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PREFACE 
 
No one on the Ecological Processes Standing Committee of the New Jersey Department of 
Environment Protection’s Scientific Advisory Board (SAB) is a professional statistician, nor 
intimately knowledgeable of Bayesian methods.  Consequently, there may be pitfalls when 
preparing a report on Bayesian inference, such as was undertaken here: 
 
Unlike many professional statisticians, many empirical scientists are not able to use the 
method of analysis that best fits their particular problem.  In addition, their understanding of 
[frequentist] statistics in which they have been trained has been widely found to be rather 
abysmal.  As John Tukey [we should all recognize this name] said in 1964, “Most uses of the 
classical tools of statistics have been, are, and will be, made by those who know not what 
they do”.  The situation has led many to argue for an educational reform in statistical 
training for empirical scientists, and for increased emphasis on translating between 
frequentist and Bayesian measures of evidence … the latter is proving to be particularly 
useful in many fields … Reasons for this increased popularity in Bayesian method are not 
hard to spot.  Much of modern research, particularly in the life sciences, is based on the 
synthesis of multiple categories of evidence.  Data coming from many different studies have 
to be integrated in order to assess the empirical evidence for a new theory, and Bayesian 
statistics lends itself very well to this.        

Robert van Hulst 2013 
                                                    

The EPSC is not faint-hearted, and has eagerly accepted the inherent challenges of preparing 
this report.  We approached it as we would any scientific endeavor; i.e., to learn as much as 
possible about the subject and its methods before integrating the information across 
disciplines, To validate our results, we also enlisted the editorial assistance of several 
professional statisticians and empirical scientists who were well-acquainted with Bayesian 
methods.  Any factual errors herein, however, are solely those of the EPSC.  
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EXECUTIVE SUMMARY 
 
Implementation of GIS based Bayesian inference into New Jersey Department of Environmental 
Protection’s (NJDEP) environmental monitoring “toolkit” has the potential to substantially 
improve monitoring efficiency and reduce long-term monitoring costs while simultaneously 
improving prediction capacity. In this context, the Scientific Advisory Board, Ecological 
Processes Standing Committee (EPSC) was tasked with addressing the overarching question: 
should the NJDEP evaluate and/or test Bayesian-based statistical analysis methods with the 
potential to substantially improve monitoring efficiency and outcomes in the near future? If so, 
what alternative methods should be evaluated?   
 
Two elements distinguish the Bayesian approach; first is the quantification of prior beliefs about 
a parameter in the form of a probability distribution, and the use of those beliefs in the actual 
data analysis; and second, the acceptance of the “likelihood principle” and the concomitant 
rejection of all sample-space probabilities from inferential conclusions about the parameter.  
Bayesian inference differs from classical, or frequentist inference in four general ways: 
 

1. Frequentists estimate the probability of the data (B) having occurred given a specific 
hypothesis (P[B|H]), whereas Bayesian inference provides a quantitative measure of 
probability of a hypothesis being true in light of the available data (P[H|B]); 

2. Frequentist inference defines probability in terms of infinite relative frequencies of 
events, whereas Bayesian inference defines it as the individual’s degree of belief in 
the likelihood of an event; 

3. Bayesian inference uses prior knowledge along with the sample data while frequentist 
inferences uses only the sample data; and 

4. Bayesian inference treats model parameters as random variables whereas frequentist 
inference considers them to be estimates of true fixed values. 

 
Several Bayesian analytical approaches were evaluated: (1) Bayesian hierarchical modeling that 
can be used to predict and causal inferences from experiments and observational studies that 
display multi-level structure; (2) Bayesian networks that are a suitable means for performing 
integrated ecological modeling; and, (3) Bayesian retrospective analysis, a procedure that aims 
to economize the long term costs of maintaining a network of monitoring site while minimizing 
the loss of information.  The EPSC also presented a case study to introduce kriging, by itself not 
a Bayesian method, but with a Bayesian variation, can extend the method to analyze the 
performance of the underlying kriging predictor.  In each instance, the EPSC presented case 
studies outlining the issues, the results, and the conclusions in applied Bayesian approaches.  
Finally, the EPSC provided a brief summary of available continuous or near-continuous data 
gathering devices in the region (Appendix II). 
 
Several advantages of Bayesian inference were identified: 
 

• Combined with the complexity inherent in most ecosystems, and the severity of 
environmental issues confronting managers and decision makers, many agencies and 
organizations have sought to explore new spatial analytical techniques that provide 
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timely, valid information to assist problem solving, and effective environmental 
management decisions.  The Bayesian approach has the potential to do just this.  

• The essential approach of the Bayesian method is to address the question:  can we get 
better estimates of the mean by collecting additional data from populations, other than 
just a single or a few population?  For both the Bayesian and empirical Bayesian, the 
answer is yes. 

• Bayesian methods have the potential to substantially streamline data gathering and 
consequently reduce monitoring costs;  

• A common issue with frequentist statistical approaches are related to weak experimental 
design in terms of replication, spatial and temporal confounding issues, and the nature of 
the ‘treatment’ itself.   Even with a ‘gradient-based’ approach that stratifies data 
collection into separate categories cannot fully overcome the replication problem, and it 
is usually financially or physically prohibitive to sample with sufficient replication to 
detect significant differences among test variables.  Bayesian methods can mitigate some 
of these difficulties because the approach is “inherently flexible”, i.e., models are 
constructed to conform to the requirements of the data, whereas standard statistical 
approaches must force the data to comply with the requirements of a relatively small 
number of model types.  Bayesian models that help obviate the problem of replication 
and are finding increasing uses in ecological applications.  They appear particularly 
suited to dealing with the complexities of spatiotemporal variation in ecology, and allow 
for the construct of “far more complex models” than is possible with traditional 
statistical approaches; and 

• Unlike most integrated modeling exercises, Bayesian networks are probabilistic, rather 
than deterministic, expressions to describe relationships among variables.  This is an 
essential and desirable characteristic of an ecosystem model if predictions are to guide 
decision making.  The Bayesian network approach has proven to be a suitable means for 
performing integrated ecological modeling because their graphical structure explicitly 
represents cause and effect assumptions among system variables that might not be 
tractable with alternative modeling approaches such as deterministic point estimate 
modeling.  In general, Bayesian networks are not sensitive to imprecision in the input 
probabilities and can, therefore, be classified as “robust tools”. 
 

In this review, we do not mean to imply that Bayesian methods are not without disadvantage (as 
are most other methods).   Among these are 1) computational challenges, even currently 
available software (Appendix III) may be difficult to use; and 2) the requirement to condition the 
hypothesis on the data; and the potential lack of objectivity therein, because different results will 
be obtained using different priors.  However, as discussed in the Introduction to this report, while 
noting that the primary criticisms of the Bayesian approach stems from “overenthusiastic” 
application of “uninformative priors”, the EPSC agrees with the general Bayesian community of 
practitioners that current data gathering practices using modern instruments produces 
voluminous data that not improve the ability of Bayesian statistics to connect disparate 
inferences, but also ensures that “genuine” informed priors become the rule rather than the 
exception.  
   
We concluded that Bayesian methods are a potentially powerful tool for statistical analysis of 
complex data sets.  The use of priors is a positive action in that it allows for prior knowledge or 
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perspectives to inform a current model.  Additionally, Bayesian inference includes uncertainty in 
the probability model which should yield more realistic predictions.  Bayesians employ only 
observed data, as opposed to frequentists who use both observed and hypothetical data.  
Bayesian networks are probabilistic rather than deterministic expressions to describe 
relationships among variables.  Bayesians suggest that this is an essential and desirable 
characteristic of an ecosystem model if predictions are to guide decision making. 
 
COMMITTEE RECOMMENDATIONS 
 
Based on our findings regarding Bayesian statistics as outlined in this report, the EPSC has 
compiled the following recommendations: 
 

• Because a comparison and evaluation of how other states and entities use Bayesian 
methods is well beyond the scope of this report, the EPSC recommends that NJDEP 
adopt a two phase approach to the question; (1) develop a survey instrument to ascertain 
what other states and entities are doing in this arena; and (2) depending on the outcome of 
step (1), convene a workshop of technical personnel from selected state and federal 
resource agencies (USGS, NOAA, and USEPA), and selected academic institutions, to 
address the general theme:  The Use of Bayesian Inference to Address Environmental 
Monitoring and Management Challenges. 

• DEP should work with colleges and universities to develop a one-week continuing 
education curriculum in applied aspects of Bayesian-inference for NJDEP scientists.  The 
curriculum should be relevant to statewide monitoring programs and should be 
compatible with ArcGIS programs. 

• NJDEP, in conference with their in-house and state university statisticians, geo-spatial 
modelers, and ecologists should identify a “training data set” from their vast monitoring 
programs to compare model characteristics and output (robustness and efficiency, 
potential bias and flexibility) and performance capacity among frequentist and Bayesian 
methods.  

• Similarly, and with the same approach, conduct a “sensitivity analysis” on existing 
NJDEP monitoring data sets using retrospective analysis to examine the relationships 
among sampling locations, sampling frequency, and resource allocation, to enhance the 
quality of information produced; e.g., by using real-time, remotely collected data from 
the Department's data logger array. 

• The Department should make its existing library on Bayesian literature available to the 
user community upon request. 

• The Department should issue a request for proposals (RFP) to academic institutions in 
New Jersey for the study of practical applications of Bayesian methods that address state 
environmental management and ecological issues. 

• Promote the practical application of Bayesian inference as an additional, oft desirable, 
tool in the Department’s analytical toolkit.  

• Use Bayesian inference, and the content of this report, to encourage the broader use of 
statistics in the Department's development of study designs and quantitative data analysis 
in fulfilling its regulatory mandates.    
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1.  INTRODUCTION  
 
1.1 Ecosystem Complexity, Forecasting, Informed Decision-Making and Bayesian 

Inference 
 

It is increasingly clear that much of the workings of the world, and the challenges 
and opportunities these workings entail for a transition to sustainability lie in the 
interactions among environmental issues and human activities that have 
previously been treated as largely separate and distinct…in the next decade we 
will see research/[education] and problem-solving shift in focus from single 
issues to multiple interacting stresses 
                                                                  
                                                                         US National Research Council 2002 
 

The above quote is a striking parallel and foretelling of the need for this report: 
 

Reasons for [the] increased popularity in Bayesian method are not hard to spot.  
Much of modern research, particularly in the life sciences, is based on the 
synthesis of multiple categories of evidence.  Data coming from many different 
studies have to be integrated in order to assess the empirical evidence for a new 
theory, and Bayesian statistics lends itself very well to this.        

Robert van Hulst 2013 
 
For scientists to truly inform policy, they must provide predictive links between management 
actions and ecosystem responses (Borsuk et al. 2004).  Not only does dealing with environmental 
change rest with a capacity to anticipate and prepare for an uncertain future (Clark et al. 2001), 
but reducing uncertainty is a necessary prerequisite to making forecasts that provide useful 
information.  Moreover, experimental and observational data that extend to landscapes or 
regions, and sustained monitoring are a foundation for forecasting sustainable ecosystems. A 
relevant example for the New Jersey Department of Environmental Protection (NJDEP) is the 
relationship between broad-scale habitat loss and predictions of extinction risk (Clark et al. 
2001).  The use of geospatial statistics and methods at the landscape scale can contribute to 
reducing uncertainty in the decision-making process, and is the framework for this exercise. But 
the discipline is vast, and a comprehensive treatment of the subject is well beyond the scope of 
this report.  The NJDEP has requested that the emphasis of this effort be focused on Bayesian 
statistical inference (and allied methods) and their utility in enhancing state-wide monitoring 
efforts designed to inform management decisions.  It should be noted at the outset that Bayesian 
inference provides a natural framework for the inclusion of parameter uncertainty in spatial 
prediction (Diggle and Lophaven 2006). 
 
Bayes Theorem 
 
First introduced in 1763, Bayes Theorem is an algorithm for combining prior experience with 
current evidence (Bayes 1763; Gotelli and Ellison 2004; Efron 2013).  When scientists want to 
estimate the probability of an event using non-Bayesian methods they often begin by assuming 
no prior knowledge of that probability, and estimate it by conducting a large number of 
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Box 1 
 
The term “empirical Bayes” was coined by 
Robbins (1955).  Broadly, the goal is to use 
Bayesian methods without fully specifying the 
prior, either by estimating the prior or its 
parameters. For example, say we want to 
monitor trends in the abundance of individuals 
in a population over several years by drawing a 
random sample of individuals from that 
population, and multiple replicate samples are 
taken in a given year. Then sampling theory 
dictates that μ, the sample mean, has an 
associated estimate of variance, or dispersion 
around that value. The essential approach of the 
method is to address the question:  can we get 
better estimates of the mean by collecting 
additional data from those populations, other 
than just the ith one?  For both the Bayesian 
and empirical Bayesian, the answer is yes. 
 

experimental and/or observational trials.  In contrast the Bayesian approach builds on the notion 
that investigators have a predisposed belief 1 of the probability of an event (even before any trials 
are conducted) and that these prior probabilities may be based on previous experience, intuition 
or model predictions (Gotelli and Ellison 2004).  
 
Priors may be informative or uninformative.  The former expresses specific, definitive 
information about a variable; e.g., there are 12 eggs in a dozen.  An uninformative prior, on the 
other hand, expresses only general information about a variable; e.g., the variable is positive, or 
it is less than some value.  Efron (2012) cautions that most criticisms of the of the Bayesian 
approach stem from overenthusiastic application of 
“uninformative priors”, and suggested that the latter 
be employed parsimoniously.  But for introductory 
purposes, we can note that current data gathering 
practices using modern instruments “pumps out 
results in fire hose quantities” (Efron 2012), 
producing prodigious data that “bear on complex 
webs of interrelated questions”.  Efron (2012) 
suggests further that “in this new scientific era, the 
ability of Bayesian statistics to connect disparate 
inferences counts heavily in its favor”, and in general 
terms, ensures that “genuine” informed priors 
become the rule rather than the exception.  The 
author contends further, that we can not only 
estimate the relevant priors directly from the data, 
but that this  empirical Bayes approach (Box 1) 
derives from experiments involving a large number 
of parallel situations carrying within them their own 
prior distributions (Robbins 1955).  In the broadest sense, the primary goal of the method is to 
use a Bayesian approach without necessarily fully specifying the prior, either by estimating it or 
by its parameters (ver Hoef 1996).  
 
To conclude, Howson and Urbach (1991) suggested that balancing empirical and prior factor 
outcomes becomes a necessary prerequisite to evaluating competing hypotheses.  Although 
neither factor by itself is decisive, the authors recommend that the prior plausibility always be 
checked against the empirical test results as a standard procedure. 
 
1.2  Statistical Analysis 
 

…to acknowledge the subjectivity inherent in the interpretation of data is to 
recognize the central role of statistical analysis as a formal mechanism by which 
new evidence can be integrated with existing knowledge... 
                                                
                                                                                   Berger and Berry 1988 

 
                                                
1  Prior beliefs generally represent some amalgamation of information that is available before data collection 

(Wolfson et al. 1996). 
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Statistical analysis generally attempts to give “objectivity” to conclusions derived from a set of 
experimental data.  But, reaching sensible conclusions from analysis of these same data may 
require, and in fact most often does, subjective input (Berger and Berry 1988).  The authors 
argue that not only are standard statistical methods based on subjective input, but that the source 
of subjectivity depends on the intentions of the investigator. Probability (p) values are a 
particular case in point; e.g., the probability (provided the null hypothesis is true) that the test 
statistic would have been more extreme than the actual observed value of the statistic.  In other 
words, a p value includes the probability of data that didn’t occur (i.e., other sample-space2 
probabilities).  Thus, subjectivity often arises from the producer (the scientist doing the study), 
rather than the consumer (others in the community of scientists, decision makers, etc.) (Berger 
and Berry 1988). 
 
There are two fundamental approaches for dealing with subjectivity.  Classical statisticians, or 
“frequentists” 3, consider the thoughts of the investigator about data that might have been 
observed, but were not (once again, the data that didn’t occur!), as being relevant. In an 
alternative paradigm, “Bayesian” statisticians consider that only the actual data are relevant to 
the inferences drawn from an experiment.  Moreover, Bayesian statistics may be used to compare 
alternative hypotheses, or models, in a single framework (Carpenter 1990).  Such analysis 
employs a data set (Y) and a set of candidate models (Mi) chosen to represent distinct alternative 
explanations, mechanisms, or policy options (Walters 1986; Carpenter 1990).   Prior to analysis, 
the investigator assigns a prior probability Pi that each model is correct. 
 
