Water and Energy in the Delaware River Basin

Constellation Energy, Limerick Nuclear Generating Station

December 9, 2022

Michael Thompson, P.E.

DRBC Water Resource Planning Section Water Resource Engineer

and

Chad Pindar, P.E.

DRBC Water Resource Planning Section Manager

1. DRBC's Water Withdrawal and Consumptive Use Study

2. Why are we projecting withdrawal data?

Is there enough water to meet future demands?

- What are the current/future demands? ——
- 2. How does it compare against current allocations?
- 3. What about a repeat of the Drought of Record?
- 4. What about climate change?

3. Water use sectors in the DRB

The primary method is extrapolation of historic reported withdrawal data

Water Withdrawals in the Delaware River Basin

Public Water Supply

Primary Method: Extrapolation of historic water withdrawal data

Out-of-Basin Diversion

Report Link: Section 3 Report Link: Section 3 Report Link: Section Primary Method: Mean value based on a five-year average.

Self-supplied Domestic

Primary Method: Population estimate and per-capita rates.

Power Generation

Report Link: Section 5 Primary Method: Extrapolation of historic water withdrawal data

Industrial

Report Link: Section 6 rimary Method: extrapolation of nistoric water vithdrawal data

Mining

Report Link: Section 7 Primary Method: Extrapolation of historic water withdrawal data

Irrigation

Report Link: Section 8 Primary Method: Multivariate regression for temperature and precipitation.

Other

Report Link: Section 9 Primary Method: Extrapolation of historic water withdrawal data

The focus of this presentation

Historic and projected water withdrawals from the Delaware River Basin

- Peak withdrawals have occurred
- Thermoelectric decreases since 2007 will plateau as coal-fired facilities using oncethrough are limiting
- Public Water Supply has shown and projects decreases despite historic and projected growing in-Basin population
- Hydroelectric withdrawals are significant;
 however, no consumptive use
- Industrial withdrawals historically decrease, but plateau

UNITED STATES OF AMERICA

Historic and projected consumptive use in the Delaware River Basin

- Consumptive use projected to remain relatively constant
- Largest consumptive use is Out-of-Basin
 Exports under a U.S. Supreme Court Decree
- Thermoelectric consumptive use constant despite decreased withdrawals due to changes in technology
- Irrigation is significant and shows slight increases related to projected changes in climatic variables
- Significant **spatial variation** in terms of both withdrawal and consumptive us

Context: power in the Delaware River Basin, comparatively

Data sources:

EIA: PowerPlants US 202004.shp https://www.eia.gov/maps/layer_info-m.php

"Operable electric generating plants in the United States by energy source. This includes all plants that are operating, on standby, or short- or long-term out of service with a combined nameplate capacity of 1 MW or more."

Represents "current" facility conditions as of April 2020. **Does not represent net** generation, or historic fuels primary fuel types.

Context: power in the Delaware River Basin, comparatively

Data sources:

EIA: *PowerPlants_US_202004.shp* https://www.eia.gov/maps/layer_info-m.php

USGS: WBD_National_GDB.gdb

http://prd-tnm.s3-website-us-west-2.amazonaws.com/?prefix=StagedProducts/Hydro graphy/WBD/National/GDB/

Some notes:

- Aggregate the installed capacity by HUC-6 code.
- 388 HUC-6 codes (excludes CN, GU, PR, MX, VI)
- 360 have installed capacity
- (020402) LDRW = $5^{th}/360$
- (020401) UDRW = 74th / 360

Power in the DRB is comparably significant.

Historic power data: DRB-facilities net gen. (AER fuel type)

Salem Generating Station temporarily shut down around 1996 (including part of 1995 & 1997)

e.g., no data for "WOC" (1999-2000) due to manual classification of AER fuel types, given the best available data resolution. Likely captured as "COL"

Historic power data: DRB-facilities net gen. (primary mover)

Data gaps due to unavailable information reported to EIA forms

Historic power data: DRB-facilities net gen. (cooling system)

A single cooling system classification is assigned to each facility's historic net generation data (i.e., not reported annually).

Cooling system classifications primarily obtained from supplemental data for (Harris & Diehl, 2019). Facilities which were not classified (mainly retired facilities) were classified by DRBC.

Harris, M. A., & Diehl, T. H. (2019). Withdrawal and Consumption of Water by Thermoelectric Power Plants in the United States, 2015: Scientific Investigations Report 2019–5103. Reston, Virginia. U.S. Geological Survey. https://doi.org/10.3133/sir20195103

Notes on historic DRB net generation

Key notes:

- 1. In the DRB, total net generation reached a **peak of 108.328 Twh in 2016**, followed by the largest decrease in recent history (-10.748 Twh), to 97.580 Twh in 2019.
- Trends in 2007-2012:
 - Decreased production by coal-fired stream turbine facilities using once through cooling
 - Increase in facilities using natural gas, and those with combined cycle turbines (newer technology)
- 3. Counter to findings reported by (Harris & Diehl, 2019) for 2010-2015 where the national net generation decreased ~7%, the DRB increased ~13.6%

These are notes based on observations of reported data. It is understood that regulations such as Clean Air Act, Clean Water Act and market forces have influenced the observed trends; however, it is not in the scope of this study to determine such cause-and-effect relationships.

Timeframe between lines:

Thermoelectric withdrawals

Thermoelectric: all facilities (water withdrawals)

Date (Year)
Salem Generating Station which temporarily shut down around 1996, uses once-through saline water cooling (including part of 1995 & 1997)

Regarding withdrawal data:

- 1. Overall, water withdrawals by thermoelectric facilities appears to have peaked around the year 2000 with a reported annual average of about 5,927 MGD (*in 2001*).
- 2. The decrease in total withdrawal from 2007-2017: 1,923 MGD (~34.8%)
- 3. Most decreases associated with facilities using oncethrough freshwater cooling systems.
- 4. Findings are generally consistent with those estimated nationally by the model presented in in Harris & Diehl, 2019.

Regarding projections:

- Projected continued decrease 2017-2060 (430 MGD, 11.7%)
 with dramatic plateau (non-nuclear facilities)
- 2. Uneven predictive intervals, skewed higher (when a predictive interval for an individual facility is calculated to be negative, it is instead taken as zero)

Thermoelectric consumptive use

Historic and projected consumptive water use in the Delaware River Basin Windows Society Open Soci

Thermoelectric: all facilities (consumptive use)

Regarding consumptive use data:

- 1. Relatively stable over the last 20 years: Average annual value of 95.7 MGD (1998-2017).
- 2. Consumptive increasingly attributed to facilities using recirculating cooling.
- 3. Nationally, the model in Harris & Diehl, 2019 estimated that thermoelectric water consumption decreased about 21% between 2010 and 2015. The DRB appears to be counter to the national trend

(note: a national trend is likely inherently comprised of many varying sub-trends).

Regarding projections:

- The same projection equations as total water withdrawal...
 each projection equation had a CUR applied to it.
 (The same as calculating the consumptive use data).
- 2. Aggregated projections create an "average model" of about 93 MGD, predictive intervals relatively symmetric.

6. Questions

Michael Thompson, P.E. Water Resource Engineer

Delaware River Basin Commission

E: Michael.Thompson@drbc.gov

P: (609) 883-9500 ext. 226

Chad Pindar, P.E.

Manager – Water Resource Planning Section

Delaware River Basin Commission

E: Chad.Pindar@drbc.gov

P: 609-883-9500 ext. 268

