

December 05, 2012 Vista Project I.D.: 2110001

Mr. Joseph Houser ARCADIS U.S., Inc. 6723 Towpath Road Syracuse, NY 13214-0066

Dear Mr. Houser,

Enclosed are the results for the two soil samples received at Vista Analytical Laboratory on November 26, 2012. These samples were analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans on a rush turn-around time. The work was authorized under your Purchase Order No. B0009964.0002.70004.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

William J. Luksemburg Principal

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Project No. 2110001 Case Narrative

Sample Condition on Receipt:

Two soil samples were received at 12.7 degrees C. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613

These samples were extracted and analyzed for tetra through octa chlorinated dioxins and furans by EPA Method 1613 using a ZB-5 GC column.

Holding Times

The method holding time criteria were met for these sample.

Quality Control

The Initial Calibration and Continuing Calibration Verfications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes of interest were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Method 1613 Solid 2012	10
Qualifiers	11
Certifications	12
Sample Receipt	13

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2110001-01	PRR1SOLPC-13	20-Nov-12 14:00	26-Nov-12 08:58	Glass Jar, 120mL
		20-Nov-12 14:00	26-Nov-12 08:58	Glass Jar, 120mL
2110001-02	PRR1SOLPC-14	20-Nov-12 14:30	26-Nov-12 08:58	Glass Jar, 120mL
		20-Nov-12 14:30	26-Nov-12 08:58	Glass Jar, 120mL

Vista Project: 2110001

ANALYTICAL RESULTS

Sample ID: Met	hod Blank							EPA Meth	nod 1613B
Matrix: Solid Sample Size: 10.0 g	2	QC Batch: Date Extracted:	B2K0003 28-Nov-2012 13:59		Lab Sam Date Ana	ple: B2K0003-BLK1 alyzed: 01-Dec-12 04:50	Column: Analyst: MAS		
Analyte	Conc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.107			IS	13C-2,3,7,8-TCDD	93.4	25 - 164	
1,2,3,7,8-PeCDD	ND	0.294				13C-1,2,3,7,8-PeCDD	92.8	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.125				13C-1,2,3,4,7,8-HxCDD	81.0	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.157				13C-1,2,3,6,7,8-HxCDD	76.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.151				13C-1,2,3,7,8,9-HxCDD	78.2	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.294				13C-1,2,3,4,6,7,8-HpCDI	D 71.9	23 - 140	
OCDD	ND	0.670				13C-OCDD	80.1	17 - 157	
2,3,7,8-TCDF	ND	0.152				13C-2,3,7,8-TCDF	91.5	24 - 169	
1,2,3,7,8-PeCDF	ND	0.168				13C-1,2,3,7,8-PeCDF	105	24 - 185	
2,3,4,7,8-PeCDF	ND	0.165				13C-2,3,4,7,8-PeCDF	105	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0661				13C-1,2,3,4,7,8-HxCDF	81.1	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0688				13C-1,2,3,6,7,8-HxCDF	80.0	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0820				13C-2,3,4,6,7,8-HxCDF	78.4	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.106				13C-1,2,3,7,8,9-HxCDF	79.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0842				13C-1,2,3,4,6,7,8-HpCDI	F 72.0	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0933				13C-1,2,3,4,7,8,9-HpCDI	F 79.8	26 - 138	
OCDF	ND	0.279				13C-OCDF	74.9	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	77.3	35 - 197	
						Toxic Equivalent Quotien	t (TEQ) Data		
						TEQMinWHO2005Dioxi	in 0.00		
TOTALS									
Total TCDD	ND	0.107							
Total PeCDD	ND	0.294							
Total HxCDD	ND	0.215							
Total HpCDD	ND	0.294							
Total TCDF	ND	0.152							
Total PeCDF	ND	0.312							
Total HxCDF	ND	0.124							
Total HpCDF	ND	0.0933							

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: OPR					EPA Method 1613B
Matrix: Solid Sample Size: 10.0 g		QC Batch:B2K0003Date Extracted:28-Nov-2012	13:59 Lab Sample: Date Analyzed:	B2K0003-BS1 01-Dec-12 03:13 Colum	n: Analyst: MAS
Analyte	%R	Limits	Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	84.0	67 - 158	IS 13C-2,3,7,8-TCDD	102	20 - 175
1,2,3,7,8-PeCDD	93.7	70 - 142	13C-1,2,3,7,8-PeCDD	93.8	21 - 227
1,2,3,4,7,8-HxCDD	89.3	70 - 164	13C-1,2,3,4,7,8-HxCDD	85.3	21 - 193
1,2,3,6,7,8-HxCDD	91.6	76 - 134	13C-1,2,3,6,7,8-HxCDD	82.1	25 - 163
1,2,3,7,8,9-HxCDD	90.6	64 - 162	13C-1,2,3,7,8,9-HxCDD	82.7	21 - 193
1,2,3,4,6,7,8-HpCDD	91.4	70 - 140	13C-1,2,3,4,6,7,8-HpCDD	71.2	26 - 166
OCDD	88.0	78 - 144	13C-OCDD	76.4	13 - 199
2,3,7,8-TCDF	91.0	75 - 158	13C-2,3,7,8-TCDF	86.4	22 - 152
1,2,3,7,8-PeCDF	103	80 - 134	13C-1,2,3,7,8-PeCDF	82.1	21 - 192
2,3,4,7,8-PeCDF	105	68 - 160	13C-2,3,4,7,8-PeCDF	87.5	13 - 328
1,2,3,4,7,8-HxCDF	97.3	72 - 134	13C-1,2,3,4,7,8-HxCDF	89.4	19 - 202
1,2,3,6,7,8-HxCDF	96.9	84 - 130	13C-1,2,3,6,7,8-HxCDF	85.9	21 - 159
2,3,4,6,7,8-HxCDF	98.9	70 - 156	13C-2,3,4,6,7,8-HxCDF	85.0	22 - 176
1,2,3,7,8,9-HxCDF	97.9	78 - 130	13C-1,2,3,7,8,9-HxCDF	86.6	17 - 205
1,2,3,4,6,7,8-HpCDF	98.6	82 - 122	13C-1,2,3,4,6,7,8-HpCDF	75.0	21 - 158
1,2,3,4,7,8,9-HpCDF	100	78 - 138	13C-1,2,3,4,7,8,9-HpCDF	76.4	20 - 186
OCDF	97.9	63 - 170	13C-OCDF	70.9	13 - 199
			CRS 37Cl-2,3,7,8-TCDD	84.3	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: PRR1SC	DLPC-13								EPA Met	hod 1613B
Client Data Name: ARCA Project: Date Collected: 20-Nov	DIS U.S., Inc. v-2012 14:00	Sample Da Matrix: Sample S % Solids	ata Soil Size: 9.99 g : 99.1		Lab Lab QC Date	ooratory Data Sample: Batch: e Analyzed :	2110001-01 B2K0003 01-Dec-12 08:53	Date Received: Date Extracted: Column: Analyst	26-Nov-2012 28-Nov-2012 : MAS	8:58 13:59
Analyte Con	nc. (pg/g)	DL	EMPC	Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.102		IS	13C-2,3,7,8-T	CDD	107	25 - 164	
1,2,3,7,8-PeCDD	ND	0.346				13C-1,2,3,7,8-	PeCDD	102	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.238				13C-1,2,3,4,7,8	8-HxCDD	88.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.282				13C-1,2,3,6,7,8	3-HxCDD	84.3	28 - 130	
1,2,3,7,8,9-HxCDD	ND ().285				13C-1,2,3,7,8,9	9-HxCDD	85.9	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND ().819				13C-1,2,3,4,6,7	7,8-HpCDD	82.8	23 - 140	
OCDD	7.23					13C-OCDD		110	17 - 157	
2,3,7,8-TCDF	ND ().236				13C-2,3,7,8-T	CDF	102	24 - 169	
1,2,3,7,8-PeCDF	ND ().188				13C-1,2,3,7,8-	PeCDF	118	24 - 185	
2,3,4,7,8-PeCDF	ND		0.104			13C-2,3,4,7,8-	PeCDF	120	21 - 178	
1,2,3,4,7,8-HxCDF	ND (0.100				13C-1,2,3,4,7,8	3-HxCDF	85.4	26 - 152	
1,2,3,6,7,8-HxCDF	ND ().187				13C-1,2,3,6,7,8	3-HxCDF	83.4	26 - 123	
2,3,4,6,7,8-HxCDF	ND ().119				13C-2,3,4,6,7,8	3-HxCDF	82.6	28 - 136	
1,2,3,7,8,9-HxCDF	ND (0.140				13C-1,2,3,7,8,9	9-HxCDF	84.3	29 - 147	
1,2,3,4,6,7,8-HpCDF	0.457			J		13C-1,2,3,4,6,7	7,8-HpCDF	78.4	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND ().191				13C-1,2,3,4,7,8	3,9-HpCDF	91.0	26 - 138	
OCDF	1.27			J		13C-OCDF		85.4	17 - 157	
					CRS	37Cl-2,3,7,8-T	CDD	88.4	35 - 197	
						Toxic Equival	ent Quotient (TEQ)) Data		
TOTAL						TEQMinWHO	2005Dioxin	0.00712		
TOTALS	0.2(4		0.265							
	0.264	210	0.365							
Total PeCDD	ND 0.	340 406								
Total HxCDD	ND 0	400 810								
Total TCDE	0.632	017								
Total PeCDE	0.372		0 734							
Total HxCDF	ND 0	207	0.75 T							
Total HnCDF	0.457									
DL - Sample specifc estin	nated detection limit					LCL	UCL - Lower control limi	t - upper control limit		

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PRR1SC	DLPC-14								EPA Met	hod 1613B
Client Data Name: ARCA Project: Date Collected: 20-Nov	DIS U.S., Inc. v-2012 14:30	Sample I Matrix: Sample % Solid	Soil Size: 10.3 g ls: 97.3		Lab Lab QC I Date	oratory Data Sample: Batch: Analyzed :	2110001-02 B2K0003 01-Dec-12 09:41	Date Received: Date Extracted: Column: Analyst	26-Nov-2012 28-Nov-2012 :: MAS	8:58 13:59
Analyte Con	nc. (pg/g)	DL	EMPC	Qualifiers		Labeled Stan	dard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.188			IS	13C-2,3,7,8-T	CDD	98.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.278				13C-1,2,3,7,8-	PeCDD	99.6	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.272				13C-1,2,3,4,7	8-HxCDD	88.5	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.294				13C-1,2,3,6,7	8-HxCDD	84.1	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.301				13C-1,2,3,7,8	9-HxCDD	84.5	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.525				13C-1,2,3,4,6	7,8-HpCDD	83.2	23 - 140	
OCDD	2.20			J		13C-OCDD		86.1	17 - 157	
2,3,7,8-TCDF	ND	0.109				13C-2,3,7,8-T	CDF	95.0	24 - 169	
1,2,3,7,8-PeCDF	ND	0.180				13C-1,2,3,7,8-	PeCDF	119	24 - 185	
2,3,4,7,8-PeCDF	ND	0.182				13C-2,3,4,7,8-	PeCDF	115	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0754				13C-1,2,3,4,7	8-HxCDF	88.6	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0813				13C-1,2,3,6,7	8-HxCDF	84.5	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0978				13C-2,3,4,6,7	8-HxCDF	83.6	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.121				13C-1,2,3,7,8	9-HxCDF	86.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.150				13C-1,2,3,4,6	7,8-HpCDF	80.2	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.162				13C-1,2,3,4,7	8,9-HpCDF	90.7	26 - 138	
OCDF	0.533			J		13C-OCDF		80.7	17 - 157	
					CRS	37Cl-2,3,7,8-1	TCDD	88.3	35 - 197	
						Toxic Equiva	lent Quotient (TEQ) Data		
						TEQMinWHC	02005Dioxin	0.000820		
TOTALS										
Total TCDD	0.130		0.342							
Total PeCDD	ND	0.278								
Total HxCDD	ND	0.476								
Total HpCDD	ND	0.525								
Total TCDF	ND	0.109								
Total PeCDF	ND	0.349								
Total HxCDF	ND	0.133								
Total HpCDF	ND	0.200								

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Method 1613 MDL Study Solid

Compound	MDL	RL
2,3,7,8-TCDD	0.0616	0.5
1,2,3,7,8-PeCDD	0.307	2.5
1,2,3,4,7,8-HxCDD	0.236	2.5
1,2,3,6,7,8-HxCDD	0.331	2.5
1,2,3,7,8,9-HxCDD	0.174	2.5
1,2,3,4,6,7,8-HpCDD	0.330	2.5
OCDD	0.726	5.0
2,3,7,8-TCDF	0.0737	0.5
1,2,3,7,8-PeCDF	0.232	2.5
2,3,4,7,8-PeCDF	0.240	2.5
1,2,3,4,7,8-HxCDF	0.262	2.5
1,2,3,6,7,8-HxCDF	0.261	2.5
2,3,4,6,7,8-HxCDF	0.158	2.5
1,2,3,7,8,9-HxCDF	0.276	2.5
1,2,3,4,6,7,8-HpCDF	0.219	2.5
1,2,3,4,7,8,9-HpCDF	0.315	2.5
OCDF	0.205	5.0
Unitar na/a		

Units: pg/g 19-August-2012

* based on 10 grams of sample. DLs are sample and congener specific.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	Recovery was outside laboratory acceptance limits.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number				
Alaska Department of Environmental Conservation	CA00413				
Alabama Dept of Environmental Management	41610				
Arizona Department Of Health Services	AZ0639				
Arkansas Dept of Environmental Quality	11-035-0				
California Dept of Health – NELAP	02102CA				
Colorado Dept of Public Health & Environment	N/A				
Connecticut Dept of Public Health	PH-0182				
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01				
Florida Dept of Health	E87777				
Indiana Department of Health	N/A				
Louisiana Department of Environmental Quality	01977				
Louisiana Department of Health and Hospitals	LA110017				
Maine Department of Health	2010021				
Michigan Department of Natural Resources	9932				
Mississippi Department of Health	N/A				
Nevada Division of Environmental Protection	CA004132011-1				
New Jersey Dept of Environmental Protection	CA003				
New York Department of Health	11411				
North Carolina Dept of Health & Human Services	06700				
North Dakota Dept of Health	R-078				
Oklahoma Dept of Environmental Quality	2011-120				
Oregon Laboratory Accreditation Program	CA200001				
Pennsylvania Dept of Environmental Protection	68-00490				
South Carolina Dept of Health	87002001				
Tennessee Dept of Environment and Conservation	TN02996				
Texas Commission on Environmental Quality	T104704189-11-2				
Utah Dept of Health	CA16400				
Virginia Dept of General Services	00013				
Washington Department of Ecology	C584				
Wisconsin Dept of Natural Resources	998036160				