The use of Bayesian methods, and its potential to reduce monitoring costs, is the subject of this 
report, specifically how the Bayesian approach might be incorporated into spatial and other 
analyses used by the NJDEP. In this framework, the Ecological Processes Standing Committee 
(EPSC) was tasked with addressing the following questions: 
 
1.3  General Questions: 
 

Should the NJDEP evaluate and/or test new, Bayesian-based, statistical analysis methods 
with the potential to substantially improve monitoring efficiency and outcomes in the 
near future? If so, what alternatives should be evaluated? 

 
1.4  Specific Questions: 
 

1. Implementation of GIS based Bayesian methods into DEP’s monitoring “toolkit” could 
substantially improve monitoring efficiency and potentially reduce monitoring costs 
while simultaneously improving prediction capacity.  Is there sufficient scientific 
consensus on the reliability of Bayesian modeling approaches?  What research has been 
conducted to compare results calculated from standard methods with those produced 
using Bayesian models?  Are other methods available and recommended for evaluation?  

                                                
2  The sample space, denoted by Ω, is the set of all possible outcomes in an experiment.  The frequentist paradigm 

estimates probabilities as the relative frequency of outcomes based on an infinitely large number of trials.   
3 Frequentist, or classical inference assumes that there is a true, fixed value for each variable of interest (e.g., density 

of individuals in cities), and that the expected value of this parameter is an average value derived from repeated 
random sampling (Ellison 1996). 

https://en.wikipedia.org/wiki/Experiment_(probability_theory)
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2. Have other States or entities evaluated and employed similar Bayesian modeling 

techniques to improve monitoring outcomes and potentially reduce costs?  What NJDEP 
programs would benefit most from the incorporation of such advanced techniques? 
 

3. Data loggers and other real time monitoring devices (Appendix I) are becoming more 
accurate and affordable.  Data loggers can reduce sampling time and potentially increase 
data accuracy and reliability.  However, depending on the frequency of data collection, 
much more data can be collected than should be analyzed using normal statistical 
methods.  What types of data reduction techniques are necessary in combination with the 
increased use of deployable long-term data loggers in order to maintain adherence to 
appropriate statistical assumptions of independence and autocorrelation? 
 

Three related Tasks have been identified for this effort: 
• Conduct a literature review that describes the “state of the science” for Bayesian 

methods; how is it done, strengths and weaknesses, modeling approaches used, statistical 
analyses used, etc.  NJDEP has conducted a first round literature search and the materials 
have been posted on their web-site.  We are being asked to review this literature and 
prepare a ‘primer’ on the topic (Task 1); 

•  Survey who is doing what and where; locally, regionally and perhaps even globally if 
there are sterling examples available establish ‘several case studies’; and prepare a 
summary document (Task 2); 

• How might new technology; e.g., data loggers, be incorporated into the mix? 
• Rather than going out and compiling model data sets from existing programs for future 

“ground-truthing” and validation (and to develop a frame of reference for comparison to 
existing approaches and improving them - both on a scientific and/or cost effectiveness 
basis), NJDEP prefers that we start with published case studies and synthesize them as a 
surrogate ‘validation’ step (Task 3).   
 

2.  COMPARING FREQUENTIST VERSUS BAYESIAN INFERENCE 
 

In all of the sciences, statistics is the common language used to interpret our 
measurements and to test and discriminate among our hypotheses… probability4 
is the foundation of statistics 
                                                                                            Gotelli and Ellison 2004 

 
The frequentist paradigm (Box 2) estimates probabilities as the relative frequency of outcomes 
based on an infinitely large number of trials.  Thus, to estimate the probability of a given 
phenomenon (e.g., births per 100 females in the population), frequentists begin by assuming no 
prior knowledge of the probability of an event, and then establish that probability on the basis of 
a large number of samples.  In contrast, Bayesian inference5 is underpinned by a formula for 
conditional probability based on prior knowledge (experience) of the likelihood of an outcome.  
These prior probabilities, as they are known, may be based on previous experience, intuition, or 
                                                
4 “Probability” is the likely outcome of an event, a process with a well-defined beginning and end. 
5  Named after Thomas Bayes, best known for his 1763 essay, “Towards Solving a Problem in the Doctrine of    

Chances”. 



 

12 
 

Box 2  
 
A probability measure is defined on a sample space Ω. 
Any probability measure P(A) must satisfy three axioms: 
(1) If A is a subset of Ω, then P(A) is non-negative; (2) If 
two subsets of Ω are non-overlapping then 
P(A+B)=P(A)+P(B); and (3) P(Ω) = 1.  As an example, in 
a coin toss:  Ω = {heads, tails} and P(heads) + P(tails) = 
P(head or tails) = 1.  These three axioms may be used to 
determine other mathematical properties of probability 
measures. 
 
In classical probability a particular probability measure is 
deduced through an exercise of reason. Example: The 
probability of rolling a die and getting a 1 is 1/6 because 
there are six equally likely outcomes. 
 
Frequentist probability views a probability measure as a 
converging value of sample proportions as the sample size 
get very large.  This view allows for the interpretation of 
sampling statistics as estimates of population statistics.  
Example: As the die is rolled more and more times, the 
observed proportion of 1s converges to the probability of 
rolling a 1. 
 
Subjective probability is used primarily by Bayesians.  
Rather than describing the probability of a sample statistic, 
it describes an individual’s assessment of an event as a 
prior probability. This allows one to consider a hypothesis 
to have a certain probability (or a probability distribution) 
of being correct; e.g., stating the hypothesis that “the 
probability that this coin is fair is 0.8”.   
 
Both frequentist probabilities and subjective probabilities 
must satisfy the axioms of probability measures in order to 
avoid internal contradictions. 
 

modeling predictions.  As in classical statistics, prior probabilities are ultimately derived from 
trials and experiments (Gotelli and Ellison 2004). 
 
Bayes’ Theorem may be stated as: 
 

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)                                                                          (1) 

 
where the quantity P(A|B) is the probability of A given event B. The term P(A) is referred to as 
the prior probability; i.e., the investigator’s  subjective prior beliefs, or the probability expected 
before the experiment is conducted (Dennis 
1996; Ellison 1996).  It should be noted that 
this parameter is not a random variable; rather 
it is an unknown variable that is selected by 
the investigator as quantifying a “best guess”, 
emphasizing the subjective nature of the 
approach.  Ellison (1996) discusses three 
interpretations of the prior probability: (1) a 
frequency distribution whose parameters are 
based on the use of existing data; (2) an 
objective measure of what one can believe 
about the parameter or distribution of interest; 
(3) a subjective measure of what the 
investigator actually believes.  Most 
frequentists will likely use the first two 
interpretations of P(A) when framing 
hypotheses and designing experiments.  The 
remaining term in the numerator, P(B|A), or 
the probability of  B given A, is described as 
the likelihood function for the parameter of 
interest (Box and Tiao 1973).  

The Bayesian approach uses a step-wise 
procedure to calculate the probability that a 
hypothesis is true for a given set of data; for 
example in a coin tossing exercise (Appendix 
II).  The principal of including only the actual 
data in the analysis (P[B|A]) and excluding 
consideration of all other sample-space 
probabilities is referred to as the “likelihood principle”.  The goal is to produce final 
probabilities for testing hypotheses, or what are commonly referred to as posterior probabilities 
that reflect how the investigator’s subjective beliefs have been altered by the actual data (Dennis 
1996).  Berger and Berry (1998) note that obtaining the final probability of a hypothesis in light 
of the experimental data requires that the investigator first specify the probabilities of the 
hypothesis before or apart from the experimental data; these ‘initial probabilities’ are, as noted 
above, also called prior probabilities. It also identifies a “final” probability for the hypothesis 
being tested.  In the end, scientists with different prior beliefs draw their own conclusions from 
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the data, using their own priors.  Consensus emerges when most scientists’ priors become 
swamped by large amounts of data; i.e., when their posterior beliefs become nearly identical 
(Dennis 1996). 

Thus, there are two key elements that distinguish the Bayesian approach; first is the 
quantification of prior beliefs about a parameter in the form of a probability distribution, and the 
use of those beliefs in the actual data analysis; and second, the acceptance of the “likelihood 
principle” and the concomitant rejection of all sample-space probabilities from inferential 
conclusions about the parameter (Dennis 1996). Thus, Bayesian inference differs from classical, 
frequentist inference in four ways (Ellison 2004): 
 

1. Frequentists estimate the probability of the data having occurred given a specific 
hypothesis (P[B|H]), whereas Bayesian inference provides a quantitative measure 
of probability of a hypothesis being true in light of the available data (P[H|B]); 

2. Frequentist inference defines probability in terms of infinite relative frequencies 
of events, whereas Bayesian inference defines it as the individual’s degree of 
belief in the likelihood of an event; 

3. Bayesian inference uses prior knowledge along with the sample data while 
frequentist inferences uses only the sample data; and 

4. Bayesian inference treats model parameters as random variables whereas 
frequentist inference considers them to be estimates of true fixed values. 

 
As noted in the Introduction, the presence of the prior distribution is the source of much 
controversy in Bayesian modeling, i.e., it can be seen as making the analysis “overly subjective” 
(McCarthy 2007).  However, as McCarthy (2007) also notes that “when little information exists 
concerning a parameter, one is able to assign a so-called minimally informative or ‘vague’ prior 
distribution.”  Such a prior has only slight effects on the posterior distribution “… [and] familiar 
analyses (e.g., ANOVA or regression) carried out using Bayesian methods and vague priors for 
the parameters (e.g., regression slope) will usually come up with a similar distribution for that 
parameter as the almost universally used frequentist model”. 
 
3.  BAYESIAN STATISTICAL DESIGN  
 
Spatially focused analytical procedures are essential tools for understanding the distribution and 
interactions of biota among themselves and with physico-chemical drivers in the environment.  
Combined with the complexity inherent in most ecosystems, and the severity of environmental 
issues confronting managers and decision makers, many agencies and organizations have sought 
to explore new spatial analytical techniques that provide timely, valid information to assist 
problem solving, and effective environmental management decisions (Little et al. 1997).  The 
New Jersey Department of Environmental Protection is clearly interested in exploring and 
evaluating these methods as a potential addition to its analytical toolkit.   
 
A central challenge in applying any of these methods, however, is the prediction of a spatial 
surface over a region using data that are imperfect measurements, but nonetheless assumed to be 
adequate estimates of a parameter at a limited number of sampling locations (Diggle and 
Lophaven 2005).  In practice, several attributes of spatial variation must be recognized 
(Burrough 1995): 
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• Spatial variation of ecological attributes vary continuously within a spatial unit that 

cannot be described by simple regression polynomials;  
• Rather, short range variation of an attribute, observed as a set of observation points, vary 

in a correlated manner, at least at the scale at which the observations have been made; 
i.e., sample points closer together tend to be more similar (display spatial 
autocovariance) than points further apart; and 

• Statistical properties of spatially correlated variation are the same, or uniform, within the 
whole area of study; this is referred to as statistical stationarity.   

 
Thus, models of spatial variation should contain at least three structural components; 1) the 
average value of the variable within a defined area; e.g., breast height diameter of trees in a 
forest stand; 2) spatially correlated, gradual variation; and 3) uncorrelated random variation. 
 
In these circumstances a stochastic linear model is often applied, with the assumption that the 
spatial surface of interest is underpinned by an unobserved stationary Gaussian process 
consisting of random values associated with a range of time, space, or space/time such that each 
random variable has a normal distribution6.  Finally, statistical stationarity, or uniformity, is a 
necessary prerequisite of the approach. The latter can be understood by considering a series of 
observation points laid out at equal intervals along a linear transect.  Say that a soil property is 
estimated at each sampling point x.  Formally, we can say that if the joint distribution of the n 
random variables S(x1) …. S(xn) is the same as the joint distribution of S(x1 + h)…S(xn + h) for 
all x1 … xn.  Put simply, the statistical properties of the series are not affected by moving the 
sample points a distance h from point xi to point xi+h.  In practice, it is usual to replace the above 
definition of a stationary Gaussian process, with second-order or weak stationarity in which the 
mean is constant, the autocovariance depends only on distance among sampling locations, and 
the variance is finite and constant. 
 
Bayesian inference, including methods for geostatistical analysis using the linear Gaussian model 
(e.g., Kitanidis 1988; Handcock and Stein 1993) offers a useful framework for including the 
effects of parameter uncertainty in spatial predictions.  The method was extended by Diggle et 
al. (1998) who embraced generalized linear models with an unobserved Gaussian process in the 
linear predictor (Diggle and Lophaven 2005; see Case Study 2). 
 
Other common issues with frequentist statistical approaches; e.g., those that might be used with 
hydrogeomorphic assessments7 are related to weak experimental design in terms of replication, 
spatial and temporal confounding issues, and the nature of the ‘treatment’ itself (e.g., flow 
characteristics) (Webb et al. 2009).   Even with a ‘gradient-based’ approach that stratifies flow 
according to stream-bed slope cannot fully overcome the replication problem noted, and it is 
usually financially or physically prohibitive to sample with sufficient replication to detect 
significant differences between flow and response (Webb et al. 2009).  These authors suggested 
that Bayesian methods may be able to mitigate some of these difficulties because the approach is 

                                                
6 Very often environmental variables are not normally distributed, and it is customary to first examine the distribution of 

sampling variables to check for normality, and if the distributions are skewed, apply a transformation to normalize the data. 
7 The provision of environmental flows is critical to, for example, maintaining ecological integrity of regulated river systems 

where there are ‘competing’ flows for ecosystem and anthropogenic uses (e.g., agricultural uses). 
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“inherently flexible” such that models are constructed to conform to the requirements of the data, 
whereas “standard statistical approaches8 must force the data to comply with the requirements of 
a relatively small number of model types” (see also McCarthy 2007).  One type of Bayesian 
approach, i.e., the use of hierarchical models (see Section 4.1) may help obviate the problem of 
replication and are experiencing increased usage in ecological applications.  They appear 
particularly well-suited to dealing with the complexities of spatiotemporal variation in ecology, 
and allow for the construct of “far more complex models” than is possible with traditional 
statistical approaches (Clark 2005). 
    
4.  BAYESIAN APPLICATIONS:  SELECTED CASE STUDIES 
 
 In the interest of space, succinctness, and to “reinforce” the EPSC recommendations that 

follow at the end of these collective case studies, analytical findings will be presented in 
summary format. The basic idea is to provide sufficient information to demonstrate the 
utility of Bayesian methods, without making any value judgments vis-à-vis the subject(s) of 
the study. 

 
4.1     Case Study 1.  Environmental Flows and the Bayesian Hierarchical Model  
 
           Title: Detecting ecological responses to flow variation using Bayesian hierarchical 

models (Webb et al. 2009) 
 
Natural phenomena displaying hierarchical or multilevel structure commonly occur in 
environmental studies.  Hierarchical modeling, a generalization of regression methods, can be 
used to predict and causal inferences from experiments and observational studies that display 
multilevel structure (Kreft and De Leeuw 1998; Snijders and Bosker 1999; Raudenbush and 
Bryk 2002; Hox 2002; Gelman 2006). The linear multilevel regression model, is an example of a 
hierarchical model,   
 
                              𝑦𝑖𝑖 = 𝛽0(0) + ∑ 𝛽𝑙𝑥𝑖𝑖(𝑙) +𝑙 𝛽0𝑗 + ∑ 𝛽𝑘𝑘𝑥𝑖𝑖𝑖 𝑘 + 𝜖𝑖𝑖                     (2) 
 
where ij is the 𝑖𝑡ℎ observation of 𝑗𝑡ℎ  group, 𝑥𝑖𝑖(𝑙) for the global variables while 𝑥𝑖𝑖𝑖  for the 
variables within each levels and 𝜖𝑖𝑖  is the error term. 𝛽𝑙 is used to show the global effect and 𝛽𝑘𝑘 
for in-level effect, where both 𝛽.𝑠 are parameters of the hierarchical model.  
 
If we assume the parameters to be random and estimate a prior distribution 𝜋(𝜆.) for 𝛽., then the 
effects of each variables is based on the posterior distribution 𝜋(𝜆,|𝑥, 𝑦) for 𝛽. after the data 
{𝑥, 𝑦} are collected. There are two challenges to invoking a Bayesian solution to multilevel data: 
(1) estimating a satisfactory prior and (2) calculating a solution based on posterior distribution.  
For prior estimation, the “conjugate prior” is most popular solution because of simplicity of 
calculation (Raiffa and Schlaifer 1961); but an uninformative prior (Bernardo 1979; Berger 
                                                
8  Non-Bayesian, multilevel (hierarchical) modeling is also an increasingly popular approach to modeling hierarchically-

structured data, generally outperforming classical regression in predictive accuracy. An important feature of multilevel models 
is their ability to separately estimate the predictive effects of an individual predictor and its group-level mean.   These models, 
however, are not discussed further in this report. 
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1990; Lehmann 1998) can also be used when prior information is limited.    Bayesian calculation 
based on the conjugate prior uses the kernel distribution9 (Raiffa and Schlaifer 1961), otherwise 
the Markov Chain Monte Carlo (MCMC) simulation can be used (Asmussen and Glynn 2007). It 
should be noted that empirical Bayesian methods (Robbins 1985) may also be used (see Box 1). 
 
