Meeting of Model Expert Panel with DRBC Staff

Report to the Water Quality Advisory Committee

Delaware River Basin Commission

March 20, 2019

Presented to an advisory committee of the DRBC. Contents should not be published or re-posted in whole or in-part without the permission of the DRBC.

DRBC Expert Panel Members

Name	Organization	Service					
Carl Cerco	U.S. Army Corps of Engineers (Retired)						
Bob Chant	Rutgers University	Panel Members					
Steve Chapra	Steve Chapra Tuffs University						
Tim Wool	U.S. EPA Region 4						
Vic Bierman	LimnoTech	Consultant to DDDC					
Scott Hinz	LimnoTech	Consultant to DRBC					

DRBC Participants

Name	Title	Specialty and Responsibility
Tom Amidon	Manager, Modeling Section	Modeling general / multi-task / Atmospheric deposition
Jacob Bransky	Aquatic Biologist	Primary productivity / ichthyoplankton / algal speciation study
Fanghui Chen	Water Resource Engineer	Hydrodynamic modeling / data retrieval / post processing
Vince DePaul	Hydrologist (USGS)	WQ Modeling / wetlands interaction
Elaine Panuccio	Water Resource Scientist	Tributary / point source data management / load calculation
Namsoo Suk	Director, Science and WQ Management	Project management / multi-task / modeling
John Yagecic	Manager, Water Quality Assessment	Data retrieval & analysis / multi-task / light extinction
Li Zheng	Senior Water Resource Engineer	Hydrodynamic and WQ modeling

Goal

- Develop a technically sound eutrophication model for the Delaware Estuary and Bay utilizing the current state of the science within a timeframe established by the Commission
 - Identify appropriate levels of source controls, especially in relation to dissolved oxygen

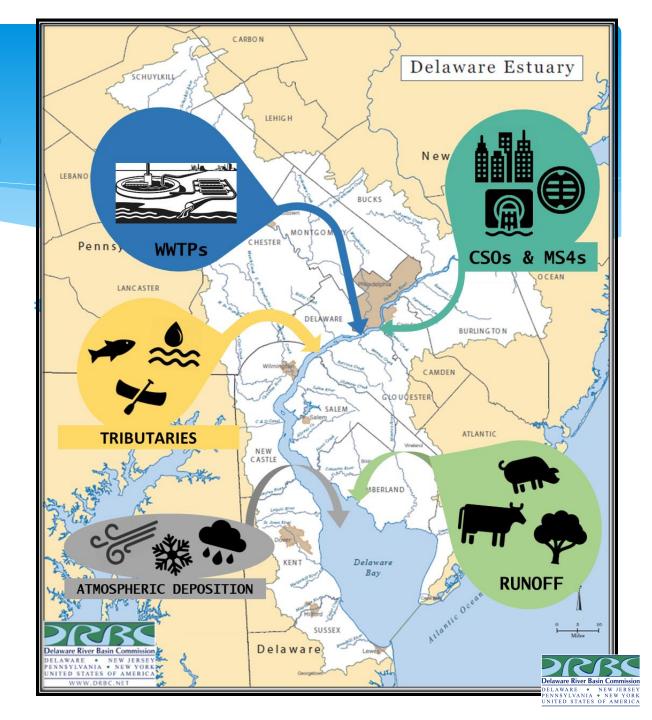
Modeling Approach

- Develop a linked hydrodynamic and water quality model
 - Environmental Fluid Dynamics Code (EFDC)
 - Water Quality Analysis Simulation Program (WASP8)
- Assess available data and conduct additional monitoring to fill gaps
 - Sources
 - Ambient water
- Calibrate linked model
 - Historical data, primarily 2012-2013
 - Intensive monitoring period 2018-2019
- Conduct forecast simulations with calibrated model
 - Determine levels of external sources required to achieve varying levels of ambient dissolved oxygen

