Statewide TMDL for Mercury Impairments Based on Concentration in Fish Tissue Caused Mainly by Air Deposition to Address 122 HUC 14s

Division of Watershed Management NJDEP July 15, 2009

Today's Meeting

- What are TMDLs?
- How was the TMDL developed?
- What are the next steps?
- Provide an opportunity for comments (now or in writing before August 14, 2009).

What are TMDLs?

Total Maximum Daily Loads (TMDLs) represent the assimilative or load capacity of the receiving water to be in compliance with SWQS, taking into consideration:

- point sources of pollutants (wasteload)
- nonpoint sources of pollutants (load)
- natural background

When Are TMDLs Required?

TMDLs are required, under Section 303(d) of the federal Clean Water Act, to be developed for waterbodies that cannot meet surface water quality standards after the implementation of technology-based effluent limitations

	2008	Integrated List
	SUBLIST 1 & 2	2: FULL ATTAINMENT; LIMITED ATTAINMENT
		DATA
	SUBLIST 3:	INSUFFICIENT DATA TO ASSESS
	SUBLIST 4:	IMPAIRED BUT:
		• TMDL DONE
{		 IMPAIRMENT BY POLLUTION NOT
		POLLUTANT
		• OTHER ENFORCEABLE MEASURE WILL
		ADDRESS
	SUBLIST 5:	NON-ATTAINMENT 303(d) List

305(b) Report

Components of a TMDL

Source assessment

- characterization and quantification as necessary
- identify point, nonpoint and background sources

Water quality analysis

- link pollutant sources
 & water quality: model
- consider seasonal variation / critical conditions

TMDL calculations

- loading capacity
- margin of safety
- load and wasteload allocations
- Follow-up Monitoring Implementation Public participation

How are TMDLs expressed?

Amount of pollutants that a waterbody can assimilate without violating surface water quality standards or other target $\mathbf{TMDL} = \sum \mathbf{WLA} + \sum \mathbf{LA} + \mathbf{MOS}$ Where: WLA is the wasteload allocation (point sources) LA is the load allocation (non-point sources) MOS is the margin of safety

Margin of Safety (MOS)

A required component of the TMDL that accounts for uncertainty concerning the relationship between effluent limitations and water quality (40 CFR 130.79(c))

The MOS shall be expressed either as:
An internal modeling factor (an implicit MOS)
Or as an explicit, separate factor (N.J.A.C. 7:15-7.7(a))

Fish-Mercury Impairment in NJ

Mercury concentration in fish tissue exceeds 0.07 mg/kg (NJ fish consumption advisory for sensitive population)

256 HUC14s listed in 2008 as fishmercury impaired

The Approach

Modeled on the Northeast Regional Mercury TMDL established by New England Interstate Water Pollution Control Commission (NEIWPCC) and approved by EPA (2007).

Because Mercury contamination by air deposition is a global problem that cannot be remedied by the actions of a single state, NJ developed a statewide TMDL that would complement the regional efforts in the northeast.

The Approach (cont'd)

A linear response between deposition, ambient concentrations in water, sediments and fish tissue Hg levels.

 $C_{fish} = BAF * C_{water}$ $C_{fish t1}/C_{fish t2} = C_{water t1}/C_{water t2}$ $C_{fish t1}/C_{fish t2} = L_{t1}/L_{t2}$ A decrease in Hg emissions will result in a proportional decrease in Hg concentrations in fish.

The Approach (cont'd)

Mercury is bioaccumulative so it is assumed that if the top trophic level fish has acceptable levels of mercury, the lower trophic levels will be acceptable as well.

Current Approach Focuses on Assessment Unit (HUC14) Impairments Where:

- Air deposition is the primary source;
- Watersheds were excluded if:
 - Hg in surface water above SWQS (>0.050 µg/L);
 - ✓ Tidal Watersheds;
 - Watersheds with known anthropogenic contamination other than from air.
 - TMDLs to be handled by the NY/NJ Harbor Estuary progam or DRBC
- A total of 122 HUC14s are addressed in this study

Target for TMDL

Advisories for the high risk population				
Mercury (TR) Concentration in Fish Tissue Advisory				
Greater than 0.54 μg/g (ppm)	Do not eat			
Between 0.19 and 0.54 µg/g (ppm)	One meal per month			
Between 0.08 and 0.18 μg/g (ppm)	One meal per week			
0.07 μg/g (ppm) or less	Unlimited consumption			
Advisories for the general population				
Mercury (TR) Concentration in Fish Tissue Advisory				
Greater than 2.81 μg/g (ppm)	Do not eat			
Between 0.94 and 2.81 µg/g (ppm)	One meal per month			
Between 0.35 and 0.93 µg/g (ppm)	One meal per week			
0.34 µg/g (ppm) or less	Unlimited consumption			

Surface Water Criteria

Surface Water Criteria - N.J.A.C. 7:9B-1.5(a) 4

	Fresh Water (FW2) Criteria (µg/L)			
Toxic substance	Aqı	Llumon Lloolth		
	Acute	Chronic	Human Health	
Mercury	1.4(d) (s)	0.77(d) (s)	0.050(h)(T)	

d = criterion expressed as a function of the water effects

ratio

T = total

h = noncarcinogenic effect-based human health criteria

s = dissolved

Meeting the SWQS?