AR	CADIS	
Infrastructure	environment bada	

ARCADIS

6723 Towpath Rd Syracuse, NY 13214

Phone/Fax: (315) 671-9688

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order #

Page 1 of 1

2110001 12.7°C

PROJ. NO.		PROJECT	PROJECT NAME																			
B0009964.0002.70004		Tierra Ph	ase I Rem	oval																	PRR1355	
SAMPLERS:				nanin dalam artagan ama bakalakar dalam kata baw <mark>ana supranana ba</mark> n	anan an	Requested Analyses										11112000						
SAMPLE ID	DATE	TIME	MATRIX	Composite/Grab	# Containers	1	2	3	4 5	6	7	8	9	10	11	12	13 1	4 1	5 16	5 17	,	Remarks
PRR1SOLPC-13		14:00	soil	Grab	2	X		-	1		1						-				1	
PRR1SOLPC-14		14:30	soil	Grab	2	X														1-	1	
								\rightarrow			1											
	<u> </u>	_						\rightarrow			-				$ \rightarrow$		_			-		
			<u> </u>												_	_		_		_		
			<u> </u>			+		-+-	_				\vdash		\rightarrow			_	_			
					ļ	+		-	_						-							
						+		\rightarrow	+		+		$ \rightarrow $					_				
				and the second secon		10		-													+	ang la kana nagani na 194
Requested A	nalyses	Special Ir	structions	(Commonte)	1								\square									
1 Dioxins (PCDD/PCDFs)	inaryses	1 ovtro 4 o	istructions,	ttod in enco of											pec	ial Q/	A/QC	Instr	uctio	ns		
2	• <u>••••</u> ••••••••••		iz jar subim	tted in case of sam	pie breakage.																	
3	****				CONTRACTOR DOLLAR STATISTICS	Laboratory Information and Receipt								Panalas	an and a second second second							
4	*****	Lab Name	Vista Ana	lytical - El Dorado H	ills, CA		Sample								Pocoint	an a						
7	and a second	Shipping T	racking #		The second s		-		-		Cooler packed with ice						Neceipt.					
5		Specify Tu	rnaround R	equirements: 14 da	V TAT	Conditic							n/Cooler Temp	an a								
6												Cool	er ci	ustody	/ sea	l inta	ict		100	iditit	in cooler remp.	
7	W	Relinquishe	d by:	DATE	TIME	Rec	eive	d by:			-	Relir	nquis	shed b	y:	2 This 2 Child		T	DAT	5-	Received by:	
8			N	11/20/17/	1700							ī	-	1-				11	124	10	11.	D.
9		Dell'and	M	11/00/.0	1100			Second states	-			t	e	16	X			1.1	201	12	Detima	Andu
10		Relinquishe	d by:	DATE	TIME	Rec	Received by:				Relin	nquis	hed b	y:				DAT	E	Received by:		
12		-				*																
13		Relinguishe	d by:	DATE	TIME	Received hu						Polin	muic	had h					DAT			
14	·····	-			111116	inc.	erver	a by.				ngill	iquis	nicu D	у.				DATE		Received by:	
15		-																				
16				total and the second	arthr - ann an An Anachtrica	lon-cons					COLUMN A	122-0160923		and and a second se								
17	19	-																				

Vista Analytical – El Dorado Hills, CA

SDG TRACKING LOG

SDG Number _____ PRR1355

SDG Open Date 11/20/2012

Sample Matrix _____ Soil

SDG Close Date 11/20/2012

Sample #	Sample ID	MS/MSD	Comments
1	PRR1SOLPC-13		Two 4 oz jars (1 extra in case of breakage)
2	PRR1SOLPC-14		Two 4 oz jars (1 extra in case of breakage)
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Notes:

1. The SDG must not exceed 20 field samples. Trip or Field Blanks do not count towards the sample total. Check which of the 20 samples has been collected to include extra volume for MS/MSD and assigned as such.

2. 3x the weights listed should be collected for lab QC (i.e., MS/MSD/internal lab duplicate).

3. Field duplicate is a separate sample, not to be confused with "internal lab duplicate."

SAMPLE LOG-IN CHECKLIST

								aborato
Vista Project #:	21100	01				TAT	14	_
	Date/Time			Initials:		Location	: WR-7	2
Samples Arrival:	11/26/12	26	858	3 P36	B	Shelf/Ra	ck: <u>N/A</u>	
	Date/Time			Initials:		Location: WR-2		
Logged In:	11/26/17	139	Be	B	Shelf/Ra	ck: <u>F5</u>		
Delivered By:	FedEx	U	PS	On Trac	DHL	- Ha Deliv	and vered Oth	ier
Preservation:	lce	>	В	lue Ice	Dr	ry Ice	None	
Temp °C / 2.	7	Time	: 60	104		Thermor	neter ID: IR-1	1
				,				

	YES	NO	NA
Adequate Sample Volume Received?			
Holding Time Acceptable?	V		
Shipping Container(s) Intact?	~		
Shipping Custody Seals Intact?			
Shipping Documentation Present?			
Airbill Trk # 7941 2110 0305			
Sample Container Intact?			
Sample Custody Seals Intact?	/		~
Chain of Custody / Sample Documentation Present?		\langle	
COC Anomaly/Sample Acceptance Form completed?	V		
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			
$Na_2S_2O_3$ Preservation Documented? N/A COC Sample Contained	er	None)
Shipping Container Vista Client (Retain)	Return	Disp	ose
Comments:			

Sample label ID: PRR1SOLPC-13 2 containers PRR1SOLPC-14 V

Vista

Chain of Custody Anomaly/Sample Acceptance Form

Analytical Laboratory

Client: ARCADIS U.S., Inc. Contact: Joseph Houser Email: joe.houser@arcadis-us.com Phone: 315-6719226

Documented by/date:	Bettina 11/26/12
Date Received:	26-Nov-12 08:58
Workorder Number:	2110001

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,

Martha Maier mmaier@vista-analytical.com 916-673-1520

The following information or item is needed to proceed with analysis:

The following anomalies were noted. Authorization is needed to proceed with analysis.

Χ	Temperature outside +/-2 C range	Samples Affecte	d: PRR1SOLPC-13 & PRR1SOLPC-14
	Temperature12.7°C	Ice Present? Yes	& Melted
	Sample ID Discrepancy Sample Holding Time Missed Custody Seals Broken	Insuff Samp Incor	ficient Sample Size le Container(s) Broken rect Container Type
Comme	ents:		

mments:

Client Authorization			
Proceed with Analysis: YES NO	Signature and Date Call Joursk	11/28/2012	
Client Comments/Instructions pur Ryan	Shatt proceed.		_
Work Order 2110001			Page 16 of 17

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

December 06, 2012 Vista Project I.D.: 2110013

Mr. Joseph Houser ARCADIS U.S., Inc. 6723 Towpath Road Syracuse, NY 13214-0066

Dear Mr. Houser,

Enclosed are the results for the two soil samples received at Vista Analytical Laboratory on November 30, 2012. These samples were extracted and analyzed using EPA Method 1613 for for tetra-through-octa chlorinated dioxins and furans. This sample set was analyzed on a rush turn-around time.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier President

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Project No. 2110013 Case Narrative

Sample Condition on Receipt:

Two soil samples were received in good condition and within the temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613

These samples were extracted and analyzed for tetra through octa chlorinated dioxins and furans by EPA Method 1613 using a ZB-5 GC column.

Holding Times

The method holding time criteria were met for these sampleu.

Quality Control

The Initial Calibration and Continuing Calibration Verfications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes of interest were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

A MS/MSD was run on sample PRR1SOLPC-07. All MS/MSD recoveries were within the method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Method 1613 Solid 2012	11
Qualifiers	12
Certifications	13
Sample Receipt	14

Sample Inventory Report

Vista	Client			
Sample ID	Sample ID	Sampled	Received	Components/Containers
2110013-01	PRR1SOLPC-04	29-Nov-12 12:25	30-Nov-12 08:40	Glass Jar, 120mL
		29-Nov-12 12:25	30-Nov-12 08:40	Glass Jar, 120mL
2110013-02	PRR1SOLPC-07	29-Nov-12 11:35	30-Nov-12 08:40	Glass Jar, 120mL
		29-Nov-12 11:35	30-Nov-12 08:40	Glass Jar, 120mL
		29-Nov-12 11:35	30-Nov-12 08:40	Glass Jar, 120mL

Vista Project: 2110013

ANALYTICAL RESULTS

Sample ID: Methe	od Blank								EPA Meth	nod 1613B
Matrix: Solid Sample Size: 10.0 g		QC Batch: Date Extracted:	B2L0007 04-Dec-2012 13:54		Lab Sam Date An	nple: nalyzed:	B2L0007-BLK1 05-Dec-12 21:19 Col	lumn: ZB-5 Analys	st: MAS	
Analyte (Conc. (pg/g)	DL	EMPC	Qualifiers		Labeled	Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.145			IS	13C-2,3	3,7,8-TCDD	89.7	25 - 164	
1,2,3,7,8-PeCDD	ND	0.221				13C-1,2	2,3,7,8-PeCDD	86.1	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.172				13C-1,2	2,3,4,7,8-HxCDD	79.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.204				13C-1,2	2,3,6,7,8-HxCDD	75.6	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.216				13C-1,2	2,3,7,8,9-HxCDD	73.4	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.286				13C-1,2	2,3,4,6,7,8-HpCDD	74.0	23 - 140	
OCDD	ND	0.480				13C-O	CDD	76.6	17 - 157	
2,3,7,8-TCDF	ND	0.0765				13C-2,3	3,7,8-TCDF	94.3	24 - 169	
1,2,3,7,8-PeCDF	ND	0.213				13C-1,2	2,3,7,8-PeCDF	109	24 - 185	
2,3,4,7,8-PeCDF	ND	0.210				13C-2,3	3,4,7,8-PeCDF	111	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0733				13C-1,2	2,3,4,7,8-HxCDF	79.6	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0716				13C-1,2	2,3,6,7,8-HxCDF	75.8	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0859				13C-2,3	3,4,6,7,8-HxCDF	75.4	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.109				13C-1,2	2,3,7,8,9-HxCDF	75.0	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0550				13C-1,2	2,3,4,6,7,8-HpCDF	72.4	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0671				13C-1,2	2,3,4,7,8,9-HpCDF	83.5	26 - 138	
OCDF	ND	0.184				13C-O	CDF	75.4	17 - 157	
					CRS	37Cl-2,	,3,7,8-TCDD	85.7	35 - 197	
						Toxic Eq	uivalent Quotient (T	EQ) Data		
						TEQMi	inWHO2005Dioxin	0.00		
TOTALS										
Total TCDD	ND	0.145								
Total PeCDD	ND		0.294							
Total HxCDD	ND	0.372								
Total HpCDD	ND	0.478								
Total TCDF	ND	0.0765								
Total PeCDF	ND		0.0831							
Total HxCDF	ND	0.136								
Total HpCDF	ND	0.107								

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: OPR					EPA Method 1613B
Matrix: Solid Sample Size: 10.0 g	I	QC Batch:B2L0007Date Extracted:04-Dec-2012	13:54Lab Sample: Date Analyzed:	B2L0007-BS1 05-Dec-12 18:06 Cc	olumn: ZB-5 Analyst: MAS
Analyte	%R	Limits	Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	85.9	67 - 158	IS 13C-2,3,7,8-TCDD	39.0	20 - 175
1,2,3,7,8-PeCDD	107	70 - 142	13C-1,2,3,7,8-PeCDD	31.7	21 - 227
1,2,3,4,7,8-HxCDD	98.2	70 - 164	13C-1,2,3,4,7,8-HxCDD	37.7	21 - 193
1,2,3,6,7,8-HxCDD	99.9	76 - 134	13C-1,2,3,6,7,8-HxCDD	38.0	25 - 163
1,2,3,7,8,9-HxCDD	100	64 - 162	13C-1,2,3,7,8,9-HxCDD	37.7	21 - 193
1,2,3,4,6,7,8-HpCDD	97.9	70 - 140	13C-1,2,3,4,6,7,8-HpCDD	39.8	26 - 166
OCDD	98.5	78 - 144	13C-OCDD	44.5	13 - 199
2,3,7,8-TCDF	96.2	75 - 158	13C-2,3,7,8-TCDF	36.5	22 - 152
1,2,3,7,8-PeCDF	117	80 - 134	13C-1,2,3,7,8-PeCDF	37.8	21 - 192
2,3,4,7,8-PeCDF	119	68 - 160	13C-2,3,4,7,8-PeCDF	37.4	13 - 328
1,2,3,4,7,8-HxCDF	106	72 - 134	13C-1,2,3,4,7,8-HxCDF	35.4	19 - 202
1,2,3,6,7,8-HxCDF	106	84 - 130	13C-1,2,3,6,7,8-HxCDF	36.0	21 - 159
2,3,4,6,7,8-HxCDF	105	70 - 156	13C-2,3,4,6,7,8-HxCDF	36.3	22 - 176
1,2,3,7,8,9-HxCDF	108	78 - 130	13C-1,2,3,7,8,9-HxCDF	36.5	17 - 205
1,2,3,4,6,7,8-HpCDF	104	82 - 122	13C-1,2,3,4,6,7,8-HpCDF	37.7	21 - 158
1,2,3,4,7,8,9-HpCDF	107	78 - 138	13C-1,2,3,4,7,8,9-HpCDF	40.5	20 - 186
OCDF	105	63 - 170	13C-OCDF	41.2	13 - 199
			CRS 37Cl-2,3,7,8-TCDD	34.8	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: PRR1SC	DLPC-04								EPA Met	hod 1613B
Client Data Name: ARCA Project: Date Collected: 29-Nov	DIS U.S., Inc. v-2012 12:25	Sample Da Matrix: Sample S % Solids	nta Soil Size: 10.4 g : 97.0		Lab Lab QC Date	Foratory Data Sample: Batch: e	2110013-01 B2L0007 06-Dec-12 02:07	Date Received: Date Extracted: Column: ZB-5 A	30-Nov-2012 30-Nov-2012 nalyst: MAS	8:40 13:29
Analyte Cor	nc. (pg/g)	DL	EMPC	Qualifiers		Labeled Stand	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.181			IS	13C-2,3,7,8-TC	CDD	92.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.243				13C-1,2,3,7,8-1	PeCDD	85.2	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.144				13C-1,2,3,4,7,8	3-HxCDD	91.3	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.156				13C-1,2,3,6,7,8	3-HxCDD	91.3	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.153				13C-1,2,3,7,8,9	-HxCDD	89.8	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.527				13C-1,2,3,4,6,7	,8-HpCDD	83.2	23 - 140	
OCDD	1.73			J		13C-OCDD		78.6	17 - 157	
2,3,7,8-TCDF	ND	0.206				13C-2,3,7,8-TC	CDF	88.8	24 - 169	
1,2,3,7,8-PeCDF	ND	0.174				13C-1,2,3,7,8-1	PeCDF	104	24 - 185	
2,3,4,7,8-PeCDF	ND	0.193				13C-2,3,4,7,8-1	PeCDF	103	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.104				13C-1,2,3,4,7,8	3-HxCDF	83.0	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.104				13C-1,2,3,6,7,8	3-HxCDF	78.8	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.113				13C-2,3,4,6,7,8	3-HxCDF	84.4	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.129				13C-1,2,3,7,8,9	-HxCDF	94.3	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND		0.176			13C-1,2,3,4,6,7	,8-HpCDF	88.5	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.129				13C-1,2,3,4,7,8	3,9-HpCDF	88.3	26 - 138	
OCDF	ND		0.557			13C-OCDF		83.1	17 - 157	
					CRS	37Cl-2,3,7,8-T	CDD	79.3	35 - 197	
						Toxic Equival	ent Quotient (TEQ) Data		
						TEQMinWHO	2005Dioxin	0.000519		
TOTALS										
Total TCDD	0.178									
Total PeCDD	ND	0.243								
Total HxCDD	ND	0.208								
Total HpCDD	ND	0.527								
Total TCDF	ND	0.206								
Total PeCDF	ND	0.339								
Total HxCDF	ND	0.169	0.176							
Total HpCDF	ND		0.1/6							

