Daniel J. Figola, P.E.
Director of Sustainability Development
Advanced Drainage Systems, Inc.
1030 Deer Hollow Drive
Mt. Airy, MD 21771

Re: MTD Lab Certification
 Barracuda™ MAX Hydrodynamic Separator Stormwater Treatment Device
 On-line Installation

TSS Removal Rate 50%

Dear Mr. Figola:

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7(c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). Advanced Drainage Systems, Inc. (ADS) has requested an MTD Laboratory Certification for the Barracuda™ MAX Hydrodynamic Separator stormwater treatment system (Barracuda™ MAX).

NJCAT verification documents submitted to the NJDEP indicate that the requirements of the aforementioned protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report with the Verification Appendix (dated April 2021) for this device is published online at http://www.njcat.org/verification-process/technology-verification-database.html.
The NJDEP certifies the use of the Barracuda™ MAX stormwater treatment system at a TSS removal rate of 50% when designed, operated, and maintained in accordance with the information provided in the Verification Appendix and the following conditions:

1. The maximum treatment flow rate (MTFR) for the manufactured treatment device (MTD) is calculated using the New Jersey Water Quality Design Storm (1.25 inches in 2 hrs) in N.J.A.C. 7:8-5.5.

2. The Barracuda™ MAX shall be installed using the same configuration reviewed by NJCAT and shall be sized in accordance with the criteria specified in item 6 below.

3. This Barracuda™ MAX cannot be used in series with another MTD or a media filter (such as a sand filter) to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.

4. Additional design criteria for MTDs can be found in Chapter 11.3 of the New Jersey Stormwater Best Management Practices (NJ Stormwater BMP) Manual, which can be found online at www.njstormwater.org.

5. The maintenance plan for a site using this device shall incorporate, at a minimum, the maintenance requirements for the Barracuda™ MAX. A copy of the maintenance plan is attached to this certification. However, it is recommended to review the maintenance website at https://assets.ads-pipe.com/m/2c834056a5a22888/original/Barracuda-Maintenance-Guide-MG1-01.pdf for any changes to the maintenance requirements.

6. Sizing Requirement:

The example on the following page demonstrates the sizing procedure for the Barracuda™ MAX:
Example: A 0.25-acre impervious site is to be treated to 50% TSS removal using an Barracuda™ MAX treatment unit. The impervious site runoff (Q) based on the New Jersey Water Quality Design Storm was determined to be 0.79 cfs.

Maximum Treatment Flow Rate (MTFR) Evaluation:

The site runoff (Q) was based on the following:
- time of concentration = 10 minutes
- \(i = 3.2 \text{ in/hr} \) (page 74, Fig. 5-16 of the NJ Stormwater BMP Manual)
- \(c = 0.99 \) (runoff coefficient for impervious)
- \(Q = ciA = 0.99 \times 3.2 \times 0.25 = 0.79 \text{ cfs} \)

Given the site runoff is 0.79 cfs and based on Table A-1 below, the Barracuda™ MAX Model S3 with an MTFR of 0.85 cfs would be the smallest model that could be used for this site to remove 50% of the TSS from the impervious area without exceeding the MTFR.

The sizing table corresponding to the available system models is noted below. Additional specifications regarding each model can be found in the NJCAT Technology Verification Appendix under Tables A-1 and A-2.

Table A-1 Barracuda™ MAX HDS Models and Associated MTFRs

<table>
<thead>
<tr>
<th>Model</th>
<th>Manhole Diameter (ft)</th>
<th>Maximum Treatment Flow Rate (cfs)</th>
<th>50% Maximum Sediment Storage Area Volume (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barracuda MAX S3</td>
<td>3</td>
<td>0.85</td>
<td>5.89</td>
</tr>
<tr>
<td>Barracuda MAX S4</td>
<td>4</td>
<td>1.52</td>
<td>10.47</td>
</tr>
<tr>
<td>Barracuda MAX S5</td>
<td>5</td>
<td>2.37</td>
<td>16.36</td>
</tr>
<tr>
<td>Barracuda MAX S6</td>
<td>6</td>
<td>3.40</td>
<td>23.56</td>
</tr>
<tr>
<td>Barracuda MAX S8</td>
<td>8</td>
<td>6.08</td>
<td>41.89</td>
</tr>
<tr>
<td>Barracuda MAX S10</td>
<td>10</td>
<td>9.48</td>
<td>65.45</td>
</tr>
</tbody>
</table>

A detailed maintenance plan is mandatory for any project with a stormwater BMP subject to the Stormwater Management rules under N.J.A.C. 7:8. The plan must include all of the items identified in the Maintenance requirements section of the Stormwater Management rules under N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance and Retrofit of Stormwater Management Measures.
If you have any questions regarding the above information, please contact Lisa Schaefer of my office at lisa.schaefer@dep.nj.gov.

