

Section 7 Remedial Action Permit for Ground Water with Long Term Monitoring

Rich Lake

MNA Administrative Process

- Remedial Action Workplan
 - Proposes evaluating MNA as a remedy
 - Submit Fact Sheet for DEP to establish CEA (if not already established)
- Remedial Action Report
 - Documents lines of evidence to support MNA as an applicable remedy (critical step)
- Remedial Action Permit for Ground Water
 - Submit Fact Sheet as necessary for DEP to revise CEA
- Issue Limited Restricted Use RAO (for GW)

MNA Administrative Process

- Remedial Action Protectiveness/Biennial Certification
 - Presents long term monitoring results
 - Document remedy remains protective
- Termination of Remedial Action Permit -Groundwater
 - Documents GWQS have been achieved
 - Request that DEP lift CEA
- Issue Unrestricted Use RAO (for GW)
 - After permit is terminated

RA Permit: Why do we need Long Term Monitoring (LTM)?

MNA is a Ground Water Remedy

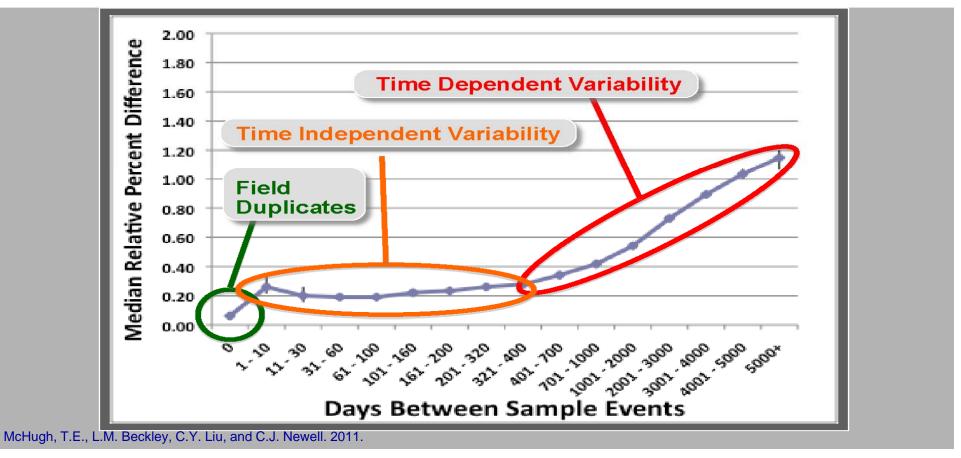
- Ensure long term protectiveness to receptors
- Verify the predicted attenuation to GWQS
- Evaluate whether external influences jeopardize the protectiveness of the remedy

Long Term Monitoring (LTM)

- Design of the LTM Program is based on:
 - Location of plume relative to receptors
 - Type of contaminant
 - Existing long term monitoring data
 - Relative contaminant levels
- Propose in Remedial Action Permit Application for Ground Water
 - Default biennial reporting

Sampling Frequency

Performance Monitoring Wells


- Goal: Verify attenuation
- Frequency depends on:
 - Contaminant levels relative to the GWQS
 - Historic ground water data

Sentinel Monitoring Wells

- Goal: Protect receptors
- Frequency depends on:
 - Distance to potential receptors
 - Performance monitoring well frequency

Performance Monitoring Well Sampling Frequency

RESULTS: TIMESCALE

DOD EPA SERDP

Table 4: Recommended Monitoring Well Sampling Frequency

Situation	Performance Well Sampling Frequency	Sentinel Well Sampling Frequency	Reporting Schedule
Permit issued	Annual years 1-4 *	¹ / ₂ travel time to nearest receptor or annual, whichever is more frequent	With CEA Biennial Certification
After 4 years	Biennial years 5-8 *	¹ / ₂ travel time to nearest receptor or biennial, whichever is more frequent	With CEA Biennial Certification
After 8 years	 BTEX: Every 8 years for the remainder of the permit. Contaminants other than BTEX > 10X GWQS: every 4 years Contaminants other than BTEX < 10X GWQS: every 8 years for remainder of the permit 	1/2 travel time to nearest receptor or the same frequency as the performance wells, whichever is more frequent	With next scheduled CEA Biennial Certification

Example: Performance Monitoring Well Sampling Frequency

Existing Data

- Source removed in 1989
- Annual sampling from 1990 to 2000
- Biennial sampling from 2000 to 2011
- TCE < 10x GWQS in 2011

According to Table 4

- Based on the long duration of prior data, investigator may proceed to the last row of the table
- Sample every 8 years through the duration of the permit.

