Marcellus Monitoring: Small Streams

Alliance for Aquatic Resource Monitoring Dickinson College Carlisle, PA

ALLARM Background

Empower communities with scientific tools to monitor, protect, and restore PA streams.

Educate. Engage. Empower.

Volunteer Monitoring

- Citizens involved in data collection
- US: 1890 2011

Georgia Adopt-A-Stream

GEORGIA'S VOLUNTEER WATER QUALITY MONITORING PROGRAM

National Weather Service

WORKING TOGETHER TO SAVE LIVES

NJ Watershed Watch Network

Citizen Stewards Water Quality Monitoring Program

TEXAS STREAM TEAM

PA Volunteer Stream Monitoring

Rich history – 1980s

Marcellus Monitoring

- A. Citizen surveillance
- B. Baseline monitoring
- C. Continuous monitoring

Great network of partners

Shale Basins in the US

EXHIBIT 11: COMPARISON OF DATA FOR THE GAS SHALES IN THE UNITED STATES									
Gas Shale Basin	Barnett	Fayetteville	Haynesville	Marcellus	Woodford	Antrim	New Albany		
Estimated Basin Area, square miles	5,000	9,000	9,000	95,000	11,000	12,000	43,500		
Depth, ft	6, 500 - 8,500 ⁸²	1,000 - 7,000 ⁸³	10,500 - 13,500 ⁸⁴	4,000 - 8,500 ⁸⁵	6,000 - 11,000 ⁸⁶	600 - 2,200 ⁸⁷	500 - 2,000 ⁸⁸		
Net Thickness, ft	100 - 600 ⁸⁹	20 - 200 ⁹⁰	200 ⁹¹ - 300 ⁹²	50 - 200 ⁹³	120 - 220 ⁹⁴	70 - 120 ⁹⁵	50 - 100 ⁹⁶		
Depth to Base of Treatable Water [#] , ft	~1200	~500 ⁹⁷	~400	~850	~400	~300	~400		
Rock Column Thickness between Top of Pay and Bottom of Treatable Water, ft	5,300 - 7,300	500 - 6,500	10,100 - 13,100	2,125 - 7650	5,600 - 10,600	300 - 1,900	100 - 1,600		
Total Organic Carbon, %	4.5 ⁹⁸	4.0 - 9.8 ⁹⁹	0.5 - 4.0 ¹⁰⁰	3 - 12 ¹⁰¹	1 - 14 ¹⁰²	1 - 20 ¹⁰³	1 - 25 ¹⁰⁴		
Total Porosity, %	4 - 5 ¹⁰⁵	2 - 8 ¹⁰⁶	8 - 9 ¹⁰⁷	10 ¹⁰⁸	3 - 9 ¹⁰⁹	9 ¹¹⁰	10 - 14 ¹¹¹		
Gas Content, scf/ton	300 - 350 ¹¹²	60 - 220 ¹¹³	100 - 330 ¹¹⁴	60 - 100 ¹¹⁵	200 - 300 ¹¹⁶	40 - 100 ¹¹⁷	40 - 80 ¹¹⁸		
Water Production, Barrels water/day	N/A	N/A	N/A	N/A	N/A	5 - 500 ¹¹⁹	5 - 500 ¹²⁰		
Well spacing, acres	60 - 160 ¹²¹	80 - 160	40 - 560 ¹²²	40 - 160 ¹²³	640 ¹²⁴	40 - 160 ¹²⁵	80 ¹²⁶		
Original Gas-In- Place, tcf ¹²⁷	327	52	717	1,500	23	76	160		
Technically Recoverable Resources, tcf ¹²⁸	44	41.6	251	262	11.4	20	19.2		

From: US Dept of Energy, *Modern Shale Gas Development in the US: A Primer,* 2009

Hydraulic Fracturing ("Fracking")

Graphic by Al Granberg

Marcellus Shale Drilling Permits

Current Gas Drilling

Marcellus Shale Drilling Stats:

- 2005–2010: 6,082 Marcellus Shale permits issued (2,596 wells drilled)
- 2008: 5% of all oil/gas wells drilled were in Marcellus Shale Formation (195/4,192)
- 2009: 30% of all oil/gas wells drilled were in Marcellus Shale Formation (768/2,543)
- 2010: 50% of all oil/gas wells drilled were in Marcellus Shale Formation (1,386/2,755)

Drilling Sites

Marcellus Shale Drilling Site Stats:

- Drilling pads typically 3-5 acres, each pad containing 5-6 horizontal wells
- 2-9 million gallons of water used per well (depending on depth and number of times fracked)
- 200-1400 truck trips to supply water per well
- Drilling pads must be >200 feet from structures, >100 feet from streams and wetlands

Volunteer Monitoring

- Feasibility
- Affordability
- Scientifically robust

www.dickinson.edu/ALLARM

Why Are You Monitoring?

