Monitoring and Reducing Microplastics in the Delaware River Estuary

SWEP Emerging Contaminants Seminar

Eurofins August, 28 2025 Lancaster, PA

Jake Bransky, Sr Aquatic Biologist
Fanghui Chen, Sr Water Resource Engineer

Jeremy L. Conkle, Ph.D., Sr. Chemist/Toxicologist

Who is the Delaware River Basin Commission?

Why study microplastics in the Delaware Estuary?

How did we study microplastics in the Delaware Estuary?

What did we find?

Who is the Delaware River Basin Commission?

The Delaware River

- 330 miles
- 13,500 mi² watershed
- Free-flowing mainstem
- Schuylkill is largest tributary
- Tidal from ocean to Trenton
- Unique habitats & communities

The Delaware River meets our needs.

- >14 million people in four states
- Half of NYC drinking water
- Four states
- >\$21billion in economic value
- Interstate boundary

The Delaware River Basin Commission is a federal-interstate government agency.

Our Mission

Manage, protect, and improve the water resources of the Delaware River Basin.

Our Vision

Provide trusted, effective, and coordinated management of the Basin's shared water resources.

DRBC's programs fall into two general categories.

FLOW

An adequate and sustainable supply of water

WATER QUALITY

Clean and healthy water resources

Why study microplastics in the Delaware Estuary?

Plastic is an Ecosystem & Public Health Threat

- Plastic contains toxic chemicals (PFAS, UV inhibitors, etc.)
- Bacteria hitchhike on plastics
- Organisms actively and passively consume plastics
- The Delaware River and tribs are the main source of drinking water in the basin.

How Microplastics Infiltrated our Food CNBC 8/20/25 16:29 min

Previous studies left the Upper Portion of the Delaware Estuary understudied

Develop a baseline for microplastic concentrations

UNITED STATES OF AMERICA

How did we study microplastics in the Delaware Estuary?

Sampling Locations

- Delaware Mainstem
 - 4 tidal
 - 1 non-tidal
- Tributaries
 - 9 tidal
 - 1 non-tidal

Sample Collection Methods

153 µm Net Sampler

Niskin Sampler

Sample Processing

- Analysis by Temple University –
 Water and Environmental
 Technology Center
 - O Sequentially sieved at 90, 250, 500, 1000 μm
 - Wet peroxide (30%) digestion of organic matter
 - Visual sorting of microplastics w/ and w/o a microscope
- QA/QC
 - Sample equipment rinsing w/DI water
 - o Field, Equipment and Lab blanks

Sample Analysis

- Characterization:
 - Shapes
 - · Fibers & fiber bundles
 - Films
 - Fragments
 - Spheres
 - Color
 - Size
 - Polymer w/FTIR spectroscopy

600-

400-

Name

-18-4000

350

Plastic concentration

What did we find?

Microplastics were present in all samples

https://rpubs.com/jwb5096/860798

Microplastic concentrations were higher in grab samples than net samples

Microplastic concentrations were higher in grab samples than net samples

Shape

Fibers were common in both types of samples, but dominated grab samples

Color

Net samples showed a greater diversity of colors

<u>Size</u>

Plastic particles collected in net samples were larger

Composition

Grab samples dominated by clothing derived fibers like polyester and rayon.

Net samples more diverse.

ACR = Acrylic, AZL = Azlon, CEL = Cellulosic, KEV = Kevlar, NYL = Nylon, PBT = Polybutylene Terephthalate, PE = Polyethylene, PHX = Polyhexamethylene, PLY = Polyester, PP = Polypropylene, PS = Polystyrene, PTFE = Polytetrafluoroethylene, PUR = Polyurethane, PVC = Polyvinyl Chloride, PVS = Polyvinyl Stearate, RAY = Rayon, UNK = Unknown.

Sample Depth

Microplastic concentrations were higher in surface samples than bottom samples

Sample Depth

Surface and bottom grab samples were composed of similar types of plastics.

How Do Microplastics Move through the Estuary?

- Tracer simulations to model microplastic dynamics in the Estuary
- Releases from Christina River,
 Frankford Creek, Mantua Creek,
 Neshaminy Creek, Pennsauken
 Creek, Pennypack Creek, and
 Schuylkill River
- High flow and low flow simulations

Release from:

Frankford Creek

High Flow

1d post release

Release from:

Frankford Creek

High Flow

5d post release

What is DRBC doing to help?

 Cleanup efforts focused on high plastic loading tributaries and plastic collection points in the

Summary

- Microplastics found in all samples throughout the Upper Delaware River Estuary
- Results were dependent on sampling methodology
- River flow affects residence time of microplastics in the Estuary

Acknowledgements

Funding: NFWF Delaware Watershed Conservation Fund

Laboratory Analysis: Temple University Wet Center

DRBC Staff: Dr. Fanghui Chen, Elaine Panuccio, Dr. Ron MacGillivray, Scott Jedrusiak

Questions?

For more information, follow the QR Code to DRBC's microplastics page

