What wastewater improvements will achieve the best dissolved oxygen outcome in the Delaware Estuary?

Sarah Beganskas, PhD

Water Resource Scientist
Delaware River Basin Commission

Partnership for the Delaware Estuary Science and Environmental Summit

January 30, 2023

Which wastewater discharges are most important for DO?

How much ammonia reduction is needed to maximize DO improvement?

Which wastewater discharges are most important for DO?

How much ammonia reduction is needed to maximize DO improvement?

How does ammonia reduction from an individual discharge impact low DO in the FMA?

Percent Time above 5 mg/L DO

Fish Maintenance Area: RM 70–108.4 Higher is better!

Class A' discharges have a major impact on low DO in the FMA

Class A discharges have a marginal impact on low DO in the FMA

Class B discharges have no measurable impact on low DO in the FMA

Discharges by Class

Class	Discharge Name	Zone	River Mile	Permitted Flow (MGD)	Effluent Ammonia (mg/L)
A' (7)	PWD Northeast	3	103.9	210	4.4
	Camden County MUA	3	97.9	80	17.3
	PWD Southeast	3	96.7	112	8.6
	PWD Southwest	4	90.7	200	19.0
	Gloucester County UA	4	89.9	27	23.9
	DELCORA	4	80.4	70	3.8
	City of Wilmington	5	71.6	134	9.5
Α	Hamilton TWP WPCF	2	128.4	16	27.0
(2)	Lower Bucks JMA	2	121.9	10	19.7
B (58)	Morrisville BMA	2	132.5	7	9.7
	Trenton SU	2	131.8	20	5.4
	Willingboro WPCP	2	111.4	5	1.4
	Cinnaminson SA	2	108.7	2	16.0

How much ammonia reduction is needed to maximize DO improvement?

How much ammonia reduction is needed to maximize DO improvement?

Baseline design condition represents protection of existing water quality and uses

1st Percentile DO

80

River Mile

100

120

AA01: 3D Baseline

20

Bringing minimum DO above 4 mg/L requires reducing effluent ammonia to 1.5 mg/L

1st Percentile DO

Oct 15 (mg/L) DO during May 1 AA01: 3D Baseline AA02: Class A'+A NH34 = 10 mg/LAA03: Class A'+A NH34 = 5 mg/LAA04: Class A'+A NH34 = 1.5 mg/L80 100 120 River Mile

"Summer" (May through October) effluent NH4-N, CBOD, NO3-N, and DO were adjusted

Reducing total nitrogen (TN) brings no additional benefit to low DO

1st Percentile DO

Oct 15 (mg/L) DO during May 1 AA01: 3D Baseline AA02: Class A'+A NH34 = 10 mg/LAA03: Class A'+A NH34 = 5 mg/LAA04: Class A'+A NH34 = 1.5 mg/LAA05: Class A'+A TN = 4 mg/L20 80 100 120 River Mile

"Summer" (May through October) effluent NH4-N, CBOD, NO3-N, and DO were adjusted

How sensitive is low DO to Class A ammonia levels?

(with Class A' ammonia = 1.5 mg/L)

1st Percentile DO

Oct 15 (mg/L) DO during May 1 AA07: Class A NH34 = Existing level 20 100 80 120 River Mile

Percent Time above 5 mg/L DO

"Summer" (May through October) effluent NH4-N, CBOD, NO3-N, and DO were adjusted

How sensitive is low DO to Class A ammonia levels?

(with Class A' ammonia = 1.5 mg/L)

1st Percentile DO

Oct 15 (mg/L) DO during May AA07: Class A NH34 = Existing level AA10: Class A NH34 = 10 mg/L20 80 100 120 River Mile

Percent Time above 5 mg/L DO

"Summer" (May through October) effluent NH4-N, CBOD, NO3-N, and DO were adjusted

How sensitive is low DO to Class A ammonia levels? (with Class A' ammonia = 1.5 mg/L)

1st Percentile DO

Oct 15 (mg/L) DO during May 1 AA07: Class A NH34 = Existing level AA10: Class A NH34 = 10 mg/L AA08: Class A NH34 = 5 mg/L80 100 120 River Mile

Percent Time above 5 mg/L DO

"Summer" (May through October) effluent NH4-N, CBOD, NO3-N, and DO were adjusted

DO is less sensitive to Class A ammonia levels, but ammonia reduction does have an impact

1st Percentile DO

Oct 15 (mg/L) DO during May 1 AA07: Class A NH34 = Existing levelAA10: Class A NH34 = 10 mg/LAA08: Class A NH34 = 5 mg/LAA04: Class A NH34 = 1.5 mg/L80 100 120 River Mile

"Summer" (May through October) effluent NH4-N, CBOD, NO3-N, and DO were adjusted

Implementing these improvements substantially benefits habitat

1st Percentile DO

The lowest DO value in the Estuary increases and moves upstream

50 28 miles experience DO less than 5 mg/L

Reducing effluent ammonia to **1.5** mg/L (Class A') and **5** mg/L (Class A) **improves habitat** in the urban estuary

Reducing effluent ammonia to **1.5** mg/L (Class A') and **5** mg/L (Class A) **improves habitat** in the urban estuary

TOTAL COST vs. DISSOLVED OXYGEN IMPROVEMENT

TOTAL COST vs. DISSOLVED OXYGEN IMPROVEMENT

Maximum 1st-Percentile DO Improvement in FMA (mg/L)

Reducing effluent ammonia to **1.5** mg/L (Class A') and **5** mg/L (Class A) **improves habitat** in the urban estuary

Cost (\$153M/yr in 2019) was considered, but selected scenario driven by maximum achievable DO improvement

Reducing effluent ammonia to **1.5** mg/L (Class A') and **5** mg/L (Class A) **improves habitat** in the urban estuary

Cost (\$153M/yr in 2019) was considered, but selected scenario driven by maximum achievable DO improvement

Improving Dissolved Oxygen and Aquatic Life Uses in the Delaware River Estuary Delaware River Estuary

Topic	Presenter
Why are we here?	Steve Tambini
How did DRBC address low dissolved oxygen in the Delaware Estuary - then and now?	Namsoo Suk
Where do ammonia and other nutrients in the Delaware Estuary originate, and how do we know?	John Yagecic
What is this estuary-wide eutrophication model and why do we need it?	Li Zheng
What matters and what doesn't with regard to low dissolved oxygen events in the Delaware Estuary?	Fanghui Chen
What combination of wastewater improvements will achieve the best dissolved oxygen outcome in the Delaware Estuary?	Sarah Beganskas
What is the highest attainable dissolved oxygen condition in the Delaware Estuary, and what will it mean for aquatic life uses?	Thomas Amidon
Q&A Panel: Enhancing support for aquatic life uses in the Delaware Estuary	All