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: PRR1SC	DLPC-07								EPA Met	hod 1613B
Client Data Name: ARCA Project: Date Collected: 29-Nov	DIS U.S., Inc. v-2012 11:35	Sample Data Matrix: Sample Size: % Solids:	Soil 10.4 g 96.9		Lab Lab QC Date	Doratory Data Sample: Batch: e	2110013-02 B2L0007 05-Dec-12 23:43	Date Received: Date Extracted: Column: ZB-5 Ar	30-Nov-2012 04-Dec-2012 nalyst: MAS	8:40 13:54
Analyte Cor	nc. (pg/g)	DL EMP	C Qu	ualifiers		Labeled Stand	lard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.157			IS	13C-2,3,7,8-T	CDD	89.1	25 - 164	
1,2,3,7,8-PeCDD	ND	0.330				13C-1,2,3,7,8-	PeCDD	79.4	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.204				13C-1,2,3,4,7,	8-HxCDD	84.8	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.228				13C-1,2,3,6,7,	8-HxCDD	82.1	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.217				13C-1,2,3,7,8,	9-HxCDD	86.1	32 - 141	
1,2,3,4,6,7,8-HpCDD	0.183			J		13C-1,2,3,4,6,	7,8-HpCDD	97.0	23 - 140	
OCDD	0.828			J		13C-OCDD		111	17 - 157	
2,3,7,8-TCDF	ND	0.112				13C-2,3,7,8-T	CDF	86.5	24 - 169	
1,2,3,7,8-PeCDF	ND	0.222				13C-1,2,3,7,8-	PeCDF	84.6	24 - 185	
2,3,4,7,8-PeCDF	ND	0.220				13C-2,3,4,7,8-	PeCDF	85.9	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0778				13C-1,2,3,4,7,	8-HxCDF	82.6	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0865				13C-1,2,3,6,7,	8-HxCDF	78.9	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0962				13C-2,3,4,6,7,	8-HxCDF	80.9	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.108				13C-1,2,3,7,8,	9-HxCDF	85.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.161				13C-1,2,3,4,6,	7,8-HpCDF	87.4	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0751				13C-1,2,3,4,7,	8,9-HpCDF	116	26 - 138	
OCDF	ND	0.267				13C-OCDF		110	17 - 157	
					CRS	37Cl-2,3,7,8-T	CDD	84.4	35 - 197	
						Toxic Equival	lent Quotient (TEQ) Data		
						TEQMinWHO	2005Dioxin	0.00208		
TOTALS										
Total TCDD	ND	0.157								
Total PeCDD	ND	0.330								
Total HxCDD	ND	0.319								
Total HpCDD	0.183	0.33	32							
Total TCDF	ND	0.112								
Total PeCDF	ND	0.221								
Total HxCDF	ND	0.155								
Total HpCDF	ND	0.165								

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: Matrix Spi	ke								EPA Method 1613B
Matrix: Solid Sample Size: 10.3/10.3 g		QC B Date F	Extracted: 04-	L0007 ·Dec-2012	13:54		Lab Sample:B2L0007-MS1/BDate Analyzed:06-Dec-12 00:31	2L0007-MSD1 Column: ZB-5 A	nalyst: MAS
	Spike-MS	MS	Spike-MSD	MSD	DDD			A/ D	
Analyte	pg/g	%R	pg/g	%R	RPD		Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	20.0	94.7	20.1	88.4	6.01	IS	13C-2,3,7,8-TCDD	90.1	20 - 175
1,2,3,7,8-PeCDD	99.8	111	101	107	2.91		13C-1,2,3,7,8-PeCDD	91.5	21 - 227
1,2,3,4,7,8-HxCDD	99.8	101	101	99.7	0.441		13C-1,2,3,4,7,8-HxCDD	93.9	21 - 193
1,2,3,6,7,8-HxCDD	99.8	97.6	101	98.6	1.84		13C-1,2,3,6,7,8-HxCDD	92.8	25 - 163
1,2,3,7,8,9-HxCDD	99.8	99.6	101	101	2.05		13C-1,2,3,7,8,9-HxCDD	94.5	21 - 193
1,2,3,4,6,7,8-HpCDD	99.8	107	101	95.8	9.98		13C-1,2,3,4,6,7,8-HpCDD	89.4	26 - 166
OCDD	200	107	201	109	2.05		13C-OCDD	87.5	13 - 199
2,3,7,8-TCDF	20.0	92.3	20.1	91.6	0.0559		13C-2,3,7,8-TCDF	86.8	22 - 152
1,2,3,7,8-PeCDF	99.8	111	101	118	7.39		13C-1,2,3,7,8-PeCDF	93.1	21 - 192
2,3,4,7,8-PeCDF	99.8	120	101	117	1.63		13C-2,3,4,7,8-PeCDF	101	13 - 328
1,2,3,4,7,8-HxCDF	99.8	108	101	104	2.13		13C-1,2,3,4,7,8-HxCDF	89.7	19 - 202
1,2,3,6,7,8-HxCDF	99.8	111	101	107	3.05		13C-1,2,3,6,7,8-HxCDF	84.8	21 - 159
2,3,4,6,7,8-HxCDF	99.8	110	101	106	2.50		13C-2,3,4,6,7,8-HxCDF	86.6	22 - 176
1,2,3,7,8,9-HxCDF	99.8	109	101	104	4.19		13C-1,2,3,7,8,9-HxCDF	91.3	17 - 205
1,2,3,4,6,7,8-HpCDF	99.8	108	101	99.4	7.74		13C-1,2,3,4,6,7,8-HpCDF	91.8	21 - 158
1,2,3,4,7,8,9-HpCDF	99.8	105	101	104	0.269		13C-1,2,3,4,7,8,9-HpCDF	90.7	20 - 186
OCDF	200	111	201	104	5.33		13C-OCDF	82.5	13 - 199
						CRS	37Cl-2,3,7,8-TCDD	78.4	31 - 191

LCL-UCL - Lower control limit - upper control limit

Method 1613 MDL Study Solid

Compound	MDL	RL
2,3,7,8-TCDD	0.0616	0.5
1,2,3,7,8-PeCDD	0.307	2.5
1,2,3,4,7,8-HxCDD	0.236	2.5
1,2,3,6,7,8-HxCDD	0.331	2.5
1,2,3,7,8,9-HxCDD	0.174	2.5
1,2,3,4,6,7,8-HpCDD	0.330	2.5
OCDD	0.726	5.0
2,3,7,8-TCDF	0.0737	0.5
1,2,3,7,8-PeCDF	0.232	2.5
2,3,4,7,8-PeCDF	0.240	2.5
1,2,3,4,7,8-HxCDF	0.262	2.5
1,2,3,6,7,8-HxCDF	0.261	2.5
2,3,4,6,7,8-HxCDF	0.158	2.5
1,2,3,7,8,9-HxCDF	0.276	2.5
1,2,3,4,6,7,8-HpCDF	0.219	2.5
1,2,3,4,7,8,9-HpCDF	0.315	2.5
OCDF	0.205	5.0
Unitar na/a		

Units: pg/g 19-August-2012

* based on 10 grams of sample. DLs are sample and congener specific.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	Recovery was outside laboratory acceptance limits.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	CA00413
Alabama Dept of Environmental Management	41610
Arizona Department Of Health Services	AZ0639
Arkansas Dept of Environmental Quality	11-035-0
California Dept of Health – NELAP	02102CA
Colorado Dept of Public Health & Environment	N/A
Connecticut Dept of Public Health	PH-0182
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Dept of Health	E87777
Indiana Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Louisiana Department of Health and Hospitals	LA110017
Maine Department of Health	2010021
Michigan Department of Natural Resources	9932
Mississippi Department of Health	N/A
Nevada Division of Environmental Protection	CA004132011-1
New Jersey Dept of Environmental Protection	CA003
New York Department of Health	11411
North Carolina Dept of Health & Human Services	06700
North Dakota Dept of Health	R-078
Oklahoma Dept of Environmental Quality	2011-120
Oregon Laboratory Accreditation Program	CA200001
Pennsylvania Dept of Environmental Protection	68-00490
South Carolina Dept of Health	87002001
Tennessee Dept of Environment and Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-11-2
Utah Dept of Health	CA16400
Virginia Dept of General Services	00013
Washington Department of Ecology	C584
Wisconsin Dept of Natural Resources	998036160

0	ARCADIS
ALC: NO	A VER MARKER RAN
Libraren	and the second s

ARCADIS

6723 Towpath Rd Syracuse, NY 13214

Phone/Fax: (315) 671-9688

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order #

Page 1 of 1

2110013

																			1.	1	-		
PROJ. NO.		PROJECT NAME													SDG NUMBER	COC Number							
B0009964.0002.70004		Tierra Ph	ase I Rem	oval																		PRR1356	
SAMPLERS:						Requested Analyses									and the state of the Spectrum States of the								
SAMPLE ID	DATE	TIME	TIME MATRIX Composite/Grab # Containers					3	4 5	6	7	7 8 9 10 11 12 13 14					14	15	16	17	Remarks		
PRR1SOLPC-04	11/29/2012	12:25	soil	Grab	2	X						Τ	T		T	T	T	1			T	1	
PRR1SOLPC-07	11/29/2012	11:35	soil	Grab	3	X		T			Τ				T			T				MS/MSD collect	ed
										Τ		Τ											Last strand a state of the stat
										Τ					T		Ι				Ι	1	
								T															
								T	Τ	Τ													
								T	Τ	Τ													
										Τ		Τ			T		T						
					1			T		T			Τ		T			1					
								T		T	Τ		Τ	Ι	Τ	Τ	Τ				T		
Requested Analyses Special Instructions/Comments:				Special QA/QC Instructions																			
1 Dioxins (PCDD/PCDFs)	 There are an even about processing data being a set of the being of the set of the set	1 extra 4 oz jar submitted in case of sample breakage.							********	al ann an àmhrac	And the second												
3								Lab	aboratory Information and Receipt														
4		Lab Name	: Vista Ana	lytical - El Dorado H	lills, CA		Cooler packed with ice							Sample Receipt:									
7		Shipping T	'racking #																				
5		Specify Turnaround Requirements: 7 day TAT						Cooler custody seal intact							ditio	tion/Cooler Temp:							
7	·····	Relinquish	d by:	DATE	TIME /	Rec	eive	by:			Relinguished by:				I	DATI	E	Received by:					
8		TAAL	/	11/201.7	11.30	n	Dall: SA				1	1											
9		JUNK		1.10.11.0	10/0-	EXAMINE Y YOULDU				11/30/120744													
10		Relinquishe	ed by:	DATE	TIME	Rec	eive	by:				Re	linqu	ishe	d by:					DAT	E	Received by:	
11																							
12												1						_			-		
13		Relinquishe	ed by:	DATE	TIME	Rec	eiveo	l by:				Re	linqu	lishe	d by:					DATE		Received by:	
14		-																					
15							inter and the	1940-144	100 1000		R-101-7/58	un and and and and and and and and and an	110 MIL			1919-1919-1919-1				n bolan carried	the second	<u> </u>	
17		-																					
+11		1 C																					

Vista Analytical – El Dorado Hills, CA

SDG TRACKING LOG

SDG Number PRR1356

SDG Open Date 11/29/2012

Sample Matrix _____ Soil

SDG Close Date 11/29/2012

Sample #	Sample ID	MS/MSD	Comments
1	PRR1SOLPC-04		Two 4 oz jars (1 extra in case of breakage)
2	PRR1SOLPC-07	x	Three 4 oz jars (1 extra in case of breakage)
3			
4			
5			
6		1	
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17		1	
18			
19			
20			

Notes:

1. The SDG must not exceed 20 field samples. Trip or Field Blanks do not count towards the sample total. Check which of the 20 samples has been collected to include extra volume for MS/MSD and assigned as such.

2. 3x the weights listed should be collected for lab QC (i.e., MS/MSD/internal lab duplicate).

3. Field duplicate is a separate sample, not to be confused with "internal lab duplicate."

SAMPLE LOG-IN CHECKLIST

V	Vista Analytical Laboratory

Vista Project #:	2110013			TAT	7		
	Date/Time	Initials:		Location: WR-2			
Samples Arrival:	11/30/12 074	I FER	3	Shelf/Rack: NA			
Logged In:	Date/Time 11/30/12_0840	Initials:	lB	Location Shelf/Ra	: U ck:	IR-2 F3	
Delivered By:	FedEx UPS	On Trac	DHL	- Ha Deliv	and /ered	Other	
Preservation:	Ice B	lue Ice	Dr	y Ice		None	
Temp °C	Time: 0	143		Thermon	neter II	D: IR-1	

					YES	NO	NA
Adequate Sample Volume Re	\checkmark						
Holding Time Acceptable?	V						
Shipping Container(s) Intact?					V		
Shipping Custody Seals Intac	t?				~		
Shipping Documentation Pres	ent?				V		
Airbill Trk #	V						
Sample Container Intact?	V						
Sample Custody Seals Intact?	>						~
Chain of Custody / Sample Do	ocumentation P	resent?			V		
COC Anomaly/Sample Accep		V	37 5				
If Chlorinated or Drinking Wat			V				
Na ₂ S ₂ O ₃ Preservation Docum		None	>				
Shipping Container	Vista	Client Retain Ret			turn	Disp	ose
Comments:			C				

From: (732) 575-4275 Michael Pelenski ARCADIS 117 Blanchard St.	Origin ID: VAKA	Ship Date: 29NOV12 Dims: 24 X 13 X 14 ActWgt: 20.0 LB Dims: 24 X 13 X 14 CAD: 103886297/INET3300 Dims: 24 X 13 X 14 Delivery Address Bar Code Dims: 24 X 13 X 14	IN
Newark, NJ 07105	J12201209200325		
SHIP TO: (916) 673-1520 Martha Maier Vista 1104 WINDFIELD W	BILL SENDER	Ref # B0009966.0002.70004 Invoice # PO # B0009966.0002.70004 Dept #	
EL DORADO HILLS,	CA 95762		
			FRI - JUNUV AZ
		TRK# 7941 8059 0336	FIRSTOVERNIGHT
		0201	05769
		X1 MHRA	SUPERATE CA-US
			21/11
		515G3/EG3/AA44	

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

December 18, 2012 Vista Project I.D.: 2120040

Mr. Joseph Houser ARCADIS U.S., Inc. 6723 Towpath Road Syracuse, NY 13214-0066

Dear Mr. Houser,

Enclosed are the results for the three soil samples received at Vista Analytical Laboratory on December 14, 2012. These samples were analyzed on a rush turn-around time, under your Project Name: Tierra Phase I Removal. These samples were extracted and analyzed using EPA Method 1613B.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at Calvin@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

& hula

Calvin Tanaka Senior Scientist

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Project No. 2120040, SDG: PRR1357 Case Narrative

Sample Condition on Receipt:

Three soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613

These samples were extracted and analyzed for tetra- through octa- chlorinated dioxins and furans by EPA Method 1613 using a ZB-5 GC column.

