.50 1087.08 1.5578 1.5578 5539 38 11.972 10603.00 1443.67 1.2162 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 -44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 -454 1.504 1.5075 205409.50 30708.31 11.4074 205410 48 15.075 205409.50 30708.31 11.4074 205410 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 40 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 40 16.420 12720.50 1691.69 85.3811 85.3811 12720 40 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.420 12720.50 1691.69 85.3811 85.3811 12720 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 51 14.444 444 444 444 444 444 444 444 444		
28 9, 295 243804.00 42105.99 13.1575 13.1575 243804 29 9.607 6801.00 1961.01 1.6125 1.6125 6801 30 9,764 15179.00 3698.84 1.9763 15179 31 9,918 3727.00 870.15 1.4791 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 7327 33 10.263 7102.00 1048.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 6.4774 118856 0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0 36 11.157 19966.00 1686.71 2.1841 2.1841 19966 37 11.450 5539.50 1087.08 1.5578 1.5578 5539 38 11.472 10603.00 1443.67 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0.0000 0 0 42 12.877 32140.50 2541.31 0.5512 32141 41 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.681 11934.50 2727.61 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.456 12779.00 1546.36 85.3811 85.3811 12720 50 ALDRIN 16.123 0.00 0.00 0.0000 0.		
9.607 8801.00 1961.01 1.6125 1.6125 6801 30 9.764 15179.00 3698.84 1.9763 1.9763 15179 31 9.918 3727.00 870.15 1.4791 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 1.6354 7327 33 10.263 7102.00 1048.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 6.4774 118856 0 ALPHA BHC 10.753 0.00 0.00 0.000 0.0000 0 36 11.157 19966.00 1686.71 2.1841 2.1841 19966 37 11.450 5539.50 1087.08 1.5578 15578 5539 38 11.972 10603.00 1443.67 1.2162 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 0 0 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.651 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.23 0.00 0.00 0.000 0.0000 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0.00000 0.		
30		
31 9,918 3727.00 870.15 1,4791 1.4791 3727 32 10.057 7327.00 1671.98 1.6354 1.6354 7327 33 10.263 7102.00 1048.08 1.6256 1.6256 7102 34 10.465 11389.00 2312.98 1.8117 1.8117 11389 35 10.616 118855.50 25737.41 6.4774 6.4774 118856 0 ALPHA BHC 10.753 0.00 0.000 0.0000 0.0000 0 0 36 11.157 19966.00 1686.71 2.1841 2.1841 19966 37 11.450 5539.50 1087.08 1.5578 1.5578 5539 38 11.972 10603.00 1443.67 1.2162 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 17.784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 GAMMA CHLORDANE 17.494 12370.00 2484.81 0.3644 0.3644 12370 - 53 GAMMA CHLORDANE 17.494 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
10.057 7327.00 1671.98 1.6354 1.6354 7327 73		
10.263 7102.00 1048.08 1.6256 1.6256 7102 34		
10.465		
10.616		
0 ALPHA BHC 10.753 0.00 0.00 0.0000 0.0000 0 36 11.157 19966.00 1686.71 2.1841 2.1841 19966 37 11.450 5539.50 1087.08 1.5578 1.5578 5539 38 11.972 10603.00 1443.67 1.2162 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3465.58 0.5822 0.5822 16635 - 52 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 -		
11.157		
37		
11.972 10603.00 1443.67 1.2162 1.2162 10603 39 12.102 24661.00 5028.91 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.8 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
12.102 24661.00 5028.91 1.8709 1.8709 24661 0 BETA BHC 12.324 0.00 0.00 0.000 0.0000 0 12.877 32140.50 2541.13 0.5512 0.5512 32141 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
0 BETA BHC 12.324 0.00 0.00 0.0000 0.0000 0 40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
40 12.877 32140.50 2541.13 0.5512 0.5512 32141 41 13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
13.157 14873.50 1709.45 -0.0921 -0.0921 14874 0 GAMMA BHC 13.331 0.00 0.00 0.000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2021.60 -0.9068 -0.9068 10191 -		
0 GAMMA BHC 13.331 0.00 0.00 0.000 0.0000 0.0000 0 42 13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
13.560 58265.00 10929.79 1.5244 1.5244 58265 43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
43 DELTA BHC 14.118 13879.00 2792.48 2.0779 2.0779 13879 - 44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.651 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2448.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
44 HEPTACHLOR 14.598 8394.00 1895.87 1.6022 1.6022 8394 - 45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
45 14.851 11934.50 2727.61 1.7784 1.7784 11935 46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
46 15.075 205409.50 30708.31 11.4074 11.4074 205410 47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
47 15.456 12779.00 1546.36 85.3475 85.3475 12779 48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
48 15.972 34457.50 4707.47 72.8799 72.8799 34458 0 ALDRIN 16.123 0.00 0.00 0.0000 0.0000 0 49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
48		•
49 16.420 12720.50 1691.69 85.3811 85.3811 12720 50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
50 16.825 6498.50 1201.16 0.0118 0.0118 6498 51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
51 HEPTACHLOR EPOXIDE 17.069 16635.50 3445.58 0.5822 0.5822 16635 - 52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
52 17.210 9970.50 2202.24 0.2071 0.2071 9970 53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
53 GAMMA CHLORDANE 17.498 12370.00 2484.81 0.3644 0.3644 12370 - 54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
54 ALPHA CHLORDANE/ENDO 17.844 10191.00 2021.60 -0.9068 -0.9068 10191 -		
18.022 6447.50 1369.50 -1.1224 -1.1224 6448		
3 18.191 10225.50 1984.43 -0.9048 -0.9048 10226		
57 18.640 20902.00 1612.97 2.2827 2.2827 20902		
58 DIELDRIN 18.964 7962.00 1201.98 1.4661 1.4661 7962 -		
0 DDE 19.286 0.00 0.00 0.0000 0.0000 0		
59 19.656 13830.50 3001.68 0.9009 0.9009 13830		
60 20.106 1052395.50 210640.96 89.7454 89.7454 1052395		
61 ENDRIN 20.739 17142.50 3495.19 1.4605 1.4605 17143 -		
62 ENDOSULFAN II 21.097 11235.00 2519.19 1.7742 1.7742 11235 -		
0 DDD 21.479 0.00 0.00 0.0000 0.0000 0		
63 ENDRIN ALDEHYDE 22.190 43912.00 5281.51 9.4732 9.4732 43912 -		
4=		
68 24.251 23763.00 4375.23 1.2525 1.2525 23763		
0 METHOXYCHLOR 25.263 0.00 0.00 0.0000 0.0000 0		
69 DBC 25.766 16706.50 2693.03 1.9294 1.9294 16706 -		
0 DCB 31.152 0.00 0.00 0.0000 0.0000 0		

7703440.00 1.493e+06 690.6458 690.6458 7703440

Missing Component Report

Component Expected Retention (Sample File) ALPHA 8HC 10.753 BETA BHC 12.324 GAMMA BHC 13.331 16.123 19.286 ALDRIN DDE 21.479 25.263 31.152 METHOXYCHLOR

HP5890 DETECTOR B

Software Version: 3.3 <4811>

Sample Name : L950626-3 1:5 PCB SOIL Time

Study

: 3/9/95 02:48 AM

Sample Number: 27

Operator : KMW

Channel: A A/D mV Range : 1000

: PPPCB

Instrument : MP5890 *utoSampler : NONE :k/Vial : 0/0

Interface Serial #: 8055910402 Data Acquisition Time: 3/9/95 02:14 AM

: 0.00 min. : 33.00 min. Delay Time End Time Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38027.RAW : C:\2700\HP5890\PA38027.RST Result File Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA Sample File : PESTA058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A :

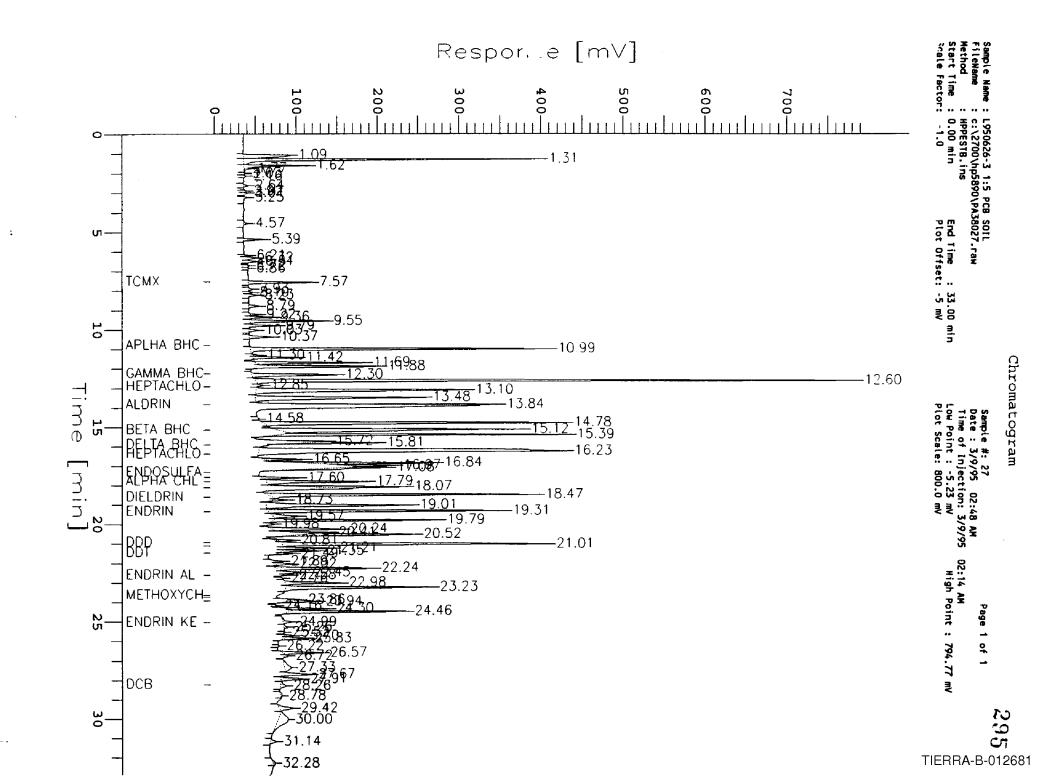
Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:


There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area (uV*sec)	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range
1		1.094	458817.70	59154.83	17.6750	17.6750	458818		
2		1.306	1694692.85	376450.38	56.2751	56.2751	1694693		
3		1.624	354335.45	84487.30	14.4117	14.4117	354335		
4		1.769	24166.00	6802.55	4.0995	4.0995	24166		
5		2.026	5225.50	1956.17	3.5079	3.5079	5226		
6		2.159	8584.50	2231.03	3.6128	3.6128	8584		
7		2.639	26936.00	6015.57	4.1860	4.1860	26936		
8		2.915	6879.00	2130.09	3.5595	3.5595	6879		
9		3.011	12663.00	3498.26	3.7402	3.7402	12663		
10		3.245	19873.00	4674.57	3.9654	3.9654	19873		
11		4.565	30778.00	6394.79	4.3060	4.3060	30778		
12		5.385	93339.00	25904.29	6.2600	6.2600	93339		
13		6.205	16218.50	4639.00	3.8512	3.8512	16219	•••••	
- 3		6.320	51767.00	11941.74	4.9615	4.9615	51767		
•		6.510	45451.00	12157.25					•
					4.7643	4.7643	45451	*****	
16		6.724	6230.50	1558.19	3.5393	3.5393	6230		
17		6.864	4862.50	1198.99	3.4966	3.4966	4862		
18	TCMX	7.571	324520.00	79313.63	12.5068	0.0000	324520	0.2620	
19		7.928	23937.50	4835.31	4.0923	4.0923	23938		
20		8.100	14950.50	4156.66	3.8116	3.8116	14950		

Peak #		Component Name	Time [min]	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range	294 P
21 22			8.226				4.6880	43008		••••••	
23			8.786 9.222				5.2555	61178			
24			9.355			4.7330 6.9746	4.7330	44450			
25 26			9.553	437643.0	0 94711.07	17.0136	6.9746 17.0136	116221 437643			
27			9.789 10.028	147612.0	0_35453.38	7.9551	7.9551	147612			
28		*)	10.368	134568.0	0 10692.83 0 29423.21	4.9074	4.9074	50033			
	APL	HA BHC	10.797	0.00	0.00	7.5477 0.0000	7.5477 0.0000	134568 0			
29 30		3	10.986	1743991.00	0_369424.37	57.8148	57.8148	1743991			
31			11.304 11.421	25751.00 244858.00	7163.93 55262.22	4.1490	4.1490	25751			
32		7	11.688	631722.00	137692.42	10.9924 23.4492	10.9924 23.4492	244858			
33 34	CAM	MA BUC	11.881	705904.00	153709.48	25.8886	25.8886	631722 705904			
35	UAN	MA BHC \	12.303 12.603	679371.00	107110.36	25.0161	25.0161	679371	0.3738		
36	HEP	TACHLOR	12.849	27828.50	739800.73	158.2312 2.0107	158.2312	3976736			
37 70	i		13.102	1730215.00	261703.70	69.3578	2.0107 69.3578	27828 1730215	-0.5001	-	
38 39	ALD	RIN	13.476 13.842	1417488.00	214451.44	50.8049	50.8049	1417488			
40			14.575	7430.00	119568.95	22.2212	22.2212	584605	0.0010		
41			14.777	2357477.00	377371.30	0.7526 169.8534	0.7526 169.8534	7430 2357477			
42 1 43	BETA	BHC	15.119	2082931.50	305115.75	150.0981	150.0981	2082931	-0.1645	•	
44			15.387 15.724	1576061.00	361904.00	113.6255	113.6255	1576061			
	DELI	A BHC	15.806	350270 00	22706.53 96676.28	7.3312 15.8159	7.3312	106756			
46			16.227	3797482.00	-382804.46	143.1760	15.8159 143.1760	350270 3797482	-0.6105		
0 I 47	HEP1	ACHLOR EXPOXIDE	-16.381	0.00	0.00	0.0000	0.0000	3/7/462			
48		(16.648 16.840	243638,50		9.7314	9.7314	243638			
49		`	>16.972	249760.00	161402.91 60125.73	26.6167 10.1538	26.6167	693320			
50			/17.075	356179.00		14.1505	10.1538 14.1505	249760 356179			
0 E 51 G	NDO	SULFAN I A CHLORDANE \	17.321	0.00	0.00	0.0000	0.0000	330179			
		A CHLORDANE	17.603 17.794	213851.00	45933.78	8.6264	8.6264	213851	0.2010		
53 D	DE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	18.066	514584.50	128029.57 114897.53	29.0468 21.3795	29.0468	762406	0.0460		١ /
	IEL	PRIN 👱	/ 18.469	1 <u>852935.50</u>	333183.49	75.1194	21.3795 75.1194		-0.1934 -0.7101	-C	17/10/20
.6		<i>''</i>	18.733	80531.00	19335.96	5.5588	5.5588	80531			1-2491326
	NDR	$\langle \cdot \rangle$	19.010 19.305	1162053.50	184702.97	63.7445	63.7445	1162054		- 1	01.75
8		W//	19.574	1499394,00 220022.00	2948/0.34 33613 38	81.6817 13.6545	81.6817		-0.1608	,	2
9		$\langle \chi \rangle$	19.785	1034256.50	207244.20	56.9493	13.6545 56.9493	220022 1034257			14 (637
50 51		Υ (19.979	34463.00	8317.34	3.7879	3.7879	34463	•••••		
2	[\)	20.235 20.406	474858.50	88677.05	30.9586	30.9586	474858			
3	- 1	- İ	20.519	166260.50 660442.50	145706-88	12.8983 41.8197	12.8983 41.8197	166261	• • • • • • •		
4	/	$\langle \cdot \cdot \rangle$ k	20.809	97998.50	21718.46	8.9033	8.9033	660442 97999			
	DD /	SULFAN II 1	21.009	2006194.00	334633.79	120.5784	120.5784	2006194	0.3994		
	DT	JA"	21.208 21.354	273355.00 197979.50	64289,55 46814,35	15.3777	15.3777	273355	0.5610		
8		- / A !	21.486	72166.00	20470.99	20.0405 11.6150	20.0405 11.6150		0.4544		
9	- 1	ارش.	21.888	47790.50	10180.70	9.9827	9.9827				
'0 '1	- }	, ,	22.019	92654.00	19826.53	8.2490	8.2490	92654			
	NDR I	N ALDEHYDE	22.244 22.451	651538.00 120028.00	122068.09	47.1953	47.1953				
3			22.578	33414.00	10367.44	10.1566 4.1209	10.1566 4.1209		0.6718	-	
4	İ		22.762	8781.50	1701.00	2.4043	2.4043				
5 6	1		22.984	370740.00	70628.38	27.6277	27.6277	370740 -			
_	ETHO	XYCHLOR	23.230 23.625	1008562.00	0.00	235.1876	235.1876	1008562 -			
7 EI	NDOS	ULFAN SULFATE	23.856	31691.00	4249.17	0.0000 8.2639	0.0000 8.2639	0 - 31691	0.5478		
8 DE	3C	1	23.938	142532.00	36203.40	10.6444	10.6444		0.1431		
9 0		•	24.159 24.304	9840.00	1945.67	1.2511	1.2511	9840 -			
1			24.461	239178.50 768844.00	52420.09 148960 06	17.4860 54.9811	17.4860	_			
	IDR I	N KETONE	24.989	83579.00	12035.94	5.1319	54.9811 5.1319		0.1185		
3			25.258	32926.00	5032.36	2.7927	2.7927	32926 -			
4 5			25.523	8084.00	2256.89	1.6455	1.6455	8084 -	• • • • • •		
5			25.696 25.831	46751.00 148128.00	11059.12 28589.24	3.4311 8.1128	3.4311	46751 -			
7			26.217	8414.00	2005.57	8.1128 1.6607	8.1128 1.6607	148128 - 8414 -			
			26.567	277142.00	49998.36	14.0708	14.0708	277142 -	*		
Ś			26,720	19714.00	3929.96	-11.8503	-11.8503	19714 -			
1			27.329 27.669	162801.00	8493.16 35084.58	·4.9321	-4.9321	162801 -			
2			27.906	217725.00 175752.00	35084.58 28110.41	-2.2765 -4.3059	-2.2765 -4.3059				
3 DC	:B		28.261	72705.00	7632.41	-4.3039 -9.2882	-4.3059 -9.2882		 0.2047 -		
					· ·		COUL	. 2.05	·.cu4/ -		

FILE COPY

Software Version: 3.3 <4B11>

Sample Name : L950626-3 1:5 PCB SOIL Time

Study

: 3/9/95 02:48 AM : PPPCB

Sample Number: 27

Operator : KMW

Channel: 8 A/D mV Range : 1000

instrument : HP5890 *vitoSampler : NONE k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 02:14 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38027.RAW Result File : C:\2700\HP5890\P838027.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTB Sample File : PESTB058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

There are no timed events in the method

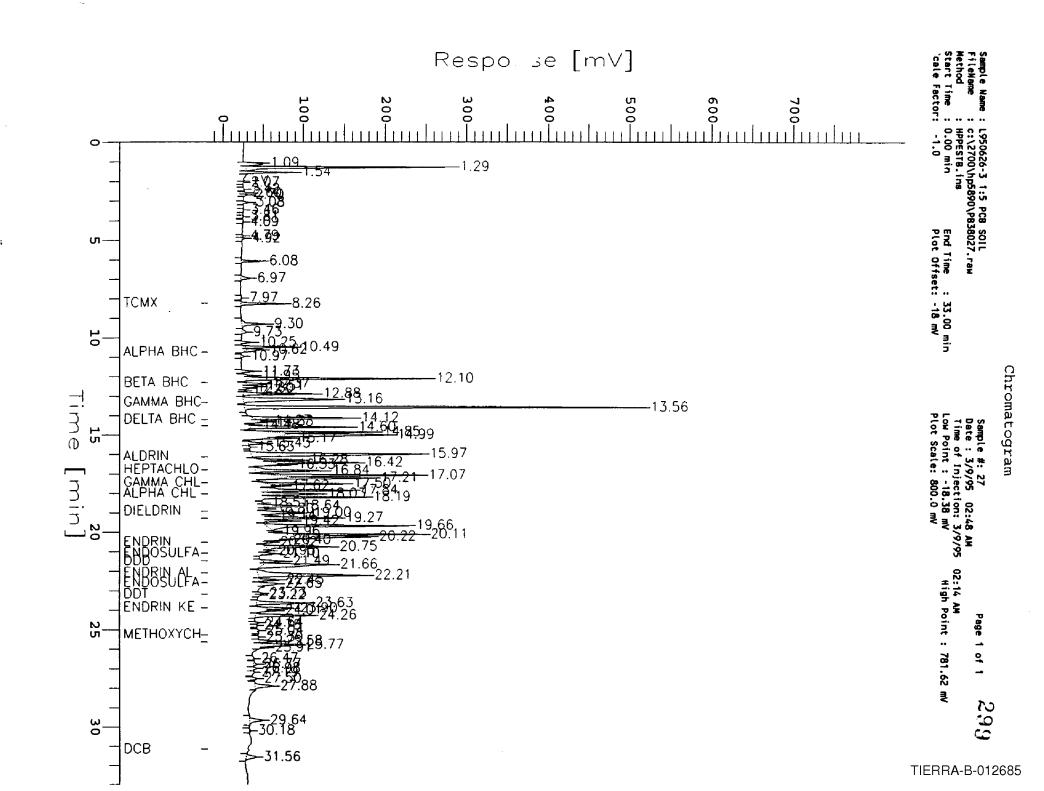
HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area (uV*sec)	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range
1		1.088	31609.00	7645.83	-2.6198	-2.6198	31609	
2		1.289	1104754.00		77.1714	77.1714	1104754	
3		1.544	238764.00	62595.69	12.7827	12.7827	238764	
4		2.068	3443.00	1010.71	-4.7140	-4.7140	3443	
5		2,419	5853.50	1148.99	-4.5348	-4.5348	5854	
6		2.600	7304.50	1372.93	-4.4269	-4.4269	7304	
7		2.701	12641.00	4067.02	-4.0301	-4.0301	12641	
8		3.081	37680.50	7880.76	-2.1683	-2.1683	37680	
9		3.463	4354.00	878.03	-4.6463	-4.6463	4354	
10		3.806	3693.00	1057.83	-4.6954	-4.6954	3693	
11		4.088	10548.00	1055.02	-4.1857	-4.1857	10548	
12		4.790	7542.00	1981.08	-4.4092	-4.4092	7542	
13		4.922	15137.50	4118.18	-3.8445	-3.8445	15138	
14		6.080	104793.50	26544.78	2.8217	2.8217	104794	
7		6.965	69659.00	11987.89	0.2093	0.2093	69659	
		7.967	11508.00	2141.49	-4.1143	-4.1143	11508	
17	TCMX	8.261	245364.50	56167.84	13.2735	13.2735	245364	
18		9.304	204939.00	32454.59	10.2678	10.2678	204939	
19		9.726	46113.00	5901.81	3.3193	3.3193	46113	
20		10.252	67745.50		4.2584	4.2584	67746	
21		10.485	271558.00	61325.37	13.1069	13.1069	271558	

page

	_			02.10 /41					297
Peak #	Component Name	Time (min)	Area	Height	Raw		Calibration		•
	nalie 	[min]	[uV*sec]	[uV]	Amount	Amount	Factor	Range	
22		10.620	112314.50	20416.10	6.1934	6.1934	112315		
0	ALPHA BHC	10.753	0.00	0.00	0.0000	0.0000	0		
23	İ	10.965 11.731	20016.00	4202.87	2.1863	2.1863	20016		
,	ł	11.954	83925.00 41967.00		4.6305 2.6767	4.6305 2.6767	83925		
26	·	12.103	1135158.50		53.5819	53.5819	41967 1135158		
27	BETA BHO	12.374	115189.00	24291.94	6.0864	6.0864	115189		
28	1	12.506	52067.00	14517.39	3.1470	3.1470	52067		
29 30		12.603 12.725	7113.00	2987.05	1.0537	1.0537	7113		
31	1	12.882	4087.00 427396.00	1419.17	0.9128 15.2758	0.9128 15.2758	4087 427396		
32	1	13.160	882183.50		32.2181	32.2181	882184		
0	GAMMA BHC	13.331	0.00	0.00	0.0000	0.0000	0		
33 34	DELTA PUO	13.563	2492451.00		92.2060	92.2060	2492451		
35	DELTA BHC	14.124 14.273	605241.00 20387.50		29.9199	29.9199	605241		
36		14.330	23957.00	4698.69 9179.27	2.3844 2.5524	2.3844 2.5524	20387 23957		
37		14.480	10496.00	2907.22	1.7068	1.7068	10496		
38	HEPTACHLOR	14.598	568919.00		29.4988	29.4988	568919		
39 40	j	14.852	558731.50		28.9917	28.9917	558731		
41		14.994 15.171	748072.00 121613.00		38.4150	38.4150	748072		
42	- 1	15.431	128162.50		7.2370 18.9891	7.2370 18.9891	121613 128162		
43		15.626	10548.00	2070.48	86.6306	86.6306	10548		
44		15.974	1576636.00		-814.0440	-814.0440	1576636		
.0	ALDRIN	16.123	0.00	0.00	0.0000	0.0000	0		
45 46		16.281 16.423	225234.00		-36.8377	-36.8377	225234		
47		16.532	441881.50 48564.00	18719.50	-161.4341 64.7671	-161.4341 64.7671	441882 48564		
48		16.836	477599.00		26.5216	26.5216	477599		
49	HEPTACHLOR EPOXIDE	17.074	816513.00		45.5930	45.5930	816513		
50	GAMMA CHLORDANE	17.208	459409.00		24.2922	24.2922	459409		
51		17.502	462170.00		24.4400	24.4400	462170		
52 53		17.624 17.841		15165.76	2.0299	2.0299	43485		
54		18.025	575832.00 304124.00		31.6751 16.0242	31.6751 16.0242	575832 304124		
	ALPHA CHLORDANE/ENDO	18.193	599361.50		33.0304	33.0304	599361		
		18.510	10385.00	2301.31	-0.8956	-0.8956	10385		
- /	\	18.643	194567.50		13.2427	13.2427	194568		
58 59	DIELDRIN	18.799	29619.00	7543.19	2.8328	2.8328	29619		
60	DIEFOKIM	18.999 19.143	269526.00 10243.50	50130.84 3233.86	17.9733 0.6803	17.9733	269526		
	DOE	19.267		83598.30	23.3057	0.6803 23.3057	10244 378024		
62	1	19.415	140395.00	33979.25	8.6870	8.6870	140395		
63		19.662	1009796.00		62.1715	62.1715	1009796		
64 65		19.964	8576.00	2381.84	0.5777	0.5777	8576		
66		20.114	572592.00 310455.00		48.8284 26.4738	48.8284 26.4738	572592 310455		
67	1	20.395	15529.50	7468.75	1.3229	1.3229	15530		
68	,	20.515	27218.50	8375.47	2.3197	2.3197	27219		
	ENDRIN !	20.747	437324.50	83015.35	37.2930	37.2930	437325		
70 71	ENDOCH EAR TILL	20.951	14537.50	4566.75	2.0231	2.0231	14538		
71 72	ENDOSULFAN II	21.104 21.485	70013.00 136051.50	16323.18 28392.76	6.2044 9.1856	6.2044 9.1856	70013 136051	•	
	000	21.656		87498.43	53.3123	53.3123	714177		
74	ENDRIN ALDEHYOE	22.207	1126899.50	136427.31	110.9411	110.9411	1126899		
	ENDOSULFAN SULFATE	22.445	128982.50	26008.39	13.2632	13.2632	128983		
76 77	DDT	22.645 23.132	143093.50	21311.70	14.7419	14.7419	143094		
78	1 /h	23.219	14800.00 5676.00	3203.43 1821.41	0.4769 -0.3111	0.4769 -0.3111	14800 5676	•	
79		23.629	364658.00	65225.09	28.8212	28.8212	364658		
80	ENDRIM KETONE	23.902	156829,00	32861.90	12.0137	12.0137	156829		
81	+W	24.013	42479.00	11931.87	2.7660	2.7660	42479		
82 83	١	24.258 24.643	402043.00 22809.00	71834.47 5031.00	31.8445 1.1753	31.8445 1.1753	402043 22809		
84	<u> </u>	24.777	6438.00	1342.32	-2.9724	-2.9724	6438		
85	İ	25.043	20463.00	2987.15	0.4077	0.4077	20463		
	METHOXICHLOR	25.387	9317.00	1781.58	-2.2786	-2.2786	9317	-	
87	Dac I	25.580	123656.00	24216.95	11.9207	11.9207	123656		
88 °°	DBC	25.774 25.912	264411.00 12582.00	45780.39 5150.25	25.0701	25.0701	264411 12582		
•		26.468	13154.00	5159.25 1582.68	1.5441 1.5975	1.5441 1.5975	12582 13154		
1		26.765	32452.00	4717.61	3.4003	3.4003	32452		
92		26.979	22817.50	4074.39	2.5003	2.5003	22818		
93		27.189	12351.50	1876.63	1.5225	1.5225	12352		
94 05		27.502	32338.00	5401.38	3.3897	3.3897	32338		
95		27.875	183910.00	23219.93	17.5497	17.5497	183910		


Peak #	Component Name	Time [min]	Area (uV*sec)	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range	
96		29.644	156117.00	17140.78	0.5740	0.5740	156117		
97		30.182	15625.00	2125.59	-11.8405	-11.8405			
0	DCB	31.152	0.00	0.00	0.0000	0.0000	0		
٩		31.555	122719.00	13335.51	-2.3772	-2.3772	122719		
_			24491459.50	4.727e+06	392.6530	392.6530	24491460		

Hissing Component Report
Component Expected Retention (Sample File)

ALPHA BHC 10.753
GAMMA BHC 13.331
ALDRIW 16.123
DCB 31.152

HP5890 DETECTOR B

Report Stored in ASCII File: C:\2700\HP5890\PB38027.TX0

Software Version: 3.3 <4B11>

Sample Name : L950626-4 // 5-

Time : 3/13/95 02:22 PM Sample Number: 30 Study : 515.1

Operator

Instrument : HP5890
**itoSampler : NONE
k/Vial : 0/0

Channel: A A/D mV Range : 1000

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 01:47 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HA30030.RAW Result File : C:\2700\HP5890\HA30030.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 515A Sample File : HB515A2

Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 0.000000

Dilution Factor : 1.00

DEFAULT REPORT

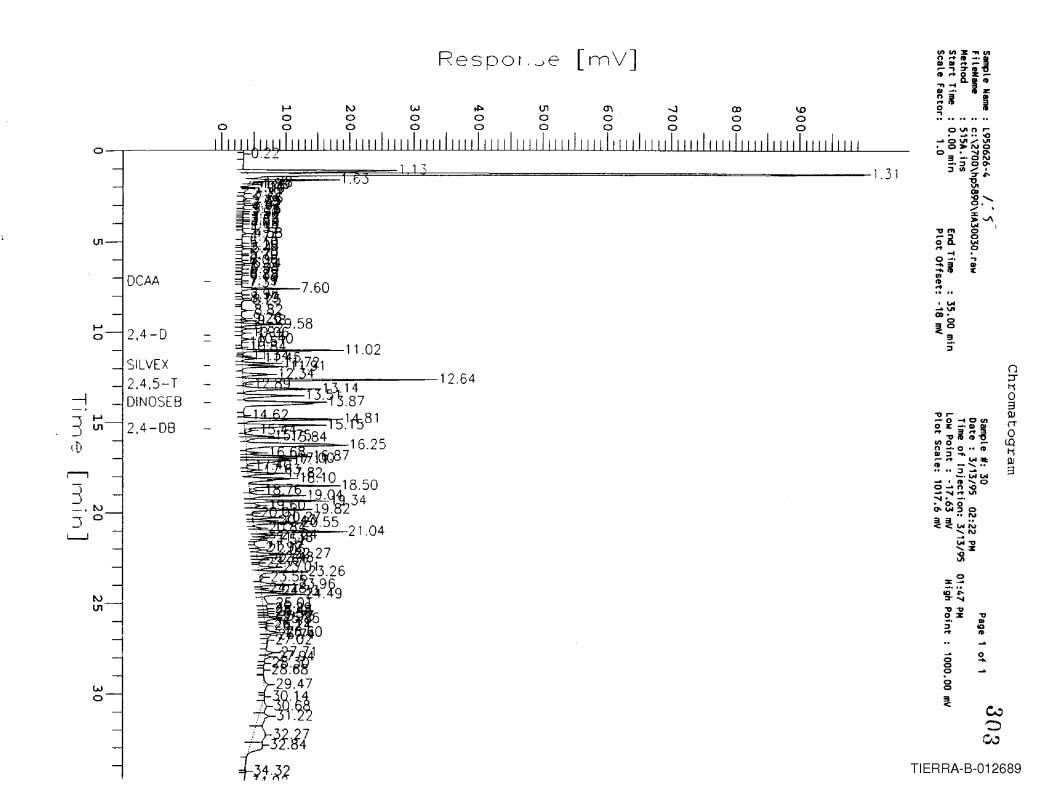
Peal #	k Time (min)	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	BL	Area/Height [sec]	
1	0.218	907.50		3e-03	2.9320e-03	в	9.0310	***********
2	1.132	1614310.90		5.22		8	7.0782	
3		6271188.60		20.26	20.26	٧	6.2982	
4	1.631		128112.97	1.75		В	4.2249	
5	1.783	36434.00		0.12			2.9874	
6	1.889	37539.56		0.12			3.7675	
7		3625.00	1669.16	0.01	0.01	В	2.1717	
8	2.104	3607.00	1387.81	0.01	0.01		2.5991	
•	2.386	8414.00	1983.67	0.03	0.03		4.2416	
	2.656	30731.28	5686.35	0.10	0.10	8	5.4044	
12	2.793 2.916	2580.00	960.84		8.3357e-03	E	2.6851	
13	3.022	14849.75	2372.72	0.05	0.05	٧	6.2585	
14	3.258	21222.60	3526.59	0.07	0.07		6.0179	
15	3.365	13638.60 3137.26	3425.41	0.04	0.04	٧	3.9816	
16	3.504	1698.00	832.90	0.01	0.01	٧	3.7667	
17	3.721	3755.00	544.75 805.36		5.4861e-03	В	3.1170	
18	3.830	1729.00	551.67	0.01	0.01	В	4.6625	
19	3.915	1565.00	434.38		5.5862e-03 5.0563e-03	V	3.1341	
20	4.054	1669.00	502.57		5.3924e-03	8	3.6029 3.3209	
21	4.315	1993.72	497.97		6.4415e-03	8	4.0037	
22	4.584	40080.28	6809.75	0.13	0.13	v	5.8857	
23	4.744	1936.00	525.95		6.2550e-03	Ě	3.6809	
24	5.096	5329.98	580.22	0.02	0.02	В	9.1862	
25	5.280	5070.81	1115.96	0.02	0.02	v	4.5439	
26	5.406	15706.29	3931.82	0.05	0.05	v	3.9947	
27	5.703	3169.55	624.84	0.01	0.01	v	5.0726	
28	5.792	5191.88	835.08	0.02	0.02	٧	6.2172	
29	6.060	3276.38	499.49	0.01	0.01	8	6.5595	
30	6.237	28812.51	5915.09	0.09	0.09	V	4.8710	
31	6.340	14435.71	2997.34	0.05	0.05	٧	4.8162	
32	6.534	7631.90	1738.32	0.02	0.02	٧	4.3904	
33	6.751	4533.26	822.64	0.01	0.01	В	5.5107	
34	6.877	7556.24	1308.03	0.02	0.02	٧	5.7768	
35	7.191	1446.02	267.88		4.6719e-03	В	5.3980	
36	7.305	2878.07	539.78		9.2987e-03	٧	5.3319	
	TV-7.603	368166.33	81915.26	1,19	1.19	٧	4.4945	1732
38	7.955	11132.46	2131.88	0.04	0.04	٧	5.2219	1196
39	8.127	9582.87	2089.84	0.03	0.03	٧	4.5855	
40	8.253	29653.25	5609.82	0.10	0.10	٧	5.2860	27/1//2/22
41	8.816	45912.50	8406.81	0.15	0.15	В	5.4613	2764474.28
42 7	9.257	35737.00	6855.18	0.12	0.12	B	5.2131	0.70111166
`	9.382	63709.18	13449.56	0.21	0.21	٧	4.7369	
۔ د	9.584	282253.29		0.91	0.91	٧	5.0827	
45 46	9.819 10.062	47909.29 28155.29	9256.38	0.15	0.15	V	5.1758	
47	10.397	62643.96	5090.01	0.09	0.09	٧	5.5315	
48	10.574	2402.00	11898.46	0.20	7.76040-07	V	5.2649	
49	10.374	1424.00	419.13		7.7606e-03	E	5.7309	
47	10.030	1424.00	316.25	JE-02	4.6008e-03	В	4.5028	

page .

