A Comprehensive Assessment of the Delaware River Basin Commission's Water Audit Program (2012-2021)

Water Management Advisory Committee (WMAC)

Michael Thompson, P.E October 12, 2023

This presentation was given at the October 12, 2023, WMAC Meeting. Content may not be published or re-posted in whole or in part without the DRBC's permission.

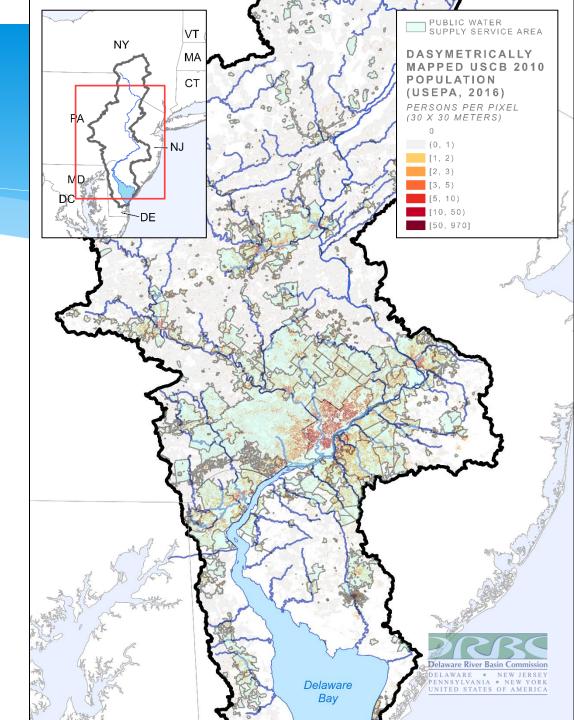
Outline

- 1. Public water supply in the Delaware River
- 2. Water Loss Control: Context & Background
- 3. Data management and review
- 4. Water Audit Analysis (2021) and trends (2012-2021)
- 5. Real Loss Reduction Potential Analyses
- 6. UARL System Correction Factors (SCF)
- 7. Physiographic analyses
- 8. Conclusions

1. Public Water Supply in the Delaware River Basin

D

Population served by PWS (in-Basin)

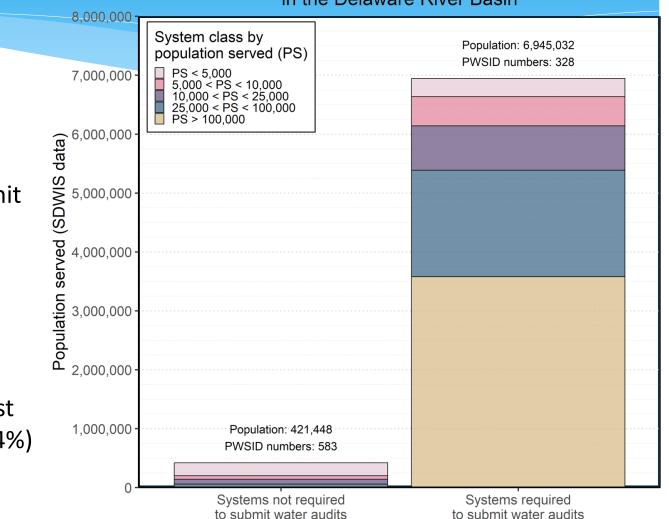

* Estimated about 900 public water supply
 J service areas in the Delaware River Basin

2010

Using 2010 population data from the USEPA EnviroAtlas, it is estimated that 7.157 million people rely on public water supply (87% of the estimated 8.252 million Basin residents)

2020

Using 2020 "population served" data from the USEPA SDWIS, it is estimated that 7.366 million people rely on public water supply (85% of the estimated 8.629 million Basin residents)

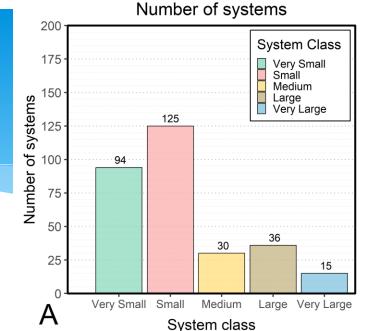


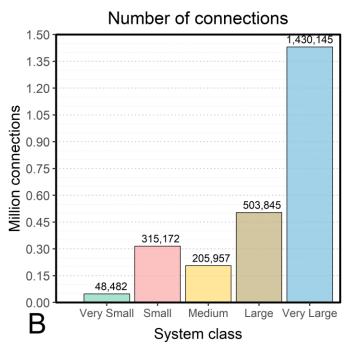
Population served by PWS (in-Basin)

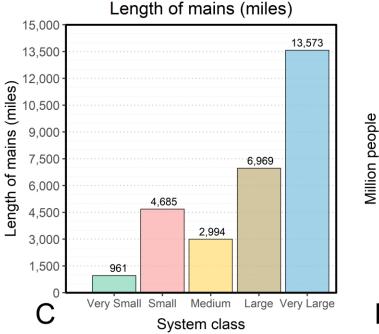
Population served by public water supply in the Delaware River Basin

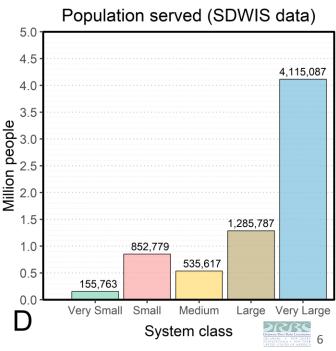
Looking more at the 2020 data:

- 7.336 million people within PWS service areas
- Approximately 300 systems are required to submit water audits (328 PWSIDs)
- These 300 account for most of the water withdrawn from the DRB for PWS (~99%) (Thompson & Pindar, 2021)
- This shows that audited systems account for most people served by PWS (6.945 million people, ~94%)

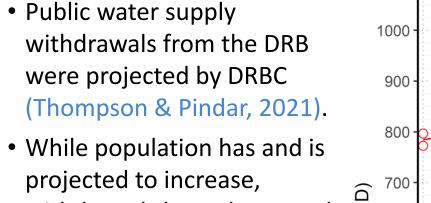



Extensive infrastructure

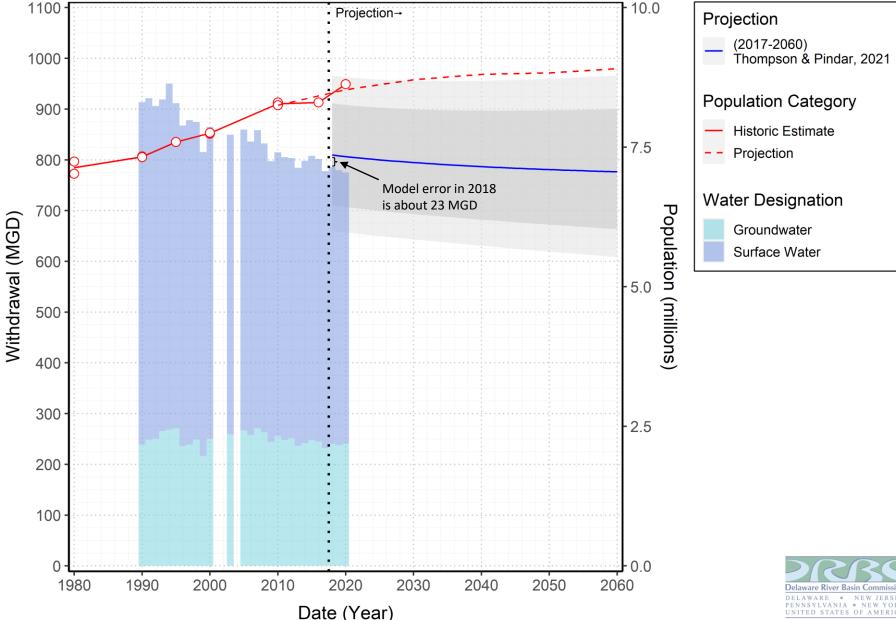

Some notes:


- The 300 systems have been classified by the number of connections.
- There are 29,000 miles of water mains in the Basin (enough to circle the Earth)
- There are 2.5 million service connections

System size class	Abbv.	Active/Inactive Connections
Very Small	VS	< 1,000
Small	S	[1,000, 5,000)
Medium	М	[5,000, 10,000)
Large	L	[10,000, 20,000)
Very Large	VL	≥ 20,000



