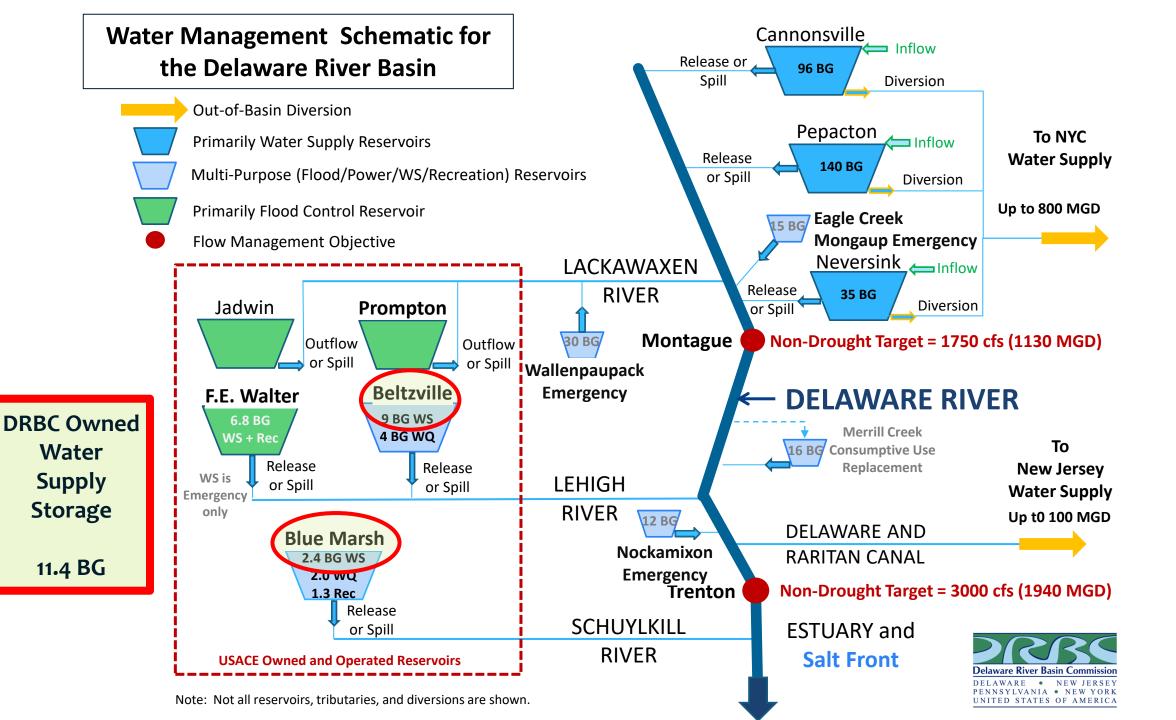
Water Management Advisory Committee: June 28, 2023

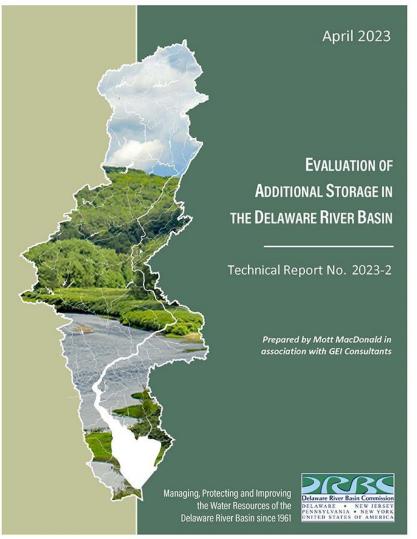
Chad Pindar, P.E.

Manager, Water Resource Planning Section

This presentation was given at the June 28, 2023, WMAC Meeting. Content may not be published or re-posted in whole or in part without the DRBC's permission.



Water Management Advisory Committee: June 28, 2023


AGENDA

- * DRB Water Management Schematic
- * How to Access Report
- * Report Overview
- * Storage Project Summary Example
- * Online GIS tool
- * Questions / Discussion

Water Management Advisory Committee: June 28, 2023

Evaluation of Additional Storage in the Delaware River Basin - published April 2023

- * Technical Report No. 2023-2
- * https://www.state.nj.us/drbc/programs/flow/reservoir-storage-study.html
- Prepared by Mott MacDonald in association with GEI Consultants
 - * Mott MacDonald team: Kirk Barrett, Gary Snyder, Jane Rowan, Ken Najjar
 - * GEI team: Katie Laird, Roger Putty
 - * Normandeau Associates
 - * Advisors: Anthony Bonasera, Tony Fernandes, Frank Falcone
- * Suggested Citation:

DRBC (2023). Evaluation of Additional Storage in the Delaware River Basin: Technical Report No. 2023-2. Prepared by Mott MacDonald in association with GEI Consultants. West Trenton, New Jersey. Delaware River Basin Commission.

Water Management Advisory Committee: June 28, 2023

Table of Contents

- 1. Executive Summary
- 2. Introduction
- 3. Identification and Screening of Potential Storage Projects
- 4. Evaluation Criteria
- 5. Project Characterization
- 6. Project Evaluation
- 7. Recommendations
- 8. Conclusion
- 9. Acknowledgments
- 10. References

Appendices A-I

Appendices

A. Storage Project Summaries (38)

- C. Tech Memo Monthly Qs
- D. Summary of screened out projects
- E. Table of Potential Project Scores
- F. Pumping Station Schematic
- G. Pump Details
- H. Permit Summary
- I. Top 10 1-page summaries

Water Management Advisory Committee: June 28, 2023

Chapter 1 - Executive Summary

- * Most comprehensive evaluation of storage options in DRB was performed by USACE in the late 1950s, through 1961: publication of the Comprehensive Survey of the Water Resources of the Delaware River Basin (House Document 522) (Revised, May 1961).
- * A number of smaller initiatives by the Delaware River Basin Electric Utilities Group (DRBEUG) evaluated additional storage options in the Basin throughout the early 1970s.
- * The Delaware River Basin Comprehensive Level B Study was published in 1983 and the Commission worked with partners to do a large update to its Comprehensive Plan in 2001.
- * Since it had been approximately 40 years since a thorough review of storage options was evaluated within the Basin, the Commission deemed the development of a comprehensive updated inventory of potential storage options to be prudent.

Water Management Advisory Committee: June 28, 2023

Chapter 1 - Executive Summary

- * The goal of this study was to inventory and evaluate potential projects to provide additional storage to meet potential water supply and flow management needs in the Delaware River Basin.
- * This planning level study is intended to provide the Commission with a prioritized list of storage projects to further evaluate if the Commission determines that additional storage is necessary.
- * To date, the Commission has not determined that additional storage is necessary.

Water Management Advisory Committee: June 28, 2023

Chapter 1 - Executive Summary

Table 1.3-1: Number of Potential Projects Involved at Different Stages in the Study

These 38 projects all had Storage Project Summaries (SPS) developed.

	Pote	ntial Storage	Project Cate	egory	
Project Stage	New reservoirs	Existing reservoirs	Quarries	Abandoned mines	Total
Identifying potential projects	22	1,041	1,421	29	2,513
Passing pre- screening	22	34	66	5	127
Passing initial screening	7	16	33	5	61
Passing supplemental screening (evaluated projects)	7	8	18	5	38
Recommended projects	0	2	12	0	14

Pre-Screening

Initial Screening

Supplemental Screening

Water Management Advisory Committee: June 28, 2023

Chapter 3 - Identification & Screening of Potential Projects

Table 3.1.1-1: New Dam/Reservoir Studies

A.	Initial C	omprehensive Plan
	a.	House Document (HD) 522: prepared in 1961 by US Army Corps of Engineers and published by the US House of Representatives in 1962. (Seminal document setting the stage for identification of potential reservoir storage locations.)
	b.	DRBC Comprehensive Plan 1962, follows HD 522
B.	Water R	esources Programs 1965-1976
	a.	Resolutions 64-15, 65-4, etc.
	b.	A-List and B-List Projects
C.	DRB E1	ectric Utilities Group (DRBEUG) Studies: 1972, 1975, 1976
D.	Subsequ	ent studies
	a.	1975 URS study of Tocks Island and Alternatives
	b.	1983 Level B study
	c.	2001 Comprehensive Plan
	d.	2008 USACE Multijurisdictional study
E.	2009 DI	RBC Staff reservoir evaluation

Water Management Advisory Committee: June 28, 2023

Chapter 3 - Identification & Screening of Potential Projects

Existing dams/reservoirs:

- the primary data source was the National Inventory of Dams, which is maintained by the USACE
- the database is comprehensive (all dams impounding more than 50 acre-feet) and records many important parameters useful to this evaluation
 - coordinates, river name, owner, purpose (water supply, flood control, hydropower, recreation, habitat), drainage area, maximum volume, pool elevation and pool area.
- the Inventory listed 1,041 dams within the Basin: 501 in PA, 335 in NJ, 199 in NY, 6 in DE.

Quarries:

- state databases were initially used:
 - PA Industrial Mineral Mining Operations
 - NJ Quarries (Sand and Gravel)
 - NY Mining Database

Water Management Advisory Committee: June 28, 2023

Chapter 3 - Identification & Screening of Potential Projects

Table 3.1.1-2: Key Reviewed Mine Pool Documents

Source	Title	Primary Author	Description
USBM TP#727- 1949	Water Pools in Pennsylvania Anthracite	S. H. Ash, et.al.	Signature study that compiled available mining data and estimated mine pool volumes based on then current water
1747	Mines	Ct.al.	level information.
USGS SIR 2010-	Water Budgets and	D. J. Goode,	Estimates of water budgets and groundwater volumes
5261	Groundwater Volumes for	et al.	stored in abandoned underground mines in the Western
	Abandoned Underground		Middle Anthracite Coalfield
	Mines in the Western		
	Middle Anthracite Coalfield		
USGS WRI Report	Water Quality of Large	Charles R.	Compilation of key water quality information in many of
95-4243	Discharges from Mines in	Wood, et.al.	the major mine pools in the four anthracite regions.
	the Anthracite Region of		
	Eastern Pennsylvania		
EPCAMR	Mine Water Resources of	R.E. Hughes,	This document draws from prior mining information and
	the Anthracite Coal Fields	et.a1.	initial mine pool estimates and uses current data mapping
	of Eastern Pennsylvania		technology to update mine water resources estimates and
			opportunities.