- Early detection and prevention of contamination
- Document stream quality – long term impacts
- 3. Community education

The data collected using this monitoring protocol are not intended to be used for legal purposes.

What Will You Monitor?

1. Chemical Monitoring:

Indicator and signature chemicals

Parameter	Median concentrations in flowback samples (mg/L)	PA water quality criteria (mg/L)	PA drinking water criteria (mg/L)	Potential health & environmental effects	
Total Dissolved Solids	93,200	500	500	Variable; includes many chemicals	
Barium	661	10	2	Increase in blood pressure	
Strontium	821	0.050	none	Musculoskeletal toxicant	

3. Surrogate FlowMonitoring:Relationship to TDS

2. Visual Assessment:

Land disturbances Spills and discharges Water withdrawals Gas migration/leakages

http://www.rocketcourier.com/pictures/rivergas.jpg

Flowback Water Concentrations

Source: Amy Bergdale, USEPA

Conductivity and Total Dissolved Solids

- Conductivity measures the ability of water to pass an electrical current
- Total Dissolved Solids (TDS) measures the amount of ions dissolved in the water

(PA standard – 500 mg/L)

Voltage is applied between two probes to measure conductivity in microSiemens/centimeter (µS/cm)

Meter Trials

Dickinson students help test conductivity/TDS meters to determine which meter is most accurate, precise, and easy to use.

Conductivity/Total Dissolved Solids Meter Testing

Thank you for participating in this meter testing session sponsored by the Alliance for Aquatic Resource Monitoring (ALLARM). Please answer the questions on page 1 about each water quality meter. Additional questions are found on page 2 – please provide as much feedback as possible!

L	Meter A: LaMotte Tracer PockeTester										
	Results	Solution	a .	Solution	в	Solution C					
	Conductivi	ity	-								
	TDS		-								
	Did the reading sta	abilize? Y	ES I	NO							
	How difficult was it [1 = very d			um 4 = easy; 5 = ;	very easy]						
l	1	2	3	4	5						
	How difficult was it [1 = very d			;? um 4 = easy; 5 = ;	very easy]						
	1	2	3	4	5						

Meter B: Oakton Mult	i-Parameter PC	STestr 35							
Results	Solution &		Solution B		Solution C				
Conductivity									
TDS									
Did the reading stabilis	e? YES	NO							
How difficult was it to ([1 = very difficult	calibrate the me ult; 2 = difficult; 3		easy; 5 = very ea	15y]					
1	2	3	4	5					
How difficult was it to understand the directions? [1 = very difficult; 2 = difficult; 3 = medium 4 = easy; 5 = very easy]									
1	2	3	4	5					

Barium and Strontium

 Naturallyoccurring metals found deep underground

 Indicate contamination from Marcellus Shale activities (signature chemicals)

https://www.msu.edu/~zeluffjo/periodic_table.gif

Surrogate Flow Monitoring

Cross-sectional area – understand relationship between amount of water in stream and TDS

Visual Assessment

- Earth Disturbances Gas Migration/Leakages
- Spills and Discharges

Marcellus Shale Well Sites in Dimock, PA; 2010

Earth Disturbances: Drill Pad, Storage Pond, & Staging Areas

Outlets of sediment control structures are NOT stabilized

Outlets of sediment control structures are stabilized

Spills & Discharges

Photos courtesy of Delaware Riverkeeper Network

Drilling fluid spill at Cabot site Dimock, PA September 2009

Where Will You Monitor?

<u>Considerations</u>: How will volunteers determine where drilling is occurring?