Targeted Schedule

	Activity		2017			2018				2019				2020				2021			
			Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Designated Use Program Tasks	Hydrodynamic Model Development	х	х	Х	Х	х	х	х	Х	х											
	Intensive Ambient Data Collection & Data Analysis	х	х	х		х	х	х	Х	х											
	Water Quality Model Development and Calibration			Х	х	х	х	х	Х	х											
	Determination of higher levels of DO & protection to aquatic species.			х	х	х	Х	Х													
	Develop wasteload & load allocations																				
	Report Preparation																				

Legend

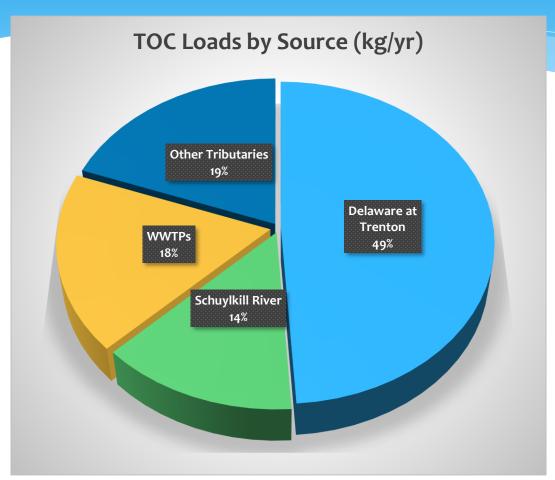

Program Tasks supported by the bordering states/DRBC Agreement Lighter shading indicates preliminary or follow-up work

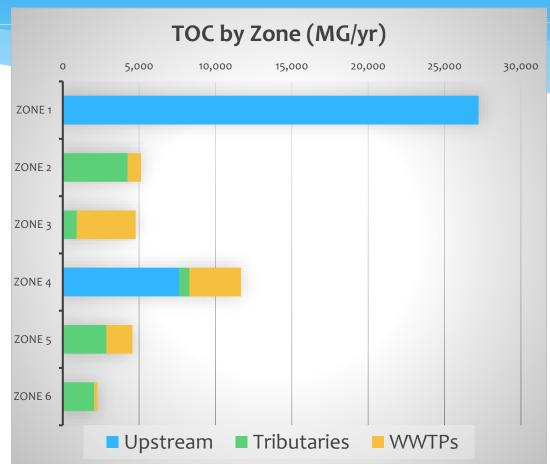
Conceptual Model Nutrient Load Boundaries

- Tributary Loads
 - Delaware River at Trenton (Zone 1)
 - * Schuylkill River
 - * ~ 29 other tributaries
- * Tidal Boundaries
 - * Ocean at mouth of Delaware Bay
 - * C&D Canal
- * Direct Basin Loads
 - * Wasteloads: WWTPs, CSOs, MS4
 - Nonpoint Source (runoff outside MS4)
 - * Wet/Dry deposition onto water surface

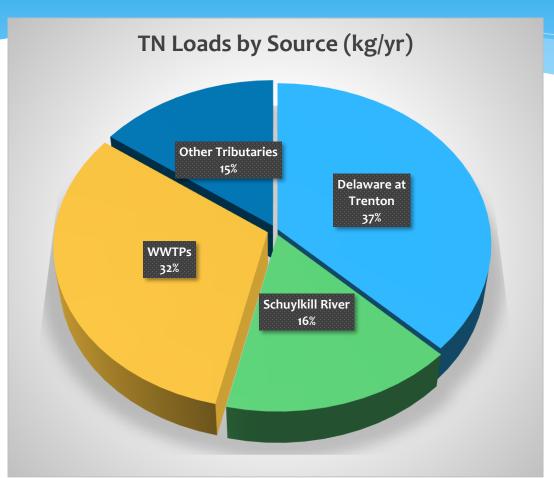
Boundary Load Estimates for Tribs and WWTPs "First cut" daily loads for 2012-2013 simulation