Peak #	Time [min]	Area (uV*sec)	Height [uV]	Area [%]	Norm. Area [%]	BL	Area/Height [sec]
50	11.017	711770.00	148044.09	2.30	2.30	В	4.8078
51	,]1.335	14782.43	3850.31	0.05	0.05	В	3.8393
ب د ـ	11.454	116030.57	22622.03	0.37	0.37	٧	5.1291
72	11./19	267158.00	52464.62	0.86	0.86	В	5.0922
24	11.911	332907.00	63521.78	1.08		٧	5.2408
55\/ 56	12.336 12.636		43682.66	0.94	0.94	В	6.6696
57	12.885	<u>1710450.99</u> 33450.00	5068.88	5.53 0.11	5.53 0.11	٧	5.7786
58	13.136	761977.19		2.46	2.46	E	6.5991 6.8025
59	13.509	581993.00		1.88		В	6.7428
60	13.874	238578.00	48995.16	0.77	0.77	В	4.8694
61	14.615	3746.25	683.83	0.01	0.01	В	5.4783
62	14.808	968248.04	147695.16	3.13	3.13	٧	6.5557
63	15.150		118125.19	3.01	3.01	٧	7.8855
64 65	15.439 15.752	80132.00	11335.46	0.26	0.26	Ē	7.0691
66	15.841	186862.06 331833.44	34153.42 59480.61	0.60 1.07	0.60	В	5.4713
67	16.254	1528856.00		4.94	1.07 4.94	B	5.5789 10.1939
68	16.679	131272.27	23443.62	0.42	0.42	8	5.5995
69	16.873	516680.43	93695.79	1.67	1.67	v	5.5144
70	17.002	453278.71		1.46	1.46	٧	6.6102
71	17.106	/475454.59		1.54	1.54	٧	7.8225
72 73	17.396 17.633	1138.00	320.94		3.6768e-03		3.5458
73 74	17.822	71446.03 282722.97	13776.23	0.23	0.23	В	5.1862
75	18.097	207719.50		0.91 0.67	0.91 0.67	٧	5.8258
. 76	18.500	802566.06		2.59	2.59	B	4.6005 6.0205
177	18.763	75574.00		0.24	0.24	Ē	6.1696
<u>`</u> ``78	19.039	502744.90	78280.32	1.62	1.62	v	6.4224
~ 79	19.338	622942.27	114128.40	2.01	2.01	٧	5.4583
, 80 , 80	19.603	138178.50		0.45	0.45	٧	8.4355
(∪ 81	19.817	469721.77	85796.33	1.52	1.52	٧	5.4748
82 83	20.013	13389.00 239750.81	2894.62	0.04	0.04	E	4.6255
V 84	20.434	168095.86	38400.22 30016.31	0.77 0.54	0.77 0.54	B	6.2435 5.6002
85	20.551	368929.32	65122.60	1.19	1.19	v	5.6652
•	20.841	57893.57	11055.35	0.19	0.19	8	5.2367
	21.038	829297.37		2.68	2.68	v	6.1928
08	21.235	108184.56	~24496.12	0.35	0.35	٧	4.4164
89	21.383	80889.56	17437.20	0.26	0.26	В	4.6389
90	21.513	31021.94	8112.27	0.10	0.10	٧	3.8241
91 92	21.921	31210.30	5131.17	0.10	0.10	В	6.0825
92 93	22.051 22.272	50289.20 270627.56	8307.58 47923.65	0.16 0.87	0.16	Ň	6.0534
94	22.482	128673.78	19484.05	0.42	0.87 0.42	B V	5.6471 6.6041
95	22.606	51693.17	9247.19	0.17	0.17		5.5901
96	22.769	11708.37	2169.67	0.04	0.04	٧	5.3964
97	23.013	183900.14	27449.61	0.59	0.59	٧	6.6996
98	23.260	428572.55	67481.33	1.38	1.38	٧	6.3510
99	23.563	50259.00	5167.21	0.16	0.16	E	9.7265
100 101	23.961 24.183	308279.41	49073.92	1.00	1.00	٧	6.2819
102	24.103	11368.13 127313.61	2103.56 21748.90	0.04 0.41	0.04 0.41	V	5.4042 5.8538
103	24.488	363795.73	58133.57	1.18	1.18	v	6.2579
104	25.013	176544.54	9216.39	0.57	0.57	Ÿ	19.1555
105	25.289	79008.14	6741.88	0.26	0.26	v	11.7190
106	25.433	61017.00	7360.54	0.20	0.20	٧	8.2897
107	25.551	47012.81	6366.27	0.15	0.15	٧	7.3847
108	25.727	64929.30	9988.32	0.21	0.21	٧	6.5005
109 110	25.851	142650.07 18177.22	17839.69	0.46	0.46	٧	7.9962
111	26.110 26.241	23804.07	2706.17 2609.36	0.06 0.08	0.06 0.08	V	6.7170 9.1226
112	26.600	165351.45	19481.02	0.53	0.53	v	8.4878
113	26.744	59198.52	6746.00	0.19	0.19	v	8.7753
114	27.019	15499.44	1630.45	0.05	0.05	٧	9.5062
115	27.709	100229,98	12405.70	0.32	0.32	8	8.0793
116	27.942	67215.52	8824.59	0.22	0.22	٧	7.6168
117	28.296	10240.50	1735.69	0.03	0.03	В	5.9000
118 119	28.678	7830.00	985.56	0.03	0.03	8	7.9447
יווי	29.473 30.137	126162.00 21130.04	6983.13 814.79	0.41	0.41 0.07	B B	18.0667
	30.678	255711.80	7847.79	0.83	0.07	٧	25.9333 32.5839
122	31.218	500727.96	16290.07	1.62	1.62	v	30.7382
123	32.266	915697.57	19575.14	2.96	2.96	v	46.7786
124	32.841	577329.64	19550.72	1.87	1.87	V	29.5298
125	34.318	5439.00	1328.44	0.02	0.02	8	4.0943
126	34.923	505.50	180.61	2e-03	1.6332e-03	B	2.7989

4300342.13

Peak Time Area Height Area Norm. Area BL Area/Height
[min] {uV*sec} {uV} {%} {%} {sec}


30951194.50 4.671e+06 100.00 100.00

...ssing Component Report

Component Expected Retention (Sample File)

2,4-DB

15.350

Software Version: 3.3 <4811>

Sample Name : L950626-4 /. 5

: 3/13/95 02:22 PM Time Study : 515.1

Sample Number: 30

Operator : KMW

Channel: B A/D mV Range: 1000

Instrument : HP5890 *utoSampler : NONE ck/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 01:47 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HB30030.RAW Result File : C:\2700\HP5890\HB30030.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 515B Sample File : HB515B

Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ul Area Reject : 200.000000 Dilution Factor : 1.00 Sample Amount : 1.0000

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A: ' Inlet 8:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time: 35.00 min

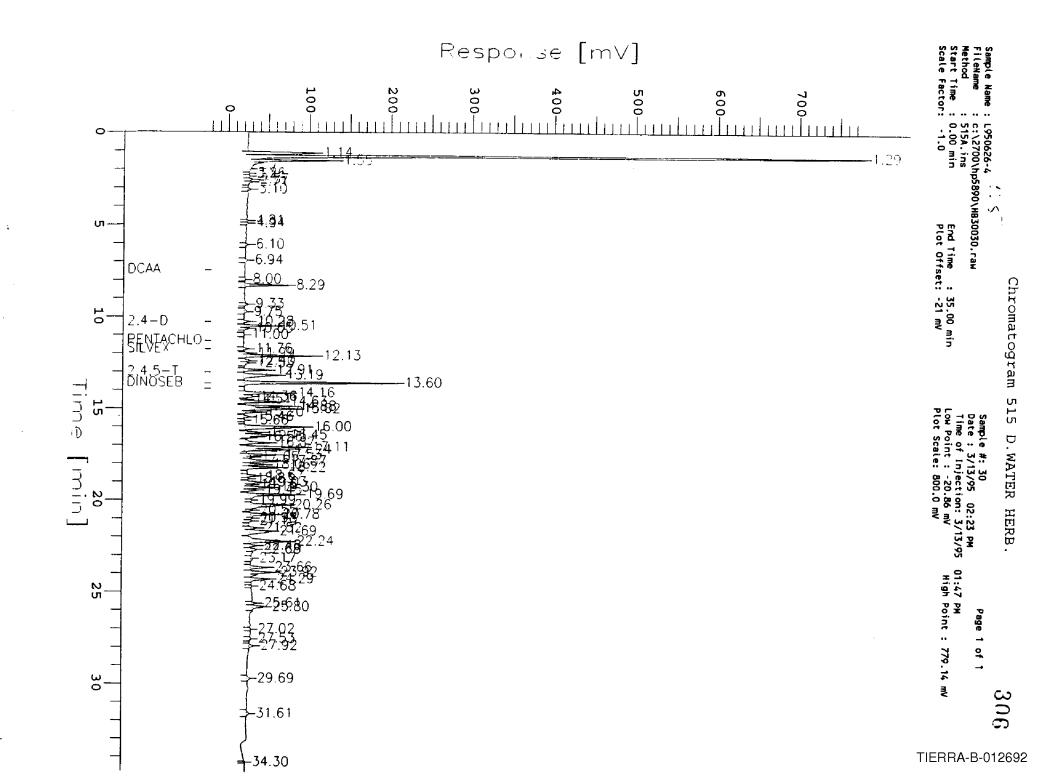
Timed Events:

There are no timed events in the method

HP5890 REPORT FOR 515.1 HERBICIDES DRINKING WATER ANALYSIS.

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Time (min)	Component Name	Area (uV*sec)	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor
1	1.136		581108.96	82610.08	1.1622	1.1622	5.8111e+05
2	1.292		4911862.67	1.034e+06	9.8237		4.9119e+06
3	1.548		371821.38	96650.18	0.7436	0.7436	3.7182e+05
4	2.257		3354.00	1128.87	0.0067	0.0067	3354.0000
5	2.405		7569.00	1803.33	0.0151	0.0151	7569.0000
6	2.565		20677.00	4686.64	0.0414	0.0414	20677.0000
7	2.711		14341.00	3835.25	0.0287	0.0287	14341.0000
8	3.099		23727.00	4837.51	0.0475	0.0475	23727.0000
9	4.808		10684.50	2707.90	0.0214	0.0214	10684.5000
10	4.940		12038.50	3519.56	0.0241	0.0241	12038.5000
11	6.099	1	16797.50	4026.95	0.0336	0.0336	16797.5000
12	6.944	1	21962.50	3223.76	0.0439	0.0439	21962.5000
Q	7.480 D	CAA	0.00	0.00	0.0000	0.0000	0.0000
13	7.995		5842.00	1179.86	0.0117	0.0117	5842.0000
4	8.290	1	254795.00	56337.15	0.5096	0.5096	2.5480e+05
	9.329		21297.00	4826.57	0.0426	0.0426	21297.0000
16	9.753	ì	32926.00	3632.60	0.0659	0.0659	32926.0000
17	10.279 2	,∳-D	37854.00	7947.26	10.7319	10.7319	37854.0000
18	10.514		158800.00	34292.73	0.3176	0.3176	1.5880e+05
19	10.650		14903.50	3930.56	0.0298	0.0298	14903.5000
20	10.997	ı	8412.00	1693.33	0.0168		8412.0000


	Time	Component	Area	Height	Raw	Adjusted	Calibration	305	
#	(min)	Name	[uV*sec]	[uV]	Amount	Amount	Factor		
0	11.320 PE	NTACHLOROPHENOL	0.00	0.00	0.0000	0.0000	0.0000	 	• • • • • •
21	11.756 SI	L√jEX	30745.00	6324.04	1.9546	1.9546	30745.0000		
22	11,993	İ	17915.00	3836.29	0.0358		17915.0000		
	12.131		436251.50	85757.43	0.8725		4.3625e+05		
25	12.404	1 11	32438.00 25367.00	6808.08 5278.26	0.0649		32438.0000		
26	12.911 2,	* k. 7/)	157211.00		0.0507 9.0369		25367.0000 1.5721e+05		
27	13.188	7. P (/ C	346077.50		0.6922		3.4608e+05		
28	13.595 DI	NOSEB	985969.00		130.4136		9.8597e+05		
0	13.920 2,	4 DB	0.00	0.00	0.0000	0.0000			
29	14.155	}	260896.00	54114.38	0.5218		2.6090e+05		
30 31	14.358 14.507		42590.50	7032.81	0.0852		42590.5000		
32	14.628		4630.50 218120.00	1299.00 47402.62	0.0093 0.4362		4630.5000 2.1812e+05		
33	14.882		211118.00	46637,19	0.4222		2.1112e+05		
34	15.022		258552.00	49857.11	0.5171		2.5855e+05		
35	15.202		70762.00	16266.23	0.1415		70762.0000		
36	15.459		42070.00	7536.23	0.0841		42070.0000		
37 20	15.656		4836.00	1000.50	0.0097		4836.0000		
38 39	16.004 16.310		581455.50 76868.00	77589.84	1.1629		5.8146e+05		
40	16.453		76848.00 153433.00	17524.48 36033.30	0.1537 0.3069		76848.0000 1.5343e+05		
41	16.560		12733.00	5636.77	0.0255		12733.0000		
42	16.868		175055.50		0.3501		1.7506e+05		
43	17.105		290220.00	63263.85	0.5804	0.5804	2.9022e+05		
44	17.240		159022.00	39441.63	0.3180		1.5902e+05		
45	17.533		170398.50	35168.33	0.3408		1.7040e+05		
46 47	17.653		11684.00	4442.84	0.0234		11684.0000		
48	17.872 18.057		225339.50 101823.00	42262.27 22362.93	0.4507 0.2036		2.2534e+05 1.0182e+05		
49	18.224		205918.50		0.4118		2.0592e+05		
50	18.672		75907.00	15701.15	0.1518		75907.0000		
51	18.827		12289.00	2985.74	0.0246		12289.0000		
52	19.029		87135.00	16992.36	0.1743		87135.0000		
53 54	19.162 19.296		9140.00 131655.00	2974.36 29299.69	0.0183 0.2633		9140.0000 1.3166e+05		
55	19.445		48000.00	11645.33	0.2033		48000.0000		
•	19.692		376207.00	64519.17	0.7524		3.7621e+05		
1	19.994		4847.50	1329.48	0.0097		4847.5000		
58	20.257		380521.50	46301.83	0.7610	0.7610	3.8052e+05		
59	20.548		12150.00	3571.66	0.0243		12150.0000		
60	20.778		169927.50		0.3399		1.6993e+05		
61 62	20.978 21.130		5868.00 14541.00	1900.13 3488.80	0.0117 0.0291		5868.0000 14541.0000		
63	21.515		48426.00	9968.81	0.0291		48426.0000		
64	21,690		246434.50		0.4929		2,4643e+05		
65	22.237		407389.00		0.8148	0.8148	4.0739e+05		
66	22.475		46038.00	9133.22	0.0921		46038.0000		
67	22.676		46801.00	7010.71	0.0936		46801.0000		
68 69	23.169 23.658		18440.00 129449.00	2011.19 22808.54	0.0369 0.2589		18440.0000 1.2945e+05		
70	23.924		129062.00		0.2581		1.2906e+05		
71	24.289		141992.00		0.2840		1.4199e+05		
72	24.676		6639.00	1484.50	0.0133		6639.0000		
73	25.610		35049.00	6825.59	0.0701	0.0701	35049.0000		
74	25.801		106408.00	16399.01	0.2128		1.0641e+05		
75 74	27.023		6297.50	1099.04	0.0126		6297.5000		
76 77	27.534		11607.00	1828.89 5937.73	0.0232 0.0821		11607.0000 41052.0000		
77 78	27.915 29.693		41052.00 31159.00	3934.24	0.0623		31159.0000		
79	31.613		33829.50	3351.88	0.0677	0.0677	33829.5000		
80	34.295		4530.00	1198.15	0.0091		4530.0000		

14659044.00 2.837e+06 179.0314 179.0314 1.4659e+07

Missing Component Report Component Expected Retention (Sample File)

DCAA 7.480
""NTACHLOROPHENOL 11.320
-DB 13.920

HP5890 DETECTOR B

Software Version: 3.3 <4B11>

Sample Name : L950626-5 1:5 PCB SOIL Time : 3/9/95 03:24 AM

Sample Number: 28 Study : PPPCB

Operator : KMW

Instrument : HP5890 Channel: A A/D mV Range: 1000

toSampler : NONE k/Vial

Interface Serial #: 8055910402 Data Acquisition Time: 3/9/95 02:51 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38028.RAW Result File : C:\2700\HP5890\PA38028.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA
Sample File : PESTA058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000 Area Reject : 200.000000 Dilution Factor : 1.00

Instrument Control Method: Instrument name: HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A:

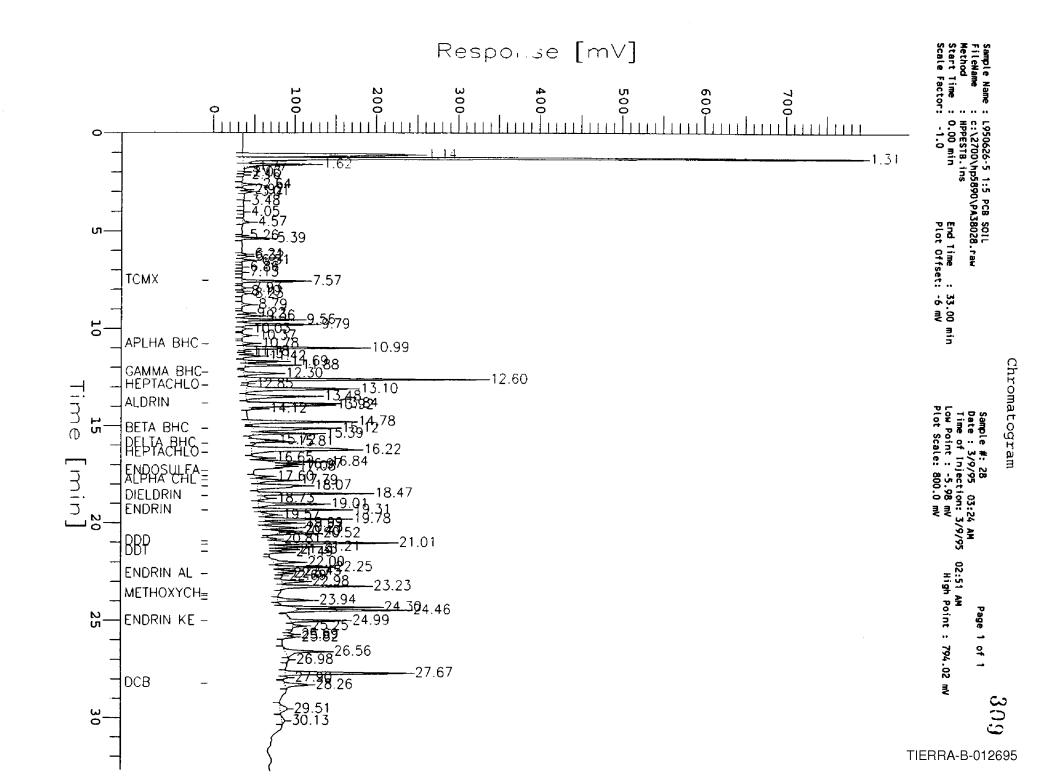
Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:


There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time (min)	Area (uV*sec)	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range
1		1.137	1647419.96	218167.47	54.7986	54.7986	1647420	· · · · · · · · · · · · · · · · · · ·	
2		1.308	4985149.03	993527.17	159.0461	159.0461	4985149		
3		1.624	398952.01		15.8052	15.8052			
4		1.767	25143.00		4.1300	4.1300			
5		2.030	5687.50	_	3.5223	3.5223			
6		2.161	8740.00	1763.19	3.6177	3.6177			
7		2.638	65991.00		5.4058	5,4058			
ġ		2.918	11668.00	2478.24	3.7091	3,7091			
9		3.010	35523.00		4.4542	4.4542			
11		4.046	4338.50	754.46	3.4802	3.4802			
12		4.565	55291.00		5.0716	5.0716			
13		5.257	3736.50		3.4614	3.4614			
14		5.387	123133.00		7.1905			******	
14						7.1905			
		6.206	21860.00	5939.43	4.0274	4.0274			
		6.318	20791.50	5984.94	3.9941	3,9941	20791		
17		6.512	57848.00	14901.82	5.1515	5.1515	57848		
18		6.860	4422.00	1100.06	3.4828	3.4828	4422		
19		7.133	5065.00	1061.75	3.5029	3.5029	5065		
20	TCMX	7.573	331501.00	80461.26	12.8459	0.0000	331501	0.2923	
21		7.929	25717.00	5250.80	4.1479	4.1479			

										იიი	Pe
Peak	Component	Time	Area	Height	Raw	Adjusted	Calibration	Delta RI	Cal		
#	Name	[min]	[uV*sec]	(uV)	Amount	Amount	Factor	[%]	Range		
	••••••								• • • • • • • • • • • • • • • • • • • •		
22 23		8.104 8.228	9162.00 25182.50	2255.13	3.6308	3.6308	9162				
24		8.787	60520.00	6198.69 11780.05	4.1312 5.2349	4.1312	25183				
7.		9.224	35621.50	8803.34	4.4573	5.2349 4.4573	60520 35622				
د		9.356	83410.00	20198.91	5.9498	5.9498	83410				
27	•	/ 9.555	330334.00		13.6620	13.6620	330334				
28	,,,	9.791	392477.00	91025.36	15.6029	15.6029	392477				
29	25	10.025	23276.00	4635.31	4.0717	4.0717	23276	•••••			
30 31	Aprilus puo	10.370	53810.00	11511.65	5.0253	5.0253	53810				
32	APUHA BHC	10.776 10.987	74718.00	15067.33	5.6784	5.6784	74718	-0.1953	-		
33	1 "	11.179	4029.00	150598.68 1275.94	25.3581 3.4705	25.3581	704813				
34	1 7	11.306	10762.00	3165.98	3.6808	3.4705 3.6808	4029 10762				
35		11.424	98733.50	21953.02	6.4284	6.4284	98733				
36	[11.689	222270.00	48736.06	9.9850	9.9850	222270				
37		11.883	286283.00	60688.63	12.0900	12.0900	286283				
38	GAMMA BHC	12.304	281244.00		11.9243	11.9243	281244	0.3867			
39 40	HEPTACHLOR	12.604	1586366.50		63.6671	63.6671	1586366				
41	ner racineok	12.845 13.098	4969.00 896521.00	1704.28	1.1064 36.3766	1.1064	4969	-0.5344	-		
42	ŀ	13.477	570831.00		21.7485	36.3766 21.7485	896521 570831				
43	ALDRIN	13.843	209791.00	42060.18	9.3579	9.3579	209791	0.0102			
44		13.915	148050.00		7.2390	7.2390	148050				
45	1	14.117	42521.00	12787.94	3.6174	3.6174	42521				
46		14.778	794484.00		57.3861	57.3861	794484				
47	BETA BHC	15.121	709897.50		51.2996	51.2996	709897	-0.1543			
48		15.389	356789.00		25.8912	25.8912	356789				
49 50	DELTA BHC	15.724	31877.00	6811.79	4.7222	4.7222	31877				
51	DELIA BIIC	15.807 16.221	118943.00 1278026.00	32514.44	7.7558 48.5720	7.7558 48.5720	118943 1278026	-0.6015			
Ō	HEPTACHLOR EXPOXIDE	16.381	0.00	0.00	0.0000	0.0000	0				
52		16.647		18506.13	3.9290	3.9290	89112				
53		16.840	285334.50		11.2970	11.2970	285334				
54	1	16.966	77931.00		3.7004	3.7004	77931	• • • • • • •			
55		17.077	38345.00	13122.50	2.2137	2.2137	38345	• • • • • • • • • • • • • • • • • • • •			
0	ENDOSULFAN I	17.321	0.00	0.00	0.0000	0.0000	0				
56	GANMA CHLORDANE ALRHA CHLORDANE	17.603	88652.00	18025.74	3.8878	3.8878	88652	0.1999	-		
ی	DDE 1.	17.794 18.067	272061.00 555914.50	45804.94 41785 83	10.6145 23.0113	10.6145	272061 555014	0.0462			
59	DIELDRIN	18.469	746493:50		31.6955	23.0113 31.6955	555914 746494	-0.1871 -0.7090			
60	- T ζ	18.730	73617.00	12292.07	5.2875	5.2875	73617	-0.7070			
61	r^{i}	19.008	501336.50	83563.35	28.6127	28.6127	501336	•••••			
62	ENDRIN (\	19.305	558709.00		31.6633	31.6633	558709	-0.1629			
63		19.570	101165.00		7.3346	7.3346	101165				
64 45		19.784	511176.00		29.1359	29.1359	511176				
65 66		19.985 20.233	200927.00	42289.96	12.6392	12.6392	200927				
67		20.404	217872.50 90090.00	39631.62 21908.89	15.9188 8.4405	15.9188 8.4405	217872 90090				
68	`	20.517	199049.50	45825.20	14.8172	14.8172	199050				
69	\	20.810	34438.00	7471.50	5.1835	5.1835	34438				
70	DDD	21,005	878134.50		54.5599	54.5599	878134	0.3830			
71	ENDOSULFAN II \	21.205	226318.00		12.7895	12.7895	226318	0.5450			
72) (")	21.350		21888.05	12.5643	12.5643	86341	-0.4697	-		
73 74	11 /2/10	21.485		19473.25	11.8591	11.8591	75811				
74 75	A Link Mill	21.998 22.245	230515.50 333852.50		17.8560 25.0571	17.8560	230516 333852	• • • • • • • • • • • • • • • • • • • •			
76	ENDR IN ALDERYDE	22.451	87884.00	18258.98	7.9166	25.0571 7.9166	87884	-0.6738	_		
77	ENDRIN ALDEHYDE	22.574	12064.00	4190.36	2.6331	2.6331	12064				
78	1 V	22.690	8303.00	1349.99	2.3710	2.3710	8303				
79		22.981	162550.00	28946.53	13.1198	13.1198	162550				
80	. 1	23.228	590125.50		132.1364	132.1364	590125				
0	METHOXYCHLOR	23.625	0.00	0.00	0.0000	0.0000	0				
0	ENDOŞULFAN SULFATE	23.726	0.00	0.00	0.0000	0.0000	0	A 4333			
81 82	DBC	23.937 24.300	254250.50 495358.50		18.5530	18.5530	254250 405358	0.1372			
83	1	24.457	656612.00		35.6211 47.0362	35.6211 47.0362	495358 656612				
84	ENDRIM KETONE	24.987	381397.00		18.8853	18.8853		-0.1296			
85	1	25,253	82679.00	15015.21	5.0903	5.0903	82679	• • • • • • • • • • • • • • • • • • • •			
86	1	25.690	24867.50	5869.43	2.4205	2.4205	24868				
87		25.823	41068.50	8889.46	3.1687	3.1687	41068				
٦٩		26.563	430489.00	52251.92	21.1524	21.1524	430489				
		26.981	14198.00	1945.78	-12.1170	-12.1170	14198				
/Ú		27.666	1009525.50		36.0071 -11.7096	36.0071	1009526				
91 92	DCB	27.898 28.262	22624.00 235346.00	4733.07 29548.79	-11.7096 -1.4245	-11.7096 -1.4245	22624 235346	0.2097	_		
93		29.508	149790.00	8297.61	-5.5612	-5.5612	149790	0.2097	-		
94		30.125	59447.00	3592.32	-9.9293	-9.9293	59447				

Software Version: 3.3 <4B11>

Sample Name : L950626-5 1:5 PCB SOIL Time : 3/9/95 03:25 AM

Sample Number: 28

Time : 3/9/99
Study : PPPCB

Operator : KMW

Channel : B A/D mV Range : 1000

Instrument : HP5890 intoSampler : NONE :/Vial : 0/0

Interface Serial #: 8055910402 Data Acquisition Time: 3/9/95 02:51 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38028.RAW Result File : C:\2700\HP5890\PB38028.RST Instrument file: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTB Sample File : PESTB058

Sequence file : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1,0000 Dilution Factor : 1.00

Instrument Control Method:

Instrument name : HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

fotal run time : 33.00 min

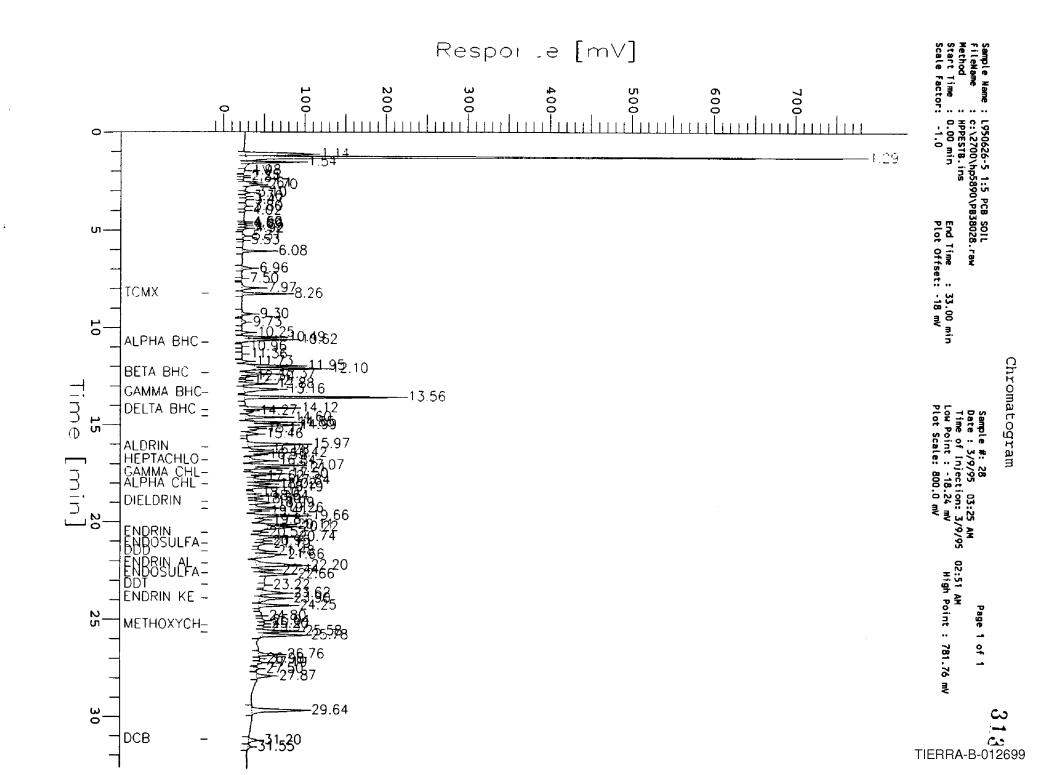
Timed Events:

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time (min)	Area (uV*sec)	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range
*******		4 470		05040.45				•••••
2		1.139	619493.43		41.0910	41.0910		
		1.288	3466779.36		252.7943	252.7943	3466779	
3		1.541	267957.21		14.9533	14.9533		
4		1.980	8741.50	1425.98	-4.3200	-4.3200		
5		2.252	3246.00		-4.7286	-4.7286		
6		2.344	3317.00	832.44	-4.7234	-4.7234	3317	
7		2.614	36739.00	5438.84	-2.2384	-2.2384	36739	
8		2.699	31935.00	10754.46	-2.5955	-2.5955	31935	
9		3.101	32977.00	7531.72	-2.5181	-2.5181	32977	
10		3.300	9839.50	1875.39	-4.2384	-4.2384	9840	
11		3.467	13531.00	2409.33	-3.9639	-3.9639		
12		3.804	24056.00	2463.11	-3.1814	-3.1814	24056	
13		4.019	6775.00	1240.27	-4.4663	-4.4663	6775	
14		4.599	8104.00	2654.27	-4.3674	-4.3674	8104	
		4.692	4974.00	1810.00	-4.6002	-4.6002	4974	
		4.788	11856.00	3354.88	-4.0885	-4.0885	11856	
. (4.920	18136.00	5687.41	-3.6215	-3.6215	18136	•
18		5.313	31987.00	3611.85	-2.5917	-2.5917	31987	
19		5.532	3741.00		-4.6918	-4.6918	3741	
20		6.078	142993.00		5.6619	5.6619	142993	
21		6.964	72981.00		0.4563	0.4563	72981	


Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cat. Range
22	********	7.499	5561.00	1352.93	-4.5565	-4.5565		
23		7.967	132341.00		4.8699	4.8699		
24	TCMX	8.260	244713.00	56739.06	13.2251	13.2251	244713	
		9.301	77024.00	13643.91	0.7569	0.7569		
27		9.727 10.252	46689.50 50864.50	5321.07 10895.94	3.3443 3.5255	3.3443 3.5255	46690 50864	
28		10.485	178686.00	42038.81	9.0749	9.0749		
29		10.618	245264.00	55879.10	11.9654	11.9654	245264	
0 30	ALPHA BHC	10.753	0.00	0.00	0.0000	0.0000		
31	İ	10.964 11.358	6244.50 10290.00	1175.86 1827.72	1.5884 1.7640	1.5884 1.7640	6244 10290	
32		11.732	39746.00	8189.47	2.5733	2.5733	39746	
33		11.950	269861.00		13.2888	13.2888	269861	
34 35	BETA BHC	12.102 12.374	376282.00		18.2443	18.2443	376282	
36	DETA BIL	12.503	154759.00 9195.00	31258.02 3388.28	7.9290 1.1507	7.9290 1.1507	154 7 59 9195	
37		12.721	8955.00	2302.53	1.1395	1.1395	8955	
38		12.881	152780.00	33049.67	5.0454	5.0454	152780	
39 0	GAMMA BHC	13.159 13.331	346567.50 0.00	46959.17 0.00	12.2646	12.2646	346568	
40	on and	13.563	978108.00		0.0000 35.7916	0.0000 35.7916	0 978108	
41	DELTA BHC	14.124	278589.00	58759.69	14.5408	14.5408	278589	
42 43	HEDTACUI OD	14.269	6429.50	1755.61	1.7272	1.7272	6430	
43 44	HEPTACHLOR	14.598 14.851	258966.00 198915.50		14.0728 11.0842	14.0728 11.0842	258966 198916	
45	t	14.993	238732.00	43993.10	13.0658	13.0658	238732	
46	!	15.173	24574.50	7087.45	2.4075	2.4075	24574	
47 48		15.460	89442.00	15131.90	41.2577	41.2577	89442	
40	ALDRIN	15.974 16.123	538935.00 0.00	72683.06 0.00	-217.2507 0.0000	-217.2507 0.0000	53893 5 0	
49		16.279	70934.00	15777.40	51.9019	51.9019	70934	
50	!	16.422	140598.50	32966.78	11.8371	11.8371	140599	
51 52		16.530 16.835	14533.00	5845.19 28183.00	84.3387	84.3387	14533	
53	HEPTACHLOR EPOXIDE	16.835 17.073	155740.50 252146.00	28183.00 55512.74	8.4099 13.8349	8.4099 13.8349	155741 252146	
54	į	17.207	127742.50	32191.73	6.8344	6.8344	127742	
55	GAMMA CHLORDANE	17.500	181786.00	37687.28	9.4324	9.4324	181786	
	ALPHA CHLORDANE/ENDO	17.621 17.840	15458.00 221527.50	5527.73 41962.79	0.5297	0.5297	15458	
58	CHECKDARE/ENDO	18.024	110643.00	24101.44	11.2666 4.8794	11.2666 4.8794	221528 110643	
59		18.192	155265.00	33263.19	7.4497	7.4497	155265	
60		18.495	10819.00	1985.72	1.6464	1.6464	10819	
61 62	İ	18.643 18.798	63378.00 12995.00	13575.23 3104.71	4.9634 1.7837	4.9634 1.7837	63378 13005	
63	DIELDRIN	18.992	110765.50	18998.60	7.9540	7.9540	12995 110766	•
64	DDE	19.264	145512.00	29684.50	9.0018	9.0018	145512	
65	/ \	19.413	43339.50	10677.41	2.7163	2.7163	43340	
66 67	/ /	19.660 19.869	307907.00 32431.00	60496.55 6452.33	18.9922 2.0452	18.9922 2.0452	307907 32431	
68		20.113	114586.00	27969.78	9.7703	9.7703	114586	
69		20.223	196847.50	29820.66	16.7855	16.7855	196847	
70 71	ENDERN //2/4		15294.00 210485.50	4295,77	1.3028	1.3028	15294	
71 72	ENDRIN US	20.744 20.951	16082.00	39924.24 4181.86	17.9485 2.1395	17.9485 2.1395	210485 16082	
73	ENDOSULFAN 1	21.102	33017.00	7764.65	3.4159	3.4159	33017	-
74		21.483	64382.50	13202.21	3.7153	3.7153	64382	
75 76	DDD ENDRIN ALDEHYDE	21.655 22.204	241151.00 528787.00	26245.95 58811.99	17.2075 54.9024	17.2075 54.9024	241151 528787	
77	THURST ALVERIUE	22.444	106161.00	20554.41	10.8718	10.8718	106161	
78	ENDOSULFAN SULFATE	22.662	199882.50	34579.90	20.6927	20.6927	199882	
79	DDT	23.219	11641.00	2502.66	0.2041	0.2041	11641	•
80 81	ENDRIN KETONE	23.622 23.897	210741.00 234725.00	30874.34 32980.12	16.3737 18.3133	16.3737 18.3133	210741 234725	
82	LADRIE ACTORE	24.254	241066.00	42409.19	18.8261	18.8261	241066	
83		24.800	9729.00	0.00	-2.1793	-2.1793	9729	
84		25.037	16265.00	2989.92	-0.6041	-0.6041	16265	
85 86	METHOXYCHLOR	25.200 25.367	5759.00 7625.50	878.89 1664.38	-3.1361 -2.6863	-3.1361 -2.6863	5759 7626	
87	HE I HOAT CHEUK	25.578	227750.00	43093.71	21.6452	21.6452	227750	-
88	DBC	25.781	312100.00	51988.76	29.5253	29.5253	312100	
40	(26.764	169204.00	26714.68	16.1758	16.1758	169204	
	1	26.983 27.188	6318.50 37827.00	1144.15 6108.57	0.9589 3.9025	0.9589 3.9025	6318 37827	
92	1	27.100	20655.00	3406.97	2.2983	2.2983	20655	
93	1	27.869	140357.00	19123.48	13.4809	13.4809	140357	
94	1	29.640	571213.50	65499.48	37.2538	37.2538	571214	
95	DCB	31.200	96023.00	10681.02	-4.7362	-4.7362	96023	-

page _

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Raw Amount	Amount	Calibration Factor	Range	012
96		31.545	29271.50	3172.65	-10.6346	-10.6346	29272		
			16037141.50		851.4634	851.4634	16037141		

Missing Component Repor Component	Expected Retention (Sample File)
ALPHA BHC	10.753
GAMMA BHC	13.331
ALDRIN	16.123

Report Stored in ASCII File: C:\2700\HP5890\PB38028.TX0

Software Version: 3.3 <4811>

Sample Name : L950626-6 STRT Time : 3/13/95 06:41 PM Study : 515.1 Sample Number: 36

Operator : KMW

Channel : A A/D mV Range : 1000

Instrument : HP5890
"itoSampler : NONE
t/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 06:06 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

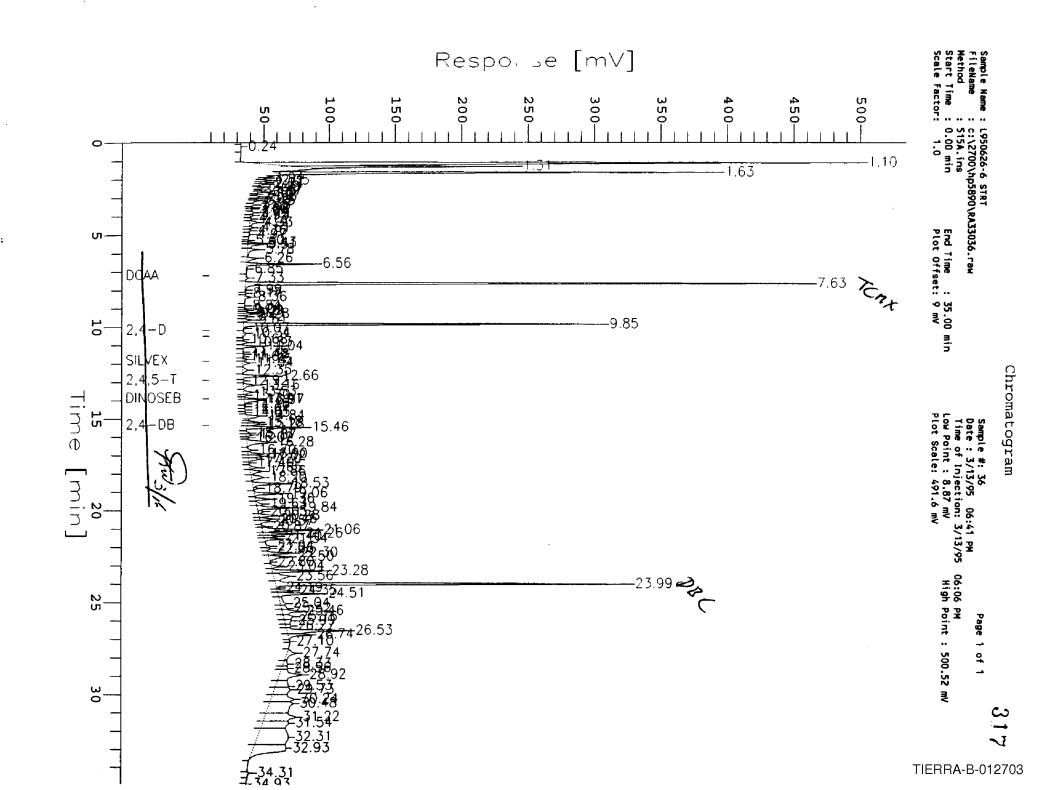
Raw Data File : C:\2700\HP5890\RA33036.RAW Result File : C:\2700\HP5890\RA33036.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 515A Sample File : HB515A2

Sequence File : C:\2700\METHSEQS\0310H8.seq

Inj. Volume : 1 ul Area Reject : 0.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

DEFAULT REPORT


Peak	Time	Area	Height	Area		BL	Area/Height	
#	[min]	[uV*sec]	(uV)	[%]	[%]		[sec]	••••
1	0.236	965.50	85.84	5e-03	4.7577e-03	В	11.2481	
2	1.103	2571148.30	463803.10	12.67	12.67		5.5436	
	1.313		166693.97	3.58			4.3632	
3 4	1.634	1348227.00	333034.22	6.64	6.64	. 8	4.0483	
5	1.936	10323.00	3687.30	0.05	0.05	В	2.7996	
6	2.050	28748.83	9274.81	0.14	0.14	. 8	3.0997	
7	2,169	24741.57	5489.75	0.12	0.12	. v	4.5069	
8	2.244	20352.10	6441.57	0.10				
9	2.404	4427.50	1296.26	0.02			3.4156	
	2.575	4640.71	1572.65	0.02			2.9509	
- 1	2.674	23498.29	6438.59	0.12				
12	2.804	1312.50	588.02		6.4677e-03		2.2321	
13	2.930	18355.25	4255.65	0.09	0.09		4.3132	
14	3.036	6998.19	1777.91	0.03	0.03			
15	3.134	14947.33	4190.06	0.07			3.5673	
16	3.379	8812.22	2119.30	0.04	0.04		4.1581	
17	3.518	6590.31	1854.30	0.03	0.03		3.5541	
18 19	3.600 3.788	2764.19 15309.57	647,74	0.01	0.01			
20	3.788	10136.43	2002.32 1905.63	0.08	0.08		7.6459 5.3192	
21	4.134	6328.54	901.42	0.05				
22	4.332	51753.84	5500.61	0.03			7.0206	
23	4.606	17369.16	3969.76	0.26				
24	4.762	6188.46	1240.37	0.03				
25	4.970	4935.00	1070.98	0.02			4.6079	
26	5.302	1589.03	358.90		7.8303e-03		4.4275	
27	5.431	40802.63	9907.63	0.20				
28	5.506	68562.67	9940.75	0.34	0.34			
29	5.784	63869.93	8323.10	0.31	0.31			
30	6.258	57381.85	7891.49	0.28		v		
31	6.562	224925.39		1.11	1.11			
32	6.847	4746.00	663.20	0.02			7.1562	
33	7.332	14091.86	1752.82	0.07			8.0395	
34	7.628	1947317.43	431861.24	9.60	9.60	V	4,5091	TCM+
35	7.986	6424.00	820.85	0.03			7.8260	
36	8.169	4473.67	848.60	0.02	0.02	. v	5.2719	
37	8.364	30090.03	4745.83	0.15				
38	8.836	3904.11	729.44	0.02			5.3522	
39	9.011	10093.16	2047.33	0.05	0.05			
40	9.087	10424.16	2535.56	0.05	0.05			.00 / -
41	9.206	20091.65	4482.54	0.10				0) [7] 7
42	9.283	33251.11	7136.56	0.16				221020.03
′3	9.423	18467.92	3334.24	0.09				23/836.25
	9.612	34980.92	5909.92	0.17				
. 3	9.848	1233797.70		6.08				AR32
46	10.070	6521.00	1328.76	0.03				
47	10.338	21313.27		0.11	0.11			
48	10.678	1604.76	255.15		7.9078e-03		-	
49	10.830	22111.56	4140.59	0.11	0.1	٧	5.3402	

Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	BL	Area/Height [sec]	
50	11.044	60650.19	12833.82	0.30	0.30	v	4.7258	
51	11.354	5340.50	724.47	0.03	0.03	В	7.3716	
-,	11.482	9310.50	1800.45	0.05	0.05	٧	5.1712	
	11.615	1105.00	334.11		5.4452e-03		3.3073	A137
. +	11.746	19000.33	3779.01	0.09	0.09		_	1-11(D)
55 54	11.942	38015.67	5392.80	0.19	0.19			
56 57	12.351 12.663	38056.00	3612.99	0.19	0.19		10.5331	
58	12.923	136205.14	24495.57 623.40	0.67 0.02	0.67		5.5604	
59	13.158	68785.75	9512.07	0.34	0.02 0.34	V	6.9853 7.2314	
60	13.534	48073.82	6515.43	0.24	0.24	v		
61	13.704	7436.75	1585.49	0.04	0.04	v	4.6905	
62	13.905	46210.14	11068.37	0.23	0.23	٧	4.1750	
63	13.968	93066.11	12136.98	0.46	0.46	٧	7.6680	
64	14.181	4105.00	945.92	0.02	0.02	Ε	4.3397	
65 66	14.323 14.511	6119,61	975.70	0.03	0.03	٧	6.2720	
67	14.645	3578.00 2524.00	753.78 632.86	0.02	0.02 0.01	8	4.7467 3.9883	
68	14.835	83910.50	10667.49	0.41	0.41	8	7.8660	
69	15.177	41071.36	8254.06	0.20	0.20	В	4.9759	
70	15.275	63741.09	9871.05	0.31	0.31	٧	6.4574	
71	15.461	227904.55	45182.55	1.12	1.12	٧	5.0441	
72	15.767	16007.09	2763.62	0.08	0.08	В	5.7921	
73 74	15.869	27908.27	4458.41	0.14	0.14	٧	6.2597	
75	16.021 16.278	11081.31 171877.02	1839.44 17846.29	0.05 0.85	0.05	٧	6.0243	
76 .	16.699	20217.07	3122.92	0.10	0.85 0.10	٧	9.6310 6.4738	
77 (16.898	68505.95	11879.12	0.34	0.34	v	5.7669	
78	17.019	2	_ 10732.81	0.35	0.35	v	6.6468	
79	17.198	59439.82		0.29	0.29		8.8333	
80	17.396	3853.78	668.80	0.02	0.02	٧	5.7623	
81	17.654	37755.40	6359.22	0.19	0.19		5.9371	
82 /	17.857	73618.70	9194.38	0.36	0.36	٧	8.0069	
83 84	18.195 18.527	96272.30	8832.31 25235.22	0.47	0.47		10.9000	
85 、	18.786	1 <u>76563.10</u> 16796.00	3330.67	0.87 0.08	0.87 0.08	V E	6.9967 5.0428	
	- 19.063	127709.24	22813.58	0.63	0.63	В	5.5979	
L.	19.360	67358,76	12310.51	0.33	0.33	v	5.4716	
ر اون	19.633	42711.53	5430.40	0.21	0.21	В	7.8653	
	19.839	189294.44	28123.96	0.93	0.93	٧	6.7307	
	20.045	27349.00	4016.17	0.13	0.13	E	6.8097	
91 92	20.281	92625.01 60694.08	13150.59 10667.82	0.46	0.46	V	7.0434	
93	20.574	48861.34	7904.00	0.24	0.30 0.24	٧	5.6895 6.1818	
94	20.870	18278.50	3466.36	0.09	0.09		5.2731	
95	21.057	310859.74	41986.10	1.53	1.53	V	7.4039	
96	21.256	148398.52	27886.04	0.73	0.73	٧	5.3216	
97	21.401	61659.56	10990.63	0.30	0.30	٧	5.6102	
98 (78904.97	15050.72	0.39	0.39	٧	5.2426	
99 100	21.939	24387.26 16356.54	3339.84 2786.95	0.12 0.08	0.12 0.08	V	7.3019 5.8690	
101	22.300	111150.08	20094.10	0.55	0.55	В	5.5315	
102	22.504	132049,23	16449.70	0.65	0.65	v	8.0275	
103	22.800	3235.00	613.26	0.02	0.02	Ε	5.2751	
104	23.038	48865.81	7575.10	0.24	0.24	٧	6.4509	
105	23.283	235849.81	40196.42	1.16	1.16	٧	5.8674	
106 107	23.561	178328.09	12422.29	0.88	0.88	٧	14.3555	NO. C
108	23.985 24.193	1461639.02	1933.76	7.20 0.05	7.20 0.05	V E	5.4666 <u>/</u> 5.3704)19 C
109	24.354	70561.42	12335.49	0.35	0.35	v	5.7202	
110	24.511	205680.30	33553.96	1.01	1.01	v	6.1298	
111	25.042	78464.79	4607.15	0.39	0.39	٧	17.0311	
112	25.317	54110.05	4455.16	0.27	0.27	٧	12.1455	
113	25.458	134598.60	13946.68	0.66	0.66	٧	9.6509	
114 115	25.758 25.987	95600.05 66680.70	7840.05 5433.31	0.47 0.33	0.47 0.33	٧	12.1938	
116	26.268	39091.75	3851.20	0.33	0.33	V	12.2726 10.1505	
117	26.529	382007.01	47404.98	1.88	1.88	v	8.0584	
118	26.743	120900.34	16983.55	0.60	0.60	v	7.1187	
119	27.100	2272.97		0.01	0.01	v	9.3653	
•	27.740	103613.80	7141.41	0.51	0.51	В	14.5089	
	28.334	51847.14	3512.84	0.26	0.26	٧	14.7593	
142	28.562	45508.88	4409.78	0.22	0.22	٧	10.3200	
123	28.916	333408.15	17880.67	1.64	1.64	٧	18.6463	
124 125	29.529	195144.80	10031.47	0.96	0.96	٧	19.4533	
126	29.728 30.240	263263.02 350751.66	12487.30 18201.03	1.30 1.73	1.30 1.73	V	21.0825 19.2710	
, 20	30.270	220121.00	,5201.03	3	1.73	•	17.2710	

page .

