BNE Background Location Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

BNE Office (COAI01)

			<u>I-131</u>
<u>Collec</u>	ction	<u>(pCi/m³)</u>	
01/14/11	_	01/31/11	< 0.012
01/31/11	-	02/08/11	< 0.029
02/08/11	-	02/23/11	< 0.007
02/23/11	-	03/09/11	< 0.006
03/09/11	-	03/21/11	< 0.013
03/21/11	-	03/28/11*	0.065 ± 0.024
03/28/11	_	04/05/11*	0.087 ± 0.022
04/05/11	-	04/12/11*	0.028 ± 0.013
04/12/11	-	04/19/11*	< 0.013
04/19/11	-	04/26/11*	< 0.019
04/26/11	-	05/04/11*	< 0.013
05/04/11	-	05/17/11	< 0.007
05/17/11	-	05/31/11	< 0.009
05/31/11	-	06/14/11	< 0.010
06/14/11	-	06/27/11	< 0.013
06/27/11	-	07/13/11	< 0.012
07/13/11	-	07/26/11	< 0.007
07/26/11	-	08/09/11	< 0.007
08/09/11	-	08/22/11	< 0.007
08/22/11	-	09/06/11	< 0.008
09/06/11	-	09/21/11	< 0.007
09/21/11	-	10/03/11	< 0.010
10/03/11	-	10/18/11	< 0.012
10/18/11	-	10/31/11	< 0.015
10/31/11	-	11/15/11	< 0.021
11/15/11	-	11/29/11	< 0.006
11/29/11	-	12/14/11	< 0.011
12/14/11	-	12/28/11	< 0.014

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

BNE Background Location Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

<u>Colle</u>	ection	Period	$\frac{\text{I-131}}{(\text{pCi/m}^3)}$
01/11/11	-	01/24/11	< 0.038
01/24/11	-	02/08/11	< 0.017
02/08/11	-	02/22/11	< 0.011
02/22/11	-	03/09/11	< 0.017
03/09/11	-	03/21/11	< 0.014
03/21/11	-	03/28/11*	0.064 ± 0.023
03/28/11	-	04/05/11*	0.088 ± 0.027
04/05/11	-	04/12/11*	0.039 ± 0.019
04/12/11	-	04/19/11*	< 0.016
04/19/11	-	04/26/11*	< 0.019
04/26/11	-	05/02/11*	< 0.026
05/02/11	-	05/16/11	< 0.009
05/16/11	-	05/31/11	< 0.011
05/31/11	-	06/14/11	< 0.013
06/14/11	-	06/28/11	< 0.005
06/28/11	-	07/11/11	< 0.017
07/11/11	-	07/25/11	< 0.017
07/25/11	-	08/09/11	< 0.008
08/09/11	-	08/23/11	< 0.011
08/23/11	-	09/06/11	< 0.009
09/06/11	-	09/19/11	< 0.007
09/19/11	-	10/03/11	< 0.010
10/03/11	-	10/18/11	< 0.010
10/18/11	-	10/31/11	< 0.013
10/31/11	-	11/14/11	< 0.022
11/14/11	-	11/28/11	< 0.007
11/28/11	-	12/12/11	< 0.010
12/12/11	-	12/26/11	< 0.023

Brendan T. Byrne State Forest (COAI02)

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

Waretown Municipal Building (OCAI01)

			<u>I-131</u>
<u>Colle</u>	ection	<u>(pCi/m³)</u>	
01/11/11	_	01/24/11	< 0.032
01/24/11	_	02/08/11	< 0.019
02/08/11	_	$\frac{02}{22}$	< 0.012
02/22/11	-	03/09/11	< 0.011
03/09/11	-	03/21/11	< 0.015
03/21/11	-	03/28/11*	0.067 ± 0.022
03/28/11	_	04/05/11*	0.069 ± 0.026
04/05/11	-	04/12/11*	< 0.014
04/12/11	-	04/19/11*	< 0.013
04/19/11	-	04/26/11*	< 0.017
04/26/11	-	05/02/11*	< 0.023
05/02/11	-	05/16/11	< 0.024
05/16/11	-	05/31/11	< 0.011
05/31/11	-	06/14/11	< 0.009
06/14/11	-	06/28/11	< 0.013
06/28/11	-	07/11/11	< 0.020
07/11/11	-	07/25/11	< 0.007
07/25/11	-	08/09/11	< 0.012
08/09/11	-	08/23/11	< 0.010
08/23/11	-	09/06/11	< 0.007
09/06/11	-	09/19/11	< 0.009
09/19/11	-	10/03/11	< 0.009
10/03/11	-	10/17/11	< 0.014
10/17/11	-	10/31/11	< 0.010
10/31/11	-	11/14/11	< 0.037
11/14/11	-	11/28/11	< 0.007
11/28/11	-	12/12/11	< 0.017
12/12/11	-	12/26/11	< 0.014

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

Sands Point Harbor (OCAI02)

			<u>I-131</u>
<u>Colle</u>	ection	<u>(pCi/m³)</u>	
01/11/11	_	01/24/11	< 0.014
01/24/11	_	02/08/11	< 0.031
02/08/11	_	$\frac{02}{22}/11$	< 0.007
$\frac{02}{22}$	_	03/09/11	< 0.016
03/09/11	-	03/21/11	< 0.019
03/21/11	-	03/28/11*	0.073 ± 0.025
03/28/11	-	04/05/11*	0.081 ± 0.021
04/05/11	-	04/12/11*	< 0.013
04/12/11	-	04/19/11*	< 0.024
04/19/11	-	04/26/11*	< 0.027
04/26/11	-	05/02/11*	< 0.019
05/02/11	-	05/16/11	< 0.015
05/16/11	-	05/31/11	< 0.008
05/31/11	-	06/14/11	< 0.011
06/14/11	-	06/28/11	< 0.013
06/28/11	-	07/11/11	< 0.020
07/11/11	-	07/25/11	< 0.012
07/25/11	-	08/09/11	< 0.007
08/09/11	-	08/23/11	< 0.009
08/23/11	-	09/06/11	< 0.011
09/06/11	-	09/19/11	< 0.010
09/19/11	-	10/03/11	< 0.011
10/03/11	-	10/17/11	< 0.016
10/17/11	-	10/31/11	< 0.011
10/31/11	-	11/14/11	< 0.022
11/14/11	-	11/28/11	< 0.008
11/28/11	-	12/12/11	< 0.011
12/12/11	-	12/26/11	< 0.012

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

Forked River Marina (OCAI03)

			<u>I-131</u>
<u>Colle</u>	ection	<u>(pCi/m³)</u>	
01/11/11	_	01/24/11	< 0.043
01/24/11	-	02/08/11	< 0.017
02/08/11	-	02/22/11	< 0.009
02/22/11	-	03/09/11	< 0.012
03/09/11	-	03/21/11	< 0.016
03/21/11	-	03/29/11*	0.100 ± 0.029
03/29/11	-	04/05/11*	0.061 ± 0.023
04/05/11	-	04/12/11*	0.042 ± 0.022
04/12/11	-	04/19/11*	< 0.019
04/19/11	-	04/26/11*	< 0.015
04/26/11	-	05/02/11*	< 0.023
05/02/11	-	05/16/11	< 0.012
05/16/11	-	05/31/11	< 0.008
05/31/11	-	06/14/11	< 0.014
06/14/11	-	06/28/11	< 0.011
06/28/11	-	07/11/11	< 0.015
07/11/11	-	07/25/11	< 0.008
07/25/11	-	08/09/11	< 0.009
08/09/11	-	08/23/11	< 0.007
08/23/11	-	09/06/11	< 0.008
09/06/11	-	09/19/11	< 0.007
09/19/11	-	10/03/11	< 0.009
10/03/11	-	10/17/11	< 0.007
10/17/11	-	10/31/11	< 0.008
10/31/11	-	11/14/11	< 0.017
11/14/11	-	11/28/11	< 0.005
11/28/11	-	12/12/11	< 0.010
12/12/11	-	12/26/11	< 0.017

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

Lacey Township Recreation Building (OCAI04)

			<u>I-131</u>
<u>Colle</u>	ection	<u>(pCi/m³)</u>	
01/11/11	_	01/24/11	< 0.031
01/24/11	_	02/08/11	< 0.017
02/08/11	_	$\frac{02}{22}$	< 0.008
$\frac{02}{22}/11$	_	03/09/11	< 0.018
03/09/11	-	03/21/11	< 0.009
03/21/11	-	03/29/11*	0.063 ± 0.021
03/29/11	-	04/05/11*	0.098 ± 0.038
04/05/11	_	04/12/11*	< 0.015
04/12/11	_	04/19/11*	< 0.019
04/19/11	-	04/26/11*	< 0.022
04/26/11	-	05/02/11*	< 0.028
05/02/11	-	05/16/11	< 0.011
05/16/11	-	05/31/11	< 0.011
05/31/11	-	06/14/11	< 0.017
06/14/11	-	06/28/11	< 0.009
06/28/11	-	07/11/11	< 0.026
07/11/11	-	07/25/11	< 0.010
07/25/11	-	08/09/11	< 0.011
08/09/11	-	08/23/11	< 0.011
08/23/11	-	09/06/11	< 0.009
09/06/11	-	09/20/11	< 0.017
09/20/11	-	10/03/11	< 0.010
10/03/11	-	10/17/11	< 0.014
10/17/11	-	10/31/11	< 0.015
10/31/11	-	11/14/11	< 0.015
11/14/11	-	11/28/11	< 0.007
11/28/11	-	12/12/11	< 0.008
12/12/11	-	12/26/11	< 0.014

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

JCP&L Substation (OCAI05)

			<u>I-131</u>
<u>Colle</u>	ection	<u>(pCi/m³)</u>	
01/11/11	_	01/24/11	< 0.060
01/74/11	_	01/24/11 02/08/11	< 0.000
01/24/11 02/08/11	_	02/00/11 02/22/11	< 0.050
$\frac{02}{272}/11$	_	03/09/11	< 0.011
02/22/11	_	03/21/11	< 0.013
03/02/11	_	03/28/11*	< 0.021 0.074 + 0.030
03/28/11	_	04/05/11*	0.074 ± 0.030 0.085 ± 0.024
04/05/11	_	04/12/11*	< 0.024
04/12/11	_	04/19/11*	< 0.021
04/19/11	_	04/26/11*	< 0.019
04/26/11	_	05/02/11*	< 0.014
05/02/11	_	05/16/11	< 0.015
05/16/11	-	05/31/11	< 0.016
05/31/11	-	06/14/11	< 0.016
06/14/11	-	06/28/11	< 0.012
06/28/11	-	07/11/11	< 0.016
07/11/11	-	07/25/11	< 0.010
07/25/11	-	08/09/11	< 0.007
08/09/11	-	08/23/11	< 0.009
08/23/11	-	09/06/11	< 0.009
09/06/11	-	09/20/11	< 0.010
09/20/11	-	10/03/11	< 0.009
10/03/11	-	10/17/11	< 0.012
10/17/11	-	10/31/11	< 0.012
10/31/11	-	11/14/11	< 0.015
11/14/11	-	11/28/11	< 0.006
11/28/11	-	12/12/11	< 0.018
12/12/11	-	12/26/11	< 0.015

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Iodine-131 in Weekly* Air Iodine Samples

Finninger Farm, OC Dredge Site (OCAI06)

<u>Colle</u>	ection	Period	<u>I-131</u> (pCi/m ³)
01/05/11	-	01/11/11	< 0.031
01/11/11	-	01/19/11	< 0.035
01/19/11	-	01/25/11	< 0.030
01/25/11	-	02/01/11	< 0.028
02/01/11	-	02/09/11	< 0.014
02/09/11	-	02/16/11	< 0.042
02/16/11	-	02/23/11	< 0.039
02/23/11	-	03/02/11	< 0.030
03/02/11	-	03/09/11	< 0.045
03/09/11	-	03/16/11	< 0.029
03/16/11	-	03/23/11	< 0.060
03/23/11	-	03/30/11	< 0.035
03/30/11	-	04/06/11	< 0.036
04/06/11	-	04/13/11	< 0.070
04/13/11	-	04/20/11	< 0.049
04/20/11	-	04/27/11	< 0.037
04/27/11	-	05/04/11	< 0.021
05/04/11	-	05/11/11	< 0.051
05/11/11	-	05/18/11	< 0.035
05/18/11	-	05/25/11	< 0.029
05/25/11	-	06/01/11	< 0.036
06/01/11	-	06/08/11	< 0.031
06/08/11	-	06/15/11	< 0.035
06/15/11	-	06/22/11	< 0.061
06/22/11	-	06/29/11	< 0.025
06/29/11	-	07/06/11	< 0.032

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

* Air Iodine samples are collected by the licensee on a weekly basis

Oyster Creek Concentrations of Iodine-131 in Weekly* Air Iodine Samples

Finninger Farm, OC Dredge Site (OCAI06) - continued

<u>Colle</u>	ection	Period	<u>I-131</u> (pCi/m ³)
07/06/11	-	07/13/11	< 0.044
07/13/11	-	07/20/11	< 0.041
07/20/11	-	07/27/11	< 0.021
07/27/11	-	08/03/11	< 0.041
08/03/11	-	08/10/11	< 0.030
08/10/11	-	08/17/11	< 0.036
08/17/11	-	08/24/11	< 0.019
08/24/11	-	08/31/11	< 0.035
08/31/11	-	09/07/11	< 0.025
09/07/11	-	09/14/11	< 0.052
09/14/11	-	09/21/11	< 0.039
09/21/11	-	09/28/11	< 0.047
09/28/11	-	10/05/11	< 0.043
10/05/11	-	10/12/11	< 0.030
10/12/11	-	10/19/11	< 0.033
10/19/11	-	10/26/11	< 0.018
10/26/11	-	11/02/11	< 0.034
11/02/11	-	11/09/11	< 0.045
11/09/11	-	11/16/11	< 0.057
11/16/11	-	11/22/11	< 0.051
11/22/11	-	11/30/11	< 0.015
11/30/11	-	12/07/11	< 0.057
12/07/11	-	12/14/11	< 0.031
12/14/11	-	12/20/11	< 0.040
12/20/11	-	12/28/11	< 0.043