Sincerely,

[Signature]

Gabriel Mahon, Chief
Bureau of NJPDES Stormwater Permitting & Water Quality Management

Attachment: Maintenance Plan

cc: Chron File
 Richard Magee, NJCAT
 Changi Wu, NJDEP-BFHSE
 Madhu Guru, NJDEP - BFHSE
One of Barracuda’s advantages is the ease of maintenance. Like any system that collects pollutants, the Barracuda must be maintained for continued effectiveness. Maintenance is a simple procedure performed using a vacuum truck or similar equipment. The systems were designed to minimize the volume of water removed during routine maintenance, reducing disposal costs.

Contractors can access the pollutants stored in the manhole through the manhole cover. This allows them to gain vacuum hose access to the bottom of the manhole to remove sediment and trash. There is no confined space entry necessary for inspection or maintenance.

The entire maintenance procedure typically takes 2 to 4 hours, depending on the system’s size, the captured material, and the vacuum truck’s capacity.

Local regulations may apply to the maintenance procedure. Safe and legal disposal of pollutants is the responsibility of the maintenance contractor. Maintenance should be performed only by a qualified contractor.

Inspection and Cleaning Cycle

Periodic inspection is needed to determine the need for and frequency of maintenance. You should begin inspecting as soon as construction is complete and then on an annual basis. Typically, the system needs to be cleaned every 1-3 years.

Excessive oils, fuels or sediments may reduce the maintenance cycle. Periodic inspection is important.

Determining When to Clean

To determine the sediment depth, the maintenance contractor should lower a stadia rod into the manhole until it contacts the top of the captured sediment and mark that spot on the rod. Then push the probe through to the bottom of the sump and mark that spot to determine sediment depth.

Maintenance should occur when the sediment has reached the levels indicated in the Storage Capacity Chart.
Barracuda Storage Capacities

<table>
<thead>
<tr>
<th>Model</th>
<th>Manhole Diameter in. (mm)</th>
<th>Total System Volume Gallons (Liters)</th>
<th>Treatment Chamber Capacity Gallons (Liters)</th>
<th>Standard Sediment Capacity (20" depth) Yards³ (meters³)</th>
<th>NJDEP Sediment Capacity (50% of standard depth) Yards³ (meters³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>36 (900)</td>
<td>264 (999)</td>
<td>212 (803)</td>
<td>0.44 (0.34)</td>
<td>0.22 (0.17)</td>
</tr>
<tr>
<td>S4</td>
<td>48 (1200)</td>
<td>665 (2517)</td>
<td>564 (2135)</td>
<td>0.78 (0.60)</td>
<td>0.39 (0.30)</td>
</tr>
<tr>
<td>S5</td>
<td>60 (1500)</td>
<td>1040 (3937)</td>
<td>881 (3335)</td>
<td>1.21 (0.93)</td>
<td>0.61 (0.47)</td>
</tr>
<tr>
<td>S6</td>
<td>72 (1800)</td>
<td>1497 (5667)</td>
<td>1269 (4804)</td>
<td>1.75 (1.34)</td>
<td>0.88 (0.67)</td>
</tr>
<tr>
<td>S8</td>
<td>96 (2400)</td>
<td>4196 (15884)</td>
<td>3835 (14517)</td>
<td>3.10 (2.37)</td>
<td>1.55 (1.19)</td>
</tr>
<tr>
<td>S10</td>
<td>120 (3000)</td>
<td>7976 (30192)</td>
<td>7496 (28375)</td>
<td>4.85 (3.71)</td>
<td>2.43 (1.86)</td>
</tr>
</tbody>
</table>

Maintenance Instructions

1. Remove the manhole cover to provide access to the pollutant storage. Pollutants are stored in the sump, below the bowl assembly visible from the surface. Access this area through the 8” (200 mm), 10” (250 mm), 15” (375 mm) or 20” (500 mm) diameter access cylinder.

