Table of Contents

Chapter 1 – The Sampling Plan

1.1 Introduction

1.2 The Triad Approach

1.3 Site History – Evaluating Existing Data/File Information

1.4 Defining the Physical Environment

1.5 Sample Locations and Numbers

1.6 Sample Methodology and Matrix

1.7 Laboratory Selection

1.8 Electronic Submission of Data for Site Remediation and Waste Management
 1.8.1 General Requirements
 1.8.2 Consistency in Data Fields Among Data Tables
 1.8.3 Securing Laboratory Services
 1.8.4 Geographically Referenced Points
 1.8.5 Permit Application and Compliance

1.9 Quality Assurance Considerations

1.10 Health and Safety Concerns

1.11 Schedule

References

URLs

Chapter 2 – Quality Assurance

2.1 Introduction
 2.1.1 Laboratory Certification
 2.1.2 Analyze Immediately – Environmental Laboratory Certification
 2.1.3 Field and Laboratory Immunoassay Analysis Certification

2.2 Data Quality Levels
 2.2.1 Quality Assurance Programs
 2.2.2 Field Analytical Methods

2.3 Sample Containers
 2.3.1 Reactivity of Container Material With Sample
 2.3.2 Volume of the Container
 2.3.3 Color of Container
 2.3.4 Container Closures
 2.3.5 Decontamination of Sample Containers
 2.3.6 Chain of Custody
 2.3.7 Sample Bottle Storage and Transport

2.4 Decontamination Procedures
 2.4.1 Eight-Step Decontamination Procedure For Aqueous and Non-Aqueous Sampling Equipment – Laboratory Only
 2.4.2 Three-Step Equipment Decontamination Procedure Non-Aqueous Matrix Only – Laboratory and Field
 2.4.3 US Army Cold Regions Research and Engineering Laboratory Decontamination Procedures for Use Primarily on Water Sampling (or Ground-Water Sampling) Equipment – Laboratory and/or Field Exclusively for Organics Including Pesticides
2.4.4 Ultra Clean Sampling Equipment Decontamination – Laboratory or Field

Table 2.1 Ultra Clean Supplies for Water Sampling Device Cleaning

2.4.5 General Decontamination Considerations

2.4.5.1 Decontamination of Pumps

2.4.5.1.1 Purging Only

2.4.5.1.1.1 Submersible

2.4.5.1.1.2 Surface Centrifugal and Diaphragm Pumps

2.4.5.1.2 Sampling

2.4.5.1.2.1 Submersible (Low Flow Purging and Sampling Method)

2.4.5.1.2.2 Bladder Pumps

2.4.5.2 Decontamination of Heavy Equipment

2.4.5.3 Decontamination of Direct Push Equipment

2.4.5.4 Decontamination of Monitor Well Casing and Screen

2.4.5.5 Cleaning Location

2.4.5.6 Disposal of Drill Cuttings

2.4.5.7 Disposal of Installation, Development, Purge, Pump Test and Decontamination Waters

2.5 Procedures For Quality Assurance and Quality Control (QA/QC)

2.5.1 Non-Aqueous Matrix

2.5.1.1 Field Blanks

2.5.1.1.1 Description

2.5.1.1.2 Frequency

2.5.1.2 Trip Blanks

2.5.2 Aqueous Matrix

2.5.2.1 Field Blanks

2.5.2.2 Trip Blanks (Field Reagent Blanks)

2.5.2.2.1 Description

2.5.2.2.2 Frequency

2.5.3 Air Matrix

2.5.4 Blank Water Quality

2.5.5 Sample Handling and Holding Times

2.5.5.1 Handling Time

2.5.5.2 Maximum Holding Time

2.5.6 Special Analytical Services (SAS)

2.5.7 Additional QA/QC Samples

2.5.7.1 Duplicate Samples Obtained in the Field (Field Duplicates)

2.5.7.1.1 Aqueous Matrix Duplicates

2.5.7.1.2 Non-Aqueous Matrix Duplicates

2.5.7.2 Splitting Samples with Responsible Parties

2.5.7.3 Background Samples

2.6 Sample Preservation Requirements

References

URLs

Appendix 2.1 Tables of Analytical Methods

Table 2.2 Required Preservation, Container, and Maximum Holding Times for Drinking Water Samples, Except Radiochemical Parameters

Table 2.3 Required Preservation, Container, and Maximum Holding Times for Wastewater Samples and Solid/Hazardous Waste Samples (Aqueous Matrices), Except Radiochemical Parameters
Table 2.4 Required Preservation, Container and Maximum Holding Times for Radiochemical Measurements in Drinking Water and Wastewater Samples
Table 2.5 Required Preservation, Container and Maximum Holding Times for Radiochemical Measurements in Solid/Hazardous Waste Samples (Soils, Liquids, Sediments, and Sludges)
Table 2.6 Required Preservation, Container and Maximum Holding Times for Solid/Hazardous Waste Samples (Soils, Liquids, Sediments, Sludges, and Ambient Air)
Table 2.7 Required Preservation, Container and Maximum Holding Times From VTSR for CERCLA-CLP Aqueous and Non-Aqueous Samples

Footnotes
Table 2.8 Analysis of BIOLOGICAL Samples Using NJDEP Methodologies for Freshwater, Estuarine and Marine Samples

Chapter 3 – Gaining Entry to Inspect Sites For Actual or Suspected Pollution

3.1 General Rules and Exceptions

3.2 Procedure to be Followed to Gain Entry to a Site Where No Emergency Exists
 3.2.1 Initial approach
 3.2.2 If voluntary consent is initially refused
 3.2.3 If consent cannot be obtained by the DLPS and time is not of the essence
 3.2.4 If consent cannot be obtained in response to a letter, or if time is of the essence

3.3 Procedure to be Followed to Gain Entry to a Site When an Emergency Exists

3.4 Statutory Authority to Conduct Searches

Chapter 4 – Site Entry Activities

4.1 Introduction

4.2 Health and Safety Program Plans
 4.2.1 Organizational Structure
 4.2.2 Hazard Analysis and/or Site Risk
 4.2.3 Training Requirements for On-Site Personnel
 4.2.4 Engineering Controls and Personnel Protection
 4.2.5 Medical Surveillance Program
 4.2.6 Air Monitoring
 4.2.7 Site Control
 4.2.8 Decontamination
 4.2.9 Emergency Contingency Planning
 4.2.10 Confined Space Operations