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

* Air Iodine samples are collected by the licensee on a weekly basis

Oyster Creek Concentrations of Iodine-131 in Weekly Air Iodine Samples*

Access Road to Finninger Farm Property (ENE Sector) (OCAI07)

			<u>I-131</u>
<u>Colle</u>	ction	<u>(pCi/m³)</u>	
01/11/11	-	01/24/11	< 0.022
01/24/11	-	02/08/11	< 0.014
02/08/11	_	02/22/11	< 0.008
02/22/11	_	03/09/11	< 0.014
03/09/11	_	03/21/11	< 0.017
03/21/11	_	03/28/11*	0.073 ± 0.023
03/28/11	-	04/05/11*	0.068 ± 0.026
04/05/11	-	04/12/11*	< 0.010
04/12/11	-	04/19/11*	< 0.014
04/19/11	-	04/26/11*	< 0.016
04/26/11	-	05/02/11*	< 0.017
05/02/11	-	05/16/11	< 0.010
05/16/11	-	05/31/11	< 0.008
05/31/11	-	06/14/11	< 0.009
06/14/11	-	06/28/11	< 0.010
06/28/11	-	07/11/11	< 0.019
07/11/11	-	07/25/11	< 0.008
07/25/11	-	08/09/11	< 0.008
08/09/11	-	08/23/11	< 0.007
08/23/11	-	09/06/11	< 0.007
09/06/11	-	09/19/11	< 0.009
09/19/11	-	10/03/11	< 0.010
10/03/11	-	10/17/11	< 0.013
10/17/11	-	10/31/11	< 0.008
10/31/11	-	11/14/11	< 0.021
11/14/11	-	11/28/11	< 0.010
11/28/11	-	12/12/11	< 0.007
12/12/11	-	12/26/11	< 0.018

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Salem/Hope Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

Fort Elfsborg Road (AIAI01)

			<u>I-131</u>
<u>Colle</u>	ection	<u>(pCi/m³)</u>	
01/14/11	-	01/31/11	< 0.009
01/31/11	-	02/08/11	< 0.046
02/08/11	-	02/23/11	< 0.010
02/23/11	-	03/09/11	< 0.013
03/09/11	-	03/21/11	< 0.015
03/21/11	-	03/28/11*	0.082 ± 0.036
03/28/11	-	04/05/11*	0.114 ± 0.030
04/05/11	-	04/12/11*	0.041 ± 0.022
04/12/11	-	04/19/11*	< 0.013
04/19/11	-	04/26/11*	< 0.024
04/26/11	-	05/03/11*	< 0.024
05/03/11	-	05/17/11	< 0.010
05/17/11	-	05/31/11	< 0.013
05/31/11	-	06/14/11	< 0.013
06/14/11	-	06/28/11	< 0.011
06/28/11	-	07/12/11	< 0.016
07/12/11	-	07/25/11	< 0.007
07/25/11	-	08/09/11	< 0.010
08/09/11	-	08/22/11	< 0.009
08/22/11	-	09/06/11	< 0.005
09/06/11	-	09/20/11	< 0.007
09/20/11	-	10/03/11	< 0.009
10/03/11	-	10/18/11	< 0.010
10/18/11	-	10/31/11	< 0.007
10/31/11	-	11/14/11	< 0.044
11/14/11	-	11/28/11	< 0.011
11/28/11	-	12/13/11	< 0.021
12/13/11	-	12/27/11	< 0.012

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Salem/Hope Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

Plant Access Road (AIAI02)

_ . _ .

			<u>I-131</u>
<u>Colle</u>	ection	<u>(pCi/m³)</u>	
01/14/11	_	01/31/11	< 0.007
01/31/11	-	02/08/11	< 0.026
02/08/11	-	02/23/11	< 0.008
02/23/11	_	03/09/11	< 0.016
03/09/11	-	03/21/11	< 0.024
03/21/11	-	03/28/11*	0.061 ± 0.022
03/28/11	-	04/05/11*	0.089 ± 0.023
04/05/11	-	04/12/11*	< 0.034
04/12/11	-	04/19/11*	< 0.016
04/19/11	-	04/26/11*	< 0.023
04/26/11	-	05/03/11*	< 0.029
05/03/11	-	05/17/11	< 0.011
05/17/11	-	05/31/11	< 0.006
05/31/11	-	06/14/11	< 0.024
06/14/11	-	06/28/11	< 0.013
06/28/11	-	07/12/11	< 0.020
07/12/11	-	07/25/11	< 0.007
07/25/11	-	08/09/11	< 0.010
08/09/11	-	08/22/11	< 0.010
08/22/11	-	09/06/11	< 0.008
09/06/11	-	09/20/11	< 0.008
09/20/11	-	10/03/11	< 0.010
10/03/11	-	10/18/11	< 0.011
10/18/11	-	10/31/11	< 0.008
10/31/11	-	11/14/11	< 0.022
11/14/11	-	11/28/11	< 0.007
11/28/11	-	12/13/11	< 0.007
12/13/11	-	12/27/11	< 0.011

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Salem/Hope Creek Concentrations of Iodine-131 in Bi-Weekly Air Iodine Samples

<u>Colle</u>	ection	Period	<u>I-131</u> (pCi/m ³)
01/14/11	-	01/31/11	< 0.011
01/31/11	-	02/08/11	< 0.029
02/08/11	-	02/23/11	< 0.006
02/23/11	-	03/09/11	< 0.011
03/09/11	-	03/21/11	< 0.022
03/21/11	-	03/28/11*	0.058 ± 0.022
03/28/11	-	04/05/11*	0.083 ± 0.024
04/05/11	-	04/12/11*	0.031 ± 0.014
04/12/11	-	04/19/11*	< 0.015
04/19/11	-	04/27/11*	< 0.020
04/27/11	-	05/03/11*	< 0.020
05/03/11	-	05/17/11	< 0.012
05/17/11	-	05/31/11	< 0.008
05/31/11	-	06/14/11	< 0.009
06/14/11	-	06/28/11	< 0.013
06/28/11	-	07/12/11	< 0.004
07/12/11	-	07/25/11	< 0.010
07/25/11	-	08/09/11	< 0.013
08/09/11	-	08/22/11	< 0.009
08/22/11	-	09/06/11	< 0.013
09/06/11	-	09/20/11	< 0.008
09/20/11	-	10/03/11	< 0.009
10/03/11	-	10/18/11	< 0.010
10/18/11	-	10/31/11	< 0.010
10/31/11	-	11/14/11	< 0.018
11/14/11	-	11/28/11	< 0.006
11/28/11	-	12/13/11	< 0.010
12/13/11	-	12/27/11	< 0.021

Lower Alloways Creek School (AIAI03)

Results in picoCuries per cubic meter $(pCi/m^3) +/-2$ Standard Deviations

BNE Background Location Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

BNE Office (COAP01)

			Particulate Gross Beta
Collection Period			<u>(pCi/m³)</u>
01/14/11	-	01/31/11	0.023 ± 0.0020
01/31/11	-	02/08/11	0.031 ± 0.0030
02/08/11	-	02/23/11	0.027 ± 0.0020
02/23/11	-	03/09/11	0.011 ± 0.0010
03/09/11	-	03/21/11	0.020 ± 0.0020
03/21/11	-	03/28/11*	0.048 ± 0.0040
03/28/11	-	04/05/11*	0.043 ± 0.0030
04/05/11	-	04/12/11*	0.036 ± 0.0030
04/12/11	-	04/19/11*	0.024 ± 0.0030
04/19/11	-	04/26/11*	0.025 ± 0.0030
04/26/11	-	05/04/11*	0.012 ± 0.0020
05/04/11	-	05/17/11	0.014 ± 0.0010
05/17/11	-	05/31/11	0.019 ± 0.0020
05/31/11	-	06/14/11	0.022 ± 0.0020
06/14/11	-	06/27/11	0.019 ± 0.0020
06/27/11	-	07/13/11	0.026 ± 0.0020
07/13/11	-	07/26/11	0.031 ± 0.0020
07/26/11	-	08/09/11	0.023 ± 0.0020
08/09/11	-	08/22/11	0.021 ± 0.0020
08/22/11	-	09/06/11	0.028 ± 0.0020
09/06/11	-	09/21/11	0.029 ± 0.0020
09/21/11	-	10/03/11	0.017 ± 0.0020
10/03/11	-	10/18/11	0.039 ± 0.0030
10/18/11	-	10/31/11	0.024 ± 0.0020
10/31/11	-	11/15/11	0.033 ± 0.0030
11/15/11	-	11/29/11	0.035 ± 0.0030
11/29/11	-	12/14/11	0.040 ± 0.0030
12/14/11	-	12/28/11	0.042 ± 0.0030

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

BNE Background Location Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

			Particulate Gross Beta
Collection Period			<u>(pCi/m³)</u>
01/11/11	-	01/24/11	0.028 ± 0.0020
01/24/11	-	02/08/11	0.025 ± 0.0020
02/08/11	-	02/22/11	0.024 ± 0.0020
02/22/11	-	03/09/11	0.025 ± 0.0020
03/09/11	-	03/21/11	0.022 ± 0.0020
03/21/11	-	03/28/11*	0.046 ± 0.0040
03/28/11	-	04/05/11*	0.037 ± 0.0040
04/05/11	-	04/12/11*	0.041 ± 0.0040
04/12/11	-	04/19/11*	0.025 ± 0.0030
04/19/11	-	04/26/11*	0.026 ± 0.0030
04/26/11	-	05/02/11*	0.016 ± 0.0030
05/02/11	-	05/16/11	0.015 ± 0.0020
05/16/11	-	05/31/11	0.021 ± 0.0020
05/31/11	-	06/14/11	0.025 ± 0.0020
06/14/11	-	06/28/11	0.021 ± 0.0020
06/28/11	-	07/11/11	0.024 ± 0.0020
07/11/11	-	07/25/11	0.025 ± 0.0020
07/25/11	-	08/09/11	0.024 ± 0.0020
08/09/11	-	08/23/11	0.022 ± 0.0020
08/23/11	-	09/06/11	0.031 ± 0.0030
09/06/11	-	09/19/11	0.029 ± 0.0030
09/19/11	-	10/03/11	0.017 ± 0.0020
10/03/11	-	10/18/11	0.037 ± 0.0030
10/18/11	-	10/31/11	0.029 ± 0.0030
10/31/11	-	11/14/11	0.031 ± 0.0030
11/14/11	-	11/28/11	0.039 ± 0.0030
11/28/11	-	12/12/11	0.030 ± 0.0030
12/12/11	-	12/26/11	0.046 ± 0.0040

Brendan T. Byrne State Forest (COAP02)

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

Waretown Municipal Building (OCAP01)

			<u>Particulate Gross Beta</u>
Collection Period			<u>(pCi/m³)</u>
01/11/11	-	01/24/11	0.026 ± 0.0020
01/24/11	-	02/08/11	0.024 ± 0.0020
02/08/11	-	02/22/11	0.023 ± 0.0020
02/22/11	-	03/09/11	0.023 ± 0.0020
03/09/11	-	03/21/11	0.022 ± 0.0020
03/21/11	-	03/28/11*	0.056 ± 0.0040
03/28/11	-	04/05/11*	0.032 ± 0.0030
04/05/11	-	04/12/11*	0.044 ± 0.0040
04/12/11	-	04/19/11*	0.024 ± 0.0030
04/19/11	-	04/26/11*	0.027 ± 0.0030
04/26/11	-	05/02/11*	0.012 ± 0.0020
05/02/11	-	05/16/11	0.014 ± 0.0020
05/16/11	-	05/31/11	0.022 ± 0.0020
05/31/11	-	06/14/11	0.028 ± 0.0020
06/14/11	-	06/28/11	0.020 ± 0.0020
06/28/11	-	07/11/11	0.023 ± 0.0020
07/11/11	-	07/25/11	0.026 ± 0.0020
07/25/11	-	08/09/11	0.026 ± 0.0020
08/09/11	-	08/23/11	0.021 ± 0.0020
08/23/11	-	09/06/11	0.028 ± 0.0030
09/06/11	-	09/19/11	0.028 ± 0.0030
09/19/11	-	10/03/11	0.015 ± 0.0020
10/03/11	-	10/17/11	0.037 ± 0.0030
10/17/11	-	10/31/11	0.028 ± 0.0030
10/31/11	-	11/14/11	0.033 ± 0.0030
11/14/11	-	11/28/11	0.037 ± 0.0030
11/28/11	-	12/12/11	0.032 ± 0.0030
12/12/11	-	12/26/11	0.045 ± 0.0040

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek

Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

Sands Point Harbor (OCAP02)