Peak #	Time [min]	Area (uV*sec)	Height [uV]	Area [%]	Norm. Area [%]	BL	Area/Height [sec]
127	30.480	638799.89	18236.98	3.15	3.15	v	35.0277
128	31.222	526068.34	24154.84	2.59	2.59	٧	21.7790
120	31.544	444773.49	20036.18	2.19	2.19	٧	22.1985
	32.308	1206076.26	23646.11	5.94	5.94	٧	51.0053
1	32.926	694250.58	24736.05	3.42	3.42	٧	28.0664
132	34.310	15580.00	2323.75	0.08	0.08	В	6.7047
133	34.930	402.00	160.43	2e-03	1.9810e-03	В	2.5057
		20293227.00	3.065e+06	100.00	100.00	- - -	

Missing Component Report Component	Expected Retention (Sample File)
DINOSEB	13.900
2,4-DB	15.350

Software Version: 3.3 <4811>

Sample Number: 36 Study : 515.1

Operator : KMW

'nstrument : HP5890 Channel : 8 A/D mV Range : 1000

instrument : HP5890 inoSampler : NONE /Viat : 0/0

Interface Serial #: 8055910402 Data Acquisition Time: 3/13/95 06:06 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\RB33036.RAW
Result File : C:\2700\HP5890\RB33036.RST
Instrument File: c:\2700\methseqs\515A.ins

Process File : 5158 Sample File : HB515B

Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A: Inlet B:

Detector Parameters:

Detector A: Detector B:

Heated Zones:

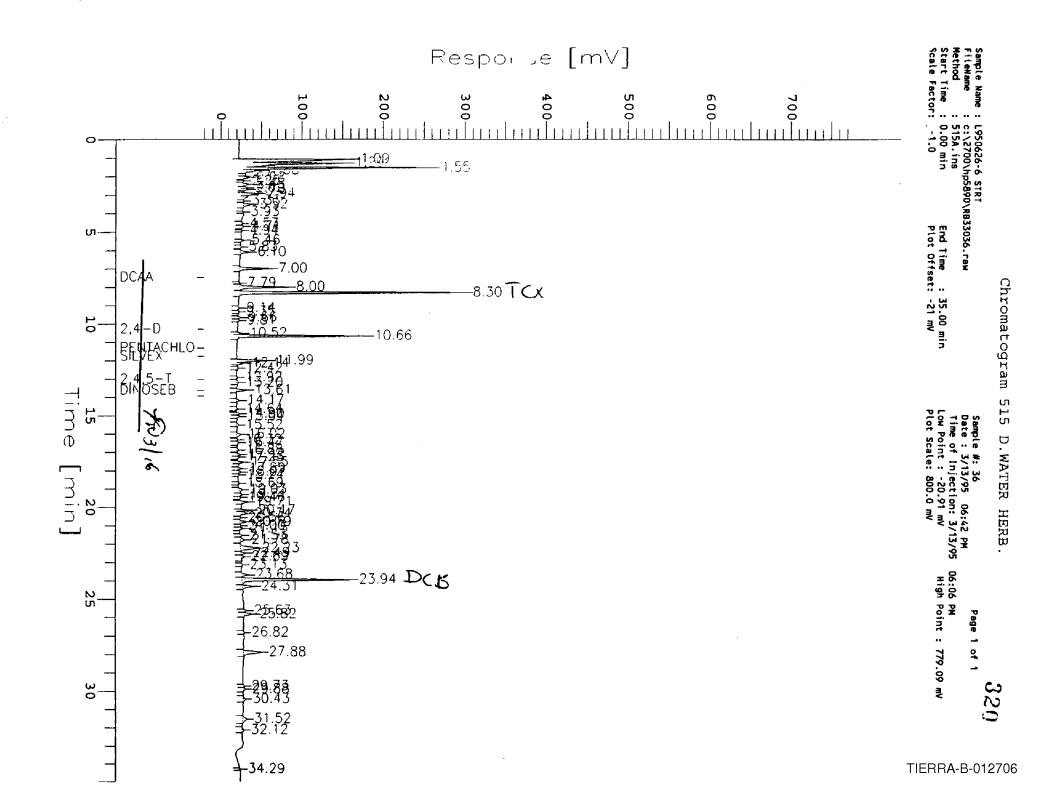
Temperature Program:

fotal run time : 35.00 min

Timed Events:

There are no timed events in the method

8080 PCG Im 3/16/65 HP5890 REPORT FOR 515.1-HERBIGIDES DRINKING WATER ANALYSIS.


NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Time (min)	Component Name	Area [uV#sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor
1	1,091		797817.00	146260.24	1.5956	1.5956	7.9782e+05
خ	1.292		396738.00	106702.42	0.7935	0.7935	3.9674e+05
3	1.549			223926.69	1.6702	1.6702	8.3509e+05
Ž	1.684		68288.57		0.1366	0.1366	68288.5714
5	2.078		28736.00		0.0575	0.0575	28736.0000
6	2.254		4649.00		0.0093	0.0093	4649.0000
7	2.425		39933.00		0.0799	0.0799	39933.0000
ġ	2.620		10786.00		0.0216	0.0216	10786.0000
9	2.704		11499.50		0.0230	0.0230	11499,5000
10	2.944		92275.50		0.1846	0.1846	92275,5000
11	3.331		3229.00		0.0065	0.0065	3229.0000
12	3.516		67296.50		0.1346	0.1346	67296.5000
13	3.930		3725.50		0.0075	0.0075	3725.5000
14	4.565		12839.00		0.0257	0.0257	12839.0000
12	4.713		11862.50		0.0237	0.0237	11862.5000
	4,941		6161.00		0.0123	0.0123	6161.0000
	5.457		17171.00		0.0343		17171.0000
18	5.828		6421.00		0.0128		6421.0000
			64883.00		0.1298		64883.0000
19	6.102	i	191886.00		0.3838		1.9189e+05
20	7.001	j. <u>.</u>			0.0000	0.0000	
0	7.480 D	JAA	0.00	0.00	0.0000	0.0000	0.000
		1					

		-							boa.
Peak		Component	Area	Height	Raw	Adjusted	Calibration		
#	[min] 	Name	[uV*sec]	(uV)	Amount	Amount	Factor	*************	
21	7.788		5072.00	1368.92	0.0101		5072,0000		
22 23	8.001		298979.00		0.5980		2.9898e+05		
•	8.300 9.141		1288103.00		2.5762		1.2881e+06		
	9.346		10191.00 3811.00	1805.31 760.53	0.0204 0.0076		10191.0000 3811.0000		
26	9.655	ر	16891.00	3831.88	0.0338		16891.0000		
27	9.810		10634.00	2495.33	0.0213		10634.0000		
0	10.300 2	2,4-∳	0.00	0.00	0.0000	0.0000	0.0000		
28	10.519		18460.00	4521.19	0.0369		18460.0000		
29 0	10.661	PENTACHLOROPHENOL	748544.50	159780.87	1.4967		7.4834e+05		
ŏ	11.780 \$		0.00	0.00 0.00	0.0000	0.0000	0.0000 0.0000		
30	11.992		190505.00		0.3810		1.9050e+05		
31	12.143	Į	14494.00	4349.79	0.0290	0.0290	14494.0000		
32	12.417	[_	8410.00	1729.17	0.0168		8410.0000		
33 34	12.923 2 13.198	2,4, p -1	10400.50 18472.00	2208.22	0.5978		10400.5000		
35	13.611	INGSER	70129.50	2430.72 14042.25	0.0369 9.2760		18472.0000 70129.5000		
ő	13.920 2		0.00	0.00	0.0000	0.0000			
36	14.168	- /	21838.00	4342.66	0.0437		21838.0000		
37	14.641	1	15924.50	3255.86	0.0318		15924.5000		
38 39	14.899 15.038	1	17791.00	3934.21	0.0356		17791.0000		
40	15.517	1	17702.50 16635.50	3453.42 2209.14	0.0354 0.0333		17702.5000 16635.5000		
41	16.021	1	43151.50	5658.64	0.0863		43151.5000		
42	16.322		4876.50	1115.11	0.0098		4876.5000		
43	16.467		13758.00	2748.52	0.0275		13758.0000		
44	16.882		13387.50		0.0268		13387.5000		
45 44	17.122 17.259		19701.50	4297.47	0.0394		19701.5000		
46 47	17.547		11036.00 35805.00	2552.56 7040.78	0.0221 0.0716		11036.0000 35805.0000		
48	17.892		21280.00	4534.81	0.0426		21280.0000		
49	18.071		18543.50	3810.04	0.0371		18543.5000		
50	18.238		8352.00	1956.02	0.0167		8352.0000		
51 53	18.687		8547.50	1827.22	0.0171		8547.5000		
52 - 3	19.034 19.310		32078.00 12346.00	4022.71 2792.25	0.0642 0.0247		32078.0000 12346.0000		
-	19.458		4576.50	1130.70	0.0092		4576.5000		
	19,708		45144.50	9209.49	0.0903		45144.5000		
56	20.165		49347.00	11530.13	0.0987		49347.0000		
57	20.344		37929.00	7039.82	0.0759		37929.0000		
58	20.564		5531.50	1371.22	0.0111		5531.5000		
59 60	20.794 20.998		48107.00 5462.50	9158.04 1294.27	0.0962 0.0109		48107.0000 5462.5000		
61	21.150		20649.00	4380.60	0.0413		20649.0000		
62	21.532		14577.00	2915.12	0.0292		14577.0000		
63	21.777		44195.50	5319.59	0.0884	0.0884	44195.5000		
64	22.228		183626.00		0.3673		1.8363e+05		
65 44	22.492 22.688		31002.00 26188.50	6032.88 3864.06	0.0620 0.0524		31002.0000 26188.5000		
66 67	23.134		8711.00		0.0324		8711.0000		
68	23.675		50213.50		0.1004		50213.5000		
69	23.937		775416.00	136082.20	1.5508		7.7542e+05		
70	24.308		83785.00		0.1676		83785.0000		
71	25.631		19292.00	3827.33	0.0386		19292.0000		
72 73	25.822 26.815		66341.00 7502.00	10255.90 1275.80	0.1327 0.0150		66341.0000 7502.0000		
73 74	27.880		191094.00		0.3822		1.9109e+05		
75	29.726		5960.00	912.24	0.0119		5960.0000		
76	29.882		12072.00	1816.57	0.0241	0.0241	12072.0000		
77	30.432		25241.00	2847.79	0.0505		25241.0000		
78 70	31.517		58525.00	5122.27	0.1171		58525.0000		
7 9 80	32.122 34.289		19985.00 4446.50	2147.05 1267.34	0.0400 0.0089		19985.0000 4446.5000		
			-776.50				************		
			7561858.50	1.544e+06	24.8365	24.8365	7.5619e+06		

Missing Component Report
Component Expected Retention (Sample File)

1	7.480
D	10.300
PENTACHLOROPHENOL	11.320
SILVEX	11.780
2,4-DB	13.920

Software Version: 3.3 <4811>

Sample Name : L950626-7 Sample Number: 34 3 3 Operator : KMW

Time : 3/13/95 03:39 PM

Study : 515.1

Channel: A A/D mV Range : 1000

Instrument : HP5890 AutoSampler : NONE k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 03:04 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HA30031A.RAW : C:\2700\HP5890\HA30031A.RST Result File Instrument File: c:\2700\methseqs\515A.ins

Process File : 515A Sample File : HB515A2

Sequence File : C:\2700\METHSEQS\0310HB.seq

: 1 ul Inj. Volume Sample Amount : 1.0000

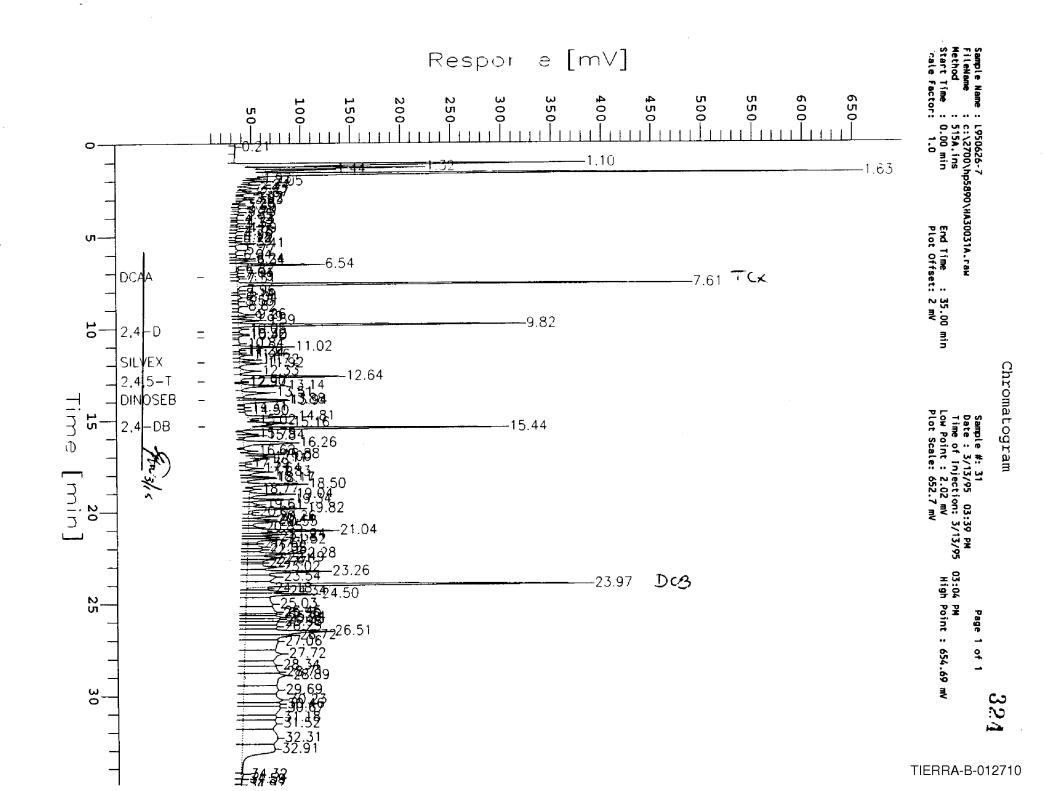
: 0.000000 Area Reject

Dilution Factor : 1.00

DEFAULT REPORT

Peak	Time	Area	Height	Area		BL	Area/Height	
#	[min]	[uV*sec]	(uV)	[%]	[%]		[sec]	
1	0.205	840.00	93.99		1.9925e-03	В	8.9372	
2		1947652.55		4.62	4.62		5.6139	
3		862159.57			2.05		5.2456	
4		248161.88	66310.37	0.59	0.59			
5		2514839.00	593947.65	5.97	5.97			
6	1.932	12097.00	4979.13	0.03	0.03	_		
7	2.046		18736.50	0.13	0.13			
8	2.240	23388.00	7990.42	0.06	0.06	В	2.9270	
9	2.432	35221.00	7140.68	0.08		В	4.9324	
	2.566	1747 50		0.01	0.01	В	2.1418	
4	2.670	36892.50 24840.22	10773.26	0.09	0.09	В	3.4244	
12	2.920	£4000.EE	6582.53	0.06	0.06	В	3.7767	
13	3.032	19647.78	6143.98	0.05	0.05	٧	3.1979	
14	3.257	1562.54	519.38	4e-03	3.7064e-03 0.02 0.02	В	3.0085	
15	3.349	7027.96	1520.51	0.02	0.02	٧	4.6221	
16	3.504	9091.00	3006.01	0.02	0.02	В	3.0243	
17	3.726	10980.20	2420.13	0.03	0.03	В	4.5370	
18	3.854	3745.80	573.82	9e-03	8.8851e-03	٧	6.5278	
19	4.128	977.00	200.29	2e-03	2.3175e-03	В	4.8780	
20	4.322	1562.54 7027.96 9091.00 10980.20 3745.80 977.00 10208.00 3890.62 21497.54 7315.85 10952.26	2808.83	0.02	0.02	В	3.6343	
21	4.466	3890.62	965.00	9e-03	9.2287e-03	В	4.0317	
22	4.587	21497.54	5431.25	0.05	0.05	٧	3.9581	
23	4.751	7315.85	1792.51	0.02	0.02	٧	4.0813	
24	4.962	10952.26	1455.54	0.03	0.03	В	7.5246	
25	5.116	4430.74	724.24	0.01	0.01	٧	6.1178	
26	5.290	4102.32	R46_R7	1e-02	9.7308e-03			
27	5.410	59271.18 24619.00	14921.11	0.14	0.14			
28		24619.00	3512.69	0.06	0.06			
29	6.039	5734.67	777.18	0.01	0.01			
30	6.236	5734.67 60035.30 80870.70 363586.00	13701.33	0.14	0.14			
31	6.344	80870.70	14009.01	0.19	0.19			
32	6.540	363586.00	85646.45	0.86	0.86			
33	6.822	24232.00	2089.54	0.06	0.06			
34	7.011	8698.19 11125.42	1311.93	0.02	0.02			
35	7.191	11125.42	1598.61	0.03	0.03			
36	7.312	22120.69						T
37		2000376.86						TIMX
38	7.957	17373.00		0.04				
39	8.135 8.340	10050.93	1615.83	0.02	0.02	٧		
40	8.340	34231.00 1486.25 15822.50	4566.18	0.08	80.0	V		
41	8.546	1480.25	312.48	4e-03	3.52548-03	٧		
42	8.816	15822.50	2946.67	0.04	0.04	В		
3	9.261	//232.40	13047.96					
	9.261 9.392 9.587	47256.00		0.11				
+5	7.301	10001010	22117.60	U.26	0.26			
46	9.823		289129.53	3.07 0.06	3.07			かいけて
47	10.054	2/256.00	4253.47	0.06	0.06			
48	10.317		4090.39	0.05	0.05			
49	10.395	22786.00	4706.47	0.05	0.05	٧	4.8414	

906337.16


Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	BL	Area/Height [sec]	
								•••••
50 51	10.844	10852.60	1687.45	0.03	0.03	В	6.4314	
57 52	11.020 11.199	240636.05 2217.00	496.98	0.57	0.57 5.2588e-03	V E	4.7739 4.4609	
	11.340	6889.42	1497.46	0.02	0.02			
•	11.458	39720.93	7552.76	0.09	0.09			
55	11.723	83540.75	16429.99	0.20	0.20	В	5.0846	
56	11.915	122705.25	20839.17	0.29	0.29	٧		
57 58	12.333 12.639	116246.41 556885.11	15076.04	0.28 1.32	0.28 1.32	В	7.7107	
59	12.900	5926.00	1214.92	0.01	0.01	V	5.5302 4.8777	
60	12.967	4594.97	1234.56	0.01	0.01	v		
61	13.138	260131.51	40499.31	0.62	0.62	٧		
62	13.512	187542.50	27921.50	0.44	0.44		6.7168	
63	13.883	173004.17	38808.09	0.41	0.41		4.4579	
64 65	13.944 14.305	282223.83 2182.00	41058.76 424.82	0.67	0.67 5.1758e-03	V B		
66	14.496	3749.00	795.62		8.8927e-03	В	4.7121	
67	14.813	292821.00	44454.97	0.69	0.69		6.5869	
68	15.015	4821.00	1569.01	0.01	0.01	E	3.0726	
69 70	15.155	99015.00	22845.41	0.23	0.23			
70 71	15.437 15.753	1159817.00 48196.50	9103.05	2.75 0.11	2.75 0.11			
72	15.844	84624.50	17507.93	0.20	0.20			
73	16.257	496617.00		1.18	1.18			
74	16.682	29341.50	6322.38	0.07	0.07	В		
75	16.876	126790.75	26777.33	0.30	0.30	В	4.7350	
76 77 1	17.004	74679.00 21931.25	13860.11	0.18	0.18			
78	17.111 17.386	2409.00	5989.16 595.79	0.05 6e-03	0.05 5.7142e-03			
79	17.635	65837.67	12090.55	0.16	0.16			
80	17.832	150477.00	21372.99	0.36	0.36	٧	7.0405	
81	18.108	113405.00	23058.98	0.27	0.27			
82 83	18.171 18.504	142226.33 31198 <u>7.00</u>	24279.05 53529.69	0.34	0.34 0.74	V В		
84	18.767	17566.00	4460.51	0.04	0.04			
_	19.042	254401.50	41762.08	0.60	0.60			
مع به		226000.68	39795.95	0.54	0.54			
	19.608	* 89510.61	11280.35	0.21	0.21			
	19.819	326973.39 32424.00	52782.14 4131.73	0.78 0.08	0.78 0.08			
90 \	20.263	181566.38	24303.87	0.43	0.43			
91	20.438	145064.60	23421.37	0.34	0.34	٧		
65C	20.553	179137.03	25792.16	0.42	0.42			
93 \	20.849	73830.43	10760.72 _86389.07	0.18 1.63	0.18 1.63			
95	21.241	686012.68 211031.81		0.50				
96	21.384	160405.72	25697.04	0.38				
97	21.518	258315.64	35044.93	0.61	0.61	٧		
98 (21.730	48341.85	9708.13 15531.17	0.11	0.11	V		
99 100	21.920 22.050	166079.30 140513.75	15830.54	0.39	0.39 0.33			
101	22.281	357770.26	45654.76	0.85				
102	22.486	279174.97	33848.68	0.66				
103	22.605	166661.03	21634.06	0.40				
104 105	22.772 23.020	94307.26 381967.89	15838.56 29814.57	0.22 0.91	0.22 0.91			
106	23.264	680796.67		1.61	1.61			
107	23.540	560678.02	30763.98	1.33				
108	23.968	2169127.64		5.15				
10 9 110	24.181 24.337	143273.00 295485.92	22082.23 36892.29	0.34 0.70				
111	24.495	604593.60	69994.32	1.43				
112	25.027	746122.76	27754.92	1.77				
113	25.452	673765.29	32250.27	1.60				
114 115	25.564 25.739	216340.22 341838.94	31236.22 36639.63	0.51 0.81	0.51 0.81			
116	25.852	309746.83	35666.22	0.73				
117	25.982	388504.64	33131.38	0.92	0.92	٧	11.7262	
118	26.249	416591.40	32695.02	0.99				
119 ำ	26.513	983755,28 668473,21	84115.42 48469.46	2.33 1.59				
•	26.724 27.062	1079014.51	33787.68	2.56				
. 42	27.722	1150607.87	38189.70	2.73	2.73			
123	28.344	559883.26	32584.32	1.33	1.33	٧	17.1826	
124	28.714	786451.67		1.87				
125 126	28.893 29.688	1454255.58 929719.84		3.45 2.21				
120	27.000	, . , i i 7 . U4		2.21	£.£1	•	20.0505	

1847408.11

Peak #	Time [min]	Area [uV*sec]	Height (uV)	Area [%]	Norm. Area [%]	BL	Area/Height [sec]
127	30.225	1013005.37	40176.43	2.40	2.40	٧	25.2139
128	30.457	448983.74	37792.59	1.07	1.07	٧	11.8802
29	30.665	1076677.85	37817.81	2.55	2.55	٧	28.4701
•	31.179	539741.22	34367.74	1.28	1.28	٧	15.7049
	31.523	984754.74	34189.60	2.34	2.34	٧	28.8028
132	32.313	1707798.88	36130.39	4.05	4.05	٧	47.2677
133	32.913	1174267.65	33530.51	2.79	2.79	٧	35.0209
134	34.321	25769.61	2485.12	0.06	0.06	٧	10.3696
135	34.593	8999.58	855.11	0.02	0.02	٧	10.5244
136	34.921	888.43	245.65	2e-03	2.1074e-03	٧	3.6167
		42157998.50	5.198e+06	100.00	100.00		•••••

Missing Component Report
Component Expected Retention (Sample File) Component Expected Retention (Sample File)

2,4-DB 15.350

Software Version: 3.3 <4B11>

Sample Name : L950626-7 Sample Number: 31-32 WW Operator : KMW

Time : 3/13/95 03:40 PM Study : 515.1

Instrument : HP5890 AutoSampler : NONE ck/Vial : 0/0

Channel : B A/D mV Range : 1000

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 03:04 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000

Raw Data File : C:\2700\HP5890\HB30031A.RAW Result File : C:\2700\HP5890\HB30031A.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 515B Sample File : HB515B

Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector 8 :

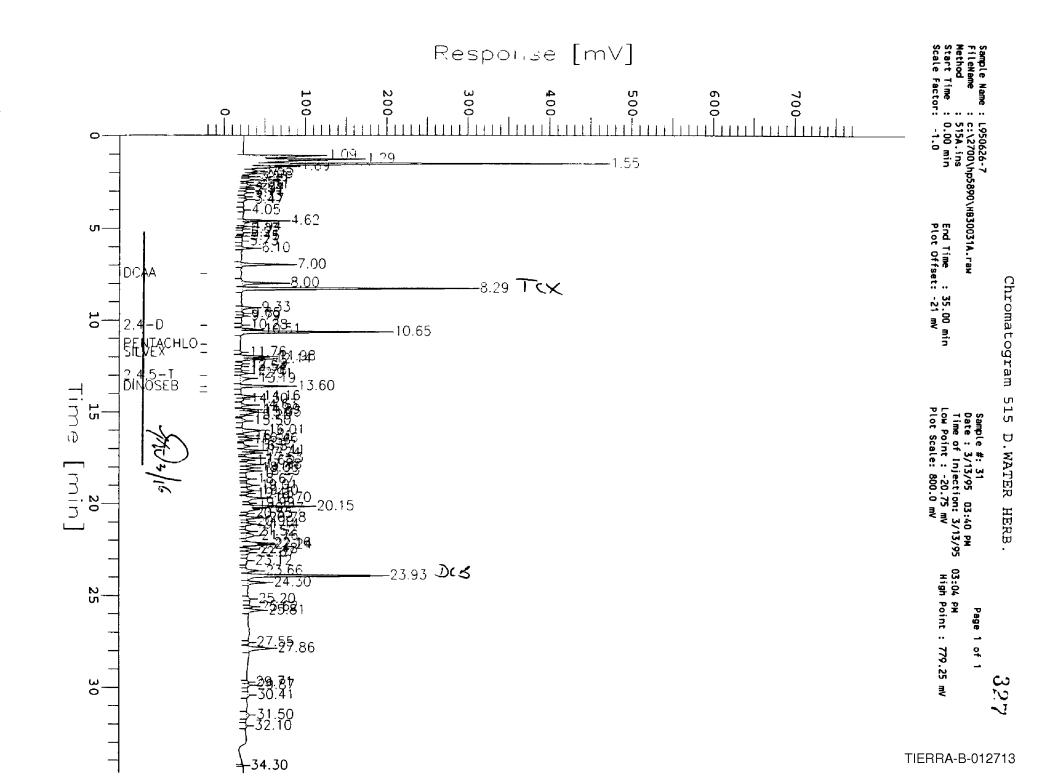
Heated Zones:

Temperature Program:

Total run time : 35.00 min

Timed Events:

There are no timed events in the method


8080 PCB Im 3/16/91 HP5890 REPORT FOR 515:1 MERBICIDES DRINKING WATER ANALYSIS.

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Time [min]	Component Name	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	
1	1.092		466097.00	87591.88	0.9322	0.9322	4.6610e+05	
2	1.292			105976.41	0.7171		3.5854e+05	
3	1.550		1594168.55		3.1883		1.5942e+06	
4	1.685		206540.45	46423.64	0.4131		2.0654e+05	
5	1.930		42991.50	8492.36	0.0860		42991.5000	
6	2.079		23065.00	8326.37	0.0461		23065.0000	
7	2.258		13979.00	5294.87	0.0280		13979.0000	
8	2.410		39217.00	8600.98	0.0784		39217.0000	
9	2.555		2118.00	792.54	0.0042		2118.0000	
10	2.708		35901.00	8764.80	0.0718		35901.0000	
11	2.840		5112.50	2151.76	0.0102		5112.5000	
12	2.922		13781.00	3760.00	0.0276		13781.0000	
13	3.105		21576.00	4375.74	0.0432		21576.0000	
14	3.328		7771.00	1958.30	0.0155		7771.0000	
15	3.470		17620.00	3988.15	0.0352		17620.0000	
	4.050		9954.00	1190.10	0.0199		9954.0000	
٠7	4.620		152258.00	46281.44	0.3045		1.5226e+05	
18	4.940		9583.50	3221.83	0.0192	0.0192		
19	5.074		6843.00	2033.01	0.0137	0.0137	6843.0000	
20	5.272		9019.50	1269.28	0.0180	0.0137		
21	5.453		4727.00	1896.33	0.0095	0.0095	9019.5000 4727.0000	

TIERRA-B-012711

Peak #	Time Component		Height	Raw		Calibration	326	
	(min) Name	[uV*sec]	[uV]	Amount	Amount	Factor	 	
22	5.726	12488.00	1009.88	0.0250	0.0250	12488.0000		
23 ?4	6.102 6.996 (62363.00	15480.69	0.1247		62363.0000		
ō	7.480 DCAA	292701.00 0.00	60950.27 0.00	0.5854 0.0000	0.5854	2.9270e+05 0.0000		
25	7.997	263999.00	51015.18	0.5280		2.6400e+05		
26	8.293	1321384.00		2.6428	2.6428	1.3214e+06		
27 28	9.331 9.647	93347.00 14555.00	15858.31 3153.26	0.1867		93347.0000		
29	9.794	10144.50	2666.85	0.0291 0.0203		14555.0000 10144.5000		
30	10.284 2,40	15102.00	3206.41	4.2815		15102.0000		
31 32	10.513 10.651	59263.00	14439.45	0.1185		59263.0000		
0	11.320 PENTACHLOROPHEN	800864.00 NOL 0.00	0.00	1.6017 0.0000	1.6017 0.0000	8.0086e+05 0.0000		
33	11.761 SILVEX	12307.00	2372.90	0.7824		12307.0000		
34 25	11.984	153241.50	31916.26	0.3065		1.5324e+05		
35 36	12.135	110813.00	25421.69 2380.55	0.2216 0.0234	0.2216	1.1081e+05 11683.5000		
37	12.537	5858.00	1508.61	0.0117		5858.0000		
38	12.763	9491.50	2182.35	0.0190	0.0190	9491.5000		
39 40	12.914 2,4,5-T); 13.191	43100.00 118799.00	9496.54	2.4775		43100.0000		
41	13.598 DINDSEB	309061.00	13850.93 61441.30	0.2 376 40.8793		1.1880e+05 3.0906e+05		
0	13.920 2,4 DB	0.00	0.00	0.0000	0.0000	0.0000		
42 43	14.158 14.300	87329.00	17961.79	0.1747		87329.0000		
44	14.631	12738.00 71171.00	1482.62 14623.01	0.0255 0.1423		12738.0000 71171.0000		
45	14.886	65041.50	14589.70	0.1301		65041.5000		
46	15.028	82227.50	13507.77	0.1645	0.1645	82227.5000		
47 48	15.198 15.502	5081.00 43246.00	2053.10	0.0102		5081.0000		
49	16.007	171640.00	5781.02 23145.24	0.0865 0.3433		43246.0000 1.7164e+05		
50	16.313	20937.50	4832.39	0.0419		20937.5000		
51 52	16.455 16.564	46873.00	10913.41	0.0937		46873.0000		
53	16.871	3819.00 53549.00	1583.04 9852.64	0.0076 0.1071		3819.0000 53549.0000		
54	17.109	84803.00	18398.68	0.1696		84803.0000		
٦5.	17.244	48521.50	11954.03	0.0970		48521.5000		
5 57	17.533 17.657	76587.00 7395.00	15556.97 2509.84	0.1532 0.0148		76587.0000 7395.0000		
58	17.878	68772.00	13807.08	0.1375		68772.0000		
59	18.059	45281.00	9562.03	0.0906	0.0906	45281.0000		
60 61	18.226 18.674	53734.50 24885.50	11698.60	0.1075		53734.5000		
62	19.008	55161.00	5154.28 8356.26	0.0498 0.1103		24885.5000 55161.0000		
63	19.298	42997.50	8987.20	0.0860		42997.5000		
64	19.447	15355.50	3685.78	0.0307		15355.5000		
65 66	19.695 19.985	143343.00 9312.50	24586.91 2348.40	0.2867 0.0186		1.4334e+05 9312.5000		
67	20.150	308701.00		0.6174		3.0870e+05		
68	20.266	3195.00	1243.47	0.0064		3195.0000		
6 9 70	20.552 20.781	9809.00 98419.00	2525.26 19045.69	0.0196		9809.0000 98419.0000		
71	20.989	13163.00	3164.58	0.1968 0.0263		13163.0000		
72	21.137	46888.00	10296.26	0.0938	0.0938	46888.0000		
73 76	21.519	30159.00	6142.54	0.0603		30159.0000		
74 75	21.758 22.157	97108.00 47711.00	9716.24 9470.20	0.1942 0.0954		97108.0000 47711.0000		
76	22.236	30838.00	9896.87	0.0617		30838.0000		
77	22.479	46072.00	9091.93	0.0921		46072.0000		
78 79	22.669 23.116	30260.00	5130.52	0.0605		30260.0000		
80	23.662	18107.00 82986.00	1987.85 14667.87	0.0362 0.1660		18107.0000 82986.0000		
81	23.925	985404.00	170474.18	1.9708	1.9708	9.8540e+05		
82 87	24.295	134755.00	23382.23	0.2695		1.3476e+05		
83 84	25.199 25.618	13996.00 27022.50	2588.71 5438.09	0.0280 0.0540		13996.0000 27022.5000		
85	25.807	95479.00	14905.42	0.1910		95479.0000		
86	27.552	10830.00	1663.64	0.0217	0.0217	10830.0000		
87 88	27.864 29.708	230926.00 5906.00	27286.92 933.55	0.4619		2.3093e+05		
3	29.870	18149.00	2687.69	0.0118 0.0363		5906.0000 18149.0000		
J	30.411	29132.00	3247.11	0.0583	0.0583	29132.0000		
91	31.504	44061.00	3560.86	0.0881		44061.0000		
92 93	32.099 34.295	19881.00 3873.00	2146.49 1092.71	0.0398 0.0077		19881.0000 3873.0000		
					•		 	
		10584060.50	2.241e+06	68.8297	68.8297	1.0584e+07		

Software Version: 3.3 <4811> Sample Name : L95626-8 PCB

Time Study : 3/8/95 06:58 PM

(((

Sample Number: 14

Operator : KMW

Instrument : HP5890 AutoSampler : NONE

Channel: A A/D mV Range : 1000

: PPPCB

ck/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/8/95 06:24 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38014.RAW Result File : C:\2700\HP5890\PA38014.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA
Sample File : PESTA058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1,0000