4.3 General Safety Measures
 4.3.1 Personal Practices
 4.3.2 Operations Management

4.4 Site Entry And Reconnaissance
 4.4.1 Objectives
 4.4.2 Preliminary Off-Site Evaluation
 4.4.3 Preliminary On-Site Evaluation
 Table 4.1 Atmospheric Hazard Guidelines
 4.4.4 Other Considerations

References
Chapter 5 – Sampling Equipment

5.1 Introduction
Table 5.1 Materials of Construction for Ground Water Sampling Equipment

5.2 Aqueous And Other Liquid Sampling Equipment

5.2.1 Ground Water Sampling Equipment

5.2.1.1 Bottom Fill Bailer
Figure 5.1 Bottom fill bailer with Teflon® coated stainless leader
Figure 5.2 Teflon® constructed baler with Teflon® ball check valve

5.2.1.2 Peristaltic Pump
Figure 5.3 Geopump™ Peristaltic Pump

5.2.1.3 Bladder Pump
Figure 5.4 Example of a Teflon® constructed bladder pump

5.2.1.4 Variable Speed Submersible Centrifugal Pump
Figure 5.5 Grundfos® Pump
Figure 5.6 Grundfos® Pump being prepared for decontamination

5.2.1.5 Gear Pump
Figure 5.7 Fultz Pump
Figure 5.8 Gear Pump

5.2.1.6 Progressing Cavity Pump
Figure 5.9 Progressive Cavity Pump

5.2.1.7 Reciprocating Piston Pump
Figure 5.10 Reciprocating Piston Pump
Figure 5.11 Bennett Pump

5.2.1.8 Inertial Pump
Figure 5.12 Inertial Pump (Waterra)
Figure 5.13 Two styles of foot check valves offered by Geoprobe®

5.2.1.9 Syringe Sampler
Figure 5.14 Syringe Sampler

5.2.1.10 Suction-lift Pumps

5.2.1.11 Passive Diffusion Bag Samplers (PDBs)

5.2.1.11.1 Deployed In Monitor Wells
Figure 5.15 Eon PDB Sampler with accessories

5.2.1.11.2 Deployed in Lake, Stream, River or Estuarine Sediment
Figure 5.16 PDB for Sediments

5.2.1.12 Direct Push Technology
5.2.1.13 Packers

5.2.2 Wastewater Sampling Equipment

5.2.2.1 Manual Sampling

5.2.2.2 Automatic Sampling
Figure 5.17 ISCO® Sampler for single bottle collection
Figure 5.18 ISCO® Sampler for multiple bottle collection

5.2.3 Surface Water and Liquid Sampling Equipment

5.2.3.1 Laboratory Cleaned Sample Bottle

5.2.3.2 Pond Sampler
Figure 5.19 Pond Sampler
Figure 5.20 Fabricated Pond Sampler

5.2.3.3 Weighted Bottle Sampler
Figure 5.21 US WBH-96 Weighted Bottle Sampler
<table>
<thead>
<tr>
<th>Section</th>
<th>Equipment Type</th>
<th>Diagram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3.4</td>
<td>Wheaton Dip Sampler</td>
<td>Figure 5.22</td>
<td>Wheaton Dip Sampler</td>
</tr>
<tr>
<td>5.2.3.5</td>
<td>Kemmerer Depth Sampler</td>
<td>Figure 5.23</td>
<td>Kemmerer Depth Sampler</td>
</tr>
<tr>
<td>5.2.3.6</td>
<td>Van Dorn Sampler</td>
<td>Figure 5.24</td>
<td>Van Dorn Sampler</td>
</tr>
<tr>
<td>5.2.3.7</td>
<td>Other Water Bottle Samplers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.3.8</td>
<td>VOC Sampler</td>
<td>Figure 5.25</td>
<td>VOC Sampler</td>
</tr>
<tr>
<td>5.2.3.9</td>
<td>Double Check Valve Bailer</td>
<td>Figure 5.26</td>
<td>Double Check Valve Bailer</td>
</tr>
<tr>
<td>5.2.3.10</td>
<td>Bacon Bomb Sampler</td>
<td>Figure 5.27</td>
<td>Bacon Bomb Sampler</td>
</tr>
<tr>
<td>5.2.3.11</td>
<td>Continuous Water-Quality Monitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.3.12</td>
<td>Churn Splitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.3.13</td>
<td>Sample Collection and Preservation Chamber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.4.1</td>
<td>Coliwasa</td>
<td>Figure 5.28</td>
<td>Coliwasa</td>
</tr>
<tr>
<td>5.2.4.2</td>
<td>Open Tube Thief Sampler</td>
<td>Figure 5.29</td>
<td>Open Tube Thief Sampler</td>
</tr>
<tr>
<td>5.2.4.3</td>
<td>Stratified Thief Sampler</td>
<td>Figure 5.30</td>
<td>Stratified Thief Sampler</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Scoop/Trowel</td>
<td>Figure 5.31</td>
<td>Scoop/Trowel</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Bucket Auger</td>
<td>Figure 5.32</td>
<td>Bucket Auger</td>
</tr>
<tr>
<td>5.3.1.3</td>
<td>Soil Coring Device</td>
<td>Figure 5.33</td>
<td>Soil Coring Device</td>
</tr>
<tr>
<td>5.3.1.4</td>
<td>Split Spoon Sampler</td>
<td>Figure 5.34</td>
<td>Split Spoon Sampler</td>
</tr>
<tr>
<td>5.3.1.5</td>
<td>Shelby Tube Sampler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.1.6</td>
<td>En Core® Sampler</td>
<td>Figure 5.35</td>
<td>En Core® Sampler with T Handle</td>
</tr>
<tr>
<td>5.3.1.7</td>
<td>Power Auger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.1.8</td>
<td>Direct Push Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Benthic Grab Samplers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.2.1.1</td>
<td>Ponar Dredge</td>
<td>Figure 5.36</td>
<td>Ponar Dredge</td>
</tr>
<tr>
<td>5.3.2.1.2</td>
<td>Ekman Grab Sampler</td>
<td>Figure 5.37</td>
<td>Ekman Grab Sampler</td>
</tr>
<tr>
<td>5.3.2.1.3</td>
<td>Box Corer</td>
<td>Figure 5.38</td>
<td>Box Corer</td>
</tr>
<tr>
<td>5.3.2.1.4</td>
<td>Shipek®</td>
<td>Figure 5.39</td>
<td>Shipek® Grab Sampler</td>
</tr>
<tr>
<td>5.3.2.1.5</td>
<td>Van Veen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.2.1.6 Petersen Grab
Figure 5.41 Petersen Grab