Holding Times

The method holding time criteria were met for these samples.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. Total HpCDD was detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.
TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Method 1613 Solid 2012	11
Qualifiers	12
Certifications	13
Sample Receipt	14

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2120040-01	PRR1SOLPC-08	10-Dec-12 12:45	14-Dec-12 07:39	Glass Jar, 120mL
		10-Dec-12 12:45	14-Dec-12 07:39	Glass Jar, 120mL
2120040-02	PRR1SOLPC-01	11-Dec-12 14:30	14-Dec-12 07:39	Glass Jar, 120mL
		11-Dec-12 14:30	14-Dec-12 07:39	Glass Jar, 120mL
2120040-03	PRR1SOLPC-02	12-Dec-12 15:15	14-Dec-12 07:39	Glass Jar, 120mL
		12-Dec-12 15:15	14-Dec-12 07:39	Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Met	hod Blank							EPA Method	1613B
Matrix: Solid Sample Size: 10.0 g	ġ.	QC Batch: Date Extracted:	B2L0045 14-Dec-2012 10:25		Lab San Date An	nple: B2L0045-BLK1 alyzed: 17-Dec-12 20:07 Col	lumn: ZB-5 Analy	st: MAS	
Analyte	Conc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL Qu	alifiers
2,3,7,8-TCDD	ND	0.101			IS	13C-2,3,7,8-TCDD	98.4	25 - 164	
1,2,3,7,8-PeCDD	ND	0.106				13C-1,2,3,7,8-PeCDD	102	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.0887				13C-1,2,3,4,7,8-HxCDD	83.6	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.109				13C-1,2,3,6,7,8-HxCDD	78.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.109				13C-1,2,3,7,8,9-HxCDD	81.1	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.119				13C-1,2,3,4,6,7,8-HpCDD	85.3	23 - 140	
OCDD	ND	0.428				13C-OCDD	88.0	17 - 157	
2,3,7,8-TCDF	ND	0.0429				13C-2,3,7,8-TCDF	101	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0697				13C-1,2,3,7,8-PeCDF	89.8	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0755				13C-2,3,4,7,8-PeCDF	87.8	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0576				13C-1,2,3,4,7,8-HxCDF	107	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0666				13C-1,2,3,6,7,8-HxCDF	97.0	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0763				13C-2,3,4,6,7,8-HxCDF	93.5	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0976				13C-1,2,3,7,8,9-HxCDF	96.3	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0545				13C-1,2,3,4,6,7,8-HpCDF	87.7	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0672				13C-1,2,3,4,7,8,9-HpCDF	92.8	26 - 138	
OCDF	ND	0.141				13C-OCDF	96.0	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	102	35 - 197	
						Toxic Equivalent Quotient (Tl	EQ) Data		
						TEQMinWHO2005Dioxin	0.00		
TOTALS									
Total TCDD	ND	0.101							
Total PeCDD	ND	0.106							
Total HxCDD	ND	0.102							
Total HpCDD	0.119								
Total TCDF	ND	0.0429							
Total PeCDF	ND	0.0725							
Total HxCDF	ND	0.0733							
Total HpCDF	ND	0.0598							

EMPC - Estimated maximum possible concentration

Sample ID: OPR					EPA Method 1613B
Matrix: Solid Sample Size: 10.0 g		QC Batch:B2L0045Date Extracted:14-Dec-2012	10:25 Lab Sample: Date Analyzed:	B2L0045-BS1 17-Dec-12 16:55 Co	lumn: ZB-5 Analyst: MAS
Analyte	%R	Limits	Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	102	67 - 158	IS 13C-2,3,7,8-TCDD	88.1	20 - 175
1,2,3,7,8-PeCDD	94.4	70 - 142	13C-1,2,3,7,8-PeCDD	93.5	21 - 227
1,2,3,4,7,8-HxCDD	99.8	70 - 164	13C-1,2,3,4,7,8-HxCDD	87.4	21 - 193
1,2,3,6,7,8-HxCDD	106	76 - 134	13C-1,2,3,6,7,8-HxCDD	81.2	25 - 163
1,2,3,7,8,9-HxCDD	103	64 - 162	13C-1,2,3,7,8,9-HxCDD	86.6	21 - 193
1,2,3,4,6,7,8-HpCDD	105	70 - 140	13C-1,2,3,4,6,7,8-HpCDD	82.3	26 - 166
OCDD	101	78 - 144	13C-OCDD	87.2	13 - 199
2,3,7,8-TCDF	98.7	75 - 158	13C-2,3,7,8-TCDF	86.7	22 - 152
1,2,3,7,8-PeCDF	112	80 - 134	13C-1,2,3,7,8-PeCDF	91.4	21 - 192
2,3,4,7,8-PeCDF	109	68 - 160	13C-2,3,4,7,8-PeCDF	100	13 - 328
1,2,3,4,7,8-HxCDF	110	72 - 134	13C-1,2,3,4,7,8-HxCDF	97.4	19 - 202
1,2,3,6,7,8-HxCDF	113	84 - 130	13C-1,2,3,6,7,8-HxCDF	88.8	21 - 159
2,3,4,6,7,8-HxCDF	114	70 - 156	13C-2,3,4,6,7,8-HxCDF	87.8	22 - 176
1,2,3,7,8,9-HxCDF	112	78 - 130	13C-1,2,3,7,8,9-HxCDF	90.2	17 - 205
1,2,3,4,6,7,8-HpCDF	113	82 - 122	13C-1,2,3,4,6,7,8-HpCDF	86.9	21 - 158
1,2,3,4,7,8,9-HpCDF	115	78 - 138	13C-1,2,3,4,7,8,9-HpCDF	88.2	20 - 186
OCDF	111	63 - 170	13C-OCDF	84.6	13 - 199
			CRS 37Cl-2,3,7,8-TCDD	85.4	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: PRR1SC	DLPC-08							EPA Met	hod 1613B
Client Data Name: ARCA Project: Date Collected: 10-Dec	DIS U.S., Inc. 2-2012 12:45	Sample D Matrix: Sample % Solid	Soil Size: 10.2 g s: 97.3		Lat Lab QC Dat	Doratory Data 9 Sample: 2120040-01 Batch: B2L0045 re Analyzed : 17-Dec-12 22:32	Date Received: Date Extracted: Column: ZB-5 A	14-Dec-2012 14-Dec-2012 nalyst: MAS	7:39 10:25
Analyte Con	nc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.435			J	IS	13C-2,3,7,8-TCDD	86.1	25 - 164	
1,2,3,7,8-PeCDD	0.179			J		13C-1,2,3,7,8-PeCDD	89.5	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.190				13C-1,2,3,4,7,8-HxCDD	66.5	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.235				13C-1,2,3,6,7,8-HxCDD	61.8	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.243				13C-1,2,3,7,8,9-HxCDD	61.8	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND		0.105			13C-1,2,3,4,6,7,8-HpCDD	76.8	23 - 140	
OCDD	0.914			J		13C-OCDD	85.0	17 - 157	
2,3,7,8-TCDF	ND	0.0413				13C-2,3,7,8-TCDF	81.0	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0773				13C-1,2,3,7,8-PeCDF	77.3	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0820				13C-2,3,4,7,8-PeCDF	78.7	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0529				13C-1,2,3,4,7,8-HxCDF	90.1	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0570				13C-1,2,3,6,7,8-HxCDF	81.7	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0697				13C-2,3,4,6,7,8-HxCDF	80.8	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0841				13C-1,2,3,7,8,9-HxCDF	83.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0852				13C-1,2,3,4,6,7,8-HpCDF	77.0	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0714				13C-1,2,3,4,7,8,9-HpCDF	86.8	26 - 138	
OCDF	ND	0.226				13C-OCDF	92.9	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	88.5	35 - 197	
						Toxic Equivalent Quotient (TEQ)) Data		
						TEQMinWHO2005Dioxin	0.614		
TOTALS									
Total TCDD	253		253						
Total PeCDD	26.9								
Total HxCDD	0.359		0.778						
Total HpCDD	0.174		0.278	В					
Total TCDF	21.3		21.3						
Total PeCDF	2.93								
Total HxCDF	0.0947		0.219						
Total HpCDF	ND	0.138							

EMPC - Estimated maximum possible concentration

Sample ID: PRR1SC	DLPC-01						EPA Method 1613B
Client Data Name: ARCA Project: Date Collected: 11-Dec	DIS U.S., Inc. c-2012 14:30	Sample DataMatrix:SoilSample Size:10.3 g% Solids:97.1		Lal Lat QC Dat	Doratory Data 9 Sample: 2120040-02 Batch: B2L0045 e Analyzed : 17-Dec-12 23:2	Date Received: Date Extracted: 0 Column: ZB-5 A	14-Dec-2012 7:39 14-Dec-2012 10:25 .nalyst: MAS
Analyte Con	nc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers
2,3,7,8-TCDD	ND	0.103		IS	13C-2,3,7,8-TCDD	76.1	25 - 164
1,2,3,7,8-PeCDD	ND	0.0623			13C-1,2,3,7,8-PeCDD	83.3	25 - 181
1,2,3,4,7,8-HxCDD	ND	0.0999			13C-1,2,3,4,7,8-HxCDD	57.0	32 - 141
1,2,3,6,7,8-HxCDD	ND	0.111			13C-1,2,3,6,7,8-HxCDD	53.4	28 - 130
1,2,3,7,8,9-HxCDD	ND	0.104			13C-1,2,3,7,8,9-HxCDD	58.6	32 - 141
1,2,3,4,6,7,8-HpCDD	0.125		J		13C-1,2,3,4,6,7,8-HpCDD	78.9	23 - 140
OCDD	0.632		J		13C-OCDD	72.2	17 - 157
2,3,7,8-TCDF	ND	0.0496			13C-2,3,7,8-TCDF	73.4	24 - 169
1,2,3,7,8-PeCDF	ND	0.0605			13C-1,2,3,7,8-PeCDF	70.9	24 - 185
2,3,4,7,8-PeCDF	ND	0.0598			13C-2,3,4,7,8-PeCDF	66.0	21 - 178
1,2,3,4,7,8-HxCDF	ND	0.0365			13C-1,2,3,4,7,8-HxCDF	79.4	26 - 152
1,2,3,6,7,8-HxCDF	ND	0.0369			13C-1,2,3,6,7,8-HxCDF	73.1	26 - 123
2,3,4,6,7,8-HxCDF	ND	0.0434			13C-2,3,4,6,7,8-HxCDF	75.0	28 - 136
1,2,3,7,8,9-HxCDF	ND	0.0534			13C-1,2,3,7,8,9-HxCDF	75.3	29 - 147
1,2,3,4,6,7,8-HpCDF	0.0686		J		13C-1,2,3,4,6,7,8-HpCDF	75.8	28 - 143
1,2,3,4,7,8,9-HpCDF	ND	0.0468			13C-1,2,3,4,7,8,9-HpCDF	81.9	26 - 138
OCDF	0.0840		J		13C-OCDF	81.3	17 - 157
				CRS	37Cl-2,3,7,8-TCDD	90.8	35 - 197
					Toxic Equivalent Quotient (TE	Q) Data	
					TEQMinWHO2005Dioxin	0.00215	
TOTALS							
Total TCDD	ND	0.103					
Total PeCDD	ND	0.139					
Total HxCDD	ND	0.158		_			
Total HpCDD	0.254		В				
Total TCDF	ND	0.0496					
Total PeCDF	ND	0.0792					
Total HxCDF	ND	0.0661					
Total HpCDF	0.0686						

EMPC - Estimated maximum possible concentration

Sample ID: PRR1SC	DLPC-02								EPA Me	thod 1613B
Client Data Name: ARCA Project: Date Collected: 12-Dec	DIS U.S., Inc. c-2012 15:15	Sample Matrix Sample % Soli	Data :: Soil e Size: 10.0 g ds: 99.2		Lal Lab QC Dat	Doratory Data Sample: Batch: e Analyzed :	2120040-03 B2L0045 18-Dec-12 00:0	Date Received: Date Extracted: 8 Column: ZB-5 A	14-Dec-2012 14-Dec-2012 nalyst: MAS	7:39 10:25
Analyte Cor	nc. (pg/g)	DL	EMPC	Qualifiers		Labeled Stan	dard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.210			IS	13C-2,3,7,8-T	CDD	90.7	25 - 164	
1,2,3,7,8-PeCDD	ND	0.0576				13C-1,2,3,7,8	-PeCDD	97.3	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.155				13C-1,2,3,4,7	,8-HxCDD	63.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.181				13C-1,2,3,6,7	,8-HxCDD	54.2	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.172				13C-1,2,3,7,8	,9-HxCDD	55.6	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND		0.0895			13C-1,2,3,4,6	,7,8-HpCDD	76.5	23 - 140	
OCDD	0.718			J		13C-OCDD		76.6	17 - 157	
2,3,7,8-TCDF	ND	0.0408				13C-2,3,7,8-T	CDF	92.1	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0562				13C-1,2,3,7,8	-PeCDF	62.3	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0515				13C-2,3,4,7,8	-PeCDF	73.0	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.0448				13C-1,2,3,4,7	,8-HxCDF	90.6	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.0498				13C-1,2,3,6,7	,8-HxCDF	84.5	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0499				13C-2,3,4,6,7	,8-HxCDF	86.3	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0630				13C-1,2,3,7,8	,9-HxCDF	87.8	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND	0.0477				13C-1,2,3,4,6	,7,8-HpCDF	78.0	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.0408				13C-1,2,3,4,7	,8,9-HpCDF	80.7	26 - 138	
OCDF	ND	0.228				13C-OCDF		85.9	17 - 157	
					CRS	37Cl-2,3,7,8-7	TCDD	99.2	35 - 197	
						Toxic Equiva	lent Quotient (TE	Q) Data		
						TEQMinWHO	02005Dioxin	0.000215		
TOTALS										
Total TCDD	ND	0.210								
Total PeCDD	ND	0.0576								
Total HxCDD	ND	0.328								
Total HpCDD	0.118		0.208	В						
Total TCDF	ND	0.0408								
Total PeCDF	ND	0.0960								
Total HxCDF	ND	0.0852								
Total HpCDF	ND	0.0562								

EMPC - Estimated maximum possible concentration

Method 1613 MDL Study Solid

Compound	MDL	RL
2,3,7,8-TCDD	0.0616	0.5
1,2,3,7,8-PeCDD	0.307	2.5
1,2,3,4,7,8-HxCDD	0.236	2.5
1,2,3,6,7,8-HxCDD	0.331	2.5
1,2,3,7,8,9-HxCDD	0.174	2.5
1,2,3,4,6,7,8-HpCDD	0.330	2.5
OCDD	0.726	5.0
2,3,7,8-TCDF	0.0737	0.5
1,2,3,7,8-PeCDF	0.232	2.5
2,3,4,7,8-PeCDF	0.240	2.5
1,2,3,4,7,8-HxCDF	0.262	2.5
1,2,3,6,7,8-HxCDF	0.261	2.5
2,3,4,6,7,8-HxCDF	0.158	2.5
1,2,3,7,8,9-HxCDF	0.276	2.5
1,2,3,4,6,7,8-HpCDF	0.219	2.5
1,2,3,4,7,8,9-HpCDF	0.315	2.5
OCDF	0.205	5.0