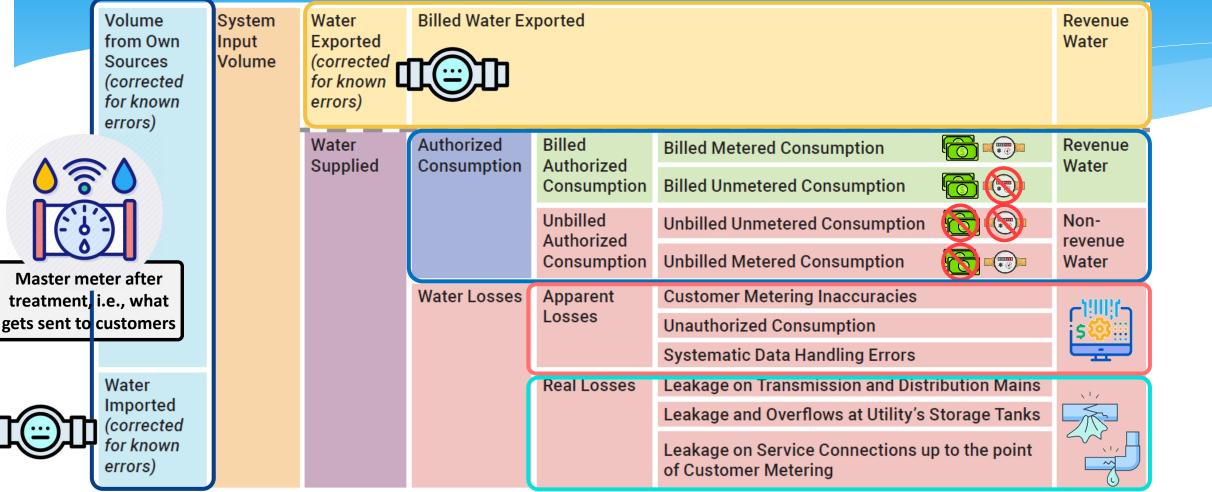
Public water supply withdrawals from the Delaware River Basin with comparison to the in-Basin population



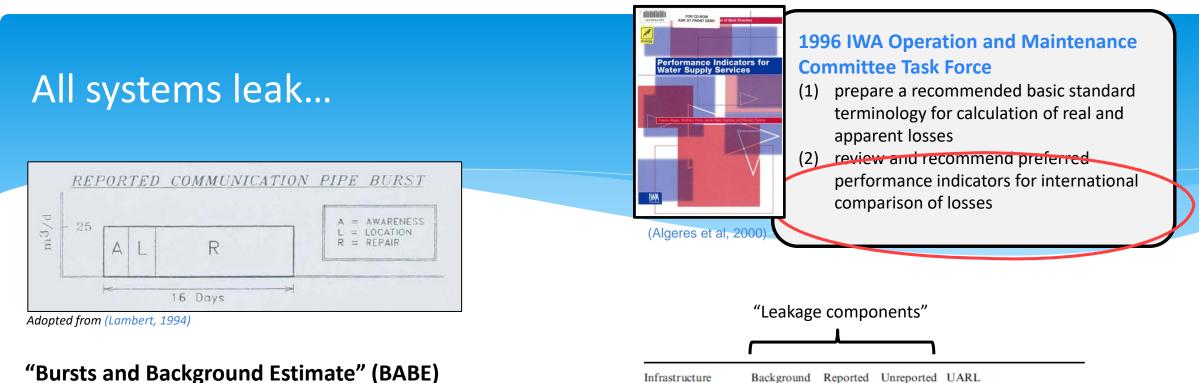
withdrawals have decreased.

1. Plumbing standards

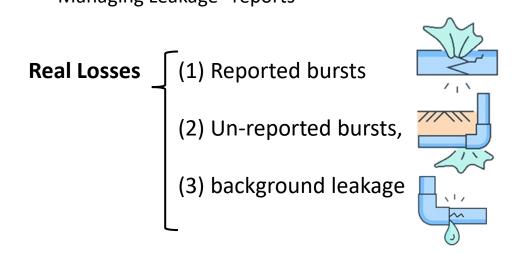
This figure:

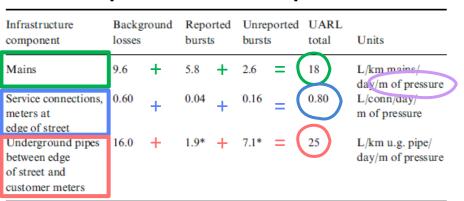

- 2. Fewer industrial & commercial customers
- 3. Lower per-capita rates
- Water conservation efforts (e.g. leak detection & repair)
- Can offset the projection by 2018 model error

2. Water Loss Control: Context & Background



Standard water balance and terminology

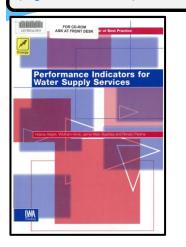



AWWA. (2016). The State of Water Loss Control in Drinking Water Utilities. A White Paper From the American Water Works Association. Denver, Colorado. American Water Works Association.

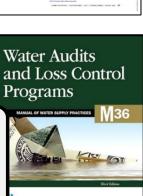
Conducted as part of research project for the National Leakage Control Initiative (NLCI) in 1994, resulting in "Managing Leakage" reports

Adopted from (Lambert et al., 1999)

(1) UARL = $(18*L_m + 0.80*N_c + 25*L_p)*P$

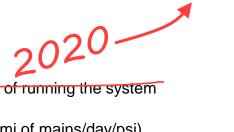

(2) ILI = CARL / UARL

"rational yet flexible basis... for a wide range of distribution systems."



Free Water Audit Software (FWAS) & Performance Indicators

170 Performance Indicators 232 Variable definitions (Algeres et al, 2000)


Applying worldwide BMPs 2003 water loss control "IWA methodology for the water audit (balance) and performance indicators should be recognized as the current BMP for quantitatively For an expended sension of this activity, go to a Jonese, NWW all source necessory monitoring water use and water loss in drinking water systems" (Kunkel, 2003) Water Audits 2009 Programs AWWA Free Water Audit Software & M36 adopt terminology and some recommended performance indicators

"AWWA WLCC 2020 Position"

Recommended performance indicators incorporated into v6.0 of the AWWA FWAS (Jernigan et al., 2019)

Туре	Indicator	IWA Code (3 rd Ed.)	Units
	Apparent Loss Volume		Volume
	Apparent Loss Cost		\$
Attribute	Real Loss Volume		Volume
	Real Loss Cost		\$
	Unavoidable Annual Real Loss (UARL)		Volume
	Normalized Apparent Losses		volume / connection / day
	Normalized Real Losses		volume / connection / day
Volume	Normalized Real Losses (pipe length)	Op28	volume / pipeline length / day
volume	Normalized Water Losses	Op23	volume / connection / day
	Real Losses by Pressure		volume / connection / day / pressure unit
	Infrastructure Leakage Index (ILI)	Op29	Dimensionless
Value	Apparent Loss Cost Rate		\$ / connection / year
value	Real Loss Cost Rate		\$ / connection / year
Validity	Data Validity Tier (DVT)		Dimensionless

bible both both both both both both both both			/A Free Water Audit Software v6.0
Link of Accession	op-down" summary water	r audit format and is not meant to take the place	of a full-scale, comprehensive water audit format. Auditors are strongly encouraged to refer to the most current edition of AVWA N36 ess and targeting loss reduction levels. This fool contains several separate vorisheets. Sheets can be accessed using the tabs at the
turner geometric Contraction	Tal	ble of Contents (TOC)	Enter Basic Information Key of Input Acronyms In order of appearance in the Movaphent
 Materia Market and M			Name of Contact Person VOSEA VOS Error Adjustment
Addresses	the wate	er balance and data grading.	City/TownNuncipality. WE Water Exported State / Province: WEEA WE Error Adjustment
Conserved and when when only ensures in the more server in the mo	Grading audting	put, and the data validity grades will	County, Black Blied Unnefered Authorized Consumption
Lease devoures das converts das convert	Dashboard graphics	NRW components, performance indicators and al outputs to evaluate the results of the audit.	Audit Year Label (Fiscal, Calendar, etc) SCHE Systematic Data Handling Errors
Back Net Provide Synamic Synami	Notes docume	ent data sources, and related information about	Volume Reporting Units Line Length of mains
manu Reads and any service and any service and any service and any service any servic			System ID Number: ACP Average Operating Pressure Validator Name/D: CRUC Outloner Retail Unit Charge
Presses with yours and performance studies: Call Key Las repair Call Level Call Call Level Call Call Level C	Water Balance The walk	ives entered in the Worksheet automatically te the Water Balance.	
Consistent auf process Undance for the Intercept of the I			Color Key User input Cakulated Optional default
Connection Usgrans depicing possible customer service Diagram connection line configurations. (possible connection line configurations. (possible refry option. (possible ref			Guidance for the Worksheet Guidance for the Interactive Data Grading
		ns depicting possible customer service tion line configurations.	(applies to VOSEA, WEA, VIEEA, CM) above.
Addimovaledge- Additionedgenents for development of the AVMA volume 25 000 time on the tar and once we		iedgements for development of the AlWiA later Audit Software v5.0.	
Choosing to entire default or sustein input After rickins as arcmin buffer, Answer al visible overland, Sant Page Workheet Interactive Data Gradina, Darbband, Notes, Bank Steet, Weite Bainne, Los Control Ramina, Derbidon, Service Consection Dacram, Addres	first free	Machinest Internation Parts Condina David	

(Fi36) Volume of non-revenue water as a percentage of system input

- (Fi37) Valuation of non-revenue water as a percentage of the annual cost of running the system
 - (Op23) Apparent losses (gal/connection/day)
 - (Op24) Real losses (gal/connection/day), (gal/connection/day/psi) or (gal/mi of mains/day/psi)
 - UARL, Unavoidable Annual Real Losses, as in (Op25) ILI (dimensionless) = CARL / UARL
- Codes used in

Data validation ≠ Data validity

(Andrews et al., 2016)

Water Research Foundation

> Level 1 Water Audit Va Guidance Manual

1st ed. (2016)

This is where DRBC is currently operating, was defined in 1st edition but the 2nd edition does not really acknowledge "filtered".