5.3.2.2 Sediment Core Samplers

5.3.2.2.1 Hand Corer
Figure 5.42 Hand Corer

5.3.2.2.2 Russian Peat Borer
Figure 5.43 Russian Peat Borer

5.3.2.2.2.1 Hand Corer
Figure 5.42 Hand Corer

5.3.2.2.2 Russian Peat Borer
Figure 5.43 Russian Peat Borer

5.3.2.2.2.2 Russian Peat Borer
Figure 5.43 Russian Peat Borer

5.3.2.2.4 Gravity Corer
Figure 5.45 Gravity Corers

5.3.2.2.5 Vibracorer
Figure 5.46 Vibracorer

5.3.2.2.6 Sediment Sieve

Table 5.2 General Characteristics of Selected Grab and Core Sampler

5.3.2.3 Sludge Samplers

5.3.2.3.1 Lidded Sludge/Water Sampler
Figure 5.47 Lidded Sludge/Water Sampler

5.3.2.3.2 Liquid Grab Sampler
Figure 5.48 Liquid Grab Sampler

5.3.2.3.3 Swing Jar Sampler
Figure 5.49 Swing Jar Sampler

5.3.2.3.4 Sludge Judge
Figure 5.50 Sludge Judge

5.3.3 Containerized Solids and Waste Pile Sampling Equipment

5.3.3.1 Grain Sampler
Figure 5.51 Grain Sampler

5.3.3.2 Waste Pile Sampler
Figure 5.52 Waste Pile Sampler

5.3.3.3 Sampling Trier
Figure 5.53 Sampling Trier

Table 5.3 Samplers Recommended for Various Types of Waste

References
USGS Links of Interest
USEPA Links of Interest
Other URLs of Interest
Appendix 5.1 – Sample Collection And Preservation Chamber

Chapter 6 – Sample Collection

6.1 General Information Applicable To All Sampling Events

6.1.1 Preparation

6.1.2 Type of Samples

6.1.2.1 Environmental and Waste Samples

6.1.2.2 Grab vs. Composite

6.1.3 Laboratory Procurement

6.1.4 Quality Assurance Samples

6.1.5 Quality Assurance Project Plans
6.1.6 Assuring Health and Safety
6.1.7 Post Sampling Activities

6.2 Soil Sampling
6.2.1 Selection of Sampling Equipment
6.2.2 Equipment Preparation
6.2.3 Soil Logs
 6.2.3.1 Wentworth Scale
 Table 6.1 Wentworth Scale as Modified from Driscoll, 1986, and Folk, 1975.
 6.2.3.2 Unified Soil Classification System (USCS)
 Table 6.2 Unified Soil Classification System; from American Society for Testing and Materials, 1985
 Table 6.3. Unified Soil Classification System (USCS)
 6.2.3.3 Burmister System
 Table 6.4 Burmister Soil Classification Naming System (source: Dunn Geoscience Corporation)
 Table 6.5 Burmister Soil Classification System Coarse-Grained Soils, Gradation of Components
 Table 6.6 Burmister Soil Classification System Fine-Grained Soils, Plasticity of Components
 Table 6.7 Burmister Soil Classification System, Components and Fractions, Modified from Burmister, 1950
 6.2.3.4 U.S. Comprehensive Soil Classification System
 Table 6.8 Textural Descriptions for USDA System
 6.2.3.5 Comparison of the Soil Classification Systems
 6.2.4 Field Log Books
 Table 6.9 Comparison of the Soil Classification Systems compiled from various sources
 Boring Log
 6.2.5 Determination of Soil Sample Location
 6.2.5.1 Surface Soil Selection
 6.2.5.2 Subsurface Soil Selection
 6.2.6 Field Screening Soil Samples
 6.2.7 VOCs Sample Collection for Soils
 6.2.7.1 VOC Soil Sample Depth Selection
 6.2.7.2 VOC Soil Sample Collection Devices - Small Diameter Core Samplers
 6.2.7.2.1 Disposable Syringe
 6.2.7.2.2 Easy-Draw Syringe and Power-Stop Handle
 6.2.7.2.3 Purge and Trap Soil Sampler®
 6.2.7.2.4 En Core® Sampler
 6.2.7.3 VOC Soil Sample Collection Technique
 6.2.7.4 VOC Soil Sample Preservation Methods
 6.2.7.4.1 Closed-System Vials, No Chemical Preservation
 6.2.7.4.2 Closed-System Vials, No Chemical Preservation with Organic Free Water (OFW)
 6.2.7.4.3 Small Diameter Core Sampler for Storage and Transport (e.g., En Core® Sampler)
 6.2.7.4.4 Closed-System Vials, Chemical Preservation – Sodium Bisulfate
 6.2.7.4.5 Closed-System Vials, Chemical Preservation – Methanol
 6.2.7.4.6 Glass Containers, No Chemical Preservation, No Headspace
 6.2.7.5 Sample Aliquot for Moisture Determination and Sample Screening
 6.2.7.6 Commercial Equipment Suppliers
 Table 6.10 Discrete Soil Sampler Suppliers
 6.2.8 Non-VOC Sample Collection for Soils
6.2.9 Sampling Alternatives for Situational and Matrix Variations
 6.2.9.1 Sampling Hard or Cemented Material
 6.2.9.2 Sampling a Mixture of Fines and Gravel
 6.2.9.3 Sampling Dry Non-Cohesive Material
 6.2.9.4 Sampling Sediments
 6.2.9.5 Sampling Oil Waste, Tars and Other Waste Material
 6.2.9.6 Sampling from Test Pits