Example: Sentinel Monitoring Well Sampling Frequency

Existing Data

Nearest receptor is a potable well 1,000 feet from the downgradient edge of the plume

- Hydraulic conductivity = 20 feet/day
- Hydraulic gradient = 0.015
- Effective porosity = 0.2

According to Table 4

- Check travel time
 - Calculated seepage velocity is 1.5 ft/day
 - Travel time to receptor is 670 days
 - One half of travel time is used so annual sampling would be appropriate
- Compare to performance well frequency
- Use whichever is more frequent

Other LTM Considerations

- Analytical parameters
 - COCs, degradation products, geochemical parameters
- Well Network
 - Source, plume fringe, sentinel wells
 - Number of wells is site-specific
- When to sample
 - During the season with highest contaminant levels based on historic data

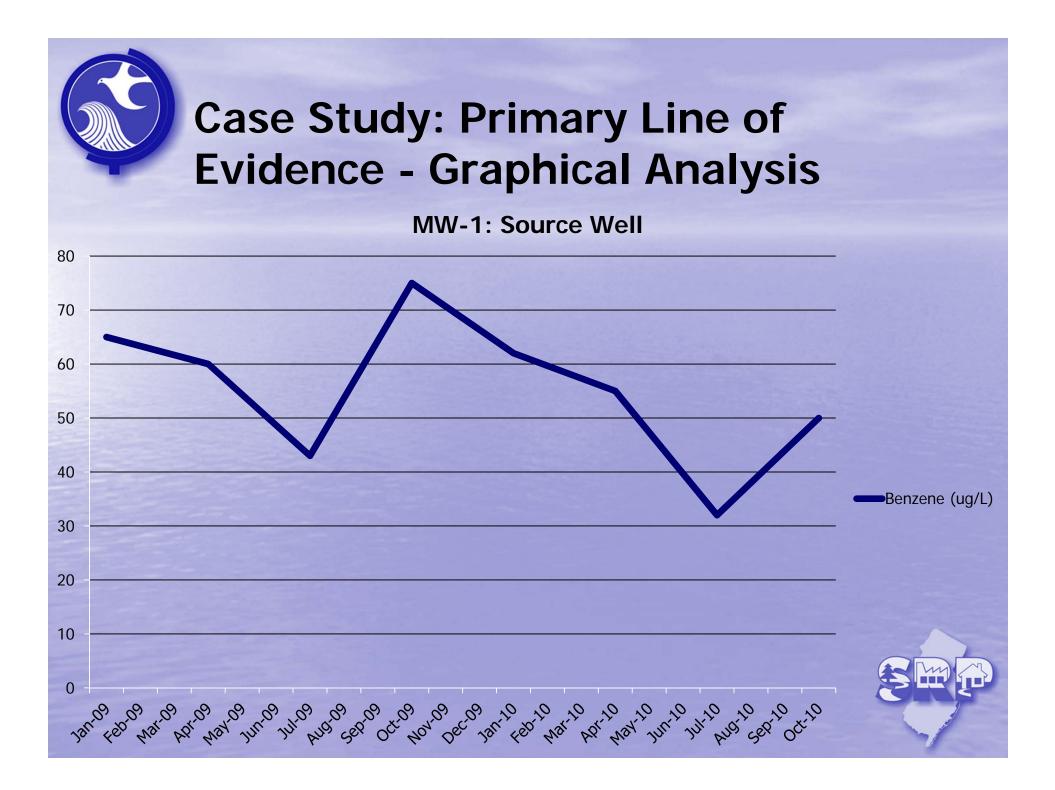
Evaluating LTM Results

- Revisit Conceptual Site Model when conditions change
- Four outcomes of evaluation:
 - Continue LTM Program
 - Modify the LTM Program
 - May require permit modification
 - Implement Contingency Remedy
 - Terminate Program (achieved GWQS)
 - Request DEP to Lift CEA
- Document in Biennial Certification report

MNA Case Study

Case Study: Background

- Gasoline UST Discharge
- UST Removed
- Contaminated Soil Excavated
- Monitoring wells installed and BTEX > GWQS
- Remedial Action Workplan proposes MNA
 - Additional ground water monitoring proposed to obtain a total of eight rounds


Case Study: Monitoring Results Benzene (ug/L)

	MW-1	MW-2	MW-3	MW-4
	Source	Plume	Plume Fringe	Sentinel
January 2009	65	3	0.1	ND
April 2009	60	2	ND	ND
July 2009	43	3	ND	ND
October 2009	75	6	0.2	ND
January 2010	62	1	0.1	ND
April 2010	55	2	ND	ND
July 2010	32	2	ND	ND
October 2010	50	4	0.1	ND

Case Study: Primary Line of Evidence – Plume Stability

	MW-1	MW-2	MW-3	MW-4
	Source	Plume	Plume Fringe	Sentinel
January 2009	65	3	0.1	ND
April 2009	60	2	ND	ND
July 2009	43	3	ND	ND
October 2009	75	6	0.2	ND
January 2010	62	1	0.1	ND
April 2010	55	2	ND	ND
July 2010	32	2	ND	ND
October 2010	50	4	0.1	ND