"Levels" of data validation

edition does not really nowledge "filtered".		Self-reported audits	have not been subject to an in-depth review, and data grading has been completed by the reporting entity based on their best understanding.				
016)		Filtered audits	have been checked for technical plausibility by a research team based on simple, broad criteria.				
(Sturm et al., 2021)		Level 1 validated audits	have been subject to third-party "desktop review" of data that is immediately available (such as supply reports, consumption reports and testing reports). This level of				
THE Water Concerned	have "c	states require this, and certified validators" – nia, Georgia, Indiana	validation is intended to (1) confirm the accurate application of the AWWA M36 water audit methodology to the utility-specific situation, (2) identify and correct inaccuracies where realistic, and (3) verify the answers selected to the Interactive Data Grading (v6.0).				
PROJECT NO. 5057 Level 1 Water Audit Validation Guidance Manual Second Edition		Level 2 validated audits	have been third-party reviewed with a deeper "desktop" analysis and may include the review of items such as a production database, SCADA system reports, billing system information, and meter test results. No field testing or new data gathering efforts are performed. have been third-party reviewed using both "desktop analysis" (as described in level 2 validation) and field investigations.				

2nd ed. (2021)

3. Data management and review

Summary of reports and datasets

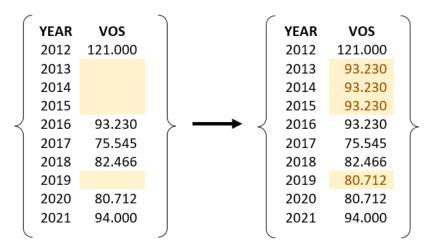
Statistics for the Delaware River Basin Commission's Water Audit Program (2012-2021)

Year	First Year	Last Year	Expected	Missing	v4.1	v4.2	v5.0	v6.0	Rec'd	Compliance	Filtered Dataset
2012	306	2	306	62	3	240	1	0	244	80%	174
2013	0	2	304	44	2	255	3	0	260	86%	182
2014	0	2	302	43	1	95	163	0	259	86%	191
2015	0	0	300	35	0	6	259	0	265	88%	192
2016	0	0	300	11	0	1	288	0	289	96%	202
2017	1	0	301	8	0	0	293	0	293	97%	202
2018	2	5	303	8	0	0	295	0	295	97%	168
2019	5	3	303	19	0	1	283	0	284	94%	187
2020	1	1	301	17	0	0	150	134	284	94%	199
2021	0	0	300	18	0	0	4	278	282	94%	209

FILTER CRITERIA

- 1. Cannot be backfilled report data
- 2. Total Water Loss, Apparent Loss, Real Loss
- 3. Customer Metering Inaccuracy (CMI)
- 4. Infrastructure Leakage Index (ILI)
- 5. Billed Metered Authorized Consumption (BMAC) > 1,000 gal/connection/month
 - So how does the DRBC filtered dataset look in comparison to validated data?

1 < ILI <20


< 25% of Total Water Loss

>= 0

Note: Data sets & usage

- (1) Full "backfilled" data used for volumetric trend assessments
- (2) Filtered data used for assessment of normalized metrics (representing the "most reliable" data points from a given year)

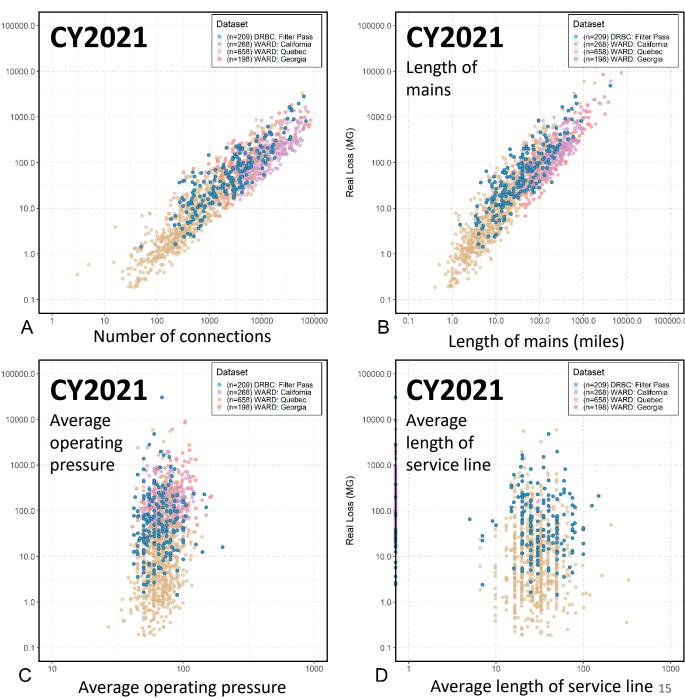
Example data backfilling for user inputs – calculations carried forward

DRB-2021 and WARD-2018 AWWA Water Audit Data

Water Audit Reference Dataset (WARD)

A product compiled by the AWWA Water Loss Control Committee which includes Level 1 validated water audits for calendar year 2018 from 1,124 utilities in:

Loss (MG)

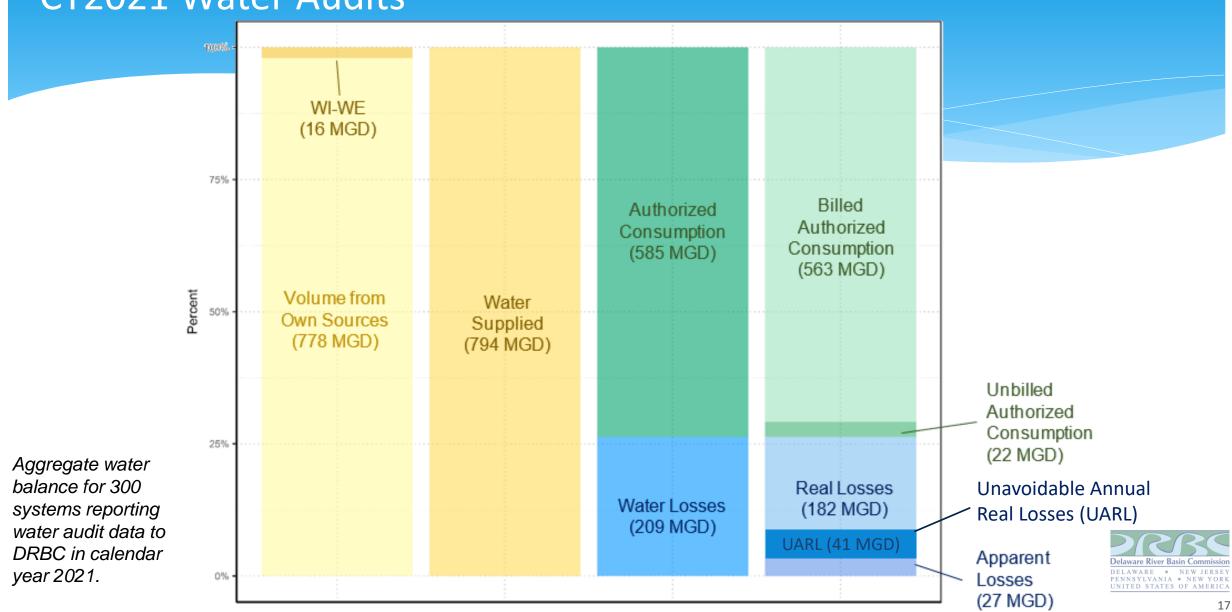

Loss (MG)