In most cases, nonhierarchical models are inappropriate for hierarchical data analysis: with few 
parameter estimates they generally fit large datasets poorly, whereas when many parameter 
estimates are available, they tend to “over-fit” such data, leading to inferior predictions for the 
analysis of new data (Gelman et al. 2003). More importantly, the hierarchical approach tends to 
unify the seemingly disparate methods of frequentist and Bayesian analysis (Efron and Morris 
1973; Greenland, 2000). 
 
Bayesian hierarchical models have increasingly been applied to assess stream biological 
responses to landscape changes (Reckhow, 1996; Rechhow et al., 2009; Kashuba et al., 2009; 
Qian et al., 2010) because of its apparent advantages over other conventional statistical methods 
(e.g., Riva-Murray et al., 2010). Traditional regression methods assume that such relationships 
are constant across space and use global estimates that assess the average conditions for a study 
area. However, stream physical, chemical and biological conditions are not only affected by local 
factors such as land use intensity parameters and climate conditions, but they also vary across 
distinct physiographic provinces (Kennen, 1999) and streamflow regimes as emphasized by 
Kennen et al. (2007, 2008). The hierarchical model allows both local and grouped variables 
across different spatial and temporal scales to be used to assess stream response, i.e. stream 
integrity parameters. For example, Kashuba et al. (2009) used a multilevel statistical model to 
assess in-stream invertebrate responses to urbanization and important climate parameters (e.g., 
precipitation and air temperature) while simultaneously explaining differences in the rates at 
which invertebrate assemblages respond to urbanization across nine metropolitan regions in the 
U.S. The hierarchical model overcomes the drawbacks of the traditional statistical models and 
achieves a balance between treating the data from different groups as completely independent 
(unpooled) and treating the data from different groups as replicates (completely pooled) through 
partial pooling (Rechhow et al., 2009). As such, the global estimates of the model parameters are 
the weighted average of the group-specific estimates (borrowing) and the group-specific 
estimates are shrunk toward the global estimates. The degree of shrinkage depends on the group-
specific uncertainties such as the sample size and variability of the observations (Reckhow et al., 
2009; Kashuba et al., 2009). The multilevel models can potentially be modified to handle 
commonly available longitudinal data on land use and stream biological conditions (Hox, 2002).  
 
Environmental Flows 
 
Environmental flows, as defined by the Brisbane Declaration (2007), describe the quantity, 
timing, and quality of water flows required to sustain freshwater and estuarine ecosystems and 
the human livelihoods and well being that depend on these ecosystems.  Water is necessary to 
sustain freshwater ecosystems and their services (e.g., fisheries, recreation, and tourism) that 
they provide to people. A comprehensive understanding of how water availability influences the 

                                                
9  A kernel distribution is a nonparametric representation of the probability density function (pdf) of a random variable. It is used  

when a parametric distribution cannot properly describe the data, or when the investigator wants to avoid making assumptions 
about the distribution of the data. 



 

17 
 

ability of a watershed, river, riparian, and estuarine ecosystem to provide those services is the 
basis for informed water management including decisions about allocating water among various 
users. Improvements in water management can only be achieved when there is a scientific 
understanding of where and when water is available, and we ensure that river systems have 
adequate base flows to support both people and ecosystem needs. The Bayesian hierarchical 
modeling approach can be used to improve this understanding and is especially applicable in the 
detection of important associations between stream flows, including managed flows, and 
biophysical responses in rivers (i.e., environmental flows). Properties unique to the hierarchical 
approach – “borrowing strength” and “shrinkage” – mean that conclusions can be greatly 
strengthened in data-poor situations but will be almost unaffected when data are plentiful (as 
opposed to the tendency to “over-fit” such data, as mentioned above). Webb et al. (2009) stress 
that the flexibility of Bayesian modeling allows formulation of realistic models, which can be 
tested for generality using all available data from any source (e.g., routine river health 
monitoring data, or a particular flow experiment). Models can be updated as new knowledge and 
data become available via an iterative cycle of development and testing. The advantages appear 
obvious given that environmental flow monitoring programs often require a large investment of 
public money. Management agencies need to be convinced their investments in environmental 
flows and the monitoring of ecological outcomes are cost-effective and worthwhile activities. 
 
The Issue 
 
Environmental flows represent a critical part of maintaining ecological integrity in regulated 
river systems (Poff et al., 1997; Tharme, 2003; Arthington et al., 2006). However, providing 
flow to the environment may be economically costly due to foregone consumptive benefits (e.g. 
agriculture; Qureshi et al., 2007), and also socially divisive due to the inevitable self-interest of 
consumptive and environmental water users (Schofield & Burt, 2003). Recent droughts across 
the U.S. and around the world have highlighted the tensions that can exist between allocating 
water for people and water for nature. Given these tensions, it is important to demonstrate the 
ecological benefits of environmental flows, particularly in regions with fully or over-allocated 
water resources such as southeast Australia. In this paper, the authors assessed effects of flow on 
(1) salinity in the Glenelg and Wimmera Rivers and (2) abundance of a fish – Australian smelt, 
Retropinna semoni (Weber 1895) in the Thomson River.  This study was designed to evaluate 
the utility of Bayesian hierarchical models (BHMs) for assessing the environmental effects of 
flow; i.e., the analyses sought to identify a link between variation in flow and ecosystem 
response by using a Bayesian hierarchical approach to improve their capacity to detect important 
associations in the data. In doing so, the authors tested hypotheses underlying environmental 
flow recommendations.  The data were taken from existing monitoring programs funded by the 
local catchment management authorities. The salinity analysis had a rich data set however the 
data for the Australian smelt analysis was relatively poor.  It was stipulated that the Bayesian 
hierarchical approach to the problem would mitigate such difficulties because BHMs are, as 
noted previously, inherently flexible (Clark 2005) and allow for the construction of far more 
complex models than is possible with traditional statistical approaches.   
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Box 3 
Statistical Model: Salinity 
For each site, the data were analyzed with the following model: 
 
 log�𝑦𝑖(𝑆)�~𝑁(𝜇𝑖(𝑆),𝜎[𝑦]

2 )                                    (3) 
 

𝜇𝑖(𝑆) = 𝛼𝑆 + 𝛽𝑆�
𝑄𝑖(𝑆)

𝐿𝑆

4 + 𝜌𝑆(log�𝑦𝑖−1(𝑆)� − 𝛼𝑆 − 𝛽𝑆 �
𝑄𝑖−1(𝑆)

𝐿𝑆

4 )     (4) 

 
where 𝑦𝑖(𝑆) is the salinity data point for day 𝑖 in the time-series at site 
𝑆. N refers to a normal distribution, 𝜇 is the mean of the modeled 
salinity datum and 𝜎[𝑦]

2  is the variance of the modeled salinity 
distributions at that site. Salinity was modeled at each site as a linear 
function of transformed standardized discharge with intercept 𝛼𝑆 and 
slope 𝛽𝑆. The subscript 𝑆 denotes that these are site-scale parameter. 
𝑄𝑖(𝑆) is the daily discharge and 𝐿𝑆 is the summer low-flow 
recommendation for that site. Autocorrelation of the data was 
accommodated with the Cochrane-Orcutt transformation (Congdon 
2006) that adjusted each 𝜇𝑖 by the difference between the previous 
data point and the line of best fit at that point, scaled by the standard 
autocorrelation coefficient 𝜌. Under the Bayesian framework, the 
investigators attempt to use minimally informative prior distribution 
for parameters, but the construction process requires some extra 
parameters in the model, namely: 
 

 
where 𝜙 is the overall mean of the distribution of 𝛽𝑆 values, and 𝜁 and 
𝜂𝑆 dictate the deviation of individual 𝛽𝑆 values from 𝜙. A is a ‘scale’ 
parameter, and corresponds to the median of the prior standard 
deviation. The posterior standard deviation, 𝜎[𝛽], of the distribution of 
𝛽𝑠 values was calculated as shown.  

 
The hierarchical structure of this model is illustrated below. 
 

 

 

 
         
 
 

𝛽𝑆 = 𝜙 + 𝜁 ∙ 𝜂𝑆 
𝜁~𝑁(0,𝐴2) 
𝜂𝑆~𝑁(0,𝜎[𝜂]

2 ) 
𝜎[𝛽] = |𝜁| ∙ 𝜎[𝜂] 

 
Models and their Implementation 
 
Salinity Model 
 
Daily salinity and discharge data were available 
for six sites on the Glenelg River and four sites 
on the Wimmera River for the period 1 January 
2000 to April 2007. Environmental flow 
recommendations have been made for all sites 
and it is hypothesized that recommended 
summer low-flow rates should maintain water 
quality. However, discharges over the summer 
period (1 December–31 May) often fall well 
short of the recommended levels. 
 
An initial examination of the data revealed a 
negative linear relationship between salinity and 
flow, and high temporal autocorrelation in the 
data series. The authors analyzed these data as a 
linear regression of salinity against flow with 
extra terms to account for temporal 
autocorrelation. Because it is hypothesized that 
recommended minimum environmental flow 
rates should maintain water quality, the authors 
used the summer low-flow recommendations to 
scale the discharge data from each site. This 
produced a flow metric related directly to the 
environmental flow recommendations, and was 
also comparable among sites – a characteristic 
that facilitates hierarchical treatment of the data. 
Data cleaning and data transformation were 
based on background knowledge on data 
structure.  For example, salinity data were log10-
transformed and discharge data were 4th root 
transformed. Salinity was modeled at each site as 
a linear function (with intercept 𝛼𝑠 and slope 𝛽𝑠) 
of transformed standardized discharge.  Potential 
autocorrelation of the data was accommodated 
using the Cochrane-Orcutt transformation 
(Ciongdon, 2006). The model parameter of 
primary interest for the salinity analysis 𝛽𝑠 is the 
rate at which salinity changed proportional to 
discharge at the site level. It was modeled 
hierarchically and the prior distribution of 𝛽𝑠 
was chosen as a minimally informative prior (see 
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Box 4  
Statistical Model:  Smelt 
The transformed site-level abundance data modeled as: 
 
                               log�𝑦𝑖[𝑆𝑆]�~𝑁(𝜇𝑖(𝑠𝑠),𝜎[𝑦]

2 )                            (5)  

 
where 𝑦𝑖[𝑆𝑆] is the abundance data i=1…3 within each site (S) within each reach 
(T), 𝜇𝑖(𝑆𝑆) is the mean of the modeled abundance for sample 𝑖, 𝜎[𝑦]

2  is the variance 
of this distribution and 𝜃𝑖(𝑆𝑆) is the mean of the modeled abundance once the 
effects of turbidity and discharge have been taken into account. 𝑇𝑢𝑖(𝑆𝑆) and 𝑄𝑖(𝑇) 
are turbidity and discharge on the day of sampling, respectively. These data were 
log-transformed to maximize the spread of explanatory variables in the analysis. 
The parameter 𝛿 and 𝛾 are coefficients for turbidity and flow covariates. The 
adjusted site-level data were aggregated at the reach scale such that  
 
                                       𝜃𝑖(𝑆𝑆)~𝑁(𝜑𝑖(𝑇),𝜎[𝜃]

2 )                               (6) 
 
where 𝜑𝑖(𝑇)  is the mean of the distribution of site-level observations for the reach 
during year I, and other subscripts and parameters follow the naming conventions 
above. Within each reach, the reach-level mean abundance for each year were 
regressed against the average discharge for that summer period scaled against the 
low-flow recommendation: 
 

                                          𝜑𝑖(𝑇) = 𝜆𝑇 + 𝜋𝑇
log(𝑄)𝚤(𝑇)��������������

log (𝐿𝑇)
                        (7) 

 
For this model, 𝜆𝑇 and 𝜋𝑇 are regression intercept and slope parameters, 
respectively, log(𝑄)𝚤(𝑇)������������� is the average log-transformed summer discharge over the 
12 months preceding sampling and 𝐿𝑇 is the summer low-flow recommendation 
for that reach. Same as in salinity model, the authors construct the prior as follows: 
 

 
where, 𝜓 is the overall mean of 𝜋𝑇 values, 𝜎[𝜋] is the standard deviation of this 
distribution and 𝜁, 𝜂 and 𝐴 have the same meanings as for the salinity model. The 
hierarchical structure of the model is illustrated below. 

 

 

 
         
 

𝜇𝑖(𝑆𝑆) = 𝜃𝑖(𝑆𝑆) + 𝛿 log�𝑇𝑢𝑖(𝑆𝑆)�+ 𝛾log (𝑄𝑖(𝑇)) 

𝜋𝑇 = 𝜓 + 𝜁 ∙ 𝜂𝑇 
𝜁~𝑁(0,𝐴2) 
𝜂𝑇~𝑁(0,𝜎[𝜂]

2 ) 
𝜎[𝜋] = |𝜁| ∙ 𝜎[𝜂] 

Box 3 for more detail). 
 
Smelt Model 
 
Fish abundance data were 
available for 18 sites spread 
across six reaches of the 
Thomson River. There were three 
years of data (2005, 2006, 2007), 
with one bank-mounted or boat 
electrofishing sample taken per 
site each year (late March–early 
April), The analysis focused on 
Australian smelt because it was 
the most dominant species 
comprising 58% of the total 
abundance and because it is one 
of the species that the 
environmental flow program was 
designed to protect. In general, 
adult smelt are not considered to 
be particularly sensitive to flow 
changes, however, their eggs and 
larvae are highly associated with 
low-flow environments and the 
authors hypothesize that the 
number of fish recruited to the 
adult population will be a 
function of the amount of slow-
flow habitat in the river over the 
summer period. 
                                                            
Based on the above ecological 
background and collected data 
structure, the smelt model was 
conceived as being multilayered 
(Box 4). The data were 
effectively adjusted for day-of-
sampling discharge and turbidity 
effects before being aggregated at 
the reach-level and passed on to 
the main analysis.  After 
transformation, a regression 
model with intercept 𝜆𝑇 and slope 
𝜋𝑇 was derived (Box 4).  𝜋𝑇, the 
regression slope of the relation 
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between reach-level smelt abundance and proportional achievement of the summer low-flow 
recommendation was modeled hierarchically among the reaches, using the same proportional 
achievement of the summer low-flow recommendation was the main objective for the smelt 
analysis. The regression slope 𝜋𝑇 was modeled hierarchically among the reaches, using the same 
minimally informative prior as used in the salinity study (see Box 4 for additional details) 
 
Implementation 
 
The models were written using the Markov Chain, Monte- Carlo (MCMC) based Bayesian 
analysis using the WINBUGS 1.4.2 (http://www.mrc-bsu.cam.ac.uk/bugs; Lunn et al., 2000)10. 
To test the effect of using a hierarchical approach, the author also ran non-heirarchical versions 
of the models, by assigning minimally informative prior distributions to the parameters at a 
lower level (“site” for the salinity model, “reach” for the smelt model). 
 
Study Results 

Salinity Model 
 
The distributions for 𝛽𝑠 are characterized by 
different medians and credible intervals for 
different sites (Fig 1). The slopes were 
negative (i.e., increased discharge was 
correlated with reduced salinity) at three sites 
on the Glenelg River (G3, G4, G5) and three 
sites on the Wimmera River (W2, W3, W4); 
however, discharge was correlated with 
increased salinity at two locations on the 
Glenelg river (G2, G6) and appeared to have 
no effect at one site in each river (G1, W1). 
The precision of the 𝛽𝑠 estimates was 
generally satisfactory, with the exception of 
W2. Hierarchical and non-hierarchical models 
produced results that were very similar. The 
posterior predictive checks indicated a very 
close fit between the hierarchical model and 
data, with high autocorrelation between log-
transformed salinity and ‘fake data’ generated 
by the model simulation (r = 0.997). 
 
Smelt Model 

Results of the hierarchical model runs showed that all reaches had probabilities for 𝜋𝑇 that were 
positive between 0.1 and 0.3, indicating that increasing discharge was associated with a reduced 
number of smelt at the reach scale (Table 1). For the non-hierarchical model output, where the 
reaches were treated independently, there was a far larger range of probabilities, as well as, wider 
                                                
10 A brief survey of available “free” software for Bayesian analyses appears in Appendix III 

Fig. 1 

http://www.mrc-bsu.cam.ac.uk/bugs
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intervals for 𝜋𝑇 (especially for reaches 3 and 4b) (Fig. 2). The results also show that both higher 
turbidity and discharge on the day of sampling appeared to reduce the number of fish captured. 
The distribution of probability values for the simulated 
data showed a reasonable fit of the hierarchical model 
to the data.        
 