Water Management Advisory Committee: June 28, 2023

Chapter 3 - Identification & Screening of Potential Projects

Table 3.1.2-1: Prescreening Criteria

Pre-Screening

Must feed the Delaware River's mainstem above its confluence with the Christina River (near Wilmington, DE) to suppress the salt line

New reservoirs must provide >1 BG storage

Existing reservoirs must provide >2 BG of storage currently

Quarries must have area of >25 acres and depth >50 feet (giving a minimum volume of approximately 0.5 BG)

Deep mines must provide >1 BG of storage and should have a surface expression of water

This is how we got from ~2,500 projects down to

Water Management Advisory Committee: June 28, 2023

Chapter 3 - Identification & Screening of Potential Projects

Table 3.1.3-1: Initial Screening Criteria

Initial Screening

Criteria	Relative Importance (high, med., low)	Rationale
Volume of storage	high	More volume provides greater and/or longer (in time) flow augmentation
Sufficiency of water supply	high	Reliable and sufficient supply is desirable for filling/refilling storage
Environmental resource impact	high	Inundation of high-value resources (e.g., presence or habitat for endangered species, trout streams, wetlands) is undesirable
Infrastructure and social impact	high	Inundation of roads, pipelines, electrical lines, buildings or recreational/cultural facilities is undesirable
Position in Basin	med	High in the Basin benefits more stream miles
Owner cooperativeness	med	Certain reservoir owners are not likely to support certain projects, or obtaining approval may be very cumbersome
Water retention	med	Applicable to quarries only leaky is undesirable
Proximity to mainstem	low	Close to the mainstem delivers water quicker when needed; the reason importance is low is that travel time from all points to the mainstem is only a few days

This is how we got from 127 projects down to 61.

Water Management Advisory Committee: June 28, 2023

Chapter 3 - Identification & Screening of Potential Projects

Table 3.1.3-2: Rubrics for Rating Each Initial Screening Criterion

Criteria	Reservoirs	Quarries	Deep Mines			
Volume of storage	existing/estimated new storage >10 BG = 3 >5 BG = 2 <5 BG = 1	estimated storage volume >2 BG = 3 >1 BG = 2 <1 BG = 1 water filled = 2	All 3; > 2 BG			
Sufficiency of water supply	based on drainage area: >100 sq. mi. = 3 > 20 = 2 < 20 = 1	distance to DRBC-mapped stream <1 mi = 3 <2 mi = 2 >2 mi = 1	All assumed 3			
Environmental resource impact	relative area/length of wetlands/high-quality streams inundated low =3 medium = 2 high = 1	all 3 (low impact)				
Infrastructure and social impact	relative number of buildings and length and importance of roads inundated low =3 medium = 2 high = 1	surrounding land use completely rural = 3 mostly rural = 2 suburban/urban = 1	all 3 (low impact)			

Initial Screening

Criteria	Reservoirs	Quarries	Deep Mines
Position in Basin	Enters mainstem above Trenton = 3 Schuylkill to Trenton = 2 Below Schuylkill = 1		All 2 (in upper Schuylkill)
Owner cooperativeness	Dam raise water or power = 3 NYC/USACE/state = 2 private = 1 Operational change power co. = 3 USACE/state = 2 water utilities/ private = 1	all 2	all 2
Water retention	Not applicable	Ponded area >5 ac = 3 >2 ac = 2 <2 ac = 1	Not applicable
Proximity to mainstem	< 50 strea	am miles = 3 am miles = 2 am miles = 1	All Schuylkill

Water Management Advisory Committee: June 28, 2023

Chapter 3 - Identification & Screening of Potential Projects

<u>Supplemental Screening</u> got us from 61 projects down to ~38 (which is what the budget could reasonably accommodate).

Strategy was to perform early project characterization to identify any major flaws.

Existing reservoirs: Contact made with owners to gage hypothetical willingness to acquire "excess" water or feasibility to expand reservoir. 9 screened out.

Quarries: Cursory review of nearby stream sources and water availability. 15 quarries screened out.

PRIC STORAGE PROJECT SCORING

Fea billy industion of Additional Storage Options

STORAGE PROJECT: M19
NAME: Phoenix Park Deep Mine

		1	l				
	Evaluation Metric	Score	l	l .			
	(when	\$ best, 1 =	l		l 1	Weigh ted	
RX PRIMARY CRITERIA	appare printe (word)	l		Weight	Score	Project Specific Comments
on random variation	(enter values only				THE GOLD	24014	
	Corner remove our						
. Water Quantity and Quality		2.83			30%	0.85	
- Mahamand at a second and death and	2.05	1					
a Valume of storage provided (RG)	2.05	1					
 High rologic reliability of supply (months to fill) 	7	- 4					Recharge of the mine is unclear, others have recharged quickly
-1 :111	25	2					May nied to fur their neduce relate rate or change discharge
a Release rate (cfs)							Way nielo to tur ther redu or relate race or change discharge
 a Promptn ess of delivery to mains tem (day) 	2.6	3					
a Geographic Benefit		3					
a Quality of stored water		- 4					Assumestreatment
		2.90			1000	0.29	7
Infrastructure Dedign, Construction and Operation					10%		
o Site/Qvll, land & Fas errents		3					Longer pipeline may creete land taues
a Subsurface canditions		2					Mines create complexity
o in Fastructure Complexity	_	- 4	•				No complex design
a Construction complicatly	-	3.5	•				Pipeline construction can be difficult
	-	2					
a Operational complexity		2					Treatment makes for more complex operations
Environmental Impacts		4.21			1596	0.63	
ENVIOLEMENT OF PROCESS					10.00	0.03	
a Protected spedies		- 4					Non e known, but likely
a White as a situa deservado i en	-	5					Ou allies may be improved by treation and
 Water quality degradation 		9					Quality may be improved by treatment
	_						
o Obstruction to passage of aquatic animals		5					Non-Marks
							Not likely
	-		•				
a Hydra madification		1					Change to low flow stream; mine dewatering will have likely impact
		l .					
			spe dail two-fi				
			for habita	t impacts			
				quantity.	•		
			replaceability	Impacted			
Hibitat Type							
		Combined	(Sreany;	(Sviarge,			
	_	average	1 =difficult)	1 vermal 6			
		5	5	5			
 Wetlands inundated or filled (ac) 	1						
					•		
	1	I	l				
	1	I	l				
a Stream length inundated (mi)	1	5	5	5			
	1	I	l				
	1	I	l				
		_					
	1	I	l				
		1	l				
	1						
a Uplands in undated or developed (ac)		4.5	5	- 4			Pipeli ne could minimial ly impact
a Uplands in undated or developed (ad)		4.5	5	4			Pipeline could minimially impact
o Uplands in undated or developed (ac)		4.5	5	4			Pipeline could minimially impact
			5	4			Pipeline could minimially impact
		4.5 5.00	5	4	10%	0.50	Pipeline could minimially impact
So daland Do nomic Impacts		5.00	5	4	10%		Pipeline could minimially impact
			5	4	10%		Pipeline could minimially impact
. So daland Connomic Impacts		5.00	5	4	10%		Pipeline could minimially impact
Social and Economic Impacts a Disruption/displacement		5.00 5	5	4	10%		Pipeli ne could minimisi ly impact
. So daland Connomic Impacts		5.00	5	4	10%		Pipeline could minimally impact
Social and Economic Impacts a Disruption/displacement		5.00 5	5	4	10%		Pipeli ne could minimial ly impact
Social and Economic Impacts a Disruption/displacement	-	5.00 5	5	4	10%		Pipeli ne could minimial ly impact
So dial and Economic Impacts a Disruption/displacement a Safety and health a Social equity		5.00 5 5	5	4	10%		Pipeli ne could minimisi ly impact
So dial and Economic Impacts a Disruption/displacement a Safety and health a Social equity	-	5.00 5	5	4	10%		Pipeli no could minimial ly impact
So daland Economic Impacts a Disruption/displacement a Safety and health a Social equity a Recreational to sa		5.00 5 5 5	5	4	10%		Pipeli ne could minimisi ly impact
So dial and Economic Impacts a Disruption/displacement a Safety and health a Social equity		5.00 5 5	5	4	10%		Pipeli no could minimial ly impact
So dialand Economic Impacts a Disruption/displacement a Safety and health a Social equity a Recreational loss a Cultural/historical resources		5.00 5 5 5 5	5	4	10%		
So daland Economic Impacts a Disruption/displacement a Safety and health a Social equity a Recreational to sa		5.00 5 5 5	5	4	10%		Pipeli no could minimial by impact May promp t further area red arrast on
So daland Economic Impacts o Disruption/displacement o Safety and health o Social equity o Recreational is as o Cultural/historical resources o Aesthetic		5.00 5 5 5 5 5 5	5	4	10%		
o Disruption/displacement o Safety and health o Social equity o Recreational loss o Cultural/historical resources		5.00 5 5 5 5	5	4	10%		
So dalland Economic Impacts o Disruption/displacement o Safety and health o Social equity o Recreational to as o Cultural/historical resources o Aesthetic o Loss of tax revenue		5.00 5 5 5 5 5 5 5	5	4	10%		
So dialand Economic Impacts a Disruption/displacement a Safety and heal th a Social equity a Recreational loss a Outural/his torical resources a Austhotic a Loss of tax revenue a Loss of production from farmland, timberland, qua	- - - -	5.00 5 5 5 5 5 5 5	5	4	10%		
So dialand Economic Impacts a Disruption/displacement a Safety and heal th a Social equity a Recreational la ss a Outwas/historical resources a Aesthetic a Loss of tax revense a Loss of production from farmland, timberland, qua	- - - -	5.00 5 5 5 5 5 5 5	5	4	10%		
So dialand Economic Impacts a Disruption/displacement a Safety and heal th a Social equity a Recreational to us a Cultural/historical resources a Aesthetic a Loss of tax revenue a Loss of production from farmland, timberland, qual a Emission of Safety revenue agasses	- - - - - -	5.00 5 5 5 5 5 5 5 5 5	5	4		0.50	
So dail and Economic Impacts a Disruption (displacement a Safety and heal th a Social equity a Recreational is as a Quitural/his torical resources a Asschetic a Loss of lace revenue a Loss of production from farmland, timberland, qual a Christian as of greenhous e gasses Project Coust & Schedule		5.00 5 5 5 5 5 5 5	5	4			
So dialand Economic Impacts a Safety and health a Safety and health a Social equity a Recreational to as a Cultural/historical resources a Austhetic a Loss of tax revenue a Loss of production from farmland, timberland, qual bright sia ns of greenhouse gasses Project Costs & Schedde a Land acquisition cost (\$)	\$0.150W	5.00 5 5 5 5 5 5 5 5 5	5	4		0.50	
Co daland Connortic Impacts a Disruption/displacement a Safety and health a Social equity a Recreational to as a Cultural/historical resources a Association a Loss of paralyhistorical resources a Loss of paralyhistorical resources a Loss of paralyhistorical resources a Loss of paralyhistorical gasses a Crebi doma of precirious a gasses Project Costs & Schedule a Landacquisition cost (\$)		5.00 5 5 5 5 5 5 5 5 5	5	4		0.50	
So dail and Economic Impacts a Disruption (displacement a Safety and heal th a Social equity a Recreational is as a Quitural/his torical resources a Asschetic a Loss of lace revenue a Loss of production from farmland, timberland, qual a Christian as of greenhous e gasses Project Coust & Schedule	\$0.150W \$23W \$1.25W	5.00 5 5 5 5 5 5 5 5 5	5	4		0.50	
So dailand Economic Impacts a Disruption/displacement a Safety and heal th a Social equity a Recreational to as a Quitural/historical resources a Assobatic a Loss of tax revenue a Loss of production from farmland, timberland, qual a Dissidors of greenhouse gases Project Costs & Schedule a Landacquistion cost (\$) a Communition Cost (\$)	\$0.150W \$23W \$1.25W	5.00 5 5 5 5 5 5 5 5 5	5	4		0.50	
So dialand Economic Impacts o Disruption/displacement o Safety and health o Social equity o Recreational to us o Cultural/historical resources o Aesthetic o Loss of tax revenue o Loss of production from farmland, timberland, qual of Imhistorical fee countries or Loss of production from farmland, timberland, qual of Imhistorical countries o Loss of production from farmland, timberland, qual of Imhistorical fee countries or Loss of production from farmland, timberland, qual of Imhistorical for countries or Convention Countries or Convention Countries or Convention Countries or Convention Countries	\$0.150W \$23W \$1.25W \$49W	5.00 5 5 5 5 5 5 5 5 5 5 5 5	5	4		0.50	
So daland Connects Impacts o Disruption (displacement) o Safety and heal th o Social equity o Recreational to as o Cultural (historical resources) o Anathetic o Loss of tax revenue o Loss of production from farmland, throberland, qual o Timbiation of greenhouse gasses Project Costs & Schedule o Land acquisition cost (5) o Construction Cost (5) o Overall Cost (5(4))	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 2.00	5	4		0.50	
So dialand Economic Impacts o Safety and health o Safety and health o Social equity o Recreational loss o Cultural/historical resources o Aesthetic o Loss of tax revenue o Loss of production from farmland, timberland, qual o Emissions of greenhouse gasses Project Costs & Schedule o Londacquis Honicos (\$) o Constitution Cost (\$) o Constitution Cost (\$) o Coveral Cost (\$) o Cost officet senses (\$)	\$0.150W \$23W \$1.25W \$49W	5.00 5 5 5 5 5 5 5 5 5 5 5 5 5	5	4	30%	0.50	
So daland Connects Impacts a Disnaprion/displacement a Safety and health a Social equity a Recreational loss a Cultural/historical resources a Anothetic a Loss of production from farmland, timberland, qua a Emissions of greenhouse gasses before Safeheddie a Construction Cost (\$) a Construction Cost (\$) a Construction Cost (\$) a Construction Cost (\$) a Cost of fact tensor (\$) a Safedde (Time on make Oper stional, years)	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 2.00	5	4	30%	0.50	
So dailand Economic Impacts a Disruption/displacement a Safety and heal th a Social equity a Recreational to as a Cultural/historical resources a Assistatic a Loss of tax revenue a Loss of production from farmland, striberland, qual a Bristian so of greenhouse gases Project Costs & Schedule a Contraction Cost (5) a Contraction Cost (5) a Contraction Cost (5) a Cost offect venes (5) a Schedule (Time to reske Oper at onal, years) Ancilony New File Anc	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 5 5 5	5	4	30%	0.50	
So daland Economic Impacts a Disnuprion/displacement a Safety and health a Social equity a Recreational to as a Cultural/historical resources a Anothetic a Loss of tax revenue a Loss of production from farmland, timberland, qual a Emissions of greenhous a gasses Project Costs & Schedule a Loss (Stax Revenue) a Construction Cost (S) a Construction Cost (S) a Construction Cost (S) a Coveral Cost (S)	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 5 2.00	5	4	30%	0.50	
So dailand Economic Impacts a Disruption/displacement a Safety and heal th a Social equity a Recreational to su a Cultural/historical resources a Assistate a Loss of tax revenue a Loss of tax revenue a Loss of tax revenue a Loss of production from farmland, thriberland, qua a limitation of greenhouse gases Project Costs & Schedule a Canteriustion Cost (5) a Construction Cost (5) a Construction Cost (5) a Cost of first tenna (5) (16) a Cost of first tenna (5) (16) a Cost of first tenna (5) (16) a Schedule (Time to make Oper at onal, years) Ancibry the nefts a Recreation/basis	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 5 2.00 2 1 1 1	5	4	30%	0.50	
So dialand Economic Impacts a Disruption/displacement a Safety and heal th a Social equity a Recreational loss a Cultural/historical resources a Austhetic a Loss of production from farmland, timberland, qual a Enthicide a Loss of production from farmland, timberland, qual a Enthicide a Loss of production from farmland, timberland, qual a Enthicide a Loss of production from farmland, timberland, qual c Enthicide a Loss of production from farmland, timberland, qual a Constitution Cost (5) a School (6) a School (7) a School (7) Anothery templated a Flood covered a Recreation/ Sourter a Ileatory Sourter a Ileatory Sourter a Ileatory Sourter a Ileatory Sourter	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 5 2.00	5	4	30%	0.50	
So datand Economic Impacts o Safety and health o Safety and health o Social equity o Recreational loss o Cultural/historical resources o Aesthetic o Loss of tax revenue o Loss of production from farmland, timberland, qual o Emission of greenhouse gasses Project Costs & Schedule o Loss of tax covenue o Comenaction Cost (\$) o Comenaction Cost (\$) o Contraction Cost (\$) o Contraction Cost (\$) o Cost of Schedule o Los of finations (\$) o Cost of Schedule o Schedule o Thos to reals Cost (\$) o Schedule o Thos decented o Recreation/ tourism o Italiation/history or hand coment o water quality in proprovement/environ ment all remediation	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 2.00 2.00	5	4	30%	0.50	May promps further area red arrast on
So dialand Economic Impacts o Disruption/(displacement) o Safety and health o Social equity o Recreational loss o Cultural/historical resources o Authersic o Loss of sex revenue o Loss of production from farmland, timberland, qual o Timbs on of greenhouse gasses Project Costs & Schoold & Operating Cost (5) o Communition Cost (5) o Coperating Cost (5) o Operating Cost (5) o Cost effects where (5) o Schoold & (Timbs to make Operational, years) And they be control o Schoold & (Timbs to make Operational, years) o Flood Control o Recreation/fourthm	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 5 2.00 2 1 1 1	5	4	30%	0.50	
So dialand Economic Impacts a Disruption/(displacement) a Safety and heal th a Sacial equity a Recreational la ss a Cultural/historical resources a Austhetic a Loss of tax reverses a Loss of production from farmland, timberland, qual a Enth side on a figner house gasses Project Cost & Schedule a Land acquisition cost (\$) a Communicion Cost (\$) a Communicion Cost (\$) a Constitution of a Cost (\$) a Constitution of the Cost (\$) a Constitution of the Cost (\$) a Cost of fired uneas (\$) a Cost of Fired uneas (\$) a Schedule a Fired cost (\$) a Schedule a Recreation (\$) a Schedule a Recreation (\$) a Schedule a Schedul	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 2.00 2.00	5	4	30%	0.50	May promps further area red arrast on
o Disruption/of splacement o Safety and health o Social equity o Recreational to as o Cultural/historical resources o Aesthetic o Loss of tax revenue o Loss of production from farmland, timberland, qua o Emission of greenhouse gasses • Project Costs & Schedule o Los of tax (Sy) o Construction Cost (S) o Operating Cost (Sy) o Construction (Cost (S)) o Operating Cost (Sy) o Schedule o Schedule o Schedule (Time to reales Operational, years) Ancistry Se refer o Flood control o Recreation tourism o Illabitisty ill severy orthan cornert o water quity in provision rement all remediation	\$0.150W \$23W \$1.25W \$49W 24	5.00 5 5 5 5 5 5 5 5 5 5 2.00 2.00	5	4	30%	0.50	Way promps further area red arrad on