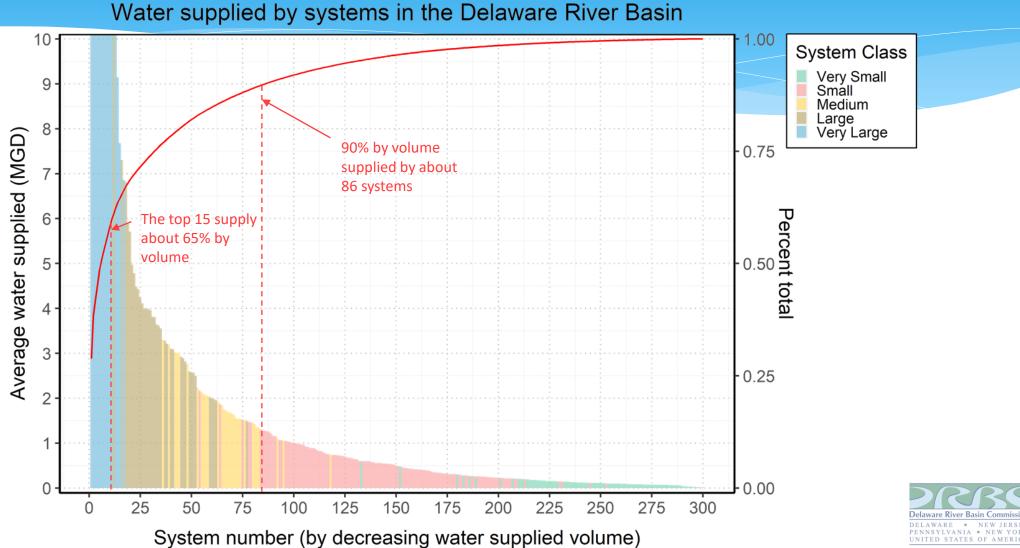
Real

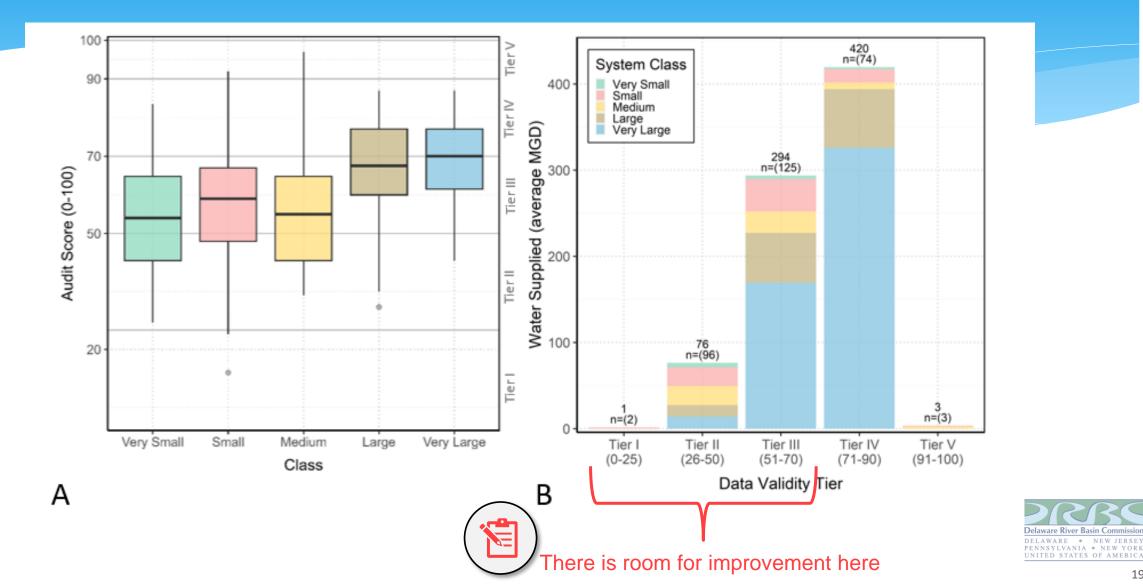
- Quebec (Canada)
- California
- Georgia

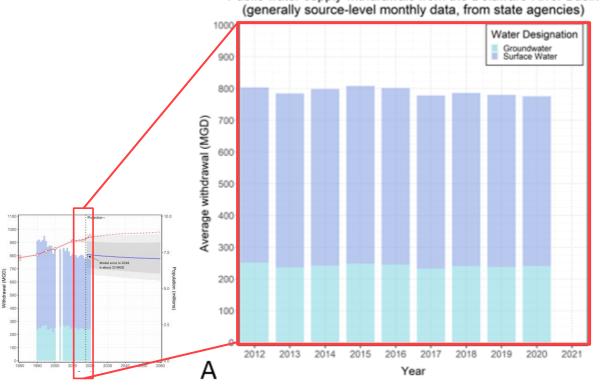
Real Loss on y-axis in all plots

"Filtered" data from the Delaware River Basin aligns with Level 1 validated data fairly well



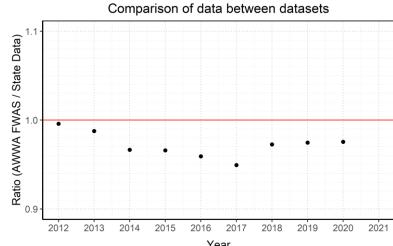

4. Water Audit Analysis (2021) and trends (2012-2021)


CY2021 Water Audits


CY2021 Water Audits

CY2021 Water Audits

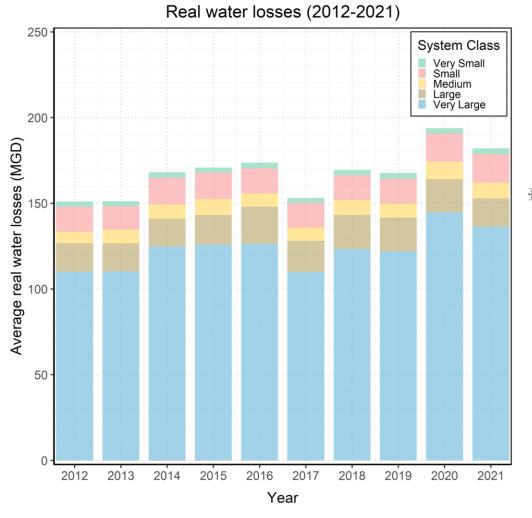
19



Public water supply withdrawals from the Delaware River Basin

(system-level annual data, AWWA FWAS) 1000 System Class Very Small Small Medium 900 Large Very Large (MGD) 800 sources 700 600 UNO from 500 volume 400. 300 Average 200 100 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 В

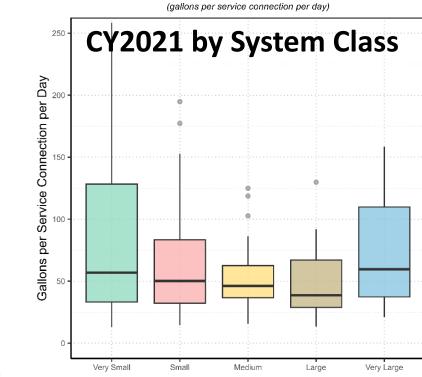
Public water supply withdrawals from the Delaware River Basin


Zoom in on the period of study overlapping with "monthly sourcelevel" data reported to state agencies, compiled by DRBC

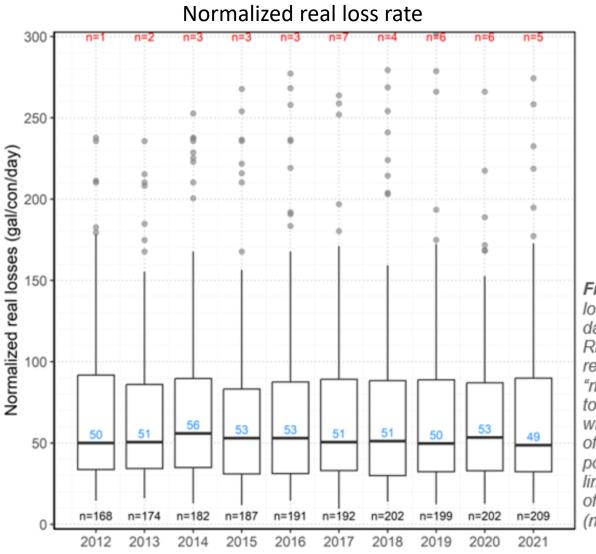
Year

The mean accuracy is 97%, state data is higher

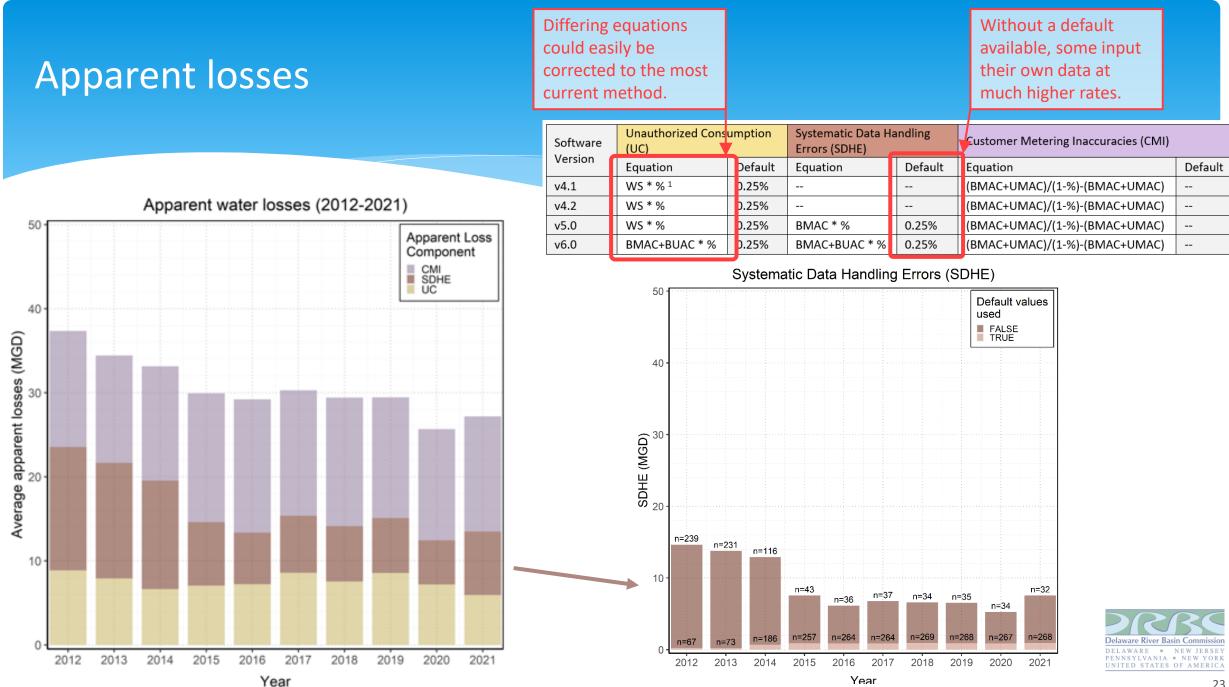
Table 12: The annual real water loss volumes by system class previously presented in Table 11, normalized by the 10-year mean and color coded such that values above the mean are red (>1), and values below the mean are blue (<1).