6.3 Rock Core Sample Collection
 6.3.1 Coring Methods
 6.3.1.1 Drill String Coring
 6.3.1.2 Wireline Coring
 6.3.2 Coring Tools
 6.3.2.1 Tube-Type Coring Tools
 Figure 6.1 Double tube coring tool. Anderson, 1975, printed with permission.
 6.3.2.2 Sidewall Coring Tools
 6.3.2.3 Oriented Coring Tools
 6.3.3 Coring Procedures
 6.3.4 Rock Core Logging
 6.3.5 Rock Core Storage
 6.3.6 Special Tests and Analyses of Rock Cores
 Table 6.11 Rock Coring Requirements

6.4 Direct Push Technology

6.5 Sampling Containerized Material
 6.5.1 Drums, Bags, Sacks, Fiberdrums and Similar Small Containers
 6.5.1.1 Containerized Solids
 6.5.1.2 Containerized Liquids
 6.5.2 Tanks, Vacuum Trucks, Process Vessels and Similar Large Containers
 6.5.3 Transformers

6.6 Waste Pile Sampling
 6.6.1 Considerations for the Sampling Plan
 6.6.1.1 Shape and Size
 6.6.1.2 Characteristics of the Material
 6.6.1.2.1 Type of Material
 6.6.1.2.2 Chemical Stability
 6.6.1.2.3 Particle Size
 6.6.1.2.4 Compactness/Structure of Material
 6.6.1.3 Purpose of Sampling
 6.6.2 Sampling Procedures
 6.6.2.1 Surface
 6.6.2.2 At Depth
 6.6.3 Required Analytes and Frequency
 6.6.3.1 Waste Classification
 6.6.3.2 Quality Assurance
 6.6.3.3 Characterization

6.7 Surficial Sampling
 6.7.1 Wipe Samples
 6.7.2 Chip Samples
6.7.3 Sweep Samples
6.7.4 Rinsate Samples

6.8 Surface Water And Sediment Sampling

6.8.1 General Considerations and Requirements for NJDEP Programs
 6.8.1.1 Health and Safety Considerations
 6.8.1.2 Physical Characteristics and Water Quality Measurements for Ambient Monitoring
 6.8.1.3 Sample Number and Location
 6.8.1.4 Sampling Sequence
 6.8.1.5 Surface Water Flow Conditions
 6.8.1.6 Tidal Influences
 6.8.1.7 Equipment Selection
 6.8.1.7.1 Aqueous
 6.8.1.7.2 Non-Aqueous
 6.8.1.8 Considerations for Wastewater Point Source Sampling

6.8.2 Freshwater and Biological Monitoring Program
 6.8.2.1 Sampling Objectives
 6.8.2.2 Aqueous Samples
 6.8.2.2.1 Stream/Flowing Water
 6.8.2.2.2 Composite Sampling
 6.8.2.2.3 Grab Sampling
 6.8.2.2.4 Point Sampling
 6.8.2.2.5 Lake/Standing Water Sampling
 6.8.2.2.6 Estuarine and Marine Water Sampling
 6.8.2.2.7 Bacteriology
 6.8.2.2.8 Trace Element Sampling
 6.8.2.3 Non-Aqueous Samples
 6.8.2.3.1 Sediments
 6.8.2.3.1.1 Onshore
 6.8.2.3.1.2 Offshore
 6.8.2.3.1.3 General Procedures
 6.8.2.3.2 Sludge
 6.8.2.4 Flow Measurements
 6.8.2.4.1 Open-Channel Flow Measurement
 6.8.2.4.2 Open-Channel Flow Meters
 6.8.2.4.2.1 Palmer-Bowlus Flumes
 6.8.2.4.2.2 Parshall Flumes
 6.8.2.4.3 Weirs
 6.8.2.4.3.1 V-Notch Weirs
 6.8.2.4.3.2 Rectangular Weirs
 6.8.2.4.3.3 H-Type Flumes
 6.8.2.4.4 Instrumentation for Open-Channel Flow
 6.8.2.4.5 Closed-Pipe Flow Metering Systems
 6.8.2.4.6 Types of Meters, Methods and Systems
 6.8.2.4.6.1 Electromagnetic Flow Meters
 6.8.2.4.6.2 Turbine Meters and Propeller Meters
 6.8.2.4.6.3 Rotating Element Current Meters
 Figure 6.3 Propeller Current Meter
 Figure 6.4 Price Current Meter
6.8.2.4.6.5 Pitot Tube Meters
6.8.2.4.6.6 Differential Pressure Systems
6.8.2.4.6.7 Velocity Modified Flow Meters
6.8.2.4.6.8 Floats
6.8.2.4.6.9 Salt Velocity Method
6.8.2.4.6.10 Color Velocity Method
6.8.2.4.6.11 Discharge
6.8.2.4.7 Miscellaneous Flow Measurement Methods
6.8.2.4.7.1 Water Meters
6.8.2.4.7.2 Measure Level Changes in Tank

Figure 6.5 Stationary Volume of Liquid in Horizontal Cylinders
6.8.3 Site Remediation and Waste Management Program
6.8.3.1 Sampling Objectives

Table 6.12 Comparison of Various Methods to Obtain Mean Velocity
6.8.3.1.1 Site-Related Sample Locations
6.8.3.1.2 Reference Sample Location
6.8.3.2 Aqueous Samples
6.8.3.2.1 Flowing Non-Tidal Water Bodies
6.8.3.2.2 Standing Water Bodies
6.8.3.2.3 Tidal Water Bodies
6.8.3.2.4 Determination of Contaminated Ground Water Discharge Points
6.8.3.3 Non-Aqueous Samples
6.8.3.3.1 General
6.8.3.3.2 Flowing Non-Tidal Water Bodies
6.8.3.3.3 Standing Water Bodies
6.8.3.3.4 Tidal Water Bodies
6.8.3.4 Use of Passive Diffusion Bag Samplers