DRBC Storage Study Update

WMAC: June 28, 2023

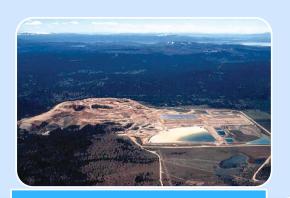
Chapter 4 – Evaluation Criteria

Primary Criteria	Weight	
Water Quantity & Quality	30%	
Infrastructure Design, Construction and Operation	10%	
Environmental Impacts	15%	
Social & Economic Impacts	10%	
Project Costs & Schedule	30%	
Ancillary Benefits	5%	

Water Management Advisory Committee: June 28, 2023

Chapter 5 – Project Characterization

 describes the concept development and approach for each of the four "types" of projects


1. New dams

2. Modification to existing dams:

3. Quarries:

4. Deep Mines:

Table 6.1-1: Criteria Scores and Key Metrics for all Projects (grouped by project type, then sorted by weighted score)

Project Name	abre 0.	1-1: Criteria Scores	and Key Mett	101 631	anri	ojecis (gro	apea ny	project type,			erginteu st	ore)		
County Project Name Project Na									1.	2.				
DR														
D Project Name indicated GBO MS (MS/BO) Gravity SCORE quality ops impacts Schedule Benef NS Equinum's Wayne 42.0 1150 27 G 3.03 3.83 3.40 3.36 4.22 1183 1.60 NS Equinum's Wayne 42.0 1150 27 G 3.03 4.50 2.60 2.00 3.00 2.33 2.44 NS Milanville Wayne 42.0 190 23 G 2.95 4.17 2.60 2.16 3.00 2.33 2.44 NS Edite Martini Creek Schuylkill 113 3 366 28 P 2.90 3.67 2.20 2.93 3.22 2.33 2.44 NS Little Martini Creek Northampton 7.1 353 50 P 2.87 4.17 2.80 2.18 3.33 2.00 1.60 NS Silver Big Creek Schuylkill 11.3 921 81 P 2.77 3.50 1.80 2.68 4.33 1.83 3.00 NS Silver Big Creek Schuylkill 11.3 921 81 P 2.77 3.50 1.80 2.68 4.33 1.83 3.00 NS Carbon Wayne 2.0 2 1 G 4.04 4.17 3.80 3.25 4.78 4.50 1.80 NS Carbon Wayne 2.0 2 1 G 4.04 4.17 3.80 3.25 4.78 4.40 1.80 NS Carbon Wayne 2.0 2 1 G 4.04 4.17 3.80 3.21 4.89 4.00 1.80 Notation Montroe								l				1		
NEW RESERVOIRS					V					const. &				Ancillary
MAI Rartling Run Berls 13 293 225 G 3.05 3.85 3.40 3.36 4.22 1.83 1.65 N			indicated)	(BG)	M\$)	(M\$/BG)	Gravity	SCORE	quality	ops.	impacts	Impacts	Schedule	Benefits
SS														
N. Milancyille														
NI Red Creek Schuyldall 133 366 28 P 2.90 3.67 2.20 2.93 3.22 2.33 2.44 N6 Hawley Wayne 13 182 140 G 2.87 417 2.20 1.96 3.44 2.17 2.20 N7 Silvee/Big Creek Schuyldall 113 921 81 P 2.77 3.50 1.80 2.68 4.33 1.83 3.06 EXISTING RESERVOIRS - STORAGE Northampton Value		•												
No Hawley Wayne 13 182 140 G 2.87 417 2.80 218 333 2.00 1.60														
NS Little Martins Creek Schrytkill 11,3 35 50 P 2.87 41,7 2.20 1.96 3.44 2.17 2.20			_											
NT Silver/Big Creek Schuylkill 11.3 921 81 P 2.77 3.50 1.80 2.68 4.33 1.83 3.05														1.60
EXISTING RESERVOIRS - STORAGE INCREASE E4 Prompton Wayne 20 2 1 G 4.04 4.17 3.50 3.25 4.78 4.50 1.80 E2 Camonoville Delaware, NY 13.0 77 6 G 3.99 4.67 3.60 3.21 4.89 4.00 1.20 E3 Blue Marsh Berks 5.0 65 13 G 3.19 3.83 2.20 3.50 4.89 2.50 1.00 E3 Blue Marsh Berks 5.0 65 13 G 3.19 3.83 2.20 3.43 4.11 2.67 1.80 EXISTING RESERVOIRS - TRANSFERABLE STORAGE T2 Rio Sullivan, NY 2.0 27 14 NA 4.16 4.17 4.60 5.00 5.00 3.83 1.00 T4 Lake Ontelaunce Berks 10 27 27 NA 4.01 3.33 4.60 5.00 5.00 4.17 1.00 T1 Memil Creek Warren, NJ 2.0 110 55 NA 3.91 4.50 4.60 5.00 5.00 3.17 1.20 EQUARRIES Older Delaware Older UQUARRIES Older Old		Little Martins Creek	Northampton											2.20
STORAGE INCREASE	N7	Silver/Big Creek	Schuylkill	11.3	921	81	P	2.77	3.50	1.80	2.68	4.33	1.83	3.00
E4 Prompton Wayne 2.0 2 1 G 4.04 4.17 3.80 3.25 4.78 4.50 1.80	EXISTI	NG RESERVOIRS -												
E2 Cannonsville Delaware, NY 130 77 6 G 3.99 4.67 3.60 3.21 4.89 4.00 1.20														
El Wild Creek Carbon & 1.0 135 G 3.29 4.00 2.80 3.50 4.89 2.50 1.00			_											
Monroe G S.29 4.00 2.80 5.00 4.89 2.50 1.00							G	3.99	4.67	3.60	3.21	4.89	4.00	1.20
E3 Blue Marsh Berks 5.0 65 13 G 3.19 3.83 2.20 3.43 4.11 2.67 1.80	E1	Wild Creek	1	1.0	135	135	G	3.29	4.00	2.80	3.50	4.89	2.50	1.00
EXISTING RESERVOIRS	E3	Rhia March		5.0	65	13	G	2 10	2 92	2.20	3./3	4.11	2.67	1.80
TRANSFERABLE STORAGE			Deiks	5.0	0.5	13	-	3.17	3.63	2.20	3.43	4.11	2.07	1.00
T2														
T4			Sullivan NV	2.0	27	14	NΔ	416	417	4.60	5.00	5.00	2 92	1.00
T1 Memill Creek Warren, NJ 2.0 110 55 NA 3.91 4.50 4.60 5.00 5.00 2.67 1.00														
T3														
Creek Monroe NA 3.87 3.83 4.00 3.00 5.00 5.17 1.20							NA	3.91	4.30	4.00	5.00	3.00	2.07	1.00
QUARRIES Q19 Rush Valley Bucks 1.7 26 15 4.07 3.75 3.60 4.79 4.88 4.00 3.60	13		1	3.0	102	54	NA	3.87	3.83	4.60	5.00	5.00	3.17	1.20
Q19 Rush Valley Bucks 1.7 26 15 4.07 3.75 3.60 4.79 4.88 4.00 3.60	OHARR		Wolfice											
Q02 Mccoy Montgomery 6.2 30 5 P or G 4.06 3.50 3.10 4.61 4.75 4.50 3.60			Bueles	17	26	15		4.07	3.75	3.60	170	4 88	4.00	3 60
Q04 Penns Park Bucks 3.3 31 10 P 4.04 3.58 3.60 4.57 4.88 4.17 3.60				62			P or G							
Q12 Solebury Bucks 2.3 38 16 P 4.03 3.75 3.20 4.57 5.00 4.00 4.00	-													
Q25 Oxford Warren, NJ 1.2 28 23 P 4.02 4.00 3.60 4.57 4.88 3.83 2.80														
Q07D Stockertown(Delaware) Northampton 4.6 26 6 P 4.01 4.08 3.70 4.93 4.25 3.67 3.00 Q22 Whitehall Lehigh 1.2 34 28 P 3.96 3.83 3.00 4.86 4.69 3.67 4.20 Q21 Ormrod Lehigh 1.3 45 35 P 3.92 3.83 3.10 4.93 4.63 3.50 4.20 Q23 Lehigh Montgomery 1.0 26 26 P 3.91 3.58 3.80 4.79 4.88 3.67 3.00 Q01 Wadesville Mine Pit Schuylkill 6.9 39 5 P or G 3.91 3.42 3.40 4.21 4.63 4.17 4.00 Q08 Evansville Berks 3.1 44 14 P or G 3.91 3.75 3.20 4.79 4.00 3.83 3.90 Q27 NESL Nazareth Northampton 1.0 25 25 P 3.86 3.67 3.40 4.21 5.00 3.83 3.80 Q14 Telford Bucks 1.0 25 25 P 3.50 3.10 3.89 4.75 3.83 3.80 Q15 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.30 3.14 4.38 3.67 2.60 Q17 DEEP MINES 13 P 3.58 3.08 3.20 4.43 5.00 3.33 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40 Q27 DEEP MINE 1.0														
Q22 Whitehall Lehigh 1.2 34 28 P 3.96 3.83 3.00 4.86 4.69 3.67 4.20 Q21 Omrod Lehigh 1.3 45 35 P 3.92 3.83 3.10 4.93 4.63 3.50 4.20 Q23 Lehigh Perkiomenville Montgomery 1.0 26 26 P 3.91 3.58 3.80 4.79 4.88 3.67 3.00 Q01 Wadesville Mine Pit Schuylkill 6.9 39 5 P or G 3.91 3.42 3.40 4.21 4.63 4.17 4.00 Q08 Evansville Berks 3.1 44 14 P or G 3.91 3.75 3.20 4.79 4.00 3.83 3.90 Q27 NESL Nazareth Northampton 1.0 25 25 P 3.86 3.67 3.40 4.21 5.00 3.83 3.80 Q1 Telford </td <td></td> <td></td> <td>-</td> <td></td>			-											