: 200.000000 Area Reject

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

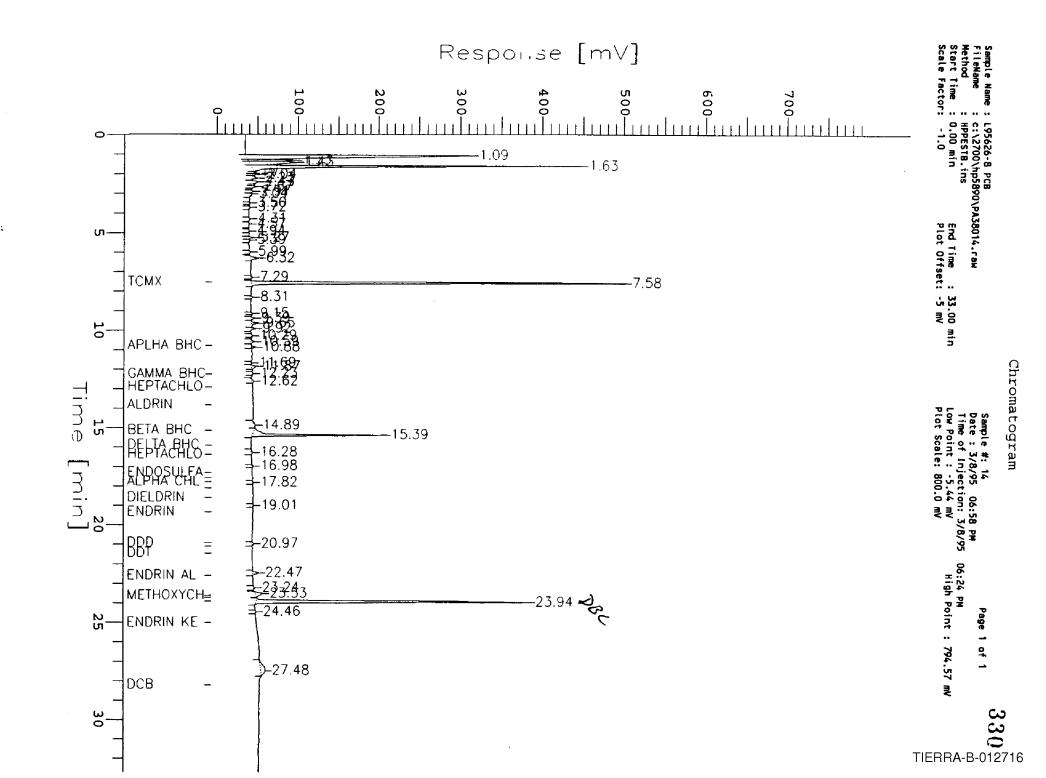
There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak	Component	Time	Area	Height	Raw	Adjusted	Calibration	Delta RT	Cat.
#	Name	(min)	[uV*sec]	(uV)	Amount	Amount	Factor	[%]	Range
1	•	1.094	1956533.63	281019.60	64.4532	64.4532	1956534		
2		1.328	304264.00		12.8478	12.8478	304264		
3		1.431	454766.00		17.5484	17.5484	454766		
4		1.625	1857882.37		61.3720	61.3720	1857882		
5		2.039	28781.00		4.2436	4.2436	28781		
6		2.233	45802.00		4.7752	4.7752	45802		
7		2.429	40624.00		4.6135	4.6135			
À		2.665					40624		
9			14329.00		3.7922	3.7922	14329		
		2.910	13250.00		3.7585	3.7585	13250		
10		3.036	12333.00		3.7299	3.7299	12333		
11		3.497	5146.50	1474.00	3.5054	3.5054	5146		
12		3.718	9812.00	1638.02	3.6512	3.6512	9812		
13		4.310	11264.00	2632.72	3.6965	3,6965	11264		
•4		4.573	5668.00	1491.67	3.5217	3.5217	5668		
		4.942	4994.00		3.5007	3.5007	4994		
16		5.268	20141.50		3.9738	3.9738	20142		
17		5.387	4289.00		3.4787	3.4787			
18							4289		
		5.992	12822.00		3.7452	3.7452	12822		
19		6.318	60947.00		5.2483	5.2483	60947		
20		7.28 9	11679.00	2806.45	3.7095	3.7095	11679		

32x


21 TC 22 23 34 .5 26 27	CMX	7.575 8.313 9.149	2018274.00	478720 24			• 	[%]	Range	
23 ?4 .5 26			47776	7.4154.20	94.7964	0.0000	2018274	0.3176		
?4 .5 26		9.149	13335.50	2975.82	3.7612	3.7612	13336			
.5 26			6365.50	1831.26	3.5435	3.5435	6366			
26		9.392	19081.00	4040.47	3.9407	3.9407	19081			
		9.646	48373.50	9376.84	4.8555	4.8555	48374			
27		9.918	22720.50	5148.40	4.0543	4.0543	22720			
		10.289	6430.00	1297.03	3.5455	3.5455	6430			
28		10.592	23174.50	4354.86	4.0685	4.0685	23174			
	PLHA BHC	10.877	25941.00	5477.96	4.1549	4.1549	25941	0.7371	_	
30	Į.	11.688	6788.00	1342.08	2.8992	2.8992	6788			
31	!	11.867	37211.00	5570.44	3.8996	3.8996	37211			
	MMA BHC	12.228	6142.50	1219.32	2.8780	2.8780	6142	-0.2376	-	
33	!	12.621	22639.00	2347.54	1.8054	1.8054	2263 9			
	PTACHLOR	12.914	0.00	0.00	0.0000	0.0000	0	•••••		
	DRIN !	13.842	0.00	0.00	0.0000	0.0000	0			
34		14.887	26005.50	1887.80	2.0893	2.0893	26006			
	TA BHC	15.144	0.00	0.00	0.0000	0.0000	0			
35	!	15.387	811128.00		58.5838	58.5838	811128			
	LTA BHC	15.903	0.00	0.00	0.0000	0.0000	0			
36 HE 37	PTACHLOR EXPOXIDE	16.280	16327.00	2250.26	1.1960	1.1960	16327	-0.6143	-	
	DOCUMENT.	16.978	9127.00	1691.65	1.1163	1.1163	9127			
	DOSULFAN I	17.321	0.00	0.00	0.0000	0.0000	0			
	MMA CHLORDANE	17.568	0.00	0.00	0.0000	0.0000	0			
0 DD	PHA CHLORDANE	17.821	5672.00	951.49	0.6009	0.6009	5672	0.1960	-	
		18.101	0.00	0.00	0.0000	0.0000	0			
39	ELDKIN 7	18.601	0.00	0.00	0.0000	0.0000	0			
	IDR IN	19.012	5902.50	1268.64	2.2693	2.2693	5902			
40 DD		19.336	0.00	0.00	0.0000	0.0000	0			
	DOSULHAN II	20.974 21.090	15099.00	2340.93	4.0517	4.0517	15099	0.2327	-	
0 DD		21.451	0.00 0.00	0.00	0.0000	0.0000	0			
	DRIN ALDEHYDE	22.469	50606.50	0.00	0.0000	0.0000	0			
42	באנון אנטבוווטב	23.237	11314.00	7043.10 2007.91	5.3189	5.3189		-0.5919	•	
	THONYCHLOR	23.531	80990.00	9330.83	-10.4114	-10.4114	11314			
	DOSULFAN SULFATE	23.726	0.00	0.00	6.7481 0.0000	6.7481	80990	-0.3976	-	
44 DB		23.720	1779073.00		126.4953	0.0000	1770077	0 1/70		
45	-	24.460	5847.00	1175.83	0.9685	126.4953 0.9685	1779073 5847	0.1432		
	DRIN KETONE	25.019	0.00	0.00	0.0000	0.0000	3647 0			
6		27.476	161569.00	5453.38	-4.9916	-4.9916	161569			
0 DC	8	28.203	0.00	0.00	0.0000	0.0000	7000			
	- ********				•••••	0.0000	U			

10110464.50 1.961e+06 551.4029 456.6066

Missing Component Report Component	Expected Retention (Sample File)

HEPTACHLOR	12. 9 14
ALDRIN	13.842
BETA BHC	15.144
DELTA BHC	15.903
ENDOSULFAN I	17.321
GAMMA CHLORDANE	17.568
DDE	18.101
DIELDRIN	18.601
ENDRIN	19.336
ENDOSULFAN II	21.090
DDT	21.451
ENDOSULFAN SULFATE	23.726
ENDRIN KETONE	25.019
DCB	28.203

HP5890 DETECTOR A

Report Stored in ASCII File: C:\2700\HP5890\PA38014.TX0

Software Version: 3.3 <4811>

Sample Name : L95626-8 PCB

Time : 3/8/95 06:58 PM Study : PPPCB

Sample Number: 14

Operator : KMW

Instrument : HP5890 Channel

Channel: B A/D mV Range: 1000

Instrument : HP5890 AutoSampler : NONE nck/Vial : 0/0

Interface Serial #: 8055910402 Data Acquisition Time: 3/8/95 06:24 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38014.RAW Result File : C:\2700\HP5890\PB38014.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTB Sample File : PESTB058

Sequence File : C:\2700\METHSEQ\$\0308PCB.SEQ

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

21

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

7.591

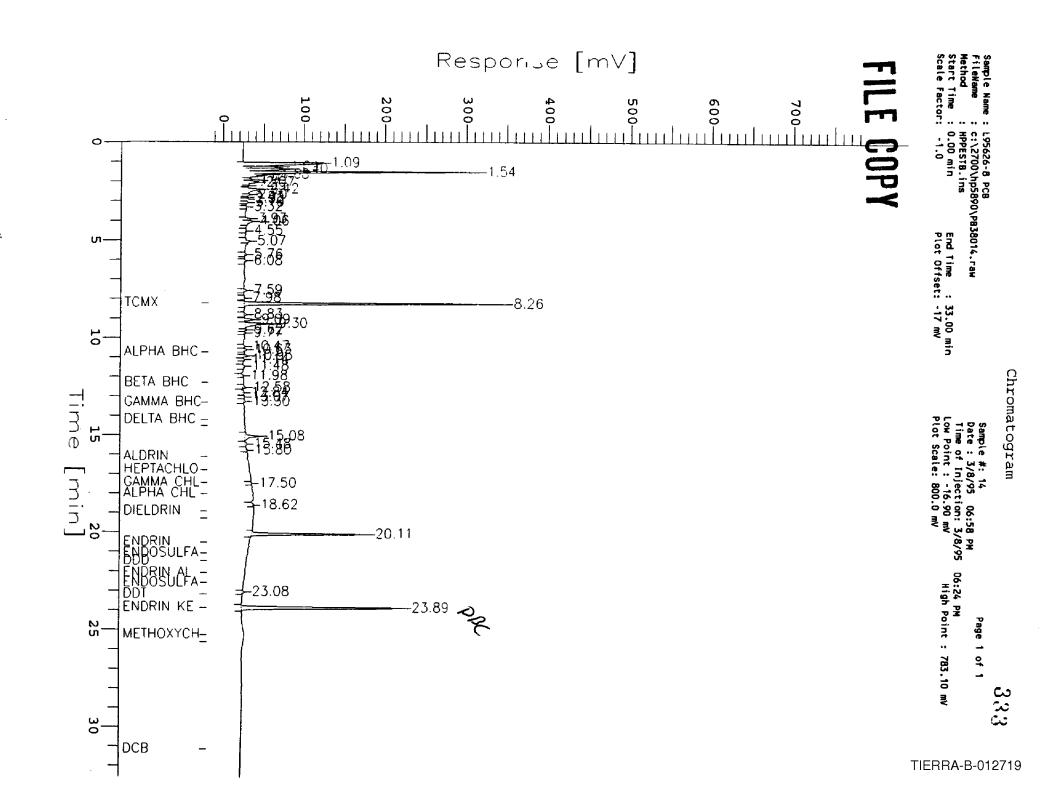
19156.00

Peak Component Time Area Height Raw Adjusted Calibration Cal. Name [min] [uV*sec] [UV] Amount Amount Factor Range 1 1.091 754132.16 102281.53 51.1017 51.1017 754132 196205.49 1.288 41193.07 9.6184 9.6184 196205 1.397 225943.27 48055.85 11.8295 11.8295 225943 1.541 1062611.29 294262.44 74.0380 74.0380 1062611 1.680 32675.29 15044.13 -2.5405 -2.5405 32675 1.922 16702.00 3771.20 -3.7282 -3.7282 16702 2.068 58563.00 11795.33 -0.6157 -0.6157 58563 8 2.249 5291.50 2295.25 -4.5766 -4.5766 5292 9 2.418 123392.00 18911.81 4,2045 4.2045 123392 10 13325,00 2.695 3966.55 -3.9792 -3.9792 13325 11 2.831 2783.00 1183.37 -4.7631 -4.7631 2783 12 2.921 6604.00 1997.17 -4.4790 -4.4790 6604 13 10325.00 2322.80 3.095 -4.2023 -4.2023 10325 3.322 14 5771.50 1002.28 -4.5409 -4.5409 5772 15 3.927 25206.50 4834.26 -3.0958 -3.0958 25207 4.059 38024.00 5994.00 -2.1428 -2.1428 38024 4.550 1912.14 11156.00 -4.1405 -4.1405 11156 18 25301.50 5.074 4779.65 -3.0888 -3.0888 25302 19 5.763 14853.00 3255.69 -3.8656 -3.8656 14853 6.080 14335.00 20 2950.40 -3.9041-3.9041 14335

3765.94

-3.5457

-3.5457


19156

									^ -	pa
Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range	332	
22		7.981	9852.00	1726.24	-4.2375	-4.2375	9852			٠
23	TCMX	8.260	1504822.00		106.9175	106.9175	1504822			
24		8.830	19509.50	3725.69	-3.5194	-3.5194	19510			
?5		9.094	58835.50	12568.29	-0.5954	-0.5954	58836			
6		9.300	217187.50	33003.25	11.1785	11.1785	217188			
27		9.616	12876.00	3082.43	1.8763	1.8763	12876			
28		9.770	10953.00	2886.40	1.7928	1.7928	10953			
29		10.466	12945.00		1.8793	1.8793	12945			
30		10.634	21570.00	4174.21	2.2537	2.2537	21570			
0 31	ALP A BHC	10.753	0.00	0.00	0.0000	0.0000	0			
		10.950	28465.50	6255.32	2.5531	2.5531	28466			
32 33	1	11.137	9473.00	1671.81	1.7285	1.7285	9473			
34		11.476	19813.00	2250.10	2.1775	2.1775	19813			
0	BETA BHC	11.976	13074.00	1459.29	1.3313	1.3313	13074			
35	BEIT BAC	12.324 12.576	0.00	0.00	0.0000	0.0000	0			
36	\	12.842	27148.00 20131.00	4893.43 1552.56	1.9867	1.9867	27148			
37		13.067	5679.00	1316.01	0.1038 -0.4346	0.1038	20131			
38	GAMMA BHC	13.302	15098.50	2454.30	-0.0837	-0.4346 -0.0837	5679 15099			
Ō	DELTA BHC	14.214	0.00	0.00	0.0000	0.0000	0	-		
0	HEPTACHLOR	14.534	0.00	0.00	0.0000	0.0000	ő			
39		15.078	136773.00	19333.45	7.9915	7.9915	136773			
40		15.478	24711.50	2372.58	78.4850	78.4850	24712			
41		15.800	11439.00	1051.85	86,1181	86,1181	11439			
0	ALDRIN	16.123	0.00	0.00	0.0000	0.0000	0			
0	HEPTACHLOR EPOXIDE	16.791	0.00	0.00	0.0000	0.0000	0			
42	GAMMA CHLORDANE	17.503	5153.00		-0.0219	-0.0219	5153	-		
43	ALPHA CHLORDANE/ENDO	18.621	15573.00	1297.77	-0.5967	-0.5967	15573	-		
0	DIELDRIN	18.924	0.00	0.00	0.0000	0.0000	0			
0	DDE	19.286	0.00	0.00	0.0000	0.0000	0			
44	(UR)	20.109		148228.46	62.5493	62.5493	733487			
0	ENDRUM (20.520	0.00	0.00	0.0000	0.0000	0			
0	ENDOSULFAN YI	21.081	0.00	0.00	0.0000	0.0000	0			
Ô	ENDRIN ALDEHYDE	21.479 22.091	0.00	0.00	0.0000	0.0000	0			
Ö	ENDOSULFAN SULFATE	22.599	0.00 0.00	0.00	0.0000	0.0000	0			
45	DDT	23.079	17363.50	0.00 3125.10	0.0000 0.6982	0.0000	0 17363			
.3	ENDRIN KETONE	23.889	1140565.50		91.5700	0.6982 91.5700	1140566	•		
j	METHOXYCHLOR	25.263	0.00	0.00	0.0000	0.0000	1140366			
ó	DBC	25.626	0.00	0.00	0.0000	0.0000	Ö			
ō	DCB	31.152	0.00	0.00	0.0000	0.0000	0			
	• • • • • • • • • • • • • • • • • • • •									
			6754854.00	1.373e+06	547.2853	547.2853	6754854			

Missing Component Report

Component	Expected Retention (Sample File)
ALPHA BHC	10.753
BETA BHC	12.324
DELTA BHC	14.214
HEPTACHLOR	14.534
ALDRIN	16, 123
HEPTACHLOR EPOXIDE	16.791
DIELDRIN	18.924
DDE	19.286
ENDRIN	20.520
ENDOSULFAN II	21.081
DDD	21.479
ENDRIN ALDEHYDE	22.091
ENDOSULFAN SULFATE	22.599
METHOXYCHLOR	25.263
DBC	25.626
DCB	31.152

port Stored in ASCII File: C:\2700\HP5890\PB38014.TX0

Software Version: 3.3 <4811>

Sample Name : L950626-9

Time : 3/13/95 04:52 PM : 515.1

Sample Number: 33 3 447 1 Study

Channel : A A/D mV Range : 1000

Instrument : HP5890 AutoSampler : NONE ck/Vial : 0/0

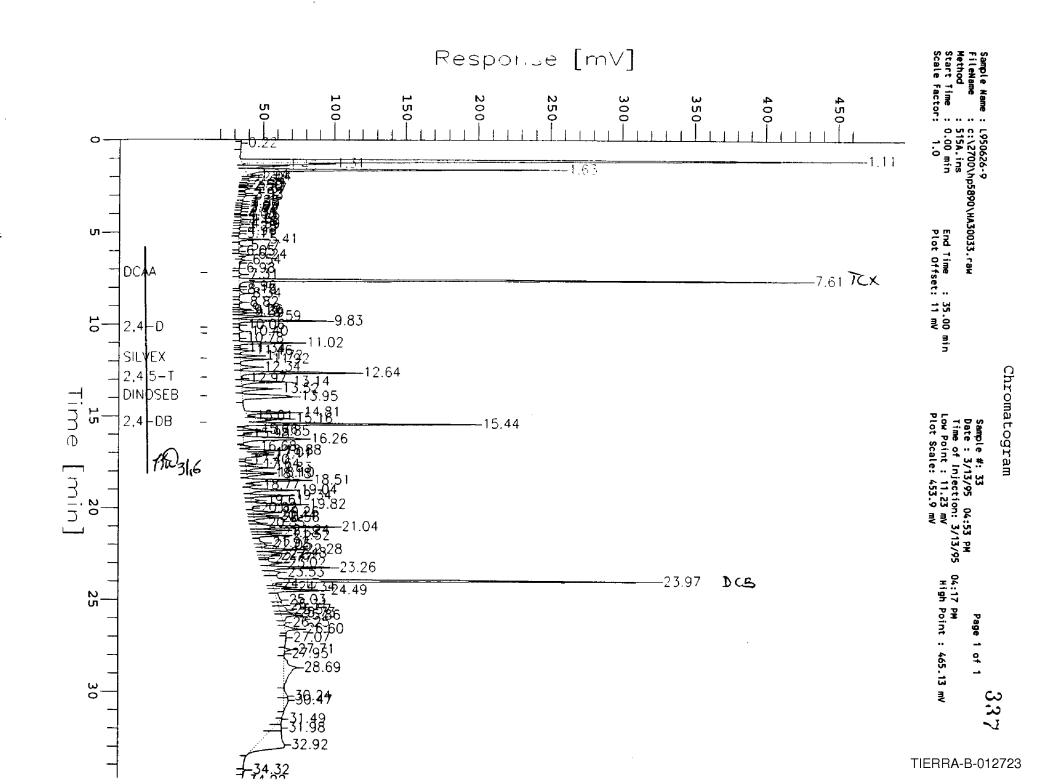
Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 04:17 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HA30033.RAW Result File : C:\2700\HP5890\HA30033.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 515A
Sample File : HB515A2
Sequence File : C:\2700\METHSEQ\$\0310HB.seq

Inj. Volume : 1 ul Sample Amount : 1.0000 Area Reject : 0.000000 Dilution Factor : 1.00


DEFAULT REPORT

Peak #	Time (min)	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	BL	Area/Height [sec]	
1	0.215	935.00	97.70	5e-03	5.4138e-03	В	9.5705	••••••
2	1.105	2837977.98		16.43		В	6.4328	
3	1.313	359384.00		2.08			5.9676	
4	1.429	159721.88		0.92			5.9439	
5	1.631	994876.25	220934.47	5.76			4.5030	
6	1.939	17879.00		0.10		E	4.8334	
7	2.042	16686.89		0.10	0.10		3.1133	
8	2.241	7161.00	2202.72	0.04	0.04	В	3.2510	
9	2.392	10588.33	2307.85	0.06	0.06	В	4.5880	
,	2.496	1822.00	792.97	0.01	0.01		2.2977	
1	2.563	1336.67	662.55		7.7395e-03		2.0175	
12	2.667	15251.00	4071.77	0.09	0.09		3.7455	
13	2.920	6454.80		0.04	0.04	8	3.5788	
14	3.031	6090.20	2057.02	0.04	0.04	٧	2.9607	
15	3.348 3.500	1944.50	429.59	0.01	0.01		4.5264	
16 17	3.628	2809.36	988.83	0.02	0.02		2.8411	
18	3.724	2015.20 4347.43	453.19	0.01		٧	4.4467	
19	3.909	2221.00	883.69 382.55	0.03	0.03	٧	4.9196	
20	4.053	438.50	117.85	0.01	0.01 2.5390e-03	B	5.8058	
21	4.131	701.00	200.76		4.0589e-03	8	3.7210	
22	4.323	13374.76	2814.53	0.08	0.08	_	3.4917	
23	4.464	4147.95	738.17	0.02	0.02		4.7520 5.6192	
24	4.587	13167.97	3019.16	0.08		v	4.3615	
25	4.746	4975.32	1142.77	0.03	0.03		4.3537	
26	4.955	7841.75	1074.86	0.05	0.05		7.2956	
27	5.107	3963.25	652.53	0.02	0.02		6.0737	
28	5.412	73658.27	16868.88	0.43	0.43		4.3665	
29	5.769	24257.93	3588.74	0.14	0.14		6.7595	
30	6.052	2270.80	377.82	0.01	0.01		6.0102	
31	6.238	28774.00	6629.93	0.17	0.17	В	4.3400	
32	6.537	5354.31	3053.63	0.03	0.03	8	1.7534	
33	6.983		-3.62e-12	0.03	0.03	٧	-1.3755e+15	
34	7.314	14585.59	2501.13	0.08	0.08	В	5.8316	
35	7.607	1798148.86		10.41	10.41		4.4212	TCINK
36	7.960	6774.00	911.30	0.04		Ε	7.4333	
37 70	8.132	4378.64	861.42	0.03	0.03		5.0830	
38	8.342	29689.41	4653.25	0.17	0.17		6.3804	1 - 17
39 40	8.819 9.185	11851.00	2533.22	0.07	0.07		4.6782	-21117/2X
		17275.62	3976.04	0.10	0.10		4.3449	774271.38
41 42	9.261 9.394	24866.85 32443.38	5638.59	0.14		V	4.4101	/ / / 5 / '
43	9.588	93744.00	6597.40	0.19	0.19		4.9176	
-3	9.826	286523.00	18697.31 63420.20	0.54		V	5.0138	
ز	10.059	5294.15	1088.55	1.66		٧	4.5179	_
46	10.401	20802.50	3416.75	0.03 0.12	0.03		4.8635	1)
47	10.778	2131.00	237.27	0.12	0.12 0.01		6.0884	A1232
48	11.022	202889.50		1.17	1.17		8.9812	, - /
49	11.339	4066.00	956.45	0.02	0.02		4.7921	
			,,,,,,	0.02	0.02	•	4.2511	

1277/29.05

Peak	Time	Area	Height	Area		BL	Area/Height	
#	(min)	(uV*sec)	[uV]	[X]	[%]		[sec]	
50	11.460			0.18	0.18	٧	5,1878	
51 52	11.723 11.917					В	4.8917	
3	12.340	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.56 0.46	V B	5.5155	
4د	12.641	477637.88		_	2.77	٧	6.9419 5.7672	
55	12.971	7429.00		0.04	0.04	E	8.3353	
56 57	13.143 13.515	206214.12 152171.38			1.19	V	6.5212	
58	13.946				0.88 2.27	R B	6.5430 10.8283	
59	14.813		35667.16	1.32	1.32	B	6.3798	
60 61	15.013 15.155	2332.00 82473.00			0.01	E	3.1132	
62	15.439		19089.80 159108.94		0.48 4.32	B B	4.3203 4.6865	
63	15.755	38864.82	7677.14	0.23	0.23	В	5.0624	
64 65	15.847 15.982	83819.44		0.49	0.49	٧	5.2595	
66	16.259	5603.00 415610.75	1339.53 43023.49		0.03 2.41	E V	4.1828	
67	16.683	25426.00			0.15	В	9.6601 4.7603	
68	16.877	95626.26	19393.61	0.55	0.55	В	4.9308	
69 70	17.009 17.112	47178.91 20285.83	9033.02 5433.83	0.27	0.27	٧	5.2229	
71	17.404	515.50	136.94	0.12 3e-03	0.12 2.9848e-03	V B	3.7332 3.7644	
72	17.635	40020.62	7343.86	0.23	0.23	В	5.4495	
73	17.830	103185.94	15290.23	0.60	0.60	٧	6.7485	
74 75	18.104 18.176	95214.53 79328.91	16716.89 14506.96	0.55	0.55	٧	5.6957	
76	18.506	233601.00		0.46 1.35	0.46 1.35	B	5.4683 5.8332	
77 j	18.766	13175.00	3303.64	0.08	0.08	В	3.9880	
	^19.043	184617.72	31364.25	1.07	1.07	B	5.8862	
	19.342	145288.95 42864.66	_26700.58 6260.55	0.84 0.25	0.84	V	5.4414	
81	19.820	206022.17	35534.47	1.19	0.25 1.19	V	6.8468 5.7978	
82	20.019	2259.00	558.09	0.01	0.01	Ė	4.0477	
83' X	20.264	96094.38	15561.70	0.56	0.56	B	6.1751	
1	20.555	75078.27 82513.35	13430.17 15143.14	0.43 0.48	0.43 0.48	۷	5.5903	
96	20.850	20433.16	4037.41	0.12	0.12	ě	5.4489 5.0610	
	21.041	386997.09	_56012.47	2.24	2.24	٧	6.9091	
ა8 \ 89 ,	21.241	108986.11 67861.93	20482.09 12494.88	0.63 0.39	0.63	٧	5.3210	
90	21.518	94436.71	19419.61	0.55	0.39 0.55	V	5.4312 4.8630	
91	21.921	21760.89	3453.29	0.13	0.13	В	6.3015	
92 93	22.051 22.281	31758.75	4270.57	0.18	0.18	٧	7.4367	
94	22.484	154346.22 92775.17	25423.77 13690.89	0.89 0.54	0. 89 0.54	V V	6.0709 6.7764	
95 '	22.608	41132.40	6749.01	0.24	0.24	Ÿ	6.0946	
96 97	22.766	14088.96	2412.37	0.08	0.08	٧	5.8403	
98	23.019 23.264	86402.83 279355.90	10974.35 45614.89	0.50 1.62	0.50 1.62	V	7.8732 6.1242	
99	23.530	94488.43	8064.17	0.55	0.55	v	11.7171	
100	23.967	1510883.72	268658.52	8.75	8.75	٧	5.6238 DP, C	
101 102	24.172 24.335	11688.00 73390.36	2012.38 12852.64	0.07	0.07	E	5.8080	
103	24.493	210886.87	35528.19	0.42 1.22	0.42 1.22	V V	5.7101 5.9358	
104	25.029	71793.12	3686.68	0.42	0.42	Ÿ	19.4736	
105 106	25.312 25.566	43218.11 85402.50	3819.52	0.25	0.25	٧	11.3151	
107	25.732	58541.42	5433.15 7916.62	0.49 0.34	0.49 0.34	V	15.7188 7.3947	
108	25.857	106659.78	11006.34	0.62	0.62	v	9.6908	
109	26.250	19122.44	1872.03	0.11	0.11	٧	10.2148	
110 111	26.603 27.074	89777.62 9228.37	10435.06 482.20	0.52 0.05	0.52 0.05	٧	8.6035	
112	27.714	32414.13	4629.04	0.19	0.19	B V	19.1380 7.0023	
113	27.947	1837.00	450.27	0.01	0.01	Ē	4.0797	
114 115	28.690 30.238	309645.55 44336.35	9380.91	1.79	1.79	В	33.0081	
116	30.473	82926.10	2617.28 3075.23	0.26 0.48	0.26 0.48	V V	16.9399 26.9658	
117	31.492	38276.16	558.05	0.22	0.22	В	68.5896	
118	31.978	124166.48	6073.20	0.72	0.72	٧	20.4450	
119 1	32.919 34.320	946005.87 12616.00	19541.24 1876.70	5.48 0.07	5.48	٧	48.4107	
•	34.918	448.50	169.16		0.07 2.5969e-03	B B	6.7224 2.6513	
		17270761.11	2.812e+06	100.00	100.00			

Component	Expected Retention (Sample File)
PENTACHLOROPHENOL	10.500
DINOSEB	13,900
2,4-DB	15.350

Software Version: 3.3 <4B11>

Sample Name : L950626-9 34 Synth 315 Operator : KMW

Time : 3/13/95 04:53 PM Study : 515.1

Instrument : HP5890 AutoSampler : NONE

Channel: 8 A/D mV Range : 1000

ck/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 04:17 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HB30033.RAW Result File : C:\2700\HP5890\HB30033.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 5158 Sample File : HB5158

Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

Total run time : 35.00 min

Timed Events:

There are no timed events in the method

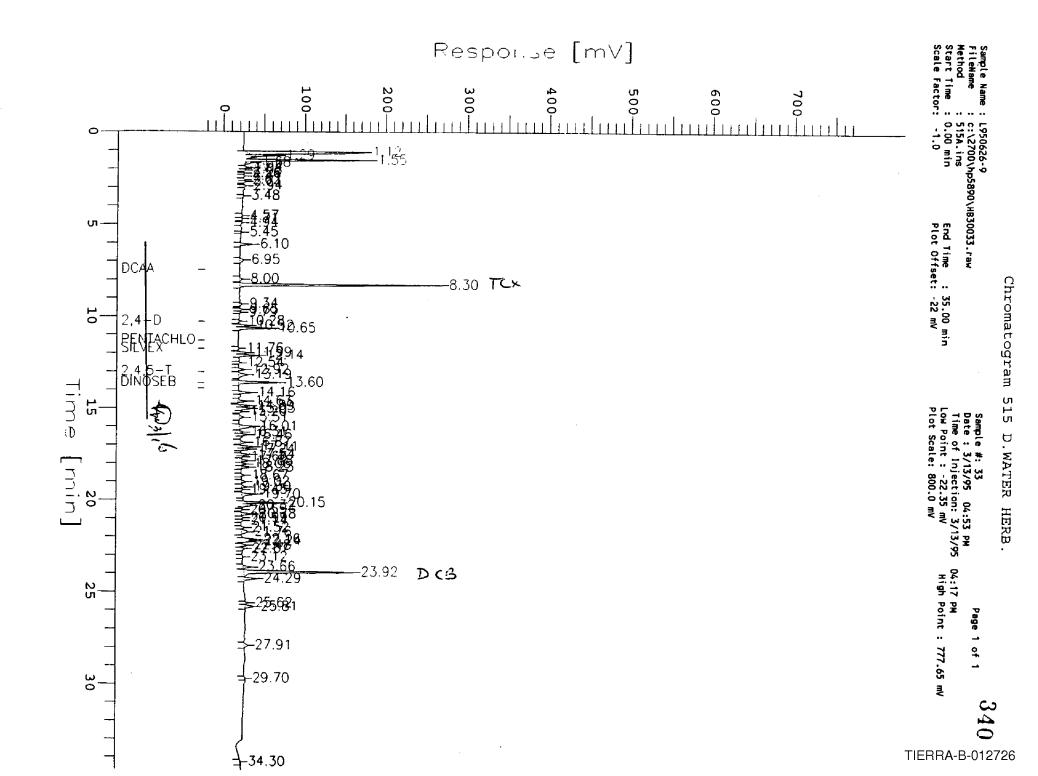
Du 3/14/26 908 POFO HP5890 REPORT FOR 515.1 HERBICIDES DRINKING WATER ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Time [min]	Component Name	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor
1	1.115		1079957.47	147297.18	2.1599	2.1599	1.0800e+06
2	1.290		112510.53	33526.16	0.2250		1.1251e+05
3	1.549		594367.00	154415.30	1.1887		5.9437e+05
4	1.683		46749.00	11907.44	0.0935		46749.0000
5	1.940		12063.00	2474.33	0.0241		12063.0000
6	2.076		5727.00	2177.82	0.0115	0.0115	
7	2.255		4401.00	1660.01	0.0088	0.0088	4401.0000
8	2.409		10809.00	2489.66	0.0216	0.0216	10809.0000
9	2.616		3638.00	786.50	0.0073	0.0073	3638,0000
10	2.707		10022.00	2886.70	0.0200	0.0200	10022.0000
11	2.936		16084.00	3754.72	0.0322	0.0322	16084.0000
12	3.484		8141.00	1631.29	0.0163	0.0163	8141.0000
13	4.569		9020.00	1709.99	0.0180	0.0180	
14	4.712		4505.00	1087.04	0.0090	0.0090	
15	4.940		4968.00	1594.55	0.0099	0.0099	4968.0000
	5.453		7269.00	2364.83	0.0145	0.0145	7269.0000
٠.7	6.103		65217.00	15898.30	0.1304		65217.0000
18	6.951		46327.00	5664.08	0.0927		46327.0000
0	7.480 DCAA	1	0.00	0.00	0.0000	0.0000	0.0000
19	7.996		25945.00	4855.23	0.0519		25945.0000
20	8.295		1159189.50		2.3184		1.1592e+06

939	i
-----	---

									339	þa
Peak #	Time [min]	Component Name	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibratio Factor	on .	011.5	
21	9.338		23426.50	3700.60	0.0469		23426.5000			
22	9.651		16514.00	3630.83	0.0330		16514.0000			
23	9.794		8961.00	2340.89	0.0179	0.0330	8961.0000			
4	10.284	2,4-0	11770.00	2523.87	3.3369	3 3340	11770.0000			
_5	10.516		46096.50	10889.31	0.0922		46096.5000			
26	10.653		166133.50	37888.16	0.3323		1.6613e+05			
0	11.320	PENTACHLOROPHENOL	0.00	0.00	0.0000	0.0000				
27		SILVEX	9674.00	1882.18	0.6150		9674.0000			
28	11.988	.	40387.50	8642.52	0.0808		40387.5000			
29	12.135		107709.00	22773.85	0.2154		1.0771e+05			
30	12.538		5388.00	1362.77	0.0108		5388.0000			
31	12.915	2,4,5-T	38598.00	8068.03	2.2187		38598.0000			
32	13.191		88692.00	11396.62	0.1774		88692.0000			
33	13.599	DINOSEB	257682.00	50734.43	34.0835		2.5768e+05			
0	13.920	2,4-DB	0.00	0.00	0.0000	0.0000				
34	14.159		72483.00	15040.99	0.1450		72483.0000			
35	14.630		61739.00	12660.24	0.1235		61739.0000			
36	14.886		53537.00	11629.55	0.1071		53537.0000			
37	15.027		59038.00	11227.91	0.1181		59038.0000			
38	15.202		10417.00	2882.24	0.0208		10417.0000			
39	15.511		40445.00	6332.07	0.0809	0.0809	40445.0000			
40	16.008		134690.00	17932.29	0.2694	0.2694	1.3469e+05			
41	16.313		17457.00	3937.04	0.0349	0.0349	17457.0000			
42	16.457		36242.00	8415.39	0.0725	0.0725	36242.0000			
43	16.871		43427.00	8092.66	0.0869	0.0869	43427.0000			
44	17.110		71806.00	15580.21	0.1436		71806.0000			
45	17.244		41011.00	10078.52	0.0820		41011.0000			
46	17.535		55165.00	11168.43	0.1103		55165.0000			
47	17.657		4246.00	1517.28	0.0085		4246.0000			
48	17.880		43721.00	9436.07	0.0874		43721.0000			
49 50	18.060		28885.00	6288.97	0.0578		28885.0000			
51	18.228 18.674		48560.00	10284.15	0.0971		48560.0000			
52	19.023		19993.00	4096.94	0.0400		19993.0000			
53	19.299		33015.00	5247.96	0.0660		33015.0000			
54	19.447		29958.00	6495.58	0.0599		29958.0000			
55	19.696		11076.50 107557.00	2661.64	0.0222		11076.5000			
5	20.151		191645.50	18273.60 43374.92	0.2151		1.0756e+05			
7د	20.323		29229.00	5680.94	0.3833 0.0585	0.3033	1.9165e+05			
58	20.550		6987.00	1819.54	0.0140		29229.0000			
59	20.781		69311.00	13325.09	0.1386		6987.0000			
60	20.988		9476.00	2210.96	0.0190		69311.0000			
61	21.137		12522.50	2772.26	0.0250		9476.0000 12522.5000			
62	21.518		20358.50	4174.87	0.0407		20358.5000			
63	21.756		71149.50	7206.77	0.1423		71149.5000			
64	22.156		34664.00	6740.58	0.0693		34664.0000			
65	22.237		22315.00	7019.44	0.0446		22315.0000			
66	22.477		33334.00	6635.75	0.0667		33334.0000			
67	22.666		20767.00	3638.41	0.0415		20767.0000			
68	23,118		8197.50	1414.50	0.0164		8197.5000			
69	23.660		56948.00	10263.49	0.1139		56948.0000			
70	23.924		797418.00		1.5948		7.9742e+05			
71	24.293		91339.00	16233.39	0.1827		91339.0000			
72	25.616		19560.00	3961.71	0.0391		19560.0000			
73	25.807		68126.00	10709.74	0.1363		68126.0000			
74	27.914		38650.00	4518.23	0.0773		38650.0000			
75	29.704		6875.00	1007.32	0.0138		6875.0000			
76	34.295		8134.50	1323.29	0.0163		8134.5000			
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •							
			6689417.00	1.309e+06	52.9 9 74	52.9974	6.6894e+06			


Missing Component Report

Component Expected Retention (Sample File)

DCAA 7.480
PENTACHLOROPHENOL 11.320
2,4-DB 13.920

..-5890 DETECTOR B

Report Stored in ASCII File: C:\2700\HP5890\HB30033.TX0

Software Version: 3.3 <4811>

Sample Name : L950626-10 Sample Number: 15

Time : 3/8/95 07:34 PM

Study : PPPCB

Operator : KMW

Instrument : HP5890

Channel: A A/D mV Range : 1000

AutoSampler : NONE ck/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/8/95 07:01 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38015.RAW Result File : C:\2700\HP5890\PA38015.RST Instrument file: c:\2700\methseqs\\PPESTB.ins

Process file : HPPESTA
Sample File : PESTA058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Sample Amount : 1.0000

Inj. Volume : 1 ul

Area Reject : 200.000000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : KP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet 8 :

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak	Component	Time	Area	Height	Raw	Adjusted	Calibration	Delta RT	Cal.
#	Name	(min)	[uV*sec]	[uV]	Amount	Amount	Factor	[%]	Range
1		1.094	2012389.98	282919.50	66.1978	66.1978	2012390	· · · · · · · · · · · · · · · · · · ·	•••••
2		1.323	499378.53	89299.80	18.9418	18.9418	499379		
3		1.429	551014.00	75822.28	20.5545	20.5545	551014		
4		1.624	2036397.49		66.9476	66.9476	2036397		
5		2.038	27309.00		4.1976	4.1976	27309		
6		2.166	12101.00		3.7226	3.7226	12101		
7		2.228	11816.00		3.7137	3.7137	11816		
8		2.424	54101.00		5.0344	5.0344	54101		
9		2.564	3194.00		3.4445	3.4445	3194		
10		2.663	11817,00		3.7138	3.7138	11817		
11		2.905	12111.50		3.7230	3.7230	12112		
12		3.036	9674.00		3.6468	3.6468	9674		
13		3.493	6600.00		3.5508	3.5508	6600		
*4		3.714	6938.00		3.5614	3.5614	6938		
		4.306	10663.00		3.6777	3.6777	10663		
16		4.569	6874.00		3.5594	3.5594	6874		
17		4.936	4129.00		3.4737	3.4737	4129		
18		5.076	5583.50		3.5191	3.5191	5584		
19		5.268	15634.00		3.8330				
20		5.445	11497.00			3.8330	15634		
ĻŪ		J.443	11477.00	2044.47	3.7038	3.7038	11497		