			Particulate Gross Beta
Collection Period			<u>(pCi/m³)</u>
01/11/11	-	01/24/11	0.028 ± 0.0020
01/24/11	-	02/08/11	0.034 ± 0.0030
02/08/11	-	02/22/11	0.022 ± 0.0020
02/22/11	-	03/09/11	0.023 ± 0.0020
03/09/11	-	03/21/11	0.022 ± 0.0020
03/21/11	-	03/28/11*	0.044 ± 0.0040
03/28/11	-	04/05/11*	0.039 ± 0.0030
04/05/11	-	04/12/11*	0.047 ± 0.0040
04/12/11	-	04/19/11*	0.020 ± 0.0030
04/19/11	-	04/26/11*	0.026 ± 0.0030
04/26/11	-	05/02/11*	0.012 ± 0.0020
05/02/11	-	05/16/11	0.017 ± 0.0020
05/16/11	-	05/31/11	0.023 ± 0.0020
05/31/11	-	06/14/11	0.026 ± 0.0020
06/14/11	-	06/28/11	0.020 ± 0.0020
06/28/11	-	07/11/11	0.026 ± 0.0020
07/11/11	-	07/25/11	0.030 ± 0.0020
07/25/11	-	08/09/11	0.027 ± 0.0020
08/09/11	-	08/23/11	0.022 ± 0.0020
08/23/11	-	09/06/11	0.023 ± 0.0020
09/06/11	-	09/19/11	0.029 ± 0.0030
09/19/11	-	10/03/11	0.017 ± 0.0020
10/03/11	-	10/17/11	0.037 ± 0.0030
10/17/11	-	10/31/11	0.030 ± 0.0030
10/31/11	-	11/14/11	0.031 ± 0.0030
11/14/11	-	11/28/11	0.034 ± 0.0030
11/28/11	-	12/12/11	0.030 ± 0.0030
12/12/11	-	12/26/11	0.053 ± 0.0040

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek

Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

Forked River Marina (OCAP03)

			Particulate Gross Beta
Collection Period			<u>(pCi/m³)</u>
01/11/11	-	01/24/11	0.026 ± 0.0020
01/24/11	-	02/08/11	0.028 ± 0.0020
02/08/11	-	02/22/11	0.022 ± 0.0020
02/22/11	-	03/09/11	0.021 ± 0.0020
03/09/11	-	03/21/11	0.019 ± 0.0020
03/21/11	-	03/28/11*	0.051 ± 0.0040
03/28/11	-	04/05/11*	0.034 ± 0.0030
04/05/11	-	04/12/11*	0.044 ± 0.0040
04/12/11	-	04/19/11*	0.021 ± 0.0020
04/19/11	-	04/26/11*	0.023 ± 0.0030
04/26/11	-	05/02/11*	0.011 ± 0.0020
05/02/11	-	05/16/11	0.015 ± 0.0010
05/16/11	-	05/31/11	0.021 ± 0.0020
05/31/11	-	06/14/11	0.024 ± 0.0020
06/14/11	-	06/28/11	0.020 ± 0.0020
06/28/11	-	07/11/11	0.026 ± 0.0020
07/11/11	-	07/25/11	0.023 ± 0.0020
07/25/11	-	08/09/11	0.025 ± 0.0020
08/09/11	-	08/23/11	0.023 ± 0.0020
08/23/11	-	09/06/11	0.025 ± 0.0020
09/06/11	-	09/19/11	0.028 ± 0.0020
09/19/11	-	10/03/11	0.017 ± 0.0020
10/03/11	-	10/17/11	0.038 ± 0.0030
10/17/11	-	10/31/11	0.031 ± 0.0020
10/31/11	-	11/14/11	0.031 ± 0.0030
11/14/11	-	11/28/11	0.040 ± 0.0030
11/28/11	-	12/12/11	0.031 ± 0.0030
12/12/11	-	12/26/11	0.047 ± 0.0040

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

Collection Period			<u>Particulate Gross Beta</u> (pCi/m ³)	
01/11/11	-	01/24/11	0.025 ± 0.0020	
01/24/11	-	02/08/11	0.024 ± 0.0020	
02/08/11	-	02/22/11	0.025 ± 0.0020	
02/22/11	-	03/09/11	0.020 ± 0.0020	
03/09/11	-	03/21/11	0.021 ± 0.0020	
03/21/11	-	03/29/11*	0.048 ± 0.0040	
03/29/11	-	04/05/11*	0.040 ± 0.0030	
04/05/11	-	04/12/11*	0.040 ± 0.0030	
04/12/11	-	04/19/11*	0.028 ± 0.0030	
04/19/11	-	04/26/11*	0.026 ± 0.0030	
04/26/11	-	05/02/11*	0.014 ± 0.0020	
05/02/11	-	05/16/11	0.015 ± 0.0020	
05/16/11	-	05/31/11	0.022 ± 0.0020	
05/31/11	-	06/14/11	0.025 ± 0.0020	
06/14/11	-	06/28/11	0.021 ± 0.0020	
06/28/11	-	07/11/11	0.023 ± 0.0020	
07/11/11	-	07/25/11	0.026 ± 0.0020	
07/25/11	-	08/09/11	0.025 ± 0.0020	
08/09/11	-	08/23/11	0.022 ± 0.0020	
08/23/11	-	09/06/11	0.025 ± 0.0020	
09/06/11	-	09/20/11	0.029 ± 0.0030	
09/20/11	-	10/03/11	0.017 ± 0.0020	
10/03/11	-	10/17/11	0.036 ± 0.0030	
10/17/11	-	10/31/11	0.027 ± 0.0030	
10/31/11	-	11/14/11	0.029 ± 0.0030	
11/14/11	-	11/28/11	0.039 ± 0.0030	
11/28/11	-	12/12/11	0.031 ± 0.0030	
12/12/11	-	12/26/11	0.046 ± 0.0040	

Lacey Twp. Recreation Building (OCAP04)

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek

Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

JCP&L Substation (OCAP05)

			Particulate Gross Beta
Collection Period			<u>(pCi/m³)</u>
01/11/11	-	01/24/11	0.024 ± 0.0030
01/24/11	-	02/08/11	0.028 ± 0.0020
02/08/11	-	02/22/11	0.027 ± 0.0020
02/22/11	-	03/09/11	0.022 ± 0.0020
03/09/11	-	03/21/11	0.021 ± 0.0020
03/21/11	-	03/29/11*	0.057 ± 0.0050
03/29/11	-	04/05/11*	0.044 ± 0.0040
04/05/11	-	04/12/11*	0.043 ± 0.0040
04/12/11	-	04/19/11*	0.026 ± 0.0030
04/19/11	-	04/26/11*	0.025 ± 0.0030
04/26/11	-	05/02/11*	0.011 ± 0.0020
05/02/11	-	05/16/11	0.015 ± 0.0020
05/16/11	-	05/31/11	0.022 ± 0.0020
05/31/11	-	06/14/11	0.021 ± 0.0020
06/14/11	-	06/28/11	0.019 ± 0.0020
06/28/11	-	07/11/11	0.025 ± 0.0020
07/11/11	-	07/25/11	0.028 ± 0.0020
07/25/11	-	08/09/11	0.023 ± 0.0020
08/09/11	-	08/23/11	0.023 ± 0.0020
08/23/11	-	09/06/11	0.028 ± 0.0030
09/06/11	-	09/20/11	0.036 ± 0.0030
09/20/11	-	10/03/11	0.018 ± 0.0020
10/03/11	-	10/17/11	0.035 ± 0.0030
10/17/11	-	10/31/11	0.030 ± 0.0030
10/31/11	-	11/14/11	0.034 ± 0.0030
11/14/11	-	11/28/11	0.034 ± 0.0030
11/28/11	-	12/12/11	0.033 ± 0.0030
12/12/11	-	12/26/11	0.044 ± 0.0030

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Gross Beta in Weekly* Air Particulate Samples

Finninger Farm, OC Dredge Site (OCAP06)

			Particulate Gross Beta
Collection Period			<u>(pCi/m³)</u>
01/05/11	-	01/11/11	0.065 ± 0.0070
01/11/11	-	01/19/11	0.030 ± 0.0040
01/19/11	-	01/25/11	0.023 ± 0.0040
01/25/11	-	02/01/11	0.043 ± 0.0060
02/01/11	-	02/09/11	0.035 ± 0.0050
02/09/11	-	02/16/11	0.044 ± 0.0060
02/16/11	-	02/23/11	0.040 ± 0.0050
02/23/11	-	03/02/11	0.042 ± 0.0060
03/02/11	-	03/09/11	0.033 ± 0.0050
03/09/11	-	03/16/11	0.032 ± 0.0050
03/16/11	-	03/23/11	0.057 ± 0.0070
03/23/11	-	03/30/11	0.059 ± 0.0070
03/30/11	-	04/06/11	0.050 ± 0.0060
04/06/11	-	04/13/11	0.056 ± 0.0070
04/13/11	-	04/20/11	0.041 ± 0.0060
04/20/11	-	04/27/11	0.032 ± 0.0050
04/27/11	-	05/04/11	0.027 ± 0.0050
05/04/11	-	05/11/11	0.035 ± 0.0050
05/11/11	-	05/18/11	0.025 ± 0.0040
05/18/11	-	05/25/11	0.029 ± 0.0050
05/25/11	-	06/01/11	0.041 ± 0.0060
06/01/11	-	06/08/11	0.046 ± 0.0060
06/08/11	-	06/15/11	0.043 ± 0.0040
06/15/11	-	06/22/11	0.041 ± 0.0060
06/22/11	-	06/29/11	0.040 ± 0.0060
06/29/11	-	07/06/11	0.037 ± 0.0060

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

* Air Particulate samples are collected by the licensee on a weekly basis

Oyster Creek Concentrations of Gross Beta in Weekly* Air Particulate Samples

Finninger Farm, OC Dredge Site (OCAP06) - continued

			Particulate Gross Beta
Collection Period			<u>(pCi/m³)</u>
07/06/11	-	07/13/11	0.053 ± 0.0060
07/13/11	-	07/20/11	0.040 ± 0.0060
07/20/11	-	07/27/11	0.066 ± 0.0070
07/27/11	-	08/03/11	0.034 ± 0.0050
08/03/11	-	08/10/11	0.027 ± 0.0050
08/10/11	-	08/17/11	0.040 ± 0.0060
08/17/11	-	08/24/11	0.042 ± 0.0060
08/24/11	-	08/31/11	0.039 ± 0.0060
08/31/11	-	09/07/11	0.046 ± 0.0070
09/07/11	-	09/14/11	0.043 ± 0.0070
09/14/11	-	09/21/11	0.039 ± 0.0060
09/21/11	-	09/28/11	0.026 ± 0.0050
09/28/11	-	10/05/11	0.029 ± 0.0060
10/05/11	-	10/12/11	0.053 ± 0.0070
10/12/11	-	10/19/11	0.039 ± 0.0060
10/19/11	-	10/26/11	0.040 ± 0.0070
10/26/11	-	11/02/11	0.046 ± 0.0070
11/02/11	-	11/09/11	0.036 ± 0.0060
11/09/11	-	11/16/11	0.047 ± 0.0070
11/16/11	-	11/22/11	0.043 ± 0.0070
11/22/11	-	11/30/11	0.035 ± 0.0060
11/30/11	-	12/07/11	0.021 ± 0.0050
12/07/11	-	12/14/11	0.055 ± 0.0080
12/14/11	-	12/20/11	0.064 ± 0.0090
12/20/11	-	12/28/11	0.035 ± 0.0060

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

* Air Particulate samples are collected by the licensee on a weekly basis

Oyster Creek Concentrations of Gross Beta in Weekly Air Particulate Samples

Access Road to	Finninger Far	m Property (1	ENE Sector)	(OCAP07)

			<u>Particulate Gross Beta</u>
Collection Period			<u>(pCi/m³)</u>
01/11/11	-	01/24/11	0.026 ± 0.0020
01/24/11	-	02/08/11	0.028 ± 0.0020
02/08/11	-	02/22/11	0.024 ± 0.0020
02/22/11	-	03/09/11	0.024 ± 0.0020
03/09/11	-	03/21/11	0.019 ± 0.0020
03/21/11	-	03/28/11*	0.055 ± 0.0050
03/28/11	-	04/05/11*	0.047 ± 0.0040
04/05/11	-	04/12/11*	0.042 ± 0.0040
04/12/11	-	04/19/11*	0.020 ± 0.0030
04/19/11	-	04/26/11*	0.026 ± 0.0030
04/26/11	-	05/02/11*	0.016 ± 0.0020
05/02/11	-	05/16/11	0.017 ± 0.0020
05/16/11	-	05/31/11	0.021 ± 0.0020
05/31/11	-	06/14/11	0.026 ± 0.0020
06/14/11	-	06/28/11	0.020 ± 0.0020
06/28/11	-	07/11/11	0.026 ± 0.0020
07/11/11	-	07/25/11	0.024 ± 0.0020
07/25/11	-	08/09/11	0.024 ± 0.0020
08/09/11	-	08/23/11	0.023 ± 0.0020
08/23/11	-	09/06/11	0.029 ± 0.0030
09/06/11	-	09/19/11	0.029 ± 0.0030
09/19/11	-	10/03/11	0.016 ± 0.0020
10/03/11	-	10/17/11	0.032 ± 0.0030
10/17/11	-	10/31/11	0.030 ± 0.0030
10/31/11	-	11/14/11	0.034 ± 0.0030
11/14/11	-	11/28/11	0.037 ± 0.0030
11/28/11	-	12/12/11	0.031 ± 0.0030
12/12/11	-	12/26/11	0.048 ± 0.0040

Results in picoCuries per cubic meter $(pCi/m^3) + 2$ Standard Deviations

Salem/Hope Creek Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

Fort Elfsborg Road (AIAP01)