Q21 Ormrod Lehigh 1.3 45 35 P 3.92 3.83 3.10 4.93 4.63 3.50 4.20	_		_											
Q23 Lehigh Montgomery 1.0 26 26 P 3.91 3.58 3.80 4.79 4.88 3.67 3.00			•											
Perkiomenville								3.92	5.85	5.10	4.93		5.30	
Q01 Wadesville Mine Pit Schuylkill 6.9 39 5 P or G 3.91 3.42 3.40 4.21 4.63 4.17 4.00 Q08 Evansville Berks 3.1 44 14 P or G 3.91 3.75 3.20 4.79 4.00 3.83 3.90 Q27 NESL Nazareth Northampton 1.0 25 25 P 3.86 3.67 3.40 4.21 5.00 3.83 2.80 Q03 Plymouth Meeting Montgomery 3.5 39 11 P 3.76 3.50 3.10 3.89 4.75 3.83 3.80 Q14 Telford Bucks 1.0 25 25 P 3.50 3.17 2.90 4.07 4.75 3.67 1.40 Q07B Stockertown (Bushkill) Northampton 4.6 26 6 P 3.47 3.42 2.50 3.43 4.50 3.67 2.60 Q05	Q23	_	Montgomery		26	26	P	3.91	3.58	3.80	4.79	4.88	3.67	3.00
Q27 NESL Nazareth Northampton 1.0 25 25 P 3.86 3.67 3.40 4.21 5.00 3.83 2.80 Q03 Plymouth Meeting Montgomery 3.5 39 11 P 3.76 3.50 3.10 3.89 4.75 3.83 3.80 Q14 Telford Bucks 1.0 25 25 P 3.50 3.17 2.90 4.07 4.75 3.67 1.40 Q07B Stockertown (Bushkill) Northampton 4.6 26 6 P 3.47 3.42 2.50 3.43 4.50 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.00 Q05 Lehigh Nazareth Northampton 4.2 48 12 P 3.37 3.25 2.30 3.00 4.38 3.83 2.60 Q06 Imperial </td <td>Q01</td> <td>Wadesville Mine Pit</td> <td>Schuylkill</td> <td></td> <td>39</td> <td>5</td> <td>P or G</td> <td>3.91</td> <td>3.42</td> <td>3.40</td> <td>4.21</td> <td>4.63</td> <td>4.17</td> <td>4.00</td>	Q01	Wadesville Mine Pit	Schuylkill		39	5	P or G	3.91	3.42	3.40	4.21	4.63	4.17	4.00
Q27 NESL Nazareth Northampton 1.0 25 25 P 3.86 3.67 3.40 4.21 5.00 3.83 2.80 Q03 Plymouth Meeting Montgomery 3.5 39 11 P 3.76 3.50 3.10 3.89 4.75 3.83 3.80 Q14 Telford Bucks 1.0 25 25 P 3.50 3.17 2.90 4.07 4.75 3.67 1.40 Q07B Stockertown (Bushkill) Northampton 4.6 26 6 P 3.47 3.42 2.50 3.43 4.50 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.00 Q05 Lehigh Nazareth Northampton 4.2 48 12 P 3.37 3.25 2.30 3.00 4.38 3.83 2.60 Q06 Imperial </td <td></td> <td>Evansville</td> <td>Berks</td> <td></td> <td>44</td> <td>14</td> <td>P or G</td> <td>3.91</td> <td>3.75</td> <td></td> <td></td> <td>4.00</td> <td></td> <td>3.90</td>		Evansville	Berks		44	14	P or G	3.91	3.75			4.00		3.90
Q03 Plymouth Meeting Montgomery 3.5 39 11 P 3.76 3.50 3.10 3.89 4.75 3.83 3.80 Q14 Telford Bucks 1.0 25 25 P 3.50 3.17 2.90 4.07 4.75 3.67 1.40 Q07B Stockertown (Bushkill) Northampton 4.6 26 6 P 3.47 3.42 2.50 3.43 4.50 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.00 Q05 Lehigh Nazareth Northampton 4.2 48 12 P 3.37 3.25 2.30 3.00 4.38 3.83 2.60 Q06 Imperial Northampton 3.8 51 13 P 3.34 3.25 2.30 3.14 4.38 3.67 2.60 DEEP MINES Schuylki			Northampton		25			3.86			4.21			2.80
Q14 Telford Bucks 1.0 25 25 P 3.50 3.17 2.90 4.07 4.75 3.67 1.40 Q07B Stockertown (Bushkill) Northampton 4.6 26 6 P 3.47 3.42 2.50 3.43 4.50 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.00 Q05 Lehigh Nazareth Northampton 4.2 48 12 P 3.37 3.25 2.30 3.00 4.38 3.83 2.60 Q06 Imperial Northampton 3.8 51 13 P 3.34 3.25 2.30 3.00 4.38 3.83 2.60 DEEP MINES M32 Morea Basin Schuylkill 2.7 65 24 P 3.58 3.08 3.20 4.43 5.00 3.50 2.40 M20		Plymouth Meeting		3.5	39		P	3.76	3.50	3.10	3.89	4.75	3.83	3.80
Q07B Stockertown (Bushkill) Northampton 4.6 26 6 P 3.47 3.42 2.50 3.43 4.50 3.67 2.60 Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.00 Q05 Lehigh Nazareth Northampton 4.2 48 12 P 3.37 3.25 2.30 3.00 4.38 3.83 2.60 Q06 Imperial Northampton 3.8 51 13 P 3.34 3.25 2.30 3.00 4.38 3.83 2.60 DEEP MINES M32 Morea Basin Schuylkill 2.7 65 24 P 3.58 3.08 3.20 4.43 5.00 3.50 2.40 M20 Otto Schuylkill 2.3 65 28 P 3.53 3.17 3.00 4.43 5.00 3.33 2.40														1.40
Q16 Temple Berks 1.0 30 30 P 3.42 3.25 2.20 4.64 3.25 3.67 2.00 Q05 Lehigh Nazareth Northampton 4.2 48 12 P 3.37 3.25 2.30 3.00 4.38 3.83 2.60 Q06 Imperial Northampton 3.8 51 13 P 3.34 3.25 2.30 3.14 4.38 3.67 2.60 DEEP MINES M32 Morea Basin Schuylkill 2.7 65 24 P 3.58 3.08 3.20 4.43 5.00 3.50 2.40 M20 Otto Schuylkill 2.3 65 28 P 3.53 3.17 3.00 4.43 5.00 3.33 2.40 M5 Silver Creek Schuylkill 1.7 65 38 P 3.12 3.00 3.20 4.50 5.00 2.00 2.40		Stockertown (Bushkill)												2.60
Q05 Lehigh Nazareth Northampton 4.2 48 12 P 3.37 3.25 2.30 3.00 4.38 3.83 2.60 Q06 Imperial Northampton 3.8 51 13 P 3.34 3.25 2.30 3.14 4.38 3.67 2.60 DEEP MINES M32 Morea Basin Schuylkill 2.7 65 24 P 3.58 3.08 3.20 4.43 5.00 3.50 2.40 M20 Otto Schuylkill 2.3 65 28 P 3.53 3.17 3.00 4.43 5.00 3.33 2.40 M5 Silver Creek Schuylkill 1.7 65 38 P 3.12 3.00 3.20 4.50 5.00 2.00 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40 </td <td>_</td> <td></td> <td>2.00</td>	_													2.00
Q06 Imperial Northampton 3.8 51 13 P 3.34 3.25 2.30 3.14 4.38 3.67 2.60 DEEP MINES M32 Morea Basin Schuylkill 2.7 65 24 P 3.58 3.08 3.20 4.43 5.00 3.50 2.40 M20 Otto Schuylkill 2.3 65 28 P 3.53 3.17 3.00 4.43 5.00 3.33 2.40 M5 Silver Creek Schuylkill 1.7 65 38 P 3.12 3.00 3.20 4.50 5.00 2.00 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40														2.60
DEEP MINES M32 Morea Basin Schuylkill 2.7 65 24 P 3.58 3.08 3.20 4.43 5.00 3.50 2.40 M20 Otto Schuylkill 2.3 65 28 P 3.53 3.17 3.00 4.43 5.00 3.33 2.40 M5 Silver Creek Schuylkill 1.7 65 38 P 3.12 3.00 3.20 4.50 5.00 2.00 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40														2.60
M32 Morea Basin Schuylkill 2.7 65 24 P 3.58 3.08 3.20 4.43 5.00 3.50 2.40 M20 Otto Schuylkill 2.3 65 28 P 3.53 3.17 3.00 4.43 5.00 3.33 2.40 M5 Silver Creek Schuylkill 1.7 65 38 P 3.12 3.00 3.20 4.50 5.00 2.00 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40														
M20 Otto Schuylkill 2.3 65 28 P 3.53 3.17 3.00 4.43 5.00 3.33 2.40 M5 Silver Creek Schuylkill 1.7 65 38 P 3.12 3.00 3.20 4.50 5.00 2.00 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40			Schuvlkill	2.7	65	24	P	3.58	3.08	3.20	4.43	5.00	3.50	2.40
M5 Silver Creek Schuylkill 1.7 65 38 P 3.12 3.00 3.20 4.50 5.00 2.00 2.40 M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40														2.40
M19 Phoenix Park Schuylkill 2.1 65 31 P 2.99 2.83 2.90 4.21 5.00 2.00 2.40														2.40
														2.40
			_											