Daak				ca on 57679,							342	pa
Peak #		Component Name	Time [min]	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range		
21			6.045			3.5578	3.5578	6824				
22 23			6.314 7.285			6.5530	6.5530	102720				
74	TCMX		7.572	12798.00 2020413.00	3095.48 477258.40	3.7444 94.9003	3.7444 0.0000	12798	0.3740			
.5			8.309			4.0099	4.0099	2020413 21297	0.2760			
26		CV.	9.147			4.0790	4.0790	23512	******			
27 28		17	9.386	21403.00		4.0132	4.0132	21403				
20 29		Ω_{γ}	9.642 9.784	48129.50 4671.00		4.8479	4.8479	48130				
30		. ,	9.915	17550.00		3.4906 3.8928	3.4906	4671				
31	1	RHC C	10.585	14842.00		3.8083	3.8928 3.8083	17550 14842				
32	APLHA	вис (10.869	14286.00	3541.59	3.7909	3.7909	14286	0.6631	-		
33 34	1	`	10.991	32120.00		4.3479	4.3479	32120	• • • • • • • • • • • • • • • • • • • •			
35	i	17	11.212 11.428	11502.50		3.7040	3.7040	11502	• • • • • • • • • • • • • • • • • • • •			
36	İ	4	11.691	6163.00 17717.00		3.5372 3.2586	3.5372	6163				
37	- 1	1	11.888	35143.00		3.8316	3.2586 3.8316	17717 35143	******			
0	GAMMA	BHC	12.257	0.00		0.0000	0.0000	0				
88		7111 AA	12.605	117545.00		5.5599	5.5599	117545				
0 59	HEPTA	CHLOR	12.914	0.00		0.0000	0.0000	0				
60	1		13.100 13.480	21301.00		1.7525	1.7525	21301				
	ALDRE	ł	13.842	31940.00 93595.00		3.2542 5.3702	3.2542 5.3702	31940	0.000/			
2			14.778	69679.00		5.2318	5.2318	93595 69679	-0.0026	-		
	BETA E	BHC	15.128	14418.50		1.2555	1.2555	14418	-0.1072			
44			15.385	1053592.00	229776.99	76.0306	76.0306	1053592				
	DELTA	BHC	15.810	21918.00		4.3752	4.3752	21918	-0.5876	-		
0	HEDTA	UIOR EVROVIRE	16.216	164714.00	4	6.7678	6.7678	164714				
7	nerial	CHLOR EXPOXIDE	16.381 16.644	0.00 15105.50		0.0000	0.0000	0				
8	- 1		16.841		3179.56 _ 11800.82	1.1501 2.5011	1.1501	15106				
9	- 1		16.956	11570.00		1.2081	2.5011 1.2081	51084 11570				
0	- 1		17.160	12275.50		1.2346	1.2346	12275				
		ILFAN I	17.321	0.00		0.0000	0.0000	0				
_		CHLORDANE	17.599	8168.00		0.8416	0.8416	8168	0.1770	-		
	DDE	CHLORDANE	17.789	34233.00		1.6745	1.6745	34233	0.0144	-		
	DIELDR	IN	18.066 18.469	77502.00	9446.29 _ 20097.15	4.1224	4.1224	77502	-0.1957	-		
ڎ	7-7-1	``	18.730	7070.00	1359.06	6.6685 2.6758	6.6685 2.6758	108804 7070	-0.7107	-		
6	- 1	7	19.009	66366.50		5.4843	5.4843	66366				
	ENDRIN		19.305		_16534.57	6.6804	6.6804	88861	-0.1603			
8	Ì	ن	19.571	9895.00	1782.03	2.4816	2.4816	9895				
9			19.784	59679.00	11994.67	5.1287	5.1287	59679				
10- 1	1	1 0 1	20.235	26165.00	5067.80	4.6993	4.6993	26165				
2		10	20.402 20.520	8738.50 30216.00	2203.77 6293.77	3.6794 4.9364	3.6794	8738 70314	******			
3	\cdot	11 ~	20.808	5144.00	1154.73	3.4691	4.9364 3.4691	30216 5144				
4	DQD	My K	21.006		19950.91	10.4297	10.4297		0.3865			
5	ENDIDEN	LFAN II	21.205	14616.50		1.1407	1.1407	14616	0.5466	-		
	≻ ∤100	(\mathcal{U})	21.352	8016.00	1899.99	7.3191	7.3191	8016	-0.4624	•		
i7 i8	ENDPIN	ALDEHYDE	22.239	29747.50	5690.87	3.8654	3.8654	29748				
9	ENDATH	ALDERTUE	22.463	50434.00	7021.17	5.3069	5.3069		-0.6202	•		
0	1		22.981 23.230	17156.00 32159.50	3171.70 6037.65	2.9879 -5.2777	2.9879	17156				
	метнох	YCHLOR	23.525	74348.00	8931.86	-5.2777 5.1124	-5.2777 5.1124	32160 74348	-0.4214	_		
0	ENDOSŲ	LFAN SULFATE	23.726	0.00	0.00	0.0000	0.0000		-0.4214			
2	DBC `		23.937	1920398.00		136.4998	136.4998	1920398	0.1376			
3			24.301	4871.00	1036.95	0.8994	0.8994	4871				
'4 0	ENDO : L	KETONE	24.456	24049.50	4651.11	2.2570	2.2570	24050				
5	FHUKIN	KE I URE	25.019 25.410	0.00 16541.00	0.00 3156.61	0.0000	0.0000	14541				
0	OCB /		28.203	0.00	0.00	2.0360 0.0000	2.0360 0.0000	16541 0				
		• • • • • • • • • • • • • • • • • • • •				•		· · · · · · · · · · · · · · · · · · ·				
	I			12246310.50	2.385e+06	732.8945	637.9942					

Missing Component Report Component	Expected Retention (Sample File)					
GAMMA BHC	12.257					
"EPTACHLOR	12.914					
'TACHLOR EXPOXIDE	16.381					
JOSULFAN I	17.321					
ENDOSULFAN SULFATE	23.726					
ENDRIN KETONE	25.019					
DCB	28.203					

343

Report Stored in ASCII file: C:\2700\HP5890\PA38015.TX0

Software Version: 3.3 <4811>

Sample Name : L950626-10

Sample Number: 15

Time : 3/8/95 07:35 PM : PPPCB

Study

Operator : KMW

Instrument : HP5890

Channet : B A/D mV Range : 1000

'utoSampler : NONE ck/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/8/95 07:01 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38015.RAW Result File : C:\2700\HP5890\P838015.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process file : HPPESTB
Sample File : PESTB058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Area Reject : 200.000000 Dilution Factor : 1.00 Sample Amount : 1.0000

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet 8:

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

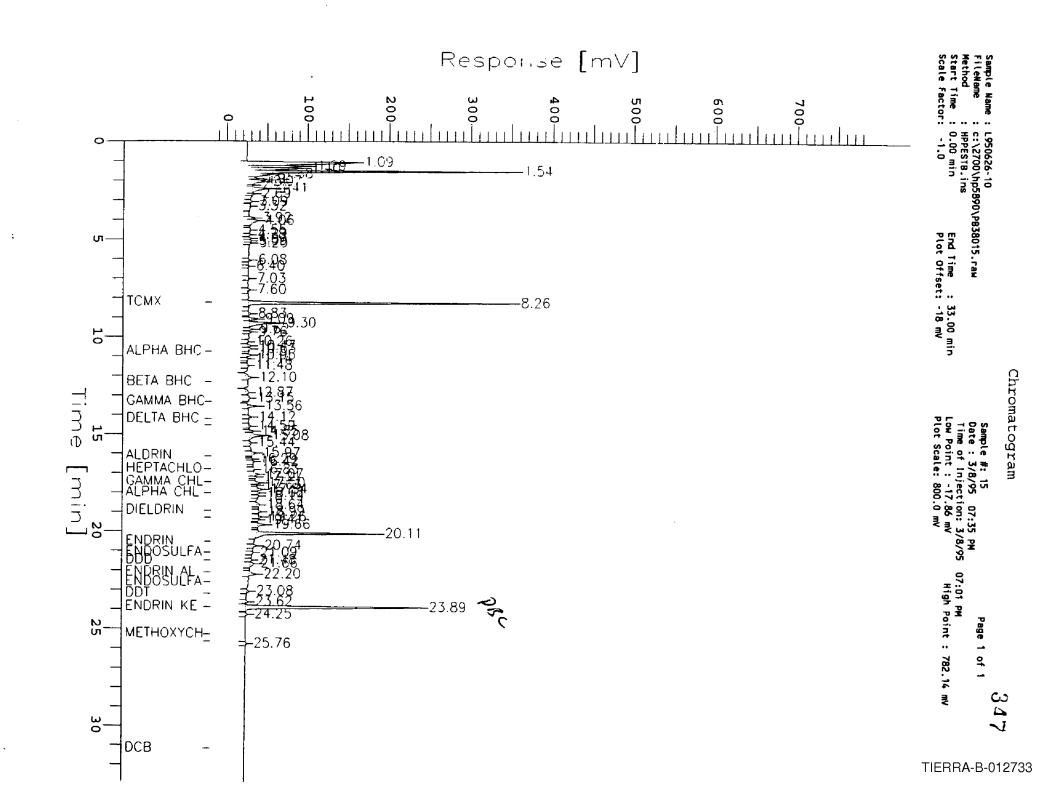
Total run time : 33.00 min

Timed Events:

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.


Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration factor	Cal. Range
1		1.090	1013827.85	138051.48	70.4108	70.4108	1013828	,
2		1.287	325921.78		19.2632	19.2632	325922	
3		1.395	278322.83	57731.80	15.7241	15.7241	278323	
4		1.540	1186747.27	328050.74	83.2678	83.2678	1186747	
5		1.677	28021.27	12993.49	-2.8865	-2.8865	28021	
6		1.920	15001.00		-3.8546	-3.8546	15001	
7		2.065	76208.50	14026.37	0.6963	0.6963	76208	
8		2.246	4416.00		-4.6417	-4.6417	4416	
9		2.414	163578.00		7.1925	7.1925	163578	
10		2.692	12028.00	3600.03	-4.0757	-4.0757	12028	
11		3.089	13423.00	2693.19	-3.9720	-3.9720	13423	
12		3.318	10859.00	1472.99	-4.1626	-4.1626	10859	
13		3,924	25439.00	5013.35	-3.0785	-3.0785	25439	
14		4.057	50484.00	7058.70	-1.2164	-1.2164	50484	
`5		4.547	13243.00	1859.92	-3.9853	-3.9853	13243	
,		4.778	4912.50	1421.39	-4.6047	-4.6047	4912	
17		4.971	9694.00	2498.53	-4.2492	-4.2492	9694	
18		5.087	5563.00	1293.16	-4.5564	-4.5564	5563	
1 9		5.202	6634.00	2011.49	-4.4767	-4.4767	6634	
20		6.078	16162.00	3828.33	-3.7683	-3.7683	16162	
21		6.396	4611.00	1156.56	-4.6272	-4.6272	4611	

ak	Component	Time	Area	Height	Raw	Adjusted	Calibration	Gat. 346
• • • • • • •	Name	[min]	[uV*sec]	(uŸ)	Amount	Amount	Factor	Range
2		7.029	9448.00	2314.76	-4.2675	-4.2675	9448	
3		7.601	15724.00	3266.51	-3.8009	-3.8009	15724	
4 TCMX		8.256	1515353.50		107.7006	107.7006	1515354	
5		8.827	18931.00	3674.86	-3.5624	-3.5624	18931	
6		9.092	54837.00	11679.30	-0.8927	-0.8927	54837	
7		9.295	251961.50	38573.79	13.7640	13.7640	251962	
8		9.615	22266.00	5229.64	2.2839	2.2839	22266	
9		9.764	12330.50	3276.13	1.8526	1.8526	12331	
0		10.257	8369.00	1547.66	1.6806	1.6806	8369	
1 /		10.472	24818.00	4702.23	2.3947	2.3947	24818	
2		10.628	23198.00	4430.13	2.3244	2.3244	23198	
) ALPŅA	BHC	10.753	0.00	0.00	0.0000	0.0000	23176	
3 \		10.949	24372.50	5081.56	2.3754	2.3754		
•		11.140	12139.50	2031.04	1.8443	1.8443	24372	
i [11.478	15578.50	1842.01	1.9936	1.9936	12140	
; \		12.101	67819.00	7275.11	3.8805		15578	
) BETA	BHC	12.324	0.00	0.00	0.0000	3.8805	67819	
,	-	12.873	45204.00	3547.22	1.0379	0.0000	0 (530)	
3	l .	13.154	23289.00	2340.58		1.0379	45204	
Gamma	ВНС	13.331	0.00	0.00	0.2214	0.2214	23289	
)		13.561	73654.00	13605.67	0.0000	0.0000	0	
DELTA	BHC	14.118	20454.00		2.0977	2.0977	73654	
HEPTA		14.594		4187.01	2.3875	2.3875	20454	•
?		14.851	15749.00	3164.77	1.9683	1.9683	15749	•
			25080.50	5637.17	2.4327	2.4327	25080	
	1	15.076	140347.00	18636.86	8.1693	8.1693	140347	
	1	15.444	22855.00	2307.04	79.5527	79.5527	22855	
	1	15.971	41031.00	6292.59	69.0994	69.0994	41031	
ALDRI	7	16.123	0.00	0.00	0.0000	0.0000	0	
	1	16.290	3349.50	740.18	90.7705	90.7705	3349	
,	<u>}</u>	16.420	11732.00	2254.81	85.9496	85.9496	11732	
	L 22	16.825	8804.50	1833.85	0.1415	0.1415	8804	
	CHLOR EPOXIDE	17.070	29499.00	6192.24	1.3061	1.3061	29499	•
		17.209	12091.00	2858.07	0.3265	0.3265	12091	
GAMMA	CHLORDANE	17.501	30175.50	6342.65	1.3175	1.3175	30176	•
		17.627	2703.00	856.50	-0.1530	-0.1530	2703	
ALPHA	CHLORDANE/ENDO	17.839	40802.50	8056.29	0.8565	0.8565	40802	•
	1	18.023	16232.00	3504.10	-0.5588	-0.5588	16232	
	1	18.190	13005.00	2618.15	-0.7447	-0.7447	13005	
	11.	18.637	26463.00	3311.46	2.6337	2.6337	26463	
DIELD	r≰in	18.994	16301.50	2961.63	1.9924	1.9924	16302	_
DDE	1	19.263	23378.50	4916.27	1.4883	1.4883	23378	•
	1/2/20	19.410	5635.50	1446.81	0.3968	0.3968	5635	
1	$T \times T$	19.657	56790.00	10871.09	3.5437	3.5437	56790	
- 1	1 . ' '	20.107	800479.00		68.2623	68.2623	800479	
ENDR I	N	20.742	27769.50	5595.73	2.3667	2.3667		
ENDR 1\(\frac{1}{2}\)		21.094	7005.00	1626.30	1.4553	1.4553	27770 7005	_
	1 \\	21.476	7731.00	1677.38	-0.6088	-0.6088		- -
DDD	V	21.656	40273.50	4236.81	1.8751	1.8751	7731 (027)	
	ALDEHYDE	22.199	65293.50	9907.48	11.4765		40274	-
ENDOS	AFAN SULFATE	22.599	0.00	0.00		11.4765	65294	•
	T	23.078	18747.00		0.0000	0.0000	107/7	
DDT	1	23.619		3362.09	0.8177	0.8177	18747	-
ENUBLI	N KETONE		18526.50	3680.29	0.8290	0.8290	18527	
	NE TORE	23.887	1232533.00		99.0076	99.0076	1232533	
METHO	CACAL CD	24.254	15881.00	2709.28	0.6150	0.6150	15881	
	KYCHLOR	25.263	0.00	0.00	0.0000	0.0000	0	
DBC DCB	•	25.762	10681.00	1815.11	1.3665	1.3665	10681	-
DCB		31.152	0.00	0.00	0.0000	0.0000	0	

Missing Component Report
Component Expected Retention (Sample File)

10.753
12.324
13.331
16.123
22.599
25.263
31.152

HP5890 DETECTOR B

Software Version: 3.3 <4B11>

Sample Name : L950626-11 1:2 Time : 3/13/95 01:09 PM

Sample Number: 28 Study

Operator : KMW

Channel : A A/D mV Range : 1000

Instrument : HP5890 AutoSampler : NONE ck/Vial : 0/0 ck/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 12:34 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HA30028.RAW Result File : C:\2700\HP5890\HA30028.RST Instrument File: c:\2700\methseqs\515A.ins

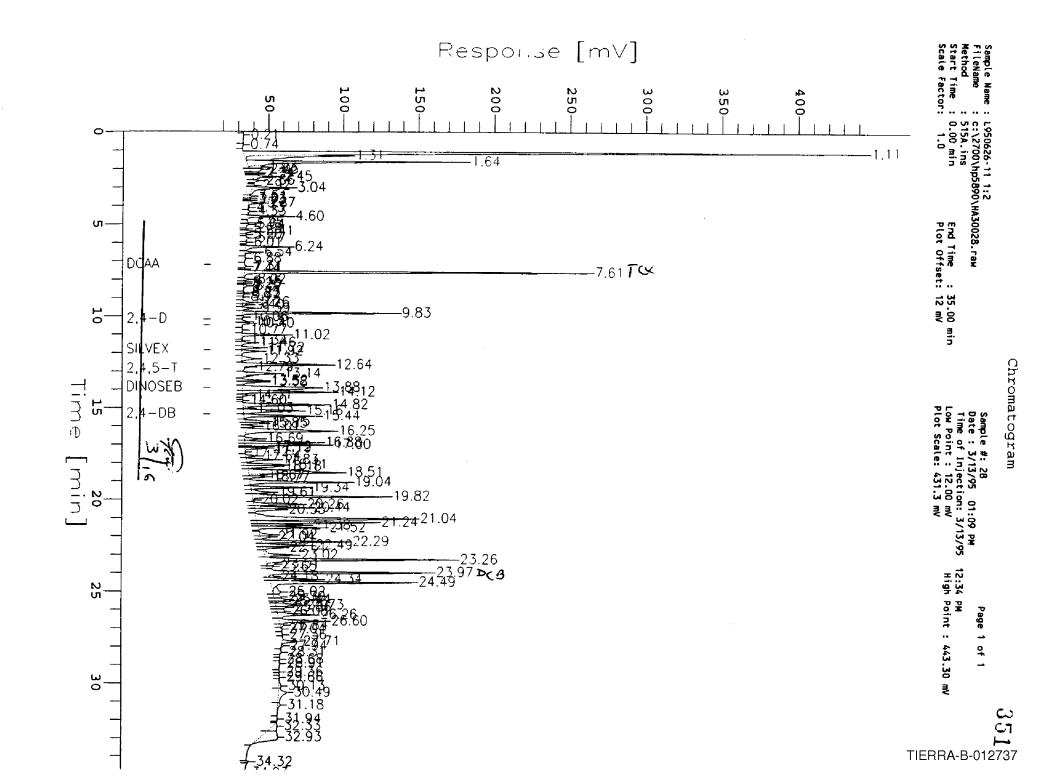
Process File : 515A Sample File : HB515A2

Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ut Sample Amount : 1.0000

Area Reject : 0.000000 Dilution Factor : 1.00

: 515.1


DEFAULT REPORT

								War out
Peak	Time	Area	Height	Area	Norm. Area	BL	Area/Height	
#	[min]	[uV*sec]	[uV]	[%]	[%]		[sec]	
			• • • • • • • • • •					
1	0.207	4456.76	141.20	0.02	0.02	В	31.5632	
2	0.744	2710.24	310.19	0.01				
3	1.105	2434029.28	422452.52	12.34				
4	1.313	554305.00	63282.22	2.81				
5	1.635	782775.42	144979.37	3.97				
6	1.933	56663.00	8422.17	0.29				
7	2.046	84265.87		0.43				
8	2.244	26159.07		0.13				
9	2.310	17478.45		0.09				
)	2.448	92863.50		0.47				
. 1	2.662	16917.42	3846.86					
12	2.923	5235.89			0.09			
13	3.040	166104.11	24704 70	0.03				
14	3.512				0.84			
15	_	8227.54	1354.44	0.04	0.04		6.0745	
16	3.631	4146.18	948.43	0.02	0.02			
	3.725	3494.86	957.71	0.02	0.02			
17	3.874	39587.63		0.20	0.20		5.1682	
18	4.133	3236.00	537.91	0.02	0.02		6.0159	
19	4.328	12344.39		0.06	0.06	٧	7.1864	
20	4.596	110496.21		0.56	0.56	٧	3.9685	
21	4.952	7884.81	1013.12	0.04	0.04	٧	7.7827	
22	5.035	10487.70	2016.91		0.05		5.1999	
23	5.278	574.68	213.83	3e-03	2.9133e-03	٧	2.6876	
24	5.414	32847.16	8470.32	0.17	0.17	В	3.8779	
25	5.595	1047.70	254.73	5e-03	5.3112e-03	٧		
26	5.773	14513.64	2671.06	0.07	0.07			
27	6.011	930.00	244.98	5e-03	4.7145e-03		3.7962	
28	6.238	133024.11		0.67	0.67	_	4.6741	
29	6.540	34269.32	7878.83	0.17	0.17		4.3495	
30	6.880	6702.57	891.40	0.03	0.03		7.5191	
31	7.313	9950,90	1638.97	0.05	0.05		6.0714	
32	7.442	1579,75			8.0084e-03		4.2977	
33		1039674.76		5.27	5.27		4.3884	Tonk
34	8.020		4497.02	0.11	0.11		5.0071	
35	8.148		1512.43		0.04		5.3621	
36	8.256		1156.03	0.02	0.02	v	3.6971	
37	8.365	22344 64	2684.58	0.11	0.11	v	8.3233	
38	8.725	4895.51	1043.05	0.02	0.02			
39	8.816	5511 00	1104.57	0.03			4.6935	
40	8.967	18/2 71	274 67	0.03	0.03 9.3414e-03	V	4.9894	
41	9.263	41403.75	7407 70				6.6637	
42	9.400			0.21	0.21	В	5.4423	
13	9.591	20036.00	3850.52	0.10	0.10	٧	5.2035	
,		42973 .25		0.22	0.22	٧	5.2383	
2	9.828	460422.00	103049./1		2.33		4.4421	
٠ż	10.058	7792.75	1406.92	0.04	0.04		5.5389	Λ
46	10.313	18946.25	3519.63	0.10	0.10		5.3830	4635
47	10.401	29975.75	5613.30		0.15	٧	5.3401	1 · ~ J
48	10.768	6303.25			0.03	٧	7.5599	
49	11.023	149746.25	₹30361.77	0.76	0.76	В	4.9321	
			=					

Peak #	Time (min)	Area [uV*sec]	Height [UV]	Area [%]	Norm. Area	BL	Area/Height [sec]	349
50	11.342	5637.08	1116.07	0.03				••••
51	11.460	40846.67		0.21	0.03 0.21	V	5.0509 5.7100	
52 '3	11.724	66589.19		0.34	0.34	В	5.0708	5,20861.5
4	11.918 12.334	65987.81 75015.00		0.33 0.38	0.33	٧	5.5239	$S \simeq S \simeq S \simeq S \simeq S \simeq S \simeq S \simeq S \simeq S \simeq S \simeq$
55	12.644	328142.00		1.66	0.38 1.66	B 8	8.4217 5.6716	
56	12.786	10697.00	3299.37	0.05	0.05	Ē	3.2421	
57 58	13.138 13.519	71704.50		0.56	0.56	В	5.6931	
59	13.583	71396.90 69905.35		0.36 0.35	0.36 0.35	В	4.9254	•
60	13.881	508684.19		2.58	2.58	V	4.9496 10.2926	
61	14.122	313528.45		1.59	1.59	٧	5.2183	
62 63	14.312 14.603	18321.10 434.50		0.09	0.09 2.2026e-03	Ň	4.6985	
64	14.815	385147.43		1.95	1.95	B B	3.7380 7.0450	
65	15.031	19640.00	4143.70	0.10	0.10	Ē	4.7397	
66 67	15.156 15.438	266944.29 252957.29		1.35	1.35	٧	7.0685	
68	15.747	90498.53		1.28 0.46	1.28 0.46	8	5.1485 6.5672	
69	15.845	50317.47	11609.52	0.26	0.26	v	4.3342	
70 71	16.012 16.254	28871.03	6291.65 57418.40	0.15	0.15	В	4.5888	
72	16.686	59642.58		2.51 0.30	2.51 0.30	V B	8.6108	
73	16.88 1	266358.36	49184.30	1.35		V	5.8960 5.4155	
74 75	17.002	309552.00		1.57	1.57	٧	5.6037	
75 76	17.115 17.189	57896.56 75585.49		0.29		٧	3.8102	
77	17.415	359.00	106.70	0.38 2e-03	0.38 1.8199e-03	V E	4.9369 3.3646	
78	17.637	39267.73	7534.06	0.20	0.20	В	5.2120	
79 / 80 /	17.831 18.105	119698.27 131516.78		0.61	0.61	٧	6.3324	
81	18.183	133445.69		0.67 0.68	0.67 0.68	B V	5.4006 6.6133	
82	18.513	606351.90	_ 61135.51	3.07		v	9.9182	
83 ' 84∖	18.672 18.768	33959.00	7856.40	0.17	0.17		4.3225	
	19.044	56402.13 373790.50	11306.69 66299.62	0.29 1.89	0.2 9 1.89	V B	4.9884	
86	19.344	200859 22		1.02	1.02	В	5.6379 5.3958	
	19.610 19.821	97719.78	13865.27	0.50	0.50	٧	7.0478	2376718
89.	20.019	522263.56 5339.00	90223.36 1195.17	2.65 0.03		V	5.7886	\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow
80/V	20.200	213627.67	31605.77	1.08		E V	4.4671 6.7591	
91 \	20.439	187018.00	35532.33	0.95	0.95	٧	5.2633	-
92 93(7)	20.554	103751,78 775537.93	18498.03	0.53 3.93	0.53		5.6088	
	21.241	423157.05	80738.16	2.15	3.93 2.15	B V	7.3216 5.2411	
95	21.383	176843.89	32964.65	0.90	0.90	٧	5.3647	
96 i 97	21.521 21.917	209861.12 59415.76	43231.39 9410.86	1.06		٧	4.8544	
98	22.044	43939.46	7365.82	0.30 0.22	0.30 0.22		6.3135 5.9653	
99	22.286	308362.02	56470.12	1.56	1.56	٧	5.4606	
100	22.485 22.609	186583. <i>7</i> 3 69955.15	31284.79 13772.05	0.95	0.95		5.9640	
102	23.021	146609.95	20133.74	0.35 0.74	0.35 0.74	v	5.0795 7.2818	
103	23.264	759037.15	125848.15	3.85	3.85	٧	6.0314	
104/ 105/	23.512 23.651	47767.00 28577.14	5867.07 4137.72	0.24	0.24		8.1415	
106	23.968	622433.38	107690.77	0.14 3.16	0.14 3.16		6.9065 5.7798	1 36
107	24.183	21688.00	3601.72	0.11	0.11		6.0216	υ [,]) <
108 109	24.336 24.494	184920.32 598648.54	32704.44 95884.49	0.94	0.94	٧	5.6543	
110	25.022	84530.00	5759.55	3.03 0.43	3.03 0.43		6.2434 14.6765	
111	25.295	57921.20	5143.39	0.29	0.29	٧	11.2613	
112 113	25.439 25.563	67477.41 39627.41	8650.80	0.34	0.34		7.8001	
114	25.729	113636.30	6164.40 16250.53	0.20 0.58	0.20 0.58		6.4284 6.9928	
115	25.856	49530.22	7632.86	0.25	0.25		6.4891	
116 117	26.083	52581.56	4929.81	0.27	0.27	٧	10.6660	
117 118	26.255 26.604	184080.50 211448.21	23836.79 30053.03	0.93 1.07	0.93		7.7225	
119	26.835	19760.90	2508.51	0.10	1.07 0.10		7.0358 7.8775	
• 20	27.039	6485.47	618.37	0.03	0.03	٧	10.4880	
.2	27.359 27.714	2051.20 67381.14	234.24	0.01	0.01		8.7566	
123	27.944	8865.00	9499.37 1636.78	0.34 0.04	0.34 0.04		7.0932 5.4161	
124	28.305	8562.86	1071.67	0.04	0.04		7.9902	
125 126	28.681	1596.67	191.83		3.0941e-03		8.3234	
160	28.914	5787.33	436.84	0.03	0.03	٧	13.2482	

Peak #	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area	BL	Area/Height [sec]
127 128 129 10 11 132 133 134 135 136	29.364 29.663 30.132 30.490 31.180 31.935 32.331 32.932 34.318 34.926	124557.02 28600.06 3115.00 92109.16	202.57 1714.30 5742.15 1748.81 342.78 2892.30 11774.24 1350.78	9e-03 0.16 0.63 0.14 0.02 0.47 1.81 0.03	0.63 0.14 0.02 0.47 1.81 0.03	В	6.1861 8.3664 18.6908 21.6917 16.3540 9.0875 31.8464 30.3379 4.4056 2.4947
		19726267.00	3.235e+06	100.00	100.00		

Missing Component Report Component	Expected Retention (Sample File)
PENTACHLOROPHENOL	10.500
DINOSEB	13.900
2,4-DB	15.350

Software Version: 3.3 <4B11>

Sample Name : L950626-11 1:2 Sample Number: 28

Time : 3/13/95 01:09 PM Study : 515.1

Operator : KMW

Instrument : HP5890

Channel: B A/D mV Range: 1000

AutoSampler : NONE ack/Vial : 0/0

interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 12:34 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HB30028.RAW Result file : C:\2700\HP5890\HB30028.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 515B
Sample File : HB515B
Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time: 35.00 min

Timed Events:

There are no timed events in the method

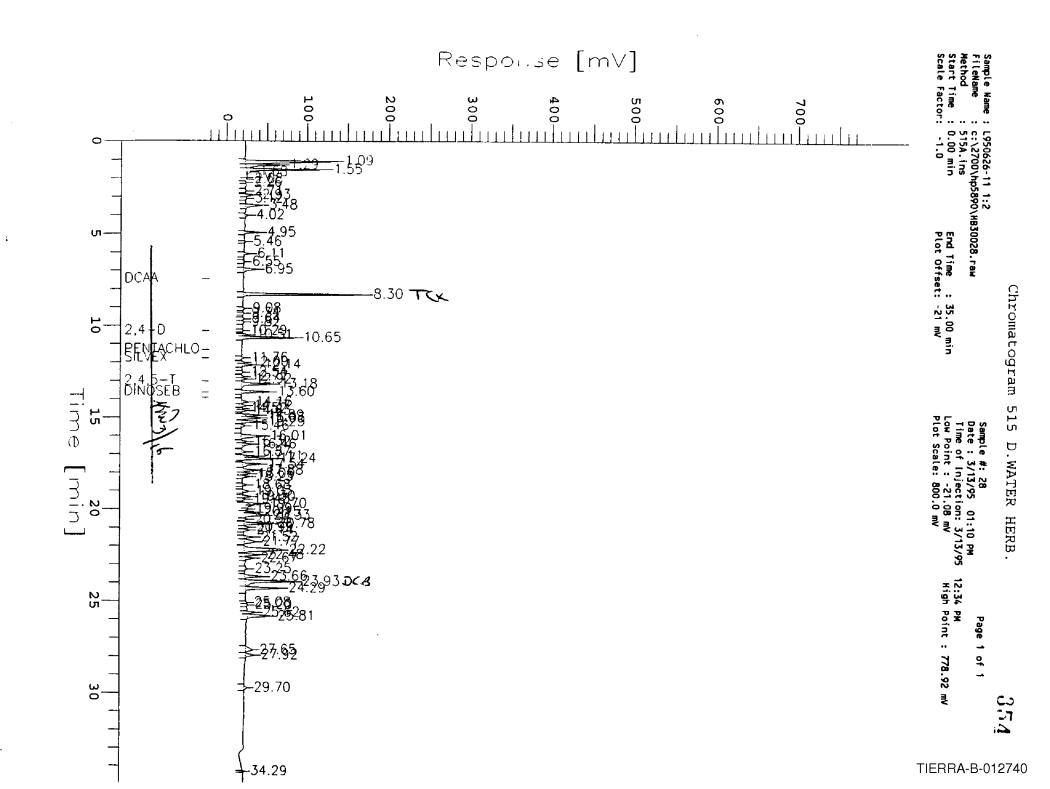
8080 PCB Zu 1/146

HP5890 REPORT FOR 515.1 HERBICIDES DRINKING WATER ANALYSIS.

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Time (min)	Component Name	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	
1	1.094		723812.25	115320.95	1.4476	1.4476	7.2381e+05	***************************************
2	1.294		274345.11		0.5487		2.7435e+05	
3	1.552		417659.64		0.8353		4.1766e+05	
4	1.684		24686.00	5728.26	0.0494		24686.0000	
5	2.076		5366.00		0.0107	0.0107	5366.0000	
6	2.259		3764.00		0.0075	0.0075	3764.0000	
7	2.714		10226.50		0.0205		10226,5000	
8	2.925		45758.00		0.0915		45758.0000	
9	3.119		5944.50		0.0119		5944.5000	
10	3.476		111717.00		0.2234		1.1172e+05	
11	4.018		24992.50	4955.05	0.0500		24992.5000	
12	4.948		74349.00	19233.07	0.1487		74349.0000	
13	5.458		6516.00	2036.91	0.0130		6516.0000	
14	6.106		32155.50	7556.57	0.0643		32155.5000	
15	6.549		6678.50	1508.40	0.0134		6678.5000	
	6.949		101205.00	17420.96	0.2024		1.0120e+05	
J	7.480 DCAA		0.00	0.00	0.0000			
17	8.296		697411.00			0.0000	0.0000	
18	9.079		13468.00	2894.66	1.3948		5.9741e+05	
19	9.339		6897.00		0.0269		13468.0000	
20	9.642		12423.50	1503.30 2425.41	0.0138 0.0248	0.0138 0.0248	6897.0000 12423.5000	

								5 F
Peak #	Time [min]	Component Name	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	353
21	9.820			• • • • • • • • • • • •				
22	10.288 2	2.4-D	9092.50 3983. 00	1735.46 883.95	0.0182		9092.5000	
23	10.513	-, - ,	26276.00	6351.51	1.1292 0.0526		3983.0000	
۱4	10.654		298722.00	65910.97	0.5974		26276.0000 2.9872e+05	
0	11.320 F	PENTACHLOROPHENOL	0.00	0.00	0.0000	0.0000		
25	11.763 9	SILVEX	18057.00	3339.10	1.1480		18057.0000	
26	12.000		10527.00	2209.76	0.0211		10527.0000	
27	12.139		88946.00	17489.33	0.1779		88946.0000	
28	12.541		11820.00	2467.52	0.0236	0.0236	11820.0000	
29	12.772		11990.00	2596.85	0.0240		11990.0000	
30 31	12.916 2 13.184	2,4,5-1	32416.00	7386.31	1.8633		32416.0000	
32	13.601 0	INOSER	248541.00	40023.03	0.4971		2.4854e+05	
ō	13.920 2		184359.00 0.00	36374.62	24.3851		1.8436e+05	
33	14.159	.,	48391.00	0.00 8264.01	0.0000	0.0000		
34	14.366		28771.00	5658.95	0.0968 0.0575		48391.0000 28771.0000	
35	14.522		3809.00	956.40	0.0076		3809.0000	
36	14.631		22793.00	6110.55	0.0456		22793.0000	
37	14.887		84529.00	18168.95	0.1691		84529.0000	
38	15.030		97836.00	18686.96	0.1957		97836.0000	
39	15.246		118078.00	23018.45	0.2362	0.2362	1.1808e+05	
40	15.460		31043.50	4969.32	0.0621	0.0621	31043.5000	
41 42	16.007 16.316		201920.00	27838.14	0.4038		2.0192e+05	
43	16.459		25158.50	5720.56	0.0503		25158.5000	
44	16.873		68007.00 37220.00	12356.21	0.1360	0.1360	68007.0000	
45	17.112		61294.00	6729.98 14320.78	0.0744 0.1226		37220.0000 61294.0000	
46	17.236		139081.00	30960.88	0.2782		1.3908e+05	
47	17.543		152507.50	23276.71	0.3050		1.5251e+05	
48	17.881		97888.00	19910.21	0.1958		97888.0000	
49	18.062		42637.00	9191.23	0.0853		42637.0000	
50	18.230		37844.00	8133.52	0.0757		37844.0000	
51 52	18.677		28153.50	5754.36	0.0563		28153.5000	
53	19.025 19.301		47710.00	7452.40	0.0954		47710.0000	
54	19.449		46883.00 16116.00	10203.42	0.0938		46883.0000	
55	19.698		81859.50	3925.56 17931.08	0.0322 0.1637		16116.0000	
5	19.987		8977.00	2428.73	0.0180		81859.5000 8977.0000	
7ر	20.154		41091.00	10618.01	0.0822		41091.0000	
58	20.332		146203.00	22991.62	0.2924		1.4620e+05	
59	20.553		17082.50	4114.94	0.0342		17082.5000	
60	20.782		176540.50	33469.81	0.3531		1.7654e+05	
61	20.992		26537.00	5808.70	0.0531	0.0531	26537.0000	
62 63	21.141		27929.00	6319.01	0.0559		27929.0000	
64	21.519 21.769		58659.00 124427.50	11987.39 14235.96	0.1173		58659.0000	
65	22.218		126427.50 497538.00	47058.47	0.2529		1.2643e+05	
66	22.480		94155.00		0.9951 0.1883		4.9754e+05 94155.0000	
67	22.666		55797.00	10379.47	0.1116		55797.0000	
68	23.252		17093.00	2934.02	0.0342		17093.0000	
69	23.659		134323.00	23591.99	0.2686		1.3432e+05	
70	23.929		400878.50	62741.69	0.8018		4.0088e+05	
71	24.292		250889.00	45542.40	0.5018		2.5089e+05	
72 73	25.077		3840.00	786.83	0.0077		3840.0000	
74	25.201 25.617		8326.00	1687.13	0.0167		8326.0000	
75	25.806		50656.50 186038.00	10066.63 28822.06	0.1013		50656.5000	
76	27.645		86413.00	8270.92	0.3721 0.1728		1.8604e+05 86413.0000	
77	27.922		71496.00	10543.46	0.1728		71496.0000	
78	29.699		27320.50	3401.38	0.0546		27320.5000	
79	34.288		3458.00	1025.93	0.0069		3458.0000	
					• • • • • • • • • • • • • • • • • • • •			
			7581302.00	7.384e+06	43.2106	43.2106	7.5813e+06	


Missing Component Report

Component Expected Retention (Sample File)

DCAA 7.480 11.320 13.920 PENTACHLOROPHENOL

~ 4-D8

HP5890 DETECTOR B

Software Version: 3.3 <4811>

Sample Name : L950626-12 1:5 PCB SOIL Time : 3/9/95 07:01 AM

Sample Number: 34 Study : PPPCB

Operator : KMW

Instrument : HP5890

Channel: A A/D mV Range : 1000

toSampler : NONE k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 06:27 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38034.RAW : C:\2700\HP5890\PA38034.RST Result File Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA
Sample File : PESTA058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000 : 200.000000 Area Reject Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A: Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

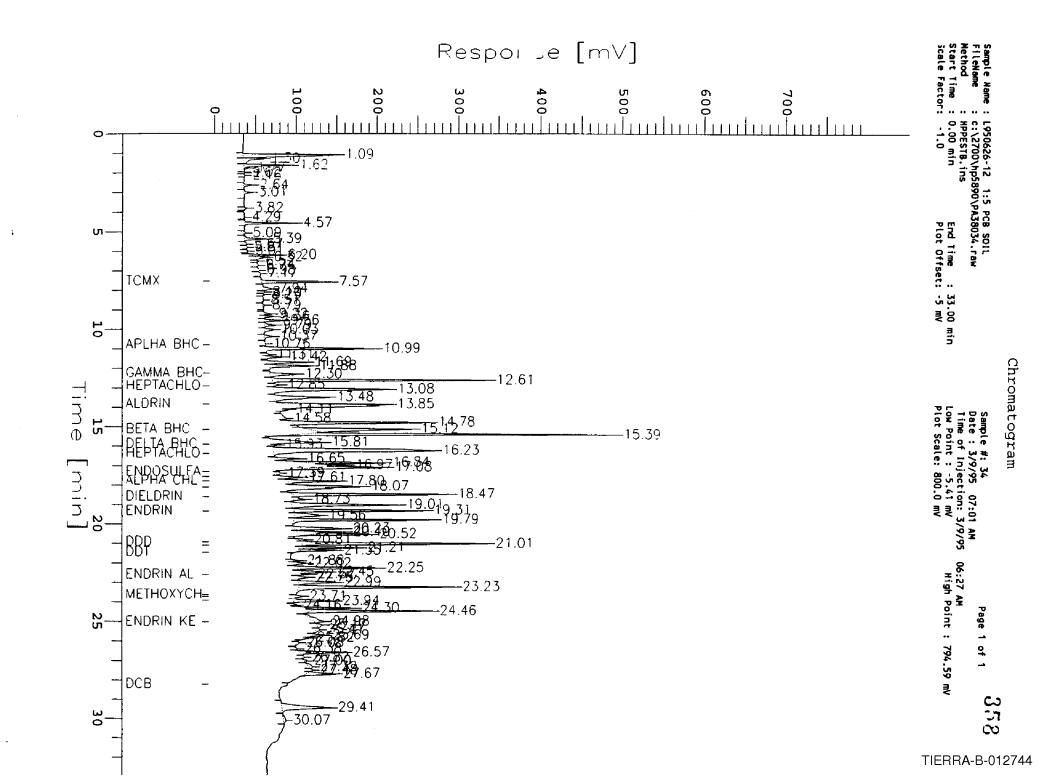
NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Deita RT [%]	Cal. Range
1		1.092	788120.94	129355.54	27.9601	27.9601	788121		
2		1.304	161166.41	25692.82	8.3784	8.3784	161166		
3		1.623	259504.15	62190.92	11.4498	11.4498	259504		
4		1.769	18644.00	6033.03	3.9270	3.9270			
5		2.020	3976.00	1406.14	3.4689	3.4689			
6		2.156	5629.00	1421.89	3.5205	3.5205	5629		
7		2.637	48290.50	11234.68	4.8530	4.8530	48290		
8		3.009	44315.00	8886.55	4.7288	4.7288			
9		3.818	15721.00	3993.45	3.8357	3.8357	15721		
10		4.293	18084.00	972.97	3.9095	3.9095	18084		
11		4.569	223745.50	63293.34	10.3329	10.3329			
12		5.092	16731.50	2199.50	3.8673	3.8673	16732		
13		5.385	113471.00	26244.73	6,8887	6.8887	113471		
		5.666	10138.00	1169.78	3.6613	3.6613	10138		
		5.812	9013.00	1195.94	3.6262	3.6262	9013	•••••	
16		6.005	6657.00	1219.79	3.5526	3.5526			
17		6.204	127008.00	35943.41	7.3115	7.3115	127008		
18		6.322	65893.00	13825.81	5.4027	5.4027	65893		
19		6.518	6988.00	2052.56	3.5629	3.5629	6988		
20		6.737	14442.00	2263.46	3.7958	3.7958	14442		