Units: pg/g 19-August-2012

* based on 10 grams of sample. DLs are sample and congener specific.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	Recovery was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number				
Alaska Department of Environmental Conservation	CA00413				
Alabama Dept of Environmental Management	41610				
Arizona Department Of Health Services	AZ0639				
Arkansas Dept of Environmental Quality	11-035-0				
California Dept of Health – NELAP	02102CA				
Colorado Dept of Public Health & Environment	N/A				
Connecticut Dept of Public Health	PH-0182				
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01				
Florida Dept of Health	E87777				
Indiana Department of Health	N/A				
Louisiana Department of Environmental Quality	01977				
Louisiana Department of Health and Hospitals	LA110017				
Maine Department of Health	2010021				
Michigan Department of Natural Resources	9932				
Mississippi Department of Health	N/A				
Nevada Division of Environmental Protection	CA004132011-1				
New Jersey Dept of Environmental Protection	CA003				
New York Department of Health	11411				
North Carolina Dept of Health & Human Services	06700				
North Dakota Dept of Health	R-078				
Oklahoma Dept of Environmental Quality	2011-120				
Oregon Laboratory Accreditation Program	CA200001				
Pennsylvania Dept of Environmental Protection	68-00490				
South Carolina Dept of Health	87002001				
Tennessee Dept of Environment and Conservation	TN02996				
Texas Commission on Environmental Quality	T104704189-11-2				
Utah Dept of Health	CA16400				
Virginia Dept of General Services	00013				
Washington Department of Ecology	C584				
Wisconsin Dept of Natural Resources	998036160				

ARCADIS

6723 Towpath Rd

8

9

10

11

12 13

14

7

Syracuse, NY 13214

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order #

Page 1 of 1

Phone/Fax: (315) 671-96	588															1	12	0C	12/	0		AOR		
PROJ. NO. B0009964.0002.70004		PROJECT Tierra Ph	NAME	oval		(dati-sta						AND COLOR				21	1					SDG NUMB	ER COC Num	ber
SAMPLERS:		ntern Agen Agen Landston and an and an and an and a		na n		T									w							PRR1357		
SAMPLE ID	DATE	TIME	MATRIX	Composite (Crock	# Containen	-		Π		Τ	Π	Re	ques	ted	Ana	lyses	1	T	T	T	1			
PRR1SOLPC-08	12/10/2012	12:45	soil	Grab	# containers	1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	17		Remarks	
PRR1SOLPC-01	12/11/2012	14:30	soil	Grab	2	X			_	-	_	_							1	1	1			
PRR1SOLPC-02	12/12/2012	15:15	soil	Grab	2	X	-			_											1			
			3011	Grab	22	X			-									1			1	1		
						_		-+	-		\rightarrow	_										1		
								-+			-					ļ								
						-	\vdash	-+-	+	+	+	+												
								+	+	+	+	+		-										
							1	+	+	+	+	+												
and the second								+	+	+	+	+	+	-								<u> </u>		
Requested	Analyses	Special In	structions/	Comments:											6									
1 DIOXINS (PCDD/PCDFs)		1 extra 4 o	z jar submi	tted in case of samp	le breakage.										Spe	cial (2A/C	(C In	struc	tion	2			
3				Nonugal and American																				
4		Lab M					South of the local division of the local div	Labo	orat	ory	Info	rma	tion a	and F	ecei	nt		1010 A. 100	With States					
7		Lab Name: Vista Analytical - El Dorado Hills, CA									Τ					pe								
5		Shipping Tracking #] Co	oler p	acke	d wit	th ice				Samp	ole R	eceipt:		
6		Specify Turnaround Requirements: 7 day TAT																	H	Const		10 1 7		
7		Dellast	,									I Co	oler c	usto	dy se	al int	act		1	Lond	itior	i/Cooler Temp:		
		reinquished	by:	DATE	TIME		1		and shared and	and the second	-	-	-	Contraction of the local	INVASION D		in martin	the second s						

Received by:

Hma

Received by:/

Received by:

Relinquished by:

Relinquished by:

Relinquished by:

12/14/12 0742

DATE

DATE

DATE

Received by:

Received by:

Received by:

DATE

12/13/12

DATE

DATE

M

Relinquished by:

Relinguished by:

TIME

TIME

TIME

1800

Vista Analytical – El Dorado Hills, CA

SDG TRACKING LOG

SDG Number _____ PRR1357

SDG Open Date 12/13/2012

Sample Matrix _____ Soil

SDG Close Date 12/13/2012

Sample #	Sample ID	MS/MSD	Comments
1	PRR1SOLPC-08		Two 4 oz jars (1 extra in case of breakage) - 12/10
2	PRR1SOLPC-01		Two 4 oz jars (1 extra in case of breakage) - 12/11
3	PRR1SOLPC-02		Two 4 oz jars (1 extra in case of breakage) - 12/12
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Notes:

1. The SDG must not exceed 20 field samples. Trip or Field Blanks do not count towards the sample total. Check which of the 20 samples has been collected to include extra volume for MS/MSD and assigned as such.

2. 3x the weights listed should be collected for lab QC (i.e., MS/MSD/internal lab duplicate).

3. Field duplicate is a separate sample, not to be confused with "internal lab duplicate."

SAMPLE LOG-IN CHECKLIST

V	Vista Analytical Laboratory
7	

Vista Project #:	212	0040			ТА	T_7			
	Date/Time	0720	Initials:	10	Location: WR-2				
Samples Arrival:	12/14/12	010	UB0B		Shelf/Rack: N/A				
	Date/Time	0011	Initials:		Location: $WR-2$				
Logged In:	12/14/12	0016	Bal	1200		Shelf/Rack: F3			
Delivered By:	FedEx	UPS	On Trac	DHL	-	Hand Delivered	Other		
Preservation:	lce) E	Blue Ice	Dr	y Ice		None		
Temp °C	C	Time:	1741		Ther	mometer I	D: IR-1		

						YES	NO	NA
Adequate Sample Volume Received? A 3 B Containers								
Holding Time Acceptable?								
Shipping Container(s) Intact?								
Shipping Custody Seals Intact?								
Shipping Documentation Prese	nt?					V		
Airbill Trk # 794297897999								
Sample Container Intact?								
Sample Custody Seals Intact?								V
Chain of Custody / Sample Doc	umentation P	resent?						
COC Anomaly/Sample Accepta	nce Form con	npleted?					\checkmark	
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pre	serv	ation?				V
$Na_2S_2O_3$ Preservation Documented? N/A COC Sample Container						None	9	
Shipping Container	Vista	Client	F	Retain	Ret	eturn Dispo		ose
Comments:								

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original lebel for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

December 31, 2012 Vista Project I.D.: 2120056

Mr. Joseph Houser ARCADIS U.S., Inc. 6723 Towpath Road Syracuse, NY 13214-0066

Dear Mr. Houser,

Enclosed are the results for the samples received at Vista Analytical Laboratory on December 20, 2012. These samples were analyzed on a rush turn-around time, under your Project Name: Tierra Phase I Removal. The work was authorized under your Purchase Order No. B0009964.0002.70004. These samples were extracted and analyzed using EPA Method 1613B.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at Calvin@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

hala

Calvin Tanaka Senior Scientist

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Project No. 2120056 Case Narrative

Sample Condition on Receipt:

Six soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1613

These samples were extracted and analyzed for tetra through octa chlorinated dioxins and furans by EPA Method 1613 using a ZB-5MS GC column.

Holding Times

The method holding time criteria were met for these samples.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. OCDD and OCDF were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Method 1613 Solid 2012	14
Qualifiers	15
Certifications	16
Sample Receipt	17

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2120056-01	PRR1SOLPC-11	14-Dec-12 11:30	20-Dec-12 10:08	Glass Jar, 120mL
		14-Dec-12 11:30	20-Dec-12 10:08	Glass Jar, 120mL
2120056-02	PRR1SOLPC-10	14-Dec-12 12:10	20-Dec-12 10:08	Glass Jar, 120mL
		14-Dec-12 12:10	20-Dec-12 10:08	Glass Jar, 120mL
2120056-03	PRR1SOLPC-05	14-Dec-12 12:45	20-Dec-12 10:08	Glass Jar, 120mL
		14-Dec-12 12:45	20-Dec-12 10:08	Glass Jar, 120mL
2120056-04	PRR1SOLPC-06	14-Dec-12 16:30	20-Dec-12 10:08	Glass Jar, 120mL
		14-Dec-12 16:30	20-Dec-12 10:08	Glass Jar, 120mL
2120056-05	PRR1SOLPC-09	18-Dec-12 14:45	20-Dec-12 10:08	Glass Jar, 120mL
		18-Dec-12 14:45	20-Dec-12 10:08	Glass Jar, 120mL
2120056-06	PRR1SOLPC-03	18-Dec-12 16:00	20-Dec-12 10:08	Glass Jar, 120mL
		18-Dec-12 16:00	20-Dec-12 10:08	Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Meth	od Blank							EPA Method 1613B
Matrix: Solid Sample Size: 10.0 g		QC Batch: Date Extracted:	B2L0084 20-Dec-2012 15:52		Lab San Date An	nple: B2L0084-BLK1 alyzed: 22-Dec-12 22:36 Colur	nn: ZB-5 Analys	st: MAS
Analyte (Conc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifiers
2,3,7,8-TCDD	ND	0.0610			IS	13C-2,3,7,8-TCDD	79.0	25 - 164
1,2,3,7,8-PeCDD	ND	0.117				13C-1,2,3,7,8-PeCDD	81.1	25 - 181
1,2,3,4,7,8-HxCDD	ND	0.155				13C-1,2,3,4,7,8-HxCDD	66.4	32 - 141
1,2,3,6,7,8-HxCDD	ND	0.174				13C-1,2,3,6,7,8-HxCDD	74.6	28 - 130
1,2,3,7,8,9-HxCDD	ND	0.190				13C-1,2,3,7,8,9-HxCDD	67.8	32 - 141
1,2,3,4,6,7,8-HpCDD	ND	0.429				13C-1,2,3,4,6,7,8-HpCDD	59.8	23 - 140
OCDD	1.78			J		13C-OCDD	46.6	17 - 157
2,3,7,8-TCDF	ND	0.0771				13C-2,3,7,8-TCDF	82.6	24 - 169
1,2,3,7,8-PeCDF	ND	0.0737				13C-1,2,3,7,8-PeCDF	73.5	24 - 185
2,3,4,7,8-PeCDF	ND	0.0717				13C-2,3,4,7,8-PeCDF	86.4	21 - 178
1,2,3,4,7,8-HxCDF	ND	0.124				13C-1,2,3,4,7,8-HxCDF	75.1	26 - 152
1,2,3,6,7,8-HxCDF	ND	0.121				13C-1,2,3,6,7,8-HxCDF	78.6	26 - 123
2,3,4,6,7,8-HxCDF	ND	0.143				13C-2,3,4,6,7,8-HxCDF	75.6	28 - 136
1,2,3,7,8,9-HxCDF	ND	0.203				13C-1,2,3,7,8,9-HxCDF	69.1	29 - 147
1,2,3,4,6,7,8-HpCDF	ND	0.283				13C-1,2,3,4,6,7,8-HpCDF	66.5	28 - 143
1,2,3,4,7,8,9-HpCDF	ND	0.412				13C-1,2,3,4,7,8,9-HpCDF	55.0	26 - 138
OCDF	0.833			J		13C-OCDF	50.6	17 - 157
					CRS	37Cl-2,3,7,8-TCDD	81.8	35 - 197
						Toxic Equivalent Quotient (TEQ	2) Data	
						TEQMinWHO2005Dioxin	0.000784	
TOTALS								
Total TCDD	ND	0.0610						
Total PeCDD	ND	0.117						
Total HxCDD	ND	0.190						
Total HpCDD	ND	0.429						
Total TCDF	ND	0.0771						
Total PeCDF	ND	0.0737						
Total HxCDF	ND	0.203						
Total HpCDF	ND	0.412						

EMPC - Estimated maximum possible concentration

Sample ID: OPR					EPA Method 1613B
Matrix: Solid Sample Size: 10.0 g		QC Batch:B2L0084Date Extracted:20-Dec-2012	15:52 Lab Sample: Date Analyzed:	B2L0084-BS1 22-Dec-12 19:17 Co	lumn: ZB-5 Analyst: MAS
Analyte	%R	Limits	Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD	102	67 - 158	IS 13C-2,3,7,8-TCDD	72.0	20 - 175
1,2,3,7,8-PeCDD	115	70 - 142	13C-1,2,3,7,8-PeCDD	73.3	21 - 227
1,2,3,4,7,8-HxCDD	109	70 - 164	13C-1,2,3,4,7,8-HxCDD	61.1	21 - 193
1,2,3,6,7,8-HxCDD	115	76 - 134	13C-1,2,3,6,7,8-HxCDD	67.1	25 - 163
1,2,3,7,8,9-HxCDD	110	64 - 162	13C-1,2,3,7,8,9-HxCDD	62.3	21 - 193
1,2,3,4,6,7,8-HpCDD	110	70 - 140	13C-1,2,3,4,6,7,8-HpCDD	54.0	26 - 166
OCDD	113	78 - 144	13C-OCDD	43.9	13 - 199
2,3,7,8-TCDF	107	75 - 158	13C-2,3,7,8-TCDF	70.5	22 - 152
1,2,3,7,8-PeCDF	103	80 - 134	13C-1,2,3,7,8-PeCDF	67.2	21 - 192
2,3,4,7,8-PeCDF	106	68 - 160	13C-2,3,4,7,8-PeCDF	77.9	13 - 328
1,2,3,4,7,8-HxCDF	101	72 - 134	13C-1,2,3,4,7,8-HxCDF	67.3	19 - 202
1,2,3,6,7,8-HxCDF	108	84 - 130	13C-1,2,3,6,7,8-HxCDF	70.2	21 - 159
2,3,4,6,7,8-HxCDF	99.5	70 - 156	13C-2,3,4,6,7,8-HxCDF	68.7	22 - 176
1,2,3,7,8,9-HxCDF	96.7	78 - 130	13C-1,2,3,7,8,9-HxCDF	64.1	17 - 205
1,2,3,4,6,7,8-HpCDF	101	82 - 122	13C-1,2,3,4,6,7,8-HpCDF	59.3	21 - 158
1,2,3,4,7,8,9-HpCDF	99.4	78 - 138	13C-1,2,3,4,7,8,9-HpCDF	50.1	20 - 186
OCDF	99.1	63 - 170	13C-OCDF	50.2	13 - 199
			CRS 37C1-2,3,7,8-TCDD	71.7	31 - 191