Discussion and Conclusion 

For salinity, the model results argue against the 
hypothesis that summer low flow                                                                                                                                                                          
should help to maintain water quality at all sites and 
instead compel the authors to consider mechanisms that 
may differ among sites.  Also because of the unrealistic 
estimation of absolute changes in salinity at site W2, it 
is probably not advisable to consider absolute effects for a model where autocorrelation is so 
apparent. 
 
For smelt, the hierarchical model provided some support for the hypothesis that higher than 
recommended summer discharges in the Thomson River led to a reduction in the abundance of 
smelt. These findings support the hypotheses of 
Milton & Arthington (1985) and Pusey et al. 
(2004) that higher flow during the larval and 
juvenile period might be expected to reduce 
smelt abundance in streams.  Elevated 
summer discharges in the Thomson River 
occur principally to deliver irrigation water 
downstream. As such, there will always be 
tension between consumptive water use and 
environmental needs. Given that smelt are a 
common and widespread species in southern 
Australia, the authors conclude that it is 
unlikely that the findings reflect a significant 
enough ecological impact for existing flow 
rules to be reassessed, especially given the 
high levels of uncertainty associated with the 
predictions.  
 
This study has demonstrated that Bayesian 
hierarchical modeling provides a rigorous 
statistical framework that can be used to 
detect the effects of flow on environmental 
variables. Unique to the hierarchical approach, the properties of borrowing strength and 
shrinkage mean that conclusions will be greatly strengthened in data-poor situations but will 
be almost unaffected when data are plentiful. Moreover, the Bayesian approach makes fitting 
hierarchical models relatively straightforward. Environmental flow monitoring programs such 
as VEFMP require a large investment of public funds, and the authors of the study believe 
that Bayesian hierarchical modeling approaches can maximize the benefits of such programs.  

 

Table 1.  Results for smelt model 

   Fig. 2  
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Box 5 
 
A central concern of geostatistics is to predict a 
spatial surface of a region, A, using data that 
consist of potentially imperfect measurements, Yi: 
i= 1,…, n, on the surface of a finite set of 
sampling locations, xi ∈ A:i = 1,…, n.  As noted in 
the introductory sections to this report, a widely 
used stochastic model for such data is the linear 
Gaussian model (LGM), which assumes the Yi are 
normally distributed, with mean E[Yi] = S(xi) and 
common variance τ2.   
 
The LGM in the author’s study is represented by 
[S,Y] = [S][Y|S]; i.e., the model specifies the 
marginal distribution of the unobserved random 
field S={S(x):x∈R2} and the conditional 
distribution of Y=(Y1, …,Yn) given S, with model 
parameters θ = (β,σ2,τ2) a vector of unknown 
parameters.   Under the Bayesian paradigm, 
unknown model parameters are also treated as 
random variables, and the symbolic representation 
is extended to [S,Y,θ]= [S|θ][Y|S,θ][θ], where [θ] 
denotes the prior for θ. 
 
The required distribution for predictive inference 
is [S|Y], which is evaluated as: 
 
      [S|Y] = ʃ [S|Y,θ ][θ|Y]dθ                  (9) 
 
Thus, the Bayesian predictive distribution is a 
weighted average of classical, or “plug-in, 
predictive distribution [S|Y,θ ] with different 
values weighted according to their posterior 
probabilities. 
 
 

4.2  Case Study 2.  Retrospective Design  
 
        Title: Bayesian Geostatistical Design (Diggle and Lophaven 2006) 
 
In their study, Diggle and Lophaven (2006) referred to the set of sampling locations they used as 
the study design.  They noted further that “designs that are efficient for parameter estimation are 
not necessarily efficient for spatial prediction given the model parameters.”  Accordingly, their 
approach was to develop a Bayesian design that integrated and balanced these competing 
considerations (Box 5).  The idea was to find designs that were relatively efficient for spatial 
prediction while making “proper” allowance for the effects of parameter uncertainty; i.e., use 
parameter estimation as a means to the primary end of spatial prediction, rather than as just an 
end in itself.   
 
Although two specific designs were distinguished; 1) retrospective design that arises when 
sampling locations are to be deleted from, or added, 
to an existing design11; and 2) prospective design that 
arises when the goal is to create a design in advance 
of data collection, only an example of the former will 
be summarized herein.   
 
Study Results and Synthesis 
 
The retrospective design criterion used by the authors 
was based upon the spatially averaged prediction 
variance, 
 

           ῡ = ʃA Var{S(x)|Y}dx                              (8) 
 
determined from the [S|Y] and the posterior 
distribution of θ given in equation (9) (Box 5), and 
approximated by Monte Carlo simulation   (Diggle et 
al. 2003). In the example that follows, the method 
was used to calculate a Monte Carlo approximation 
to the retrospective design criterion by repeated 
sampling from [S|Y] where S represents the values of 
S(x) at locations x on a spatial surface to represent A. 
 
Monitoring Salinity in the Kattegat Basin 
 
The Kattegat Basin (Figs. 3 a,b) is a relatively 
shallow coastal transition zone between the Baltic 
and North Sea that is degraded by eutrophication.  
The current water quality monitoring program at the 
site is comprised of 70 stations (Fig. 3b). Salinity is one of the water quality variables that is 
                                                
11 Retrospective designs are often incorporated into environmental monitoring, with the aim of economizing the long term costs 

of maintaining a network of monitoring site while minimizing the consequent cost of information. 
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routinely monitored in the study area, and 
serves partly as a surrogate for water column 
stratification that may affect dissolved oxygen 
concentrations below the halocline.   
 
An initial geostatistical analysis showed a 
north-south trend in the salinity data, and for the 
design evaluations it was therefore assumed that 
a linear trend surface would be included in the 
chosen model, 
 
         µ(x) = β0 + β1x1 + β2x2                          (10) 
 
where x = (x1, x2).  The north-south trend was expected because high salinity water from the 
North Sea flows into the northern part of Kattegat Basin, whereas water entering from the Baltic 
Sea to the south has a relatively low salinity.  From the data, the authors estimated β̂ = (-69.0, -
0.049, 0.020), and set the ratio ν2 = τ2/σ2 at an estimated value of 0.4212.  A uniform prior 
was selected for φ on an interval from 10 to 100 km, while for (β, σ2|φ), a “diffuse” prior 
proportional to 1/σ2 was used.  Lastly, the spatially averaged prediction variance was derived 
from equation (10) using 95 locations in a regular grid covering the Kattegat Basin at a spacing 
of 15 km, and using direct simulation of 1000 independent draws from the posterior.  The 
resulting network design of 20 monitoring stations (Fig. 3b) consisted largely of well-separated 
stations, but with some pairs of closely located sites reflecting a compromise between designing 
for prediction and designing for estimation. 
 
4.3  Bayesian Networks  
 
       Case Study 3 – Water Quality (Eutrophication) 
 
       Title:  A Bayesian Network of Eutrophication Models for Synthesis, Prediction and 

Uncertainty Analysis (Borsuk et al. 2004) 
 
Bayesian networks have proven to be a suitable means for performing integrated ecological 
modeling because their graphical structure explicitly represents cause and effect assumptions 
among system variables that might not be tractable using alternative modeling approaches such 
as deterministic point estimate modeling (Borsuk et al. 2004).  The latter often consists of 
attempts to combine data from individual projects into a single predictive framework, usually by 
attempts to simulate relevant physico-chemical and biological processes at pre-determined model 
scales (Fitz et al. 1996).    These authors note, however, that the most predictable relationships 
among sets of variables may emerge at numerous spatial, temporal and/or functional scales 
(Levin 1992), and that current scientific knowledge might be best served where regular patterns 
of behavior emerge, rather than at a scale that is identical for all processes (see also Jorgensen 
1995).   Thus, methods are required that: 1) allow representations at multiple scales and in a 
variety of forms, depending on available information; 2) assess how uncertainties in each 

                                                
12 The authors note that fixing ν2 generally has a small impact on the chosen design. 

Fig 3 a,b 
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Fig. 4 

component of the model translate to uncertainty in the final predictions (Reichert and Omlin 
1999); and 3) allow models to be easily updated as knowledge and policy needs evolve (Walters 
1986). 
 
The basic idea of Bayesian network models (“influence diagrams”, or “belief” networks as they 
are sometimes called) is that the uncertainty of the problem is described by the means of 
probabilities.  As a general “rule of thumb”, narrow probability distributions reflect high-quality 
information or good controllability (Kuikka et al. 1999).  Probabilities can either be 
unconditional (i.e., not dependent on other variables) or conditional in which case the value of a 
variable depends on at least one of the other model variables.  Conditional probabilities enable 
the modeling of “level of determinism; i.e., a poor knowledge or poor control is modeled by 
weak conditional probabilities and vice versa (Varis and Kuikka 1999).  Stated in “management” 
terms, Bayesian networks focus on the relationship between action and knowledge, and so 
encourage the investigator to examine the options for actively managing an uncertain system and 
to conduct systematic studies on how information can support management.  Pradham et al. 
(1966) have demonstrated that Bayesian networks are not sensitive to imprecision in the input 
probabilities and can, therefore, be classified as “robust tools”. 
 
The Bayesian network begins with a graphical 
depiction of relationships among the most important 
variables in the system (Fig. 4).  Only where arrows 
occur is there a conditional anticipated dependence 
between one variable and another (shown by the 
circles).  The graphical construct is important because 
it provides the basis for determining the degree of decomposition to be used in the 
subsequent construction of mathematical models (Varis and Kuikka 1997). This 
approach greatly facilitates the modeling process by allowing separate sub-models to be 
developed for each relationship defined by an arrow.  The graphical network describes the 
probabilistic relationship among the system variables that resolves the joint distribution of all 
variables into a series of marginal and conditional probabilities13 (Borsuk et al. 2004).  Thus, 
unlike most integrated modeling exercises, Bayesian networks are probabilistic, rather than 
deterministic, expressions to describe relationships among variables.  Clark et al. 2001, suggest 
that this is an essential and desirable characteristic of an ecosystem model if predictions are to 
guide decision making. 
 
A Bayesian network was developed as an organizing structure for a set of previously published 
functional models used to study eutrophication impacts in the Neuse River estuary, North 
Carolina.  Each model used was independently capable of real-time solutions in a network 
setting (e.g., Varis and Kuikka 1997).  The authors claim that such an approach “can be expected 
to lead to greater exploitation of the representational and computational advantages of Bayesian 
networks, as well as more effective use of available scientific knowledge” (Borsuk et al. 2004).   
 
                                                
13 Marginal probability is the probability of one variable taking on a specific value irrespective of the values of the others; i.e., it 

gives the probabilities of various values of the variables without reference to the values of the other variables. A conditional 
probability, on the other hand, is the probability that an event will occur, when another event is known to occur or to have 
occurred, and is commonly denoted by P(A|B); i.e., it gives probabilities contingent upon the values of the other variables. 
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The Issue  
 
The Neuse River experiences severe consequences of eutrophication manifested in excessive 
algal blooms, low dissolved oxygen concentrations, declining shellfish populations, extensive 
fish kills, and toxic water conditions associated with blooms of Pfiesteria piscida (Fig. 5).  
Population growth and land development, animal-farming practices, storm water runoff, 
municipal wastewater, fertilizer use, and atmospheric deposition are implicated as the causative 
factors in nitrogen (N) enrichment, as has been the case nationally.  In efforts to implement 
watershed based pollution control to limit N loading to the estuary, the state of North Carolina 
has implemented Total Maximum Daily Loads (TMDL’s) as a strategy to address the issue 
(USEPA 1997; 1999).   
Typically, TMDLs are 
based on the output from 
a deterministic simulation 
model that predicts water 
quality characteristics, 
such as chlorophyll 
and/or DO concentrations 
at relatively fine spatial 
and temporal scales 
(USEPA 1999).  
Although these 
parameters are useful for 
agency personnel, they 
are often not terribly 
relevant to lay decision-
makers, and the general 
public, whose interests 
largely focus on fish kills, 
harmful algal blooms 
(human health impacts), 
and shellfish mortality, 
etc.  Moreover, the 
authors of the study 
suggest that at the scale 
employed in most simulation models, the ecological processes associated with these attributes 
are too complex or stochastic to be easily characterized mathematically. 
 
In such cases, the study authors comment that “the aggregate causal relationships (Box 6) are 
well known and smaller scale dynamics might be better captured probabilistically14; therefore, 
flexible modeling tools that link processes occurring at multiple scales, might lead to better 
TMDL decisions by more directly addressing stakeholder concerns.” (Borsuk et al. 2004). 

                                                
14 In the Bayesian interpretation of probability, the conditioning event (B) is interpreted as evidence for the conditioned event 

(A); i.e., P(A) is the probability of A before accounting for evidence E, and P(A|E) is the probability of A having accounted for 
evidence E.   

Fig.5 Fig. 5 

 

http://en.wikipedia.org/wiki/Bayesian_probability
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Box 6 
 
Methods to Quantify Conditional Relationships 
 
Having established the primary causal relationships leading from 
N inputs to publicly meaningful ecosystem attributes (X), the 
next step was to quantify the conditional probability distribution 
of the attributes by: 
 
     X = ƒ(p, θ, ε)                                                                   (11) 
 
Where p is the set of immediate causes (or “parents”) of X, θ  is 
a vector of parameters of the function relating to p and X and ε  
is an error term (“random noise”).  The simplest interpretation of 
this equation is that causal relationships representing physical 
mechanisms can be described by mathematical functions. If the 
arguments of the function are treated as random variables, then 
probability distributions can be assigned.  From a Bayesian 
perspective, the distribution of the parameter set θ represents 
knowledge uncertainty of the parameter values that can be 
derived from a combination of prior judgement (see section 2)     
and statistical inference (Bernado and Smith 1994).  The error 
term ε represents effects of endogenous factors that, out of 
choice or ignorance, have not been exclusively included in the 
model (Pearl 2000; see section 3). A common assumption is that 
ε is an independent, Gaussian distributed random variable with a 
mean of 0 and known (specified) variance. 
 
Parameter estimates and probability distributions were 
developed for each sub-model shown in Fig. 5, and then 
integrated into the entire cohesive network. The functional 
relationship used for each variable and its parents in the sub-
models follow: 
 

• Algal density = ƒ(water temperature, river flow, N 
concentration; 

• Pfiesteria abundance = ƒ(algal density); 
• Carbon production = ƒ(algal density) 
• Sediment oxygen demand = ƒ(algal carbon 

production); 
• Bottom water oxygen concentration = ƒ(sediment 

oxygen demand); 
• Shellfish survival = ƒ(bottom water oxygen 

concentration; 
• Fish population health = ƒ(bottom water oxygen 

concentration); 
• Fish kills = ƒ(fish population health, bottom water 

oxygen concentration); 
 
The fully integrated Bayesian network comprised of the 
conditional probabilistic relationships described above was 
implemented in Analytica (Appendix II), a commercially 
available software program for evaluating graphical probability 
models (Lumina 1997).  Uncertainty distributions were 
propagated throughout the network using Monte Carlo or Latin 
Hypercube sampling. 

 
 Development of Causal Structure 
 
The graphical structure (Fig. 5) of the 
Neuse eutrophication network was 
developed in two stages by 1) determining 
the attributes of the estuarine system for 
which decision-makers would like to see 
predictions; and 2) linking these attributes 
to N inputs using a causal network 
diagram.  Because decisions of public 
officials should represent the views of the 
public, the attributes of concern were 
elicited from a set of stakeholders who 
cared about the health of the Neuse 
estuary.  Input to the network diagram for 
the stage 2 activities was also solicited 
from an independent panel of estuarine 
research scientists.  Thus, rather than 
forcing officials to extrapolate from 
traditional water quality variables to 
broader ecological attributes (Table 2),  
the goal of the investigators was to predict 
them directly using alternative model 
types integrated into a Bayesian network.  
As noted in Table 2, the selection of 
attributes demonstrated the broad public 
concern beyond those attributes generally 
predicted by traditional simulation models 
(Borsuk et al. 2004). 
 