TIERRA-B-012741

			, ,,,,,	Or.OT AIN						356	₽ŧ
Peak		Time	Area	Height	Raw	Adjusted	Calibration	Delta RT	Cal.	9(1)	
#	Name	(min)	[uV*sec]	[uV]	Amount	Amount	Factor	[%]	Range		
21		6.984	14492.00	1986.61	3.7973	3,7973	14492			•	
22		7.166	20541.50		3.9863	3.9863	20542				
23	TCMX	7.572	376856.00		15.0495	0.0000	376856	0.2842			
•		7.935	84158.50		5.9732	5.9732	84158				
26		8.101	13213.00		3.7574	3.7574	13213				
27		8.230 8.508	9847.00 22289.50		3.6522	3.6522	9847				
28		8.785	16088.00		4.0409 3.8472	4.0409 3.8472	22290 16088				
29		9.224	39909.00		4.5912	4.5912	39909				
30		9.359	43612.00		4.7068	4.7068	43612				
31 32		9.555	104063.00		6.5949	6.5949	104063				
33		9.791 10.030	77470.00 73441.00		5.7643 5.6385	5.7643	77470	•••••			
34	i	10.370ر	63386.00		5.3244	5.6385 5.3244	73441 63386				
35	APLHA BHC	10.756	6817.50		3.5576	3.5576	6818	-0.3765	-		
36	1	ղ 10.988		_137650.03	23.5701	23.5701	647564				
37 38	1 1.	11.308 11.424	9677.00		3.6469	3.6469	9677				
39	\ \	11.691	82171.00 240080.50		5.9111 10.5707	5.9111 10.5707	82171 240080				
40	\	11.884	247344.00		10.8095	10.8095	247344				
41	GAMMA BHC	12.303		34485.20	10.2062	10.2062	228996	0.3758			
42	1	12.605	1445563.00		50.2112	50.2112	1445563				
43 44	HEP/TACHLOR	12.854	36635.00		2.3591	2.3591	36635				
45	ner/incheok	13.076 13.479	512437.50	145543.93 68354.49	40.1783 19.7444	40.1783	992622	1.2565			
46	ALDRIN	13.846	265792.50		11.2798	19.7444 11.2798	512438 265793	0.0315			
47	T	14.113	11693.50		2.5594	2.5594	11694				
48	1	14.579	24441.50		1.9767	1.9767	24441				
49	-1	14.779	1073185.00		77.4404	77.4404	1073185				
50 51	BETA BHC	15.122		132477.21	63.3612	63.3612	877522	-0.1457			
52	DELTA BHC	15.388 15.807	1757898.00 476808.00		126.7099	126.7099	1757898				
53	Transition of the state of the	15.934	9897.00		20.2248 3.9564	20.2248 3.9564	476808 9897	-0.6021			
54		16.226	1916565.00		72.5487	72.5487	1916565				
0	HEPTACHLOR EXPOXIDE	16.381	0.00		0.0000	0.0000	0				
55	1	16.649	131153.00		5.5076	5.5076	131153				
56	i	16.843	429585.00		16.7136	16.7136	429585	•••••			
,		16.969 17.082	95397.00		4.3564	4.3564	95397				
59	ENDOSULFAN I	17.388	454218.00 6819.00	85030.33 1433.69	17.8326 1.0296	17.8326 1.0296	454218 6819	0.3866	_		
60	GAMMA CHLORDANE	17.605	121603.00		5.1350	5.1350	121603	0.2118	-		
61	ALPHA CHLORDANE	17.795	358028.50		13.8461	13.8461	358028	0.0509			
62	DOE	18.066	271232.00		11.7713	11.7713	271232	-0.1945			
63 64	DIELDRIN	18.471 18. <i>7</i> 34	1119395.00		46.3305	46.3305	1119395	-0.6974			
65	1 3	19.010	818507.00	14345.35	5.1535 45.4774	5.1535 45.4774	70203 818507				
66	EMDRIN ~	19.305	834968.00		46.3526	46.3526	834968	-0.1601			
67	\sim	19.564		33108.96	15.9262	15.9262	262745				
68		19.786	909251.00		50.3024	50.3024	909251	******			
69	1	20.233	352003.50		23.7687	23.7687	352004				
70 71	1	20.404 20.517	159331.50 308936.50		12.4927	12.4927	159331				
72	1	20.810	44116.00		21.2482 5.7499	21.2482 5.7499	308936 44116				
73	DDD \	21.007	1425701-00		86.6057	86.6057	1425701	0.3918			
74	ENDOSULFAN II	21.208	323927.50	73669.75	18.1605	18.1605	323927	0.5584			
75 74	DDT	21.351	195615.50		19.8822	19.8822	195615	-0.4660			
76 77	/,0	21.883 22.015	32208.00 75107.50	8078.49 15711 82	8.9391	8.9391	32208 75107				
78	- \\	22.248	542420.00	15711.82 103353.33	7.0326 39.5913	7.0326 39.5913	75197 542420				
79	ENDRIN ALDEHYDE	22.451	159150.00		12.8829	12.8829		-0.6746			
80	1117.3	22.573	26904.00	9175.00	3.6672	3.6672	26904				
81	190	22.746		14268.76	7.1351	7.1351	76669				
82	l N	22.985	263339.00		20.1433	20.1433	263339	•••••			
83 84	METHOXYCHLOR	23.229 23.710	1111941.00 52028.00	195125.47 8763.81	260.6474 -0.3845	260.6474	1111941	0.7417	_		
0	ENDOSULFAN SULFATE	23.726	0.00	0.00	0.0000	-0.3845 0.0000	52028 0	0.3617	-		
	OBC \	23.939	262831.00	52190.74	19.1604	19.1604	262831	0.1463			
86	\	24.157	8008.00	1548.24	1.1215	1.1215	8008				
87		24.303	266769.00		19.4392	19.4392	266769				
88 ~~	ENDOIN KETONE	24.459	777997.50		55.6291	55.6291	777998	0.4430			
••	ENDRIN KETONE	24.983 25.166	198282.00 52382.00	14430.12 7013.09	10.4289 3.6912	10.4289 3.6912	198282 52382	-0.1429			
	ı	25.409	41113.50	4538.34	3.1708	3.1708	41113				
92		25.692	85019.00	18028.24	5.1984	5.1984	85019				
93		25.815	10047.00	3061.91	1.7361	1.7361	10047				
94		26.078	23678.00	2970.46	2.3656	2.3656	23678	• • • • • • • • • • • • • • • • • • • •			
95		26.384	11153.50	2147.48	1.7872	1.7872	11153				

	nponent Time Name [min]	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT (%)	Cal. Range		
96 97 78 101 0 DCB 102 103	26.56 26.82 27.00 27.31 27.47 27.66 28.20 29.40 30.07	0 16182.00 2 27175.50 5 53644.00 9 14052.00 5 207842.00 6 633406.00	2966.91 4004.09 3985.95 3092.76 36796.95 0.00	16.6602 -12.0211 -11.4896 -10.2098 -12.1241 -2.7543 0.0000 17.8217 -10.0312	16.6602 -12.0211 -11.4896 -10.2098 -12.1241 -2.7543 0.0000 17.8217 -10.0312	16182 27176 53644 14052 207842			• • • •	


27893340.00 4.994e+06 1698.4575 1683.4080

Missing Component Report

Component Expected Retention (Sample File)

HEPTACHLOR EXPOXIDE 16.381
ENDOSULFAN SULFATE 23.726
DCB 28.203

Report Stored in ASCII File: C:\2700\HP5890\PA38034.TX0

Software Version: 3.3 <4811>

Sample Name : L950626-12 1:5 PCB SOIL Time : 3/9/95 07:01 AM Study : PPPCB

Sample Number: 34

Operator : KMW

Instrument : HP5890 utoSampler : NONE Channel: B A/D mV Range: 1000

k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 06:27 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38034.RAW Result File : C:\2700\HP5890\PB38034.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTB
Sample File : PESTB058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000 Area Reject : 200.000000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

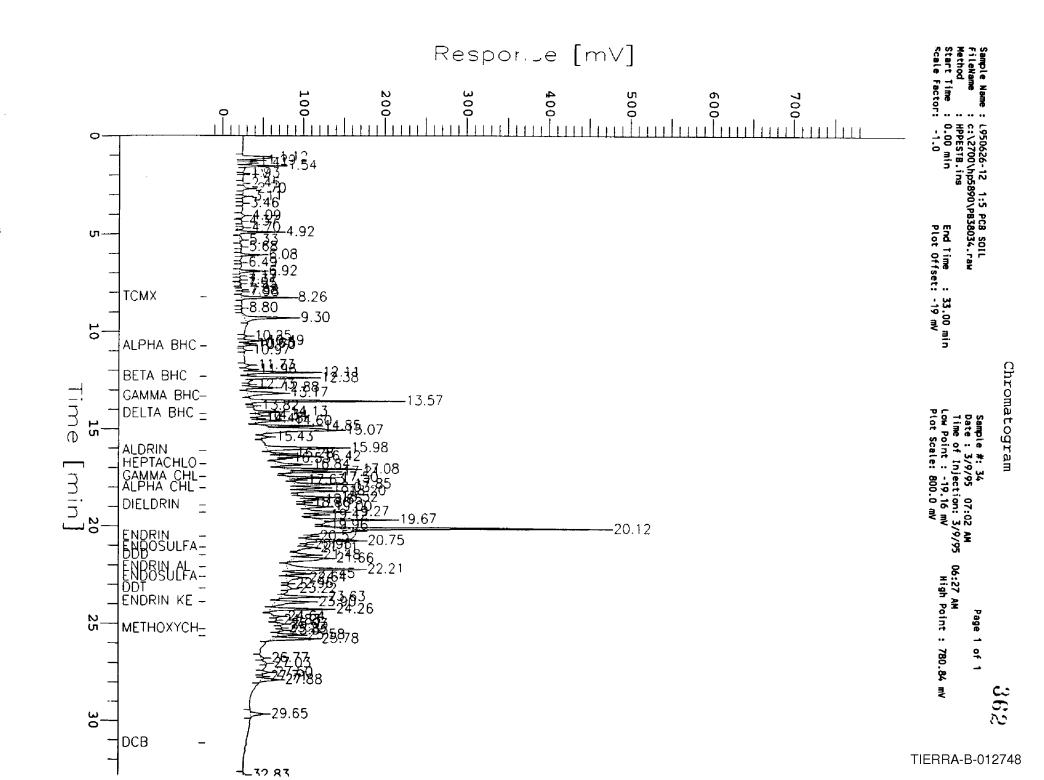
.

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Cał. Range
1		1.119	289245.86	36247.32	16.5362	16.5362	289246	
2		1.288	87305.17	21234.95	1.5214	1.5214	87305	
3		1.409	46832.50	10909.72	-1.4879	-1.4879	46832	
4		1.544	179927.48	46623.02	8.4081	8.4081	179927	
5		1.930	4309.50	1209.94	-4.6496	-4.6496	4310	
6		2.446	9373.00	1409.33	-4.2731	-4.2731	9373	
7		2.702	44097.00	8858.22	-1.6913	-1.6913	44097	
8		3.105	26260.00	6354.61	-3.0175	-3.0175	26260	
9		3.458	5610.00	1204. 6 7	-4.5529	-4.5529	5610	
10		4.090	31398.00	4499.13	-2.6355	•2.6355	31398	
11		4.369	9132.00	1158.88	-4.2910	-4.2910	9132	
12		4.698	10483.50	3155.93	-4.1905	-4.1905	10483	
13		4.922	179081.50	47644.35	8.3452	8.3452	179082	
14		5.328	41266.00	3201.86	-1.9018	-1.9018	41266	
٠,		5.680	19955.50	1609.60	-3.4862	-3.4862	19956	
		6.080	102973.00	25780.02	2.6863	2.6863	102973	
.7		6.486	6853.00	1218.99	-4.4605	-4.4605	6853	
18		6.916	129737.00	27574.22	4.6763	4.6763	129737	
19		7.167	10199.00	1975.92	-4.2117	-4.2117	10199	
20		7.370	14398.00	2188.28	-3.8995	-3.8995	14398	
21		7.552	12028.00	1445.40	-4.0757	-4.0757	12028	

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range
22		7.881	2641.00	678.97	-4.7736	-4.7736	2641	
23		7.977	8257.50	1768.03	-4.3560	-4.3560	8257	
24	TCMX	8.264	276008.00	61579.45	15.5519	15.5519	276008	
		8.804	6971.50	1195.20	-4.4516	-4.4516	6972	
27		9.303 10.251	421934.50 18301.00	61426.23 4218.51	26.4020 2.1118	26.4020	421934	
28		10.485	85628.00	19204.26	5.0348	2.1118 5.0348	18301 85628	
29		10.626	10210.00	2603.18	1.7605	1.7605	10210	
30	ALPHA BHC	10.698	14556.50	5182.83	1.9492	1.9492	14556	•
31 32	1	10.973	13832.00	2751.09	1.9178	1.9178	13832	
33		11.734 11.958	40187.50 23644.00	7364.61 5500.01	2.5939	2.5939	40188	
34		12.105	409345.50	83342.02	1.8235 19.7839	1.8235 19.7839	23644 409346	
35	BETA BHC	12.378	418726.00	80703.02	20.2208	20.2208	418726	
36	1	12.727	13601.00	3557.00	1.3558	1.3558	13601	
37 38		12.883	153840.00	34279.41	5.0849	5.0849	153840	
0	GAIMMA BHC	13.165 13.331	340594.00 0.00	45218.62	12.0421	12.0421	340594	
39		13.565	915347.00	0.00 183028-01	0.0000 33.4536	0.0000 33.4536	0 915347	
40		13.821	11944.00	3116.04	1.9868	1.9868	11944	
41	DELTA BHC	14.126	176541.00	35996.07	9.7362	9.7362	176541	
42 43		14.336	56086.00	9281.76	4.0651	4.0651	56086	
43	HEPTACHLOR	14.481 14.601	6862.00	1999.67 38175.82	1.5260	1.5260	6862	
45	THE TACTION	14.853	180989.50 274077.50	62229.47	10.1920 14.8249	10.1920 14.8249	180989 274078	
46		15.068	811069.00	85585.77	41.5502	41.5502	811069	
47	į.	15.426	50905.50	9189.90	63.4205	63.4205	50906	
48	: 41 DD 111	15.976	718699.00	97038.32	-320.6349	-320.6349	718699	
0 49	ALDRIN	16.123 16.280	0.00 83896.50	0.00 19239.52	0.0000	0.0000	0	
50	[16.424	201322.50	45807.16	44.4470 -23.0860	44.4470 -23.0860	83896 201323	
51		16.533	16804.00	6527.35	83.0327	83.0327	16804	
52		16.838	221475.00	37365.04	12.1090	12.1090	221475	
53 54	HEPTACHLOR EPOXIDE GAMMA CHLORDANE	17.076	381668.00	84135.97	21.1234	21.1234	381668	
55	GAMMA CHLUKDANE	17.211 17.504	224387.50 259280.00	55007.86 53496.55	11.7127 13.5803	11.7127 13.5803	224387	
56		17.628	23959.00	8025.02	-0.1137	-0.1137	259280 23959	
	ALPHA CHLORDANE/ENDO	17.846	330935.50	64589.94	17.5686	17.5686	330936	
د		18.028	161283.00	35465.71	7.7964	7.7964	161283	
59		18.196	258693.00	55078.89	13.4073	13.4073	258693	
60 61		18.517 18.647	169862.00 63078.00	37210.54	11.6835	11.6835	169862	
62		18.801	17746.00	16248.29 4192.45	4.9444 2.0835	4.9444 2.0835	63078 17746	
63	DIELDRIN	19.001	145188.00	26419.33	10.1264	10.1264	145188	
64	DOE	19.269	211826.50	43540.08	13.0814	13.0814	211826	
65	}	19.417	71510.00	17307.50	4.4493	4.4493	71510	
66 67		19.665 19.955	414266.00 7380.00	87974.09 2483.15	25.5352 0.5041	25.5352	414266	
68	Į	20.116	1472508.50		125.5721	0.5041 125.5721	7380 1472509	
69		20.519	21375.00	5964.84	1.8214	1.8214	21375	
70	ENDRIN	20.748	351071.00	67248.54	29.9374	29.9374	351071	
71 72	ENDOSULFAN I	20.953	10432.00	2731.80	1.7136	1.7136	10432	
73	ENDUSULFAN I	21.106 21.482	73278.00 121143.50	14479.19 23722.72	6.4505 8.0477	6.4505 8.0477	73278 121144	-
74	DDD \\'	21.657	398746.50	43904.74	29.2364	29.2364	398746	
75	ENDRIN ALDENYDE	22.208	693080.00	90368.90	70.2954	70.2954	693080	
76	ENDOSUL FAN SUL FATE	22.445	149359.50	29595.95	15.3985	15.3985	149359	
77 78	10° 11	22.641 22.963	180054.00 4651.00	20501.17 1498.38	18.6149 -0.3996	18.6149	180054	
79	DDT	23.215	47455.00	6621.15	3.2968	-0.3996 3.2968	4651 47455	_
80	1 1	23.629	272228.00	50143.28	21.3462	21.3462	272228	
81	ENDR IN KETONE	23.902	323032.50	44947.63	25.4548	25.4548	323032	
82	MM	24.257	399251.00	73661.40	31.6187	31.6187	399251	
83 84	1/1	24.641 24.825	51768.00	8906.24	3.5173	3.5173	51768	
85	(V	25.034	8360.00 48109.00	1365.97 6926.07	-2.5092 7.0706	-2.5092 7.0706	8360 48109	
86	}	25.228	7048.00	1196.38	-2.8254	-2.8254	7048	
87	1	25.351	28466.00	5517.52	2.3365	2.3365	28466	
88	METHOXYCHLOR	25.578	160759.00	28654.69	34.2200	34.2200	160759	•
89 "1	DBC /	25.775	325725.50	51775.83	30.7982	30.7982	325725	
•	•	26.774 27.033	31502.00 23807.00	4074.34 2771.61	3.3116 2.5927	3.3116 2.5927	31502 23807	
.2		27.501	50189.00	7705.80	5.0573	5.0573	50189	
93		27.706	3829.00	844.55	0.7264	0.7264	3829	
94		27.876	139570.50	21371.72	13.4074	13.4074	139571	
95	DCB.	29.647	139718.00	16792.28	-0.8751	-0.8751	139718	
0	DCB	31.152	0.00	0.00	0.0000	0.0000	0	

Resul t	Result File : PB38034.RST, Printed On 3/9/95 07:01 AM										page
Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range		361	
96	• • • • • • • • • • • • • • • • • • • •	32.834	24439.00	2714.52	-11.0616	-11.0616	24439		**********	*************	
			15546779.50	2.859e+06	701.6783	701.6783	15546780				


Missing Component Report Component

Component Expected Retention (Sample File)

GAMMA BHC 13.331 ALDRIN 16.123 DCB 31.152

HP5890 DETECTOR B

Report Stored in ASCII File: C:\2700\HP5890\PB38034.TX0

Software Version: 3.3 <4B11>

Sample Name : L950626-13 1:5 PCB SOIL Time : 3/9/95 07:37 AM

Sample Number: 35

Study : PPPCB

Operator : KMW

Instrument : HP5890 toSampler : NONE

Channel: A A/D mV Range: 1000

k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 07:03 AM

Detay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38035.RAW Result File : C:\2700\HP5890\PA38035.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA
Sample File : PESTA058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A:

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

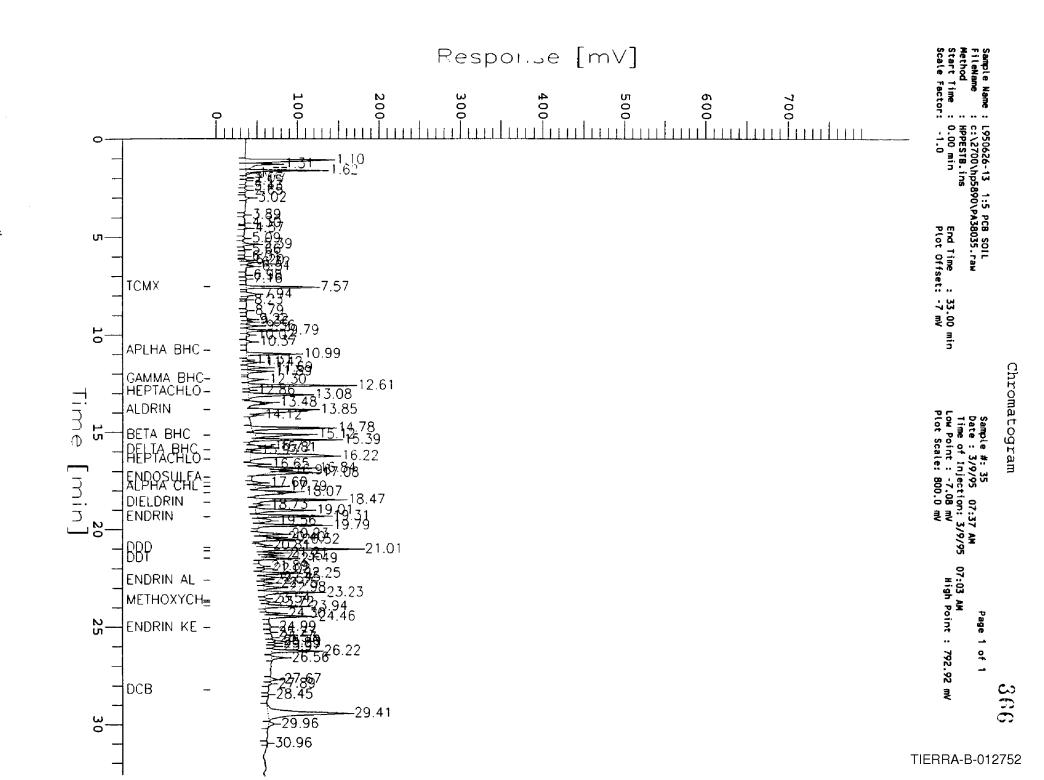
Timed Events:

There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range
1		1.095	673162.41	103431,41	24.3696	24.3696	673162		******************
2		1.307	267168.67	41001.21	11.6892	11.6892	267169		
3		1.624	400777.93	99275.89	15.8622	15.8622	400778		
4		1.769	23267.00	6846.58	4.0714	4.0714	23267		
5		2.027	7173.00	2158.63	3.5687	3.5687	7173		
6		2.151	7101.00	1249.87	3.5665	3.5665	7101		
7		2.429	9848.00	2420.94	3.6523	3.6523	9848		
8		2.645	15873.00	2994.52	3.8405	3.8405	15873		
9		3.016	37328.00	6960.12	4.5106	4.5106	37328		
10		3.893	11703.00	1738.80	3.7102	3.7102	11703		
11		4.296	17704.50	856.40	3.8977	3.8977	17704		
12		4.565	15684.00	4458.91	3.8346	3.8346	15684		
13		5.087	15819.00	2087.63	3.8388	3.8388	15819		
:		5.385	76424.50	16442.12	5.7317	5.7317	76424		
		5.662	8252.00	959.09	3.6024	3.6024	8252		
16		6.010	4195.50	816.39	3.4757	3.4757	4196		
17		6.203	12725.50	3691.04	3.7421	3.7421	12726		
18		6.319	41541.00	9882.39	4.6421	4.6421	41541		
19		6.512	47330.00	10717.98	4.8230	4.8230	47330	••••••	
20		6.983	10330.00	1304.26	3.6673	3.6673	10330		


Resu	lt File : PA38035.RST,	Printe	d On 3/9/95	07:37 AM						0.0-	page
Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Rew Amount	Adjusted Amount	Calibration Factor	Delta R1 [%]	Cal. Range	365	
94 95 '5 ,	DC8	27.894 28.445 29.407 29.961 30.963	15359.00 7803.50 1215793.00 66875.00 8352.00	2644.39 1279.22 98485.58 6884.95 1123.10	-12.0609 -12.4262 45.9802 -9.5701 -12.3997	-12.0609 -12.4262 45.9802 -9.5701 -12.3997	7804 1215793 66875	0.8572	-		••••

15408527.50 2.684e+06 863.2983 849.2438

Missing Component Report Component	Expected Retention (Sample File)
APLHA BHC HEPTACHLOR EXPOXIDE ENDOSULFAN I	10.797 16.381 17.321
ENDOSULFAN SULFATE	23.726

HP5890 DETECTOR A

Report Stored in ASCII File: C:\2700\HP5890\PA38035.TX0

Software Version: 3.3 <4B11>

Sample Name : L950626-13 1:5 PCB SOIL Time : PPPCB : 3/9/95 07:38 AM

Sample Number: 35

Study

Operator : KMW

Instrument : HP5890

Channel: B A/D mV Range: 1000

*utoSampler : NONE :k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 07:03 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38035.RAW Result File : C:\2700\HP5890\PB38035.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process file : HPPESTB
Sample File : PESTB058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A :

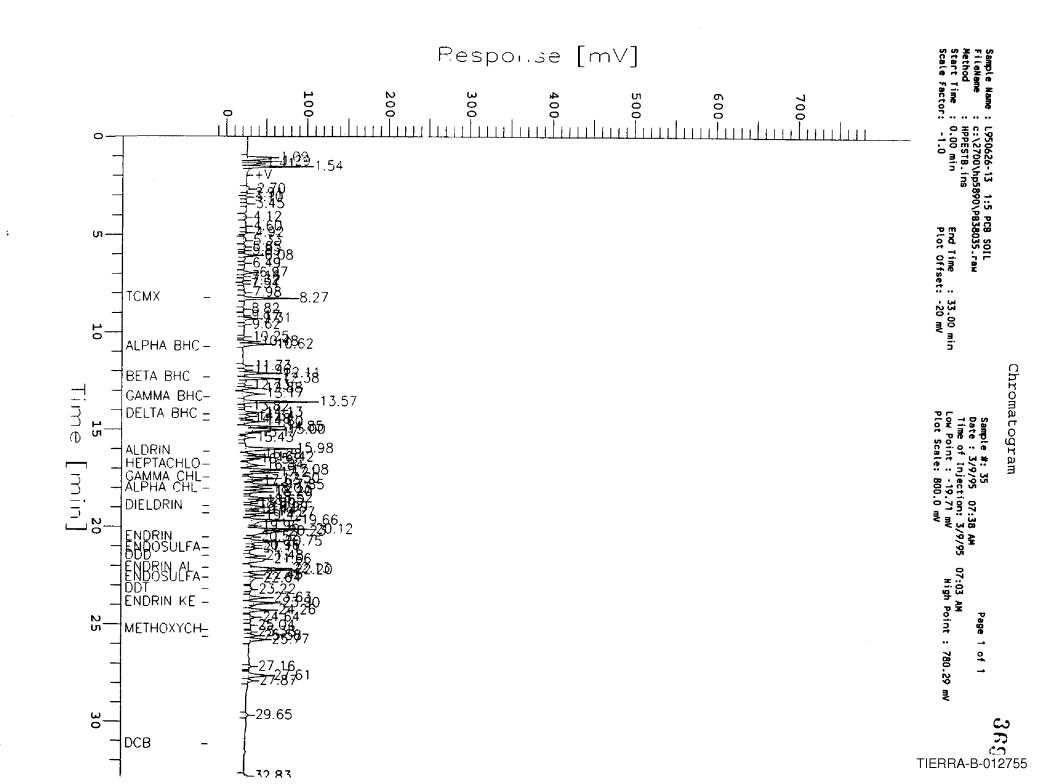
Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:


There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range
	• • • • • • • • • • • • • • • • • • • •							
1		1.090	237735.57		12.7063	12.7063	237736	
2		1.288	135378.92	33700.66	5.0958	5.0958	135379	
3		1.405	58482.75	13965.59	-0.6216	-0.6216	58483	
4		1.543	280672.76	73632.04	15.8988	15.8988	280673	
5		2.696	40731.50	4156.12	-1.9415	-1.9415	40732	
6		2.907	9046.50	2080.02	-4.2974	-4.2974	9046	
7		3.102	13450.50	2466.97	-3.9699	-3,9699	13450	
8		3.452	12922.00	3073.94	-4.0092	-4.0092	12922	
9		4.124	40395.00	2772.74	-1.9665	-1.9665	40395	
10		4.595	20519.00	795.57	-3.4444	-3.4444	20519	
11		4.920	10689.50	3435.74	-4.1752	-4.1752	10689	
12		5.326	46173,50	3467.11	-1.5369	-1.5369	46174	
13		5.653	26303.00	2184.91	-3.0143	-3.0143	26303	
14		5.833	3975.50	1020.35	-4.6744	-4.6744	3976	
. 5		6.080	67792.00	16344.36	0.0705	0.0705	67792	
,		6.491	8172.50	1558.17	-4.3623	-4.3623	8172	
۱7		6.966	64186.00	11522.29	-0.1976	-0.1976	64186	
18		7.159	11144.00	1993.02	-4.1414	-4.1414	11144	
19		7.368	15431.50	2365.64	-3.8226	-3.8226	15431	
20		7.540	5522.00	1206.46	+4.5594	-4.5594	5522	
21		7.981	14619.00	2524.93	-3.8830	-3.8830	14619	

									388	pa
Peak #	Component Name	Time [min]	Area [uV*sec]	Height	Raw		Calibration		• • • •	
			[av. 2ec]	[uV]	Amount	Amount	Factor	Range		
22 23	TCMX	8.265	268657.00	59668.13	15.0054	15.0054	268657			٠.
24		8.819 9.170	14128.50 5687.50	1935.25 815.03	-3.9195 -4.5471	-3.9195	14128			
י5		9.305	86074.00	15152.10	-4.5471 1.4298	-4.5471 1.4298	5688 86074			
6		9.617	8197.00	1355.14	1.6731	1.6731	8197			
27 28		10.248	9251.00	2329.76	1.7189	1.7189	9251			
29		10.484 10.622	50558.50 149182.00	11897.87 30527.66	3.5123 7.7940	3.5123 7.7940	50559			
0	ALPHA BHC	10.753	0.00	0.00	0.0000	0.0000	149182 0			
30	1	11.734	26943.50	4981.57	1.9771	1.9771	26944			
31 32		11.959 12.105	12023.50 194759.00	2673.78	1.2824	1.2824	12023			
33	BETA BHC	12.379	189228.00	38985.96 37296.98	9.7916 9.5340	9.7916 9.5340	194 <i>7</i> 59 189228			
34		12.731	9513.00	2410.27	1.1655	1.1655	9513			
35 36		12.882 13.167	83308.50	19124.74	2.4574	2.4574	83308			
ő	GAMMA BHC	13.331	166522.00	20928.85 0.00	5.5574 0.0000	5.5574 0.0000	166522 0			
37		13.565	424939.50	84517.20	15.1843	15.1843	424940			
38 39	DELTA BHC	13.818	6211.00	1533.37	1.7169	1.7169	6211			
40	DELIA BAG	14.126 14.335	80012.00 36771.00	17204.88 6413.49	5.1915 3.1557	5.1915 3.1557	80012 36771			
41		14.478	4954.00	1433.11	1.4310	1.4310	4954			
42 43	HEPTACHLOR	14.601	83058.00	16855.95	5.3181	5.3181	83058			
44		14. 853 15.001	157700.50 206849.50	35949.68 34014.25	9.0330	9.0330	157700			
45		15.171	15539.00	5158.74	11.4791 1.9578	11.4791 1.9578	206849 15539			
46		15.426	34984.00	6347.76	72.5771	72.5771	34984			
47 0	; ALORIN	15.976	398992.00	54029.05	- 136 . 7679	-136.7679	398992			
48	ALVRIN	16.123 16.279	0.00 50526.00	0.00 11404.04	0.0000 63.6388	0.0000 63.6388	0 50526			
49		16.424	102157.50	23482.94	33.9449	33.9449	102157			
50		16.532	8195.00	3215.85	87.9838	87.9838	8195			
51 52	HEPTACHLOR EPOXIDE	16.837 17.075	92287.00 186220.00	15398.12 40412.62	4.8393	4.8393	92287			
53		17.211	101921.50	24976.68	10.1251 5.3814	10.1251 5.3814	186220 101922			
54	GAMMA CHLORDANE	17.503	144659.00	29806.42	7.4452	7.4452	144659			
55 5	ALPHA CHLORDANE/ENDO	17.626 17.846	12847.00 184716.00	4496.91	0.3900	0.3900	12847			
í	THE CHECKDANE CADO	18.028	86602.00	35806.61 18778.77	9.1462 3.4946	9.1462 3.4946	184716 86602			
58	ľ	18.196	104001.00	22298.16	4.4968	4.4968	104001			
59 60	A	18.517	91597.00	19950.01	6.7443	6.7443	91597			
61	/	18.645 18.798	34299.00 7119.00	9132.07 1894.71	3.1282 1.4129	3.1282 1.4129	34299 7119			
	DIELDRIN	18.993	97876.50	16286.23	7.1406	7.1406	97876	•		
63/	DOE	19.141	3833.00	1217.99	0.2859	0.2859	3833			
64/ 65	UUE	19.268 19.416	105347.00 36882.50	23285.60 9007.48	6.5309 2.3191	6.5309	105347	•		
65 66		19.663	309328.00	52432.62	19.0796	2.3191 19.0796	36883 309328			
67		19.958	4959.00	1550.76	0.3552	0.3552	4959			
67 68 70 71		20.116 20.225	228441.00 93852.00	54636.20	19.4797	19.4797	228441			
to		20.517	11832.50	16583.49 3477.77	8.0021 1.0076	8.0021 1.0076	93852 11833			
<u> </u>	ENDRIN	20.747	171064.00	32937.04	14.5867	14.5867	171064			
72 73	ENDOCULEAU II	20.959	21079.00	4718.24	2.5161	2.5161	21079			
74	ENDOSULFAN II	21.105 21.483	27836.00 52595.00	6474.13 10684.88	3.0254 2.8156	3.0254 2.8156	27836 52595	•		
75	b00 , j	21.658	198256.50	20698.86	13.9335	13.9335	198256			
76	1	22.125	80348.50	16217.93	12.8870	12.8870	80348			
77 78	ENDRIN-ALDEHYDEU ENDOSULFAN GULFAFE	22.202 22.447	54648.00 53289.00	17151.54 10748.50	10.4791 5.3315	10.4791	54648 57380	•		
79	4 187117	22.635	71433.50	7978.11	7.2328	5.3315 7.2328	53289 71434	•		
80	DOT (1) 1	23.215	21278.50	2099.07	1.0363	1.0363	21278	-		
81 82	ENDRIN KETONE	23.629	125706.50	22259.55	9.4968	9.4968	125706			
83	FUNDIN VEIDNE	23.899 24.257	152166.00 157878.00	28871.60 28029.43	11.6366 12.0985	11.6366 12.0985	152166 157878			
84		24.637	40475.00	7516.73	2.6040	2.6040	40475			
85	†	25.044	8671.00	1120.69	-2.4343	-2.4343	8671			
86 87	METHOXYCHLOR	25.384 25.576	5412.00 43694.50	1142.87 7963.83	-3.2197	-3.2197	5412	_		
	DBC	25.770	115248.00	18282.64	6.0066 11.1352	6.0066 11.1352	43694 115248	•		
89		27.158	20724.50	3160.38	2.3048	2.3048	20724			
)		27.607	183449.00	23357.47	17.5066	17.5066	183449			
1 92		27.874 29.645	40021.00 25547.00	6189.81 3300.47	4.1074 -10.9637	4.1074 -10.9637	40021 25547			
	DCB	31.152	0.00	0.00	0.0000	0.0000	20047 0			
93		32.830	35621.00	3784.24	-10.0736	-10.0736	35621			
+				· · · · · · · · · · · · · · · · · · ·				•••••		

Software Version: 3.3 <4811>

Sample Name : L950626-14 1:5

Time : 3/9/95 01:36 AM

Sample Number: 25 Study : PPPCB

Operator : KMW

Channel: A A/D mV Range : 1000

Instrument : HP5890 4utoSampler : NONE 'k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 01:02 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38025.RAW Result file : C:\2700\HP5890\PA38025.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA
Sample File : PESTA058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A: Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

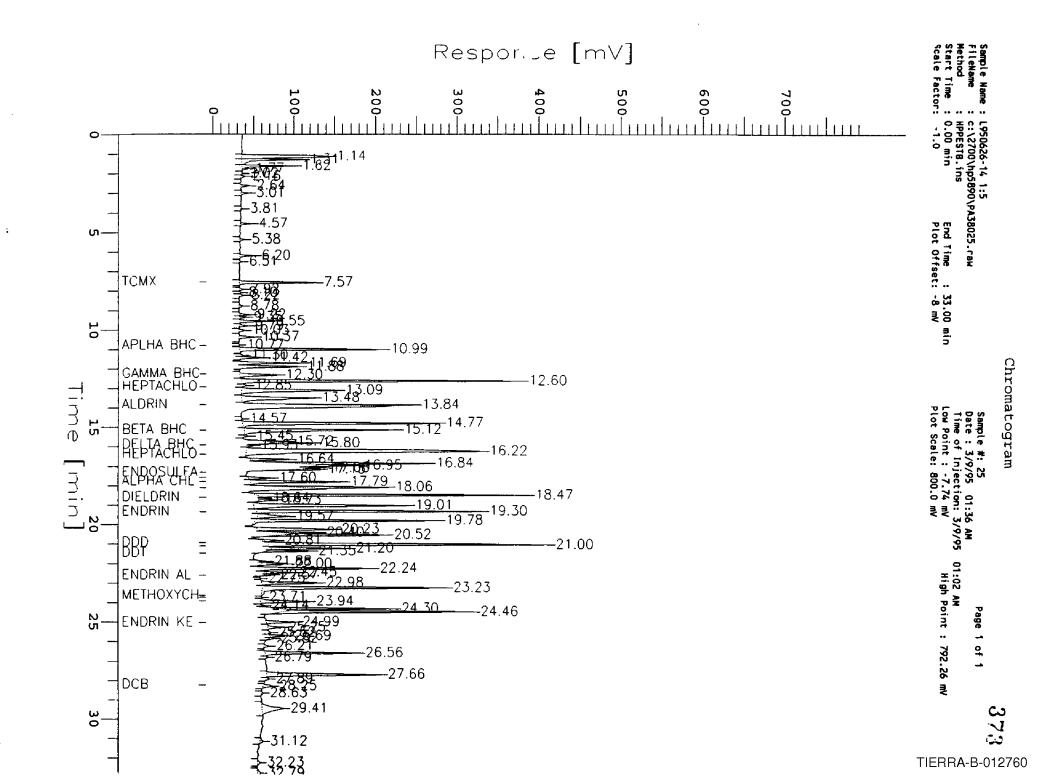
There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range
1		1.141	877742.73	109506.35	30.7593	30.7593	877743		
2		1.305	373237.58	77057.48	15.0020	15.0020	373238		
3		1.623	275750.69	68327.70	11.9572	11.9572	275751		
4		1.770	23829.00	7460.93	4.0889	4.0889	23829		
5		2.021	8055.00	1844.33	3.5963	3.5963	8055		
6		2.158	25355.00	5105.34	4.1366	4.1366	25355		
7		2.636	50487.00	11581.89	4.9216	4.9216	50487		
8		3.006	42196.00	9994.30	4.6626	4.6626	42196		
9		3.813	11992.50	2460.85	3.7193	3.7193	11992		
10		4.567	49509.00	13849.35	4.8910	4.8910	49509	•••••	
11		5.382	23289.00	5882.12	4.0721	4.0721	23289		
12		6.202	76055.00	18235.43	5.7201	5.7201	76055		
13		6.505	11771.50	2860.54	3.7124	3.7124	11772		
*4	TCMX	7.569	394383.00	96006.05	15.9010	0.0000	394383	0.2428	
		7.924	23286.00	5047.88	4.0720	4.0720	23286		
.6		8.096	9577.00	2557.14	3.6438	3.6438	9577		
17		8.224	24617.00	5646.10	4.1136	4.1136	24617		
18		8.784	28002.00	5054.72	4.2193	4.2193	28002		
19		9.220	51914.00	12386.40	4.9661	4.9661	51914		
20		9.351	30070.50	7890.89	4.2839	4.2839	30070		

