

Not a "Park" – Who Lives Here?

Threats: Old and New

National Parks & Recreation Act of 1978

- Establishes Pinelands National Reserve
- Called for a Development Plan (CMP)
- Authorizes more than \$30 million for Land Acquisition
- Leads to...

State Pinelands Protection Act (1979)

- Creates Pinelands Commission (PC)
- Gubernatorial Veto of Commission actions
- Pre-eminence of Pinelands Protection Act
- Mandates Consistency of State and Local laws

Planning & Assessment Activities

A. Planning:

- Comprehensive Land Use Plan
- 2. Implemented Nine Management land use zones based upon watersheds and their carry capacity

B. Assessments:

- 1. Twelve Year K/C Study
- Long TermEnvironmentalMonitoring

Water, Water, Everywhere...

The Kirkwood/ Cohansey Aquifer

- 1 Million acres
- 17.7 trillion gallons of vulnerable pure water
- The aquifer serves
 - fresh drinkingwater for 1million residents
 - supports rivers,streams, andcoastal estuaries

New Jersey's Physiographic Provinces

The Kirkwood/Cohansey Aquifer

The Kirkwood/Cohansey Project

Co-operators:

Pinelands Commission, USGS, Rutgers, USFWS, NJDEP

\$5 m State Legislation: "...determine how future water supply needs will be met while protecting the Kirkwood-Cohansey aquifer system and while avoiding any adverse ecological impacts."

Status: Research commenced 2003, Studies complete, Implementation Underway

Results: Peer-reviewed scientific publications, water supply planning, and upcoming rulemaking

K/C Study Outline

- Probable hydrologic effects of groundwater diversions on stream flows and wetland water levels
- Probable ecological effects of these hydrologic effects on aquatic and wetland communities

K/C Study Process

The Kirkwood/Cohansey Study consists of:

- 8 Ecological Studies
 - Stream and Fish Invertebrate Study
 - Nitrogen Laboratory and Field Study
- 4 Hydrological Studies
 - Hydrologic-Assessment Study
 - Hydrologic-Modeling Study
- Long-Term Ecological Monitoring

Study Findings

Assumes use is 100% consumptive/depletive

Study Findings - Continued

Assumes use is 100% consumptive/depletive

Putting the Study to Use

The Comprehensive Management Plan says:

- Avoid Inter-basin transfer of water
- No water export (10 mile)
- Include:
 - Water-saving devices and other conservation steps
 - Well design to minimize impacts
 - Distribution loss reduction
- Permit Only if:
 - No viable alternative, or
 - No adverse ecological impact (assessment limited by existing tools)

Regulation/Allocation of Water

• 1. Land Use Controls

- Use permitted by zones
- Intensity controls (e.g., density, coverage)

2. Purveyor Allocation Approvals

- All increased allocation or new wells must receive approvals
- Coordination with NJ DEP
- Approvals before final NJ DEP action

NJDEP Permitting "Coordination" Issues

- Impacts to T & E species
- Enforcement of PC conditions
- NJGS modeling for wetlands impacts only good to <u>>12" drawdown</u> (T&E impacts start at 3")
- Test wells do not reach equilibrium
- Purveyors face "double jeopardy" (DEP and PC)

Planning Initiatives

Pinelands Area Build-Out Analysis

- Water supply planning (by purveyor)
 - Regional Impacts
 - Local Impacts

 Rulemaking: sound water-supply policies for the Kirkwood-Cohansey aquifer.

Build-Out Analysis

- Three Scenarios:
 - Max Build-Out (high)
 - Constrained Build-Out (medium)
 - Current Trends Build-Out (low)
- Three Development Types:
 - Residential
 - Non-Residential
 - Agriculture

Planning: Regional Impacts

A. Low Flow margin (preferred method)

- B. Other options:
 - 1. Current staff method (or variation thereof): Maximum % Basin recharge
 - 2. USGS: wetland vulnerability with Gompertz

Determining Water Availability:

Low-Flow Margin

Devising a Low-Flow Threshold

- Possible NJ DEP Policy: up to 25% may be chosen as an acceptable LFM threshold
 - Assessed currently "stressed" areas. (Results: 20-30% maximum)
 - Looked at ecological flow goals (Results: 30-40% maximum)
- Highlands: already using 5%-20%
- Pinelands: like Highlands, vary by area sensitivity?