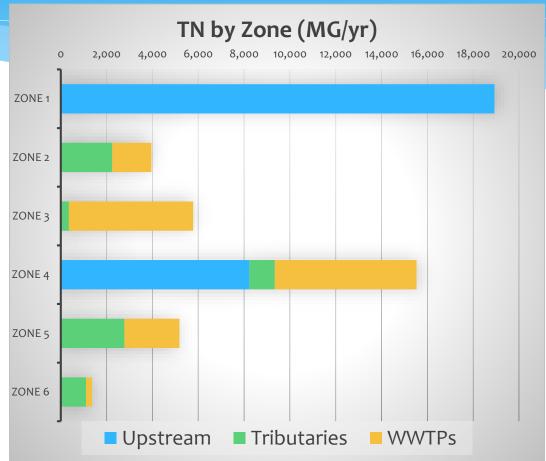
Sources

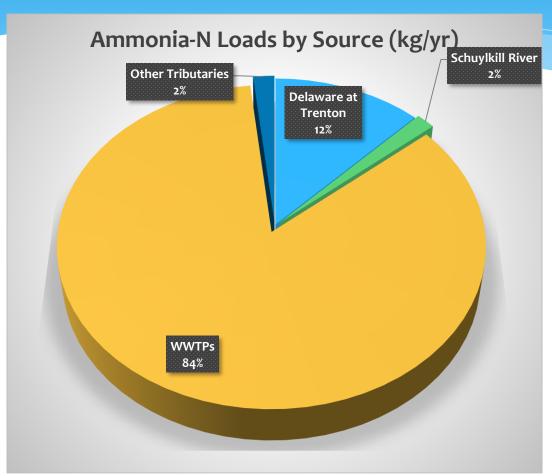

- * WWTPs
 - * Sampled 2011 2015
 - * Daily load = concentration × daily flow
 - Average load calculated
- * Tributaries
 - * As first cut, PWD methodology used
 - * Concentrations assigned for 3 seasons and 2 flows (high/low) based on 1990-2013 data
 - * High/low flow threshold = 80th percentile
 - * Unmonitored tribs borrow assigned concentrations from nearby tribs

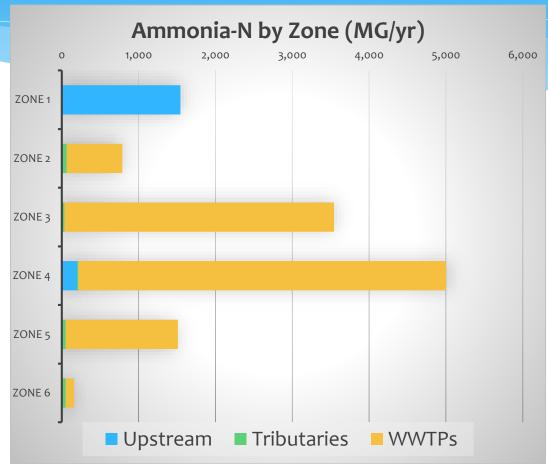

Nutrients

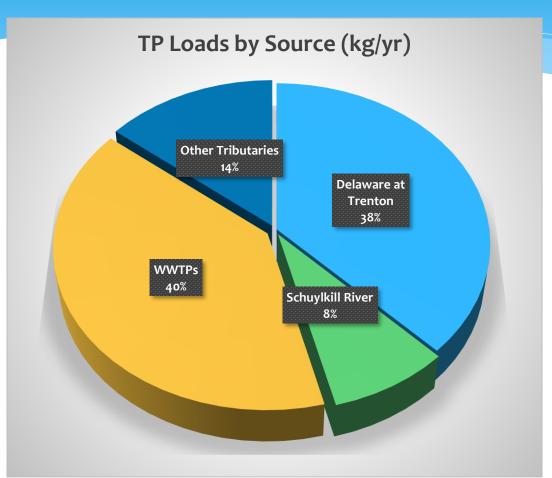
- * Total Organic Carbon
 - * TOC = DOC + POC
 - * TOC, DOC measured directly
- * Total Nitrogen
 - * TN = Nitrate(+Nitrite) + TKN
 - * Nitrate, Nitrite, TKN measured directly
- * Ammonia (NH3-N)
 - * Measured directly
- * Total Phosphorus
 - * TP = PO4 + DOP + POP
 - * TP, PO4 measured directly