6.9 Ground Water Sampling Procedures
6.9.1 Scope
6.9.2 Means of Sample Collection
6.9.2.1 Temporary Well Points and Direct Push Technology
6.9.2.2 Low-Flow Purging and Sampling
6.9.2.2.1 Method Summary and Application
6.9.2.2.2 Introduction
Low Flow Sampling Data Sheet
Field Instrumentation and Calibration Data Sheet
Monitor Well Information in Support of Pump Intake Depth Placement
6.9.2.2.3 Low Flow Policy
6.9.2.2.4 Laboratory Certification (N.J.A.C. 7:18)
6.9.2.2.5 Specific LFPS Considerations
6.9.2.2.5.1 Pump Intake Location
6.9.2.2.5.2 Water Quality Indicator Parameters (WQIPs)
6.9.2.2.5.3 Purge Volume vs. Stabilization Time
6.9.2.2.5.4 Tubing
6.9.2.2.5.5 Flow-Through Cell
Figure 6.6 Illustration of Flow Cell with stand
6.9.2.2.5.6 Pump Selection
6.9.2.2.5.7 Plumbing Fittings
Figure 6.7 Closeup of Needle Valve
6.9.2.2.5.8 Calibration of Probes
6.9.2.2.5.9 Water Level Measurements
6.9.2.2.5.10 Pump Installation
6.9.2.2.5.11 Purge Rates
6.9.2.2.5.12 Sampling
6.9.2.2.5.13 Pump Decontamination
6.9.2.2.5.14 Field Blank Collection
6.9.2.2.6 Tips
6.9.2.2.6.1 Temperature Measurement and Submersible Pumps
6.9.2.2.6.2 Control of Pump Speed
6.9.2.2.6.3 pH
6.9.2.2.6.4 Temperature of Calibration Solutions
6.9.2.3 Low-flow Purging and Sampling for Low-Yielding Wells
6.9.2.4 Volume-Averaged Purging and Sample Collection
6.9.2.5 Point Source (No-Purge) Sampling
6.9.2.5.1 Passive Diffusion Bag Samplers (PDBS)
 6.9.2.5.1.1 Introduction
 6.9.2.5.1.2 Limitations And Concerns
 6.9.2.5.1.3 Theory
 6.9.2.5.1.4 PDBS Construction
 6.9.2.5.1.5 Contaminant Detection Capabilities
 Table 6-13 Passive Diffusion Bag Samplers (PDBS)
 6.9.2.5.1.6 Well Construction Considerations
 6.9.2.5.1.7 Contaminant Stratification/Multiple Sampler Deployment
 6.9.2.5.1.8 Vertical Flow Within the Well
 6.9.2.5.1.9 Comparison of PDBS Results with Conventional Sampling Methods
 6.9.2.5.1.10 Use of PDBS in Sentinel Wells
 6.9.2.5.1.11 Procedures for PDBS Use (Deployment/Retrieval)
 6.9.2.5.1.11.1 Weights and Deployment Lines
 6.9.2.5.1.11.2 Measuring and Attaching the PDBS to the Deployment Line
 6.9.2.5.1.11.3 Equilibration Time
 6.9.2.5.1.11.4 Sample Retrieval
 6.9.2.5.1.11.5 Quality Assurance/Quality Control Samples
 6.9.2.5.1.11.5.1 Blanks for Lab filled PDBS
 6.9.2.5.1.11.5.2 Blanks for Field Filled PDBS
 6.9.2.5.1.12 Data Reporting Requirements
 NJDEP Checklist for the Submission of Sampling Data for Passive Diffusion Bag Samplers (PDBS)
6.9.3 Sampling Private Homeowner Wells (a.k.a. Public Non-Community/Non-Public/Domestic Wells)
6.9.4 Sampling Point of Entry Treatment (POET) Systems
6.9.5 Sampling Industrial Wells
6.9.6 Sampling Municipal and Industrial Wastewater
 Table 6.14 Suggested Biochemical Oxygen Demand Dilutions
6.9.7 Public Community Water Systems
 6.9.7.1 Source Sample (Raw water)
 6.9.7.1.1 Ground Water
 6.9.7.1.2 Surface Water
 6.9.7.2 Plant Delivered Sample (Finished Water)
6.9.7.3 Point of Entry Sample
6.9.7.4 System Sample

6.9.8 Ground Water-Level Measurements
6.9.8.1 Steel Tapes
6.9.8.2 Electronic Ground Water-Level Indicators
6.9.8.3 Helpful Hints
6.9.8.4 Ground Water Level and Non-Aqueous Phase Liquid (NAPL) Measurements
 6.9.8.4.1 Clear Bailer
 6.9.8.4.2 Interface Probes

6.9.9 New Well Construction and Stabilization
6.9.9.1 Well Development
 Figure 6.9 Sand Bridges
6.9.9.2 Other Considerations

6.9.10 Filtering Ground Water Samples
6.9.10.1 Total Metals Sampling
6.9.10.2 Trace Metals Sampling
6.9.10.3 Dissolved Metals Sampling
6.9.10.4 Filtering Procedures for Dissolved Metals Analysis

6.9.11 Sampling for Light, Non-Aqueous Phase Liquids (LNAPLS)
6.9.12 Sampling for Dense, Non-Aqueous Phase Liquids (DNAPLs)

6.10 Biological Sampling Procedures
6.10.1 Phytoplankton Sampling
 6.10.1.1 Sample Site Location
 6.10.1.2 Sampling Depth
 6.10.1.3 Sampling Procedure

6.10.2 Zooplankton Sampling
 6.10.2.1 Sample Site Location
 6.10.2.2 Sample Depth
 6.10.2.3 Sampling Procedure

6.10.3 Macrophyte Sampling

6.10.4 Macroinvertebrates
 6.10.4.1 Hester-Dendy Artificial Substrates
 6.10.4.1.1 Sampler Placement
 6.10.4.1.2 Sampler Retrieval
 6.10.4.2 Surber or Square Foot Bottom Sampler
 6.10.4.2.1 Sampler Placement
 6.10.4.2.2 Sampler Retrieval

6.10.5 Grab Samplers

6.10.6 Periphyton Sampling
 6.10.6.1 Artificial Substrates
 6.10.6.1.1 Sampler Placement
 6.10.6.1.2 Sampler Retrieval
 6.10.6.2 Natural Substrates

6.10.7 Rapid Bioassessment (RBP) Techniques*
 6.10.7.1 Benthic Macroinvertebrates
 6.10.7.2 Single Habitat Sampling
 6.10.7.3 Multi-habitat Sampling
 6.10.7.4 Periphyton
6.11 Toxicological Sampling (Toxicity Test or Bioassay)

6.11.1 Dilution Water Sample Collection and Handling:
6.11.2 Effluent Samples Shall be Collected and Handled in the Following Manner.