			Particulate Gross Beta
<u>Colle</u>	ection	Period	<u>(pCi/m³)</u>
01/14/11	-	01/31/11	0.029 ± 0.0020
01/31/11	-	02/08/11	0.025 ± 0.0030
02/08/11	-	02/23/11	0.027 ± 0.0020
02/23/11	-	03/09/11	0.026 ± 0.0020
03/09/11	-	03/21/11	0.022 ± 0.0020
03/21/11	-	03/28/11*	0.058 ± 0.0050
03/28/11	-	04/05/11*	0.046 ± 0.0040
04/05/11	-	04/12/11*	0.040 ± 0.0040
04/12/11	-	04/19/11*	0.024 ± 0.0030
04/19/11	-	04/26/11*	0.028 ± 0.0030
04/26/11	-	05/03/11*	0.016 ± 0.0020
05/03/11	-	05/17/11	0.017 ± 0.0020
05/17/11	-	05/31/11	0.026 ± 0.0020
05/31/11	-	06/14/11	0.032 ± 0.0020
06/14/11	-	06/28/11	0.021 ± 0.0020
06/28/11	-	07/12/11	0.029 ± 0.0020
07/12/11	-	07/25/11	0.032 ± 0.0020
07/25/11	-	08/09/11	0.027 ± 0.0020
08/09/11	-	08/22/11	0.022 ± 0.0020
08/22/11	-	09/06/11	0.027 ± 0.0020
09/06/11	-	09/20/11	0.029 ± 0.0020
09/20/11	-	10/03/11	0.014 ± 0.0020
10/03/11	-	10/18/11	0.036 ± 0.0030
10/18/11	-	10/31/11	0.030 ± 0.0030
10/31/11	-	11/14/11	0.031 ± 0.0030
11/14/11	-	11/28/11	0.041 ± 0.0040
11/28/11	-	12/13/11	0.032 ± 0.0030
12/13/11	-	12/27/11	0.050 ± 0.0040

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Salem/Hope Creek

Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

Plant Access Road (AIAP02)

<u>Colle</u>	ection	Period	<u>Particulate Gross Beta</u> <u>(pCi/m³)</u>
01/14/11	-	01/31/11	0.031 ± 0.0020
01/31/11	-	02/08/11	0.027 ± 0.0030
02/08/11	-	02/23/11	0.023 ± 0.0020
02/23/11	-	03/09/11	0.022 ± 0.0020
03/09/11	-	03/21/11	0.024 ± 0.0020
03/21/11	-	03/28/11*	0.053 ± 0.0040
03/28/11	-	04/05/11*	0.045 ± 0.0040
04/05/11	-	04/12/11*	0.044 ± 0.0040
04/12/11	-	04/19/11*	0.026 ± 0.0030
04/19/11	-	04/26/11*	0.024 ± 0.0030
04/26/11	-	05/03/11*	0.016 ± 0.0020
05/03/11	-	05/17/11	0.018 ± 0.0020
05/17/11	-	05/31/11	0.026 ± 0.0020
05/31/11	-	06/14/11	0.030 ± 0.0020
06/14/11	-	06/28/11	0.022 ± 0.0020
06/28/11	-	07/12/11	0.026 ± 0.0020
07/12/11	-	07/25/11	0.029 ± 0.0020
07/25/11	-	08/09/11	0.028 ± 0.0020
08/09/11	-	08/22/11	0.023 ± 0.0020
08/22/11	-	09/06/11	0.032 ± 0.0020
09/06/11	-	09/20/11	0.031 ± 0.0030
09/20/11	-	10/03/11	0.015 ± 0.0020
10/03/11	-	10/18/11	0.036 ± 0.0030
10/18/11	-	10/31/11	0.033 ± 0.0030
10/31/11	-	11/14/11	0.035 ± 0.0030
11/14/11	-	11/28/11	0.039 ± 0.0030
11/28/11	-	12/13/11	0.035 ± 0.0030
12/13/11	-	12/27/11	0.053 ± 0.0040

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Salem/Hope Creek

Concentrations of Gross Beta in Bi-Weekly Air Particulate Samples

			<u>Particulate Gross Beta</u>
<u>Colle</u>	ection	Period	<u>(pCi/m³)</u>
01/14/11	-	01/31/11	0.030 ± 0.0020
01/31/11	_	02/08/11	0.028 ± 0.0030
02/08/11	-	02/23/11	0.024 ± 0.0020
02/23/11	-	03/09/11	0.023 ± 0.0020
03/09/11	-	03/21/11	0.022 ± 0.0020
03/21/11	-	03/28/11*	0.053 ± 0.0040
03/28/11	-	04/05/11*	0.041 ± 0.0030
04/05/11	-	04/12/11*	0.032 ± 0.0030
04/12/11	-	04/19/11*	0.025 ± 0.0030
04/19/11	-	04/27/11*	0.008 ± 0.0020
04/27/11	-	05/03/11*	0.040 ± 0.0040
05/03/11	-	05/17/11	0.016 ± 0.0020
05/17/11	-	05/31/11	0.025 ± 0.0020
05/31/11	-	06/14/11	0.029 ± 0.0020
06/14/11	-	06/28/11	0.024 ± 0.0020
06/28/11	-	07/12/11	0.025 ± 0.0020
07/12/11	-	07/25/11	0.026 ± 0.0020
07/25/11	-	08/09/11	0.031 ± 0.0020
08/09/11	-	08/22/11	0.024 ± 0.0020
08/22/11	-	09/06/11	0.028 ± 0.0020
09/06/11	-	09/20/11	0.034 ± 0.0030
09/20/11	-	10/03/11	0.017 ± 0.0020
10/03/11	-	10/18/11	0.036 ± 0.0030
10/18/11	-	10/31/11	0.032 ± 0.0030
10/31/11	-	11/14/11	0.035 ± 0.0030
11/14/11	-	11/28/11	0.036 ± 0.0030
11/28/11	-	12/13/11	0.031 ± 0.0030
12/13/11	-	12/27/11	0.051 ± 0.0040

Lower Alloways Creek School (AIAP03)

Results in picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

BNE Background Location Concentrations of Gamma Emitters and Strontium in Quarterly Composite Air Samples

BNE Office	e (CC	<u>DAP01)</u>						
Colle	ectio	n Period	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>
12/14/10	-	03/28/11	< 0.7	< 0.6	< 0.6	85 ± 22	< 4.0	< 1.1
03/28/11	-	06/27/11	< 0.4	< 0.2	0.6 ± 0.3	109 ± 18	< 2.5	< 0.7
06/27/11	-	09/21/11	< 0.7	< 0.9	< 0.7	99 ± 27	< 5.7	< 1.3
09/21/11	-	12/28/11	< 0.3	< 0.4	< 0.3	93 ± 17	< 3.6	< 1.4

Brendan T. Byrne State Forest (COAP02)

Collection Period		<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>	
-	03/28/11	< 0.6	< 0.5	< 0.5	107 ± 21	< 4.4	< 1.6	
-	06/28/11	< 0.7	< 1.1	< 0.5	112 ± 27	< 2.9	< 1.0	
-	09/19/11	< 0.9	< 1.1	< 0.8	104 ± 32	< 6.3	< 2.3	
-	12/26/11	< 0.3	< 0.4	< 0.4	94 ± 15	< 4.7	< 1.7	
	<u>ectior</u> - - -	ection Period - 03/28/11 - 06/28/11 - 09/19/11 - 12/26/11	$\begin{array}{c c} \hline \textbf{ction Period} & \hline \textbf{Co-60} \\ \hline & 03/28/11 & < 0.6 \\ \hline & 06/28/11 & < 0.7 \\ \hline & 09/19/11 & < 0.9 \\ \hline & 12/26/11 & < 0.3 \end{array}$	ection PeriodCo-60Cs-134- $03/28/11$ < 0.6 < 0.5 - $06/28/11$ < 0.7 < 1.1 - $09/19/11$ < 0.9 < 1.1 - $12/26/11$ < 0.3 < 0.4	$\begin{array}{c ccccc} \underline{\operatorname{ccccn} \operatorname{Period}} & \underline{\operatorname{Co-60}} & \underline{\operatorname{Cs-134}} & \underline{\operatorname{Cs-137}} \\ \hline & 03/28/11 & < 0.6 & < 0.5 & < 0.5 \\ \hline & 06/28/11 & < 0.7 & < 1.1 & < 0.5 \\ \hline & 09/19/11 & < 0.9 & < 1.1 & < 0.8 \\ \hline & 12/26/11 & < 0.3 & < 0.4 & < 0.4 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Results in 10^{-3} picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Gamma Emitters and Strontium in Quarterly Composite Air Samples

Waretown	Mun	<u>icipal Buildin</u>	n <mark>g (OCAP</mark> 02	<u>1)</u>				
<u>Colle</u>	ectior	<u>n Period</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>
12/16/10	-	03/28/11	< 0.5	< 0.5	< 0.4	96 ± 17	< 4.9	< 1.4
03/28/11	-	06/28/11	< 0.3	< 0.2	0.5 ± 0.2	113 ± 20	< 5.1	< 1.0
06/28/11	-	09/19/11	< 1.2	< 1.4	< 1.0	137 ± 41	< 5.3	< 1.1
09/19/11	-	12/26/11	< 0.3	< 0.3	< 0.3	101 ± 14	< 4.2	< 1.5
Sands Poin	t Ha	rbor (OCAP0	2)					
Colle	ectior	n Period	 Co-60	Cs-134	Cs-137	Be-7	Sr-89	Sr-90
12/16/10	-	03/28/11	< 0.4	< 0.5	< 0.3	$9\overline{2 \pm 19}$	< 4.6	< 1.1
03/28/11	-	06/28/11	< 0.5	< 0.8	< 0.5	105 ± 23	< 4.6	< 1.1
06/28/11	-	09/19/11	< 1.0	< 0.9	< 0.9	90 ± 34	< 4.5	< 1.4
09/19/11	-	12/26/11	< 0.4	< 0.4	< 0.3	100 ± 15	< 3.7	< 1.3
Forked Riv	ver M	larina (OCAF	<u>P03)</u>					
Colle	ectior	n Period	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>
12/16/10	-	03/28/11	< 0.4	< 0.4	< 0.4	121 ± 22	< 5.3	< 1.2
03/28/11	-	06/28/11	< 0.6	< 0.8	0.7 ± 0.3	92 ± 21	< 4.0	< 1.0
06/28/11	-	09/19/11	< 0.7	< 1.1	< 0.7	115 ± 37	< 5.3	< 1.4
09/19/11	-	12/26/11	< 0.3	< 0.3	< 0.3	92 ± 13	< 3.8	< 1.1
Lacey Tow	nshij	o Recreation l	Building (O	CAP04)				
Colle	ection	n Period	Co-60	Cs-134	Cs-137	Be-7	Sr-89	Sr-90
12/16/10	-	03/29/11	< 0.4	< 0.3	< 0.3	108 ± 19	< 4.0	< 0.8
03/29/11	-	06/28/11	< 0.2	< 0.3	< 0.3	128 ± 18	< 3.5	< 1.4
06/28/11	-	09/20/11	< 0.8	< 0.9	< 1.0	109 ± 34	< 5.5	< 1.9
09/20/11	-	12/26/11	< 0.4	< 0.4	< 0.3	95 ± 15	< 3.7	< 1.1

Results in 10⁻³ picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Gamma Emitters and Strontium in Quarterly Composite Air Samples

Jersey Cen	tral	Power and Lig	ght Substat	ion (OCAP	<u>05)</u>			
Colle	ection	n Period	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>
12/16/10	-	03/29/11	< 0.7	< 0.8	< 0.6	130 ± 27	< 4.8	< 1.4
03/29/11	-	06/28/11	< 0.2	< 0.8	< 0.7	99 ± 23	< 3.2	< 1.9
06/28/11	-	09/20/11	< 1.0	< 1.1	< 1.0	140 ± 37	< 4.0	< 1.4
09/20/11	-	12/26/11	< 0.4	< 0.4	< 0.2	87 ± 14	< 3.1	< 1.2

Finninger Farm, OC Dredge Site (OCAP06)

Colle	Collection Period		<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>
01/05/11	-	03/30/11	< 0.6	< 1.3	< 1.1	102 ± 34	< 10.8	< 4.0
03/30/11	-	06/29/11	< 0.9	< 1.2	< 1.0	86 ± 29	< 14.7	< 3.3
06/29/11	-	09/28/11	< 2.1	< 1.7	< 1.2	67 ± 57	< 8.4	< 2.9
09/28/11	-	12/28/11	< 0.7	< 0.8	< 0.8	101 ± 22	< 5.3	< 3.1

Access Road, Finninger Farm Property (ENE Sector) (OCAP07)

						/		
Colle	ection	<u>n Period</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	Be-7	<u>Sr-89</u>	<u>Sr-90</u>
12/16/10	-	03/28/11	< 0.5	< 0.5	< 0.4	105 ± 21	< 4.4	< 1.0
03/28/11	-	06/28/11	< 0.5	< 0.9	0.9 ± 0.4	117 ± 23	< 3.0	< 1.1
06/28/11	-	09/19/11	< 0.8	< 0.9	< 0.7	138 ± 37	< 4.5	< 1.4
09/19/11	-	12/26/11	< 0.3	< 0.3	< 0.3	102 ± 14	< 4.2	< 1.2