2. Use a vacuum truck or other similar equipment to remove all water, debris, oils and sediment. See figure 1.

3. Use a high pressure hose to clean the manhole of all the remaining sediment and debris. Then, use the vacuum truck to remove the water.

4. Fill the cleaned manhole with water until the level reaches the invert of the outlet pipe.

5. Replace the manhole cover.

6. Dispose of the polluted water, oils, sediment and trash at an approved facility.
 a. Local regulations prohibit the discharge of solid material into the sanitary system. Check with the local sewer authority for authority to discharge the liquid.
 b. Some localities treat the pollutants as leachate. Check with local regulators about disposal requirements.
 c. Additional local regulations may apply to the maintenance procedure.
One of the advantages of the BaySaver Barracuda is the ease of maintenance. Like any system that collects pollutants, the BaySaver Barracuda must be maintained for continued effectiveness. Maintenance is a simple procedure performed using a vacuum truck or similar equipment. The systems were designed to minimize the volume of water removed during routine maintenance, reducing disposal costs.

Contractors can access the pollutants stored in the manhole through the manhole cover. This allows them to gain vacuum hose access to the bottom of the manhole to remove sediment and trash. There is no confined space entry necessary for inspection or maintenance.

The entire maintenance procedure typically takes from 2 to 4 hours, depending on the size of the system, the captured material, and the capacity of the vacuum truck.

Local regulations may apply to the maintenance procedure. Safe and legal disposal of pollutants is the responsibility of the maintenance contractor. Maintenance should be performed only by a qualified contractor.

Inspection and Cleaning Cycle

Periodic inspection is needed to determine the need for and frequency of maintenance. You should begin inspecting as soon as construction is complete and thereafter on an annual basis. Typically, the system needs to be cleaned every 1-3 years.

Excessive oils, fuels or sediments may reduce the maintenance cycle. Periodic inspection is important.

Determining When to Clean

To determine the sediment depth, the maintenance contractor should lower a stadia rod into the manhole until it contacts the top of the captured sediment and mark that spot on the rod. Then push the probe through to the bottom of the sump and mark that spot to determine sediment depth.

Maintenance should occur when the sediment has reached the levels indicated in the Storage Capacity Chart.

BaySaver Barracuda Storage Capacities

<table>
<thead>
<tr>
<th>Model</th>
<th>Manhole Diameter</th>
<th>Treatment Chamber Capacity</th>
<th>Standard Sediment Capacity (20” depth)</th>
<th>NJDEP Sediment Capacity (50% of standard depth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>36”</td>
<td>212 gallons</td>
<td>0.44 cubic yards</td>
<td>0.22 cubic yards</td>
</tr>
<tr>
<td>S4</td>
<td>48”</td>
<td>564 gallons</td>
<td>0.78 cubic yards</td>
<td>0.39 cubic yards</td>
</tr>
<tr>
<td>S5</td>
<td>60”</td>
<td>881 gallons</td>
<td>1.21 cubic yards</td>
<td>0.61 cubic yards</td>
</tr>
<tr>
<td>S6</td>
<td>72”</td>
<td>1269 gallons</td>
<td>1.75 cubic yards</td>
<td>0.88 cubic yards</td>
</tr>
<tr>
<td>S8</td>
<td>96”</td>
<td>3835 gallons</td>
<td>3.10 cubic yards</td>
<td>1.55 cubic yards</td>
</tr>
<tr>
<td>S10</td>
<td>120”</td>
<td>7496 gallons</td>
<td>4.85 cubic yards</td>
<td>2.43 cubic yards</td>
</tr>
</tbody>
</table>

Maintenance Instructions

1. Remove the manhole cover to provide access to the pollutant storage. Pollutants are stored in the sump, below the bowl assembly visible from the surface. You’ll access this area through the 10” diameter access cylinder.
2. Use a vacuum truck or other similar equipment to remove all water, debris, oils and sediment. See figure 1.
3. Use a high pressure hose to clean the manhole of all the remaining sediment and debris. Then, use the vacuum truck to remove the water.
4. Fill the cleaned manhole with water until the level reaches the invert of the outlet pipe.
5. Replace the manhole cover.
6. Dispose of the polluted water, oils, sediment and trash at an approved facility.
 • Local regulations prohibit the discharge of solid material into the sanitary system. Check with the local sewer authority for authority to discharge the liquid.
 • Some localities treat the pollutants as leachate. Check with local regulators about disposal requirements.
 • Additional local regulations may apply to the maintenance procedure.

Figure 1