Appendix 6.1 Monitor Well Construction and Installation

A.6.1.1 Introduction

A.6.1.2 Conventional Well Drilling Methods
A.6.1.2.1 Hollow-Stem Augers (HSAs)
A.6.1.2.2 Rotary Drilling
A.6.1.2.3 Drilling Fluids

A.6.1.3 Specialized Drilling Methods
A.6.1.3.1 Sonic Drilling
A.6.1.3.2 ODEX® Method
 Figure 6.10 ODEX® System
A.6.1.3.3 Direct-Push Drilling

A.6.1.4 Monitor Well Design And Construction Considerations
A.6.1.4.1 Well Diameter
A.6.1.4.2 Well Construction Materials
A.6.1.4.3 Screen Length
A.6.1.4.4 Screen Slot Size and Filter Pack Materials
A.6.1.4.5 Grouting Materials
A.6.1.4.6 Well Depth
A.6.1.4.7 Multi-Screened Wells
A.6.1.4.8 Pre-Packed Well Screens
A.6.1.4.9 Horizontal Wells
A.6.1.4.10 Wells Used to Investigate LNAPL and DNAPL
A.6.1.4.11 Lysimeters

A.6.1.5 Miscellaneous Well Construction Considerations
A.6.1.5.1 Well Development
A.6.1.5.2 Maintenance of Wells
A.6.1.5.3 Well Decommissioning Requirements
A.6.1.5.4 Flush Mount Wells
 Figure 6.11 Typical Flush-Mount Completion
A.6.1.5.5 Subsurface and Overhead Utilities

Appendix 6.2 NJDEP Monitor Well Specifications for Bedrock, Unconsolidated and Confined Aquifers

A.6.2.1 Monitoring Well Requirements For Bedrock Formation
 Figure 6.12 Bedrock Formation Well
A.6.2.2 Monitor Well Requirements For Unconsolidated Aquifers
 Figure 6.13 Unconsolidated Aquifer Well
A.6.2.3 Monitor Well Requirements For Confined Unconsolidated Aquifers
 Figure 6.14 Confined Unconsolidated Aquifer Well

References
USGS Links of Interest
USEPA Links of Interest
Other URLs of Interest
 Soil Science
Chapter 7 – Field Analysis

7.1 Introduction
7.2 Application of Field Analytical Methods
7.3 Field Analytical Techniques
7.4 Specific Advantages of Field Analysis
7.5 Selection of a Field Analysis Method
7.6 Factors To Be Considered For Field Analyses
7.7 Role of Field Screening/Analytical Methods According to the NJDEP Technical Requirements For Site Remediation, N.J.A.C. 7:26E
7.8 Regulatory Initiative For Development of Field Analyses
7.9 Choosing Appropriate Field Analytical Methods For Contaminant Investigation
 7.9.1 Considerations Prior To Researching Field Analytical Methods
 7.9.1.1 Matrix Effects
 7.9.1.2 Analyte(s) of Concern
 7.9.1.3 Interfering Constituents
 7.9.1.4 Limitations
 7.9.1.5 Physical Conditions
 7.9.2 Searching the Websites
 7.9.2.1 FATE
 7.9.2.2 EPAREACHIT
 7.9.2.3 FRTR
 7.9.2.4 CLU-IN
 7.9.3 Listing Limitations and Interferences for Selected Field Analytical Methods
 7.9.3.1 Matrix Effectsm
 7.9.3.2 Analytes
 7.9.3.3 Interfering Constituents
 7.9.3.4 Limitations
 7.9.3.5 Physical Conditions
7.10 Quality Assurance Project Plan (QAPP) For Implementation of Field Analytical Methods
7.11 Quality Assurance Requirements
 7.11.1 Preliminary or Field Screening Data (Data Quality Level 1)
 7.11.2 Effective Data or Field Analysis Data (Data Quality Level 2)
 7.11.3 Meticulous or Definitive Data (Data Quality Level 3)
 7.11.4 “State-of-the-Art” Data
7.12 Field Data Deliverables Format
 7.12.1 Field-Screening Data – QA/QC Requirements
 7.12.2 Effective Data or Field Analysis Data – QA/QC Requirements
 Table 7.1 Overview of Data Quality Classifications
7.13 Data Management Plan
References/Resources
Glossary
Chapter 8 – Geophysical Techniques

8.1 Introduction

8.2 Ground Penetrating Radar
 8.2.1 Fundamentals
 8.2.2 Advantages
 8.2.3 Limitations
 8.2.4 Instrumentation
 8.2.5 Survey Design, Procedure and Quality Assurance
 8.2.6 Data Reduction and Interpretation
 8.2.7 Presentation of Results

8.3 Magnetics
 8.3.1 Fundamentals
 8.3.2 Advantages
 8.3.3 Limitations
 8.3.4 Instrumentation
 8.3.5 Survey Design, Procedure and Quality Assurance
 8.3.6 Data Reduction and Interpretation
 8.3.7 Presentation of Results

8.4 Gravity
 8.4.1 Fundamentals
 8.4.2 Advantages
 8.4.3 Limitations
 8.4.4 Survey Design, Procedure and Quality Assurance
 8.4.5 Data Reduction and Interpretation
 8.4.6 Presentation of Results

8.5 Electrical Resistivity
 8.5.1 Fundamentals
 8.5.2 Advantages
 8.5.3 Limitations
 8.5.4 Instrumentation
 8.5.5 Survey Design, Procedure and Quality Assurance
 8.5.6 Sounding Mode
 8.5.7 Profiling Mode
 Figure 8.1 Common Arrays
 8.5.8 Profiling-Sounding Mode
 8.5.9 Resistivity Data Reduction and Interpretation
 8.5.10 Presentation of Results
 8.5.10.1 Sounding Mode
 8.5.10.2 Profiling Mode
 8.5.10.3 Profiling-Sounding Mode

8.6 Induced Polarization
 8.6.1 Fundamentals
 8.6.2 Advantages
 8.6.3 Limitations
 8.6.4 Instrumentation
 8.6.5 Survey Design, Procedure and Quality Assurance
 8.6.6 Sounding Mode
 8.6.7 Profiling Mode
8.6.8 Profiling-Sounding Mode
8.6.9 Data Reduction and Interpretation
8.6.10 Presentation of Results