Results in 10⁻³ picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Salem / Hope Creek Concentrations of Gamma Emitters and Strontium in Quarterly Composite Air Samples

org R	<u>oad (AIAP01)</u>	<u> </u>					
ection	Period	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>
-	03/28/11	< 0.3	< 0.7	< 0.5	116 ± 23	< 5.9	< 1.3
-	06/28/11	< 0.5	< 0.7	0.8 ± 0.5	132 ± 24	< 3.5	< 1.0
-	09/20/11	< 1.6	< 1.3	< 1.1	139 ± 46	< 4.8	< 1.6
-	12/27/11	< 0.4	< 0.3	< 0.3	99 ± 15	< 3.1	< 1.9
ss Ro	ad (AIAP02)						
ection	Period	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Be-7</u>	<u>Sr-89</u>	<u>Sr-90</u>
-	03/28/11	< 0.4	< 0.6	< 0.4	74 ± 19	< 5.3	< 1.0
-	06/28/11	< 0.4	< 0.5	< 0.5	138 ± 23	< 5.0	< 1.2
-	09/20/11	< 0.7	< 0.9	< 0.8	118 ± 27	< 3.3	< 1.4
-	12/27/11	< 0.3	< 0.2	< 0.2	101 ± 15	< 3.0	< 1.7
oways	Creek Schoo	l (AIAP03)					
ection	Period	<u>Co-60</u>	Cs-134	<u>Cs-137</u>	Be-7	<u>Sr-89</u>	<u>Sr-90</u>
-	03/28/11	< 0.5	< 0.4	< 0.4	106 ± 19	< 5.7	< 1.0
-	06/28/11	< 0.4	< 0.6	< 0.5	122 ± 22	< 3.9	< 0.9
-	09/20/11	< 0.7	< 0.8	< 0.7	91 ± 30	< 4.6	< 1.0
-	12/27/11	< 0.3	< 0.4	< 0.5	110 ± 16	< 3.8	< 1.6
	org R ection - - - ss Ro ection - - - - - - - - - - - - - - - - - - -	org Road (AIAP01) ection Period - 03/28/11 - 06/28/11 - 09/20/11 - 12/27/11 ss Road (AIAP02) ection Period - 03/28/11 - 03/28/11 - 03/28/11 - 06/28/11 - 09/20/11 - 12/27/11	prg Road (AIAP01)ection PeriodCo-60- $03/28/11$ < 0.3- $06/28/11$ < 0.5- $09/20/11$ < 1.6- $12/27/11$ < 0.4ss Road (AIAP02)ection PeriodCo-60- $03/28/11$ < 0.4- $06/28/11$ < 0.4- $09/20/11$ < 0.7- $12/27/11$ < 0.3ways Creek School (AIAP03)ection PeriodCo-60- $03/28/11$ < 0.5- $06/28/11$ < 0.4- $09/20/11$ < 0.7- $12/27/11$ < 0.3	prg Road (AIAP01)ection PeriodCo-60Cs-134- $03/28/11$ < 0.3 < 0.7 - $06/28/11$ < 0.5 < 0.7 - $09/20/11$ < 1.6 < 1.3 - $12/27/11$ < 0.4 < 0.3 extin PeriodCo-60Cs-134- $03/28/11$ < 0.4 < 0.6 - $03/28/11$ < 0.4 < 0.6 - $06/28/11$ < 0.4 < 0.6 - $09/20/11$ < 0.7 < 0.9 - $12/27/11$ < 0.3 < 0.2 ways Creek School (AIAP03)Cs-134ection PeriodCo-60Cs-134- $03/28/11$ < 0.5 < 0.4 - $06/28/11$ < 0.4 < 0.6 - $09/20/11$ < 0.7 < 0.8 - $12/27/11$ < 0.3 < 0.4	prg Road (AIAP01)ection PeriodCo-60Cs-134Cs-137- $03/28/11$ < 0.3 < 0.7 < 0.5 - $06/28/11$ < 0.5 < 0.7 0.8 ± 0.5 - $09/20/11$ < 1.6 < 1.3 < 1.1 - $12/27/11$ < 0.4 < 0.3 < 0.3 ss Road (AIAP02)ection PeriodCo-60Cs-134Cs-137- $03/28/11$ < 0.4 < 0.6 < 0.4 - $06/28/11$ < 0.4 < 0.5 < 0.5 - $09/20/11$ < 0.7 < 0.9 < 0.8 - $12/27/11$ < 0.3 < 0.2 < 0.2 ways Creek School (AIAP03)ection PeriodCo-60Cs-134Cs-137- $03/28/11$ < 0.5 < 0.4 < 0.4 - $06/28/11$ < 0.5 < 0.4 < 0.4 - $06/28/11$ < 0.4 < 0.6 < 0.5 - $09/20/11$ < 0.7 < 0.8 < 0.7 - $12/27/11$ < 0.3 < 0.4 < 0.5	org Road (AIAP01)ection PeriodCo-60Cs-134Cs-137Be-7- $03/28/11$ <0.3<0.7<0.5 116 ± 23 - $06/28/11$ <0.5<0.7 0.8 ± 0.5 132 ± 24 - $09/20/11$ <1.6<1.3<1.1 139 ± 46 - $12/27/11$ <0.4<0.3<0.3 99 ± 15 ss Road (AIAP02)ection PeriodCo-60Cs-134Cs-137Be-7- $03/28/11$ <0.4<0.6<0.4 74 ± 19 - $06/28/11$ <0.4<0.5<0.5 138 ± 23 - $09/20/11$ <0.7<0.9<0.8 118 ± 27 - $12/27/11$ <0.3<0.2<0.2 101 ± 15 oways Creek School (AIAP03)extion PeriodCo-60Cs-134Cs-137Be-7- $03/28/11$ <0.5<0.4<0.4 106 ± 19 - $06/28/11$ <0.4<0.6<0.5 122 ± 22 - $09/20/11$ <0.7<0.8<0.7 91 ± 30 - $12/27/11$ <0.3<0.4<0.5 110 ± 16	org Road (AIAP01)ection PeriodCo-60Cs-134Cs-137Be-7Sr-89- $03/28/11$ <0.3<0.7<0.5 116 ± 23 <5.9- $06/28/11$ <0.5<0.7 0.8 ± 0.5 132 ± 24 <3.5- $09/20/11$ <1.6<1.3<1.1 139 ± 46 <4.8- $12/27/11$ <0.4<0.3<0.3 99 ± 15 <3.1ss Road (AIAP02)ection PeriodCo-60Cs-134Cs-137Be-7Sr-89- $03/28/11$ <0.4<0.6<0.4 74 ± 19 <5.3- $06/28/11$ <0.4<0.5<0.5 138 ± 23 <5.0- $09/20/11$ <0.7<0.9<0.8 118 ± 27 <3.3- $12/27/11$ <0.3<0.2<0.2 101 ± 15 <3.0ways Creek School (AIAP03)extion PeriodCo-60Cs-134Cs-137Be-7Sr-89- $03/28/11$ <0.5<0.4<0.4 106 ± 19 <5.7- $06/28/11$ <0.5<0.4<0.4 106 ± 19 <5.7- $06/28/11$ <0.4<0.6<0.5 122 ± 22 <3.9- $09/20/11$ <0.7<0.8<0.7 91 ± 30 <4.6- $12/27/11$ <0.3<0.4<0.5 110 ± 16 <3.8

Results in 10^{-3} picoCuries per cubic meter (pCi/m³) +/- 2 Standard Deviations

Oyster Creek Concentrations of Gamma Emitters and Strontium in Fish/Shellfish Samples

Stouts Creek (OCFS01)							
Collection Date	<u>Co-58</u>	<u>Co-60</u>	Cs-134	Cs-137	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
04/26/11 - Clams	< 16	< 18	< 19	< 18	1310 ± 280	< 880	< 870
09/26/11 – Clams	< 19	< 19	< 25	< 20	930 ± 274	< 455	< 540
East of Site – Barnegat B	ay (OCFS	<u>502)</u>					
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
04/25/11 - Clams	< 10	< 11	<11	< 13	$15\overline{70 \pm 237}$	<728	< 811
09/26/11 – Clams	< 15	< 22	< 25	< 21	1130 ± 300	< 407	< 547
<u>Great Bay / Little Egg Ha</u>	arbor (OC	<u>(FS03)</u>					
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
04/26/11 - Clams	< 4	< 4	< 4	< 4	1280 ± 149	< 859	< 872
09/27/11 - Clams	< 21	< 34	< 32	< 31	1140 ± 400	< 410	< 395
04/26/11 - Striped Bass	< 16	< 18	< 20	< 17	3130 ± 422	< 612	< 833
09/27/11 – Bluefish	< 41	< 33	< 48	< 40	3880 ± 600	< 641	< 633

Results in picoCuries per kilogram – WET (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment

Oyster Creek Concentrations of Gamma Emitters and Strontium in Fish/Shellfish Samples

OCNGS Discharge Canal be	9 (OCFS04)						
Collection Date	<u>Co-58</u>	Co-60	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
04/28/11 – Striped Bass	< 4	< 4	< 4	< 3	3380 ± 316	< 650	< 779
11/07/11 – Bluefish	< 3	< 4	< 4	< 3	4230 ± 437	< 286	< 301

ESE of Site, EAST of U.S. Route 9 Bridge at the OCNGS Discharge Canal (OCFS05)

Collection Date	Co-58	Co-60	Cs-134	Cs-137	K-40	Sr-89	Sr-90
04/27/11 - Striped Bass	< 11	< 10	< 11	< 10	3130 ± 349	< 679	< 802
04/27/11 – Sea Trout	< 12	< 12	< 12	< 11	3150 ± 365	< 951	< 823
09/26/11 - Bluefish	< 29	< 29	< 47	< 35	3570 ± 668	< 383	< 463

Results in picoCuries per kilogram – WET (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment.

Salem/Hope Creek Concentrations of Gamma Emitters and Strontium in Fish/Shellfish Samples

Onsite Surface Water Inlet Building (AIFS01)									
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>		
05/11/11 – Striped Bass	< 7	< 6	< 6	< 5	3700 ± 386	< 727	< 895		
10/26/11 – Fish *	< 4	< 4	< 4	< 3	3470 ± 307	< 411	< 281		
07/01/11 – Hardshell Crab	< 9	< 9	< 10	< 7	2210 ± 297	< 953	< 880		
08/26/11 – Hardshell Crab	< 4	< 5	< 5	< 4	1280 ± 142	< 605	< 834		
Delaware River – West Bank	Upstream	n (AIFS02	<u>2)</u>						
Collection Date	<u>Co-58</u>	<u>Co-60</u>	Cs-134	<u>Cs-137</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>		
10/26/11 – Fish **	< 3	< 3	< 4	< 3	2830 ± 289	< 266	< 267		
07/01/11 – Hardshell Crab	< 6	< 7	< 8	< 6	2280 ± 272	< 969	< 882		
08/26/11 – Hardshell Crab	< 5	< 5	< 5	< 4	1350 ± 166	< 891	< 720		

Results in picocuries per kilogram - WET (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment.

* Species of fish include Striped Bass and Channel Catfish

** Species of fish include Striped Bass, Channel and White Catfish

Oyster Creek Concentrations of Gamma Emitters in Aquatic Sediment Samples

Barnegat Bay (OCA	<u>AQ01)</u>					
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
04/25/11	< 144	< 14	< 16	< 20	< 17	905 ± 211
09/26/11	< 289	< 26	< 27	< 33	< 26	8160 ± 971
Oyster Creek Disch	arge Canal (OC	CAQ02)				
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
04/25/11	517 ± 165	< 17	< 18	< 26	< 16	3000 ± 427
09/26/11	< 359	< 29	< 24	< 35	< 34	4500 ± 625
<u>Great Bay / Little E</u>	Egg Harbor (OC	CAQ03)				
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
04/26/11	< 188	< 24	< 30	< 35	< 26	14900 ± 1440
09/27/11	< 235	< 27	< 27	< 35	< 23	15700 ± 1520
Stouts Creek (OCA	<u>Q04)</u>					
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
04/26/11	297 ± 208	< 25	< 27	< 34	< 29	4720 ± 604
09/26/11	< 334	< 27	< 27	< 36	< 29	1930 ± 443

Results in picoCuries per kilogram – DRY (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) and Beryillium-7 (Be-7) are naturally occurring radionuclides found in the environment.

Salem/Hope Creek Concentrations of Gamma Emitters in Aquatic Sediment Samples

Observation Buildin	ng – Onsite (AI	AQ01)							
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>			
06/27/11	< 125	< 10	< 8	< 12	< 8	2150 ± 263			
11/21/11	136 ± 35	< 3	< 3	< 4	< 3	3880 ± 357			
Surface Water Inlet	Building (AIA	<u>Q02)</u>							
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>			
06/23/11	< 153	< 14	< 11	< 17	< 12	3740 ± 436			
11/21/11	47 ± 21	< 2	< 3	< 4	< 2	2560 ± 232			
<u>Onsite – Cooling T</u>	<u>Onsite – Cooling Tower Blowdown Discharge Line (AIAQ03)</u>								
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>			
06/23/11	< 138	< 14	< 11	< 15	< 8	$45\overline{20}\pm\overline{479}$			
11/21/11	73 ± 32	< 4	< 4	< 7	< 4	3970 ± 345			
<u>Onsite – South Sto</u>	rm Drain Discl	harge Line (Al	[AQ04]						
Collection Date	<u>Be-7</u>	Co-58	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>			
06/23/11	< 212	< 19	< 14	< 22	< 13	6630 ± 633			
11/21/11	110 ± 46	< 6	< 7	< 10	< 6	4620 ± 402			
West Bank of Dela	ware River – U	J pstream (AIA	<u>Q05)</u>						
Collection Date	<u>Be-7</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>			
06/23/11	< 274	< 29	< 22	< 32	< 20	18300 ± 2020			
11/21/11	46 ± 32	< 5	< 5	< 7	< 6	6180 ± 543			

Results in picoCuries per kilogram – DRY (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) and Beryillium-7 (Be-7) are naturally occurring radionuclides found in the environment.

