<table>
<thead>
<tr>
<th>Remedial Alternative</th>
<th>Projection of Human Health and the Environment</th>
<th>Implementability</th>
<th>Consistency With Applicable Laws and Regulations</th>
<th>Potential Impacts on the Local Community</th>
<th>Potential for Natural Resource Injury</th>
<th>Estimated Cost (Net Present Value)</th>
</tr>
</thead>
</table>
| **MNA** | - MNA is only intended to monitor and restrict use of the groundwater; however, historic and recent groundwater results indicated that contaminants have been effectively attenuated by natural processes. | The MNA alternative is readily implementable as it is a compact, well-understood approach. It would require very little effort to implement. | The MNA alternative is consistent with the New Jersey Technical Requirements for Remediation. | Even though the MNA alternative would have little impact on the local community, it may be perceived by the community as ineffective. | MNA, EMNA, and ISC0 are considered to equally offer maximum potential for natural resource injury due to their implementation. | Capital Cost = $10,050
| | - MNA relies on natural attenuation process and net restriction of the groundwater to minimize the risk. This alternative would entail minimal short-term risks, but increased long-term risks compared to other alternatives evaluated. | | | | Q&M Cost = $140,000
| | | | | | **TOTAL** = $150,050 |
| **EMNA** | - EMNA offers less aggressive contaminant degradation than ISC0, would allow Advanced ORC to contact with contaminants for up to 12 months. | The EMNA alternative will reduce the risk the most effectively by degrading and reducing the contaminant concentrations on site. The alternative may have increased risks/impacts to nearby residents due to injection activities. | The EMNA alternative is readily implementable, as it is an easily implemented transport and degradation technology. Its implementation would involve some injection activities. | Compared to ISC0, the EMNA alternative provides slightly lower short-term impacts due to its small number of injection points, but the alternative may provide higher short-term impacts due to its longer required period to meet the cleanup standards. | MNA, EMNA, and ISC0 are considered to equally offer maximum potential for natural resource injury due to their implementation. | Capital Cost = $250,000
| | - The EMNA offers the greatest reduction in the toxicity, mobility, or volume of the contaminants through natural degradation enhanced with ORC. Advanced injection. | | | | Q&M Cost = $400,000
| | | | | | **TOTAL** = $650,000 |
| **SCS** | - The ISC0 offers the greatest reduction in the toxicity, mobility, or volume by actively pursuing contaminant degradation through injection of Regen60. | The ISC0 alternative may entail slightly higher risks/impacts to workers, compared to EMNA due to a larger number of injection locations and potential hazard from chemical reaction. | The ISC0 alternative is readily implementable; it is expected to achieve the applicable remediation standards more quickly, but would likely result in higher environmental costs compared to EMNA. | The ISC0 alternative is consistent with the New Jersey Technical Requirements for Remediation. | The ISC0 alternative is expected to have slightly higher short-term impacts to the community, compared to EMNA, due to its larger number of injection locations. The alternative, however, would greatly reduce long-term impacts to the community because its short period required to achieve the cleanup standards. | Capital Cost = $300,000
| | - The ISC0 alternative may entail slightly higher risks/impacts to workers, compared to EMNA due to a larger number of injection locations and potential hazard from chemical reaction. | | | | Q&M Cost = $200,000
| | | | | | **TOTAL** = $500,000 |
| **ASVE** | - The ASVE alternative may have a higher short-term risk to workers during installation of the systems and would likely also involve greater long-term risks due to its longer operation period compared to the EMNA and ISC0 alternatives. | The ASVE alternative is readily implementable; however, it is considered slightly less favorable than other alternatives because it would require considerable system installation and system maintenance efforts. | The ASVE alternative is consistent with the New Jersey Technical Requirements for Remediation. | Installation of ASVE system may provide some distribution to the community due to noise, exhaust, and other operational activities. | ASVE would result in potential for water run off to downstream drains/waterways, etc., thus considered as the least favorable in meeting criteria. | Capital Cost = $500,000
| | - The ASVE alternative is considered to be more aggressive as it reducing mobility and volume of the contaminants than EMNA and ISC0, would not directly degrade the contaminants. | | | | Q&M Cost = $2,200,000
| | | | | | **TOTAL** = $2,700,000 |
Notes:
1. ORC Advanced® would be injected at a total of approximately 40 injection locations with the target depth interval of 5 to 15 ft bgs and 20-ft spacing.
2. The injection locations for the 2nd application would be shifted by 10 ft from the original locations.

Source: Armand Corporation, 11/14/04.

PARAM PETROLEUM, ROUTE 130 & WOOD STREET, BURLINGTON CITY, BURLINGTON COUNTY, NEW JERSEY
PROPOSED ORC ADVANCED® INJECTION LOCATIONS
NJDEP CONTRACT No. A-60245
Notes:
1. RegenOn® would be injected at a total of approximately 150 injection locations within the target depth interval of 5 to 15 ft bgs and 10 ft spacing.
2. The injection locations for the 2nd application would be shifted by 5 ft from the original locations.

SOURCE: ARMAND CORPORATION, 11/14/04.