

Updates on the National Water Center & National Water Model **Robert Shedd NWS-Middle Atlantic RFC** December 2016

Overview

- National Water Center is gradually spinning up operations at facility in Tuscaloosa
- Initial version of National Water Model was operational in August 2016
- Development of v1.1 has been completed and will be implemented in the spring

Office of Water Prediction

• OWP Silver Spring, MD

Tom Graziano, office director

- OWP Chanhassen, MN (NOHRSC)
- National Water Center, Tuscaloosa, AL

National Water Model (NWM) Facts

- Goal is to build a national water model framework that can run on centralized computing, accelerate Research to Operations, and provide enhanced services
- Initial version of National Water Model has been operational since August 2016
- High resolution hydrologic model forecasts
 - uses the WRF-Hydro framework developed at the National Center for Atmospheric Research (NCAR)
 - Are implemented on NWS <u>operational</u> High Performance Computers by NWS and NCAR staff

Designed as a community-based (and supported) model coupling architecture

Analogous to CHPS, but for supercomputer-driven, high performance hydrologic modeling

Extensible, multi-scale, and multi-physics

- Seamlessly handle local to national applications
- Readily accommodate changes and enhancements
- Powerful assimilation and prediction of major water cycle components
 - Including precipitation, soil moisture, snowpack, groundwater, and streamflow

- Distributed, (mostly) physical hydrologic modeling platform
 - Based upon WRF-Hydro framework developed by NCAR, but adapted for NWS operations
 - Flexible, interwoven collection of physical and conceptual models (or modules)

High-resolution, CONUS-wide

- Atmospheric forcings and land surface model run at 1 km
- Water routed (over/through terrain grid) at sub-km resolution (and sub-hr timesteps)
- Distributed flow aggregated and routed through channel networks (NHDPlus, derived from DEMs)

- What Version 1.0 is:
 - Streamflow forecast <u>guidance</u> for underserved locations
 - Spatially continuous, national <u>estimates</u> of hydrologic states
 - <u>Modeling architecture</u> that permits infusion of new data and science, and allows for geointelligence linkages
 - Foundation for sustained growth in nationally consistent operational hydrologic forecasting capability

- What Version 1.0 is not:
 - Not interactive
 - No real-time forecaster engagement (operational supercomputer requirement)
 - Not uncalibrated
 - Mostly parameterized via geospatial datasets
 - Calibration parameters determined via sensitivity analyses
 - Appropriate parameters will undergo iterative refinements (via scaling factors); first round of calibration activities is happening as we speak
 - Not a finished product
 - Lacks physical groundwater, channel seepage, and water management components
 - Recurring cycles are planned for fixes, upgrades, and refinements

NWM Initial Configurations

Presented to the DRBC Flood Advisory Committee on Dec. 7, 2016. Contents should not be published or re-posted in whole or in part without the permission of DRBC.

NOA

NWM Initial Operating Capability (IOC) Key Features

- Modeling architecture designed for the rapid infusion of new techniques
- Forecasts for underserved and ungauged locations; potential for flash flood program improvements
- Blends in streamflow observations from 6K-7K USGS gages. Assimilation of snow data and soil moisture data is being developed.
- Selected data shipped to RFCs for use in our operational software.
- NWC website map viewer (<u>http://water.noaa.gov/</u>) will provide images for streamflow and soil moisture. Other variables will come later.
- "Full" selection of output grids will be available on the NOMADS ftp server

Sample Output

National Water Model Streamflow Anomaly (Experimental) Forecast valid for 2016-07-08 18:00:00 UTC Model initialized at 2016-07-08 06:00:00 UTC

Middle Atlantic River Forecast Center

NWM Forecast Comparisons

External: (1) 05-23-2016 18:00:00 GM [2] 05-23-2016 17:00:00 GM1 [3] 05-23-2016 14:00:00 GM1 [4] 05-23-2016 12:00:0 [5] 05-23-2016 06:00:00 GM

DOVM1ME_Forecast: [6] DOVM1ME 05-23-2016 18:00:00 GMT Local

Merrimack_Forecast: [6] Merrimack 05-23-2016 18:00:00 GMT Current

NOAF

ESSV1LCH Forecast: [6] ESSV1LCH 05-23-2016 18:00:00 GMT Local

Some Limitations in IOC

- Forcings not currently available, can be hard to evaluate NWM forecasts
- No way to update model states
- Reservoirs are currently modeled as level pool, complicated operations not included in current version
- No surge component for tidal reaches
- Medium range forecasts only issued once per day
- New builds only every 12-18 months

National Water Model Evaluation

- Some evaluations of model simulations available (see example below), but forecast skill is still being assessed
- RFCs and WFOS plan to help NWC evaluate WRF-Hydro forecast output
- NWC approach is to accelerate WRF-Hydro foundation real-time capability and then work to improve the model year-by-year

Average Daily Streamflow Correlation Over Gages II Unregulated Basins 2011-2013 **Simulation** With NLDAS2 Forcing, Initial Parameters, No Data Assimilation or Reservoirs

Analysis courtesy Aubrey Dugger (NCAR)...talk given in AMS Benchmarking Session

Middle Atlantic River Forecast Center

BC. -

What does this mean for MARFC?

- No changes to MARFC products
- MARFC will continue using multiple sources of information to develop forecasts and other products including:
 - Internally developed QPE and QPF grids
 - Our own hydrologic and hydraulic model runs (deterministic and ensemble)
 - Snow analyses from NWC/NOHRSC
 - Our own gridded model runs (flash flood guidance and distributed hydrologic model for selected headwaters)
 - Historical analogues
 - Forecaster modifications to translate raw model output into forecasts
 - PLUS NWM outputs will complement existing information
- RFCs will work with NWC on NWM evaluation and enhancements.
- RFCs working with partners to get value out of gridded forecasts
 - One Example: Collaboration with USDA, EPA, and states on using forecast runoff to provide guidance on fertilizer application risk

Point and Click Hydrograph

Interactive Forecast Chart

Middle Atlantic River Forecast Center

CHPS Hydrograph

Middle Atlantic River Forecast Center

Streamflow Anomoly

Middle Atlantic River Forecast Center

Next Steps

- NWM is undergoing constant evaluation and verification
 - Quantitative assessment at OWP
 - Qualitative assessment at RFCs
- Version 1.1 Enhancements
 - Calibration to improve on high biases in MidAtlantic
 - Extend short term forecast to 18hrs (from 15)
 - Increase medium range frequency to 4x per day
 - Stream connectivity improvements
 - Snowpack modeling and infiltration on sandy soils
 - Begin work on reservoir modeling

Thank You for Your Attention!

Questions?

Robert.Shedd@noaa.gov

(814) 231-2438