

NIAGARA FALLS, NEW YORK 14302, PHONE (716) 285-6655

May 9, 1967

Diamond Alkali Company Newark Plant 80 Lister Avenue Newark, New Jersey 07105

Attention: Mr. F. Gordon Steward
Technical Superintendent

Dear MR. STEWARD

Enclosed is a copy of our analytical method for tetrachlorobenzene utilizing Infrared.

Our specification for tetrachlorobenzene follows:

- 1. Freeze point 137.0°C minimum
- 97% minimum assay 1, 2, 4, 5, Tetrachlorobenzene by Infrared

A typical isomer distribution is listed below:

Sample-	<u>I. R</u> .
Monochlorobenzene %	0.1
1, 2, 4 Trichlorobenzene %	2.5
1, 2, 3, 4 Tetrachlorobenzene %	0.3
1, 2, 4, 5 Tetrachlorobenzene %	97.1

Infrared assay of 1, 2, 4, 5 is by difference.

Should you have further questions regarding this material after examination of the analytical procedure and tables, please feel free to call us.

Sincerely yours

DS (0001570 HOOKER CHEMICAL COMPANY

J. F. Lemen

Technical Service

 $\mathbf{m}\mathbf{d}$

HOOKER CHEWICAL CORPORATION

1, 2, 4, 5- TETRACHLOROBENZENE - DATA SHEET NO. 761-A

HOOKER SPECIFICATIONS

Description White flakes

Color (molten in 1" test tube, ASTM Colorimeter) 1 Maximum.

Clarity (insolubles in benzene) 0.05% Maximum

Melting Point 137.5°C Minimum

DESCRIPTION

Hooker 1, 2, 4, -5Tetrachlorobenzene is a white crystalline solid of almost no odor. It is packaged in flake form.

Formula C₆H₂Cl₄

Molecular Weight 215.9

TYPICAL PHYSICAL PROPERTIES

Melting Point Range 137.5°C to 140°C

Boiling Range 240°C to 246°C

Chlorine Content 65.7%

Acidity ____ None___

Vapor Pressure (1) at 25°C Less than 0.1 mm

 Vapor Pressure of liquid at
 °C
 mm

 150
 52

 200
 255

 240
 730

Latent Heat of Vaporization (2) at 240°C 47 cal/gm

Volatility (3) at 25°C 0.8 mg/day/cm²

Specific Heat (4) of solid at -172°C 0.096
-107 0.129
- 72 0.149
- 27 0.183
+ 27 0.224

+ 27 0.224 + 63 0.256

The information presented herein, while not guaranteed, is to the best of our knowledge true and accurate. No warranty or guarantee express or implied is made regarding the performance or stability of any product, since the manner of use and conditions of storage and handling are beyond our control. No suggestion for product use, not anything contained herein, shall be construed as a recommendation for its use in infringement of any existing potent.

TYPICAL PHYSICAL PROPERTIES (Continued)

Solubilitý	<u>•c</u>	gms/100 gms solve <u>nt</u>
Acetone	24. 5	3.5
	29.5	4.5
Benzene	26	13.3
	31	. 16, 2
Carbon Tetrachloride	25,5	6,0 -
	36.5	7.4
Diethyl Ether	24	6.5
	30	8.4
Methanol	38.5	1.5
	47	1.9
Monochlorobenzene	25.5	11,8
	32,5	1·4. 7
Petroleum Ether	27,5	4.6
	30.5	5.1
Solvesso No. 2	22	12.5
	27	14,7
Water <u></u>		Insoluble

Notes:

- (1) By extrapolation of data obtained at higher temperatures.
- (2) Calculated from vapor pressure values.
- (3) Tests made on a smooth surfaced casting.
- (4) Literature data.

APPLICATIONS and REACTIONS

1. Intermediate: as a starting point in making 2, 4, 5-trichlorophenol; 2, 4, 5-trichlorophenoxyacetic acid (1); in prepartation of various azo dyes (2); reaction with NaOMe yields 2, 4, 5-Cl₃C₆H₂OMe (3); nitration yields 1, 4-dinitro 2, 3, 5, 6-tetrachlorobenzene (4); photochemical chlorination gives chiefly 1, 2, 3, 3', 4, 4', 5, 6, 6-enneachloro-1-cyclohexene (5); In 1, 2, 4, 5-tetrachlorobenzene all four chlorines are equivalent so that in replacing one chlorine with another group no isomers are obtained.

Notes: from Chem. Abstracts (1) 17 1482 (1923). (2) 37 5035 and 6651 (1943). (3) 15 1705 (1921). (4) 19 3482 (1925). (5) 30 7102.

- Insecticide: 1, 2, 4, 5-tetrachlorobenzene shows slight insecticidal activity and its nitro derivative has some value as a knockdown agent. A possible application might be as a slightly active diluent in dusting powder formulations.
- 3. Impregnant: for fire and moisture resistance, electrical insulation, etc. 1, 2, 4, 5-tetrachlorobenzene has interesting possibilities for imparting temporary protection in packaging, etc., as an ingredient of waxes and resins. The addition of 13% 1, 2, 4, 5-tetrachlorobenzene to chloropropane wax of 140°C melting point of the admpte, yields a white, opaque, waxy eutectic of a fine, soap-like, structure which melts sharply at about 53°C (127°F).

Mlt, 11-163-2

October 15th, 1951