Case Study: Primary Line of Evidence - Statistical Analysis

Mann-Whitney U Test (Using Wisconsin DNR spreadsheet)

Compound		MW-1	MW-2	MW-3	MW-4	
		Concentration	Concentration	Concentration	Concentration	
Event	Sampling Date	Days After	(leave blank	(leave blank	(leave blank	(leave blank
	(most recent last)	Prev. Rnd.	if no data)	if no data)	if no data)	if no data)
1st Yr, 1st Qtr	1-Jan-09		65.00	3.00	0.10	0.05
1st Yr, 2nd Qtr	1-Apr-09	90	60.00	2.00	0.05	0.05
1st Yr, 3rd Qtr	1-Jul-09	91	43.00	3.00	0.05	0.05
1st Yr, 4th Qtr	1-Oct-09	92	75.00	6.00	0.20	0.05
2nd Yr, 1st Qtr	1-Jan-10	92	62.00	1.00	0.10	0.05
2nd Yr, 2nd Qtr	1-Apr-10	90	55.00	2.00	0.05	0.05
2nd Yr, 3rd Qtr	1-Jul-10	91	32.00	2.00	0.05	0.05
2nd Yr, 4th Qtr	1-Oct-10	92	50.00	4.00	0.10	0.05
Error Check, OK if Blank						
DATA FROM QUARTERLY SAMPLING						
U Statistic =			4.0	4.0	7.0	8.0
Trend at 90 % pr	obability or more?		No Trend	No Trend	No Trend	No Trend

Case Study: Primary Line of Evidence - Statistical Analysis

Mann Kendall (Using Wisconsin DNR spreadsheet)

	Compound ->	MW-1	MW-2	MW-3	MW-4
		Concentration	Concentration	Concentration	Concentration
Event	Sampling Date	(leave blank	(leave blank	(leave blank	(leave blank
Number	(most recent last)	if no data)	if no data)	if no data)	if no data)
1	1-Jan-09	65.00	3.00	0.10	0.05
2	1-Apr-09	60.00	2.00	0.05	0.05
3	1-Jul-09	43.00	3.00	0.05	0.05
4	1-Oct-09	75.00	6.00	0.20	0.05
5	1-Jan-10	62.00	1.00	0.10	0.05
6	1-Apr-10	55.00	2.00	0.05	0.05
7	1-Jul-10	32.00	2.00	0.05	0.05
8	1-Oct-10	50.00	4.00	0.10	0.05
Mana Kandall Statistic (S) -		-12.0	0.0	-1.0	0.0
	Mann Kendall Statistic (S) =			-1.0	
	Number of Rounds (n) =	8	8		8
	Average =	55.25	2.88	0.09	0.05
	Standard Deviation =	13.477	1.553	0.052	0.000
	Coefficient of Variation(CV)=	0.244	0.540	0.591	0.000
Trend ≥ 80% Confidence Level		DECREA SING	No Trend	No Trend	No Trend
Trend ≥ 90% Confidence Level		DECREA SING	No Trend	No Trend	No Trend
Stability Test, If No Trend Exists at CV <= 1 CV <= 1 CV <= 1					
80% Confidence		NA			
ou% conndend	Se Level	NA	STABLE	STABLE	STABLE

Case Study: Secondary Line of Evidence

Dissolved Oxygen

- Dissolved oxygen is the most preferred terminal electron acceptor for petroleum contaminants
- Upgradient monitoring well 5 mg/L
- Source monitoring wells 0 to 0.5 mg/L
- Indicative of aerobic biodegradation

Case Study: Reporting

- RAR Submitted that documents applicability of MNA as a remedy
- Remedial Action Permit Application for Ground
 Water submitted
- Response Action Outcome (limited restricted use) issued once permit is established

Case Study: Long Term Monitoring Program

- According to Table 4 of the MNA Guidance:
 Performance monitoring wells
 - Annual years 1-4
 - Biennial years 5-8
 - Every 8 years thereafter

Sentinel monitoring wells

- Travel time to nearest receptor is 8 years
- Sample at 1/2 travel time, or every 4 years
- Sample same as performance wells until year 8, then sample every 4 years

Case Study: Evaluating Long Term Monitoring Results

	MW-1	MW-2	MW-3	MW-4
	Source	Plume	Plume Fringe	Sentinel
Oct. 2011	55	3	0.1	ND
Oct. 2012	52	2	ND	ND
Oct. 2013	43	2	ND	ND
Oct. 2014	38	ND	ND	ND
Oct. 2016	25	ND	ND	ND
Oct. 2018	20	ND	ND	ND

Conclusion documented in Biennial Certification Report: Continue the LTM program without change

QUESTIONS