Volunteers have a wealth of information about their local surroundings

Determining Well Locations

Step 1:

Find where drilling permits have been issued (lat/long)

- eNOTICE/eFacts/eMap PA
- DEP reports

Step 2:

Find issued drilling permit locations on map

- Google Maps
- Topographic map

Step 3:

Choose monitoring site based on important features

- Well locations
- Stream access

Data Use: Decision Trees

CHEMICAL MONITORING DECISION TREE

Quality Assurance/Quality Control

Considerations: What is feasible for volunteers?

Standard QA/QC Practices:

- Training requirements
- Care/calibration of equipment
- Replicates
- Documentation of procedures
- Split sample analysis

Data Management

<u>Considerations</u>: What tools and methods are available to volunteers?

0) - (2 -) -	Chemic	al and Flow Dat	tabase.xls [Compatibil	ity Mode] - Micro	osoft Excel				-	•
C	Hom	ne Inse	rt Page Layout	Formulas	Data Review	View Develope	r Add-Ins					🥑 –	•
	ste	Calibri B I	<u>u</u> • 🔛 • 🔕 • 🗚					ng 🕆 as Table		G™ Insert M Delete	-	Sort & Find Filter * Selec	
Clip	board 🖻		Font	G A	lignment	Number	6	Styles		Cells		Editing	
	D12		\bullet (f_x										
	А	В	С	D	E	F	G	Н	- I	J	K	L	1
1	Site	Week #	Week Start Date	Sample Date	TDS (mg/L)	Conductivity (µS/cn	n) Flow (ft ²)						
2	Site 1	1	1/3/2010		50	50	50		2010	א אחד ה	P. Elow	Readi	nac
3	Site 1	2	1/10/2010		100	100	40		2010	51030	X FIOW	Reau	iligs
4	Site 1	3	1/17/2010		100	100	40	450 -					
5	Site 1	4	1/24/20 This wo	orksheet contains	s 100	100	40	400 -					
6	Site 1	5	1/31/20 demons			100	40	350 -	L				
7	Site 1	6	2/7/20 this she	et to enter your 1, simply delete	the 100	100	40		1				
8	Site 1	7	2/14/20 three c	olumns of demo	data. 100	100	40	300					Ш
9	Site 1	8	2/21/20 You car	n also click on thi	is 100	100	40	1 250 -					++++
0	Site 1	9	2/21/20 100 car 2/28/20 comme	nt and delete it.	100	100	40						
1	Site 1	10	3/7/2010		100	100	40	F 150 -					
2	Site 1	11	3/14/2010		100	100	40			Ī			
3	Site 1	12	3/21/2010		100	100	40	100 -					
14	Site 1	13	3/28/2010		100	100	40	50 -					╂╂╂╂
15	Site 1	14	4/4/2010		100	100	40	- o -	шщш	ЦШШШ	ШШЩ	ШЩШ	ЩШ
16	Site 1	15	4/11/2010		100	100	40		1	11	21	31	
17	Site 1	16	4/18/2010		100	100	40				Monitori		
18	Site 1	17	4/25/2010		200	200	20						
9	Site 1	18	5/2/2010		200	200	20						
20	Site 1	19	5/9/2010		200	200	20						
21	Site 1	20	5/16/2010		200	200	20	Summari	es for Site	1			
22	Site 1	21	5/23/2010		200	200	20	Site	Average	Min	25th	Median	7
23	Site 1	22	5/30/2010		200	200	20	TDS	230	50	100	200	3
4	Site 1	23	6/6/2010		200	200	20	Cond	230	50	100	200	3
25	Site 1	24	6/13/2010		200	200	20	Flow	21	5	10	20	4
6	Sito 1	os ito 1 Si	6/20/2010 te 2 / Site 3 / Site	4 / Site 5 / S	200 ummaries B	ox and Whisker Plots Ex	plained 20	li a					

ALLARM created easy to use templates for volunteers to store their chemical, surrogate flow, and visual assessment data.

Building a Monitoring Force

- 600 people trained since the start of 2010
- ALLARM, DRN, PACTU, & Waterdogs

Questions?

Alliance for Aquatic Resource Monitoring (ALLARM) Dickinson College P.O. Box 1773 Carlisle, PA 17013 717.245.1565 allarm@dickinson.edu www.dickinson.edu/allarm

Marcellus Shale Monitoring Manual