LCL-UCL - Lower control limit - upper control limit

Sample ID: PRR1SC	DLPC-11					EPA Method 1613B
Client Data Name: ARCA Project: Tierra Date Collected: 14-Dec	DIS U.S., Inc. Phase I Removal c-2012 11:30	Sample DataMatrix:SoilSample Size:10.3 g% Solids:98.2		Laboratory DataLab Sample:2120056-01QC Batch:B2L0084Date Analyzed :22-Dec-12 23:25	Date Received: Date Extracted: 5 Column: ZB-5 A	20-Dec-2012 10:08 20-Dec-2012 15:52 nalyst: MAS
Analyte Con	nc. (pg/g)	DL EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL Qualifiers
2,3,7,8-TCDD	ND	0.112		IS 13C-2,3,7,8-TCDD	71.5	25 - 164
1,2,3,7,8-PeCDD	ND	0.138		13C-1,2,3,7,8-PeCDD	89.6	25 - 181
1,2,3,4,7,8-HxCDD	ND	0.150		13C-1,2,3,4,7,8-HxCDD	68.3	32 - 141
1,2,3,6,7,8-HxCDD	ND	0.175		13C-1,2,3,6,7,8-HxCDD	78.9	28 - 130
1,2,3,7,8,9-HxCDD	ND	0.187		13C-1,2,3,7,8,9-HxCDD	73.8	32 - 141
1,2,3,4,6,7,8-HpCDD	0.778		J	13C-1,2,3,4,6,7,8-HpCDD	65.9	23 - 140
OCDD	5.26		В	13C-OCDD	52.0	17 - 157
2,3,7,8-TCDF	ND	0.133		13C-2,3,7,8-TCDF	68.1	24 - 169
1,2,3,7,8-PeCDF	ND	0.105		13C-1,2,3,7,8-PeCDF	78.6	24 - 185
2,3,4,7,8-PeCDF	ND	0.0941		13C-2,3,4,7,8-PeCDF	94.9	21 - 178
1,2,3,4,7,8-HxCDF	ND	0.146		13C-1,2,3,4,7,8-HxCDF	75.5	26 - 152
1,2,3,6,7,8-HxCDF	ND	0.147		13C-1,2,3,6,7,8-HxCDF	76.9	26 - 123
2,3,4,6,7,8-HxCDF	ND	0.167		13C-2,3,4,6,7,8-HxCDF	79.5	28 - 136
1,2,3,7,8,9-HxCDF	ND	0.246		13C-1,2,3,7,8,9-HxCDF	73.5	29 - 147
1,2,3,4,6,7,8-HpCDF	0.864		J	13C-1,2,3,4,6,7,8-HpCDF	73.2	28 - 143
1,2,3,4,7,8,9-HpCDF	ND	0.445		13C-1,2,3,4,7,8,9-HpCDF	60.4	26 - 138
OCDF	1.84		J, B	13C-OCDF	56.9	17 - 157
				CRS 37Cl-2,3,7,8-TCDD	70.1	35 - 197
				Toxic Equivalent Quotient (TEC	Q) Data	
				TEQMinWHO2005Dioxin	0.0186	
TOTALS						
Total TCDD	ND	0.112				
Total PeCDD	ND	0.138				
Total HxCDD	ND	0.187				
Total HpCDD	1.55					
Total TCDF	ND	0.133				
Total PeCDF	ND	0.105				
Total HxCDF	ND	0.246				
Total HpCDF	0.864					

EMPC - Estimated maximum possible concentration

Sample ID: PRR1SC	DLPC-10					EPA Method	1613B
Client DataName:ARCAProject:Tierra IDate Collected:14-Dec	DIS U.S., Inc. Phase I Removal 2-2012 12:10	Sample DataMatrix:SoilSample Size:10.1 g% Solids:98.9		Laboratory DataLab Sample:2120056-02QC Batch:B2L0084Date Analyzed :23-Dec-12 00:1	Date Received Date Extracte 5 Column: ZB-5	d: 20-Dec-2012 10:0 d: 20-Dec-2012 15:5 Analyst: MAS	8 2
Analyte Cor	nc. (pg/g)	DL EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL Qu	alifiers
2,3,7,8-TCDD	ND	0.0767		IS 13C-2,3,7,8-TCDD	88.1	25 - 164	
1,2,3,7,8-PeCDD	ND	0.108		13C-1,2,3,7,8-PeCDD	89.8	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.134		13C-1,2,3,4,7,8-HxCDD	72.4	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.154		13C-1,2,3,6,7,8-HxCDD	81.5	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.173		13C-1,2,3,7,8,9-HxCDD	71.2	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.307		13C-1,2,3,4,6,7,8-HpCDD	66.1	23 - 140	
OCDD	3.07		J, B	13C-OCDD	50.6	17 - 157	
2,3,7,8-TCDF	ND	0.0795		13C-2,3,7,8-TCDF	90.6	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0841		13C-1,2,3,7,8-PeCDF	80.6	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0825		13C-2,3,4,7,8-PeCDF	94.5	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.131		13C-1,2,3,4,7,8-HxCDF	78.4	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.130		13C-1,2,3,6,7,8-HxCDF	80.4	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.153		13C-2,3,4,6,7,8-HxCDF	81.2	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.214		13C-1,2,3,7,8,9-HxCDF	76.2	29 - 147	
1,2,3,4,6,7,8-HpCDF	0.574		J	13C-1,2,3,4,6,7,8-HpCDF	71.0	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.395		13C-1,2,3,4,7,8,9-HpCDF	58.5	26 - 138	
OCDF	1.26		J, B	13C-OCDF	56.6	17 - 157	
				CRS 37Cl-2,3,7,8-TCDD	82.6	35 - 197	
				Toxic Equivalent Quotient (TE	Q) Data		
				TEQMinWHO2005Dioxin	0.00704		
TOTALS							
Total TCDD	ND	0.0767					
Total PeCDD	ND	0.108					
Total HxCDD	ND	0.173					
Total HpCDD	0.375						
Total TCDF	ND	0.0795					
Total PeCDF	ND	0.0841					
Total HxCDF	ND	0.214					
Total HpCDF	1.02						

EMPC - Estimated maximum possible concentration

Sample ID: PRR1SC	DLPC-05					EPA Method 1613B
Client Data Name: ARCA Project: Tierra I Date Collected: 14-Dec	DIS U.S., Inc. Phase I Removal c-2012 12:45	Sample DataMatrix:SoilSample Size:10.2 g% Solids:98.5		Laboratory DataLab Sample:2120056-03QC Batch:B2L0084Date Analyzed :23-Dec-12 01:0	Date Receiv Date Extract 5 Column: ZB-5	ed: 20-Dec-2012 10:08 ted: 20-Dec-2012 15:52 5 Analyst: MAS
Analyte Cor	nc. (pg/g)	DL EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL Qualifiers
2,3,7,8-TCDD	ND	0.0743		IS 13C-2,3,7,8-TCDD	72.5	25 - 164
1,2,3,7,8-PeCDD	ND	0.119		13C-1,2,3,7,8-PeCDD	82.2	25 - 181
1,2,3,4,7,8-HxCDD	ND	0.158		13C-1,2,3,4,7,8-HxCDD	62.3	32 - 141
1,2,3,6,7,8-HxCDD	ND	0.175		13C-1,2,3,6,7,8-HxCDD	71.0	28 - 130
1,2,3,7,8,9-HxCDD	ND	0.185		13C-1,2,3,7,8,9-HxCDD	64.8	32 - 141
1,2,3,4,6,7,8-HpCDD	ND	0.366		13C-1,2,3,4,6,7,8-HpCDD	59.2	23 - 140
OCDD	2.77		J, B	13C-OCDD	46.6	17 - 157
2,3,7,8-TCDF	ND	0.0867		13C-2,3,7,8-TCDF	78.9	24 - 169
1,2,3,7,8-PeCDF	ND	0.0896		13C-1,2,3,7,8-PeCDF	74.5	24 - 185
2,3,4,7,8-PeCDF	ND	0.0877		13C-2,3,4,7,8-PeCDF	89.6	21 - 178
1,2,3,4,7,8-HxCDF	ND	0.136		13C-1,2,3,4,7,8-HxCDF	69.9	26 - 152
1,2,3,6,7,8-HxCDF	ND	0.129		13C-1,2,3,6,7,8-HxCDF	74.3	26 - 123
2,3,4,6,7,8-HxCDF	ND	0.147		13C-2,3,4,6,7,8-HxCDF	71.4	28 - 136
1,2,3,7,8,9-HxCDF	ND	0.206		13C-1,2,3,7,8,9-HxCDF	67.3	29 - 147
1,2,3,4,6,7,8-HpCDF	0.610		J	13C-1,2,3,4,6,7,8-HpCDF	63.8	28 - 143
1,2,3,4,7,8,9-HpCDF	ND	0.427		13C-1,2,3,4,7,8,9-HpCDF	53.6	26 - 138
OCDF	0.965		J, B	13C-OCDF	52.4	17 - 157
				CRS 37Cl-2,3,7,8-TCDD	69.4	35 - 197
				Toxic Equivalent Quotient (TE	Q) Data	
				TEQMinWHO2005Dioxin	0.00722	
TOTALS						
Total TCDD	ND	0.0743				
Total PeCDD	ND	0.119				
Total HxCDD	ND	0.185				
Total HpCDD	ND	0.366				
		0.0807				
Total PeCDF		0.0890				
Total HXCDF	0.610	0.200				
Total HpCDF						

EMPC - Estimated maximum possible concentration

Sample ID: PRR1SC	DLPC-06								EPA Me	thod 1613B
Client Data Name: ARCA Project: Tierra I Date Collected: 14-Dec	DIS U.S., Inc. Phase I Removal 2-2012 16:30	Sample Data Matrix: Sample Size: % Solids:	Soil 10.5 g 96.8		Lab Lab QC H Date	oratory Data Sample: Batch: Analyzed :	2120056-04 B2L0084 23-Dec-12 01::	Date Received: Date Extracted: 55 Column: ZB-5 A	20-Dec-2012 20-Dec-2012 nalyst: MAS	10:08 15:52
Analyte Cor	nc. (pg/g)	DL EMPO	C Qua	lifiers		Labeled Standa	ard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.765				IS	13C-2,3,7,8-TC	DD	91.5	25 - 164	
1,2,3,7,8-PeCDD	ND	0.151				13C-1,2,3,7,8-P	eCDD	101	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.163				13C-1,2,3,4,7,8-	-HxCDD	73.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.182				13C-1,2,3,6,7,8-	-HxCDD	85.9	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.196				13C-1,2,3,7,8,9	-HxCDD	79.5	32 - 141	
1,2,3,4,6,7,8-HpCDD	0.853			J		13C-1,2,3,4,6,7	,8-HpCDD	70.3	23 - 140	
OCDD	6.16			В		13C-OCDD		57.6	17 - 157	
2,3,7,8-TCDF	0.250			J		13C-2,3,7,8-TC	DF	90.6	24 - 169	
1,2,3,7,8-PeCDF	0.126			J		13C-1,2,3,7,8-P	eCDF	91.6	24 - 185	
2,3,4,7,8-PeCDF	0.957			J		13C-2,3,4,7,8-P	eCDF	108	21 - 178	
1,2,3,4,7,8-HxCDF	1.07			J		13C-1,2,3,4,7,8-	-HxCDF	82.5	26 - 152	
1,2,3,6,7,8-HxCDF	0.326			J		13C-1,2,3,6,7,8-	-HxCDF	87.3	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.155				13C-2,3,4,6,7,8-	-HxCDF	84.5	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.208				13C-1,2,3,7,8,9	-HxCDF	80.7	29 - 147	
1,2,3,4,6,7,8-HpCDF	1.57			J		13C-1,2,3,4,6,7	,8-HpCDF	77.3	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.407				13C-1,2,3,4,7,8	,9-HpCDF	66.7	26 - 138	
OCDF	4.67			J, B		13C-OCDF		62.2	17 - 157	
					CRS	37Cl-2,3,7,8-TC	CDD	95.5	35 - 197	
						Toxic Equivale	nt Quotient (TH	EQ) Data		
						TEQMinWHO2	005Dioxin	1.25		
TOTALS										
Total TCDD	2.36	2.79)							
Total PeCDD	0.338									
Total HxCDD	ND	0.196								
Total HpCDD	1.60									
Total TCDF	11.5	14.7								
Total PeCDF	8.66	9.30								
Total HxCDF	2.72									
Total HpCDF	1.94							1. 1		

EMPC - Estimated maximum possible concentration

Sample ID: PRR1S	OLPC-09							EPA Met	thod 1613B
Client Data Name: ARC. Project: Tierra Date Collected: 18-De	ADIS U.S., Inc. a Phase I Removal ec-2012 14:45	Sample Matrix Sampl % Soli	Data :: Soil e Size: 10.4 g ids: 95.8		Lal Lat QC Dat	Doratory Data o Sample: 2120056-05 Batch: B2L0084 ze Analyzed : 23-Dec-12 02:4	Date Received: Date Extracted: 4 Column: ZB-5 A	20-Dec-2012 20-Dec-2012 nalyst: MAS	10:08 15:52
Analyte Co	onc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.132			J	IS	13C-2,3,7,8-TCDD	82.0	25 - 164	
1,2,3,7,8-PeCDD	ND	0.116				13C-1,2,3,7,8-PeCDD	89.0	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.189				13C-1,2,3,4,7,8-HxCDD	68.0	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.206				13C-1,2,3,6,7,8-HxCDD	81.9	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.231				13C-1,2,3,7,8,9-HxCDD	72.6	32 - 141	
1,2,3,4,6,7,8-HpCDD	0.728			J		13C-1,2,3,4,6,7,8-HpCDD	64.6	23 - 140	
OCDD	4.51			J, B		13C-OCDD	52.3	17 - 157	
2,3,7,8-TCDF	0.204			J		13C-2,3,7,8-TCDF	84.1	24 - 169	
1,2,3,7,8-PeCDF	ND	0.116				13C-1,2,3,7,8-PeCDF	80.4	24 - 185	
2,3,4,7,8-PeCDF	1.18			J		13C-2,3,4,7,8-PeCDF	94.3	21 - 178	
1,2,3,4,7,8-HxCDF	0.917			J		13C-1,2,3,4,7,8-HxCDF	75.6	26 - 152	
1,2,3,6,7,8-HxCDF	0.345			J		13C-1,2,3,6,7,8-HxCDF	80.5	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.134				13C-2,3,4,6,7,8-HxCDF	80.8	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.180				13C-1,2,3,7,8,9-HxCDF	74.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	0.629			J		13C-1,2,3,4,6,7,8-HpCDF	71.0	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.356				13C-1,2,3,4,7,8,9-HpCDF	57.5	26 - 138	
OCDF	1.17			J, B		13C-OCDF	54.7	17 - 157	
					CRS	37Cl-2,3,7,8-TCDD	79.7	35 - 197	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	0.648		
TOTALS									
Total TCDD	11.2								
Total PeCDD	1.16		1.46						
Total HxCDD	0.399		0.670						
Total HpCDD	1.37								
Total TCDF	14.7		15.7						
Total PeCDF	10.7								
Total HxCDF	2.61								
Total HpCDF	1.01								
DL - Sample specifc est	timated detection limit					LCL-UCL- Lower control li	mit - upper control limit		