Oyster Creek Concentrations of Gamma Emitters in Vegetable Samples

Oyster Creek	Onsite Garden	- ESE (OCVE	<u>E01)</u>			
<u>Sample</u>	Collection	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
	<u>Date</u>					
Cabbage	07/19/11	< 12	< 16	< 16	< 14	3040 ± 393
Kale	07/19/11	< 12	< 14	< 15	< 12	4690 ± 536
Cabbage	08/16/11	< 8	< 10	< 11	< 11	2580 ± 305
Collards	08/16/11	< 10	< 11	< 11	< 10	4820 ± 475
Kale	08/16/11	< 14	< 15	< 17	< 22	5360 ± 571
Collards	09/13/11	< 11	< 13	< 14	< 12	3020 ± 378
Kale	09/13/11	< 9	< 11	< 12	< 10	4350 ± 501
Collards	10/25/11	< 8	< 9	< 10	< 8	2790 ± 305
Kale	10/25/11	< 12	< 13	< 15	< 12	4380 ± 477
Private Farm	- NW (OCVE0)	2)				
Sample	Collection	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
	<u>Date</u>					
Cabbage	07/19/11	< 7	< 9	< 9	< 7	1610 ± 213
Collards	07/19/11	< 5	< 7	< 6	< 5	4010 ± 416
Kale	07/19/11	< 13	< 16	< 17	< 14	4280 ± 507
Cabbage	08/16/11	< 9	< 11	< 12	< 11	2770 ± 317
Collards	08/16/11	< 10	< 12	< 11	< 9	2850 ± 315
Kale	08/16/11	< 9	< 9	< 10	< 9	2030 ± 252
Cabbage	09/13/11	< 11	< 11	< 13	< 10	1960 ± 269
Collards	09/13/11	< 9	< 11	< 11	< 11	3480 ± 377
Kale	09/13/11	< 10	< 11	< 12	< 11	4080 ± 454
Cabbage	10/25/11	< 10	< 11	< 14	< 11	2210 ± 312
Collards	10/25/11	< 6	< 7	< 7	< 7	4150 ± 404
Kale	10/25/11	< 10	< 12	< 13	< 17	3670 ± 401

Results in picoCuries per kilogram – WET (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment.

Oyster Creek Concentrations of Gamma Emitters in Vegetable Samples

Oyster Creek	Onsite Garden	- SE (OCVE0	<u>3)</u>			
<u>Sample</u>	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
Cabbage	08/16/11	< 8	< 9	< 10	< 8	2410 ± 275
Cabbage	09/13/11	< 7	< 9	< 10	< 9	2420 ± 277

Oyster Creek Onsite Garden - E (OCVE07)

<u>Sample</u>	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
	Date					
Cabbage	07/19/11	< 9	< 12	< 11	14 ± 12	3010 ± 367
Collards	07/19/11	< 12	< 14	< 14	37 ± 13	3140 ± 394
Kale	07/19/11	< 10	< 12	< 10	18 ± 8	4140 ± 446
Cabbage	08/16/11	< 8	< 8	< 9	46 ± 10	2250 ± 255
Collards	08/16/11	< 10	< 12	< 11	63 ± 12	2900 ± 346
Kale	08/16/11	< 13	< 14	< 17	< 18	3860 ± 471
Collards	09/13/11	< 8	< 9	< 10	25 ± 9	3160 ± 334
Kale	09/13/11	< 10	< 12	< 14	23 ± 11	3670 ± 441
Collards	10/25/11	< 11	< 12	< 13	< 10	3430 ± 374
Kale	10/25/11	< 10	< 10	< 12	< 11	4280 ± 449

Results in picoCuries per kilogram – WET (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment.

Salem/Hope Creek Concentrations of Gamma Emitters in Vegetable Samples

<u>Private Farm</u>	- NNE (AIVE04)					
<u>Sample</u>	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
Asparagus	05/01/11	< 15	< 15	< 13	< 13	2280 ± 349
Corn	07/05/11	< 4	< 5	< 5	< 4	2200 ± 232
Pepper	07/05/11	< 6	< 7	< 8	< 6	1510 ± 185
Tomato	07/05/11	< 3	< 4	< 4	< 4	1970 ± 197
Private Farm	<u>– NNE (AIVE05)</u>					
<u>Sample</u>	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
Asparagus	05/01/11	< 9	< 10	< 11	< 9	1800 ± 256
Tomato	07/11/11	< 5	< 6	< 6	< 5	2680 ± 281
Corn	07/11/11	< 9	< 13	< 11	< 11	2470 ± 310
Private Farm	– NE (AIVE08)					
<u>Sample</u>	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
Cabbage	07/05/11	< 7	< 7	< 8	< 7	3390 ± 337
Corn	07/21/11	< 4	< 5	< 5	< 4	2340 ± 261
Tomato	07/21/11	< 5	< 7	< 7	< 6	2520 ± 285
Private Farm	– NE (AIVE10)					
Sample	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
Tomato	08/24/11	< 5	< 8	< 7	< 7	2510 ± 275
Peppers	08/24/11	< 10	< 11	< 13	< 10	2060 ± 311
Private Farm	– NE (AIVE11)					
Sample	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
Asparagus	05/01/11	< 10	< 10	< 12	< 10	2140 ± 290
Cabbage	06/29/11	< 5	< 6	< 6	< 5	2260 ± 245
Tomato	06/29/11	< 3	< 4	< 4	< 4	1890 ± 187
Owner Control	olled Area (Onsite) -	N (AIVE12)				
Sample	Collection Date	Co-58	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>
Cabbage	12/15/11	< 9	< 7	< 8	< 7	4770 ± 461
Owner Control	olled Area (Onsite) -	- NW (AIVE1	3)			
Sample	Collection Date	Co-58	Co-60	Cs-134	Cs-137	K-40
Cabbage	12/15/11	< 9	< 7	< 7	< 6	$40\overline{20 \pm 393}$

Results in picoCuries per kilogram – WET (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment.

Page 38 of 68

Salem/Hope Creek Concentrations of Gamma Emitters in Vegetable Samples

Owner Contr	Owner Controlled Area (Onsite) - NNW (AIVE14)								
<u>Sample</u>	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	K-40			
Cabbage	12/15/11	< 9	< 7	< 8	< 7	$38\overline{30}\pm 402$			
Private Farm	– SSW (AIVE15)								
Sample	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>K-40</u>			
Cabbage	12/15/11	< 9	< 7	< 8	< 6	$30\overline{70} \pm 306$			
Private Farm	– NNE (AIVE18)								
Sample	Collection Date	Co-58	Co-60	Cs-134	Cs-137	K-40			
Corn	07/18/11	< 8	< 10	< 9	< 8	2160 ± 279			
Tomato	07/18/11	< 6	< 6	< 7	< 6	1170 ± 166			
Peppers	07/18/11	< 8	< 8	< 9	< 8	1400 ± 195			
Private Farm	– WNW (AIVE19)								
Sample	Collection Date	Co-58	Co-60	Cs-134	Cs-137	K-40			
Soybean	11/06/11	< 5	< 6	< 7	< 5	12100 ± 1230			
Private Farm	– N (AIVE20)								
Sample	Collection Date	Co-58	Co-60	Cs-134	Cs-137	K-40			
Soybean	11/07/11	< 6	< 7	< 7	< 5	12500 ± 1130			
Private Farm	– NE (AIVE21)								
Sample	Collection Date	Co-58	Co-60	Cs-134	Cs-137	K-40			
Soybean	11/18/11	< 8	< 10	< 10	< 8	14500 ± 1260			

Results in picoCuries per kilogram – WET (pCi/kg) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment.

BNE Background Location Concentrations of Gamma Emitters and Strontium in Milk Samples

State of New Jersey Dairy Farm (COMI01)

Collection Date	<u>Cs-137</u>	<u>I-131</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
01/17/11	< 2.56	< 14.0 *	$13\overline{30} \pm 134$	< 1.46 *	< 1.56 *
03/23/11	< 2.18	< 0.52	1560 ± 159	< 0.79	< 0.86
03/30/11	< 2.53	0.94 ± 0.39	1380 ± 145	< 0.85	< 0.82
03/30/11**	< 2.30	< 0.75	2000 ± 201	< 0.89	< 0.85
04/06/11	< 5.46	< 0.76	1740 ± 198	< 0.95	< 0.87
04/06/11**	< 3.68	< 0.94	1420 ± 168	< 0.95	< 0.87
04/13/11	< 2.42	< 0.64	1410 ± 143	< 0.97	< 0.93
04/13/11**	< 3.15	< 0.94	1370 ± 142	< 0.57	< 0.81
04/20/11	< 4.53	< 0.91	1450 ± 145	< 0.92	< 0.95
04/20/11**	< 2.42	< 0.79	1620 ± 156	< 0.91	< 0.88
04/27/11	< 1.98	< 0.94	1100 ± 106	< 0.90	< 0.84
04/27/11**	< 3.20	< 0.47	1940 ± 194	< 0.83	< 0.84
06/02/11	< 2.07	< 0.61	1470 ± 153	< 0.85	< 0.78
09/20/11	< 2.56	< 0.67	1500 ± 143	< 0.89	< 0.94
12/19/11	< 3.38	< 0.62	1700 ± 173	< 0.80	< 0.89

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment.

The sample collection frequency was increased from quarter-annual to weekly from 03/30/11 through 04/27/11 as the result of the March 11, 2011 accident at the Fukushima Daiichi nuclear plant in Japan

* Sample minimum detectable concentration was in excess of the 1.0 pCi/L detection level due to limited sample volume and a delay in sample analysis. There was insufficient chemical recovery to meet the MDC.

** Cow milk samples are pasteurized. All other samples are raw milk. This additional sampling was performed as a result of the March 11, 2011 accident at the Fukushima Daiichi nuclear plant in Japan.

Salem/Hope Creek Concentrations of Gamma Emitters and Strontium in Milk Samples

<u> Private Farm – NNE (AI</u>	<u>MI01)</u>				
Collection Date	Cs-137	<u>I-131</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
01/03/11	< 2.15	< 0.66	$15\overline{30} \pm 144$	< 0.85	< 0.82
02/07/11	< 2.56	< 0.68	1890 ± 185	< 0.68	< 0.88
03/07/11	< 2.49	< 0.53	1710 ± 175	< 0.89	< 0.77
04/04/11	< 2.27	< 0.74	1300 ± 131	< 0.92	< 0.84
04/18/11**	< 3.30	< 0.63	1420 ± 148	< 0.89	< 0.88
05/02/11	< 2.81	< 0.95	1460 ± 147	< 0.90	< 0.83
06/06/11	< 2.70	< 1.04*	1340 ± 136	< 0.84	< 0.91
07/05/11	< 2.15	< 0.52	1680 ± 164	< 0.92	< 0.90
08/07/11	< 2.97	< 0.88	1420 ± 153	< 0.98	< 0.89
09/06/11	< 2.79	< 0.85	1430 ± 150	< 0.87	< 0.86
10/03/11	< 3.00	< 0.75	1290 ± 133	< 0.89	< 0.89
11/07/11	< 2.39	< 0.46	1890 ± 187	< 0.72	< 0.73
12/05/11	< 4.16	< 0.68	1610 ± 173	< 0.83	< 0.65
Private Farm – NE (AIM	<u>(102)</u>				
Collection Date	Cs-137	<u>I-131</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
01/03/11	< 2.86	< 0.72	1400 ± 139	< 0.91	< 0.90
02/07/11	< 2.52	< 0.55	1510 ± 149	< 0.67	< 0.81
03/07/11	< 1.93	< 0.70	1660 ± 157	< 0.84	< 0.76
04/04/11	< 3.14	< 0.92	1140 ± 123	< 0.96	< 0.86
04/18/11**	< 2.77	< 0.66	1390 ± 137	< 0.89	< 0.91
05/02/11	< 2.16	< 0.71	1830 ± 178	< 0.91	< 0.81
06/06/11	< 2.23	< 0.99	954 ± 97	< 0.95	< 0.91
07/05/11	< 2.52	< 0.97	1640 ± 169	< 0.95	< 0.90
08/07/11	< 2.09	< 0.67	1490 ± 146	< 0.99	< 0.82
09/06/11	< 2.77	< 0.76	1390 ± 138	< 0.89	< 0.90
10/03/11	< 2.53	< 0.62	1250 ± 130	< 0.89	< 0.87
11/07/11	< 3.50	< 0.75	1910 ± 191	< 0.82	< 0.63
12/05/11	< 4.09	< 0.58	1820 ± 200	< 0.79	< 0.58

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment

* Sample minimum detectable concentration was in excess of the 1.0 pCi/L detection level due to low chemical yield. Low chemical yield is a result of the delay in time between sample collection and analysis along with I-131 decay for the same reason (8.02 days).

** The sample collection frequency was increased from monthly to bi-weekly during April 2011 as a result of the March 11, 2011 accident at the Fukushima Daiichi nuclear plant in Japan.

Salem/Hope Creek Concentrations of Gamma Emitters and Strontium in Milk Samples

Private Farm – WNW (AIMI03)

Collection Date	Cs-137	<u>I-131</u>	<u>K-40</u>	<u>Sr-89</u>	<u>Sr-90</u>
01/03/11	< 2.07	< 0.56	1550 ± 147	< 0.79	< 0.72
02/07/11	< 2.49	< 0.69	1640 ± 157	< 0.69	< 0.87
03/07/11	< 2.05	< 0.52	1630 ± 160	< 0.86	< 0.78
04/04/11	< 2.13	< 0.95	1300 ± 126	< 0.98	< 0.87
04/18/11**	< 2.19	< 0.80	1320 ± 141	< 0.88	< 0.87
05/02/11	< 2.03	< 0.57	1950 ± 183	< 0.92	< 0.99
06/06/11	< 2.57	< 1.05*	1160 ± 121	< 0.94	< 0.89
07/05/11	< 2.53	< 0.60	1890 ± 196	< 0.90	< 0.98
08/07/11	< 2.64	< 0.96	1370 ± 140	< 0.98	< 0.85
09/06/11	< 2.81	< 0.83	1410 ± 139	< 0.90	< 0.83
10/03/11	< 2.58	< 0.82	1320 ± 141	< 0.81	< 0.90
11/07/11	< 3.33	< 0.50	2030 ± 191	< 0.79	< 0.64
12/05/11	< 3.30	< 0.97	2040 ± 209	< 0.77	< 0.54

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

Potassium-40 (K-40) is a naturally occurring radionuclide found in the environment

* Sample minimum detectable concentration was in excess of the 1.0 pCi/L detection level due to low chemical yield. Low chemical yield is a result of the delay in time between sample collection and analysis along with I-131 decay due to its short half-life (8.02 days).