		,	Ed Oli 3/9/93	U1:30 AM						0.54	pag
Peak	Component Name	Time (min)	Area (uV*sec)	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range	371	
21		9.552	167185.00	36080.78	8.5664	8.5664	167185				• • • • • • •
22 73		9.786	45227.00		4.7573	4.7573	45227	• • • • • • • • • • • • • • • • • • • •			
• •		10.025	37071.00	7556.45	4.5025	4.5025	37071	•••••			
ر.	APLHA BHC	10.367 10.773	99013.00 4495.00	19776.04 1098.16	6.4372 3.4851	6.4372	99013	0.0440			
26	\/	10.985		177499.63	29.5897	3.4851 29.5897	4495 8 40297	-0.2180	\sim γ ?	7963	G
27	\mathcal{I}	11.303	10395.50	3045.26	3.6694	3.6694	10396	•••••	~ 0	1107) [
28 29	1 '5	11.419	124151.00		7.2223	7.2223	124151	•••••		~ ~ .	_
30	<u> </u>	11.687 11.880	356255.50 323796.50	_	14.3909	14.3909	356256	•		123:	} —
31	GAMMA BHC	12.302		70480.82 48067.49	13.3235 13.0040	13.3235 13.0040	323796 314078	0.3652			
32		12.602	1872157.00		74.9731	74.9731	1872157	0.3032			
33	HEPTACHLOR	12.849	22892.50	5732.33	1.8154	1.8154	22892	-0.5017	-		
34 35	I I	13.093	879936.50	121001.52	35.7205	35.7205	879936	******			
36	ALDRIN	13.475 13.839	714057.50 441601.00	93046.72 04008.52	26.6638 17.3134	26.6638	714058	0.0404			
37		14.565	8078.00	1516.26	0.7993	17.3134 0.7993	441601 8078	-0.0181			
38		14.774	1552279.50	247338.70	111.9143	111.9143	1552280				
39 40	BETA BHC	15.117	1289457.00		93.0026	93.0026	1289457	-0.1801	+		
41		15.451 15.722	25958.00 74251.00	6451.56	2.0858	2.0858	25958				
42	DELTA BHC	15.804	185154.00	16155.86 52377.80	6.1986 10.0628	6.1986 10.0628	74251 185154	-0.6230			
43		15.928	6632.00	3022.27	3.8426	3.8426	6632	-0.0230			
44		16.218	2714075.00		102.4947	102.4947	2714075				
0 45	HEPTACHLOR EXPOXIDE	16.381	0.00	0.00	0.0000	0.0000	0				
46	1	16.644 16.838	<u>/235846.00</u> <u>716895.50</u>	49546.13	9.4388 27.5019	9.4388 27.5019	235846				
47	1 1	16.954	182278.50	51663.48	7.6194	7.6194	716896 182278				
48	\ \	17.075	60842.50	21454.17	3.0586	3.0586	60843				
49	54000	17.154	102848.50	34004.03	4.6362	4.6362	102849				
0 50	ENDOSULFAN I GAMMA/CHLORDANE	17.321 17.602	0.00 138826.00	0.00	0.0000	0.0000	0				
51	ALPHA CHLORDANE	17.788	630126.00		5.7868 24.0744	5.7868 24.0744	138826 630126	0.1909 0.0094			
52	DDE /	18.063	529594.00		21.9721	21.9721	529594	-0.2080			
53	DIELDRIN	18.466	1830554.00		74.2410	74.2410	1830554	-0.7268			
54 55		18.637	3534.00	1576.62	2.5370	2.5370	3534				
•	'	18.731 19.006	1151610.00	20860.41	5.9930 63.1892	5.9930	91593				
	ENDRIN 5	19.302	1437341.50		78.3822	63.1892 78.3822	1151610 1437341	-0.1776			
58	1	19.569	259607.00		15.7594	15.7594	259607				
59		19.781	1153446.00		63.2868	63.2868	1153446				
60 61		20.231 20.401	522410.00		33.7415	33.7415	522410				
62	1 0	20.515	180455.50 576864.00		13.7290 36.9284	13.7290 36.9284	180456 576864	•••••			
63		20.805		18688.35	8.0439	8.0439	83314				
64	DDD /		2058403.00	345751.09	123.6339	123.6339	2058403	0.3768			
65 66	ENDOSULFAN II	21.203	423333.00		23.6303	23.6303	423333	0.5364			
67	1	21.349 21.881	243237.00 31291.50	7402.34	23.0713 8.8778	23.0713 8.8778	243237	-0.4754			
68		22.004	169174.00		13.5814	13.5814	31291 169174				
69		22.240	759155.00	142572.38	54.6946	54.6946	759155				
	ENDRIN ALDEHYDE	22.448	149313.00		12.1974	12.1974		-0.6853			
71 72	-100	22.572 22.752	36020.00 5537.00	11028.12 1 384. 79	4.3025 2.1782	4.3025	36020	•••••			
73	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22.979	377079.00		28.0694	2.1782 28.0694	5537 377079				
74	1 1	23.226	1348418.00		318.8862	318.8862	1348418				
75	METHOXYCHLOR	23.713	3381.50	1038.58	-12.3650	-12.3650	3382	0.3713	•		
0 76	ENDOSULFAN SULFATE	23.726	0.00	0.00	0.0000	0.0000	0				
77	V0C 1	23.936 24.144	336256.50 15476.50	60925.33 3747.36	24.3582 1.6502	24.3582 1.6502	336256 15477	0.1340			
78		24.298	651421.00		46.6687	46.6687	651421	•••••			
79		24.455			82.2522	82.2522	1154082				
80	ENDRIN KETONE	24.985	199444.00		10.4826	10.4826		-0.1347			
81 82		25.253 25.522	95403.50		5.6779	5.6779	95404				
83		25.691	17498.00 100822.00	3617.30 21721.90	2.0802 5.9282	2.0802 5.9282	17498 100822				
84		25.820	21225.50	5506.37	2.2523	2.2523	21226				
85		26.213	38315.50	6785.60	3.0416	3.0416	38316				
86		26.562	674581.00		32.4248	32.4248	674581				
87 29		26.785 27.664	8404.00	1899.92	-12.3972	-12.3972	8404	•••••			
'		27.891	934741.00 17501.00	3517.92	32.3913 -11.9573	32.3913 -11.9573	934741 17501				
	DCB	28.254	77243.00		-9.0688	-9.0688	77243	0.1808	-		
91		28.625	17678.00	2312.53	-11.9488	-11.9488	17678	******			
92		29.412	395129.50	26899.87	6.3010	6.3010	395130				
93 94		31.120 32.232	36699.00	4010.34	-11.0291	-11.0291	36699 31705				
74		JE.EJE	31705.00	3042.55	-11.2706	-11.2706	31705				


Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta (%)	RT Cal. Range	372	F-30
95		32.790	46329.50	3746.18	-10.5635	-10.5635	,		-		
			34881896.50	6.264e+06	2016.2256	2000.3246				• • • • • • • • • • • • • • • • • • • •	

Missing Component Report
Commonent Expected Retention (Sample File)

HEPTACHLOR EXPOXIDE 16.381 ENDOSULFAN 1 17.321 ENDOSULFAN SULFATE 23.726

HP5890 DETECTOR A

Report Stored in ASCII File: C:\2700\HP5890\PA38025.TX0

Software Version: 3.3 <4811>

Sample Name : L950626-14 1:5

Time : 3/9/95 01:36 AM Study : PPPCB

Sample Number: 25

Operator

Channel: B A/D mV Range : 1000

Instrument : HP5890 AutoSampler : NONE :k/Vial : 0/0

interface Serial # : 8055910402 Data Acquisition Time: 3/9/95 01:02 AM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38025.RAW Result File : C:\2700\HP5890\PB38025.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTB
Sample File : PESTB058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A: Inlet B:

Detector Parameters:

Detector A :

Detector B :

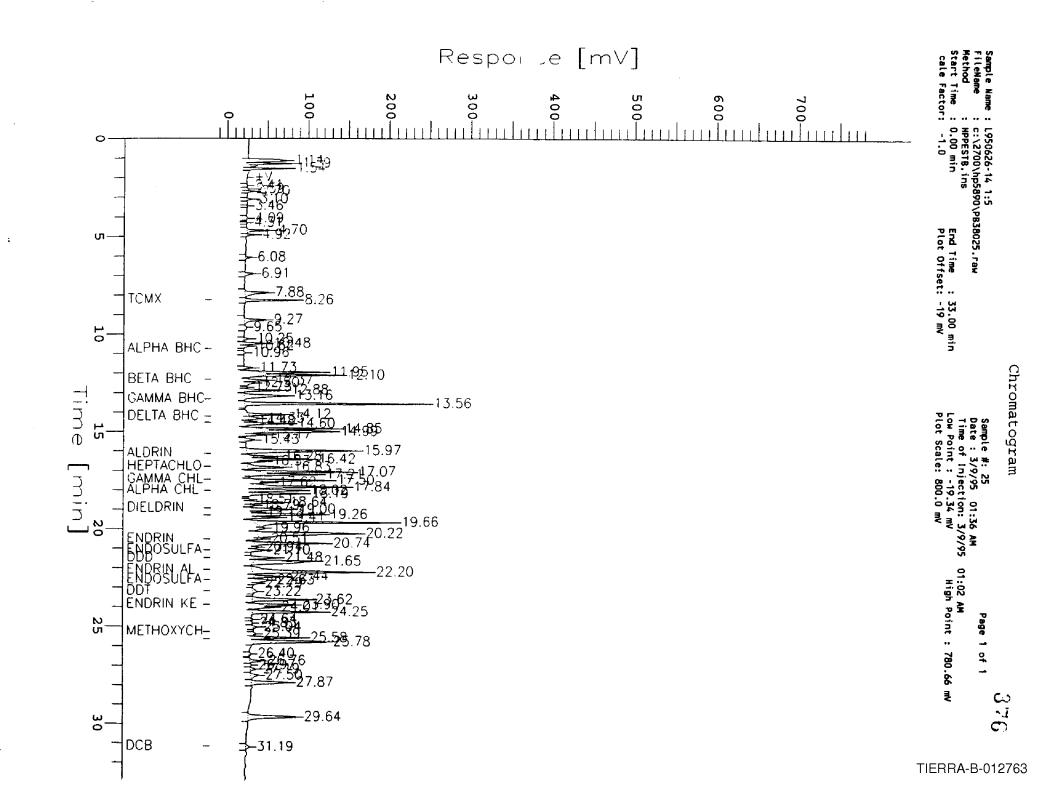
Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

There are no timed events in the method


HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time [min]	Area (uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range
1		1.135	340162.67	46418.39	20.3220	20.3220	340163	
2		1.288	176085.33	52827.78	8.1224	8.1224	176085	
3		1.543	187028.00	50949.38	8.9360	8.9360		
4		2.410	4410.50	872.05	-4.6421	-4.6421	4410	
5		2.588	5937.00	1235.79	-4.5286	-4.5286		
6		2.701	25562.50	7861.72	-3.0694	-3.0694	25562	
7		3.104	29043.00	7452.08	-2.8106	-2.8106		
8		3.455	3644.00	978.84	-4.6991	-4.6991	3644	
9		4.085	16462.00	2374.58	-3.7460	-3.7460		
10		4.308	3900.00	1049.71	-4.6800	-4.6800	3900	
11		4.697	125998.50	30470.02	4.3983	4.3983	125998	
12		4.920	37123.50	10568.14	-2.2098	-2.2098	37124	
13		6.076	25570.00	6244.66	-3.0688	-3.0688	25570	
14		6.913	62206.50	12048.35	-0.3448	-0.3448	62206	
15		7.876	195476.50	29724.39	9.5642	9.5642	195476	
	TCMX	8.259	290342.00	66677.96	16.6177	16.6177		
1		9.272	186177.00	28379.02	8.8728	8.8728	186177	
18		9.654	24021.00	2315.12	2.3601	2.3601	24021	
19		10.249	33631.00	7080.77	2.7774	2.7774	33631	
20		10.481	123091.50	26614.47	6.6613	6.6613	123092	
21		10.617	21411.00	5751.16	2.2468	2.2468	21411	

C	omponent	Time	Area	Height	Raw	Adjusted	Calibration	ට්ට්ට I Cal.
	Name	[min]	[uV*sec]	[uV]	Amount	Amount	Factor	Range
ALPHA I	ВНС	10.753	0.00	0.00	0.0000	0.0000	0	
		10.964	12315.50	2565.22	1.8519	1.8519	12316	
į		11.729 11.949	55209.00	11340.81	3.2934	3.2934	55209	
į		12.101	376312.00 411337.00	79094.45 93782.94	18.2457 19.8767	18.2457	376312	
BETA BI	HC	12.373	119524.50	25030.81	6.2882	19.8767 6.2882	411337 119525	
•		12.504	30488.00	7804.62	2.1422	2.1422	30488	
- 1		12.726	6919.00	1930.48	1.0447	1.0447	6919	
i		12.880	229794.00	48896.05	7.9144	7.9144	229794	
GAMMA I	RHC	13.159 13.331	414292.50	55809.39	14.7876	14.7876	414292	
	5110	13.561	0.00 1160269.00	0.00 228249 83	0.0000 42.5777	0.0000	0	
DELTA I	BHC	14.122	236708.50	48394.73	12.5690	42.5777 12.5690	1160269 236708	
-		14.332	83562.00	14538.86	5.3587	5.3587	83562	
UPDTAG		14.476	10303.00	2951.87	1.6972	1.6972	10303	
HEPTACI	HLOR	14.596	239434.50	52927.01	13.1008	13.1008	239434	
		14.850 14.990	409088.50 439032.50		21.5442	21.5442	409089	
1	$\langle T \rangle$	15.170	99059.00	23159.48	23.0345 6.1145	23.0345 6.1145	439033 99059	
ŀ	U(1)	15.429	74683.00	12805.61	49.7458	49.7458	74683	
<u> </u>	1491.11	15.971	976748.00	137017.10	-469.0418	-469.0418	976748	
ALDRIN	<i>' 7</i> 117	16.123	0.00	0.00	0.0000	0.0000	0	
-	/I'' '	16.278 16.420	128146.50	29624.72	18.9984	18.9984	128146	
- 1	11	16.528	270182.00 18940.00	62980.81 8107.57	-62.6878 81.8042	-62.6878	270182	
		16.833	273570.00		15.0405	81.8042 15.0405	18940 273570	
HEPT/CH	LOR EPOXIDE	17.071	499549.00		27.7568	27.7568	499549	
		17.206	270190.00	67714.60	14.8503	14.8503	270190	
GAMMA C	CHLORDANE	17.500	428816.00		22.6548	22.6548	428816	
ALPHA C	HLORDANE/ENDO	17.619 17.838	31155.00 607411.50		1.3699	1.3699	31155	
		18.023	282413.50		33.4941 14.7737	33.4941 14.7737	607412 282414	
1		18.190	305105.00		16.0808	16.0808	282414 305105	
1		18.507	6807.00	1536.69	1.3932	1.3932	6807	
1		18.640	199466.00	41306.64	13.5518	13.5518	199466	
DIELDRY	м	18.792	29703.00	7558.84	2.8381	2.8381	29703	
PIETOKA	П	18.996 19.134	248177.00 9925.00		16.6260	16.6260	248177	
DDE		19.262	370257.00	3521.25 81744.48	0.6607 22.8279	0.6607 22.8279	9925 370257	
		19.411	133332.00		8.2525	8.2525	133332	
		19.658	1019761.00	177724.85	62.7846	62.7846	1019761	
		19.957	39690.00	7067.99	2.4918	2.4918	39690	
		20.220	1025691.50		87.4681	87.4681	1025691	
ENDRIN		20.512 20.741	31133.00 474734.00	9453.46	2.6536	2.6536	31133	
		20.941	11965.00	3477.20	40.4832 1.8292	40.4832 1.8292	474734 11965	
ENDOSUL	FAN II	21.100	72999.00		6.4295	6.4295	72999	•
		21.480	150011.00		10.2511	10.2511	150011	
ODD	AL DEUVOC	21.654	696726.50		51.9804	51.9804	696727	
ENDOSIN	ALDEHYDE FAN SULFATE	22.202 22.440	1094525.00		107.9078	107.9078	1094525	
	IN SULFAIL	22.440	196616.00 117208.00		20.3504 12.0294	20.3504 12.0294	196616 117208	
1		22.789	7965.00	2835.42	0.5820	0.5820	7965	
DDT		23.216	47733.00	5875.14	3.3208	3.3208	47733	-
CMPS	VCTOUE	23.622			33.5462	33.5462	423084	
ENDRIN \	KE I UNE	23.896 24.006	192644.00	39480.51	14.9101	14.9101	192644	
		24.252	35482.00 488694.00	10181.07 88515.47	2.2002 38.8521	2.2002 38.8521	35482 489404	
		24.638	12442.50	2811.07	0.3369	38.8521 0.3369	488694 12442	
		24.833	5820.50	893.95	-3.1213	-3.1213	5820	
	••••	25.036	32307.00	5801.52	3.2622	3.2622	32307	
METHOXY	CHLOR	25.387	20206.00	3896.24	0.3457	0.3457	20206	-
DBC '	•	25.576 25.778	309294.00 560892.50	59837.08	70.0180	70.0180	309294	
-55		26.400	12883.00	88150.19 1738.46	52.7677 1.5722	52.7677 1.5722	560893 12883	
		26.762	92449.00	14848.96	9.0053	9.0053	92449	
		26.973	8362.00	1617.02	1.1498	1.1498	8362	
		27.186	44860.00	6921.71	4.5595	4.5595	44860	
		27.496	82690.00	9969.09	8.0936	8.0936	82690	
		27.867 20 435		47036.89	30.6402	30.6402	324034	
		29.635 31.194	518507.00 45018.50	60922.48 4979.48	32.5964 -9.2431	32.5964 -9.2431	518507 45018	
DC8								

Missing Component Report

Sample Name: 1950626-9-1950636-15me: 3/13/95 05:52 PM Sample Number: 36-25 Study: 515.1

Instrument : HP5890 lutoSampler : NONE

Channel: A A/D mV Range : 1000

k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 05:17 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HA30033A.RAW Result File : C:\2700\HP5B90\HA30033A.RST Instrument File: c:\2700\methseqs\515A.ins

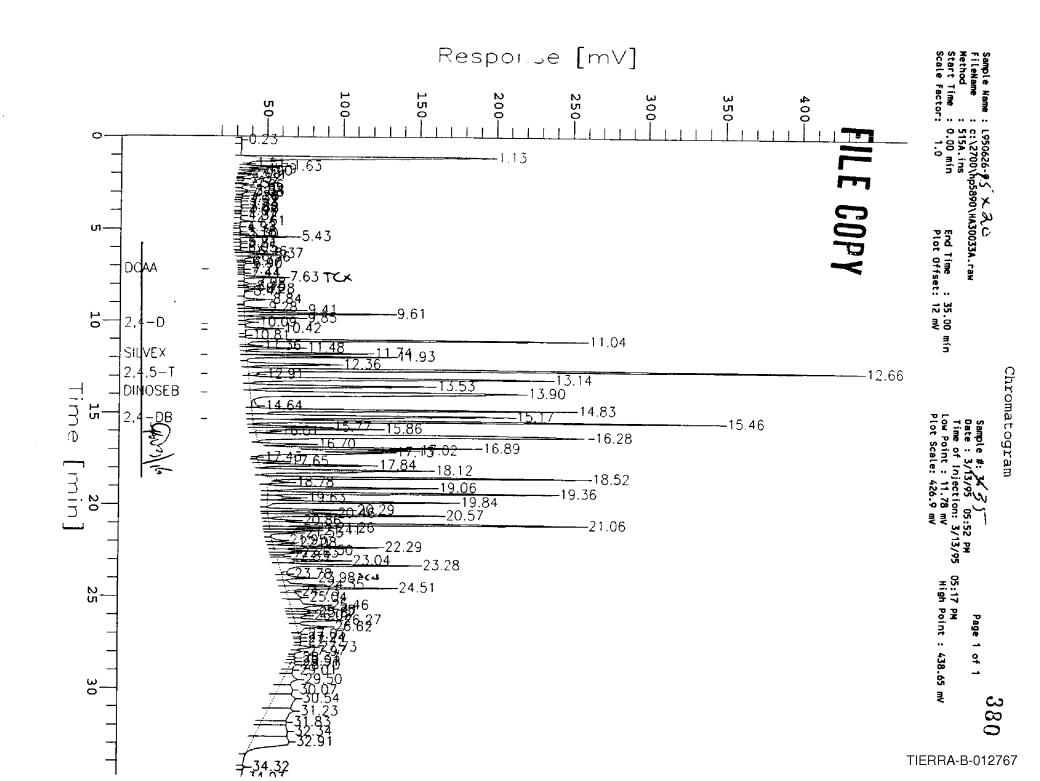
Process File : 515A
Sample File : HB515A2
Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ut Sample Amount : 1.0000

Area Reject : 0.000000

Dilution Factor : 1.00

DEFAULT REPORT


Peak	Time	Area	Height	Area		rea	BĻ	Area/Height	
#	[min]	[uV*sec]	[uV]	[%]	[%]			[sec]	
1	0.225	729.50	79.31	20-03	1.9983e	-07	В.	9.1982	•••
2	1.131	1133941.00		3.11		.11		7.3305	
3	1.513	2569.50	1148.93		7.0385e	-03	8	2.2364	
4	1.634	105241.62	26465.08	0.29		.29	_	3.9766	
5	1.788	38935.42	10746.89	0.11		.11			
6	1.898	29865.96	7883.41	0.08		.08		3.6229	
7	2.029	2070.54	695.09					3.7885	
8	2.108	20568.96	5051.65		5.6717e			2.9788	
9	2.324			0.06		-06		4.0717	
,	2.566	4308.00	1105.88	0.01		.01		3.8955	
_		767.60	269.53		2.1027e		_	2.8479	
12	2.656	15889.90	4352.40	0.04		.04	٧	3.6508	
	2.936	25655.38	4185.50	0.07		.07		6.1296	
13	3.031	17617.62	3896.76	0.05		.05		4.5211	
14	3.255	1919.43	571.53		5.2578e			3.3584	
15	3.367	2333.07	605.40		6.3909e		٧	3.8537	
16	3.519	1460.50	377.12		4.0007e			3.8728	
17	3.730	4055.11	701.63	0.01	0	.01	В	5.7796	
18	3.884	7115.39	1273.06	0.02	0	. 02	٧	5.5892	
19	4.069	1111.00	345.01	3e-03	3.0433e	-03	В	3.2202	
20	4.320	2813.84	520.52	8e-03	7.7078e	-03	В	5.4058	
21	4.605	28598.16	6253.22	0.08	0	.08	٧	4.5733	
22	4.924	378.50	101.23	1e-03	1.0368e	-03	В	3.7390	
23	5.178	4164.88	499.94	0.01	0	.01	8	8.3307	
24	5.298	6033.51	1714.86	0.02	0	.02	٧	3.5184	
25	5.430	135990.61	36570.00	0.37	0	.37	٧	3.7186	
26	5.705	3853.65	835.25	0.01		.01		4.6137	
27	5.806	6151.35	849.94	0.02		.02		7.2374	
28	6.045	2800.50	523.68		7.6713e			5.3477	
29	6.257	30788.36	6969.28	0,08			В	4.4177	
30	6.368	98994.78	17273.28	0.27		.27		5.7311	
31	6.558	51260.72	8308.10	0.14		. 14		6.1700	
32	6.771	7751.14	1325.04	0.02		.02		5.8497	
33	6.900	8343.00	1673.82	0.02		.02		4.9844	
34	7.209	573.00	136.63		1.5696e			4.1937	
35	7.436	1224.68	295.78		3.3547e			4.1406	
36	7.627	116199.32	26032.42	0.32		.32		4.4636 TCAL	
37	7.982	22159.77	3946.06	0.06		.06		5.6157	
38	8.151	16434.70	3906.69	0.05		-05		4,2068	
39	8.277	48139.04	9975.18	0.13		.13		4.8259	
40	8.408	5723.00	1544.49	0.02				4.0259 3.7054	
41	8.840	75626.00	14793.18						
42	9.283	53953.95		0.21			B	5.1122	
3	9.411		11619.41	0.15		. 15		4.6434	0 01 02110
,	9.411	179336.66		0.49		.49		4.6894	- / (1 Cix 4 M.
_		485761.53		1.33		.33		4.9677	3919840.
+5	9.846	776477.66	37449.03	0.48		.48		4.7125	\mathcal{I}
46	10.087	29419.13	5240.78	0.08		.08		5.6135	
47	10.420	107997.58	21278.35	0.30		.30		5.0755	
47 48 49	10.420 10.808 11.040	10/997.58 1553.00 1100343.77	279.00		4.2541e		В	5.0755 5.5663 P 1232 4.9091	

Peak #	Time (min)	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	BL	Area/Height [sec]	378
50	11.359	34909.00	7313.04	0.10	0.10		4.7735	••••••
51	11.476	189987.82	36204.76	0.52			5.2476	
52	11.742	408234.75	81473.05	1.12			5.0107	
٠4	11.933 12.359	486097.66 392102.27		1.33			5.1586	
55	12.659			6.39			6.6352 5.7128	
56 57	12.911	46126.00	7270.59	0.13	0.13	Ε	6.3442	
57 58	13.144 13.531	1445666.45 828827 86	197108.32	3.96 2.27		٧	7.3344	
59	13.897			5.57	5,57		6.9885 11.4484	
60	14.637	65894.00	4380.76	0.18	0.18		15.0417	
61 62	14.830 15.172	1461147.43 1353663.31		4.00 3.71	4.00	٧	6.9671	
63	15.456	1590289.77		4.36	3.71 4.36	V	7.9762 5.1228	
64	15.771		48028.15	0.71	0.71		5.3834	
65 66	15.863 16.011	445065.61	81242.96 12510.67	1.22	1.22	V	5.4782	
67	16.277	2228695.68	218895.15	0.17 6.10	0.17 6.10	E V	4.8495 10.1816	
68	16.699	145647.00	30683.53	0.40	0.40	В	4.7467	•
69 70	16.894		1215 <i>7</i> 3.37 62015.68	1.71 0.88	1.71	В	5.1299	
71	17.127	118905.39		0.33	0.88 0.33	٧	5.1819 3.6813	
72	17.425	1198.50	375.92		3.2830e-03	В	3.1882	
73 74	17.654	89871.14 424462.86	17519.76 74888.50	0.25 1.16	0.25 1.16	8 V	5.1297 5.6679	
75	18.118	329288.00	71728.48	0.90	0.90		4.5908	
76	18.520	1130872_00		3.10	3.10	В	5.4542	
77 78 [18.784 19.060	43548.50	10464.26 109708.29	0.12 1.88	0.12 1.88	В	4.1616	
79	19.360	1015910.81		2.78	2.78	В	6.2460 5.3620	
80 N	19.627		22462.39	0.50	0.50	٧	8.0949	
82	19.838	680513.36 316649.56	123109.95 54504.38	1.86 0.87	1.86 0.87	٧	5.5277	0-70 (4)
	20.457	214490.98	41978.31	0.59		V	5.8096 5.1096	5008939.95
84	20.571	652940.94		1.79	1.79	٧	5.7881	50000
85 '4	20.864	115078.62 1 <u>329097.76</u>	18330.12	0.32 3.64	0.32 3.64		6.2781	
	21.257	220691.63	40262.96	0.60		٧	6.4607 5.4813	
ა8	21.406	182460.12		0.50	0.50	٧	5.8523	
89 90	21.533 21.947	92629.88 48638.82	18606.85 6958.46	0.25 0.13	0.25		4.9783	
91	22.078	83605.40	13043.01	0.23	0.13 0.23	V	6.9899 6.4100	
92 /	22.294	406685.67	69032.09	1.11	1.11	٧	5.8913	
93 [/] 94	22.501 22.628	155587.89 74701.99	22261.27 12478.11	0.43 0.20	0.43 0.20		6.9892 5.9866	
95	22.828	35036.35	5322.18	0.10	0.10		6.5831	
96 97	23.035	329752.36	44846.91	0.90	0.90		7.3528	
97 98	23.282 23.782	642181.33 32204.00	89555.97 3780.92	1.76 0.09	1.76 0.09	E	7.1707 8.5175	
99	23.981	144461.07	18755.68	0.40	0.40	٧	7.7023	sp (
100 101	24.353	168466.19	23265.53	0.46	0.46		7.2410	
102	24.511 24.731	450639.99 30118.00	70387.31 5482.45	1.23	1.23 0.08		6.4023 5.4935	
103	25.038	157730.17	9604.92	0.43	0.43	٧	16.4218	
104 105	25.457 25.745	349463.01 92771.25	22651.15 12711.55	0.96	0.96		15.4280	
106	25.872	93390.86	12963.47	0.25 0.26	0.25 0.26	٧	7.2982 7.2042	
107	26.023	81056.19	9187.59	0.22	0.22	٧	8.8224	
108 109	26.274 26.623	213512.47 205591.61	28017.27 20869.96	0.58 0.56	0.58 0.56		7.6207 9.8511	
110	27.034	20241.19	1809.05	0.06	0.06	٧	11.1888	
111	27.239	4242.30	760.50	0.01	0.01		5.5783	
112 113	27.415 27.732	3880.89 62385.20	298.35 9192.42	0.01 0.17	0.01 0.17		13.0077 6.7866	
114	27.965	20950.80	3350.44	0.06	0.06	٧	6.2532	
115	28.326	10647.05	1488.88	0.03	0.03	В	7.1511	
116 117	28.508 28.702	22327.15 63855.27	2368.26 3807.31	0.06 0.17	0.06 0.17		9.4276 16.7718	
118	29.006	53235.04	3710.03	0.15	0.15	٧	14.3489	
119	29.497	254757.71	9916.87	0.70	0.70		25.6893	
1	30.074 30.540	275825.93 645442.67	10026.68 14701.26	0.76 1.77	0.76 1.77		27.5092 43.9039	
122	31.227	647663.82	17499.10	1.77	1.77	٧	37.0113	
123	31.834	230114.41	16371.32	0.63	0.63	٧	14.0559	
124 125	32.344 32.908	719773.84 860932.61	20304.34 24650.22	1.97 2.36	1.97 2.36		35.4493 34.9260	
126	34.322	10418.50	1836.31	0.03	0.03	B	5.6736	

#	Time (min)	Area [uV*sec]	Height (uV)	[%]	[%]		Area/Height (sec)
127	34.926	395.00	155.83	1e-03	1.0820e-03	8	
		36506234.00					

Missing Component Report Component Expected Retention (Sample File)

2,4-DB 15.350

Software Version: 3.3 <4811>

Sample Name : L950626-9'5 X 20

Time

: 3/13/95 05:52 PM Study : 515.1

Sample Number: 3435 Operator : KMW

Instrument : HP5890 AutoSampler : NONE

Channel : B A/D mV Range : 1000

:k/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/13/95 05:17 PM

Delay Time : 0.00 min. End Time : 35.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\HB30033A.RAW Result File : C:\2700\HP5890\HB30033A.RST Instrument File: c:\2700\methseqs\515A.ins

Process File : 515B Sample File : H8515B

Sequence File : C:\2700\METHSEQS\0310HB.seq

Inj. Volume : 1 ul Sample Amount : 1.0000 Inj. Volume Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters: Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

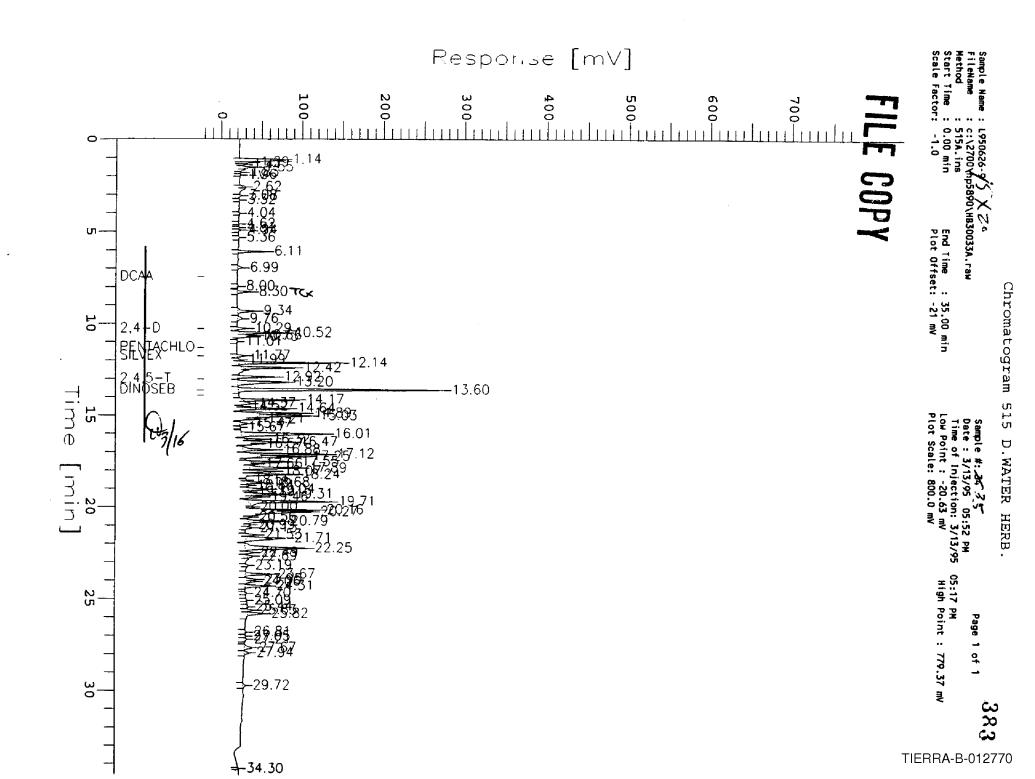
Total run time : 35.00 min

Timed Events:

There are no timed events in the method

8080 PCB I'm slight

HP5890 REPORT FOR 515.1 HERBICIDES DRINKING WATER ANALYSIS.


NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Time [min]	Component Name	Area (uV*sec)	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor		
1	1.139		421421.80	56240.69	0.8428	0.8428	4.2142e+05	 	
2	1.288		58097.90	14977.69	0.1162		58097.9000		
3	1.414		13801.80	4291.61	0.0276		13801.8000		
4	1.551		59997.50	17366.01	0.1200		59997,5000		
5	1.828		8513.00	3101.27	0.0170	0.0170			
6	1.961		5018.00	1212.67	0.0100	0.0100			
7	2.619		23145.50	2980.12	0.0463	0.0463	23145.5000		
8	3.084		16148.00	2767.64	0.0323	0.0323	16148.0000		
9	3.316		5371.00	1058.30	0.0107	0.0107	5371.0000		
10	4.037		7772.00	1080.91	0.0155	0.0155	7772.0000		
11	4.615		3613.50	982.89	0.0072	0.0072	3613.5000		
12	4.813		4284.00	1115.93	0.0086	0.0086	4284.0000		
13	4.944		12687.00	3604.71	0.0254	0.0254	12687.0000		
14	5.355		8610.00	1255.70	0.0172	0.0172	8610.0000		
15	6.105		145814.00	36207.85	0.2916	0.2916	1.4581e+05		
	6.990	_	40427.00	6367.76	0.0809	0.0809	40427.0000		
Ů.	7.480 DCA	A	0.00	0.00	0.0000	0.0000	0.0000		
17	7.998		9969.00	1888.83	0.0199	0.0199	9969.0000		
18	8.298		81872.50	18024.85	0.1637	0.1637	81872.5000		
19	9.336		142846.00	23346.73	0.2857	0.2857	1.4285e+05		
20	9.759		50053.50	6039.58	0.1001	0.1001	50053.5000		

page

									382	pag
Peak #	Time [min]	Component Name	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	n	٥١٠٨	
 21		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •						
22	10.287 2, 10.521	4-0	61849.00 257099.00		17.5346	17.5346	61849.0000			
73	10.660		36384.00		0.5142 0.0728		2.5710e+05 36384.0000			
	10.728		14027.00	6353.56	0.0281		14027.0000			
ز۔	11.005		7550.50	1540.22	0.0151		7550.5000			
0		NTACHLOROPHENOL	0.00	0.00	0.0000	0.0000				
26 27	11.765 SI 11.987	LVEX	54926.00 11457.00		3.4920		54926.0000			
28	12.140			2679.96 129577.93	0.0229 1.3370		11457.0000 6.6851e+05			
29	12.419		335128.00	66217.22	0.6703		3.3513e+05			
30	12.920 2,	4,5-T	231209.00	48233.82	13.2904		2.3121e+05			
31 32	13.196	W0050	479411.00	63062.48	0.9588		4.7941e+05			
0	13.604 DI 13.920 2,		1310487.00 0.00	0.00	173.3374 0.0000		1.3105e+06			
33	14.165		332117.00	69578.87	0.6642	0.0000	0.0000 3.3212e+05			
34	14.367		62924.00	10480.50	0.1258		62924.0000			
35	14.518		6982.50	1969.40	0.0140		6982.5000			
36 37	14.639		285206.50	61323.23	0.5704		2.8521e+05			
38	14.893 15.034		287799.50 350394.00	64762.69 64678.20	0.5756		2.8780e+05			
39	15.212		57757.50	15739.81	0.7008 0.1155		3.5039e+05 57757.5000			
40	15.470		55862.00	10007.62	0.1117		55862.0000			
41	15.669		4318.50	931.07	0.0086		4318.5000			
42	16.014		781089.00		1.5622		7.8109e+05			
43 44	16.321 16.465		104870.00	23785.26	0.2097		1.0487e+05			
45	16.570		206445.00 20354.00	48622.75 7821.05	0.4129 0.0407		2.0644e+05 20354.0000			
46	16.880		234460.50	41209.65	0.4689		2.3446e+05			
47	17.118		399251.00	88763.73	0.7985		3.9925e+05			
48	17.252		234907.00	57809.18	0.4698	0.4698	2.3491e+05			
4 9 50	17.547 17.664		263283.50	52921.11	0.5266		2.6328e+05			
51	17.886		10969.50 353927.00	4801.85 65378.36	0.0219 0.7079		10969.5000			
52	18,071		158362.00	34634.65	0.7077	0.7079	3.5393e+05 1.5836e+05			
53	18.237		282292.00	59132.34	0.5646		2.8229e+05			
54	18.556		4308.00	845.39	0.0086		4308.0000			
-5	18.684		109385.00	23046.84	0.2188		1.0938e+05			
٦٢	18.839 19.042		15904.00 154903.50	4120.68 28847.59	0.0318		15904.0000			
58	19.188		4374.00	1403.52	0.3098 0.0087		1.5490e+05 4374.0000			
59	19.310		217791.50	47533.75	0.4356		2.1779e+05			
60	19.458		77041.00	18665.33	0.1541		77041.0000			
61	19.706		594830.00		1.1897		5.9483e+05			
62 63	20.004 20.162		4733.00 242185.00	1427.53 58635.51	0.0095 0.4844		4733.0000			
64	20.270		216890.50	44751.63	0.4338		2.4218e+05 2.1689e+05			
65	20.562		13933.00	4349.96	0.0279		13933.0000			
66	20.792		235352.50		0.4707		2.3535e+05			
67 68	20.991 21.148		9479.00	2586.85	0.0190		9479.0000			
69	21.530		33161.00 66416.00	7655.48 14039.00	0.0663 0.1328		33161.0000 66416.0000			
70	21.705		405319.00	50797.62	0.8106		4.0532e+05			
71	22.251		619333.00	76912.28	1.2387		6.1933e+05			
72	22.489		51134.00	10420.39	0.1023		51134.0000			
73 71	22.690		54334.00	8001.89	0.1087		54334.0000			
74 75	23.190 23.674		9453.00 178926.00	1786.52 32083.62	0.0189 0.3579		9453.0000 1.7893e+05			
76	23.949		47140.00	9650.05	0.0943		47140.0000			
77	24.064		27966.00	6953.14	0.0559		27966.0000			
78	24.306		175587.50	30255.55	0.3512	0.3512	1.7559e+05			
79 80	24.696		9914.00	2122.94	0.0198		9914.0000			
80 81	25.088 25.436		4592.00	769.17 2101.65	0.0092		4592.0000			
82	25.627		11700.50 33115.00	2101.45 6641.39	0.0234 0.0662		11700.5000 33115.0000			
83	25.818		129016.00	20593.68	0.2580		1.2902e+05			
84	26.812		17886.00	2680.00	0.0358		17886.0000			
85	27.045		5551.00	1046.69	0.0111	0.0111	5551.0000			
86 87	27.211		12474.00	1921.80	0.0249		12474.0000			
87 88	27.665 27.939		81867.00 44118.50	9425.15 6491.87	0.1637 0.0882		81867.0000			
3	29.720		27204.50	3399.20	0.0544		44118.5000 27204.5000			
,	34.299		5396.00	1404.17	0.0108		5396.0000			
						• • • • • • • • • • • • • • • • • • • •				
			13033782.50	2.452e+06	230.4050	230,4050	1.3034e+07			

13033782.50 2.452e+06 230.4050 230.4050 1.3034e+07

Software Version: 3.3 <4B11> Sample Name : L950626-16

Time : 3/8/95 05:45 PM

Sample Number: 12 Operator : KMW

Study : PPPC8

Instrument : HP5890 AutoSampler : NONE Channel : A A/D mV Range : 1000

ck/Vial : 0/0

Interface Serial # : 8055910402 Data Acquisition Time: 3/8/95 05:11 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PA38012.RAW Result File : C:\2700\HP5890\PA38012.RST Instrument File: c:\2700\methseqs\HPPESTB.ins

Process File : HPPESTA Sample File : PESTA058

Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Sample Amount : 1.0000 Inj. Volume

Area Reject : 200.000000

Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A: Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

Total run time : 33.00 min

Timed Events:

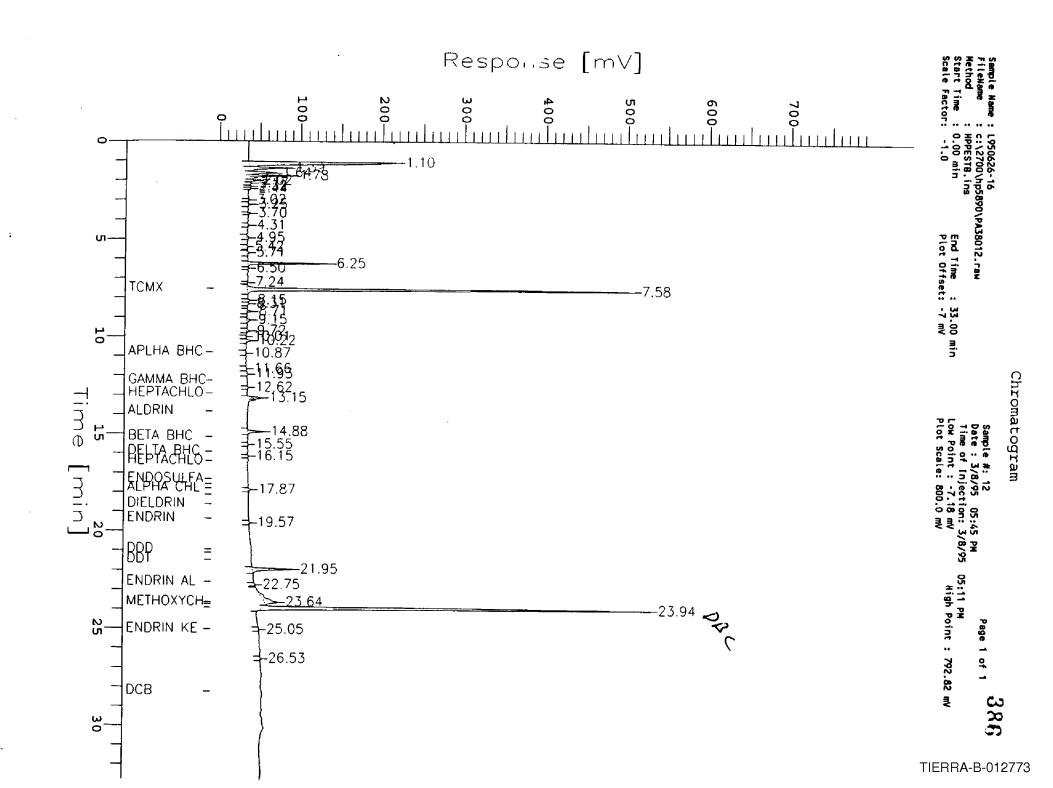
There are no timed events in the method

HP 5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.