8.7 Electromagnetics
8.7.1 Fundamentals
8.7.2 Advantages
8.7.3 Limitations
8.7.4 Instrumentation
8.7.5 Survey Design, Procedure and Quality Assurance
8.7.6 Data Reduction and Interpretation
8.7.7 Presentation of Results

8.8 Very-low Frequency (VLF) Electromagnetics
8.8.1 Fundamentals
8.8.2 Advantages
8.8.3 Limitations
8.8.4 Instrumentation
8.8.5 Survey Design, Procedure and Quality Assurance
8.8.6 Data Reduction and Interpretation
8.8.7 Presentation of Results

8.9 Seismic
8.9.1 Fundamentals
8.9.2 Instrumentation
8.9.3 The Seismic Refraction Method
 Figure 8.2 Seismic Refraction
 8.9.3.1 Seismic Refraction Advantages
 8.9.3.2 Seismic Refraction Limitations
 8.9.3.3 Seismic Refraction Survey Design, Procedure and Quality Assurance
 Figure 8.3 Observer’s Log
 8.9.3.4 Seismic Refraction Data Reduction and Interpretation
 8.9.3.5 Seismic Refraction Presentation of Results
8.9.4 The Seismic Reflection Method
 Figure 8.4 Seismic Reflection
 8.9.4.1 Seismic Reflection Advantages
 8.9.4.2 Seismic Reflection Limitations
 8.9.4.3 Seismic Reflection Survey Design, Procedure, And Quality Assurance
 8.9.4.4 Seismic Reflection Data Reduction and Interpretation
 8.9.4.5 Seismic Reflection Presentation of Results

8.10 Borehole Geophysical Methods
8.10.1 Introduction
8.10.2 Advantages
8.10.3 Limitations
8.10.4 Types of Borehole Tools
 8.10.4.1 Gamma Ray and Self Potential (SP) Devices
 8.10.4.2 Electrical Resistivity and Induction Devices
 Figure 8.5 Lateral Resistivity Sonde
 Figure 8.6 Normal Resistivity Sonde
 Figure 8.7 High Frequency Electromagnetic Energy
 8.10.4.3 Porosity/Density Devices
 Figure 8.8 Basic Sonic System
8.10.4.4 Mechanical Devices
8.10.4.5 Acoustic, Radar and Optical Devices

Figure 8.9 Magnetically oriented, acoustic-amplitude image of borehole wall generated from an acoustic televiewer.

Figure 8.10 “Virtual core” wrapped (left) and unwrapped (right) images of a bedrock fracture at a depth of 29.4 meters collected with a digital television camera.

8.10.5 Quality Assurance
8.10.6 Presentation of Results

References
URLs for Surface and Borehole Geophysical Methods

Chapter 9 – Soil Gas Surveys

9.1 Introduction
9.2 Theory
9.3 Soil Gas Generation and Movement
 9.3.1 Biological Decomposition
 9.3.2 Chemical Decomposition
 9.3.3 Physical Decomposition
 9.3.4 Transport Mechanisms
 9.3.4.1 Molecular Effusion
 9.3.4.2 Molecular Diffusion
 9.3.4.3 Convection

9.4 Site Specific Characteristics
 9.4.1 Chemical and Physical Properties of the Contaminant
 9.4.1.1 Concentration
 Table 9.1 Compounds Found in Municipal Solid Waste Landfills
 Table 9.2 Trace Compounds Found in Municipal Solid Waste Landfills
 9.4.1.2 Partitioning
 Figure 9.1 Phase Relationships for VOCs
 9.4.1.3 Vapor Pressure
 9.4.1.4 Microbial Degradation
 Figure 9.2 Transformations of Chlorinated Aliphatic Hydrocarbons

9.4.2 Geologic Factors
 9.4.2.1 Soil Permeability
 9.4.2.2 Thickness of the Unsaturated Zone
 9.4.2.3 Barriers and Conductive Zones
 Figure 9.3A Homogenous Soils in the Vadose Zone
 Figure 9.3B Impermeable Clay Subsurface Layer
 Figure 9.3C Impermeable Surface Layer
 Figure 9.3D Zone of High Microbial Activity
 Figure 9.3E Source of VOCs in the Vadose Zone

9.4.3 Hydrologic and Hydrogeologic Properties
 9.4.3.1 Water Table Oscillations
 9.4.3.2 Background Water Quality
 9.4.3.3 Rainfall, Barometric Pressure and Wind

9.5 Investigation Sampling Designs
 9.5.1 Grids
 Figure 9.4 Site Monitoring Network Grid Sampling
9.5.2 Transect Lines
 Figure 9.5 Site Monitoring Network Transect Lines
9.5.3 Biased
9.5.4 Random
9.5.5 Combined
9.5.6 Vertical Profiling
9.5.7 Sample Spacing
9.5.8 Sampling Frequency

9.6 Health And Safety
9.6.1 Underground Utilities
9.6.2 License Requirements
 Table 9.3 License Requirement

9.7 Active Sample Collection Methodologies
9.7.1 Ground Probes
 Figure 9.6 Passive Placed Probe
 Figure 9.7 Drive Ground Probe
 Figure 9.8 Ground Probes Ambient Air Short Circuiting
9.7.2 Permanent Soil Gas Probes
 Figure 9.9 Soil Gas Sampling Probes
 Figure 9.10 Soil Gas Well Schematic
 Figure 9.11 Ball Valve for Soil Gas Well
 Figure 9.12 Comparison of Multi-Depth Soil Gas Well Designs
9.7.3 Materials of Construction
9.7.4 Purge Rates and Volume
 Table 9-4. Purge Volumes for Select Tubing Sizes
 Figure 9.13A Purge pump with flow control and vacuum guage
 Figure 9.13B Purge pump with DRI inline
 Figure 9.13C Purge pump with syringe adapter
9.7.5 Short Circuiting
9.7.6 Pressure Measurements
 Figure 9.14 Soil Gas Pressure vs. Barometric Pressure