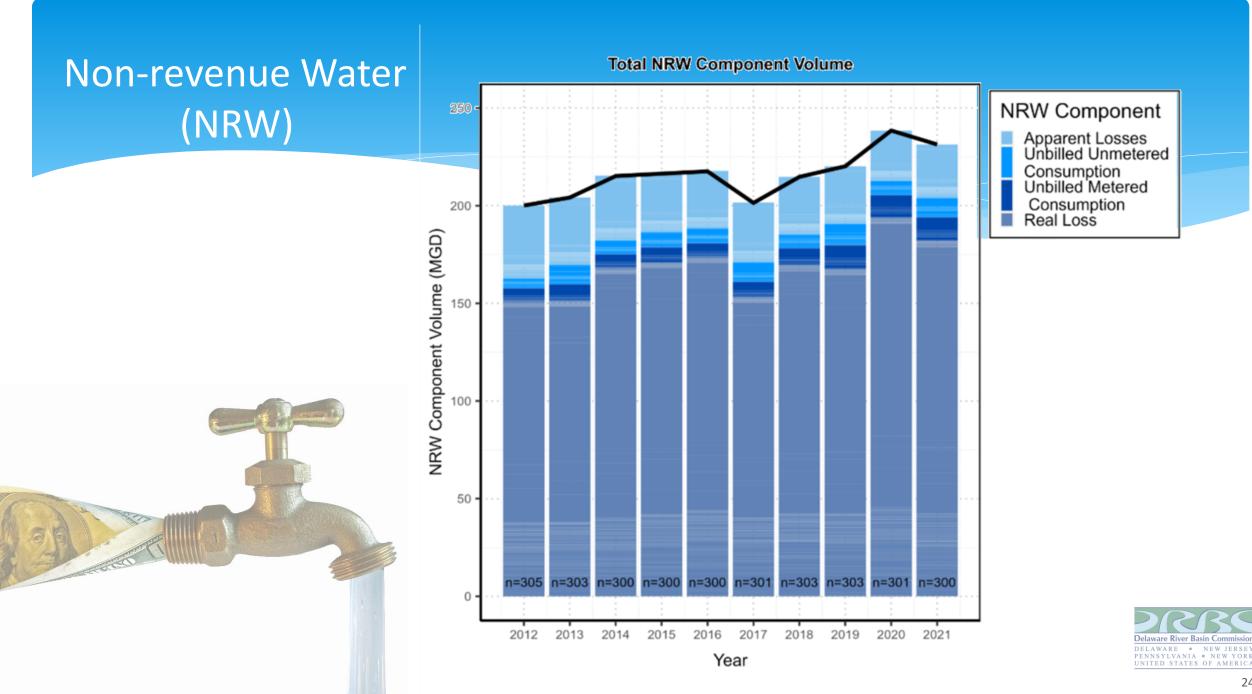

Year	Very Small	Small	Medium	Large	Very Large	Total
2012	1.00	0.97	0.80	0.91	0.89	0.90
2013	0.92	0.91	0.96	0.90	0.89	0.90
2014	1.00	1.04	0.98	0.89	1.01	1.00
2015	0.92	1.03	1.11	0.95	1.02	1.02
2016	1.05	0.97	0.92	1.19	1.02	1.03
2017	0.93	0.95	0.93	1.00	0.89	0.91
2018	1.03	0.96	1.02	1.09	1.00	1.01
2019	1.07	0.97	0.97	1.09	0.99	1.00
2020	1.01	1.09	1.22	1.06	1.17	1.15
2021	1.07	1.11	1.09	0.91	1.10	1.08

The volume of real losses has remained relatively constant, with increases in the last two years (2020, 2021).



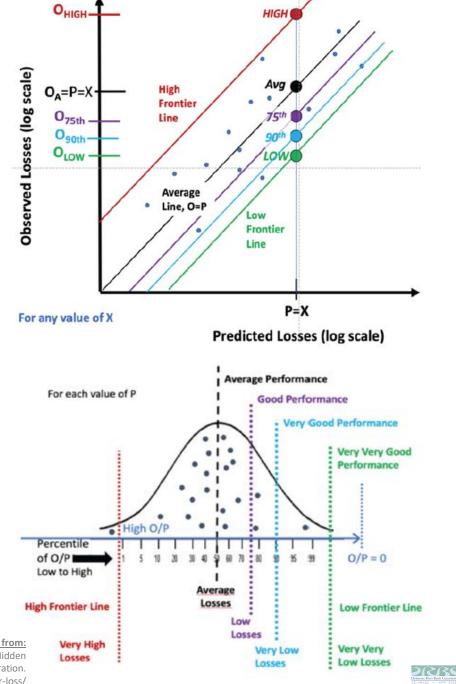
Real losses


Class



CY2021 st	atistics
min	13.1 gcd
o25	32.3 gcd
nedian	48.7 gcd
o50	72.1 gcd
o75	89.9 gcd
nax	414 gcd

Figure 22: Normalized real water loss rate calculated using the filtered dataset for systems in the Delaware River Basin subject to water audit reporting requirements. The **black** "n=123" label at the bottom is the total data points for each bar, whereas the **red** "n=123" at the top of the frame is the total number of points plotting beyond the y-axis limit. The **blue** number in the middle of each box is the median value (normalized real loss rate).

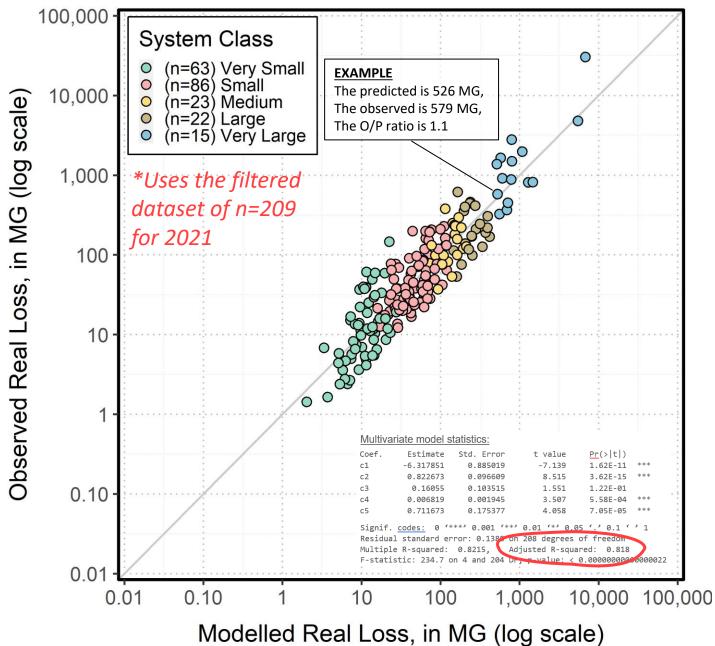

5. Real Loss Reduction Potential Analyses

Frontier Analysis

What is a frontier analysis as it relates to water loss?

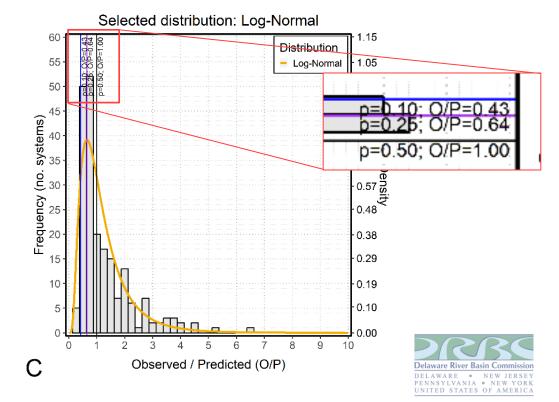
- 1. Develop a multivariate model to predict real loss from a system
- Look at how the ratios of RI_{observed} / RL_{predicted} are distributed (i.e. the "O/P ratio")
- 1. Calculate percentiles for O/P ratio based on distribution
 - Average systems performance = 50th percentile
 - **Good** system performance = 25th percentile
 - Very Good performance = 10th percentile
- 2. Calculate "Real Loss Reduction Potential" if systems worse than average improved performance to become average (etc....)