 C_{water} = C_{fish}/BAF
 BAF of Methlymercury = 1,690,000 L/kg (trophic level 3 and trophic level 4 fish of 2,700,000 and 680,000 L/kg)
 Ratio of dissolved methyl mercury to total mercury: 0.059 to 0.005
 If C_{fish} = 0.34 mg/kg, C_{water} = 0.0034 µg/L to 0.04 µg/L < 0.050 µg/L

Data Analysis

- The initial data set included 2,474 samples analyzed for mercury in fish tissue;
- Samples were excluded for the following reasons:
 - outside the study area of this TMDL
 - analyzed before 1990 when lab contamination would have been an issue
 - sources other than air deposition present
 - whole fish samples were analyzed
- The final data set used for this TMDL analysis included 1,368 samples from 26 different species

Data Analysis (cont'd)

- Since mercury concentration in fish tissue increases with length, an analysis of covariance model was used to estimate the length-adjusted concentrations of mercury in fish;
- Samples collected from 1990-1999 were significantly different from samples collected from 2000- 2007. So, the samples from 2000-2007 were used in the analysis to better represent the current condition.

Data Analysis (cont'd)

Largemouth Bass is chosen as the indicator species of this TMDL

- Top trophic level fish
- 2nd high average concentration among all species
- Largest sample size
- Best distribution throughout the state

Cumulative Distribution of Mercury Concentrations in Fish Tissues

Mercury Concentration Related to Fish-length for 2000 to 2007 data

Species	Standard Length (cm)	Mean Hg Concentration (ppm) at Standard Length	80th percentile Hg Concentration (ppm) at Standard Length	90th percentile Hg Concentration (ppm) at Standard Length
Largemouth bass	35.11	0.531	0.64	1.15

Required Reduction

Required reduction for high risk population to have one meal per week 1-(0.18/1.15) = 84.3%

Required reduction for general population to have unlimited consumption 1-(0.34/1.15) = 70.4%

Source Assessment

> Air Deposition Load

- Model-Based Analysis and Tracking of Airborne Mercury Emissions to Assist in Watershed Planning, ICF, 2008
- Deposition of Mercury was primarily estimated using the REMSAD model based on 2001 emissions data.
- Multiscale Air Quality (CMAQ) modeling system was used to enhance the analysis of the effects of global background on mercury deposition and CMAQ was applied with Particle and Precursor Tagging Methodology (PPTM) to provide a basis for assessing the uncertainty of the REMSAD PPTM results.
- The outputs from three global models were used to specify the boundary conditions for both REMSAD and CMAQ and thus represent a plausible range of global background.

Load from Wastewater discharges

Summary of Emissions Inventory of New Jersey in Tons per Year (tpy) (ICF,2008)

	HG0*	HG2*	HGP*	Total
Facility Name	(tpy)	(tpy)	(tpy)	(tpy)
B.L. England	0.094	0.016	0.004	0.114
Hudson*	0.011	0.028	0.003	0.041
Mercer	0.030	0.015	0.011	0.057
Deepwater	0.002	0.004	0.000	0.006
Logan Generating Company - L.P.	0.001	0.000	0.000	0.002
Chambers Cogeneration - L.P.	0.010	0.006	0.004	0.021
Co Steel Raritan	0.090	0.011	0.011	0.112
Atlantics States Cast Iron Pipe	0.033	0.004	0.004	0.041
U.S. Pipe & Fndy. Co	0.019	0.011	0.000	0.030
Co Steel Sayreville*	0.178	0.022	0.022	0.222
Essex County RRF*	0.047	0.123	0.042	0.212
Camden RRF*	0.011	0.029	0.010	0.050
Union County RRF	0.003	0.008	0.003	0.014
Gloucester County	0.002	0.005	0.002	0.009
Warren Energy RF	0.001	0.001	0.001	0.003
Howarddown	0.002	0.001	0.001	0.004
Hoeganese	0.005	0.003	0.002	0.010
Camden County Muassi	0.005	0.003	0.002	0.010
Stony Brook Regional Sewerage				
Authority	0.011	0.007	0.005	0.023
Bayshore Regional Sewerage	0.004	0.002	0.002	0.008
Somerset Baritan Valley Sewerage	0.004	0.002	0.002	0.008
Authority	0.007	0.004	0.003	0.014
Northwest Bergen County Utilities				
Authority	0.005	0.003	0.002	0.010
Parsippany – Troy Hills Township				
WWTP	0.004	0.003	0.002	0.009
Atlantic County Utilities Authority	0.003	0.002	0.001	0.006
Gloucester County Utilities Authority	0.001	0.001	0.000	0.002
Point Source Total	0.579	0.312	0.137	1.030
Man-point Saurce	0.464	0.096	0.055	-0.613
Total /	1.043	0.408	0.192	1.643

Mercury Air Deposition Load for NJ (ICF, 2008)