WMAC: June 28, 2023

Chapter 6 – Project Evaluation

Each project's detailed scoresheet is appended to its Storage Project Summary (SPS) – Appendix A

Scored 1 (low) to 5 (high)

Table 7-1: All Evaluated Projects Sorted by Weighted Score (recommended projects in bold)

Recommendation

	Recommendation	1																
	(1=No Recommendation.					Total Cost	Cost effective-	Pump		OVERALL	1. Water	Infra. design.	3.	4. Social &	5. Project	6.		
	2=Not Recommended.				Vol.	(PV	ness	in or	Years to	WEIGHTED	guantity	const. &	Environ.	Economic	Costs &	Ancil.		
ID	3= Recommended)	Project Name	Location	Project type	(BG)	M\$)	(M\$/BG)	Gravity	complete	SCORE	& quality	ops.	impacts	Impacts	Schedule	Benefits		
T2	1	Rio	Sullivan, NY	Transfer	2.0	27	14	NA	1	4.16	4.17	4.60	5.00	5.00	3.83	1.00		
Q19	3	Rush Valley	Bucks	Quarry	1.7	24	14	P	9	4.07	3.75	3.60	4.79	4.88	4.00	3.60		
Q02	3	Mecoy	Montgomery	Quarry	6.2	30	5	P	7	4.06	3.50	3.10	4.61	4.75	4.50	3.60		
E4	3	Prompton	Wayne	Dam mod	2.0	2	1	G	10	4.04	4.17	3.80	3.25	4.78	4.50	1.80		
Q04	3	Penns Park	Bucks	Quarry	3.3	31	10	P	10	4.04	3.58	3.60	4.57	4.88	4.17	3.60		
Q12	3	Solebury	Bucks	Quarry	2.3	38	16	P	11	4.03	3.75	3.20	4.57	5.00	4.00	4.00		
Q25	3	Oxford	Warren, NJ	Quarry	1.2	28	23	P	9	4.02	4.00	3.60	4.57	4.88	3.83	2.80		
T4	1	Lake Ontelaunee	Berks	Transfer	1.0	27	27	NA	5	4.01	3.33	4.60	5.00	5.00	4.17	1.00		
Q07D	3	Stockertown (Delaware)	Northampton	Quarry	4.6	26	6	P	9	4.01	4.08	3.70	4.93	4.25	3.67	3.00		ı
E2	3	Cannonsville	Delaware, NY	Dam mod	13.0	77	6	G	10	3.99	4.67	3.60	3.21	4.89	4.00	1.20		
Q22	3	Whitehall	Lehigh	Quarry	1.2	34	28	P	11	3.96	3.83	3.00	4.86	4.69	3.67	4.20		
Q21	3	Ormrod	Lehigh	Quarry	1.3	45	35	P	9	3.92	3.83	3.10	4.93	4.63	3.50	4.20		
T1	1	Merrill Creek	Warren, NJ	Transfer	2.0	110	55	NA	10	3.91	4.50	4.60	5.00	5.00	2.67	1.00		
Q23	3	Perkiomenville	Montgomery	Quarry	1.0	26	26	P	1	3.91	3.58	3.80	4.79	4.88	3.67	3.00		
Q01	3	Wadesville Mine Pit	Schuylkill	Quarry	6.9	39	5	P	8	3.91	3.42	3.40	4.21	4.63	4.17	4.00		
Q08	3	Evansville	Berks	Quarry	3.1	44	14	P	10	3.91	3.75	3.20	4.79	4.00	3.83	3.90		
T3	1	Penn Forest/Wild Creek	Carbon/ Monroe	Transfer	3.0	162	54	NA	5	3.87	3.83	4.60	5.00	5.00	3.17	1.20		
Q27	3	NESL Nazareth	Northampton	Quarry	1.0	25	25	P	10	3.86	3.67	3.40	4.21	5.00	3.83	2.80		
Q03	2	Plymouth Meeting	Montgomery	Quarry	3.5	39	11	P	8	3.76	3.50	3.10	3.89	4.75	3.83	3.80		
M32	2	Morea Basin	Schuylkill	Mine Pool	2.7	65	24	P	12	3.58	3 06	3 20	A A2	5.00	3 50	2.40		
M20	2	Otto	Schuylkill	Mine Pool	2.3	65	28	P	13	3.53	\	////	C. 1	LIDO.	28 2	022		
Q14	2	Telford	Bucks	Quarry	1.0	25	25	P	10	3.50	V	V 1 V 1 /=	(C.)	une :	20, 2	023		
Q07B	2	Stockertown (Bushkill)	Northampton	Quarry	4.6	26	6	P	8	3.47			_					
Q16	2	Temple	Berks	Quarry	1.0	30	30	P	9	3.42	Cr	napte	r7-	Recor	nmen	datio	ns	
Q05	2	Lehigh Nazareth	Northampton	Quarry	4.2	48	12	P	8	3.37								
Q06	2	Imperial	Northampton	Quarry	3.8	51	13	P	8	3.34								
El	2	Wild Creek	Carbon/ Monroe	Dam mod	1.0	135	135	G	10	3.29	4.00	2.80	3.50	4.89	2.50	1.00		
E3	2	Blue Marsh	Berks	Dam mod	5.0	65	13	G	20	3.19	3.83	2.20	3.43	4.11	2.67	1.80		
M5	2	Silver Creek	Schuylkill	Mine Pool	1.7	65	38	P	12	3.12	3.00	3.20	4.50	5.00	2.00	2.40		
N4	2	Rattling Run	Berks	New dam	1.3	293	225	G	15	3.05	3.83	3.40	3.36	4.22	1.83	1.60		
N5	2	Equinunk	Wayne	New dam	42.0	1150	27	G	15	3.03	4.50	2.60	2.00	3.00	2.33	2.40		
M19	2	Phoenix Park	Schuylkill	Mine Pool	2.1	65	31	P	13	2.99	2.83	2.90	4.21	5.00	2.00	2.40		
N2	2	Milanville	Wayne	New dam	42.0	950	23	G	15	2.95	4.17	2.60	2.16	3.00	2.33	2.40		
Nl	2	Red Creek	Schuylkill	New dam	13.3	366	28	P	15	2.90	3.67	2.20	2.93	3.22	2.33	2.40		
N6	2	Hawley	Wayne	New dam	1.3	182	140	G	20	2.87	4.17	2.80	2.18	3.33	2.00			
N3	2	Little Martins Creek	Northampton	New dam	7.1	353	50	P	15	2.87	4.17	2.20	1.96	3.44	2.17			
N7	2	Silver/Big Creek	Schuylkill	New dam	11.3	921	81	P	15	2.77	3.50	1.80	2.68	4.33			er Basin Commis	
M10	2	Wadesville	Schuylkill	Mine Pool	3.6	65	18	P		NA	NA	NA	NA	NA		PENNSYLVAN	NEW JER NIA • NEW Y	ORK
												•				UNITED STAT	TES OF AMER	.ICA