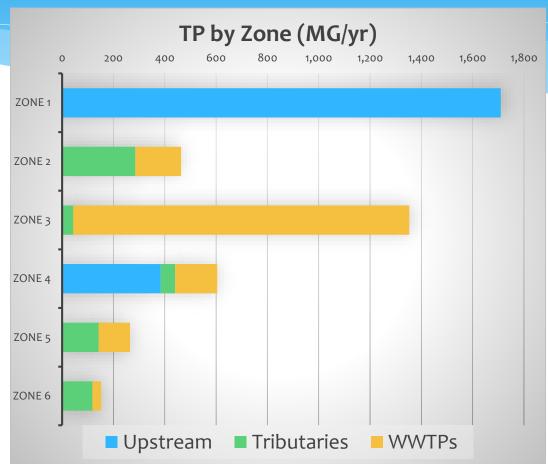

Total Organic Carbon




Total Nitrogen




Ammonia-Nitrogen



Total Phosphorus

2018-2019 Monitoring Program

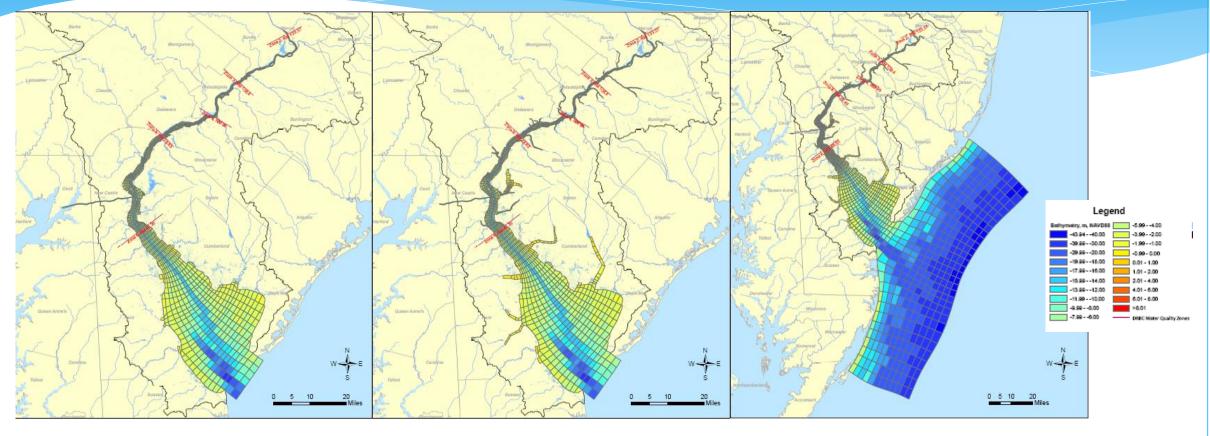
WWTPs

- * Frequency
 - Weekly for Tier 1 (Top 12)
 - Monthly for Tier 2 (Next 20)
- * Parameters
 - COD, TOC, DOC, CBOD5
 - * Ammonia, Nitrite, Nitrate, TKN, SKN
 - * TP, SRP
 - * TSS, TDS or conductivity
 - * In-situ DO, pH, and temperature

Tributaries

- * Frequency
 - * 2x/month (Delaware at Trenton, Schuylkill)
 - Monthly April-Nov at 25 other tribs
- * Parameters
 - * COD, TOC, POC, DOC, CBOD5
 - * Ammonia, Nitrate+Nitrite, TKN
 - * TP, OrthoP, PIP
 - * Chloride, Silica, Sulfate
 - * Alkalinity, Chlorophyll-a
 - * TSS, TS, TVS