Category	Load (kg/yr)	Percent of Total Load
Background	309.0	52.0%
Background-reemission	16.9	2.8%
New Jersey	74.1	12.5%
Loading from the surrounding state (Total)	154.6	26.0%
Pennsylvania	102.8	17.3%
Maryland	25.1	4.2%
New York	13.7	2.3%
Delaware	11.1	1.9%
Connecticut	1.8	0.3%
Loading from other states, Canada and Mexico	39.6	6.7%
Total	594.2	100%

Load from Dischargers

- Major and minor municipal dischargers and industrial dischargers with mercury limit in their permits.
- Exclude the dischargers that discharge to the tidal and coastal area
- Median concentration (19.75 ng/L) of samples collected at POTWs through NY-NJ Harbor TMDL sampling effort as the representative concentration
- Current load from dischargers = representative concentration x sum of permitted flow = 6.8 kg/yr

Distribution of Current Mercury Load

Current Load = 601 kg/yr

TMDL Calculations

- Load capacity = current load * (1- required reduction).
- Reduction doesn't apply to the load from dischargers and the air deposition load due to the natural background.

> 25% of the background load and reemission is assumed to be due to natural sources and therefore nonreducible.

TMIDL Calculation (cont'd)

> WLA portion of the air deposition load, which is technically a LA, is derived by applying the percentage of urban land within Tier A municipalities (25.6%) to the overall air deposition load based on the assumption that this load reaches the water bodies through regulated stormwater facilities.

Mercury TMDL for One Meal per Week by High Risk Population

	Existing TMDL Load		L Load		
Category	Load (kg/yr)	kg/yr	kg/day	Percent Reduction	
Total Annual Load	601.0	94.1	0.26	84.3%	
Discharger Load (WLA)	6.8	6.8	0.02	_	
Air Deposition Load (WLA/LA)	594.2	87.3 (65.0/22.3)	0.24 (0.18/0.06)	85.3%	
Background due to natural source	77.3	77.3	0.21	-	
Background due to anthropogenic sources	231.8	2.6	0.01	98.9%	
New Jersey	74.1	0.8	0.002	98.9%	
Loading from surrounding states	154.6	1.8	0.005	98.9%	
Loading from other states, Canada and Mexico	39.6	0.4	0.001	98.9%	
reemission due to natural source	4.2	4.2	0.01	-	
Reemission due to anthropogenic source	12.7	0.1	0.0004	98.9%	

Mercury TMDL for Unlimited Consumption by General Population

		TMDL		Percent
Category	Existing Load (kg/yr)	kg/yr	kg/day	Redu ction
Annual Load	601.0	177.7	0.49	70.4%
Discharger Load	6.8	6.8	0.02	-
Air Deposition Load (WLA/LA)	594.2	170.9 (127.2/43.7)	0.47 (0.35/0.12)	71.2%
Background due to natural source	77.3	77.3	0.21	-
Background due to anthropogenic sources	231.8	40.4	0.11	82.6%
New Jersey	74.1	12.9	0.04	82.6%
Loading from surrounding states	154.6	27.0	0.07	82.6%
Loading from other states, Canada and Mexico	39.6	6.9	0.02	82.6%
reemission due to natural source	4.2	4.2	0.01	_
Reemission due to anthropogenic source	12.7	2.2	0.01	82.6%

Margin of Safety

The MOS included in this TMDL is implicit because of the following conservative assumptions:

- The 90th percentile fish mercury concentration based on the largemouth bass, *Micropterus salmoides*. This species of fish has the highest concentration of the species that are ubiquitous throughout the state;
- Reductions in sulfur deposition and sulfate-reducing bacterial activity will decrease the rate of mercury methylation. The percent reduction does not account for additional reductions in methyl mercury that may occur as a result of the implementation of ongoing state and federal programs to reduce sulfur emissions.

Implementation

- New Jersey must work with other states and USEPA, New Jersey cannot solve this problem alone
- The existing regulations concerning mercury will continue to be implemented, enforced, and evaluated for effectiveness:
 - the dental amalgam regulations
 - mercury emissions from air sources
 - the removal of automobile mercury switches

Implementation (cont'd)

- New Jersey plans to develop surface water criteria based upon a methyl mercury fish tissue concentration of 0.18 mg/kg which is based upon consumption of 1 meal per week by high risk individuals.
- Explore the development of legislation that addresses mercury-containing products and limits the sale of mercury for approved purposes.

Additional Information

Anne Witt, Research Scientist II <u>anne.witt@dep.state.nj.us</u> (609) 633-1441

Jay Springer, Supervising Environmental Specialist jay.springer@dep.state.nj.us (609) 633-1441

Website: www.nj.gov/dep/watershedmgt/tmdl.htm

Public Comments

The Public Comment period will continue for 30 days after this public hearing, ending on August 14, 2009.

Interested persons should submit written comments on the proposed amendment to:

Barbara Hirst, Bureau Chief, BEAR New Jersey Department of Environmental Protection Division of Watershed Management P. O. Box 418, 401 East State Street Trenton, New Jersey 08625