Water Management Advisory Committee: June 28, 2023

Chapter 7 – Recommendations

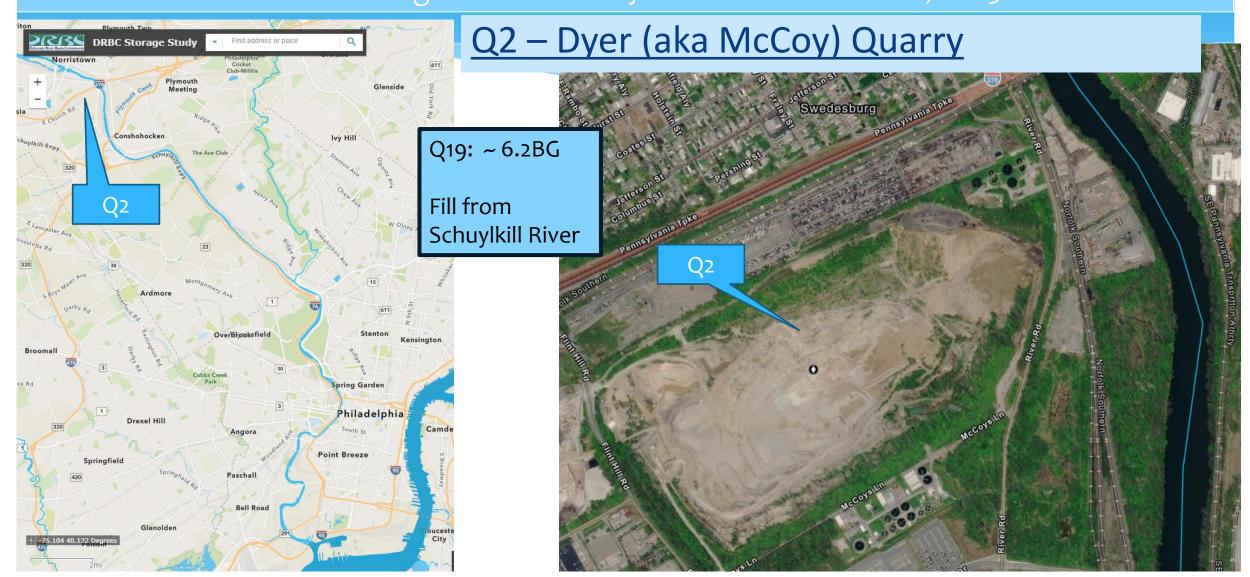
Table 7.3-1: Project Recommended as Most Feasible, Sorted by Overall Score

_		-	_	-		-	_
Rank	Project Name	Project ID	County/ State	Overall Weighted Score	Volume (BG)	Cost, (PV M\$)	Cost Effectiveness, M\$/BG
1	Rush Valley	Q19	Bucks, PA	4.07	1.7	24	14.1
2	McCoy	Q02	Montgomery, PA	4.06	6.2	30	4.9
3	Prompton	E4	Wayne, PA	4.04	2.0	2	1.0
4	Penns Park	Q04	Bucks, PA	4.04	3.3	31	9.5
5	Solebury	Q12	Bucks, PA	4.03	2.3	38	16.3
6	Tilcon Oxford	Q25	Warren, NJ	4.02	1.2	28	23.3
7	Stockertown (Delaware River)	Q07D	Northampton, PA	4.01	4.6	26	5.7
8	Cannonsville	E2	Delaware, NY	3.99	13.0	77	5.9
9	Whitehall	Q22	Lehigh, PA	3.96	1.2	34	28.0
10	Ormrod	Q21	Lehigh, PA	3.92	1.3	45	34.6
11	Wadesville Mine Pit	Q01	Schuylkill, PA	3.91	6.9	39	4.8
12	Evansville	Q08	Berks, PA	3.91	3.1	44	14.3
13	Perkiomenville	Q23	Montgomery, PA	3.91	1.0	26	26.0
14	NESL Nazareth	Q27	Northampton, PA	3.86	1.0	25	25.0

No transfers included

Most are quarries

Most are located in PA


Water Management Advisory Committee: June 28, 2023

Appendix A – Storage Project Summaries: Top 38 projects

Water Management Advisory Committee: June 28, 2023

Water Management Advisory Committee: June 28, 2023

Water Management Advisory Committee: June 28, 2023

Appendix A – Storage Project Summaries: Q2 – McCoy Quarry

M MOTT MACDONALD

Storage Project Summary

roject: McCoy Quarry (Q2)

King of Prussia, Montgomery County,

Storage Type: Quarry (Fill & Draw)

Est. Volume: 6.2 Billion Gallons

core: 4.0

1 Project Overview

The McCoy Quarry is located in King of Prussia within Upper Merion Township and is adjacent to Plymouth Township, Pennsylvania (Figure 1.1). The quarry has a maximum estimated volume of 6.2 billion gallons to guarry is approximately 123 acres in area and has an estimated fillable rim elevation of 70 ft. At the quarry's deepest point, it has an elevation of -237 ft, giving the quarry a nominal depth of 307 ft. The Schuylkill River is about 1040 ft away. The quarry is composed of quartz sand and gravel and generally mined for aggregate products. Water would be extracted during times of high flows (possibly by gravity) from the Schuylkill River, stored in the quarry, then discharged back to the River to augment flow during low flow.

Figure 1.1 Project location


2 Water Quantity & Quality

2.1 Quarry Storage Volume

Table 2.1 presents key dimensions of the quarry, foremost its estimated operable water storage volume of over 5.0 BG.

The storage volume was calculated using available topographic information from Pennsylvania Spatial Data Access and AutoCAD Civil 3D 2020. The top elevation of full storage was assumed to be the stated rim elevation. The quarrying over the years excavated from an essentially flat surface grade, creating a deepening depression. Therefore, no additional structures such as dams or retaining walls are needed to further increase the storage volume for this project. Figure 2.1 below shows contours showing the depth of the quarry. The stored water volume assumes the interior of the quarry to generally be impervious with minimal leakage. Further analysis will be needed to account for storage lost to pervious areas.

Figure 2.1: Arial View with Contours

2.2 Fill and Discharge

This project is unique in its proximity to a major river and the potential to gravity feed into the quarry for a large portion of the storage volume. Additional gravity filling or low head pumping could be performed during high flow periods of the adjacent Schuylkill River, allowing for the project to effectively "skim" flows from the Schuylkill River.

The key parameters relating to storage volume and fill/discharge supply are also summarized in Table 2.1 below.

Table 2.1: Storage and Fill/Discharge Parameters

DESCRIPTION	VALUE
Storage	
Area (Acres)	123 acres
Nominal Rim Elev.	70 ft.
Bottom Elev.	-237 ft.
Maximum Water Level Change (Ft.)	307 ft.
Maximum Volume (Billion Gallons)	6.2 BG
Operating Water Range (70 ft to -176 ft)	246 ft.
Operating Volume (Billion Gallons) - ~80% of max. vol.	5.0 BG
Water Supply – Quarry FIII (Stream Withdrawal)	
Antidipated Source Stream	Schuylkiii River
Anticipated Source Stream Drainage Area (Sq. Miles)	1770 sq. ml.
Mean Annual Stream Flow Rate (cfs/mgd)	2910 cfs / 1880 mgd
Proposed Average Pumping Rate (mgd)	31 mgd
Average Vol. Pumped during 6 month Pumping Term	5.6 BG
Water Release – Quarry Discharge (Stream Augmentation)	
Quarry Operating Water Elevation Range (ft)	70 ft to -176 ft
Proposed discharge pumping rate (cfs/mgd)	50 cfs / 32 mgd
Estimated Time to Release Operating Volume from Storage	5.1 months
Water Supply – Travel to Use	
Stream Miles to Delaware River	67.7 miles
Travel Time at 2 mph (hours)	56 hours

2.3 Water Quality

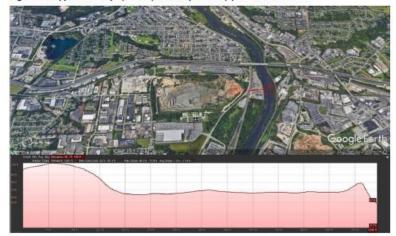
The Schuylkill River has marginal to good water quality based on the PA 303D listing. Table 2.2 below summarizes the listed impairments.

Table 2.2: 303D Listing Impairments

	IMPAIRMENT		
Aquatic Use	Recreational	Fish Consumption	Potable Supply
IMPAIRED - siltation due to urban runoff, habitat alterations other than hydromodification, flow regime modification due to urban runoff, point discharges and agriculture	Not Assessed	Impaired - PCBs	Supporting

The Chapter 93 stream designation is warm water fishery (WWF).

Water quality may change after pumping from the Schuylkill River and settling in the quarry. There may be potential for mixing with adjacent groundwater quality. It is assumed that the stored quality will not decrease relative to the source stream, and quality will likely increase by settling of suspended solids similar to other upstream desilting facilities located on the Schuylkill River. The water quality should be adequate for flow augmentation but this needs to be confirmed by further investigation.


Water Management Advisory Committee: June 28, 2023

Appendix A – Storage Project Summaries: Q2 – McCoy Quarry

3 Infrastructure Design, Construction & Operation

The infrastructure required includes the quarry storage, stream withdrawal facilities, quarry discharge pumping facilities and interconnecting pipeline. Figure 3.1 shows a schematic plan and profile illustrating the typical major facilities required.

Figure 3.1: Approximate Pipe (red line) and Pump Station (P) Location and Profile

The elevation of the Schuylkill River is approximately 53 ft, the quarry rim is 70 ft (90 ft highpoint shown in the above profile). This geometry may allow for gravity "skimming" of the river as will be explained further below. Even if pumping is used to fill the quarry storage, the geometry is advantageous relative to others in that the distance is minimal and the static head to overcome for filling the quarry is low.

However, for consistency and comparison with other facilities, filling by pumping was assumed, as described below. The option for gravity will be mentioned in a later section.

3.1 Pumping Facilities

The base case quarry fill/stream withdrawal pumping station is envisioned to be the typical standard intake and pumping arrangement. Submerged screen intakes would be placed on the river bottom adjacent to the proposed fill/stream withdrawing pumping station shaft. The shaft and facilities would be fitted with pumps as noted below. The total head to overcome by lifting water from the river elevation above the highpoint of the proposed pipeline is relatively small. Given the relatively high flows of the Schuylkill River, the source does not limit withdrawal pumping. Rather, the pumping rate is based on the practical pumping station sizing. Larger intakes and pumping arrangements can be considered, as shown by other downstream potable water pumping facilities. However, there is no need given the quarry filling objectives.

The quarry discharge/stream augmentation pumping station would include the typical withdrawal shaft and pumping arrangement as described in the body of the report. Given the depth of the quarry, significant head

must be overcome to pump from the lowest quarry operating level and over the rim and pipeline highpoint for discharge back to the Schuylkill River.