Peak #	Component Name	Time (min)	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cal. Range
1		1.097	1344458.39	183832.55	45.3362	45.3362	1344458	· · · · · · · · · · ·	
2		1.386	214824.73	47392.57	10.0543	10.0543	214825		
3		1.638	158324.88	29322.72	8.2897	8.2897	158325		
4		1.779	148556.50	48364.36	7.9846	7.9846	148556		
5		2.024	17648.50	6003.26	3.8959	3.8959	17648		
6		2.165	8393.00	2344.90	3.6068	3.6068	8393		
7		2.324	7081.00	2056.74	3.5659	3.5659	7081		
8		2.436	6756.00	2082.11	3.5557	3.5557	6756	•	
9		3.018	8032.00	2199.29	3.5956	3.5956	8032		
10		3.251	14192.50	4158.02	3.7880	3.7880	14192		
11		3.695	15229.50	3892.12	3.8204	3.8204	15230		
12		4.314	11980.00	2626.09	3.7189	3.7189	11980		
13		4.949	19598.00	2225.18	3.9568	3.9568	19598		
14		5.415	8792.00	999.24	3.6193	3.6193	8792		
į		5.70 9	13336.50	2135.60	3.7612	3.7612	13336		
16		6.247	422597.50	101134.22	16.5437	16.5437	422598		
17		6.499	7791.00	1871.02	3.5880	3.5880	7791		
18		7.238	4109.00	1265.63	3.4730	3.4730	4109		
19	TCMX	7.578	2087320.00	482060.37	98.1509	0.0000	2087320	0.3592	
20		8.146	14000.00	3296.70	3.7820	3.7820	14000		

3.


Peak #	Component Name	Time [min]	Area (uV*sec)	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Delta RT [%]	Cat. Range	385	ps.
21		8.314	9974.00	2105.12	3.6562	3.6562	9974	•••••			
22		8.707	29863.00		4.2774	4.2774	29863				
23		9.152	36815.00	5707.33	4.4945	4.4945	36815				
4		9.718	18156.00		3.9118	3.9118	18156				
∠5		10.010	4546.00	831.75	3.4867	3.4867	4546				
26		10.223	33873.00		4.4026	4.4026	33873				
27	APLHA BHC	10.869	9549.00	843.23	3.6429	3.6429	9549	0.6622	_		
28		11.661	10340.50	1381.58	3.0160	3.0160	10340				
29		11.932	18649.00		3.2892	3.2892	18649				
0	GAMMA BHC	12.257	0.00		0.0000	0.0000	0				
30		12.619	5846.50		1.1411	1.1411	5846				
0	HEPTACHLOR	12.914	0.00	0.00	0.0000	0.0000	0				
31		13.149	59095.00	12363.20	3.2476	3.2476	59095				
0	ALDRÍN	13.842	0.00	0.00	0.0000	0.0000	0				
32	25.5	14.883	104231.00	19719.03	7.7181	7.7181	104231				
.0 77	BETA BHC	15.144	0.00	0.00	0.0000	0.0000	0				
33 0	25. 21 200	15.547	6729.00	1131.68	3.8460	3.8460	6729				
34	DELTA BHC	15.903	0.00	0.00	0.0000	0.0000	0				
0	HEDTACHI OR THRONG	16.153	6435.00	1371.90	0.8245	0.8245	6435				
Ö	HEPTACHLOR EXPOXIDE ENDOSULFAN I	16.381	0.00	0.00	0.0000	0.0000	0				
Ö	GAMMA CHLORDANE	17.321	0.00	0.00	0.0000	0.0000	0				
35	ALPHA CHLORDANE;	17.568	0.00	0.00	0.0000	0.0000	0				
ő	DDE CHECKSAME	17.869	18472.00	3346.15	1.0820	1.0820	18472	0.4661	-		
-	DIELDRAN Z	18.101	0.00	0.00	0.0000	0.0000	0				
36	ENDRIN	18.601	0.00	0.00	0.0000	0.0000	0				
	T 1 ·/	19.570	8782.00	1607.78	2.4224	2.4224	8782	1.2101	-		
	DDD V ENDOSULFAN II	20.925	0.00	0.00	0.0000	0.0000	0				
Ö	DDT \	21.090	0.00	0.00	0.0000	0.0000	0				
37	1	21.451	0.00	0.00	0.0000	0.0000	0	• • • • • • •			
	ENDRIN ALDEHYDE	21.946	307316.50	50439.25	27.3626	27.3626	307317				
	METHOXYCHLOR	22.751	7980.00	1457.17	2.3485	2.3485	7980	0.6541	-		
	ENDOSULFAN SULFATE	23.636 23.726	241149.50	17146.29	46.1917	46.1917	241150	0.0469			
	DBC	23.726	0.00	0.00	0.0000	0.0000	0				
	ENDRIN/KETONE	25.046	2571301.00		182.5773	182.5773	2571301	0.1582			
42	7 (10-1)		6677.00	1181.85	1.5805	1.5805	6677	0.1089	-		
	DCB / 703116	26.531 28.203	10515.00	1672.27	1.7577	1.7577	10515				
	/ / / / / / / / / / / / / / / / / / / /	20.203	0.00	0.00	0.0000	0.0000	0				
	,		8059316.00	1.562e+06	554.3642	456.2133					

Missing Component Report

Component	Expected Retention (Sample File)
GAMMA BHC	12.257
HEPTACHLOR	12.914
ALDRIN	13.842
BETA BHC	15.144
DELTA BHC	15.903
HEPTACHLOR EXPOXIDE	16.381
ENDOSULFAN I	17.321
GAMMA CHLORDANE	17.568
ODE	18.101
DIELDRIN	18.601
DDD	20.925
ENDOSULFAN II	21.090
DÔT	21.451
ENDOSULFAN SULFATE	23.726
DCB	28.203

HP5890 DETECTOR A

Report Stored in ASCII File: C:\2700\HP5890\PA38012.TX0

Software Version: 3.3 <4811>

Sample Name : L950626-16

Time : 3/8/95 05:45 PM Study : PPPCB

Sample Number: 12 Operator : KMW

Instrument : HP5890 AutoSampler : NONE tk/Vial : 0/0

Channel : B A/D mV Range : 1000

Interface Serial # : 8055910402 Data Acquisition Time: 3/8/95 05:11 PM

Delay Time : 0.00 min. End Time : 33.00 min. Sampling Rate : 1.0000 pts/sec

Raw Data File : C:\2700\HP5890\PB38012.RAW Result File : C:\2700\HP5890\PB38012.RST Instrument File: c:\2700\methseqs\HPPE\$TB.ins

Process File : HPPESTB
Sample File : PESTB058
Sequence File : C:\2700\METHSEQS\0308PCB.SEQ

Inj. Volume : 1 ul Area Reject : 200.000000 Sample Amount : 1.0000 Dilution Factor : 1.00

Instrument Control Method: Instrument name : HP5890

Channel Parameters:

Inlet Parameters:

Inlet A:

Inlet B:

Detector Parameters:

Detector A :

Detector B :

Heated Zones:

Temperature Program:

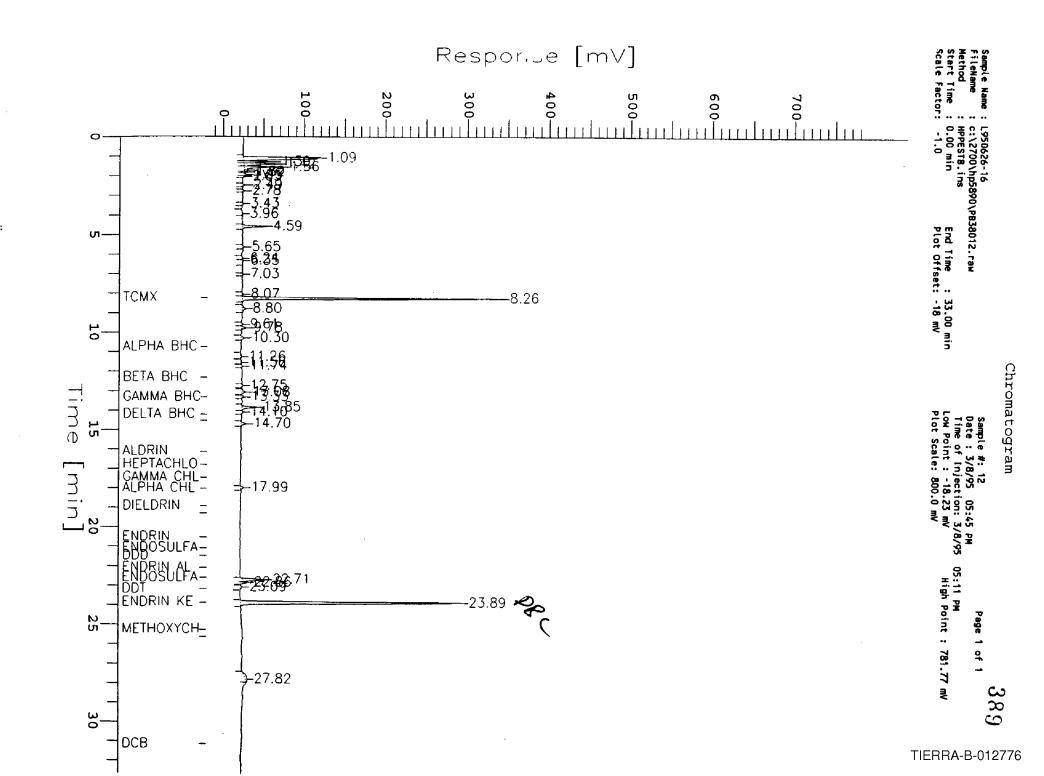
Total run time : 33.00 min

Timed Events:

There are no timed events in the method

HP5890 REPORT FOR PEST/PCB ANALYSIS

NORTHEASTERN ANALYTICAL CORP. GAS CHROMATOGRAPHY LAB.


Peak #	Component Name	Time [min]	Area [uV*sec]	Height (uV)	Raw Amount	Adjusted Amount	Calibration Factor	Cet. Range
1		1.090	702474.51	97905.31	47.2609	47.2609	702475	
2		1.303	150338.13		6.2080	6.2080	150338	
3		1.416	183545.95		8.6771	8.6771	183546	
4		1.563	195610.96		9.5742	9.5742	195611	
5		1.731	17516.00		-3.6676	-3.6676	17516	
6		1.817	14287.45		-3.9077	-3.9077	14287	
7		1.951	11036.00		-4.1494	-4.1494	11036	
8		2.049	4662.50		-4.6233	-4.6233	4662	
9		2.488	15436.00	5002.17	-3.8223	-3.8223	15436	
10		2.780	11211.00	3362.16	-4.1364	-4.1364	11211	
11		3.433	9860.50	1550.21	-4.2368	-4.2368	9861	
12		3.959	11994.00	922.49	-4.0782	-4.0782	11994	
13		4.592	151063.00		6.2619	6.2619	151063	
14		5.651	13849.00	2679.46	-3.9403	-3.9403	13849	
15		6.239	6959.00	791.75	-4.4526	-4.4526	6959	
,		6.349	2493.00	1052.20	-4.7846	-4.7846	2493	
17		7.034	5821.00	1463.36	-4.5372	-4.5372	5821	
18		8.069	9023.00	2143.41	-4.2991	-4.2991	9023	
19	TCMX	8.263	1461280.00		103.6801	103.6801	1461280	
20		8.802	41666.50		-1.8720	-1.8720	41666	
21		9.609	10913.00	2106.92	1.7911	1.7911	10913	

									page
Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Raw Amount	Adjusted Amount	Calibration Factor	Cal. Range	388
22		9.782	32412.50	6122.77	3 73/5	2 72/5			
23		10.304	31310.00		2.7245	2.7245	32412		•
0	ALPHA BHC	10,753	0.00		2.6766	2.6766	31310		
5		11.264	18877.00		0.0000	0.0000	0		
_5	ľ	11.562	8245.50		2.1368	2.1368	18877		
26	1	11.743	8817.00		1.1065	1.1065	8246		
0	BETA BHC	12.324	0.00		1.1331	1.1331	8817		
27	1	12.747	8834.00		0.0000	0.0000	0		
28	i	13.076	26476.00		1.1339 0.3402	1.1339	8834		
29	GAMMA BHC	13.325	16152.50		-0.0444	0.3402	26476		
30	· ·	13.854	101837.00		6.2191	-0.0444	16153	-	
31		14.103	8256.50			6.2191	101837		
0	DELTA BHC	14.214	0.00		1.8132	1.8132	8256		
32	HEPTACHLOR \	14.699	35558.50		0.0000 2.9541	0.0000	0		
0	ALBRITA	16.123	0.00			2.9541	35558	•	
0	HEPTACHLOR EPOXIDE	16.791	0.00		0.0000 0.0000	0.0000	0		
0	GAMMA I CHLÒRDANE	17.459	0.00		0.0000	0.0000	0		
33	ALPHA CHCORDANE/ENDO	17.990	25928.00		-0.0003	-0.0003	0		
0	DIELDRIN.	18.924	0.00		0.0000	0.0000	25928	•	
0	DDE \ \ /	19.286	0.00		0.0000	0.0000	0		
0	ENDRIN	20.520	0.00		0.0000	0.0000	0		
0	ENDOSULIÇAN II	21.081	0.00		0.0000	0.0000	0 0		
0	DDD	21.479	0.00		0.0000	0.0000	ŏ		
0	ENDRIN ALDEHYDE	22.091	0.00		0.0000	0.0000	Ö		
34	ENDOSULFAN SULFATE	22.714	149149.00		15.3764	15.3764	149149		
35	1	22.860	14579.00	4093.55	1.2751	1.2751	14579		
36	DDT	23.089	18517.00	2695.42	0.7978	0.7978	18517	_	
37	ENDRIN KETONE	23.892	1545871.50		124.3477	124.3477	1545872	-	
0	METHOXYCHLOR	25.263	0.00	0.00	0.0000	0.0000	0		
0	DBC	25,626	0.00	0.00	0.0000	0.0000	0		
38		27.821	59434.00	1880.68	5.9210	5.9210	59434		
0	DCB	31.152	0.00	0.00	0.0000	0.0000	0		
			5141295.50	991718.84	296.8571	296.8571	5141296		***************************************

'ssing Component Report iponent	Expected Retention (Sample File)
ALPHA BHC	10.753
BETA BHC	12.324
DELTA BHC	14.214
ALDRIN	16.123
HEPTACHLOR EPOXIDE	16.791
GAMMA CHLORDANE	17.459
DIELDRIN	18.924
DDE	19.286
ENDRIN	20.520
ENDOSULFAN II	21.081
DDD	21,479
ENDRIN ALDEHYDE	22.091
METHOXYCHLOR	25.263
DBC	25.626
DCB	31.152

HP5890 DETECTOR B

Report Stored in ASCII File: C:\2700\HP5890\PB38012.TX0

INORGANIC QUALITY CONTROL SECTION

MORTHEASTERN ANALYTICAL CORPORATION

REPORT OF BUALITY CONTROL RESULTS

MAC JOB #1.950626

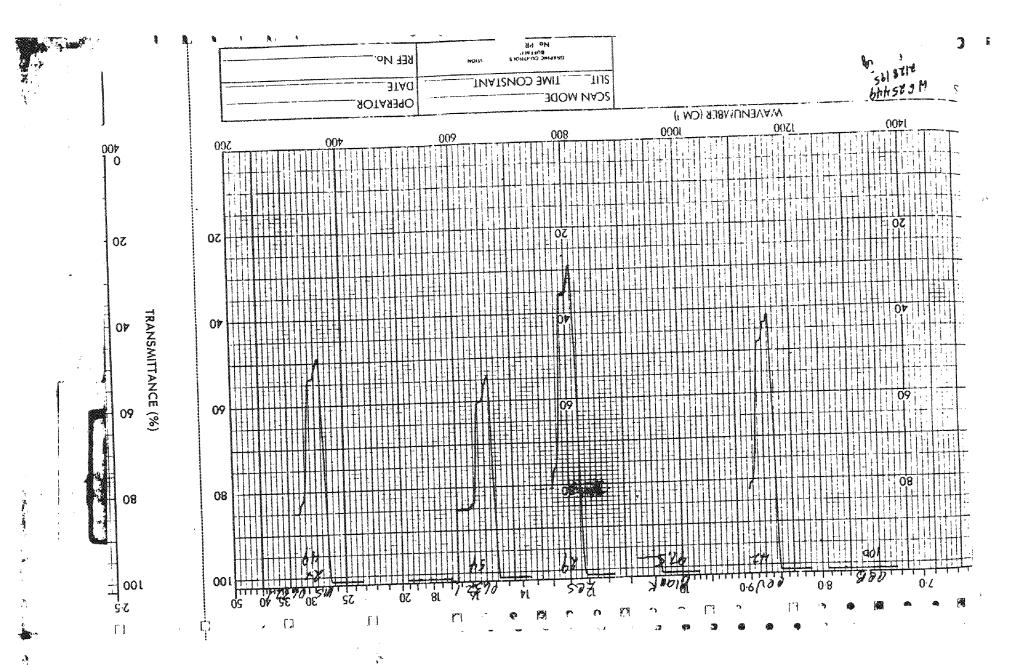
PARAMETER	HTX		BLANK UNITS	LCS ZREC	HES TOREC	MSD XREC	SAMP	REPL.	RPO	SPIKE SAMP#	DLP .		
Arsenic	Aq	ND	mg/l	85.		**********	******	SECURITY SEC	882 N. 3.V. 888		SAMP#	BATCH #	ANAL, TYPE
Arsenic	s	ND	mg/kg	106.	151.		2.5	3.0	10.0	NA .	NA	WG25510	MET-AS-A
Mercury	Ac	ND	mg/l	90.	87,				18.2		L950626-1	WG25489	MET-AS-S
Mercury	s	ND	mg/kg	103.	133.		ND .	ND -	NC	L950604-2	L950604-2	WG25623	MET-HG-A
Silver	Aa	ND	mg/l	92.	68.		0.36	0.73	69,1	L950626-1	<u>L950626-1</u>	WG25559	MET-KG-S
Aluminum	PA PA	ND ND	mg/l	102.	95.	64.	ND	ND	6.06		<u> 1950638-17</u>		MET-ICAP-A
Beryllium	Aq	ND	<u>.</u>			84.	ND	ND	12.3		' L950638-17		MET-ICAP-A
Calcium	•		mg/l	103.	91.	82.	ND	ND	10.4		' L950638-17		MET-ICAP-A
Cadmium	Αq	ND	mg/l	94.	102.	74.	111.	113.	31.8		' L950638-17		MET-ICAP-A
Chromium	Aq	ND	mg/l	96.	84.	72.	0.013	0.014	15.4	L950638-17	L950638-17	WG25501	MET-ICAP-A
	Aq	ND	mg/l	97.	87.	78.	ND	ND	10.9	L950638-17	L950638-17	WG25501	MET-ICAP-A
Copper	Aq	ND	mg/l	105.	93.	84.	ND	ND	10.2	L950638-17	L950638-17	WG25501	MET-ICAP-A
Iron	Αq	ND	mg/l	95.	HA	0.0	76.	76.	NC	L950638-17	L950638-17	WG25501	MET-ICAP-A
Manganese	Αq	ND	mg/l	98.	HA	20.	11.	11.	NC	L950638-17	L950638-17	WG25501	MET-ICAP-A
Sodium	PΑ	ND	mg/l	104.	126.	72.	174.	172.	54.5	L950638-17	L950638-17	WG25501	MET-ICAP-A
Hickel	Aq	ND	mg/l	86.	81.	72.	ND	ND	11.8	L950638-17	L950638-17	WG25501	MET-ICAP-A
Antimony	Αq	ND	mg/l	88.	74.	70.	ND	ND	5.56	L950638-17	L950638-17	WG25501	MET-ICAP-A
:	PΑ	ND	mg/l	106.	90.	82.	0.087	0.080	9.3	L950638-17	L950638-17	WG25501	MET-ICAP-A
Silver	S .	ND	mg/kg	<u>96.</u>	0.0		ND	ND	NC	L950626-1	L950626-1	WG25547	MET-ICAP-S
Beryllium	s	ND	mg/kg	98.	34.		2.5	2.8	12.4	L950626-1	L950626-1	WG25547	MET-ICAP-S
Cadmium	S	ND	mg/kg	96.	184.		15.	21.	37.3	L950626-1	L950626-1	WG25547	MET-ICAP-S
Chromium	s	ND	mg/kg	97.	10.		74.	84.	12.8	L950626-1	L950626-1	WG25547	MET-ICAP-S
Copper	s	ND	mg/kg	97.	на		306.	358.	15.7	L950626-1	L950626-1	WG25547	MET-ICAP-S
Nickel	s	ND	mg/kg	96.	17.		97.	83.	15.7	L950626-1	L950626-1	WG25547	MET-ICAP-S
Lead	s	ND	mg/kg	90.	0.0		1000	724.	32	L950626-1	L950626-1	WG25547	MET-ICAP-S
Antimony	s	ND	mg/kg	109.	29.		10.	8.5	20.7	L950626-1		WG25547	
Zinc	s	ND	mg/kg	91.	на		590.		39.9	L950626-1			MET-ICAP-S
Lead	Aq	ND	mg/t		110.		ND					WG25547	MET-ICAP-S
		-15	3/ \	111.	110.		ND	ND	NÇ	L950639-1	<u> 1950639-1</u>	WG25509	MET-PB-A

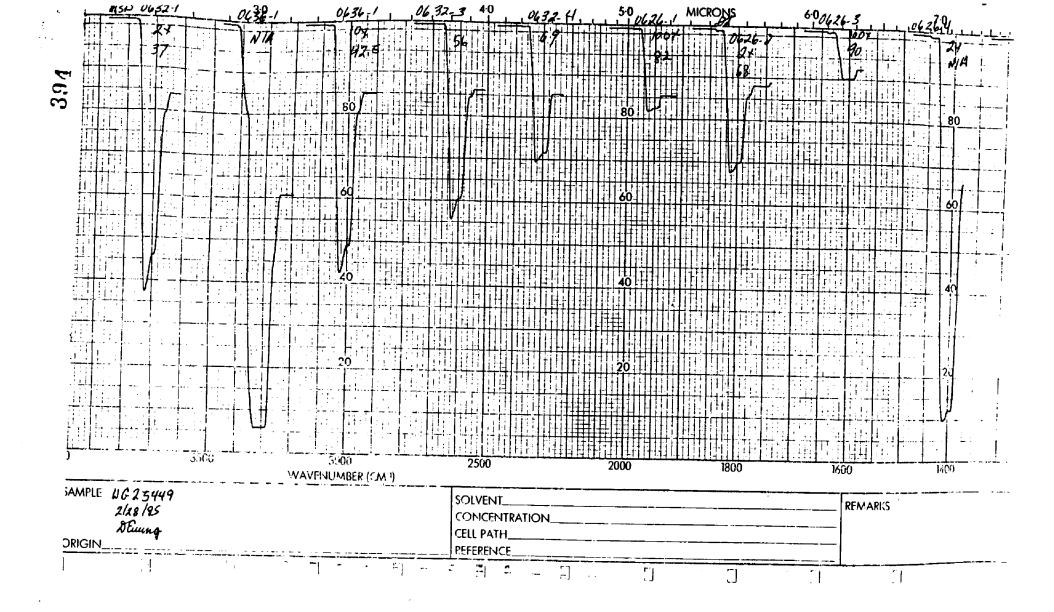
Batch No Associated Samples L950626-1 L950626-2 L950626-3 L950626-4 L950626-5 L950626-6 L950626-7 L950626-8 L950626-9 L950626-10 L950626-11 L950626-12 L950626-13 L950626-14 L950626-15 WG25489 WG25489 WG25509 L950626-16 L950626-16 L950626-16 WG25510 WG25511 L950626-1 L950626-2 L950626-3 L950626-4 L950626-5 L950626-6 L950626-7 L950626-8 L950626-9 L950626-10 L950626-11 L950626-12 L950626-13 L950626-14 L950626-15 L950626-1 L950626-1 L950626-1 L950626-3 L950626-4 L950626-5 L950626-6 L950626-7 L950626-8 L950626-9 L950626-10 L950626-11 L950626-12 L950626-13 L950626-14 L950626-15 L950626-14 L950626-15 WG25547 WG25547 WG25559

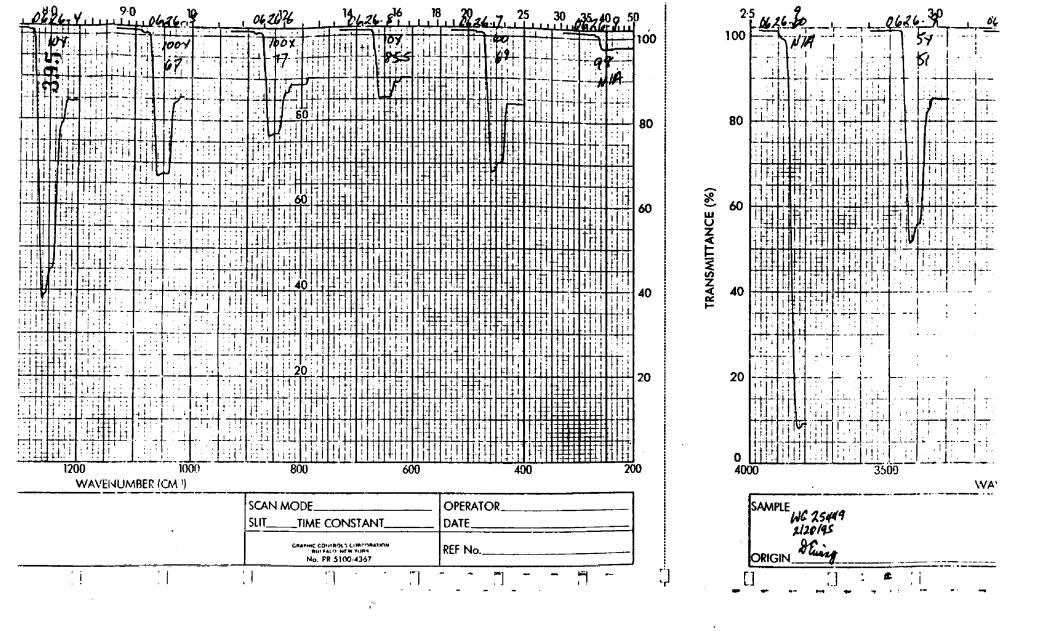
WG25559 PC25623

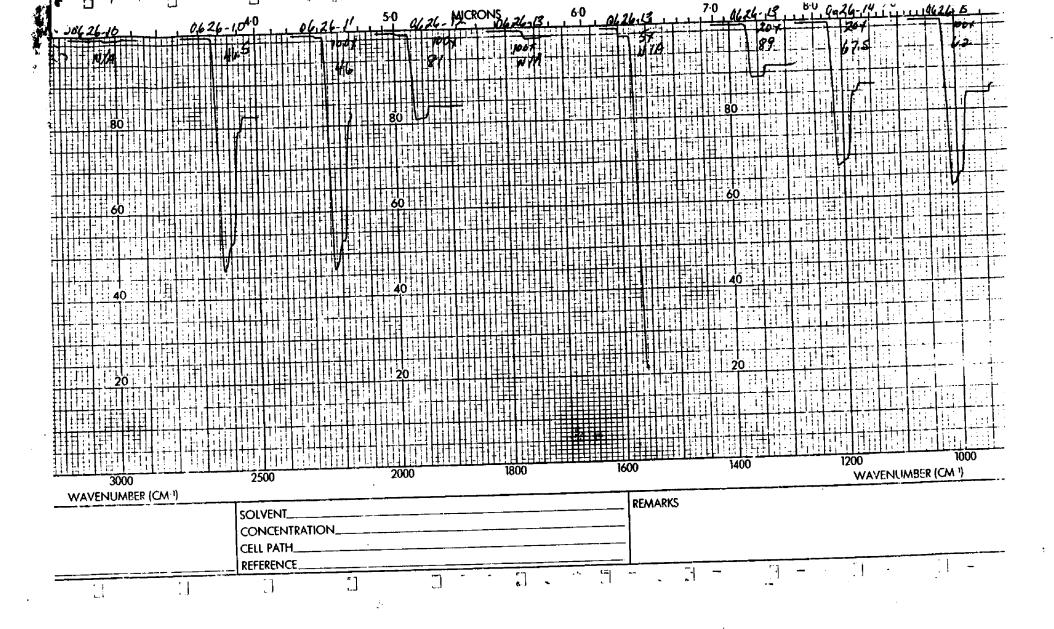
> NR - Not Required NC - Not calculated, values below RDL HA - Interference due to a high concentration of analyte ND - Not detected above the MDL MI - Matrix interference

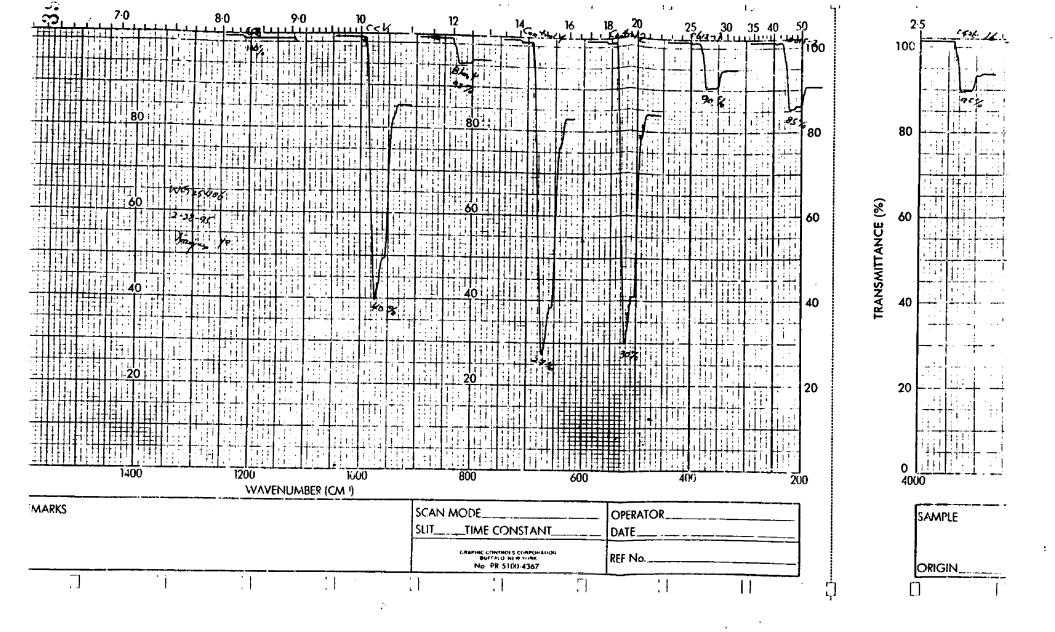
MORTHEASTERN ANALYTICAL CORPORATION

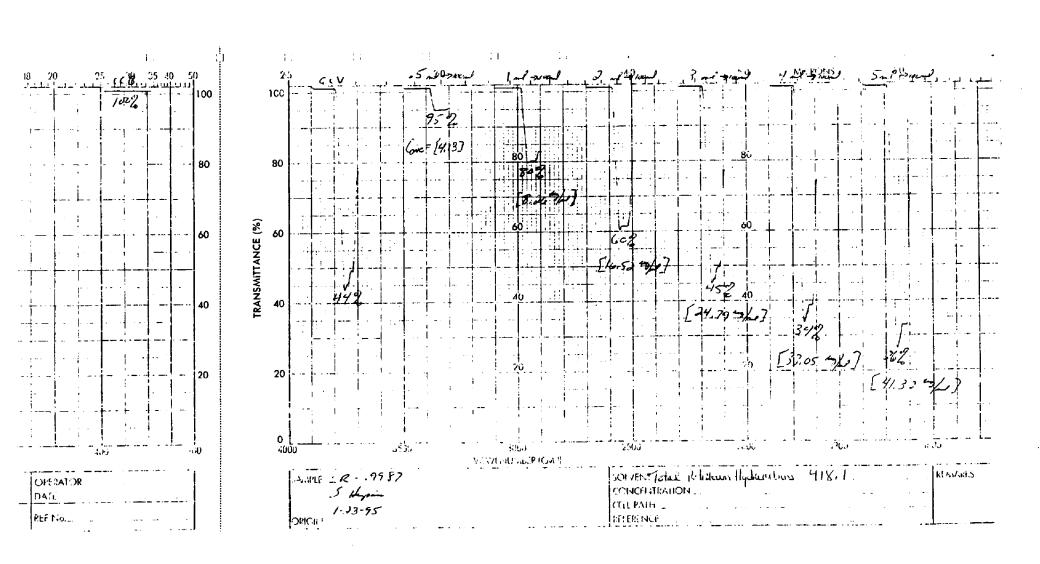

REPORT OF QUALITY CONTROL RESULTS


MAC JOB #1950626


PARAMETER	HTX	BLANK VALUE	BLANK UNITS	LCS TREC	MS NREC	MSD ZREC	SAMP	REPL.	RPD	SPIKE SAMPE	DUP SAMP#	Serry &	
Selenium	Aq	ND	mg/t	82.						NA	NA	WG25623	ANAL, TYPE MET-SE-A
Selenium	ş	ND	mg/kg	84.	34.		ŅD	ND	NC	L950626-1	L950626-1	WG25490	MET-SE-S
Thallium	Aq	ND	mg/l	101.						NA	NA	WG25512	MET-TL-A
Thallium	s	ND	mg/kg	<u>1</u> 10.	95.	 _	ND	ND	NC	L950626-1	L950626-1	WG25491	MET-TL-S
Petroleum Hydrocarbons	_Aq_	ND	mg/l	121.				111.	8,62	NA	MA	WG25406	PHC-A
Petroleum Hydrocarbons Total Solids	<u> </u>	ND	mg/kg	115.	77.	127,			49.5	L950632-1	NA	WG25449	PHC-S
Total Solids	_S _s	ND.	<u>x</u>				95.	95.	0.189	NA	L950626-2	WG25454	TS
Total Solids	s	ND ND	×				82.		0.56	NA	L950626-12	WG25455	TS
	ð	NU	X				97.	97.	0.391	NA	L950627-1	WG25456	TS


Batch No	Associated !	Samples									
406 5449 WG25449 WG25454	C7300E0 IE [.950626-2 .950626-13 .950626-2	L950626-3 L950626-14	L950626-4 L950626-15	L950626-5	L950626-6	L950626-7	L950626-8	L950626-9	L950626-10	L950626-11
WG25455 WG25456		950626-4	L950626-5	L950626-6	L950626-7	L950626-8	L950626-9	L950626-10	L950626-11	L950626-12	
WG25489 WG25489	L950626-1 L	-950626-2	L950626-3	1 950626-4	L950626-5	L950626-6	L950626-7	L950626-8	L950626-9	L950626-10	L950626-11
WG25490 WG25490	L950626-1 L L950626-12 L	.950626-2 .950626-13	L950626-3 L950626-14	L950626-4		L950626-6		L950626-8	L950626-9	L950626-10	L950626-11
WG25491 WG25491	1950626-1 L	.950626-2	L950626+3	1.950626-4	L950626-5	L950626-6	L950626-7	L950626-8	L950626-9	L950626-10	L950626-11
WG25501 WG25509	L950626-16 L950626-16										
WG25510 WG25511	L950626-16 L950626-16										
WG25512 WG25547 WG25547	L950626-16 L950626-1 L	950626-2	L950626-3	L950626-4	L950626-5	L950626-6	L950626-7	L950626-8	L950626-9	L950626-10	1050434 44
WG25559 WG25559	L950626-12 L	.950626-15 .950626-2	L950626-14 L950626-3	L950626-15 L950626-4		L950626-6				L950626-10	
WG25623 WGP2082	L950626-12 L L950626-16 L950626-16	Y2U020-13	LY>U626-14	L950626-15					,	2750020 10	C720020°11
WGP2100 WGP2100		950626-2 950626-13	L950626-3 L950626-14	L950626-4 L950626-15	L950626-5	L950626-6	L950626-7	L950626-8	L950626-9	L950626-10	L950626-11
					NR - Not	Permired					


NR - Not Required
NC - Not calculated, values below RDL
HA - Interference due to a high concentration of analyte
ND - Not detected above the MDL
HI - Hatrix interference



Calibration Curre

X-tract Date	Sample ID	Spk µg	Ak O	auat mi.	Stats	% T	ABS	Conc mg/L	01- 1000 70/4	554	Tech
1/23/95	,										S. Win
	CCB				0,00	100	. 000	1.98	0.00		
									25/L		†
2-9	139ء الملكا با بماك	4130		100	4.13 3/1	45	.672	3.5da	4.13		
	500 x 1540	8260		100		80	.097	8.87	8.24		
,	STOCKLERY	1652			Also d		.222	7-11	16.52		1
13	1540	3475		100	24.79 47/1		1347	24/64	24.79		1
\ \\ \.	STOCK JEHO	3305		100	3305 4/2	4 34	,469				
7	574 1544	4132		100	11.32 14	24	.585				V
								3.11			†
											—
					· tx	0.99	9 2 1	Hymin -33			
					 	= . 998					
			<u> </u>								-
			1								
									1		†
			 -	<u> </u>						,	
			i	<u> </u>	 			 	 		
		 		\vdash	 				 		+
				 	<u> </u>						
		 	i ——	 							+
		 		 	 	 		 	1	· ·	+
				 	-		\vdash	<u> </u>			┼
	 	 		┼		 	 		+		
		 		\vdash	ļ	 		 	}		
	 	 		├	 	 -		<u> </u>	1		
<u> </u>	· .	 		├		 	 	 '	 	 	╀
	 		<u> </u>	—	 		 	 '	1		↓
	 	 	<u></u> '	<u> </u>		<u> </u> -	 		igspace		
	 	 	<u> </u>					<u> </u>	igsquare		
			<u> </u>	<u> </u>				<u> </u>			<u> </u>