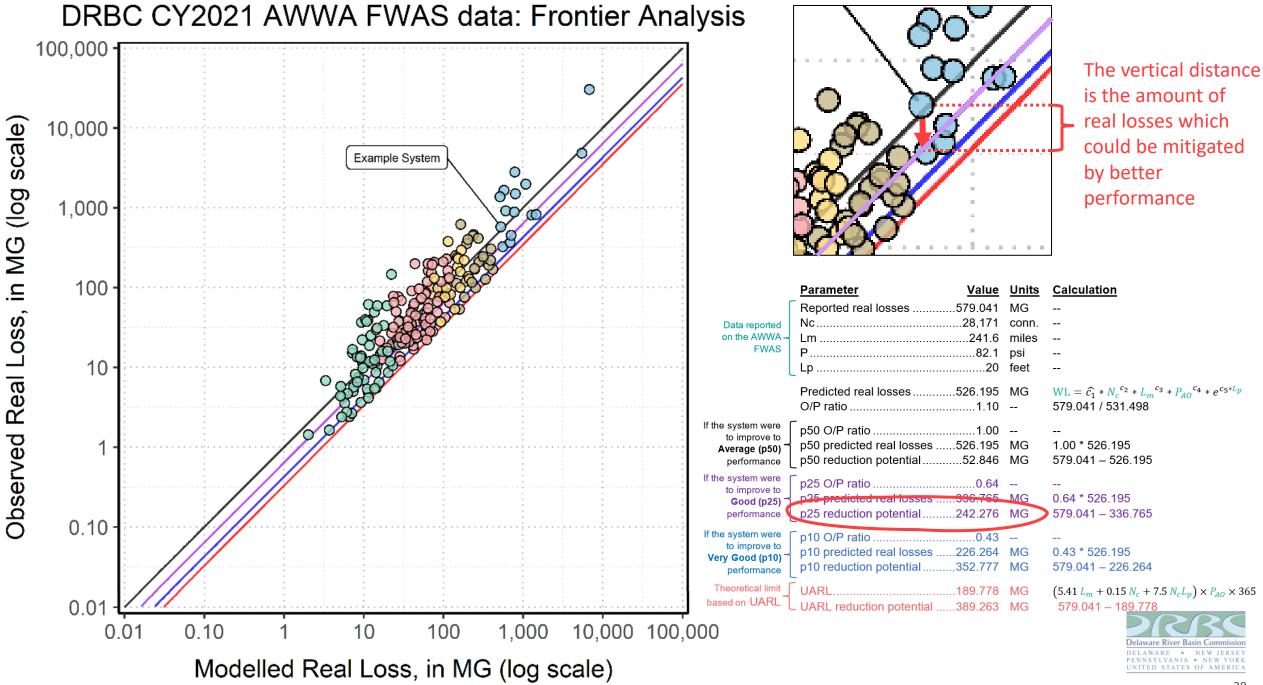
26


 Figures adopted from:

 Walker, J., Wyatt, A [Alan], Seefeldt, J., Goshen, D., Bock, M., Johnston, I., & Black, M. (2022). Hidden

 Reservoirs: Addressing Water Loss in Texas. Austin, Texas. National Wildlife Federation.


 https://texaslivingwaters.org/deeper-dive/water-loss/

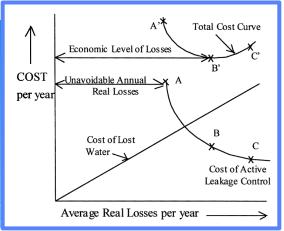

Observed Real Losses v. Predicted Real Losses

The components of UARL

Dependent variable:	MG / ye							
	N _c	Number of active and inactive service connections	count					
Independent veriables.	L_m	Length of mains	miles					
Independent variables:	P_{AO}	Average operating pressure	psi					
	L _p	Average length of customer service line	feet					
Model Form		$\ln(WL) = c_1 + c_2 * \ln(N_c) + c_3 * \ln(L_m) + c_4 * L_p + c_5 * \ln \frac{1}{2}$ ed form: $WL = \hat{c_1} * N_c^{c_2} * L_m^{c_3} * e^{(c_4 * L_p)} * P_{AO}^{c_5} \qquad \text{where } \hat{c_1}$						

Frontier Analysis: Real Loss Reduction Potential

Aggregate results for the Basin:

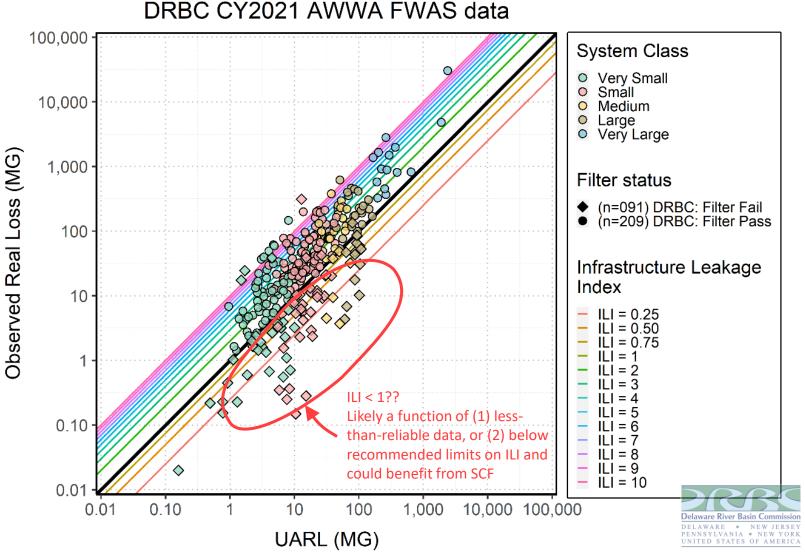

- Real losses could be reduced between about 34,000 – 52,000 million gallons per year (or about 95 - 144 MGD on average)
- Can show the results as normalized gal / connection / day (average by class).
 (click to advance slide and change results)
- 3. Very Large systems account for the majority of the RLRP by volume, but not the highest when considering normalized
- 4. Incorporation of UARL brings in a component of "physical limits"

Challenges:

- 1. Reduction to UARL not realistic, should consider Economic Level of Leakage
- 2. Percentiles may change year to year if the analysis is redone

Table 16: A summary of aggregate real loss reduction potentials in million gallons per ver (MG2) [bese represent volumes of real water loss which could be mitigated should individual systems improve system efficiency to meet frontier predictions of real loss.

Datas	et	Symbol	Count	System Class	Improvement to Average (p50) performance	Improvement to Good (p25) performance	Improvement to Very Good (p10) performance	Improvement to <mark>UARL</mark> performance
		\bigcirc	63	Very Small	521	673	796	844
ass	D,	\circ	86	Small	1,730	2,718	3,521	3,903
Filter Pass	(ntz=u)	0	23	Medium	848	1,415	1,954	2,220
, Filte	Ľ,	\circ	22	Large	1,393	2,076	2,916	3,339
		\bigcirc	15	Very Large	29,711	35,510	40,070	41,725
Subto	ubtotal 209		34,203	42,392	49,257	52,031		
		\diamond	31	Very Small	55	64	70	73
Fail	$\hat{\mathbf{D}}$	\diamond	39 Small		272	301	332	340
Filter Fail	(ກະບະດ)	\diamond	7 Medium		0	0	0	0
, Filt	u)	\diamond	14	Large	0	0	36	55
		\diamond	0	Very Large	0	0	0	0
Subto	Subtotal 91				327	366	438	468
Grand	Grand Total (MG)				34,530	42,758	49,694	52,499
Grand	Grand Total (MGD)				95	117	136	144



ILI Analysis: Real Loss Reduction Potential

What about using ILI?

ILI = Real Loss / UARL Plot: Real Loss vs. UARL

- Strong technical basis for UARL
- "Frontiers" are based on physical characteristics of the system, not the group's performance
- "Frontiers" are not recalculated year after year
- Economic Level of Leakage (ELL) can often be indicated as an ILI value
- A Basin-wide RLRP can be calculated assuming that "all systems above ILI=X were to reduce real losses to reach an ILI=X".

mercas	increase to meet specified levels of ILI. Onits are in million gallons.												
Data	Sy.	No.	System Class	ILI=10	ILI=9	ILI=8	ILI=7	ILI=6	ILI=5	ILI=4	ILI=3	ILI=2	ILI=1
	0	63	Very Small	119	150	184	225	280	348	424	508	627	844
Pass 09)	0	86	Small	72	94	169	290	468	705	1,058	1,662	2,560	3,903
	0	23	Medium	7	44	94	154	215	330	536	871	1,389	2,220
Filter (n=2	0	22	Large	112	163	213	264	324	550	924	1,369	1,906	3,339
-	0	15	Very Large	6,650	9,308	12,065	15,091	18,116	21,313	25,025	29,018	34,450	41,725
Subtot	tal	209		6,960	9,760	12,725	16,024	19,403	23,245	27,967	33,428	40,932	52,031
	\diamond	31	Very Small	10	13	19	27	35	42	50	58	65	73
Fail 91)	\diamond	39	Small	184	197	210	223	236	248	261	274	296	340
	\diamond	7	Medium	0	0	0	0	0	0	0	0	0	0
Filter (n=0	\diamond	14	Large	0	0	0	0	0	0	0	0	0	55
	\diamond	0	Very Large	0	0	0	0	0	0	0	0	0	0
Subtot	tal	91		194	210	229	249	270	291	311	332	361	468
		Gr	and Total (MG)	7,154	9,970	12,954	16,273	19,673	23,536	28,278	33,760	41,293	52,499
		Gra	nd Total (MGD)	20	27	35	45	54	64	77	92	113	144

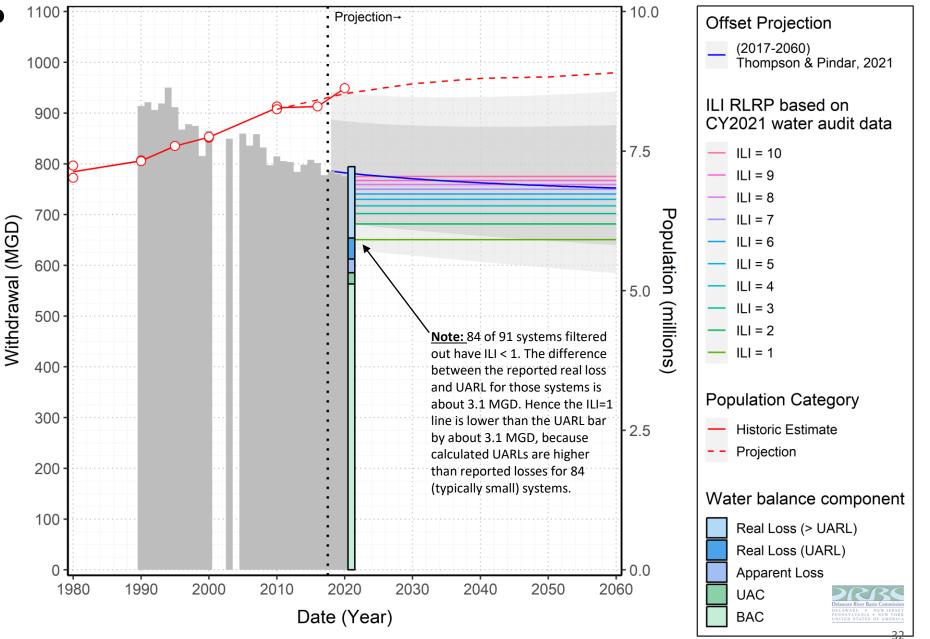
Table 18: A summary of the real loss reduction potentials, based on an assessment of each system's performance increase to meet specified levels of ILI. Units are in million gallons.