3.2 Pipeline

The proposed pipeline route is also schematically shown in Figure 3.1. The pipeline is assumed to be 30 inch diameter ductile iron pipe (DIP) installed at nominal depths below grade on essentially a direct alignment from the river pumping station to the quarry. A private easement would be required for a portion of the pipeline, but other public right-of-way (ROW) options exist. The pipeline would need to cross under a railroad and state Route 23. These crossings would be accomplished with typical trenchless methods. Table 3.1 below summarizes the piping and pumping facility parameters.

Table 3.1: Piping and Pumping Facility Parameters

Parameter	Value
Quarry Fill (Stream Discharge)	
Design Flow	31 mgd
Pump Capacity (3 x 10.4 mgd)	31 mgd
Quarry Discharge (Stream Augmentation)	
Design Flow	31.64 mgd (50 cfs)
Pump Capacity (5 x 7.2 mgd)	36 mgd
Pipeline Distance	1,040 lf
Elevation at Discharge Point	52 ft
Elevation at High Point on Pipeline	100 ft
Static Head	48 ft
Pipe Diameter with 10 ft/s Velocity Limit	30 in

Components and quantities of the envisioned facilities are detailed further in the Section 6, Project Cost & Schedule.

The pumping facilities are intended to be remotely operated and monitored as described in the main report. For the purposes of estimating costs, the quarry is assumed to be dewatered during the dry season and refilled in the wetter off-season months. However, given the high flows in the Schuylkill River, the pump can run continuously to fill the quarry storage as needed.

3.3 Alternate Pumping/Piping Configuration

As mentioned above, a gravity fill option exists on this site. This would require a trenchless installation of a conveyance conduit between the river and quarry at an approximately elevation of +40 ft. Conceptually, this would involve a 42" microtunnelled conduit connecting the intake wetwell and the quarry wetwell/shaft. Valve controls and by-pass pipe connections would be installed such that one could fill most of the quarry by gravity and utilize the same conduit to convey discharge water from the quarry back to the stream, albeit discharging into the river at a separate outfall point. While some additional infrastructure costs are incurred, this could eliminate the need to pump from the river to fill the quarry, thereby eliminating the recurring operating cost. Under this passive filling option, the quarry storage volume is reduced to approximately 3.5 BG.

4 Environmental Impacts

This storage project was reviewed against several environmental parameters as described in the body of the report. Overall, the project scored high because it reuses a mined quarry and anticipated environmental impacts are negligible. Minimal impacts would occur to wetlands, forests, streams, endangered species or other concerns. Intakes and pumping would consider fish impingement and other permitted criteria. No other significant environmental impacts are apparent. In addition, there could possibly be improvements to the river by adding the stored and settled quarry water back to the river, particularly during periods of low flow.

Permitting the project appears achievable and should occur within an acceptable timeframe. The major permits for this project, as can be reasonably identified at this concept level of development, are discussed further in the main report. Additional permits may be required.

5 Social and Economic Impacts

Stakeholder and social impacts are expected to be minor. The area immediately surrounding the quarry is industrial, but transitions to residential. The quarry site, transitioned to a water storage reservoir, could conceivably be converted to an environmental enhancement and, if so, could have a positive impact on the social and economic outcome in the area. Figure 5.1 provided some land use information for the surrounding area.

Figure 5.1: Land Ownership

Water Management Advisory Committee: June 28, 2023

Appendix A – Storage Project Summaries: Q2 – McCoy Quarry

6 Project Cost & Schedule

Mott MacDonald prepared a feasibility-level cost estimate consistent with the general approach described in the main report. The costs are based on the project assumptions and the developed infrastructure concepts as outlined in Section 3 above. The following Table 6.1 presents summary capital cost line items. Additional cost estimating justification can be provided upon request. Capital costs have a contingency (+50%) commensurate with the concept development level of detail.

Table 6.1: Capital Cost Summary

Item	Unit	Quantity	Cost/Unit	Extended Cost
FILL PUMPING STATION			Subtotal	\$3,565,500.00
Intake				
Screens	LS	3	\$80,000.00	\$240,000.00
Structure	VF	12	\$50,000.00	\$600,000.00
Other	LS	1	\$90,000.00	\$90,000.00
Pumping Station			•	
Pumps	#	3	\$450,000.00	\$1,350,000.00
MEP	LS	1	\$265,500.00	\$265,500.00
Structure	SF	1200	\$350.00	\$420,000.00
Other	LS	1	\$100,000.00	\$100,000.00
Dissipation	LS	1	\$500,000.00	\$500,000.00
PIPELINE			Subtotal	\$1,082,000.00
Pipeline	LF	1040	\$800.00	\$832,000.00
Valves	#	5	\$50,000.00	\$250,000.00
DISCHARGE PUMPING SYSTEM			Subtotal	\$8,847,000.00
Intake Structure	VF	245	\$25,000.00	\$6,125,000.00
Pumping Station				
Pumps	#	5	\$450,000.00	\$2,250,000.00
MEP	LS	1	\$42,000.00	\$42,000.00
Structure	SF	800	\$350.00	\$280,000.00
Electrical Service	LS	1	\$50,000.00	\$50,000.00
Other	LS	1	\$100,000.00	\$100,000.00
ACCESS ROADS			•	\$1,000,000
New roads	Mile	2	\$500,000	\$1,000,000
SUBTOTALS			•	
Construction Costs Subtotal				\$14,494,500
Contingency			50%	\$7,247,250
CONST. COST + CONTINGENCY				\$21,741,750

The total capital is shown above. Land costs are not included and are assumed to be approximately \$4M based on comparable guarry values in the region.

Operating costs for this project are estimated to be approximately \$0.375M/year. This assumes annual discharge of 5.5 BG and subsequent filling for the following year. Assuming a 30 year operating horizon and ignoring routine maintenance costs, the Present Value (PV) of the operating cost is \$7.35M. This brings the combined total of capital and PV of operating cost to a project total of \$31.05.

The schedule for putting this project in service after general concurrence of all major parties is expected to be approximately 7 years. This includes:

Design, permitting and land acquisition 3 years
 Construction 3 years
 Startup and initial filling of quarry 1 years

7 Potential Ancillary Benefits

Converting the quarry to water storage could provide ancillary benefits. There may be environmental benefit as mentioned above. Also, there could be additional social and economic benefits associated with a water reservoir in the community.

8 Storage Project Score

This project was scored relative to the criteria as presented in the main report. Categories, descriptions and individual scores are summarized in Table 8.1 below. Individual scores for the criteria and sub-criteria are provided in the attached Storage Project Scoring sheet.

Table 8.1: Storage Project Score

CATEGORY	Assigned Score	Assigned Weight	Weighted Score
Water Quantity & Quality	3.50	30%	1.05
Infrastructure Design, Construction & Operation	3.10	10%	0.31
Environmental Impacts	4.61	15%	0.69
Social & Economic Impacts	4.75	10%	0.48
Project Cost & Schedule	4.50	30%	1.35
Anoliary Benefits	3.60	5%	0.18
AVERAGE	4.01		4.06

Appendix

Score sheet

DRBC Year Mity the luction of Additional Strange Options		STORAG	SE PROJEC	CT SCORI	NG		STORAGE PROJEC NAME: McCoy (
	Charle Date			I		ı —	
SIX PRIMARY CRITERIA	Evaluation Metric Selven appropriate) Senter values cells	Score Sibest, 1: worst)			Weight	Weighted Score	Project Specific Comments
1. Water Quartity and Quality		3.50		'	30%	1.05	
o Volume of storage provided \$60)	62						
	55	5					
o Hydrd cgic reliability of supply (months to fill)							
o Release rate (ds.)	50 233	3 3					
o Promptreus of delivery to mainders (das) o Geographic Benefit	2.00	3					
o Quality of stored setter		- 6					Same as source, but settled
2. Infrastructure Design, Construction and Operation o Sity/Civil, Land & Fasements		3.30			10%	0.21	Tupical but need private earnment for pipeline
o Subserface conditions		- î					
o infrastructure Compleity		- 6					Typical shorter pipeline
o Construction complexity o Operational complexity		3.5					Tspicel
					100	0.69	Auton sted ops, Possible option for grants fill
3. Sinel norm ental im parts		6.61			15%	0.69	
o Protected species		5					Potential for freshwater mussels issues, but no protected
o Water quality degradation		5					Should be minimal; potential for improvement
o Obstruction to passage of aquatic arrival s		5					None identified
o Hydron offication		4					Minimal impacts, if any easy to assimus late flows
		'	special two-fo for hald tal	actor scoring			
Habitat Tues			replaceability	quantity in patted			
		Combined average	(Sreasy)	(Smarral), 1 starge)			
o Wetlands inundated or filled (s.c)		6.75	4.5	5			Miror disruptions from intaleybank
o Stream length inundated (mil)	WWF; G1mile		4	4			
o Uptandisinsundated or developed (as)		4.5	s	4			Short pipeline in industrial area
Social and Economic Impacts Disrupt cry/displacement		6.76		'	10%	83.0	
		-					
o Safetyandhealth							
o Sodal equity		5					
o Recreational loss		s					
o Gultural /Historical resources		s					
o Anthetic		5					Land improvements
o Loss of transvense		4					Quarrying would on se
o Louisof production from farmland, Emberland, quarri	ins	- 5					Miror quarty impact
		3					No data
		6.50			10%	1.25	
o fini ssion of greenhouse gases		6.30			30%	123	
o fini silon of greenhouse gases i. Project Costs & Schwide o Land acquisition cost (S	~S4M						
i. Project Costs & Schedule	\$1.7M	-					
i. Project Costs & Schwissie o Land a cquisiation cost (S) o Construction Cost (S) o Operating Cost (S)-yr)	\$11.7M -90.379M						Possible lower cost with gravity \$1
i. Project Code & Schwide o tand aquisition cost (\$) o forutrustion four (\$) o (perstruction (\$9) o (perstruction (\$9) o (best (\$0) best (\$0)	\$1.7M	4.5					Possible lower cost with gravity \$1
i. Project Costs & Schwissie o Land a cquisiation cost (S) o Construction Cost (S) o Operating Cost (S)-yr)	\$11.7M -90.379M	4.5 5	:				Possible lower cost with gravity #1
I. Project Coots & Schoolse o Executive Coots (S. S. S	\$11.7M -90.379M	4.5 5 4 2.60			5%	0.18	
Project Costs & Schedule Cos	\$11.7M -90.379M	2.00	:		5%	0.18	No real beants perceived
. Project Guess & Scientific 0 to Communities Guess (S) 0 ficentization Guess (S) 0 ficentization Guess (S) 0 ficentization (S) 0 ficentization (S) 0 to Communities (S) 0 to Communities (S) 0 ficentization (S)	\$11.7M -90.379M				5%		No real benefit perceived transase in residential surban area a plus
Project Costs & Schedule Cos	\$11.7M -90.379M	3.60			5%		No real beants perceived

Water Management Advisory Committee: June 28, 2023

Appendix I – 1 Page Project Summaries Top 10

RECOMMENDED STORI (Refer to the Storage Project Summo	PROJECT NUMBER Q19			
PROJECT NAME AND LOCATION (City and State)				
Rush Valley Quarry Furlong (Bucks County), Pennsylvania	STORAGE TYPE Quarry	1.7 BG		
KEY PROJECT INFORMATION				
PROJECT OVERIVEW	PROJECT SCORE & RANK	PROJECT COST		
Quarry Storage; Neshaminy Creek source; Pump fill/discharge	SCORE: 4.07 RANK: 1	CAPITAL COST: \$ CAPITAL+O&M: \$		
DESCRIPTION OF PROJECT AND RELEVANCE TO THIS STUDY				

The Eureka Rush Valley Quarry is an active quarry located in Furlong, PA in Bucks County, Pennsylvania. The site lies within Buckingham Township and borders Wrightstown Township, Doylestown Township, and Warwick Township. The quarry has a maximum volume of 1.7 billion gallons. This quarry is approximately 97 acres in area and has an estimated fillable rim elevation of 160 ft. At the quarry's deepest point, it has an elevation of 50 ft, giving the quarry a nominal depth of 110 feet. The nearest pumpable stream to the quarry is the Neshaminy Creek. The quarry is composed primarily of siltstone and mined for various aggregate products.