Network Development for the Neuse River 
Estuary Study 
                                                                                         
An “iterative” process was used to build 
the network diagram linking N inputs to 
meaningful attributes by first conducting a 
comprehensive survey of relevant 
scientific literature.  Then using the 
primary attributes of the stakeholder 
process, it became a relatively 
straightforward process to identify the 
nodes preceding each attribute in the 
causal chain, ultimately back to the 
original model inputs including N 
loadings  (Box 6): 
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Fig. 7 

Fig. 6 

Table 2 – Ecosystem attributes of 
concern to Neuse River stakeholders 
Water Quality 
   Oxygen levels 
   Chlorophyll-a levels 
   Taste 
   Odor 
   Water clarity 
   Sandy bottom 
   Algal toxins 
Biological Quality 
   Algal blooms 
   Fish/shellfish number and health 
   Species diversity 
   Human-induced fishkills 
   Submerged aquatic vegetation 
Human Health 
   Fecal coliform 
   Toxic microorganisms 
 

• The study authors then held a series of meetings with 
researchers to get their input on the causal diagram 
(Borsuk 2001).  The process successfully produced a 
refined network linking causes and effects that 
represented the current opinion(s) of the scientist’s panel; 

• For purposes of completeness all relevant attributes 
proffered by the scientists were used in the graphical 
diagram resulting in a conceptualization with 35 nodes 
and 55 arrows.  The authors noted though that “clearly 
some simplification was necessary to make the problem 
tractable and keep it consistent with available data; [in 
particular], … when the recommended variables were 
stochastic or uncontrollable and must be described by 
marginal distributions themselves [see footnote 14], then 
their inclusion is not very useful for informing 
management decisions” (Borsuk et al. 2004); 

• Thus, to design the most parsimonious yet realistic 
model, each node in the network was reviewed to 
determine if the variable was either: controllable, 
predictable, or observable at the scale of the management 
problem.  If not, the node was removed from the 
network. 

 
As a result of this iterative process, the conceptual model of 
the network was reduced to 14 nodes and 17 arrows (center 
insert in Fig. 5) 
 
Study Results 
 
To predict the effect of a substantial reduction in N inputs to 
the Neuse estuary, the marginal distribution of riverine N 
concentration was multiplied by one-half (i.e., a 50% 
reduction).  All other functions and marginal nodes (e.g., 
Chl-a or DO concentrations) were held constant, and new 
probability distributions at the 50% reduction level of N were 
computed for the ecological variable of interest. 
 
The baseline scenario of no N reduction is shown in Fig. 
6 as solid curves, or in the instance of “Fish Health” as a 
histogram with solid bars.  Scenarios for 50% reduction 
in N loadings as dashed lines or diagonally striped bars.  
The authors presented a summary for their model runs 
with and without N reduction (Table 3). Interestingly, the 
authors noted that the relatively minor response of most 
ecological attributes was revealed by looking at the trends in carbon production and 
days of summertime hypoxia (Fig. 7).  While carbon production was expected to decrease by 

Fig. 6 
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about 15% in response to reduced algal stimulation, the effect was dampened further down the 
causal chain, so that the reduction in the number of days of resulting hypoxia was only 11% 
(Borsuk et al. 2004). 
 
Synthesis and Conclusions 
 
The primary goal of the Neuse River estuary study was to develop a model that more realistically 
represented current knowledge of the ecosystem, especially the linkage between N loading and 
the ecosystem attributes that reflected the interests of the public and state decision-makers.  
Because uncertainty is inherent at all levels  

 
of knowledge acquisition, Bayesian networks are used to represent that uncertainty using 
conditional probability distributions.  The study authors noted further that “most commonly used 
aquatic ecosystem models have not undergone a rigorous uncertainty analysis [Reckhow 1994]. 
In this sense the Bayesian network was not seen as a replacement for other models in current use, 
but rather as an integrator of all forms of knowledge, whether expressed as a process-based 
description, a data-based relationship, or a quantification of expert judgment”.  Further, “to the 
extent that an existing simulation model appropriately represents our level of understanding 
about the functioning of the system, that model can be used as the basis for a set of relationships 
in the network.” Thus, probabilistic predictions can give stakeholders and decision-makers a 
realistic appraisal of the chances of achieving desired outcomes – an outcome critical to the 
decision making process. 
 
Because there was no single scale at which scientists have studies the Neuse system, there was 
no single scale at which all model relationships could be developed, [instead] a kernel 
characteristic of the Bayesian network was its ability to integrate sub-models at disparate scales 

Table 3  Baseline Conditions, Predicted Responses to no 
N Reduction 
 

Predicted Responses to 50% N Reduction 
 

Average annual chlorophyll-a concentration in the estuary 
is expected to be slightly above 20 µg l-1 (90% CI: 18.3-
26.5 µg l-1); and the North Carolina standard of 40 µg l-1 is 
likely exceeded on more than 10% of the days (90% CI: 
9.8 – 18.8%) 

Average annual chlorophyll-a concentration 
decreased approximately 20%; however, the 
estimate was accompanied by a slight increase in 
uncertainty as suggested by the calculated CI 
(14.1-23.3 µg l-1); predicted Chl-a exceedances 
were reduced to an average value of < 10% 

Pfiesteria cell densities at levels of concern are expected 
to occur between 6 and 15 days (90% CI) during summer 

Pfiesteria cell densities of concern decreased 
somewhat to between 3 and 13 days 

Summer shellfish survival is predicted to be low, with a 
mean value of 12% (90% CI: 1 – 38%) 

Shellfish survival rates showed a non-zero mode 
near 10% with a mean value of 17% (90% CI: 3-
46%) 
 

Under the baseline scenario (no N reduction), the most 
likely state of fish population health is “good”, with a 
probability of 0.55, while “excellent” has a probability of 
0.32, and “poor” of 0.13.  This sub-model predicts 
between 6 and 21 kills in 10 years (90% CI) involving 
more than 1000 fish, between 1 and 4 kills involving 
10,000+ fish, and an average between 0,2 and 0.8 
involving 100,000 fish 

Fish health increased modestly with probabilities 
of 0.12, 0.53 and 0.35 for “poor”, “good” and 
“excellent” health, respectively; similarly, fish 
kill probabilities of all sizes decreased, but not 
substantially 
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Box 7 
 
Integrating Sub-Models at Disparate Scales 
 
While sufficient data was available to characterize a 
model relating the distribution of daily bottom water 
oxygen concentrations to sediment oxygen demand, 
temperature and duration of stratification, there was not 
enough site-specific data from the Neuse system to 
predict future changes in sediment oxygen demand in 
response to reductions in carbon loading.  Thus, a model 
was developed using cross-system data from a number 
of estuaries to predict annual average carbon loading in 
the Neuse.    
 
This average demand was assumed to represent the 
steady state mean, the short-term fluctuations around 
which could be predicted from water temperature 
changes using the oxygen dynamics model (Fig. 5).  
Expected changes in this mean rate of oxygen demand 
in response to carbon load reductions were then 
predicted from the cross-system model. This technique, 
known as “variable speed splitting” (Walters and 
Korman 1999), and was proposed by the authors as a 
useful general method for cross-scale modeling. 
 
It was recommended further, that choosing the various 
scales of representation in a model should be a dynamic 
and iterative process.   

[Box 7] … [and,] therefore, when process 
models were used as an expression of 
knowledge in the Bayesian network, they were 
applied at a considerably more aggregate scale 
[of functional relationships among variables]”.  
For some variables in the Neuse network, 
suitable “hard data” did not exist for 
quantifying functional relationships15 among 
variables].”  In such cases, the study team 
relied on “formally elicited judgement of a 
discipline-specific scientist”.  The study 
results demonstrated that ecological 
improvement was likely to result from N 
reductions, but the predictive uncertainty [in 
this study] arising from natural variation and 
lack of knowledge was high; in general, the 
less observable, less frequent and further down 
the casual chain a variable was the greater the 
predictive uncertainty.  In such cases, and if 
the subject variable was of high interest to 
stakeholders, then a compromise would be 
necessary between achieving policy relevance 
and predictive precision; a task that the 
authors suggest was best performed by 
decision-makers16. 
 
This discussion would not be complete without consideration of “goodness of fit" statistics used 
for model testing.  Usually, most of these statistics relate to deterministic or single valued 
predictions. But when predictions are expressed probabilistically, as in Bayesian networks, 
different methods are required for evaluation.  Borsuk et al. (2004) note that methods have been 
developed for probabilistic weather predictions, and suggest that these are equally applicable to 
the ecological modeling domain.  Most of these serve to characterize different attributes of the 
joint distribution of predictions and observations (e.g., see Murphy and Winkler 1987).  They 
note further that various factorizations of the joint distribution provide different measures of 
prediction quality.  They cite as a case in point, the question, “how often did different 
observations occur when a particular probabilistic prediction was given?”   
 
The Bayesian network approach is not without shortcomings.  Chief among these is its inability 
to explicitly represent system feedbacks.  Because they are defined as “directed acyclic graphs”, 
relations are either one-way causal influence at a particular time and place, or are integrated as 
net influences on steady-state conditions.  The danger is that insufficiently capturing dynamic 

                                                
15 Although ecosystem data are often abundant, they are not necessarily sufficient at the spatial and temporal scale required by 

detailed simulation models. 
16 Scientific predictions only provide estimates of ecosystem response, which then require societal value judgements concerning 

costs and benefits in order to reach a rational decision. 
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aspects of system behavior can lead to unexpected consequences that are not adequately captured 
by the probabilistic predictions (Jorgensen 1999; Jorgensen et al. 2002).   
 
Bayesian networks also do not improve the ability to represent structural uncertainty in 
ecological models.  As with other modeling approaches, in addition to parameter uncertainty and 
natural variation that are captured by probability distributions, network models are subject to 
uncertainty in their inherent causal structure.  This unaccounted for source of uncertainty implies 
that the real uncertainty in model prediction will be greater than that suggested by the model 
itself (Reichert and Omlin 1997). 
 
4.4  Case Study 4 – Fisheries Management 
 
Title:  Modeling Environmentally Driven Uncertainties in Baltic Cod (Gadus morhua) 

Management by Bayesian Influence Diagrams (Kuikka et al. 1999). 
 
Like most environmental management challenges, it is no surprise that uncertainty has become a 
centerpiece of fisheries assessment, and like the issues discussed above for water quality 
management, the goal of agency personnel and decision-makers has been to acquire a working 
understanding of uncertainty and its potential impact on management decisions.  The role of 
scientists, of course, is to provide the tools that capture this uncertainty, and ultimately have 
science inform policy.  The essential task in fisheries management then is to choose the correct 
action, with uncertainty reflected in precautionary approaches and risk assessment (FAO 1995).   
 
Kuikka et al. (1999) comment “the recognition of uncertain information might substantially 
change our perception of the present state of resources and their exploitation compared with 
modeling by deterministic point estimate models [a thesis clearly shared above by Borsuk et al. 
2004].  Ludwig (1996a and 1996b) concludes that, “maximum likelihood methodology, being 
based on point estimate parameters, grossly underestimates the risk of stock collapse.”  From the 
decision-making point of view, then, it is essential to analyze the sensitivity of management 
decisions to uncertainty.  Some management strategies may be more information robust than 
others and some may be able to diminish future uncertainties more effectively than others. 
 
With this background, Kuikka et al.(1999) set out to analyze the effects of uncertainty on the 
management of the Baltic Sea cod fishery, specifically by using a Bayesian network as meta-
models to combine different sources of uncertain information, including the predictions proffered 
by three different recruitment models.  Detailed descriptions of these models is beyond the scope 
of this study, but one of them, the “environmental Ricker model” merits further mention because 
it was the most sensitive to water quality deterioration, a major driving variable due to 
eutrophication impacts on the fishery (see below). The general approach is similar to that 
described for the Neuse River eutrophication meta-model by Borsuk et al.(2004).  Decision 
variables (attributes) were selected and along with related objective functions (in the Neuse 
system, for example, the number of fish kills in a ten year period), that are either minimized or 
maximized by the decision attributes.  As in the North Carolina study, the dependence of 
attributes on each other is described as conditional probabilities. 
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The Issue 
 
Like many fisheries, Baltic cod management lacks sufficient knowledge of causalities, state 
variables, and fisheries parameters – fishing mortality, stock dynamics, stock size and catch rates 
(the latter, often misreported!).  Combined with highly variable (unstable) hydrographic 
conditions exacerbated by low bottom dissolved oxygen concentrations, addressing uncertainty 
in both the assessment and implementation phases makes for a difficult management challenge. 
 
Cod is the dominant piscivore in the Baltic Sea, but they are unique among cod populations in 
their ability to reproduce at salinities as low as 11‰.  Yearly average catch of the species is 
about 200,000 kt.  Both gill nets and trawls are used in the capture fishery, with the former used 
to obtain about 40% of the catch biomass.  Current data on spawning volume have shown wide 
yearly fluctuations believed due to complications from eutrophication and the unpredictable 
influx of saline water (that ameliorates this problem).  Over the past several decades these 
fluctuations have increased in magnitude further complicating future uncertainties. 
 
In their study, Kuikka et al. (1999) modeled the relationship between the adult spawning stock 
and the number of recruits (young, immature fish) produced annually.  The “decision” issue in 
their analysis was whether or not a change in gear mesh size would benefit the fishery17.  Several 
alternative hypotheses and models were tested in a Bayesian network to identify the assumptions 
that “really mattered” from a management point of view.  As expected, the simulation results 
obtained from the various models differed, but as the authors stated in a subsequent review, “this 
does not mean that the recommended actions should differ” (Varis and Kuikka 1999).   
 
Study Results 
 
The modeling task was to estimate the effects of two decision variables (mesh size and fishing 
mortality) on the interest variables (stock biomass, spawning volume, catch, and recruitment 
risk) and to demonstrate how sensitive the advised actions were to the relevant scientific 
uncertainties (Kuikka et al.1999).  The analysis consisted of three main tasks: 1)  using a model 
based on length distribution, calculate (deterministically) the selection process of the two gear 
types (trawl and gill net); 2) estimate the effects of alternative hypotheses about the recruitment 
process on the variables that decision makers and stakeholders tend to focus on, e.g., catch and 
stock biomass using an age structured model and Monte Carlo simulations18; and 3) use the 
conditional probability estimates in a Bayesian network meta-model to combine the uncertainty 
estimates of the different models.  This last step required an exhaustive sensitivity analysis of the 
role of different sources of information and hypotheses from the point of view of decision-
making (see below).  Population parameters and the selection process used are summarized in 
Table 4 and Box 8. 
                                                
17 A large mesh size would allow smaller individuals to escape the trawl, thus reducing overall fishing mortality on the 

population. 
18 This step produced probability distributions of interest variables (e.g., catch and biomass) that were conditional on the 

recruitment hypothesis tested. 
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Table 5. Probabilities of priors used in 

configuring the Bayesian Network 
diagram 

Prior 
Variable 

Alternatives Probability 

Recruitment 
Model 

Random 
Ricker 
Environmental 
Ricker 

0.1 
0.3 
0.6 

Growth Rate Fast 
Slow 

0.7 
0.3 

Critical 
Spawning 
Biomass (kt) 

240,000 
480,000 

0.7 
0.3 

 

Table 4.  Input values for model simulations 
Natural Mortality 0.2 
Fishing Mortality of trawl fishery for totally recruited length 
class (1/year) 

 
0.50 

Fishing mortality of gillnet fishery for maximally recruited 
length class (1/year) 

 
0.65 

Length of fish at beginning of maturation year (cm) 40 
Length-weight relationship W = aLb 
                                                                     a 
                                                                     b 

 
0.0102 
3.00 

Survival of trawl escapees (%) 100 
Mean length of 1-year-old fish (cm) 16.4 
CV of length of 1 year old fish 0.35 
Gillnet catch as a proportion of total catch (%) 40 
 
 
 

 

 

 
 
 
 
Bayesian Network Construction 
 
Probability distributions derived 
from the Monte Carlo simulations 
(Box 8) were used as input data to 
construct the network diagram (Fig. 
8). The Hugin software 
(http://www.hugin.dk/) (Appendix 
I) based on Lauritzen’s algorithim 

(Lauritzen and Speigelhalter 1988) was used, an approach 
that the authors suggest “is computationally very effective, 
as it allowed totally interactive use of the model, despite 
the relatively large number of separate Monte Carlo 
simulations.”  
 

The network diagram (Fig. 8) combines the input and output values of the Monte Carlo 
simulations: 
 
• Prior variables (Table 5) included growth rate, recruitment model (using the three models 

described in Box 8), and critical spawning biomass.  Because water quality in the Baltic 
Sea was expected to deteriorate in the future, the 
environmental Ricker model was assigned the 
highest prior probability;  

• Decision variables included mesh size of the trawl 
(120 and 140 mm), and the gillnet and trawl  
generated fishing mortalities; 

• The information in the nodes yearly catch and risk 
for recruitment were assigned conditional 
probabilities; e.g., if mesh size of the trawl used 
was 140 mm, F factor for the trawl fishery was 
assigned 1.0, F factor for the gill net fishery was 
assigned 0.8, growth was assumed to be “slow” (Table 4), and the recruitment model 
chosen was “random”, then the probability of a yield falling between 100,000 and 150,000 
kt was 0.3. 