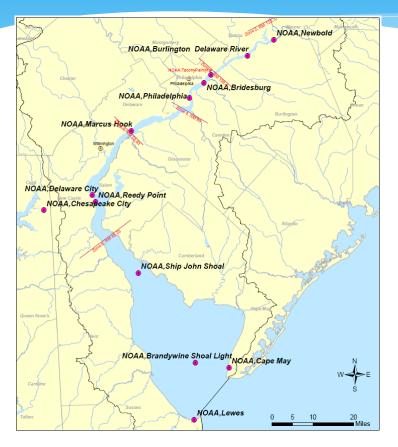
Modeling Progress to Date


- * Preliminary calibration of EFDC hydrodynamic model
 - Water surface elevation
 - * Salinity
 - * Water temperature
- * Continued cross-checking of EFDC-WASP8 linkage
 - * Flow rates
 - Salinity transport
 - * Mass balance check in WASP8
- * WASP8 test simulations
 - * TN and TP with chemical-biological kinetics turned off
 - * Oxygen consumption by NH4-N, CBOD, and SOD

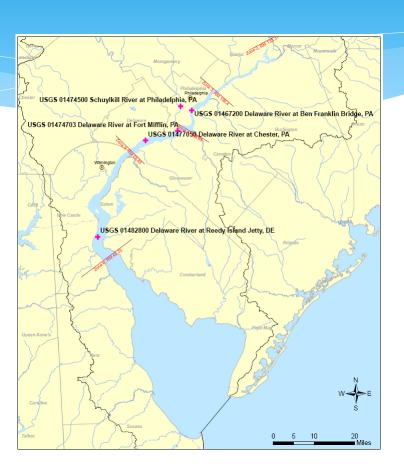
Delaware River Basin Commission DELAWARE • NEW JERSEY PENNSYLVANIA • NEW YORK UNITED STATES OF AMERICA

Hydrodynamics Model Grid - Bathymetry

Model Grid and Bathymetry (Grid 5, Grid 1, and Grid 2) — Bathymetry (Based on FEMA 2011 DEM, Reflects 2016 dredging depth). Vertical datum is NAVD88.



Grid 5, 1933 cells KC = 5 Grid 1, 2281 cells KC = 10 Grid 2, 2641 cells KC = 20


Delaware River Basin Commission DELAWARE • NEW JERSEY PENNSYLVANIA • NEW YORK

Data for Hydrodynamics Model Calibration Pennsylvania : New York Model Calibration

Location of NOAA and USGS Stations

NOAA Stations
Tide/Water Temperature, Conductivity

NOAA Stations
Current Velocity

USGS Stations Water Temperature, Specific Conductance

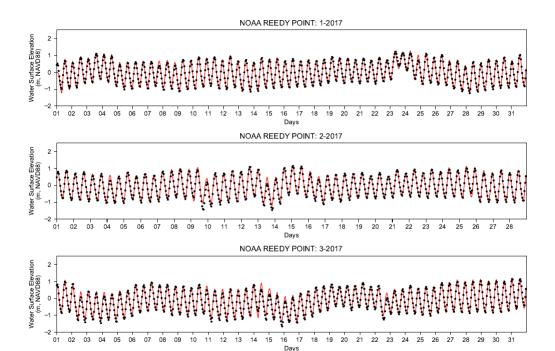
(Data from Reedy Island, Chester, and Ben Franklin Bridge were used)

Calibration Results – Grid 5 (2017-2018):

Water Surface Elevation

Reedy Point

Y = 0.9792 X - -0.0145 $R^2 = 0.9767$ N = 17056 RMSE = 0.0961 ubRMSE = 0.0947 Bias = -0.0166Skill = 0.9939