EMPC - Estimated maximum possible concentration

Sample ID: PRR1SC	DLPC-03								EPA Met	hod 1613B
Client DataName:ARCAProject:TierraDate Collected:18-Dec	DIS U.S., Inc. Phase I Removal c-2012 16:00	Sample Da Matrix: Sample S % Solids	ata Soil Size: 10.5 g : 96.5		La Lat QC Da	boratory Data o Sample: Batch: te Analyzed :	2120056-06 B2L0084 23-Dec-12 03:34	Date Received: Date Extracted: Column: ZB-5 A	20-Dec-2012 20-Dec-2012 nalyst: MAS	10:08 15:52
Analyte Co	nc. (pg/g)	DL	EMPC	Qualifiers		Labeled Stan	dard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0895			IS	13C-2,3,7,8-T	CDD	71.2	25 - 164	
1,2,3,7,8-PeCDD	ND	0.147				13C-1,2,3,7,8-	PeCDD	77.8	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.176				13C-1,2,3,4,7	8-HxCDD	59.8	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.191				13C-1,2,3,6,7	8-HxCDD	71.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.222				13C-1,2,3,7,8	9-HxCDD	65.0	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	0.377				13C-1,2,3,4,6	7,8-HpCDD	58.6	23 - 140	
OCDD	2.24			J, B		13C-OCDD		45.9	17 - 157	
2,3,7,8-TCDF	ND	0.0892				13C-2,3,7,8-T	CDF	71.6	24 - 169	
1,2,3,7,8-PeCDF	ND	0.0786				13C-1,2,3,7,8-	PeCDF	75.0	24 - 185	
2,3,4,7,8-PeCDF	ND	0.0759				13C-2,3,4,7,8-	PeCDF	87.4	21 - 178	
1,2,3,4,7,8-HxCDF	ND	0.132				13C-1,2,3,4,7	8-HxCDF	68.3	26 - 152	
1,2,3,6,7,8-HxCDF	ND	0.123				13C-1,2,3,6,7	8-HxCDF	71.9	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.153				13C-2,3,4,6,7	8-HxCDF	69.7	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.217				13C-1,2,3,7,8	9-HxCDF	65.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	ND		0.454			13C-1,2,3,4,6	7,8-HpCDF	62.7	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.443				13C-1,2,3,4,7	8,9-HpCDF	53.6	26 - 138	
OCDF	0.937			J, B		13C-OCDF		49.1	17 - 157	
					CRS	37Cl-2,3,7,8-1	TCDD	72.8	35 - 197	
						Toxic Equiva	ent Quotient (TEQ	Q) Data		
						TEQMinWHC	02005Dioxin	0.000953		
TOTALS										
Total TCDD	1.75									
Total PeCDD	ND	0.147								
Total HxCDD	ND	0.222								
Total HpCDD	0.373									
Total TCDF	ND	0.0892								
Total PeCDF	ND	0.0786								
Total HxCDF	ND	0.217	0.454							
Total HpCDF	ND		0.454							

EMPC - Estimated maximum possible concentration

Method 1613 MDL Study Solid

Compound	MDL	RL
2,3,7,8-TCDD	0.0616	0.5
1,2,3,7,8-PeCDD	0.307	2.5
1,2,3,4,7,8-HxCDD	0.236	2.5
1,2,3,6,7,8-HxCDD	0.331	2.5
1,2,3,7,8,9-HxCDD	0.174	2.5
1,2,3,4,6,7,8-HpCDD	0.330	2.5
OCDD	0.726	5.0
2,3,7,8-TCDF	0.0737	0.5
1,2,3,7,8-PeCDF	0.232	2.5
2,3,4,7,8-PeCDF	0.240	2.5
1,2,3,4,7,8-HxCDF	0.262	2.5
1,2,3,6,7,8-HxCDF	0.261	2.5
2,3,4,6,7,8-HxCDF	0.158	2.5
1,2,3,7,8,9-HxCDF	0.276	2.5
1,2,3,4,6,7,8-HpCDF	0.219	2.5
1,2,3,4,7,8,9-HpCDF	0.315	2.5
OCDF	0.205	5.0

Units: pg/g 19-August-2012

* based on 10 grams of sample. DLs are sample and congener specific.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	Recovery was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	CA00413
Alabama Dept of Environmental Management	41610
Arizona Department Of Health Services	AZ0639
Arkansas Dept of Environmental Quality	11-035-0
California Dept of Health – NELAP	02102CA
Colorado Dept of Public Health & Environment	N/A
Connecticut Dept of Public Health	PH-0182
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Dept of Health	E87777
Indiana Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Louisiana Department of Health and Hospitals	LA110017
Maine Department of Health	2010021
Michigan Department of Natural Resources	9932
Mississippi Department of Health	N/A
Nevada Division of Environmental Protection	CA004132011-1
New Jersey Dept of Environmental Protection	CA003
New York Department of Health	11411
North Carolina Dept of Health & Human Services	06700
North Dakota Dept of Health	R-078
Oklahoma Dept of Environmental Quality	2011-120
Oregon Laboratory Accreditation Program	CA200001
Pennsylvania Dept of Environmental Protection	68-00490
South Carolina Dept of Health	87002001
Tennessee Dept of Environment and Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-11-2
Utah Dept of Health	CA16400
Virginia Dept of General Services	00013
Washington Department of Ecology	C584
Wisconsin Dept of Natural Resources	998036160

(P)	AL	r	۸n	IC	
- West	M	ICA	AD	13	

ARCADIS

6723 Towpath Rd

Syracuse, NY 13214

Phone/Fax: (315) 671-9688

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order #

Page 1 of 1

2120056

PROJ. NO.		PROJECT	NAME						782		Actions		and the second second								And an and a second second	SDG NUMBER	COC Number	
B0009964.0002.70004		Tierra Ph	ase I Rem	oval														PRR1358						
SAMPLERS: MAP, CSB	an an an Anna a			na n	nan ar ta bana an in an ann / Annais Annais Annais	Requested Analyses																		
SAMPLE ID	DATE	TIME	MATRIX	Composite/Grab	# Containers	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	R	temarks	
PRR1SOLPC-11	12/14/2012	11:30	soil	Grab	2	X														-				
PRR1SOLPC-10	12/14/2012	12:10	soil	Grab	2	X															-			
PRR1SOLPC-05	12/14/2012	12:45	soil	Grab	2	X													-		-			
PRR1SOLPC-06	12/14/2012	16:30	soil	Grab	2	X													ļ	<u> </u>				
PRR1SOLPC-09	12/18/2012	14:45	soil	Grab	2	X																		ricensilette (h. Autom
PRR1SOLPC-03	12/18/2012	16:00	soil	Grab	2	X																		
						Γ		T		T													and a second	-
and the second	and a group of a group		1			Ι																	Construction of the International State of the I	
			1					T																
anna (Animaine na maine an anna an anna an Anna Anna Anna Ann						Γ		T		T			Τ	-	T									
Requested	Analyses	Special I	nstructions	/Comments:			L							1		ecial	QA/	QCI	nstru	iction	15	- Contraction of the Contraction	and the second se	
1 Diovins (PCDD/PCDEs)	Analyses	1 extra /	na iar suhm	itted in case of sam	nle breakage								Colonica de Aldri						*****		-			
2	and an and a second	- L CAUGA	Jz jai subin	inted in case of sam	pie predicage:																			
2					enderste die wegenerste dasse war			Lab	orat	ory li	nfor	mat	tion	and	Rece	ipt								0.000.000.000
4	anna a fha anna ann an air a ta	Lab Name	: Vista Ana	lytical - El Dorado H	lills, CA						T	~					num of and Connel			San	ple	Receipt:		
7	an a	Shipping	Fracking #	n yana malamban na yangan biyan dati bilangan ketika tahun menganya yang yang yang yang yang yang yan	a dalaman ay farini ada dalaman ay milanan a dalaman ay ka	and page of provide	ədələrəni və brəni	Second resided			74	Cod	oler packed with ice											
5		Specify Tr	irnaround	Requirements: 7 day	/ TAT	Conditi								ditic	on/Cooler Temp:									
5		- Specify re	ina oana i	icquirementer (cq																				
7		Relinquish	ed by:	DATE	TIME	Red	eive	d by	: /	2/2	In	Re	linqu	lishe	d by:		D	Contractor	T	DAT	E	Received by:		
8		TAR	P	12,16,17	1200 0	1	1	1	\cap	N	30	1	1											
9	annand _{all an a} succession of the same state of the	7 1/4	0	10-1110	1900	K	et	m	y	6	un	ai	U								the supervision of the supervisi			
10		Relinquish	ed by:	DATE	TIME	Rec	eive	d by	: /			Re	linqu	lishe	d by:					DAT	E	Received by:		
11	and the second																							
12							*****			0.000									1					
13		Relinquish	ed by:	DATE	TIME	Red	eive	d by	:			Re	linqu	lishe	d by:					DAT	E	Received by:		
14																								
15						L	totolfeeet#	1 Accession							National Mate				L		and the second second	L		
16																								
17																								

Vista Analytical – El Dorado Hills, CA

SDG TRACKING LOG

SDG Number _____ PRR1358

SDG Open Date 12/14/2012

Sample Matrix _____ Soil

SDG Close Date 12/18/2012

Sample #	Sample ID	MS/MSD	Comments
1	PRR1SOLPC-11		Two 4 oz jars (1 extra in case of breakage) - 12/14
2	PRR1SOLPC-10		Two 4 oz jars (1 extra in case of breakage) - 12/14
3	PRR1SOLPC-05		Two 4 oz jars (1 extra in case of breakage) - 12/14
4	PRR1SOLPC-06		Two 4 oz jars (1 extra in case of breakage) - 12/14
5	PRR1SOLPC-09		Two 4 oz jars (1 extra in case of breakage) - 12/18
6	PRR1SOLPC-03		Two 4 oz jars (1 extra in case of breakage) - 12/18
7			
8			
9			
10			
11			
12	1		
13			
14			
15			
16			
17			
18			
19			
20			

Notes:

1. The SDG must not exceed 20 field samples. Trip or Field Blanks do not count towards the sample total. Check which of the 20 samples has been collected to include extra volume for MS/MSD and assigned as such.

2. 3x the weights listed should be collected for lab QC (i.e., MS/MSD/internal lab duplicate).

3. Field duplicate is a separate sample, not to be confused with "internal lab duplicate."

SAMPLE LOG-IN CHECKLIST

Vista Project #:	2120056			TAT	5 b	winess da			
	Date/Time	Initials:		Location: $(1)R-2$					
Samples Arrival:	12/20/12 1008	BU	3	Shelf/Rack: N/A					
	Date/Time	Initials:		Location: WR-2					
Logged In:	12/20/12 1019	430	B	Shelf/Rack: F 3					
Delivered By:	FedEx UPS	On Trac	DHL	Ha Deliv	ind vered	Other			
Preservation:	Preservation:			y Ice		None			
Temp °C 0.	6°C Time: 10	10		Thermometer ID: IR-1					

					YES	NO	NA
Adequate Sample Volume Rece		V					
Holding Time Acceptable?		V					
Shipping Container(s) Intact?		1					
Shipping Custody Seals Intact?					V		
Shipping Documentation Presen		V					
Airbill Trk #	7943 4	624 13	51		\checkmark		
Sample Container Intact?					V		
Sample Custody Seals Intact?					/		
Chain of Custody / Sample Docu			1				
COC Anomaly/Sample Acceptar			V				
If Chlorinated or Drinking Water							
$Na_2S_2O_3$ Preservation Documen	ple iner		None	9			
Shipping Container	g Container Vista Client Retain Re						ose
Commonts:			0				

Comments:

Sample Login 3/2007 rmh

1

,

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

September 07, 2012

Vista Project I.D.: 33952

Mr. Joseph C. Houser ARCADIS U.S., Inc. 6723 Towpath Road Syracuse, NY 13214-0066

Dear Mr. Houser,

Enclosed are the results for the one solid sample received at Vista AnalyticalLaboratory on August 22, 2012 under your Project Name "PRR1354". This sample was extracted and analyzed using EPA Method 1613 tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work. As requested, an MS/MSD was performed.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Madela Mare-

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Table of Contents

Case Narrative	1
Table of Contents	2
Sample Inventory	3
Analytical Results	4
Method 1613 Solid MDL RL August 2011	9
Qualifiers	10
Certifications	11
Sample Receipt	12

Section I: Sample Inventory Report Date Received: 8/22/2012

<u>Vista Lab. ID</u>

Client Sample ID

33952-001

PRR1SOLPC-15

ANALYTICAL RESULTS

Method Blank	X					•				EPA Method	1613
Matrix:	Soil		QC Batch No.:	465	56	Lab	Sample:	0-MB001			
Sample Size:	10.0 g		Date Extracted:	5-8	Sep-12	Date	Analyzed DF	B-5: 6-Sep-12	Date An	alvzed DB-225: NA	`
I I I I I I I I I I I I I I I I I I I	8										-
Analyte	Conc.	(pg/g)	DLa	EMPC ^b	Qualifiers	İ	Labeled Sta	andard	%R	LCL-UCL ^d Qualit	fiers
2,3,7,8-TCDD		ND	0.0505			IS	13C-2,3,7,8	-TCDD	94.6	25 - 164	
1,2,3,7,8-PeCDI	D	ND	0.0803				13C-1,2,3,7	,8-PeCDD	95.9	25 - 181	
1,2,3,4,7,8-HxC	CDD	ND	0.143				13C-1,2,3,4	,7,8-HxCDD	82.9	32 - 141	
1,2,3,6,7,8-HxC	CDD	ND	0.147				13C-1,2,3,6	,7,8-HxCDD	105	28 - 130	
1,2,3,7,8,9-HxC	CDD	ND	0.189				13C-1,2,3,7	,8,9-HxCDD	91.9	32 - 141	
1,2,3,4,6,7,8-Hp	CDD	ND	0.184				13C-1,2,3,4	,6,7,8-HpCDD	83.1	23 - 140	
OCDD		0.209			J		13C-OCDD		74.2	17 - 157	
2,3,7,8-TCDF		ND	0.0559				13C-2,3,7,8	-TCDF	93.1	24 - 169	
1,2,3,7,8-PeCDI	F	ND	0.0877				13C-1,2,3,7	,8-PeCDF	109	24 - 185	
2,3,4,7,8-PeCDI	F	ND	0.0866				13C-2,3,4,7	,8-PeCDF	106	21 - 178	
1,2,3,4,7,8-HxC	CDF	ND	0.0726				13C-1,2,3,4	,7,8-HxCDF	78.6	26 - 152	
1,2,3,6,7,8-HxC	CDF	ND	0.0662				13C-1,2,3,6	,7,8-HxCDF	94.0	26 - 123	
2,3,4,6,7,8-HxC	CDF	ND	0.0783				13C-2,3,4,6	,7,8-HxCDF	91.6	28 - 136	
1,2,3,7,8,9-HxC	CDF	ND	0.120				13C-1,2,3,7	,8,9-HxCDF	81.2	29 - 147	
1,2,3,4,6,7,8-Hp	CDF	ND	0.0663				13C-1,2,3,4	,6,7,8-HpCDF	82.6	28 - 143	
1,2,3,4,7,8,9-Hp	oCDF	ND	0.0997				13C-1,2,3,4	,7,8,9-HpCDF	76.9	26 - 138	
OCDF		ND	0.250				13C-OCDF		73.5	17 - 157	
						CRS	37Cl-2,3,7,8	3-TCDD	85.4	35 - 197	
Totals						Toxi	ic Equivalent	Quotient (TEQ) D	ata ^e		
Total TCDD		ND	0.0506			TEQ	Q (Min):	0.0000626			
Total PeCDD		ND	0.0801								
Total HxCDD		ND	0.160			a. San	nple specific estir	nated detection limit.			
Total HpCDD		ND	0.184			b. Est	imated maximum	possible concentration.			
Total TCDF		ND	0.0559			c. Me	thod detection lin	iit.			
Total PeCDF		ND	0.0871			d. Lov	wer control limit -	upper control limit.			
Total HxCDF		ND	0.0817			e. TE	Q based on (2005) World Health Organizat	tion Toxic Equi	valent Factors.(WHO)	
Total HpCDF		ND	0.0795			The re	esults are reported	in dry weight. The samp	ole size is report	ed in wet weight.	