** The sample collection frequency was increased from monthly to bi-weekly during April 2011 as a result of the March 11, 2011 accident at the Fukushima Daiichi nuclear plant in Japan.

Oyster Creek Concentrations of Gamma Emitters and Tritium (H-3) in Surface Water

Barnegat Bay (OCSW01))					
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
04/25/11	< 2.17	< 2.18	< 2.36	< 2.04	< 467	< 0.94
09/26/11	< 1.96	< 2.14	< 2.37	< 2.21	< 527	< 0.95
<u>Great Bay / Little Egg Ha</u>	arbor (OCS)	<u>W02)</u>				
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
01/06/11 - 01/25/11	< 1.96	< 2.13	< 2.39	< 2.18	< 542	< 0.75
02/04/11 - 02/24/11	< 1.84	< 1.87	< 2.11	< 1.78	< 452	< 0.50
03/02/11 - 03/31/11	< 1.93	< 2.46	< 2.69	< 2.37	< 480	< 0.72
04/07/11 - 04/26/11	< 1.77	< 1.73	< 1.90	< 1.80	< 473	< 0.90
05/05/11 - 05/26/11	< 2.09	< 2.45	< 2.42	< 2.35	< 144	< 0.91
06/02/11 - 06/30/11	< 2.20	< 2.22	< 2.27	< 1.96	< 197	< 2.40*
07/06/11 - 07/28/11	< 2.58	< 2.49	< 3.11	< 2.36	< 217	< 0.75
08/04/11 - 08/25/11	< 2.65	< 2.65	< 2.76	< 2.17	< 143	< 2.57*
09/01/11 - 09/27/11	< 2.41	< 2.52	< 2.66	< 2.28	< 546	< 0.92
10/06/11 - 10/25/11	< 1.97	< 1.81	< 2.13	< 1.85	< 399	No Data**
11/02/11 - 11/22/11	< 4.31	< 5.40	< 6.56	< 5.16	< 252	< 0.84
12/01/11 - 12/28/11	< 2.38	< 2.32	< 2.84	< 2.48	< 189	< 0.87
Stouts Creek (OCSW03)						
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
04/26/11	< 1.98	< 2.13	< 2.38	< 2.02	< 472	< 0.92
09/26/11	< 1.99	< 1.95	< 2.26	< 2.13	< 521	< 0.79

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

* Sample minimum detectable concentration was in excess of the 1.0 pCi/L detection level due to low chemical yield. Low chemical yield is a result of the delay in time between sample collection and analysis along with iodine-131 decay due to its short half-life (8.02 days).

** Radiochemical Analysis for Iodine-131 was not performed on the sample since the time between sample collection and analysis was well beyond several half-lives. The half-life of iodine-131 is 8.02 days.

Oyster Creek Concentrations of Gamma Emitters and Tritium (H-3) in Surface Water

Oyster Creek Discharge Canal (OCSW04)

Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
01/06/11 - 01/25/11	< 2.49	< 2.48	< 2.84	< 3.80	< 537	< 0.91
02/04/11 - 02/23/11	< 2.00	< 2.30	< 2.40	< 2.07	< 457	< 0.55
03/02/11 - 03/31/11	< 1.85	< 2.51	< 2.58	< 2.42	< 476	< 0.54
04/06/11 - 04/25/11	< 2.29	< 2.62	< 2.72	< 2.56	< 474	< 0.90
05/05/11 - 05/25/11	< 2.10	< 2.23	< 2.58	< 2.35	< 144	< 0.96
06/02/11 - 06/30/11	< 2.24	< 1.95	< 2.24	< 1.77	< 206	< 2.30*
07/06/11 - 07/28/11	< 1.51	< 1.89	< 1.67	< 1.57	< 215	< 0.99
08/04/11 - 08/25/11	< 2.47	< 2.40	< 2.70	< 2.18	< 143	< 2.62 *
09/01/11 - 09/26/11	< 2.36	< 2.27	< 2.51	< 2.24	< 531	< 0.92
10/06/11 - 10/25/11	< 1.88	< 2.01	< 2.25	< 1.90	< 398	No Data**
11/02/11 - 11/22/11	< 4.02	< 4.27	< 5.08	< 4.37	< 251	< 0.85
11/30/11 - 12/28/11	< 2.32	< 2.39	< 2.57	< 2.02	< 177	< 0.91

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

* Sample minimum detectable concentration was in excess of the 1.0 pCi/L detection level due to low chemical yield. Low chemical yield is a result of the delay in time between sample collection and analysis along with iodine-131 decay due to its short half-life (8.02 days).

** Radiochemical Analysis for Iodine-131 was not performed on the sample since the time between sample collection and analysis was well beyond several half-lives. The half-life of iodine-131 is 8.02 days.

Salem/Hope Creek Concentrations of Gamma Emitters and Tritium (H-3) in Surface Water

5 U	riace water inlet Bui	laing Dischar	ge (AISWUI)			
	Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
	0.1.10.0.11.1	1 50		2.2.1	1.00		0.47
	01/03/11	< 1.69	< 1.95	< 2.24	< 1.90	< 535	< 0.65
	02/04/11	< 1.75	< 2.05	< 2.17	< 1.87	< 520	< 0.68
	03/08/11	< 1.95	< 1.87	< 2.49	< 1.93	< 431	< 0.59
	04/07/11	< 1.72	< 1.81	< 2.18	< 2.03	< 227	< 0.75
	05/06/11	< 1.87	< 1.88	< 1.91	< 1.71	< 448	< 0.78
	06/06/11	< 1.82	< 2.10	< 2.16	< 1.67	< 147	< 0.75
	07/05/11	< 2.50	< 2.59	< 2.69	< 2.59	< 162	< 0.96
	08/01/11	< 1.94	< 2.58	< 2.33	< 2.15	< 211	< 0.86
	08/22/11	< 2.18	< 2.40	< 2.52	< 2.06	< 270	< 0.92
	09/06/11	< 2.12	< 2.53	< 2.39	< 2.56	< 242	< 0.83
	10/05/11	< 1.84	< 2.17	< 2.28	< 1.99	< 530	< 0.91
	11/09/11	< 2.58	< 2.43	< 2.76	< 2.46	< 327	< 0.58
	12/06/11	< 1.89	< 2.15	< 2.38	< 1.84	< 263	< 0.89

Surface Water Inlet Building Discharge (AISW01)

West Bank - Delaware River (AISW02)

cot Dunk Delaware						
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
01/03/11	< 2.17	< 2.31	< 2.56	< 2.37	< 540	< 0.77
02/04/11	< 2.40	< 2.57	< 2.84	< 2.42	< 515	< 0.87
03/08/11	< 1.56	< 1.74	< 1.79	< 1.60	< 432	< 1.09*
04/07/11	< 1.96	< 1.98	< 2.16	< 1.94	< 213	< 0.91
05/06/11	< 1.70	< 1.72	< 1.87	< 1.60	< 455	< 0.68
06/06/11	< 2.40	< 2.85	< 2.59	< 3.70	< 148	< 0.86
07/05/11	< 1.90	< 2.04	< 2.14	< 1.85	< 163	< 0.94
08/01/11	< 2.04	< 2.11	< 2.48	< 1.98	< 218	< 0.87
08/22/11	< 2.00	< 2.32	< 2.28	< 2.06	< 258	< 0.96
09/06/11	< 2.97	< 2.79	< 3.27	< 2.67	< 230	< 0.88
10/05/11	< 2.20	< 2.12	< 2.73	< 2.16	< 531	< 0.99
11/09/11	< 2.08	< 2.34	< 2.78	< 2.17	< 318	< 0.73
12/06/11	< 2.16	< 1.87	< 2.60	< 2.11	< 261	< 0.83

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

* Sample minimum detectable concentration was in excess of the 1.0 pCi/L detection level due to low chemical yield as a result of insufficient sample. Low chemical yield is a result of the delay in time between sample collection and analysis along with iodine-131 decay due to its short half-life (8.02 days).

Oyster Creek Concentrations of Gamma Emitters and Tritium (H-3) in Well Water

Oyster Creek Administr	Oyster Creek Administration Building Onsite (OCWW01)													
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>								
01/24/11	< 1.79	< 2.41	< 2.13	< 1.83	< 254	< 0.58								
03/28/11	< 1.74	< 1.75	< 2.40	< 2.13	< 554	< 0.80								
04/05/11*	< 3.41	< 4.53	< 4.04	< 4.35	< 473	< 0.93								
04/12/11*	< 1.77	< 2.14	< 2.01	< 1.60	< 228	< 0.48								
04/19/11*	< 2.65	< 2.54	< 3.19	< 2.88	< 530	< 0.88								
04/26/11*	< 1.69	< 1.72	< 1.89	< 1.65	< 474	< 0.83								
09/06/11	< 2.13	< 2.20	< 2.55	< 2.29	< 145	< 0.98								
11/28/11	< 1.71	< 2.04	< 2.33	< 1.99	< 140	< 0.46								
Forked River Marina (C	DCWW02)													
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>								
01/24/11	< 1.66	< 2.22	< 2.20	< 1.97	< 254	< 0.68								
03/28/11	< 1.96	< 1.86	< 2.35	< 2.08	< 562	< 0.83								
04/05/11*	< 3.04	< 3.25	< 4.15	< 5.18	< 468	< 0.62								
04/12/11*	< 1.71	< 1.78	< 1.99	< 1.78	< 226	< 0.45								
04/19/11*	< 2.26	< 2.41	< 2.64	< 2.39	< 528	< 0.86								
04/26/11*	< 2.36	< 2.37	< 2.63	< 2.55	< 473	< 0.88								
09/06/11	< 2.12	< 2.10	< 2.59	< 2.36	< 144	< 0.93								
11/28/11	< 1.54	< 1.90	< 2.07	< 1.87	< 143	< 0.44								

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

* The sample collection frequency was increased from quarterly to weekly during April 2011 as a result of the March 11, 2011 accident at the Fukushima Daiichi nuclear plant in Japan

Salem/Hope Creek Concentrations of Gamma Emitters and Tritium (H-3) in Well Water

Elsinboro School (AIWW01)	<u>)</u>					
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
02/08/11	< 2.43	< 2.57	< 3.11	< 2.55	< 472	< 0.63
03/30/11	< 2.80	< 2.76	< 3.07	< 2.65	< 561	< 0.65
04/05/11*	< 3.00	< 3.19	< 3.16	< 3.06	< 546	< 0.59
04/12/11*	< 2.11	< 2.67	< 2.69	< 3.66	< 224	< 0.61
04/19/11*	< 2.06	< 2.31	< 2.53	< 2.39	< 536	< 0.83
04/26/11*	< 1.97	< 2.12	< 2.42	< 2.06	< 465	< 0.87
09/06/11	< 1.92	< 1.75	< 2.12	< 1.97	155 ± 121	< 0.92
11/28/11	< 2.28	< 2.35	< 2.65	< 2.20	< 144	< 0.41
Lower Alloways Creek Polic	e Station (AI	WW02)				
Collection Date	<u>Co-58</u>	Co-60	<u>Cs-134</u>	Cs-137	<u>H-3</u>	<u>I-131</u>
02/08/11	< 2.18	< 2.38	< 2.69	< 2.36	< 465	< 0.79
03/30/11	< 3.55	< 3.53	< 3.79	< 3.35	< 547	< 0.88
04/05/11*	< 3.63	< 3.07	< 3.94	< 3.19	< 477	< 0.78
04/12/11*	< 1.98	< 2.00	< 2.10	< 1.93	< 227	< 0.81
04/19/11*	< 1.78	< 2.13	< 2.55	< 2.01	< 525	< 0.91
04/26/11*	< 2.11	< 2.25	< 2.37	< 2.05	< 466	< 0.85
09/06/11	< 2.62	< 2.55	< 3.10	< 2.77	< 143	< 0.38
11/28/11	< 2.41	< 2.60	< 3.01	< 2.66	< 142	< 0.35
Salem Processing Center (Al	[WW03)					
Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	Cs-137	<u>H-3</u>	<u>I-131</u>
02/08/11	< 2.17	< 2.67	< 2.56	< 2.35	< 466	< 0.61
03/30/11	< 4.33	< 4.30	< 5.16	< 4.63	< 543	< 0.67
04/05/11*	< 2.17	< 2.53	< 2.82	< 2.41	< 474	< 0.95
04/12/11*	< 1.90	< 2.12	< 2.40	< 1.98	< 221	< 0.72
04/19/11*	< 2.29	< 2.39	< 2.49	< 2.42	< 521	< 0.82
04/27/11*	< 2.11	< 2.21	< 2.52	< 2.17	< 462	< 0.87
09/06/11	< 2.10	< 2.18	< 2.44	< 2.06	< 139	< 0.86
11/28/11	< 1.48	< 1.69	< 1.89	< 1.48	< 142	< 0.33