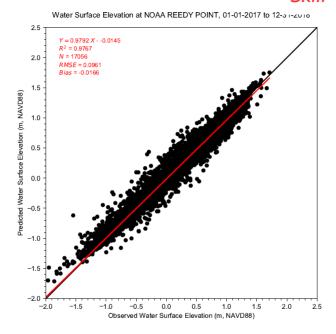


Figure XX

Observed and Predicted Water Surface Elevation at NOAA REEDY POINT

NOAA hourly verified data were used. Station ID: 8551910 Run ID: EFDC_FGD_GVC_HYDRO_NFPNOC_1902-05, Fine grid GVC, KC=5. CTE3=3.5 Spatial variable Z0. 1933 cells. dt=20s. Sal adjustment = 3.5 ppt. NOAA NCDC weather data

- D. Udal/EFDCAnslysis/Model Output/WSEloodelp was fine grid gar, 2017 2018 py. 210/2019 8 8 4 0

Figure --

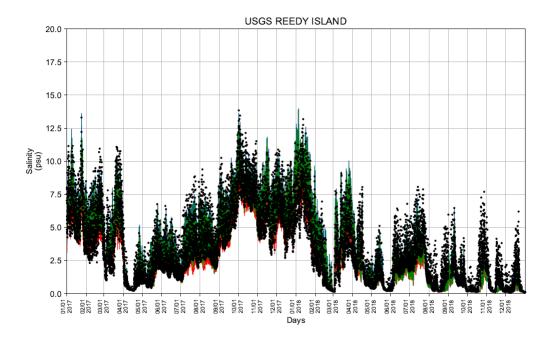
Comparison of Observed and Predicted Water Surface Elevation at NOAA REEDY POINT

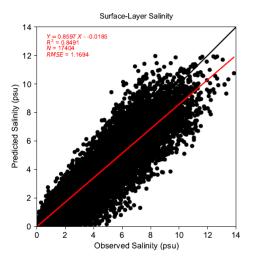
NOAA hourly verified data were used. Station ID: 8551910 Run ID: EFDC_FGD_GVC_HYDRO_NFPNOC_1902-05, Fine grid GVC, KC=5, CTE3=3.5 Spatial variable z0. 1933 cells. dt=20s. Sal adjustment = 3.5 ppt. NOAA NCDC weather data.

- D. Udals/EFDCAnslysis/Model. Output/WSE/codelp was fine grid grc. 2017 2018 py. 2/10/2019 89

Calibration Results — Grid 5: Salinity (2017-2018) Delaware River Basin Community (2017-2018) Delaware River Basin Community (2017-2018) Delaware River Basin Community (2017-2018)

Reedy Island





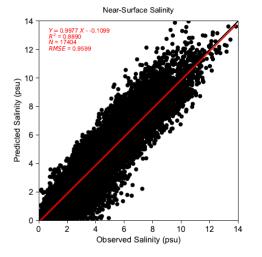
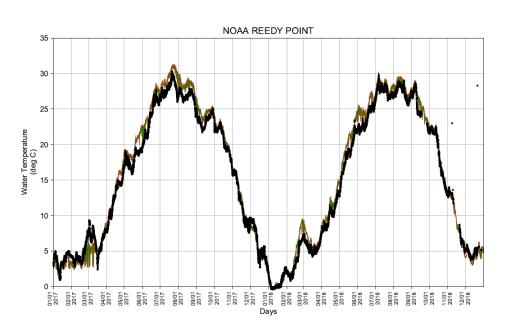


Figure XX

Observed and Predicted Salinity at USGS REEDY ISLAND

Station ID: 01482800, USGS REEDY ISLAND Run ID: EFDC FGD GVC HYDRO NFPNOC 1902-05, Fine grid GVC, KC =5. CTE3=3.5, dt=15s. Salinity adjustment = 3.5 ppt.



Comparison of Observed and Predicted Salinity at USGS REEDY ISLAND during 01-01-2017 to 12-31-2018 period.

Run ID: EFDC_FGD_GVC_HYDRO_NFPNOC_1902-05, Fine grid_GVC, KC =5. CTE3=3.5, dt=15s. Salinity adjustment = 3.5 ppt.