Consider the results of the two methods:

- RLRP ≈ 34,000 MG (~93 MGD) → FA "Average" Performance, or ILI=3
- RLRP ≈ 43,000 MG (~118 MGD) → FA "Good" Performance, or ILI=2
- RLRP ≈ 50,000 MG (~137 MGD) → FA "Very Good" Performance
- RLRP ≈ 52,500 MG (~144 MGD) → FA "UARL" Performance, or ILI=1

Challenges:

- "all systems above ILI=X were to reduce real losses to reach an ILI=X"
- Changing the operating pressure (or system infrastructure) changes the UARL

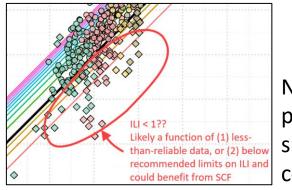

This is an assumption. Many systems have different economic constraints on "how low they can go"

Public water supply withdrawals from the Delaware River Basin with comparison to the in-Basin population

What does this mean?

- The decrease in projected withdrawals (based on current operational trends) is equivalent in magnitude to systems above ILI=7 reducing to ILI≈7
- There is room for improvement
 Economic Levels of Leakage (ELL) are not included in assessment. ILI=1 not a realistic scenario and ELL analyses may help improve understanding.
- Is it possible the projection may reach an inflection point? Continued population growth outweighs reductions?

6. UARL System Correction Factors (SCF)



UARL System Correction Factors (SCF)

<u>**Recall</u>**: the equation for UARL uses three terms related to infrastructure, with coefficients based on three forms of leakage (all related to pressure).</u>

UARL = $(18*L_m + 0.80*N_c + 25*L_p)*P$

Recommended limits based on data to generate coefficients: $N_c > 5,000$ 45m (64 psi) < P < 60m (85 psi)

Note that a lot of the points below ILI=1 are small systems (<5,000 connections) Current research shows a dimensionless "system correction factor" can be applied to adjust UARL equation by modifying assumptions of the equation. (Lambert, 2020)

- The relationship between pressure and leakage flow rate (P:Q), specifically as it related to the pipe material (rigid vs. flexible)
- 2. Low burst (leakage) frequencies in small systems
- 3. The relationship between pressure and burst frequency (P:BF)

Pilot study using SCF

- DRBC worked with New Jersey American Water to gather the additional 3 parameters needed to calculate SCF.
- Water Loss Research & Analysis Ltd (WRA) performed the necessary calculations

Findings:

- FAVAD adjustments (based on pipe material) did not have much effect as would be expected, as the majority of piping is rigid.
- Adjusting the frequency of bursts for low systems had largest effect.
- One system went from un-realistic theoretical performance (ILI<1) to excellent performance (ILI>1)
- Only when pressure was on the high end of recommended range did that correct increase UARL.

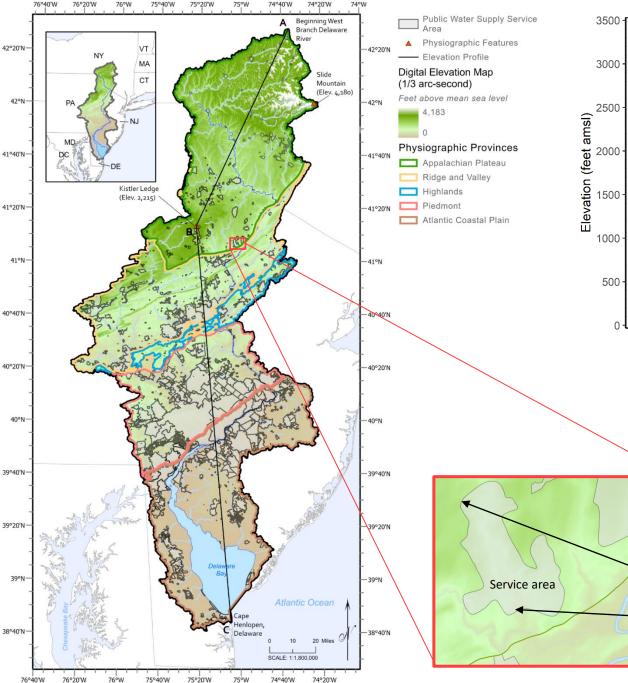
Ultimately, beneficial pilot study and worth additional investigation.

Table 20: System data related to UARL for six small water public water supply systems in New Jersey, with supplemental data and calculations related to the System Correction Factors (SCF) as it applies to the UARL.

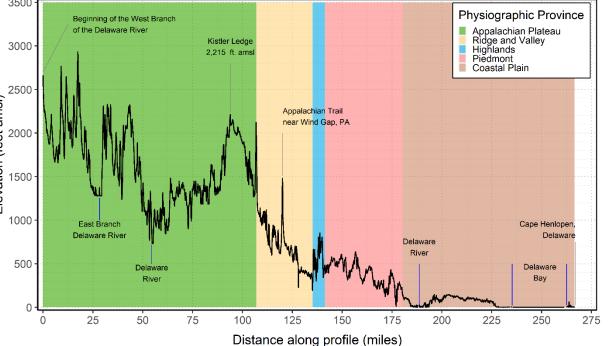
Dataset	Parameter	Units	System 1	System 2	System 3	System 4	System 5
	Nc		473	1,293	2,582	3,902	4,850
	Lp	feet	25	25	25	25	25
	Lm	miles	7	12	52	72	95
AWWA FWAS Data	Р	psi	73	57	52	50	86.1
Data	Real Loss	MG	9.821	5.172	63.225	47.827	163.405
	UARL	MG	3.347	6.341	14.431	20.319	44.427
	ILI		2.93	0.82	4.38	2.35	3.68
	Service Connections (Main to Prop. Line)	%	65%	72%	98%	97%	96%
Supplemental data (% rigid pipes)	Service Connections (Prop. Line to Meter)	%	80%	96%	77%	62%	77%
	Mains	%	100%	100%	99%	98%	100%
Contant	FAVAD		1.01	0.95	0.96	0.95	1.04
System Correction	FAVAD & POISSON		0.74	0.74	0.80	0.83	0.96
Factors	FAVAD & POISSON & PRESSURE BURSTS		0.74	0.71	0.76	0.77	1.02
Modified based on FAVAD &	UARL (corrected)	MG	2.477	4.502	10.967	15.646	45.316
POISSON & PRESSURE BURSTS	ILI (corrected)		3.97	1.15	5.76	3.06	3.61

7. Physiographic analyses

Automn


Defaware River Basin Commission DECAWARE - NEW FERSIV PENNSYLVANIA - NEW FERSIV UNITED STATES OF AMERICA

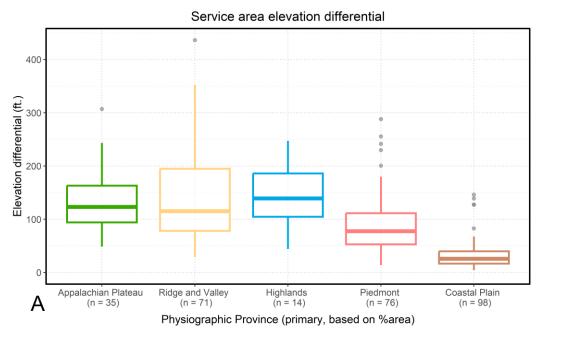
36


A

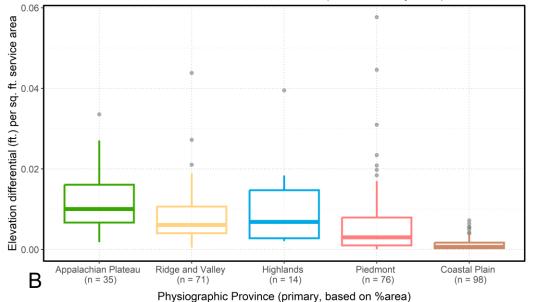
Crog2

Querry

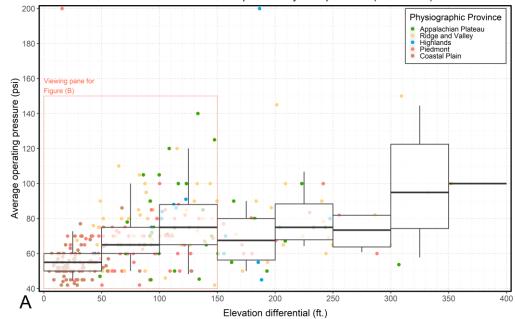
Elevation profile for the Delaware River Basin



Is there some relationship between:


- (1) Physiographic province
- (2) Elevation differential of a service area
- (3) Pressure or real losses

Highest elevation Lowest elevation Service Area Elevation Differential (SAED)



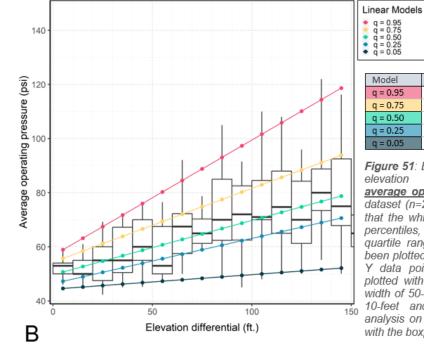

Service area elevation differential (normalized by area)

Figure 50: Elevation differentials within water supply service areas, grouped by physiographic province, which was assigned based on a percent area analysis. (A) Service area elevation differential, and (B) elevation differentials normalized by the size of the service area.