9.8 Passive Sample Collection Methodologies
9.8.1 Sorbents
 Figure 9.15 Passive sorbent sampler
9.8.1.1 Gore-Sorber® Passive Sampler
9.8.1.2 BEACON BeSURE™ Soil Gas Sampler
9.8.1.3 Sample Depths
9.8.1.4 Sample Spacing
9.8.1.5 Sample Exposure Time
9.8.1.6 Multiple Surveys
9.8.1.7 Data Interpretation
9.8.2 The Emission Isolation Flux Chamber
 Figure 9.16 Surface flux chamber

9.9 Soil Gas Sample Containers
 Figure 9.17 Air sampling equipment
9.9.1 Gas Sample Bags
9.9.2 Glass Bulbs
9.9.3 Syringes
9.9.4 Stainless Steel Canisters

9.9.5 Sorbents

9.10 Analytical Methodologies
- 9.10.1 Detector Tubes
- 9.10.2 Direct Reading Instruments (DRI)
- 9.10.3 Portable Gas Chromatographs (G.C.)
- 9.10.4 GC/Mass Spectroscopy (GC/MS)

9.11 Quality Assurance/Quality Control
- 9.11.1 Adhere to Sampling Procedures
- 9.11.2 Equipment Blanks
- 9.11.3 Trip Blanks
- 9.11.4 Background Measurements
- 9.11.5Duplicates
- 9.11.6 Decontamination
- 9.11.7 Leak Checks
- 9.11.8 Equipment Calibration
- 9.11.9 Limitations of the Analytical Methodology

9.12 Soil Gas Data Interpretation

9.13 Data Reporting

Soil Gas Probe Monitoring Record

References

Chapter 10 – Documentation

10.1 Introduction

10.2 Field Log Books

10.3 Documenting Sampling Points

10.4 Photo-Documentation

10.5 Sample Collection Paperwork
- 10.5.1 Sample Labels
- 10.5.2 Chain of Custody/Sample Analysis Request
 - 10.5.2.1 External Chain of Custody and Sample Analysis Request Form WITH shipping container.
 - 10.5.2.2 External Chain of Custody and Sampling Analysis Request Form WITHOUT shipping container.

 New Jersey Department of Environmental Protection External Chain of Custody and Sample Analysis Request Form (With Shipping Container)
 New Jersey Department of Environmental Protection External Chain of Custody and Sampling Analysis Request Form (Without Shipping Container)

Chapter 11 – Sample Shipment

11.1 Introduction

11.2 Definitions

11.3 Training

11.4 Shipper’s Responsibility

11.5 Hazard Classes

11.6 Packing
11.7 Marking and Labeling
11.8 Documentation
11.9 Preservation of Samples Relative to Dangerous Goods Shipment

Table 11.1 Hazard Classes and Applicable Regulations

References

Chapter 12 – Radiological Assessment

12.1 Introduction

Figure 12.1 Comparison of MARSSIM and the Technical Requirements

12.2 The Planning Stage (Data Life Cycle)

12.3 Site Identification/Historical Site Assessment

12.4 The Scoping Survey

12.4.1 Identify Contaminants
12.4.2 Establish the Derived Concentration Guideline Levels (DCGLs)
12.4.3 Classify the Area by Contamination Potential
12.4.4 Determine Background
12.4.5 Perform the Survey
12.4.6 Document the Scoping Survey Results

12.5 The Characterization Survey

12.5.1 Determination of Lateral and Vertical Extent of Contamination
12.5.2 Determine Background
12.5.3 Classify the Area by Contamination Potential
12.5.4 Document the Characterization Survey Results

12.6 The Remedial Action Support Survey

12.7 The Final Status Survey

12.7.1 Revisit the Area Classifications
12.7.2 Determine the Relative Shift
12.7.3 Determination of Acceptable Type I and Type II Decision Errors
12.7.4 Determine the Number of Samples Needed
12.7.5 Additional Samples for Elevated Measurement Comparison in Class 1 Areas
12.7.6 Determining Sample Locations
12.7.7 Investigation Levels and Scanning Coverage Fractions
12.7.8 Special Survey Considerations Subsurface Residual Radioactivity
12.7.9 Determining Compliance
12.7.10 Mixing After Demonstrating Compliance with the Pre-mixing DCGLs
12.7.11 Documenting the Final Status Survey

References

Acronyms
Glossary
Endnotes

Chapter 13 – Personnel Protection

13.1 Introduction

13.2 Selection of Respiratory Equipment
13.2.1 Self-Contained Breathing Apparatus (SCBA)
13.2.2 Supplied-Air Respirators (SARs)
13.2.3 Combination SCBA/SAR
13.2.4 Air-Purifying Respirators

13.3 Selection of Protective Clothing and Accessories
13.3.1 Selection of Chemical-Protective Clothing (CPC)
13.3.2 Other Considerations
13.3.3 Special Conditions

13.4 Selection of Ensembles/Level of Protection
Table 13.1 Sample Protective Ensembles – Level of Protection – A
Table 13.1 Sample Protective Ensembles – Level of Protection – B
Table 13.1 Sample Protective Ensembles – Level of Protection – C
Table 13.1 Sample Protective Ensembles – Level of Protection – D

13.5 PPE Use
13.5.1 Training
13.5.2 Work Mission Duration
13.5.3 Personal Use Factors
13.5.4 Donning an Ensemble
13.5.5 Respirator Fit Testing
13.5.6 Doffing an Ensemble
13.5.7 Inspection
13.5.8 Storage

13.6 Heat Stress and Other Physiological Factors
13.6.1 Monitoring
13.6.2 Prevention
 Table 13.2 Signs and Symptoms of Heat Stress
13.6.3 Other Factors
 13.6.3.1 Physical Condition
 13.6.3.2 Level of Acclimatization
 13.6.3.3 Age
 13.6.3.4 Weight

References

Chapter 14 – Personnel Contamination Reduction

14.1 Introduction
14.2 Steps In Doffing Disposable PPE
14.3 Doffing Reusable PPE
 Figure 14.1 Maximum Decontamination Layout Level A Protection
 Figure 14.2 Maximum Decontamination Layout Level B Protection
 Figure 14.3 Maximum Decontamination Layout Level C Protection
 Figure 14.4 Minimum Decontamination Layout Levels A & B Protection
 Figure 14.5 Minimum Decontamination Layout Level C Protection

14.4 Low Level Contamination
References

Glossary of Technical Terms