  

Fig. 8 

http://www.hugin.dk/
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Box 8 
 
Population Parameters and Selection Process 
 
• Fishing mortality rate (F) at a given length class was 

calculated by multiplying the fishing mortality of fully 
recruited length classes by the length-specific gear 
retention rate: 

 
F(l,g) = F(g)*r(l,g), where F (l,g) is the mortality rate 
for length-class l in gear g, F(g) is the fishing 
mortality rate of the fully recruited length group in 
gear g, and r(l,g) is the retention rate of length class l 
in gear g (r[l,g] ≤ 1).  Historical data were used for 
these estimates.  Gear and age specific F values were 
calculated using the length distribution model and the 
retention data. 

 
• Recruitment was modeled in three ways: 1) randomly 

from historic recruitment values reported in Sparholt 
(1996); 2) with the Ricker model – R = A*SSB*exp (-
B*SSB) --with inputs for spawning stock biomass 
(SSB), and coefficients A and B from Sparholt (1995); 
and 3) with the environmental Ricker model that 
tracks the fluctuations caused by influxes of high 
salinity water that ameliorates the effect of 
eutrophication by increasing the volume of water 
suitable for spawning. 

 
• Monte Carlo simulations were use to produce the 

conditional probability distributions of variables “of 
interest” (e.g., yield and probability that biomass was 
below a certain critical threshold). Simulations were 
conducted separately for all combinations of priors 
(growth rate, recruitment model [random, Ricker and 
environmental Ricker], and critical spawning biomass) 
and interest variables (Figure 5 and Table 4).  With the 
exception of the environmental Ricker model where 
600 iterations were run, each simulation consisted of 
400 iterations among 110 years for each of the 300 
simulations (2 growth rates * 3 recruitment models * 2 
mesh sizes * 5 gillnet F values*5 trawl F values).   Six 
hundred iterations were used with the environmental 
Ricker model due to the unstable behavior of the 
model.  The number of iterations chosen in each case 
yielded asymptotic ‘expected values’ and variance.  
The authors reported that long simulations were need 
due to autocorrelation effects.  Lastly, the probability 
distribution of the 90th year was chosen to describe the 
long term interests on managers and fishers. 

 

• To address subjectivity in the assignment of prior probabilities (historical data were not 
used) an extensive sensitivity analyses was performed by testing the preferred decisions to 
the prior probabilities for the three recruitment models against models that 1) combined 
both risk and catch as the objective function, and 2) with models having only catch as the 
objective function.   
 

Synthesis and Conclusions 
 
A potential problem in dealing with uncertainty 
is that managers may get the impression that all 
relevant uncertainties have been addressed in a 
particular situation.  Although the investigators 
in this study focused on the effects of 
recruitment uncertainty on management 
decisions, they commented that there are 
“obviously other variations in natural mortality 
rates; e.g., degree of cannibalism19, interactions 
with other populations (e.g., competing for 
resources), and the survival of trawl escapees 
(thought to be less than 100%) could affect 
management decisions.”  Moreover, density 
dependent responses in the population to stock 
size, mortality rates, and available resources 
were not considered (Kuikka et al. 1999).  The 
authors warn that underestimation of 
uncertainties like these may result in too 
overoptimistic projections of reaching a desired 
state of the fishery. 
 
In addition to uncertainties related to the 
ecosystem at hand, there were also uncertainties 
related to management objectives.  One 
example was the inclusion or exclusion of 
recruitment risk, another was the subjectivity 
associated with desired stock size.  The author’s 
choice to largely constrain uncertainty to 
considerations of growth and recruitment, 
however, was based on the assumption that an 
intermediate term (versus long-term) 
management strategy for Baltic cod would focus 
mainly on new mesh size rules.  Their approach 
using selection curves and the modeling of 
length distributions was a response to this 

                                                
19 Cannibalism of young-of-year by adults in the spawning population is a frequently observed phenomenon in fish stocks, and 

may relate to density-dependent population controls. 
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requirement.  A key finding of their study was that assumptions of environmental variability 
make a significant difference to conclusions regarding fishery management.  The combination of 
declining trends in water quality (portended by the environmental Ricker model) and high 
exploitation rates was “dangerous for stock and fishery alike.”  In these scenarios, more age 
classes would be required to buffer environmentally 
poor years with poor recruitment.  If the fishery was, at present, heavily dependent on 
recruitment, as ascertained by this study, both fishers and managers should be ready to adjust the 
“total allowable catch” (TAC) on short notice after a prediction of poor recruitment.  Other 
relevant comments worth stating in this summary include: 
 

• The study outcome suggests that, with better management decisions vis-à-vis gear 
selection and increased mesh size, the mean yearly catch could increase by 66,000 kt; 

• Increasing the mesh size to 140 mm would also markedly reduce the frequency of 
dangerously low spawning biomass and the need for very low TACs; 

• The finding that a larger mesh size is beneficial irrespective of the assumed recruitment 
process is important because it implies robustness in the approach; i.e., that the key 
conclusions remain valid despite considerable uncertainty on the future state of the 
environment, and management goals would be achieved only by reducing fishing 
mortality rates; 

• Although knowledge of the recruitment process is generally considered to be key in 
successful management of fish stocks, this study demonstrated that the need for 
knowledge of this process can be diminished simply by shifting the management strategy, 
in this case, by increasing mesh size.  Such a measure would not remove all uncertainties, 
of course, but would serve as an “insurance fee” against their negative impact.  In the 
Baltic Sea cod fishery, this fee would be the short-term catch loss after a mesh size 
change. 

 
Thus, decision analysis of the type performed here can identify management strategies that are 
less sensitive to scientific uncertainty and implementation errors.  Meta-modeling of structural 
uncertainties using a Bayesian network was shown to be a demonstrably efficient tool in the 
search for robust management strategies. 
 
5.    KRIGING 
 
5.1  Case Study 5.  Groundwater Salinity 
 
       Title:  Spatial and Temporal Mapping of Groundwater Salinity Using Ordinary 

Kriging and Indicator Kriging:  The Case Study of Bafra Plain, Turkey 
(Arslan 2012) 

 
Introduction 
 
By itself, kriging is not a direct Bayesian approach, but the latter can be used to improve 
estimates of uncertainty in the covariance function (see below).  We use this case study to 
introduce kriging as a useful method, and then summarize the use of a Bayesian paradigm to 
analyze the performance of the kriging predictor (see section 5.2). 
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Geospatial kriging depends on a combination of mathematical and statistical models.  The 
addition of a statistical model that includes probability separates kriging from deterministic 
methods; i.e., you associate some probability with your predictions when the values are not 
perfectly predictable from a statistical model alone.   
 
In general, kriging is an interpolation technique that can construct statistically optimal 
predictions for data at unobserved locations using relatively small, spatially explicit sets of 
samples (Little et al. 1997; Arslan 2012).   The predictions (“kriges”) at a given location 
(encompassed by a grid of locations over the geographic area of interest) are calculated on the 
basis of weighted average of the sample values (sample points near the prediction location are 
given larger weights than those that occur further away), with weights usually assigned as the 
straight line (Euclidean) distance between actual sample sites and the target location20  Weights 
are determined empirically by ‘semivariogram analysis” (below).  The latter models the 
similarity of sample values, in pairs, as a function of distance (or “lags”) between the sampling 
sites (Little et al.1997).   

For geostatistical data, trends can be expressed by following formula: 

S(x) = µ(x) + ε(x)                                                             (12) 
 
where S(x) is the variable of interest, decomposed into a deterministic trend µ(x) and  random, 
autocorrelated errors of the form ε(x). The symbol x simply refers to a particular place or 
location.  No matter how complicated the trend in the model is µ(x) will not be predicted 
perfectly.  In this case, some assumptions about the error term ε(x) are made; namely that they 
are expected to be 0 (on average) and that the autocorrelation between ε(x) and ε(x + h) does not 
depend on the actual the location s but only on the displacement h between the two.  Variations 
on equation (2) form the basis for all the different types of kriging; but in the interest of space, 
only three variations are be briefly summarized here: 
 

1. If the trend is a simple constant; i.e., µ(x) = m for all locations x, and if µ is unknown, 
then the applicable approach is referred to as ordinary kriging; 

2. It is also possible to perform transformations on S(x).  For example, it can be changed to 
an indicator variable, where it is 0 if S(x) is below some value; e.g., 0.12 ppm for ozone 
concentration, or 1 if it is above that value.  Predictions that the S(x) is above the 
threshold value employ the proportion of values the fall within specific class intervals 
and incorporate the uncertainty of variable values at unsampled locations.  This approach 
is referred to as indicator kriging; and  

3. Whenever the trend is completely known (i.e., all parameters and covariates are known), 
whether constant or not, the model used forms the basis for simple kriging. 

 
There are no hard and fast rules on choosing the “best” semivariogram model.  Usually, the 
investigator examines the empirical semivariogram and chooses a model that is judged 
appropriate.  Validation and cross-validation to estimate the accuracy of the interpolated values 
                                                
20  If the variable of interest, e.g., the concentration of a contaminants in sediments occurs in a riverine environment, the distance 

between two sites may be alternatively measured by the distance through water pathways (Little et al.1997) 
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is also employed.  In practice, ordinary kriging (without inclusion of covariates) is the model 
used most often to calculate predictions.   
 
The Semivariogram 
 
The semivariogram is defined as one-half the average squared difference between points 
separated by distance h, as follows: 
 
                                    𝛾(ℎ) = 1

2|𝑁(ℎ)  ∑ (𝑥𝑖 − 𝑥𝑗)2𝑁(ℎ)                                 (13) 
                  

where N(h) us the set of all pairwise Euclidean 
distances i - j = h, |N(h) is the number of distinct pairs 
in N(h), and xi and xj are data values at spatial locations 
i and j, respectively.  In this formulation, h represents a 
distance measure with magnitude only.     If two 
locations, say xi and xi+h, are close to one another in 
terms of the distance measure of h, then you can expect 
them to be similar, so the difference in their values, xi – 
xi+h, will be small.  As xi and xi+h get further apart, they 
become less similar, so the difference in their values 
will become larger (Fig. 9).  In this typical 
semivariogram the variance of the difference increases 
with distance, so that the semivariogram itself can be thought of as a dissimilarity function.  
Several terms are associated with this function: a) the height that the semivariogram reaches 
when it levels off is called the sill.  It is usually composed of two parts a discontinuity at the 
origin referred to as the nugget effect (comprised of measurement error and microscale 
variation), and the partial sill, which when added together give the sill.  The distance at which the 
semivariogram becomes asymptotic is called the range. 
 
Kriging has appeal for investigators because it requires minimal user intervention, generates 
optimal predictions under a given set of assumptions, is robust with respect to model choice and  
mis-specification of the mean function, and provides standard errors for the user (Cressie and 
Zimmerman 1992).   It is inherently cost effective because it can be used to develop data 
(surface) layers for Geographical Information System (GIS) analysis of parameters that are 
expensive or time consuming to measure in large numbers over an entire study area (Vernberg et 
al. 1992). By identifying spatial patterns and interpolating values at unsampled locations, 
geostatistical analysis plays an important role in environmental management by providing 
estimated input parameters at regular grid points from measurements taken at randomly chosen 
locations (Arslan 2012). 
 
Geostatistics provides useful techniques for managing spatially distributed data such as soil and 
groundwater pollution. In this case study, soil salinization due to elevated salinity in irrigation 
water, and its effect on crop production, was examined. 
 
The Issue 
 

Fig. 9 

γ (xi, x+h) 
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Box 9 
 
Groundwater salinity was monitored over a seven year 
period (2004-2010) at 97 locations mapped with GPS 
coordinates.  In areas where no measurements were 
taken, values were interpolated with ordinary and 
indicator kriging, and the data obtained were used to 
construct spatial variability and probability maps of the 
distribution of groundwater salinity. 
 
Data were analyzed in four stages: 1) data were tested 
for normality in each study year; 2) descriptive statistics 
for annual groundwater salinity levels were generated - 
µ, σ, min, max; 3) trend analysis was used to identify 
the best predictive model from among 11 different 
semivariogram models tested; and 4) kriging techniques 
were employed to estimate or predict salinity 
concentrations at un-sampled locations. 
 
For the semivariogram, 
 
             𝛾(ℎ) = 1

2𝑛 
 ∑ (𝑆𝑖 − 𝑆𝑖+ℎ)2𝑛

𝑖                 (14) 
where 𝛾(ℎ) is the estimated or “experimental” semi-
variance for all pairs at lag distance h, S(xi) is the water 
quality value at point I; S(xi+h) is the water quality value 
of all other points separated by a discrete distance h; xi 
are the geo-referenced positions where the S(xi) were 
measured, and n represents the number of pairs of 
observations separated by distance h.  Ordinary kriging 
was used to generate predictive maps for annual 
groundwater salinity and to interpolate groundwater 
salinity for un-sampled locations.  Indicator kriging was 
used to obtain data to plot seasonal groundwater 
probability maps.  Finally, prediction performance was 
assessed by cross validation.  For a model to provide 
accurate predictions, the standardized mean error should 
be close to 0, the root mean square error should be as 
small as possible, and the root mean square error should 
be close to 1 (ESRI 2008). 

In Turkey, large areas are affected by irrigation- related groundwater problems.  The Bafra Plain, 
Right Bank Irrigation Area, covering about 1% 
of the Turkey’s total irrigated area, is one of the 
largest irrigation and drainage projects in the 
nation.  Excessive use of irrigation water, 
seepage from canals, inefficient irrigation 
methods, and inadequate or malfunctioning 
drainage systems have led to groundwater loss 
and elevated salinity threatening the 
sustainability of farming in the region.   
Geostatistics and Geographical Information 
System (GIS) technology was employed by the 
author to analyze the spatial distribution and 
seasonal variability of groundwater salinity in 
the Bafra Plain over a seven year period 
between 2004 and 2010 (Box 9) (Arslan 2012). 
 
Study Results and Synthesis 
 
The descriptive statistics obtained in the study 
suggested that the data were not normally 
distributed; therefore, values were log-
transformed prior to calculation of 
semivariance.   
 
Ordinary Kriging 
 
Spatial distribution of groundwater salinity was 
classified according to nugget-to-sill ratios (Fig. 
1), with ratios of < 25% suggesting “strong” 
spatial dependence, 25-75% suggesting 
“moderate” spatial dependence, and > 75% 
indicating weak spatial dependence 
(Cambardella et al. 1994).  Findings for the 
nugget to sill ratios of the semivariograms produced in this study demonstrated that groundwater 
salinity had a moderate spatial structure for all years tested, with similar annual values ranging 
from 6748 m (nugget ratio, 44.31) to 12,682 m (nugget ratio, 51.08). Cross-validation results 
suggested the groundwater mean error to be close to 0; i.e., between, – 0.0054 
and  – 0.0810, and the root mean square error term ranging from 1.205 to 3.033 among the seven 
years of study.  The author noted that “healthy” irrigation waters usually have electrical 
conductivity (EC) threshold value of < 2.50 dS m-1, but when waters with higher conductivity   
values are used, crop production can suffer (Richards 1954).  In this study, spatial variation of 
salinity was distributed over five “thematic” classes:  non-saline (< 2.25 dS m-1), saline (5.0 – 7.5 
dS m-1), very saline (7.5 – 10.0 dS m-1) and very high saline (> 10.0 dS m-1) regions.  As shown 
in Figs. 10 and 11 a,b salinity in the region increased with decreases in elevation, an observation 
that was “explained” by the down-slope movement of salts through precipitation and irrigation. 
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   Fig. 11 a,b 

 
To address this problem, the General Directorate of State 
Hydraulic Works partially completed construction of an 
irrigation and drainage network, with 175 km of drainage 
canals opened in a 6000 ha area in the southern portion of 
the Bafra Plain.  The observation that soil salinity decreased 
somewhat between 2004 and 2010 was attributed to this 
effort.  However, as much of the region remains threatened 
by ongoing salinization processes, a recommendation was 
made for continued monitoring in the future. 
 