Analyst: DMS

Approved By: Martha M. Maier 07-Sep-2012 09:38

OPR Results							EP	A Method 1	.613
Matrix:	Soil		QC Batch No.:	4656	Lab Sample: 0-(OPR001			
Sample Size:	10.0 g		Date Extracted:	5-Sep-12	Date Analyzed DB-5: 6	-Sep-12 Da	ate Analy	zed DB-225:	NA
Analyte		Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard		%R	LCL-UCL	Qualifier
2,3,7,8-TCDD		10.0	7.83	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD		93.9	20 - 175	
1,2,3,7,8-PeCI	DD	50.0	41.9	35 - 71	13C-1,2,3,7,8-PeCDD		100	21 - 227	
1,2,3,4,7,8-Hx	CDD	50.0	44.0	35 - 82	13C-1,2,3,4,7,8-HxCD	D	85.1	21 - 193	
1,2,3,6,7,8-Hx	CDD	50.0	44.9	38 - 67	13C-1,2,3,6,7,8-HxCD	D	103	25 - 163	
1,2,3,7,8,9-Hx	CDD	50.0	44.6	32 - 81	13C-1,2,3,7,8,9-HxCD	D	93.7	21 - 193	
1,2,3,4,6,7,8-H	IpCDD	50.0	41.9	35 - 70	13C-1,2,3,4,6,7,8-HpC	DD	87.9	26 - 166	
OCDD		100	87.2	78 - 144	13C-OCDD		81.0	13 - 198.5	
2,3,7,8-TCDF		10.0	8.19	7.5 - 15.8	13C-2,3,7,8-TCDF		89.1	22 - 152	
1,2,3,7,8-PeCI	DF	50.0	41.6	40 - 67	13C-1,2,3,7,8-PeCDF		114	21 - 192	
2,3,4,7,8-PeCI	DF	50.0	43.4	34 - 80	13C-2,3,4,7,8-PeCDF		111	13 - 328	
1,2,3,4,7,8-Hx	CDF	50.0	46.7	36 - 67	13C-1,2,3,4,7,8-HxCD	F	79.1	19 - 202	
1,2,3,6,7,8-Hx	CDF	50.0	46.1	42 - 65	13C-1,2,3,6,7,8-HxCD	F	99.8	21 - 159	
2,3,4,6,7,8-Hx	CDF	50.0	43.7	35 - 78	13C-2,3,4,6,7,8-HxCD	F	95.4	22 - 176	
1,2,3,7,8,9-Hx	CDF	50.0	45.6	39 - 65	13C-1,2,3,7,8,9-HxCD	F	84.0	17 - 205	
1,2,3,4,6,7,8-H	IpCDF	50.0	44.9	41 - 61	13C-1,2,3,4,6,7,8-HpC	DF	86.3	21 - 158	
1,2,3,4,7,8,9-H	IpCDF	50.0	44.8	39 - 69	13C-1,2,3,4,7,8,9-HpC	DF	81.1	20 - 186	
OCDF		100	88.6	63 - 170	13C-OCDF		78.9	13 - 198.5	
					<u>CRS</u> 37Cl-2,3,7,8-TCDD		84.0	31 - 191	

Analyst: DMS

Approved By: Martha M. Maier 07-Sep-2012 09:38

Sample ID: PRR1S	SOLPC-15							EPA N	Iethod 1613
Client Data			Sample Data		Laboratory Data				
Name: ARG	CADIS U.S., Inc.		Matrix:	Soil	Lab Sample:	33952-001	Date Re	ceived:	22-Aug-12
Project: PRR	R1354		Sample Size:	10.7 g	QC Batch No.:	4656	Date Ex	tracted:	5-Sep-12
Time Collected: 21-7	Aug-12		%Solids:	97.2	Date Analyzed DB-5:	6-Sep-12	6-Sep-12 Date Ana		NA
Analyte	Conc. (pg/g)	DL ^a	EMPC ^b	Qualifiers	Labeled Standar	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	0.111			J	<u>IS</u> 13C-2,3,7,8-TCDI)	95.4	25 - 164	
1,2,3,7,8-PeCDD	ND	0.0817			13C-1,2,3,7,8-PeC	CDD	100	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.145			13С-1,2,3,4,7,8-Н	xCDD	79.8	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.151			13С-1,2,3,6,7,8-Н	xCDD	101	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.176			13С-1,2,3,7,8,9-Н	xCDD	92.9	32 - 141	
1,2,3,4,6,7,8-HpCDD	0.159			J	13C-1,2,3,4,6,7,8-	HpCDD	88.3	23 - 140	
OCDD	1.13			J,B	13C-OCDD		82.9	17 - 157	
2,3,7,8-TCDF	ND	0.0696			13C-2,3,7,8-TCDI		93.7	24 - 169	
1,2,3,7,8-PeCDF	ND	0.108			13C-1,2,3,7,8-PeC	CDF	112	24 - 185	
2,3,4,7,8-PeCDF	ND	0.107			13C-2,3,4,7,8-PeC	CDF	112	21 - 178	
1,2,3,4,7,8-HxCDF	0.161			J	13С-1,2,3,4,7,8-Н	xCDF	81.3	26 - 152	
1,2,3,6,7,8-HxCDF	0.0974			J	13С-1,2,3,6,7,8-Н	xCDF	96.0	26 - 123	
2,3,4,6,7,8-HxCDF	ND	0.0578			13С-2,3,4,6,7,8-Н	xCDF	92.3	28 - 136	
1,2,3,7,8,9-HxCDF	ND	0.0814			13С-1,2,3,7,8,9-Н	xCDF	81.9	29 - 147	
1,2,3,4,6,7,8-HpCDF	0.804			J	13C-1,2,3,4,6,7,8-	HpCDF	85.1	28 - 143	
1,2,3,4,7,8,9-HpCDF	ND	0.125			13C-1,2,3,4,7,8,9-	HpCDF	78.3	26 - 138	
OCDF	1.25			J	13C-OCDF		76.8	17 - 157	
					<u>CRS</u> 37Cl-2,3,7,8-TCD	D	83.9	35 - 197	
Totals					Toxic Equivalent Quo	tient (TEQ) Da	ta ^e		
Total TCDD	1.06				TEQ (Min): 0.1	47			
Total PeCDD	ND	0.0817							
Total HxCDD	ND	0.157			a. Sample specific estimated of	detection limit.			
Total HpCDD	0.366				b. Estimated maximum possil	ole concentration.			
Total TCDF	0.0864				c. Method detection limit.				
Total PeCDF	0.146		0.269		d. Lower control limit - upper	control limit.			
Total HxCDF	0.555				e. TEQ based on (2005) Worl	d Health Organizatio	on Toxic E	quivalent Factors.(WHO)
Total HpCDF	0.804				The results are reported in dry	weight. The sample	size is rep	orted in wet weigl	nt.

Analyst: DMS

Approved By: Martha M. Maier 07-Sep-2012 09:38

MS Results								EPA	Method 1613
Matrix: Soi Sample Size: 10.	il 63/10.57 g	QC Bate Date Ext	h No.: racted:	4656 5-Sep-12	2	Lab Sample: 339: Client Sample: PRI	52-001MS/MSD R1SOLPC-15	Date Analyzed DB	-5:6-Sep-12
Analyte	Spike-MS pg/g	MS-%R	Spike-MSD pg/g	MSD-%R	RPD	IS Type Internal	Standard	MS-%R	MSD-%R
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	19.3 96.3 96.3 96.3 96.3 193 19.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 193	77.1 82.6 89.0 89.1 88.3 85.7 89.6 82.9 81.5 84.5 89.4 92.3 86.2 89.2 86.9 91.0 89.0	19.5 97.4 97.4 97.4 97.4 195 19.5 97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4	81.0 85.1 96.9 87.1 91.9 88.6 89.2 82.6 88.6 87.3 91.4 95.2 91.2 89.9 92.6 93.7 90.1	4.93 2.98 8.50 2.27 4.00 3.33 0.447 0.363 8.35 3.26 2.21 3.09 5.64 0.782 6.35 2.92 1.23	IS 13C-2,3,7 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-2,3,7 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-2,3,4 13C-1,2,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C-1,3,3 13C	7,8-TCDD 3,7,8-PeCDD 3,4,7,8-HxCDD 3,6,7,8-HxCDD 3,4,6,7,8-HxCDD 3,4,6,7,8-HpCDD DD 7,8-TCDF 3,7,8-PeCDF 4,7,8-PeCDF 3,4,7,8-HxCDF 3,4,7,8-HxCDF 3,7,8,9-HxCDF 3,4,6,7,8-HpCDF 3,4,6,7,8-HpCDF 7,8-TCDD	98.0 106 86.9 106 99.0 92.7 84.0 93.8 115 115 83.3 99.9 96.2 87.7 88.1 82.9 80.2 88.2	97.1 107 82.6 111 98.6 92.5 84.3 94.0 116 116 82.3 100 95.5 86.8 87.3 80.3 78.2 86.3

EPA Method 1613 Solid

Congeners	MDL (pg/g)	RL (pg/g)
2,3,7,8-TCDD	0.0808	0.50
1,2,3,7,8-PeCDD	0.133	2.5
1,2,3,4,7,8-HxCDD	0.226	2.5
1,2,3,6,7,8-HxCDD	0.190	2.5
1,2,3,7,8,9-HxCDD	0.192	2.5
1,2,3,4,6,7,8-HpCDD	0.117	2.5
OCDD	0.200	5.0
2,3,7,8-TCDF	0.0379	0.50
1,2,3,7,8-PeCDF	0.135	2.5
2,3,4,7,8-PeCDF	0.129	2.5
1,2,3,4,7,8-HxCDF	0.119	2.5
1,2,3,6,7,8-HxCDF	0.0784	2.5
2,3,4,6,7,8-HxCDF	0.119	2.5
1,2,3,7,8,9-HxCDF	0.108	2.5
1,2,3,4,6,7,8-HpCDF	0.136	2.5
1,2,3,4,7,8,9-HpCDF	0.0798	2.5
OCDF	0.492	5.0

18-Aug-11

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	Recovery was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	CA00413
Alabama Dept of Environmental Management	41610
Arizona Department Of Health Services	AZ0639
Arkansas Dept of Environmental Quality	11-035-0
California Dept of Health – NELAP	02102CA
Colorado Dept of Public Health & Environment	N/A
Connecticut Dept of Public Health	PH-0182
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Dept of Health	E87777
Indiana Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Louisiana Department of Health and Hospitals	LA110017
Maine Department of Health	2010021
Michigan Department of Natural Resources	9932
Mississippi Department of Health	N/A
Nevada Division of Environmental Protection	CA004132011-1
New Jersey Dept of Environmental Protection	CA003
New York Department of Health	11411
North Carolina Dept of Health & Human Services	06700
North Dakota Dept of Health	R-078
Oklahoma Dept of Environmental Quality	2011-120
Oregon Laboratory Accreditation Program	CA200001
Pennsylvania Dept of Environmental Protection	68-00490
South Carolina Dept of Health	87002001
Tennessee Dept of Environment and Conservation	TN02996
Texas Commission on Environmental Quality	T104704189-11-2
Utah Dept of Health	CA16400
Virginia Dept of General Services	00013
Washington Department of Ecology	C584
Wisconsin Dept of Natural Resources	998036160

ARCADIS

6723 Towpath Rd

Syracuse, NY 13214

Phone/Fax: (315) 671-9688

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order #

Page 1 of 1

22057	1 2 0
00000	0.20

PROJ. NO.		PROJECT	NAME											Angelik series 20			and the second					SDG NUMBER COC	Number
B0009964.0002.70004		Tierra Pha	ase I Rem	oval																		PRR1354	
SAMPLERS:											R	lequ	iest	ed A	naly	/ses							
SAMPLE ID	DATE	TIME	MATRIX	Composite/Grab	# Containers	1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16	17	Remarl	s
PRR1SOLPC-15	8/21/2012	ļ	soil	Grab	4	X																perform MS/MSD	
		ļ					$ \rightarrow $	_															
							_	_				-											
		 					-	-	-		+												
		<u> </u>					_	-	+			<u> </u>											
							-+-	+	+		+		-										
							-+	+	+	+	+	-	-										
							+	+	+	+	+	-											
							1	\uparrow			1												
Requested Ar	nalyses	Special In	structions	/Comments:			t-				-	J	d	E	Spe	cial (QA/	C In	stru	ction	s		
1 Dioxins (PCDD/PCDFs)		1 extra 4 o	z jar subm	submitted in case of sample breakage. Perform MS/MSD on PRR1SOLPC-15																			
3							10 - 5	Lab	orato	ory Ir	nfori	mati	ion a	and F	Recei	ipt		2 2 10 - S	n an				
4		Lab Name:	Vista Ana	lytical - El Dorado H	lills, CA						1_					<u>.</u>				Sam	ple I	Receipt:	
7		Shipping T	racking #	Ir submitted in case of sample breakage. Perform MS/MSD on PRR1SOLPC-15 Laboratory Information and Receipt sta Analytical - El Dorado Hills, CA □ Cooler packed with ice Sample Receipt:																			
5		Specify Tu	rnaround F	IX Composite/Grab # Containers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Remar Grab 4 X 4 X 4																			
7		Relinguishe	d by:	DATE	TIME	Rec	eíved	by:	8/2	2/12	1	Reli	inqu	ished	by:	-			51 - 22	DATE		Received by:	
8		MA		5105 15 80	1600	Z.	11.		.n.	10	104	4										,	
9	an ann an Anna	Polinguiche	d by:	DATE	TIDAE	214	yn	y	120	M	un	Reli		ichad	hu					DATE		Deschued hus	
10		Inclinquistie	u by.	DATE	TIME	nec	ervet	ı by.				Rei	inqu	isnea	i by:					DATE		Received by:	
12		1																					
13		Relinquishe	d by:	DATE	TIME	Rec	eiveo	d bγ:				Reli	inqu	ished	by:					DATE		Received by:	
14		1																					
15				L	L	Actions						L											
16		-																					
1/																							

SAMPLE LOG-IN CHECKLIST

Vista Project #:	3395.	2			TAT	14			
	Date/Time		Initials:		Location: WR 2				
Samples Arrival:	8-22-12	0709	Em		Shelf/Ra	ck:/)/A		
	Date/Time		Initials:		Location: WR-2				
Logged In:	8/20/12	Ba	B	Shelf/Rack: E4					
Delivered By:	FedEx	UPS	On Trac	DHL	Ha Deliv	and /ered	Other		
Preservation:	Ice	BI	ue Ice	Dr	y Ice		None		
Temp °C Ø.	2. Tim	ne: OC	104		Thermon	neter II	D: IR-2		

		A State State State	YES	S NO	NA	
Adequate Sample Volume Received?	BC,D	Containors				
Holding Time Acceptable?			V			
Shipping Container(s) Intact?			V			
Shipping Custody Seals Intact?			2			
Shipping Documentation Present?						
Airbill Trk # 7987 9	1025 3	3634				
Sample Container Intact?				1		
Sample Custody Seals Intact?					~	
Chain of Custody / Sample Documentation Pr	resent?		V			
COC Anomaly/Sample Acceptance Form com	pleted?			V		
If Chlorinated or Drinking Water Samples, Acc	ceptable Pre	servation?			~	
$Na_2S_2O_3$ Preservation Documented? N_A	ner (Non	e			
Shipping Container (Vista) Client Retain Return						
Comments:		C				

After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.