What is the Proper Size of a Pinelands "Watershed"?

	Number	Average Size (mi ²)
Pinelands HUC14	225	8.7
Pinelands HUC11	37	65
Pinelands Science Units	92	21

At usage of no more than 5% recharge, minimum basin size for a 1 MGD well is 21 square miles.

25% of Low-Flow Margin Available

Other Possible Regional Assessments

1. Maximum percentage of basin recharge

2. Wetlands Impacts from withdrawals: wetlands vulnerability/Gompertz.

Max Percentage of Recharge Alternative

- Study by Dan Van Abs, NJ Future:
 - Long-term recharge is a good proxy for stream flow in a region where most annual average stream flow is derived from ground water.
 - Assume no more than <u>5%</u> of drought recharge can be removed from a sub watershed

• Example:

Subvestovskad		LFM Approaches		
Subwatershed	LFM (MGD)	5% LFM	20% LFM	5% Drought GWR
Haynes Creek	2.01	0.10	0.40	0.199

Wetlands Vulnerability/Gompertz Alternative

- Evaluation by Pinelands Preservation Alliance:
 - Based on study by USGS Charles and Nicholson, 2012
 - Estimates the percentage of wetlands in select sub watersheds that experience reductions in water levels of 5, 10, 15 and 30 centimeters based on <u>current</u> withdrawals.

Example:

Dr Re	Sustainable Yields and Actual Usage			Impact of Actual Usage (Gompertz) Wetlands Drawdown:			
	5% of Drought Recharge (MGD)	5% LFM (MDG)	20% LFM (MGD)	Net Withdrawal (Unconfined & SW) (MGD by HUC11)	>= 5 cm	>= 15 cm	>= 30 cm
Hammonton Creek	0.13	0.07	0.28	1.5	73.4%	67.2%	56.2%

Planning: Local Impacts

- Goal: Better Measure Impacts of increased or new pumping near wetlands
- What new metrics can we derive from the K/C study?
- Can we regulate with these metrics?
 - By individual well
 - As a planning tool

Not All Wetlands are Equal

- 1. Ponds & Pine Barrens Tree Frogs: Max 3" drawdown
- 2. Other wetlands: Max 6" wetland drawdown

Well Drawdown (Cone of Depression)

- A zone of low pressure is created centered on the pumping well
- Drawdown is a maximum at the well and reduces radially
- Head gradient decreases away from the well and the pattern resembles an inverted cone called the cone of depression
- The cone expands over time until the inflows (from various boundaries) match the well extraction
- The shape of the equilibrium cone is controlled by hydraulic conductivity

Measuring Drawdown Impacts

- MODFLOW Model
 - Complex
 - So called "gold standard"

- "Enhanced" Thiem Model
 - Simple
 - Applicable Everywhere in Pines
 - Less accurate than MODFLOW

Can the K/C in Barnegat Accommodate New Wells?

- Possible HUC 14 watershed?
 - Yes
- Existing depletive wells?
 - None
- Can basin sustain 2 wells (future needs)?
 - No, go to HUC 11
- Basin extend beyond the municipality?
 - Yes, Joint Municipality Planning
- Where should a new well be put?
 - Downstream part of the basin

Conclusion: The K/C Study and Pinelands Water Supply Planning

Predict future well needs

Can K/C meet the needs

Guide best areas to locate wells

Contact Information

Larry Liggett, Director of Land Use & Technology

Phone: (609) 894-7300

e-Mail: Larry.Liggett@njpines.state.nj.us

New Jersey Pinelands Commission

Website: http://www.nj.gov/pinelands/