Indicator Kriging 
 
Indicator kriging was used to generate groundwater salinity 
probability maps for the years 2004-2010.  At each 
sampling location, measurements were taken on a 
continuous scale and converted to discrete indicator variables given a value of either ‘1’ or ‘0’, 

with the former indicating a value below the threshold level 
(in this case 5.0 dS m-1, or “moderately saline”) for 
groundwater electrical conductivity.  Probability maps 
generated by the author are shown in Fig. 11 a,b).  
Calculations for nugget-to-sill ratios suggested that 
groundwater salinity displayed moderate spatial structure for 
all years tested, with similar annual values ranging from 9,651 
m to 12,682 m. Cross validation analysis resulted in a 
groundwater salinity mean error close to 0 (between, -0.0047 
and 0.0046), and a mean square error term ranging from 
0.8391 to 1.2150.   
 
Despite a trend of decreasing EC over the seven year period, 
nearly 14% of the total area displayed the highest probability 
(0.8-1.0) of exceeding the threshold EC value of < 2.50 dS m-

1.  Although, with one exception, none of the area locations 
exhibited the highest probability (0.8-1.0) threshold value,  
parts of the area continued to show a strong probability (0.6 – 
0.8) of exceeding the threshold ( ranging from 0.3 to 11.8% in 
individual years.   
 
On the basis of the seven year program, Arslan 2012 

concluded that: 
 

• Groundwater salinity displayed a tendency to increase 
toward the north and east of the Bafra Plain (Fig. 12 a,b); 

      Fig. 10 
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• Over time overall groundwater salinity tended to 
decrease from 2004 to 2010 (Fig. 3); 

• Ordinary kriging showed that in 2004, 31% of 
the area had non-acceptable levels of salinity, 
and moreover, the remaining 68% of the area 
was potentially at risk of excessive salinity; 

• While salinity was found to have decreased 
substantially by 2010, the entire area “remains 
problematic”, with 9% of the area above 
unacceptable levels of salinity and 71% at risk 
of excessive salinity; 

• Indicator kriging showed (Fig. 12a) that in 
2004, 13.6% of the area, mainly in the northern 
part of the plain had the highest probability (0.8-
1.0) of exceeding the threshold for acceptable 
salinity levels; 

• While the seven year decrease in salinity was 
reflected in lower probability values, the 
observation that 6% of the area still showed 
strong tendencies toward exceedances (0.6-0.8), 
led the author to comment that this trend 
“remained very alarming”.  

 
5.2  A Bayesian Analysis of Kriging 
 
In kriging, the statistical model is seldom exactly known and is usually estimated from the very 
same data from which later predictions are made (Handcock and Stein 1993).  In this article, the 
author’s assessed the effect of model uncertainty on model predictions.  Where substantial 
previous knowledge existed in model development, the authors suggested that a Bayesian 
approach could improve the accuracy of the model predictions.  They focus on a parametric 
representation of the covariance structure, “as its direct interpretation is of interest”. 
 
As before, trends in the data can be expressed by: 
 

S(x) = µ(x) + ε(x)                                 (12) 
 
where S(x) is the variable of interest, decomposed into a deterministic trend µ(x) and  random, 
autocorrelated errors of the form ε(s). The symbol s simply refers to a particular place or 
location.  In assessing uncertainty in kriging, the quality of the prediction is determined by the 
distribution of the prediction error εθ(s0) = S(x0) – Sθ(x0).  The kriging predictor is the best linear 
unbiased predictor of the form Sθ (x0) = λ (θ )’S; i.e., the unbiased linear combination of the 
observations that minimize the variance of the prediction error.  The authors note, however, that 
the underlying kriging procedure is motivated by sampling considerations, producing point 
predictions and associated measures of uncertainty for those predictions based on sampling 
distributions unconditional on the observed S.  However, kriging when the mean is of a known 

Fig. 12 a (2004), b (2010) 
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regression form can be given a Bayesian interpretation.  It does so in the following summary 
manner: 
 

• Traditionally, it is assumed that the covariance function is known exactly and the 
investigator has little knowledge of β, the vector of unknown regression coefficients, 
prior to analyzing the data; 

• The underlying kriging approach usually presumes ignorance about β and the 
unrelatedness of β to the behavior of the covariance function; 

• Under these assumptions, an appropriate prior distribution has pr(β|α, θ ) locally 
uniform; and because β is a location parameter, the form of the prior used by the authors 
has the form pr(α, β. θ ) ∝ pr(θ )/α. 
 

Depending on the influence of θ  the spread and location of pr(S(x0)|θ , S), the Bayesian 
predictive distribution might be wider or narrower that the “plug-in” predictive distribution.  
Additionally, the Bayesian predictive distribution typically has no simple analytic form and must 
be determined numerically.  The difference between the “plug-in” and Bayesian predictive 
distributions represents the difference in inference between the traditional kriging approach and 
the full Bayesian approach.   Handcock and Stein (1993) comment, “a better approach [to 
dealing with uncertainty] would be to base inference on the Bayesian predictive distribution by 
taking into account the uncertainty about the covariance function expressed in the likelihood 
surface and ignored by point estimates of the covariance function.  It allows the performance of 
the usual plug-in predictive distribution based on an estimated covariance structure to be 
critiqued with in a wider framework. [Our] results also suggest that fitting the empirical 
correlation function by eye21 may lead to plug-in predictive distributions that differ markedly 
from the Bayesian predictive distribution.” 
 
This approach can be readily integrated into empirical Bayesian kriging (EBK), which 
compatible with ArcGIS software22 (Kivoruchko 2012).  Classical kriging assumes that the 
estimated semivariogram is the “true” semivariogram of the observed data; having been derived 
from a Gaussian distribution with the correlation structure defined by the estimated 
semivariogram.  This assumption rarely holds true in practice and requires that action be taken 
to make the statistical model more realistic.  EBK differs from classic kriging (and the 
aforementioned issue) by estimating the semivariogram model in several steps: 
 

• A semivariogram model is estimated from the data; 
• Using this semivariogram, a new value is simulated at each of the input data locations; 

and  
• A new semivariogram model is estimated from the simulated data. 

 

                                                
21  One of the most common methods for fitting a covariance model to data is to match by eye a theoretical curve to the empirical correlation plot 

of the detrended observations. 
22  EBK can be implemented with the ArcGIS 10.1 Geostatistical Analyst extension 
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A weight for the new semivariogram is then calculated using Bayes’ rule23; that is, a step to 
show how likely the observed data can be generated from the semivariogram.   
 
 
VI.  SUMMARY AND RECOMMENDATIONS  
 

Data coming from many different studies have to be integrated in order to assess 
the empirical evidence for a new theory, and Bayesian statistics lends itself very 
well to this…Working scientists have noticed this, and many are using these tools 
now.  With the increasing statistical literacy of empirical scientists and the 
growing availability of Bayesian computer software, the future of Bayes rule, 
along with that of other approaches to inference, seems well assured 
                                                                                                    Van Hulst 2013  

 
Because it is probable that subjects of management interest (e.g., cause and effect between water 
pollution and ecosystem health) have been treated multiple times by the community of scientists, 
most Bayesians argue that more progress can be made if we chose to make use of data that 
already exist to frame our hypotheses.  Bayesians argue further that we can make more progress 
by specifying the observed difference, and then using our data to extend earlier results of other 
investigators.  Bayesian analysis does this, as well as, quantifies the probability of the observed 
difference.  This is the most important difference between Bayesian and frequentist methods that 
can be described in six steps: 
 

1. Specify the hypothesis; 
2. Specify parameters as random variables; 
3. Specify the prior probability distribution; 
4. Calculate the likelihood; 
5. Calculate the posterior probability distribution; and 
6. Interpret the results. 

 
This approach is valuable in several respects.  If the motivation of the modeling effort is 
prediction, what counts most in addition to the model’s predictive capability is a reasonable 
estimate of uncertainty in the model predictions (Omlin and Reichert 1999).  In the case of point 
parameter estimates, as we have seen in this report, a single value is chosen for each model 
parameter and the uncertainty of this value is estimated from the local properties of the 
deviations for the model results from the data at this point in parameter space.  Regional 
estimation, on the other hand, makes estimates of parameter distributions instead of values. In 
the case of good identifiable parameters, a narrow probability distribution is obtained, whereas 
the existence of one or more non-identifiable parameters (which is often the case) leads to a wide 
distribution of these and correlated parameters if more precise prior knowledge is not available 
(Omlin and Reichert 1999).  Thus regional, rather than point estimation techniques may be more 
advantageous in situations where the parameters of the system are not identifiable because the 
data used for parameter estimation are often sparse relative to the model’s complexity.  Reichert 

                                                
23  The essence of Bayes’ rule as discussed in Section 2 is to provide a mathematical rule explaining how you should change your 

existing beliefs in the light of new evidence. In other words, it allows scientists to combine new data with their existing 
knowledge or expertise. 
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and Omlin (1997) suggest that Bayesian techniques may be more applicable in these common 
situations, because they are based on probability theory and they explicitly consider probability 
distributions for prior knowledge and for the measurement process (in the likelihood function). 
 
The problem of underestimation of prediction errors with parsimonious, identifiable models is a 
general problem of forecasting, and is especially important for modeling environmental systems 
for two reasons (Omlin and Reichert 1999); (1) the complexity of natural systems often requires 
model simplification and modeling of only a small component of the entire system24, and (2) as 
state previously, “fire hose” quantities of data are available in the literature.   For the latter 
reason, knowledge on processes that become important during the prediction period may be 
available, although it might not be contained in the data evaluated for model selection and 
parameter estimation.  Omlin and Reichert (1999) suggest that “it is exactly for this reason that 
Bayesian techniques can be advantageously applied to these situations … [and] are very useful 
for the estimation of the uncertainty of model predictions for environmental systems”.   
 
Bayesian statistical design has recently experienced a resurgence of interest in the techniques and 
their application to environmental management problems.  Although frequentism is a more 
cautious and self-critical philosophy, better able to withstand skeptical scrutiny from scientists, 
Bayesian methods are easier to explain and understand than their frequentist counterparts (Efron 
2013).  Efron goes further with an elegant comment, “there are two potent arrows in the 
statisticians quiver, and there is no need to hunting armed with only one.” 
 
 We adopt Efron’s (2012; 2013) comments by noting, 1) current data gathering practices using 
modern instruments create prodigious data sets that “bear on complex webs of interrelated 
questions”, and the 2) in this new scientific era, the ability of Bayesian statistics to “connect 
disparate inferences counts heavily in its favor”, and in general terms, ensures that genuine 
informed priors become the rule rather than the exception. 
 
In its review of existing literature, the EPSC has identified several advantages of the Bayesian 
inference: 
 

• Combined with the complexity inherent in most ecosystems, and the severity of 
environmental issues confronting managers and decision makers, many agencies and 
organizations have sought to explore new spatial analytical techniques that provide 
timely, valid information to assist problem solving, and effective environmental 
management decisions.  The Bayesian approach has the potential to do just this;  

• The essential approach of the Bayesian method is to address the question:  can we get 
better estimates of the mean by collecting additional data from those populations, other 
than just the ith one?  For both the Bayesian and empirical Bayesian, the answer is yes; 

• As we have seen in Case Study 2, Retrospective Design, Bayesian methods have the 
potential to substantially reduce monitoring costs;  

                                                
24 The danger here is that in the predictive interval aspects of the system become important that are not described in the model of 

the subsystem. 
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• Other common issues with frequentist statistical approaches; e.g., those that might be 
used with hydrogeomorphic assessments25 are related to weak experimental design in 
terms of replication, spatial and temporal confounding issues and the nature of the 
‘treatment’ itself (in this case, flow characteristics).   Even with a ‘gradient-based’ 
approach that stratifies flow according to stream-bed slope cannot fully overcome the 
replication problem, and it is usually financially or physically prohibitive to sample with 
sufficient replication to detect significant differences between flow and response.  
Bayesian methods can mitigate some of these difficulties because the approach is 
“inherently flexible”, i.e., models are constructed to conform to the requirements of the 
data, whereas “standard statistical approaches must force the data to comply with the 
requirements of a relatively small number of model types” (see also McCarthy 2007).  
The use of Bayesian hierarchical models, for example, may help obviate the problem of 
replication and are finding increasing uses in ecological applications.  They appear 
particularly suited to dealing with the complexities of spatiotemporal variation in 
ecology, and allow for the construct of “far more complex models” than is possible with 
traditional statistical approaches; and 

• Unlike most integrated modeling exercises, Bayesian networks are probabilistic, rather 
than deterministic, expressions to describe relationships among variables.  This is an 
essential and desirable characteristic of an ecosystem model if predictions are to guide 
decision making.  The Bayesian network approach has proven to be a suitable means for 
performing integrated ecological modeling because their graphical structure explicitly 
represents cause and effect assumptions among system variables that might not be 
tractable using alternative modeling approaches such as deterministic point estimate 
modeling.   
 
The latter often consists of attempts to combine data from individual projects into a 
single predictive framework, usually by attempts to simulate relevant physico-chemical 
and biological processes at pre-determined model scales. However, the most predictable 
relationships among sets of variables may emerge at numerous spatial, temporal and/or 
functional scales, and that current scientific knowledge might be best served where 
regular patterns of behavior emerge, rather than at a scale that is identical for all 
processes.   Methods are required that: 1) allow representations at multiple scales and in 
a variety of forms, depending on available information; 2) assess how uncertainties in 
each component of the model translate to uncertainty in the final predictions; and 3) 
allow models to be easily updated as knowledge and policy needs evolve. The Bayesian 
network approach meets this requirement.  The basic idea is that the uncertainty of the 
problem is described by the means of probabilities.  As a general “rule of thumb”, 
narrow probability distributions reflect high-quality information or good controllability.  
Probabilities can either be unconditional (i.e., not dependent on other variables) or 
conditional in which case the value of a variable depends on at least one of the other 
model variables.  Conditional probabilities enable the modeling of “level of 
determinism; i.e., a poor knowledge or poor control is modeled by weak conditional 
probabilities and vice versa.  Stated in “management” terms, Bayesian networks focus 
on the relationship between action and knowledge, and so encourage the investigator to 

                                                
25 The provision of environmental flows is critical to, for example, maintaining ecological integrity of regulated river systems 

where there are ‘competing’ flows for ecosystem and anthropogenic uses (e.g., agricultural uses). 
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examine the options for actively managing an uncertain system and to conduct 
systematic studies on how information can support management.  In general, Bayesian 
networks are not sensitive to imprecision in the input probabilities and can, therefore, be 
classified as “robust tools”. 
 

In this review, we do not mean to imply that Bayesian methods are not without disadvantage (as 
are most other methods).   Among these are 1) computational challenges, even currently 
available software (Appendix III) may be difficult to use; 2) the requirement to condition the 
hypothesis on the data; and the potential lack of objectivity, because different results will be 
obtained using different priors.  However, as discussed in the Introduction to this report, Efron 
(2012) while cautioning that primary criticisms of the Bayesian approach stem from 
overenthusiastic application of “uninformative priors”, also suggested that current data gathering 
practices using modern instruments produces voluminous data that improve the ability of 
Bayesian statistics to connect disparate inferences and ensures that “genuine” informed priors 
become the rule rather than the exception.  
 
On the basis of the full discourse herein, the EPSC makes the following recommendations to the 
SAB: 
 

• Because a comparison and evaluation of how other states and entities use Bayesian 
methods is well beyond the scope of this report, the EPSC recommends that NJDEP 
adopt a two phase approach to the question; (1) develop a survey instrument to ascertain 
what other states and entities are doing in this arena; and (2) depending on the outcome of 
step (1), convene a workshop of technical personnel from selected state and federal 
resource agencies (USGS, NOAA, and USEPA), and selected academic institutions, to 
address the general theme:  The Use of Bayesian Inference to Address Environmental 
Monitoring and Management Challenges. 

• DEP should work with colleges and universities to develop a one-week continuing 
education curriculum in applied aspects of Bayesian-inference for NJDEP scientists.  The 
curriculum should be relevant to statewide monitoring programs and should be 
compatible with ArcGIS programs. 

• NJDEP, in conference with their in-house and state university statisticians, geo-spatial 
modelers, and ecologists should identify a “training data set” from their vast monitoring 
programs to compare model characteristics and output (robustness and efficiency, 
potential bias and flexibility) and performance capacity among frequentist and Bayesian 
methods.  

• Similarly, and with the same approach, conduct a “sensitivity analysis” on existing 
NJDEP monitoring data sets using retrospective analysis to examine the relationships 
among sampling locations, sampling frequency, and resource allocation, to enhance the 
quality of information produced; e.g., by using real-time, remotely collected data from 
the Department's data logger array. 

• The Department should make its existing library on Bayesian literature available to the 
user community upon request. 

• The Department should issue a request for proposals (RFP) to academic institutions in 
New Jersey for the study of practical applications of Bayesian methods that address state 
environmental management and ecological issues. 
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• Promote the practical application of Bayesian inference as an additional, oft desirable, 
tool in the Department’s analytical toolkit.  