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

* The sample collection frequency was increased from quarterly to weekly during April 2011 as a result of the March 11, 2011 accident at the Fukushima Daiichi nuclear plant in Japan

Salem/Hope Creek Concentrations of Gamma Emitters and Tritium (H-3) in Well Water

Lower Alloways Creek School (AIWW04)

Collection Date	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>H-3</u>	<u>I-131</u>
02/08/11	< 2.01	< 2.43	< 2.42	< 2.11	< 453	< 0.95
03/30/11	< 3.17	< 3.21	< 3.95	< 3.39	< 548	< 0.88
04/05/11*	< 2.06	< 2.46	< 2.28	< 2.06	< 475	< 0.93
04/12/11*	< 1.58	< 2.18	< 2.21	< 1.78	< 226	< 0.50
04/19/11*	< 2.42	< 2.57	< 2.96	< 2.48	< 531	< 0.89
04/27/11*	< 1.97	< 2.06	< 2.21	< 1.95	< 463	< 0.85
09/06/11	< 1.67	< 1.83	< 2.08	< 1.72	< 142	< 0.97
11/28/11	< 1.98	< 2.00	< 2.43	< 1.94	< 141	< 0.42

Results in picoCuries per Liter (pCi/L) +/- 2 Standard Deviations

* The sample collection frequency was increased from quarterly to weekly during April 2011 as a result of the March 11, 2011 accident at the Fukushima Daiichi nuclear plant in Japan

BNE Background Location Thermoluminescent Dosimetry Data Quarterly Results for 2011

		<u>1st Quarter</u>		2 nd Quarter		3 rd Qu	<u>iarter</u>	4 th Quarter		
<u>Station</u>	Location	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	
CO01	BNE Office, Arctic Parkway, Ewing, NJ	14.3	2.9	13.9	4.2	13.5	2.0	11.6	2.3	
CO02	Brendan T. Byrne State Forest, New Lisbon, NJ	10.5	1.2	10.2	7.1	9.8	1.0	8.1	1.4	

Results are reported in units of milliroentgens (mR)

CV is the coefficient of variation; the ratio of the standard deviation to the mean, and is normally reported as a percentage

All exposures were normalized to 90 days (a standard quarter)

Oyster Creek Thermoluminescent Dosimetry Data Quarterly Results for 2011

		<u>1st Qu</u>	<u>iarter</u>	<u>2nd Qu</u>	arter	<u>3rd Qu</u>	<u>arter</u>	<u>4th Quarter</u>		
<u>Station</u>	Location	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	
1	Ocean County Vocational School	9.3	2.4	8.6	4.0	8.5	2.8	6.9	2.1	
2	Ocean Twp. Municipal Building	10.3	1.8	9.9	5.0	9.7	3.6	7.8	3.1	
3	Sewage Pumping Station, Forked River	11.4	1.4	10.1	2.6	10.6	4.3	8.3	1.1	
4	Twin River Station, Forked River	9.8	1.8	8.9	3.3	9.1	3.3	7.2	3.0	
5	Sewage Pumping Station, Ocean Twp.	10.7	1.8	10.0	4.7	9.4	3.9	7.9	2.5	
6	Oyster Creek, Gate #2, Forked River	11.6	1.2	10.0	2.6	10.4	3.4	8.2	2.3	
7	Finninger Farm, Forked River	9.6	2.4	8.5	1.6	8.8	3.6	7.1	2.1	
8	Ocean Co. Memorial Cemetery, Waretown	9.9	1.7	8.8	2.3	9.1	3.2	6.8	3.6	
9	Oyster Creek Building 17, Forked River	11.0	1.1	10.2	2.6	10.4	1.6	8.3	2.0	
10	Sheffield & Derby Rd, Forked River	10.6	7.8	9.4	0.5	9.5	2.9	7.4	1.6	
11	Lakeside Drive, Forked River	10.3	2.6	9.2	3.2	9.8	3.7	7.5	1.5	
12	Forked River Game Farm, Forked River	10.8	1.6	9.3	1.5	10.2	2.9	7.9	2.1	

Results are reported in units of milliroentgens (mR)

CV is the coefficient of variation; the ratio of the standard deviation to the mean, and is normally reported as a percentage.

All exposures were normalized to 90 days (a standard quarter)

Oyster Creek Thermoluminescent Dosimetry Data Quarterly Results for 2011

		<u>1st Qu</u>	arter	<u>2nd Qu</u>	larter	<u>3rd Qu</u>	<u>arter</u>	<u>4th Qu</u>	<u>arter</u>
<u>Station</u>	Location	<u>Result</u>	%CV	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>
13	Restrooms, Lakeside Dr., Forked River	11.0	5.3	9.2	3.6	10.1	6.9	7.5	1.3
14	Sands Pt. Park, Dock Ave., Waretown	11.1	0.8	10.9	5.2	10.4	3.3	8.8	4.0
15	Recreation Center, Waretown	9.8	3.6	9.1	3.8	9.0	1.6	7.3	1.2
16	North Access Rd., Forked River	11.2	1.2	10.1	1.2	10.7	1.3	9.2	6.3
20	Third Avenue, Barnegat Light	9.5	3.3	8.2	3.2	8.3	2.4	7.1	3.8
21	Rose Hill Road & Barnegat Blvd	10.7	2.7	9.4	3.5	9.7	2.9	7.9	5.9
22	Bay Way & Clairmore Avenue	10.1	2.0	9.4	1.4	9.7	5.2	7.9	3.3
23	Island Beach State Park, Parking Lot A5	9.6	2.7	8.7	2.6	8.5	9.8	7.0	1.7

Results are reported in units of milliroentgens (mR).

CV is the coefficient of variation; the ratio of the standard deviation to the mean, and is normally reported as a percentage.

All exposures were normalized to 90 days (a standard quarter).

Salem/Hope Creek Thermoluminescent Dosimetry Data Quarterly Results for 2011

		<u>1st Qu</u>	<u>arter</u>	<u>2nd Qu</u>	<u>arter</u>	<u>3rd Qu</u>	<u>arter</u>	<u>4th Qu</u>	<u>iarter</u>
<u>Station</u>	Location	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>
1	Access Road – Security Checkpoint	11.7	3.0	11.0	3.1	10.8	1.5	9.3	2.4
2	Poplar Road, Lower Alloways	12.4	2.7	11.3	1.9	11.5	3.3	9.5	3.0
3	Money and Eagle Island Road	13.3	4.3	12.5	2.9	12.8	2.7	10.7	3.1
4	Ft. Elfsborg / Hancocks – East	14.3	1.8	13.8	1.4	13.6	2.2	11.3	4.9
5	Ft. Elfsborg / Hancocks – West	17.0	2.2	16.9	2.1	16.4	1.7	14.5	4.2
6	Stathems Neck Road	11.9	0.6	10.9	0.4	11.4	1.5	9.6	1.8
7	Stow Neck Road Lower Alloways	10.6	3.0	9.8	3.4	9.8	1.3	8.4	6.6
8	Alloways Creek Neck Road - Middle	10.6	1.3	9.4	0.6	9.6	1.2	7.6	3.8
9	Alloways Creek Neck Road - North	13.7	2.8	12.5	4.2	12.8	2.5	10.6	1.7
10	Abbotts Farm Road	10.7	3.8	9.6	2.1	9.3	1.9	7.7	7.6
11	PSEG Education Center/EOF	11.5	2.0	10.8	3.7	10.6	1.7	8.8	3.2

Results are reported in units of milliroentgens (mR)

CV is the coefficient of variation; the ratio of the standard deviation to the mean, and is normally reported as a percentage.

All exposures were normalized to 90 days (a standard quarter).

Comparison of NJDEP and Mirion (Global) Technologies Thermoluminescent Dosimetry Data for Oyster Creek

		<u>1st Quarter</u>			2 nd Quarter				<u>3rd Quarter</u>			4 th Quarter					
		<u>NJDEP</u>		Glo	<u>obal</u>	<u>NJI</u>	DEP	Glo	<u>bal</u>	<u>NJI</u>	DEP	Gl	<u>obal</u>	<u>NJ</u>	<u>DEP</u>	Glo	<u>obal</u>
<u>Station</u>	Location	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>
5	Sewage Pump. Station, Ocean Township	10.7	1.8	9.3	25.5	10.0	4.7	9.5	4.8	9.4	3.9	12.1	2.8	7.9	2.5	10.5	6.6
7	Finninger Farm,OCNGS Forked River	9.6	2.4	7.7	13.2	8.5	1.6	8.0	6.3	8.8	3.6	10.1	3.2	7.1	2.1	8.7	4.9
13	Restrooms, Lakeside Dr. Forked River	11.0	5.3	12.2	18.8	9.2	3.6	9.3	4.6	10.1	6.9	10.6	9.1	7.5	1.3	9.7	7.8
21	Rose Hill and Barnegat Rd Barnegat Twp.	10.7	2.7	7.7	10.0	9.4	3.5	9.2	6.7	9.7	2.9	11.6	5.7	7.9	5.9	9.7	4.5

Quarterly Results for Co-located Dosimeters for 2011

Results are reported in units of milliroentgens (mR)

CV is the coefficient of variation; the ratio of the standard deviation to the mean, and is normally reported as a percentage

All exposures were normalized to 90 days (a standard quarter)

Page 53 of 68

Comparison of NJDEP and Mirion (Global) Technologies Thermoluminescent Dosimetry Data for Salem/Hope Creek

		<u>1st Quarter</u>				2 nd Quarter				<u>3rd Quarter</u>				4 th Quarter			
		NJDEP		<u>Global</u>		<u>NJDEP</u>		<u>Global</u>		NJDEP		Global		NJDEP		<u>Global</u>	
<u>Station</u>	Location	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	%CV	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>
1	Access Road – Security Checkpoint	11.7	3.0	9.5	5.4	11.0	3.1	10.2	6.2	10.8	1.5	12.4	5.0	9.3	2.4	12.3	4.9
2	Poplar Road, Lower Alloways	12.4	2.7	13.1	8.8	11.3	1.9	10.5	4.4	11.5	3.3	13.1	4.8	9.5	3.0	11.5	2.6
3	Money and Eagle Island Roads	13.3	4.3	10.0	8.1	12.5	2.9	12.2	5.3	12.8	2.7	14.3	5.3	10.7	3.1	13.3	4.6
5	Ft. Elfsborg/ Hancocks - West	17.0	2.2	15.0	11.9	16.9	2.1	15.4	3.2	16.4	1.7	18.6	3.8	14.5	4.2	17.3	3.8

Quarterly Results for Co-located Dosimeters for 2011

Results are reported in units of milliroentgens (mR)

CV is the coefficient of variation; the ratio of the standard deviation to the mean, and is normally reported as a percentage

All exposures were normalized to 90 days (a standard quarter)

Comparison of NJDEP and Mirion (Global) Technologies Thermoluminescent Dosimetry Data for Salem/Hope Creek

	<u>1st Quarter</u>					2 nd Quarter				<u>3rd Quarter</u>				4 th Quarter			
		<u>NJDEP</u>		Global		<u>NJDEP</u>		<u>Global</u>		NJDEP		Global		NJDEP		Global	
<u>Station</u>	Location	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	%CV	<u>Result</u>	%CV	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>	<u>Result</u>	<u>%CV</u>
7	Stow Neck Road-Lower Alloways	10.6	3.0	8.0	11.2	9.8	3.4	9.0	0.0	9.8	1.3	12.1	5.1	8.4	6.6	10.7	4.2
9	Alloways Creek Neck Road - North	13.7	2.8	10.7	8.5	12.5	4.2	12.3	10.5	12.8	2.5	13.8	5.1	10.6	1.7	13.0	3.0
11	PSEG Ed. Center/EOF Salem City	11.5	2.0	7.2	8.4	10.8	3.7	11.2	3.1	10.6	1.7	13.6	6.3	8.8	3.2	10.3	3.5

Quarterly Results for Co-located Dosimeters for 2011

Results are reported in units of milliroentgens (mR)

CV is the coefficient of variation; the ratio of the standard deviation to the mean, and is normally reported as a percentage

All exposures were normalized to 90 days (a standard quarter)

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

Month

OC 2 2011 Ambient Radiation Levels

Month

Page 56 of 68

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

Month

Blank months indicate "No Data Available"

Month

Page 57 of 68

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

OC 5 2011 Ambient Radiation Levels

Month

Month

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

Month

Month

Blank months indicate "No Data Available". OC-8 was not operational in 2011; therefore no data graph is available

Page 59 of 68

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

OC 10 2011 Ambient Radiation Levels

Month

Month

Page 60 of 68

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

OC 12 2011 Ambient Radiation Levels

Month

Month

Blank months indicate "No Data Available"

Page 61 of 68

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

Month

Month

Page 62 of 68

Oyster Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

OC 16 2011 Ambient Radiation Levels

Month

Blank months indicate "No Data Available"

Salem/Hope Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

AI 1 2011 Ambient Radiation Levels

Month

Month

Page 64 of 68

Salem/Hope Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

AI 3 2011 Ambient Radiation Levels

Month

Month

Page 65 of 68

Salem/Hope Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

AI 5 2011 Ambient Radiation Levels

Month

AI 7 2011 Ambient Radiation Levels

Month

AI-6 was not operational in 2011; therefore no data graph is available; Blank months indicate 'No Data Available'

Page 66 of 68

Salem/Hope Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

AI 8 2011 Ambient Radiation Levels

Month

Month

Blank months indicate 'No Data Available'

Page 67 of 68

Salem/Hope Creek – Continuous Radiological Environmental Surveillance Telemetry (CREST) Data

AI 10 2011 Ambient Radiation Levels

Month

Blank months indicate "No Data Available"