The intended design is to fill the quarry from the Neshaminy Creek located only about 250 ft away from the quarry interior. The flow of the source stream is substantial and should not affect the planned pumping rate and project target to replenish the storage with a 6-month period. The planned average withdrawal is approximately 29 mgd. The discharge of quarry storage to augment stream flow in times of need is governed by the limitations of the quarry pumping station and protection of the receiving stream from erosion. The discharge rate back into the stream has been established at 50 dfs (31 mgd).

Basin Commission

The infrastructure required includes the quarry, stream withdrawal pumping facilities, quarry discharge pumping facilities and interconnecting pipeline. Withdrawal will be accomplished with an arrangement of 3 x 10 mgd pumps in the wetwell. Discharge from the quarry back to the source stream is approximately 50 cfs (32 mgd) using 4 x 8.8 mgd pumps. The proposed pipeline route is schematically above and is approximately 250 feet of 30-inch diameter ductile iron pipe (DIP).

Mott MacDonald prepared a cost estimate for this storage project consistent with the general approach described in the main report. Capital costs have a contingency (+50%) commensurate with the concept development level of detail. Capital construction cost is \$17.0M. \$2M was carried for land costs associated with this project. Operating costs for this project are estimated to be approximately \$0.375M/year. This assumes annual discharge of 1.4 BG and subsequent filling for the following year. Assuming a 30-year operating horizon and ignoring routine maintenance costs, the present value (PV) of the operating cost is \$7.35M. This brings the combined total of capital and PV of operating cost to a project total of \$20.05M. The schedule for putting this project in service after general concurrence of all major parties is expected to be approximately 9 years.

This project was scored relative to the criteria as presented in the main report. Categories, descriptions and individual scores are presented below, with individual scores sub-criteria provided in the Storage Project Scoring sheet.

CATEGORY	Assigned Score	Assigned Weight	Weighted Score
Water Quantity & Quality	3.75	30%	1.13
Infrastructure Design, Construction & Ope	ration 3.60	10%	0.36
Environmental Impacts	4.79	15%	0.72
Social & Economic Impacts	4.88	10%	0.49
Project Cost & Schedule	4.00	30%	1.20
Ancillary Benefits	3.60	5%	0.18
AVERAGE	4.10		4.07
	TITLE		
FIRM NAME	STUDY		CLIENT NAME
MOTT M Mott MacDonald	Evaluation of Additional Sto	rage in the	Delaware River

RECOMMENDED STORAGE PROJECT - ONE PAGE SUMMARY (Refer to the Storage Project Summary incested in Appendix A for more detailed information.) Q2 PROJECT NAME AND LOCATION (Only and State)					
McCoy Quarry King of Prussia (Montgomery County), Pennsylvania			Quarry	6.2 BG	
KEY PROJECT INFORMATION					
PROJECT OVERIVEW	PROJECT SCORE & RANK		PROJECT COST		
Quarry Storage; Schuylkill River source; Pump fill/discharge with possible gravity	SCORE: 4.0 RANK: 2	6	CAPITAL COST: \$ CAPITAL+O&M: \$		
DESCRIPTION OF PROJECT AND DELEVANCE TO THE CHIEF			•		

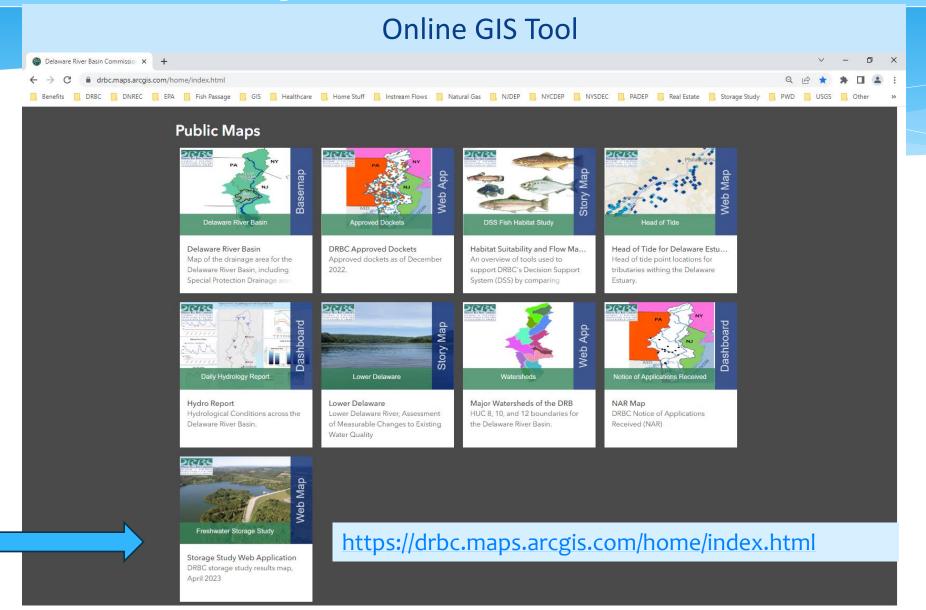
The McCoy Quarry is located in King of Prussia within Upper Merion Township and is adjacent to Plymouth Township, Pennsylvania. The quarry has a maximum estimated volume of 6.2 billion gallons. This quarry is approximately 123 acres in area and has an estimated fillable rim elevation of 70 ft. At the quarry's deepest point, it has an elevation of -237 ft, giving the quarry a nominal depth of 307 ft. The Schuylkill River is about 1040 ft away. The quarry is composed of quartz sand and gravel and generally mined for aggregate products. Water would be extracted during times of high flows (possibly by gravity) from the Schuylkill River, stored in the quarry, then discharged back to the River to augment flow during low flow.

The infrastructure required includes the quarry, stream withdrawal facilities, quarry discharge pumping facilities and interconnecting pipeline. The elevation of the Schuylkill River is approximately 53 ft, the quarry rim is 70 ft (90 ft highpoint shown in the above profile). This geometry may allow for gravity "skimming" of the river. Even if pumping is used to fill the quarry storage, the geometry is advantageous relative to others in that the distance is minimal and the static head to overcome for filling the quarry is low.

Mott MacDonald prepared a feasibility-level cost estimate consistent with the general approach described in the main report. The costs are based on the project assumptions and the developed

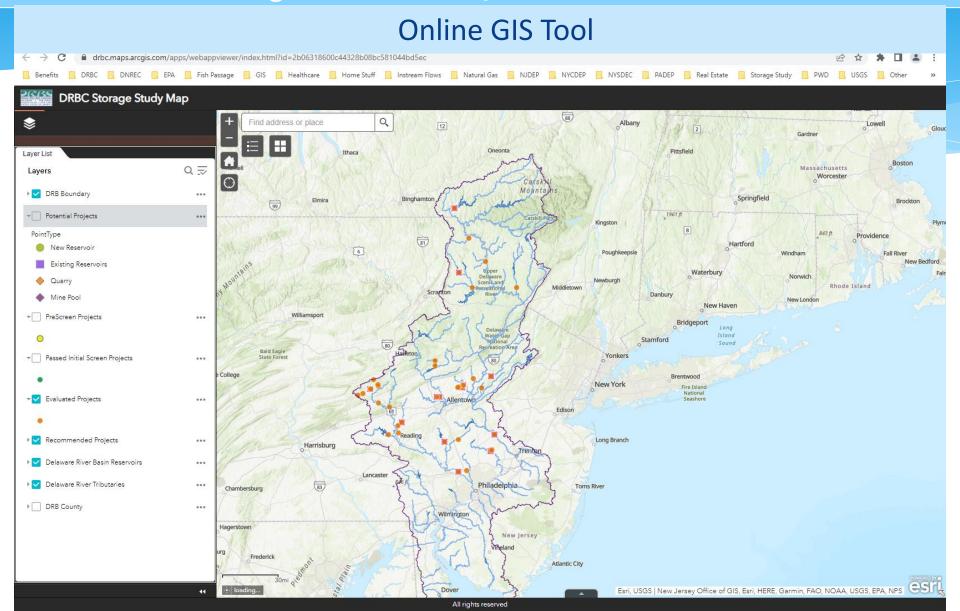
infrastructure concepts as outlined above. Capital costs have a contingency (+50%) commensurate with the concept development level of detail. Land costs are assumed to be approximately \$4M based on comparable quarry values in the region. Operating costs for this project are estimated to be approximately \$0.375M/year. This assumes annual discharge of 5.5 BG and subsequent filling for the following year. Assuming a 30-year operating horizon and ignoring routine maintenance costs, the present value (PV) of the operating cost is \$7.35M. This brings the combined total of capital and PV of operating cost to a project total of \$31.05. The schedule for putting this project in service after general concurrence of all major parties is expected to be approximately 7 years.

This project was scored relative to the criteria as presented in the main report. Categories, descriptions and individual scores are summarized in below.


CATEGORY	Assigned Score	Assigned Weight	Welghted Score
Water Quantity & Quality	3.50	30%	1.05
Infrastructure Design, Construction & Operation	3.10	10%	0.31
Environmental impacts	4.61	15%	0.69
Social & Economic Impacts	4.75	10%	0.48
Project Cost & Schedule	4.50	30%	1.35
Ancillary Benefits	3.60	5%	0.18
AVERAGE	4.01		4.06

Individual scores for the criteria and sub-criteria are provided in the Storage Project Scoring sheet.

L	Г	TITLE					
L	FI	RM NAME	STUDY	CLIENT NAME			
		MOTT MACCOUNTED M M MOTT MACCOUNTED M		Delaware River Basin Commission			
l	Г			DATE: 11/15/22			


Water Management Advisory Committee: June 28, 2023

Water Management Advisory Committee: June 28, 2023

Water Management Advisory Committee: June 28, 2023

What's next?

- * DRBC staff continue to perform water availability studies do we have enough water?
 - * DOR considerations, climate change / SLR, other planning scenarios
- * DRBC staff to work with Commissioners to determine "next steps"

Discussion / Questions

- * Committee members first
- * Public next