• Use Bayesian inference, and the content of this report, to encourage the broader use of 
statistics in the Department's development of study designs and quantitative data analysis 
in fulfilling its regulatory mandates.    
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APPENDIX I 
 
DATA LOGGERS AND OTHER REAL-TIME MONITORING  
 
This section is intended to give a brief summary of available continuous or near-continuous data 
gathering devices in the region.  It does not provide and exhaustive review of these assets, but is 
simply discussed here in terms of the question posed to the EPSC in our original mandate: what 
types of data reduction techniques are necessary in combination with the increased use of 
deployable long-term data loggers in order to maintain adherence to appropriate statistical 
assumptions of independence and autocorrelation? We address that question in this overview.   
 
NJ Department of Environmental Protection Water Quality and Biomontoring Program 
 
NJDEP’s water quality monitoring effort addresses ambient conditions of the state's fresh, 
marine and ground water resources (Fig 13): 
 
Fresh Water and Ground Water. The 
Bureau is responsible for monitoring the 
ambient conditions of the state's Fresh 
and ground water resource monitoring 
includes regular sampling through a 
statewide network consisting of 115 
surface water monitoring stations, 760 
benthic macroinvertebrate biological 
stream monitoring stations, 100 fish 
assemblage biological stream monitoring 
stations, and 150 ground water stations. 
In addition, the bureau operates the 
Department's biological monitoring 
laboratory where bioassay and 
macroinvertebrate, fish and algal studies 
are regularly conducted. The bureau is 
also responsible for implementing the 
state's Ambient Lakes Monitoring 
Program.  For ground water, New Jersey 
has developed and now maintains a 
cooperative network (NJDEP & USGS) 
consisting of 150 wells screened at the 
water table that are sampled 30 per year 
on a 5-year cycle. Parameters measured 
include conventionals, nutrients, VOCs, 
radioactivity, and pesticides.    
 
Marine Waters.  NJDEP conducts water quality monitoring to classify approximately 700,000 
acres of marine and estuarine shellfish waters. For the National Shellfish Sanitation Program 
(NSSP), NJDEP collects approximately 15,000 ambient water samples per year from a network 

Fig. 13 
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of more than 2,500 monitoring stations throughout the State's coastal waters. These stations are 
sampled between five (5) and twelve (12) times per year. As part of the NSSP, NJDEP also 
conducts coastal phytoplankton monitoring every summer in New Jersey’s bay and near-shore 
ocean waters. NJDEP also monitors the condition of the State's coastal waters by measuring 
basic water quality (dissolved oxygen, nutrients and water clarity) at 260 locations on a quarterly 
basis. EPA's National Coastal Assessment (NCA) research program is performed in partnership 
with NJDEP and includes measurements of sediment chemistry, sediment toxicity and the 
benthic community annually at about 50 locations in New Jersey's estuarine waters.  
 
After undergoing QA/QC protocols, all data are integrated into the department’s assessment 
database for use in preparation of Integrated Water Quality Monitoring and Assessment reporting 
as well as the addition of new external water monitoring data (e.g., volunteer monitoring) to 
STORET through development of a common data exchange element. 
Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) 

Perhaps the most comprehensive and integrated regional use of “real-time” monitoring devices in 
New Jersey and the region is administered by the Mid-Atlantic Regional Association Coastal 
Ocean Observing System (MARACOOS), an entity established in 2004 as part of the U.S. 
Integrated Ocean Observing System (IOOS).  Since then MACOORA created the framework in 
which the Mid-Atlantic’s coastal ocean user community identified its five highest priority 
regional themes:(1) Maritime Safety, (2) Ecosystem Based Management, (3) Water Quality, (4) 
Coastal Inundation, and (5) Offshore Energy.  MACOORA established the Mid-Atlantic 
Regional Coastal Ocean 
Observing 
System (MARCOOS) to 
provide the necessary ocean 
observing, data management, 
and forecasting capacity to 
systematically address the 
prioritized regional 
themes.  Operations include an 
industry-funded coastal weather 
network, primary and back-up 
satellite data acquisition 
centers, a triple-nested 
multistatic HF Radar network, 
an accelerating autonomous 
underwater glider capability, 
and mission-specific statistical 
and dynamical ocean forecast 
models (Fig. 14).   A subset of 
MACOORA assets are shown 
in the Figure consisting of the 
following elements: 

• National Data Buoy 
Center (NDBC) 

Fig. 14 
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Among the data collected are sea level pressure, wind speed and direction, air 
temperature, sea surface temperature, significant wave height and dew point. 

• Center for Operational Oceanographic Products and Services (CO-OPS) 
CO-OPS provides the national infrastructure, science, and technical expertise to monitor, 
assess, and distribute tide, current, water level, sea level trends, and other coastal 
oceanographic products and services that support the National Oceanographic and 
Atmospheric Administration’s (NOAA's) mission. The Center also provides access to the 
Physical Oceanographic and Real-Time Measurement System (PORTS) that measures 
and disseminates observations and predictions of water levels, currents, salinity, and 
meteorological parameters (e.g., winds, atmospheric pressure, air and water temperatures) 
that mariners need to navigate safely.  

• Hudson River Environmental Conditions Observing System (HRECOS) 
In 2008, the Hudson River Environmental Conditions Observing System (HRECOS) was 
established to provide high frequency geographically distributed real-time data between 
Albany and New York Harbor. It builds upon existing monitoring and observing 
activities on the Hudson River estuary, including the Hudson River NERR System-Wide 
Monitoring Program (SWMP), the US Geological Survey, and the NYS DEC Rotating 
Integrated Basin Studies. Data collected include: pH, DO, specific conductance, turbidity, 
water elevation, water temperature, air temperature, dew point, precipitation, and salinity 

• National Estuarine Research Reserve System (NERRS) 
The NERRS established a System-Wide Monitoring Program (SWMP) in 1995 to 
develop quantitative measurements of short-term variability and long-term changes in the 
water quality, biological systems, and land-use / land-cover characteristics of estuaries 
and estuarine ecosystems.  WMP currently has three major components that focus on: (1) 
water quality and weather; (2) biological monitoring; and (3) watershed, habitat and land 
use mapping. Abiotic parameters include nutrients, temperature, salinity, pH, dissolved 
oxygen, and in some cases, contaminants. Biological monitoring includes measures of 
biodiversity, habitat, and population characteristics. Watershed and land use 
classifications provide information on types of land use by humans and changes in land 
cover associated with each reserve. By using standard operating procedures for each 
component across all reserves, SWMP data help establish the NERRS as a system of 
national reference sites, as well a network of sentinel sites for detecting and 
understanding the effects of climate change in coastal regions." 

• USGS Stations 
The United States Geological Survey (USGS) uses a variety of sensors for continuous 
measurement of many field parameters and chemical constituents, but six of the most 
commonly used are stream flow, temperature, specific conductance, DO, pH, and 
turbidity recorders. 

• Satellite Ground Stations 
MARACOOS members own several satellite ground stations that have been directly 
downloading data from environmental satellites since 1992 and displaying the data on the 
web in real-time since 1994. These satellites deliver data to the ground stations more than 
10 times per day. There are numerous types of products that can be generated for the 
ocean, land and atmosphere. MARACOOS products focus on ocean products, the most 
popular of which is the Sea Surface Temperature (SST) product which is displayed in real 
time for multiple areas throughout our MARACOOS study region (Cape Hatteras to Cape 
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Box 9 
 
NDBC Data Quality Control 
 
The objective behind the quality control procedures and 
techniques is that all sensors should perform within 
stated accuracies.  The quality control procedures used by 
NDBC fall into two categories: completely automated and 
those that involve a man-machine mix. The completely 
automated procedures are performed at NWSTG for real-
time messages used for operational forecasts and 
warnings. The other procedures are performed at NDBC 
for data that is submitted for archival. 
 
The real-time automated procedures, performed at 
NWSTG, check to eliminate gross errors. Transmission 
parity error, range limit, and time continuity checks are 
performed. Relational checks, such as examining the 
wind gust to wind speed ratio, are performed to check the 
quality of both measurements. Another check ensures that 
the battery voltage is adequate for barometric pressure 
measurements. 
 
At NDBC stricter range and time continuity limits are 
performed. Measurements from duplicate sensors are 
compared to ensure that they track together. NDBC also 
uses a man-machine mix of quality checks, such as 
graphical procedures which relate wind speed and 
spectral wave energy. Other man-machine procedures 
involve time series plots, spectral wave curves, and 
computerized weather maps. 
 
When sensor or system degradation is detected, the 
affected data are removed before posting on the NDBC 
Web site or archival. The real-time processing at NWSTG 
is instructed to not release data from the degraded sensor. 
For more detailed information regarding NDBC's quality 
control techniques, the reader is referred to: NDBC 
Technical Document 09-02, Handbook of Automated 
Data Quality Control Checks and Procedures. 
 
 

May). Additional products include chlorophyll amounts, true color imagery and water 
turbidity. 

 
The voluminous data collected by MARACOOS and allied groups generally undergo stringent 
quality control measures to ensure their validity.  An example of data quality control measures 
for NDBC sites are summarized in Box 9.   

 
Data Reduction to Meet Appropriate Statistical 
Assumptions 

 
The data management flowchart (Fig. 15) 
provides a brief summary of the methods 
employed to extract and utilize data that are 
recorded from data loggers, but can also serve to 
manage any large data set, however collected.  
A two step process is typically employed to 
manage, curate and store data.  The “metadata” 
(Fig. 14) step will not be discussed in detail 
here, suffice it to say that metadata represent 
“data about data” and serve as descriptors of key 
attributes of the data set; e.g., where and how 
the data were collected, who collected it, 
description of the organization of the data file, 
etc. At the highest level of metadata 
organization, the investigator(s) employ 
rigorous quality assurance and quality control 
(QA/QC) procedures to identify potential errors 
and outliers in the data.  After checking and 
flagging outliers to determine whether they are 
valid data or the result of errors (e.g., in 
collection or transcription); the investigator(s) 
move on to exploratory data analysis and the 
production of summary statistics.   At this stage, 
the question is raised whether the data will 
require transformation to better understand and 
communicate patterns therein; or in order to 
“meet the mathematical assumptions” of the 
statistical procedures employed (Gotelli and 
Ellison 2004).  The latter may include whether the data represent random, independent variables, 
and/or were sampled from a specified distribution, in this case, a normal distribution.   

 
One final step that may (or may not) be taken before the data are subjected to statistical analysis 
is to subject the data to an ordination procedure that can help identify and extract patterns in the 
data that are not readily observable to the investigator.  Ordination techniques are used to order 
(ordinate) multivariable data, by creating new variables, called principal axes along which 
samples are scored or ordered. Often the approach may result in a useful simplification of 
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patterns in complex multivariate data sets.  
Used in this way, ordination is a data 
reduction technique.  Ecologists, in 
particular use five different types of 
ordination: principal component analysis, 
factor analysis, correspondence analysis, and 
non-metric multidimensional scaling, each 
with corresponding strengths and 
weaknesses (for a review, see Legendre and 
Legendre 1998).  

Fig. 15 



 

56 
 

APPENDIX II 
 
Coin Tossing Exercise (adapted from www.icos.ethz.ch) 
  
Challenge:  For a given coin, what is the probability of tossing a head? 
 
Bayesian inference relates this probability to a prior measure of belief.  It, for example, uses 
prior knowledge of coins to initially assume P(heads) = 0.5.  If necessary this model1 can be 
revised in response to further observations (e.g., a series of coin tosses counting the total number 
of H and T).   
 
Bayes’ Rule 
 
Bayes theorem, equation 1, was written as: 
 

                                         P(A|B) =
𝑃(B|A)P(A)

P(B)  

 
Since P(B) =P(BA) + P(BĀ) = P(B|A) P(A) + P(B|Ā) P(Ā), and  
 
                    P(A|B) =  P(B|A)P(A)

P(B|A)P(A)+ P(B|Ā)P(Ā)
 

This modified equation is referred to as Bayes’ Rule 
 
Coin Toss Example: 
 
Let A = “coin is fair”; Ā = coin is “double headed” 
Assume that the prior is: P(A) = 0.9 
 Trial 1.  The coin is tossed and it comes up “heads” (H) 
 
                       P(H|A) P(A) = 0.5*0.9 = 0.45 
                       P(H| Ā) P(Ā) = 1.0*0.1 = 0.1 
 

        P(A|H) =  P(H|A)P(A)
P(H|A)P(A)+ P(H|Ā)P(Ā)

  = 0.45
0.45+0.1

  ≈ 0.82 
Note that we have used the observation H to update the model (i.e., belief in fairness of the coin). 
 
Trials  2 and 3.  The coin is tossed twice more it comes up heads each time (HH and HHH). 
Second toss:   
 
             P(HH|A) P(A) = 0.25*0.9 = 0.225 
             P(HH| Ā) P(Ā) = 1.0*0.1 = 0.1 
 
P(A|HH) = 0.225

0.225+0.1
  ≈ 0.69; and for the 3rd toss P(A|HHH)  ≈ 0.53  

 
Trial 4:  The fourth toss also results in a head: 
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              P(HHHH|A) P(A) = 0.0625*0.9 = 0.05625 
              P(A|HHHH)  = 0.05625

0.05625+0.1
  = 0.36 

 
After 4th head in a row, the investigator is likely to be suspicious that the coin is “double- 
headed”, or otherwise more biased, than fair! 
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APPENDIX III 
 
Software Applications 

There are many software applications or "packages" available for running Bayesian analyses, 
however for this brief summary we will concentrate on those that are in the public domain and 
are considered to be "free" software for Bayesian Statistical modeling. Bayesian statistical 
methods have become widely used for data analysis and modeling in recent years and there has 
been a substantive proliferation of software for doing Bayesian analysis including complex 
Bayesian networks, time-series, and hierarchical models to teaching and discovery packages for 
learning elementary Bayesian statistics. In general, classical statistical modeling methods such as 
regression and classification are considered to be special cases of Bayesian models. This means 
that there are Bayesian methods available for most classical modeling approaches such as linear 
and non-linear regressions, GLM, hierarchical regressions, neural network models, etc. For 
example, there is software available that supports Bayesian regression and classification models 
based on neural networks and Gaussian processes, and Bayesian density estimation and 
clustering using mixture models. For a fairly comprehensive overview of the various free 
software packages available for doing Bayesian analysis, the reader is directed to 
http://ksvanhorn.com/bayes/free-bayes-software.html. Probably the most popular software for 
running Bayesian statistical analysis is BUGS / WinBUGS (Bayesian Inference Using Gibbs 
Sampling). This software uses Markov Chain Monte Carlo (i.e., MCMC) methods to do a full 
range of complex Bayesian statistical analysis and can be downloaded for free from the BUGS 
Project web page. This software is highly flexible, however, one of the most useful features in 
WinBUGS 1.4 is the ability to interface or link WinBUGS programs from within other programs 
such as R, SAS, Matlab and even Excel. For example, the "R" package R2WinBUGS provides a 
set of functions (scripts) to call WINBUGS on a Windows system and returns the output 
simulations to R making it very useful for those interested in running Bayesian in the R 
environment. The R environment is being increasingly used by applied researchers interested in 
Bayesian statistics because of the ease at which one can code algorithms to sample from 
posterior distributions as well as well as the sheer number of tools available for Bayesian 
inference modeling. For example, R packages such as MCMCpack – provides model-specific 
Markov chain Monte Carlo algorithms for wide range of models, BayesTree – implements 
Bayesian Additive Regression Trees, and MCMCglmm – fits Generalized Linear Mixed Models 
using MCMC methods. For a full review of Bayesian modeling methods available in R, please 
refer to http://cran.r-project.org/web/views/Bayesian.html. For those familiar with the R 
environment and are interested in learning the basics of Bayesian statistical inference modeling, 
the R package LearnBayes contains functions for summarizing one and two parameter posterior 
distributions and MCMC algorithms. As would be expected, there are a wealth of resources 
available to Bayesian practitioners and this committee encourages further exploration of the 
software and methods available that support Bayesian modeling techniques. 
 

 
 
 
 
 

http://www.cs.utoronto.ca/~radford/fbm.software.html
http://ksvanhorn.com/bayes/free-bayes-software.html
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://cran.r-project.org/web/packages/R2WinBUGS/index.html
http://www.r-project.org/
http://www.r-project.org/
http://mcmcpack.wustl.edu/
http://cran.r-project.org/web/packages/BayesTree/index.html
http://cran.r-project.org/web/packages/MCMCglmm/index.html
http://cran.r-project.org/web/views/Bayesian.html
http://cran.r-project.org/web/packages/LearnBayes/index.html
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