Elevation differential compared to system pressure (bin = 10 ft.)

Model	Adj. R ²	Equation
q = 0.95	0.87	P = 0.427*SAED + 56.798
q = 0.75	0.92	P = 0.272*SAED + 54.363
q = 0.50	0.86	P = 0.200*SAED + 49.712
q = 0.25	0.81	P = 0.167*SAED + 46.432
q = 0.05	0.28	P = 0.054*SAED + 44.354

Figure 51: Box plots relating the service area elevation differential (SAED) to the <u>average operating pressure</u> for the filtered dataset (n=209). Boxplots were created such that the whiskers represent the 95th and 5th percentiles, as opposed to 1.5 times the interquartile range. Outlier data points have not been plotted to avoid confusion with actual X-Y data points. (A) Individual system data plotted with large summary boxplots with a width of 50-ft. (B) Decreasing the box-size to 10-feet and performing linear regression analysis on each quartile statistic associated with the boxplot for SAED \leq 150 feet.

Elevation differential compared to system pressure (bin = 50 ft.)

8. Conclusions

KEY MESSAGES

- This study is a comprehensive look at a decade of data from water audits, which has not been done before on this scale (multi-jurisdictional water basin)
- 2. Real losses remained relatively stable (2012-2019), showing possible slight increases over the past two years
- 3. In CY2021:
 - 794 MGD of water supplied
 - 182 MGD of real losses (41 MGD "unavoidable")
 - Real loss rate: ~ 49 gcd (median), ~ 72 gcd (mean)
- There is improvement potential for real loss reduction. Current projections of continued operational trends suggest a reduction in withdrawal volume by 2060 <u>equivalent in magnitude</u> to all systems in 2021 above ILI=7 reducing to ILI≈7

- Consistent high-quality data is important for accurate assessment of program success. Improved data quality and continued water audit program compliance will enhance water resource planning accuracy
- 6. Compliance is good, and there aren't many questions (in a given year) and not many requests for training (if any?). Even states where DRBC does not have regulatory primacy (NJ, DE) there is still good compliance rates. In past few years, have not had feedback from regulated community that it is burdensome.

- 1. Improve data validity
- 2. Improve quality of financial data
- 3. Improve water audit review process (at DRBC)
- 4. Perform analyses on the Economic Level of Leakage
- 5. Incorporate System Correction Factors for UARL calculations
- 6. Possible modifications to AWWA software
- 7. Investigate impacts on leakage due to COVID-19
- 8. Investigate the relationship between source water temperature and leakage
- 9. Update the national groundwater temperature map

- 1. Incorporate comments from external review
 - 1. George Kunkel (Kunkel Water Efficiency)
 - 2. Allan Lambert (Water Loss Research & Analysis Ltd)
 - 3. Gary Trachtman (Arcadis)
- 2. Publish the report (Nov/Dec)
- 3. Presentation at AWWA North American Water Loss Conference & Exposition (NAWL)
 - WED02- THE MULTI-YEAR PROGRESS OF WATER LOSS PROGRAMS IN STATE & REGIONAL AGENCIES
 - 12/6/2023 @ 10:30 AM 12:00 PM MDT
- 4. WMAC review report and offer suggestions for the future (2024)

REFERENCES

- Alegre, H., Baptista, K., Cabrera Jr, E., Cubillo, F., Duarte, P., Hirner, W [Wolfram], Merkel, W., & Parena, R. (2000). Performance indicators for water supply services (1st ed.). Manual of best practice. IWA Publishing.
- Andrews, L., Gasner, K., Sturm, R., Kunkel, G., Jernigan, W., & Cavanaugh, S. (2016). Level 1 Water Audit Validation: Guidance Manual. WRF Project No. 4639A. Denver, Colorado. Water Research Foundation.
- AWWA. (2009). Water audits and loss control programs (3rd ed.). AWWA manual: M36. American Water Works Association. on.
- AWWA. (2016a). The State of Water Loss Control in Drinking Water Utilities. A White Paper From the American Water Works Association. Denver, Colorado. American Water Works Association. https://www.awwa.org/Portals/0/AWWA/ETS/Resources/WLCWhitePaper.pdf?ver=2017-09-11-153507-487
- AWWA. (2016b). Water audits and loss control programs (4th ed.). AWWA manual: M36. American Water Works Associati
- Jernigan, W., Kunkel, G., Trachtman, G., & Wyatt, A [Alan]. (2019). Key Performance Indicators for Non-Revenue Water. Denver, Colorado. American Water Works Association. https://www.awwa.org/Portals/0/AWWA/ETS/Resources/WLCCKPIReport%202019.pdf?ver=2019-11-20-094638-933
- Kunkel, G. (2003). Committee Report: Applying worldwide BMPs in water loss control. Journal American Water Works Association, 95(8), 65–79. https://doi.org/10.1002/j.1551-8833.2003.tb10430.x
- Lambert, A. (1994). Accounting for losses the bursts and background estimates concepts. J. Institution Water Environ. Mngnt., 8(2), 205–214.
- Lambert, A. (2020). System Correction Factor SCF can customise the standard UARL equation for pipe materials, small systems and pressure: bursts relationships. Water Loss Research & Analysis Ltd. <u>https://www.leakssuitelibrary.com/low-ilis-and-small-systems/</u>
- Lambert, A., Brown, T. G., Takizawa, M., & Weimer, D. (1999). A review of performance indicators for real losses from water supply systems. Journal of Water Supply: Research and Technology—AQUA, 48(6), 227–237. https://doi.org/10.2166/aqua.1999.0025
- Sturm, R., Gasner, K., & Andrews, L. (2015). Water Audits in the United States: A Review of Water Losses and Data Validity. WRF Project No. 4372b. Denver, Colorado. Water Research Foundation; U.S. Environmental Protection Agency
- Sturm, R., Stief, C., Jernigan, W., & Blackwell, D. (2021). Level 1 Water Audit Validation Guidance Manual: Second Edition. Project 5057. Denver, Colorado. American Water Works Association.
- Thompson, M. Y., & Pindar, C. E. (2021). Water Withdrawal and Consumptive Use Estimates for the Delaware River Basin (1990-2017) With Projections Through 2060. DRBC Report No: 2021-4. West Trenton, New Jersey. Delaware River Basin Commission. <u>https://www.nj.gov/drbc/library/documents/water-use/DRBC 2021-4 Water2060 Final 101421.pdf</u>
- USEPA. (2016). EnviroAtlas Dasymetric Population for the Conterminous United States. GIS Shapefile. U.S. Environmental Protection Agency. <u>https://www.epa.gov/enviroatlas</u>
- Walker, J., Wyatt, A [Alan], Seefeldt, J., Goshen, D., Bock, M., Johnston, I., & Black, M. (2022). Hidden Reservoirs: Addressing Water Loss in Texas. Austin, Texas. National Wildlife Federation. https://texaslivingwaters.org/deeper-dive/water-loss/

Questions

Michael Thompson, P.E. Senior Water Resource Engineer

Delaware River Basin Commission E: <u>Michael.Thompson@drbc.gov</u> P: (609) 883-9500 ext. 226

PICTURE REFERENCES

"Water meter", ID 347360540, © bit mechanic | Shutterstock.com

- "Blue modern radio water counter meter", ID 117758174 © Piotr Adamowicz | Dreamstime.com
- No title. © Merchantville-Pennsauken Water Company. Used with permission.
- "An orange street cone between two small fountains of water", ID 199875101 © Madscica | Dreamstime.com
- "The main leader of water", ID 8356827 © Yanko16 | Dreamstime.com
- "Water meter", ID 81147492 © Patipat Paipew | Dreamstime.com
- "metal pipe with valve is leaking in water treatment plant", ID 1674855835 © Ody_Stocker | Shutterstock.com
- "Old water Meter show detail of dirty old water meter clock." ID 212500741 © Montree Nanta | Dreamstime.com
- "Topographic quadrangle with tools", © Michael Thompson
- "Water Tower in Morning", ID 3242088 © Brad Sauter | Dreamstime.com
- "Close-up water meter close up in sunny day", ID 145290573 © Konstik | Dreamstime.com
- "Road spurt water beside traffic cones and a technician", ID 47823348 © Giorgio Rossi | Dreamstime.com
- "Delaware River from Bowman's Tower", © Michael Thompson