Calibration Results – Grid 5: Water Temperature



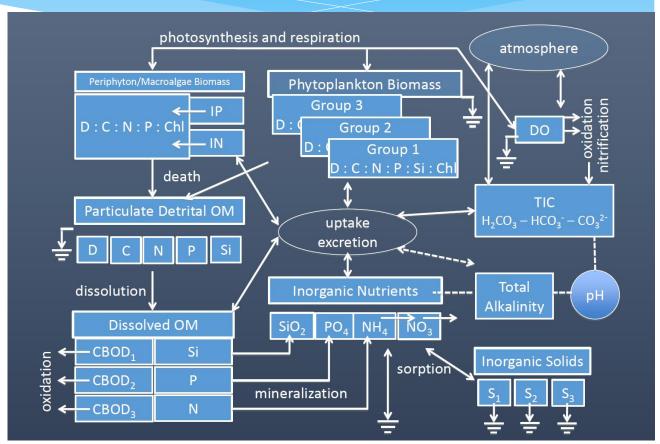
Model Prediction (second to surface)

Station ID: 8551910, NOAA REEDY POINT Run ID: EFDC_FGD_GVC_HYDRO_NFPNOC_1902-05, Fine grid GVC, KC =5. CTE3-3.5, Salinity adjustment = 3.5 ppt. NOAA NCDC weather data were used. dt=15s

FC - D LlotaVEFDCVn alyabiNtodai_OxiputWater_Temperatureloodelp_wtemp_fine_gdd_gvc_2017_2018_in.5py 2/10/2019.8:13:11

Model Prediction (bottom)
Model Prediction (surface)
Model Prediction (second to surface)
Data

L. ... LIOAA DEEDY DOINT


Observed and Predicted Water Temperature at NOAA REEDY POINT

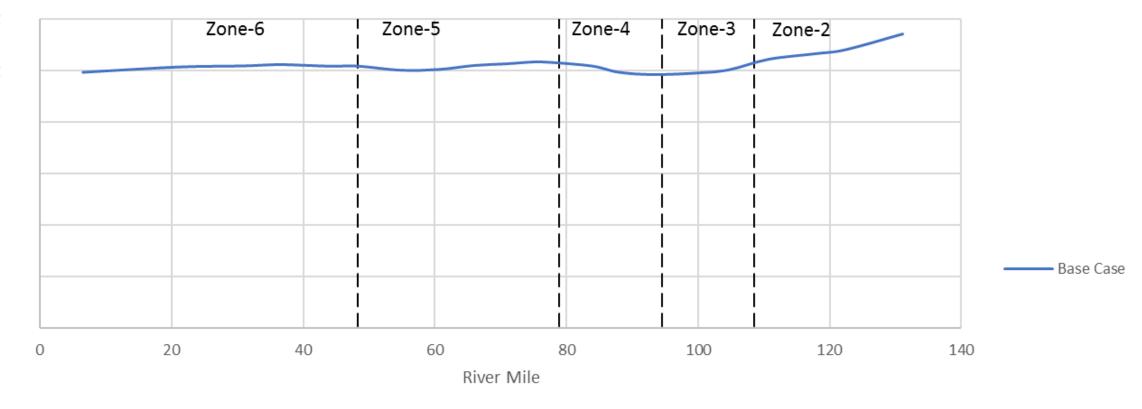
Station ID: 8551910, NOAA REEDY POINT
Run ID: EFDC_FGD_GVC_HYDRO_NFPNOC_1902-06, Fine grid GVC, KC = 5, CTE3-3,5
Salinity adjustment = 3.5 ppt. NOAA NCDC weather data were used. dt=15s

PC -D: UsballEFDC'A nelyein/Model_Output/Water_Temperature/codelp_wtemp_fine_grid_ger_2012_2013_lod.py 2/10/2019 14:30/43

Conceptual Framework Water Quality Model – WASP8

- Eutrophication Process
 - 5 phytoplankton classes
 - 3 Periphyton/Macroalgae (benthic algae)
 - Nutrient cycling N, P, Si
 - 3 CBOD and dissolved oxygen
 - pH and alkalinity
 - Water Temperature

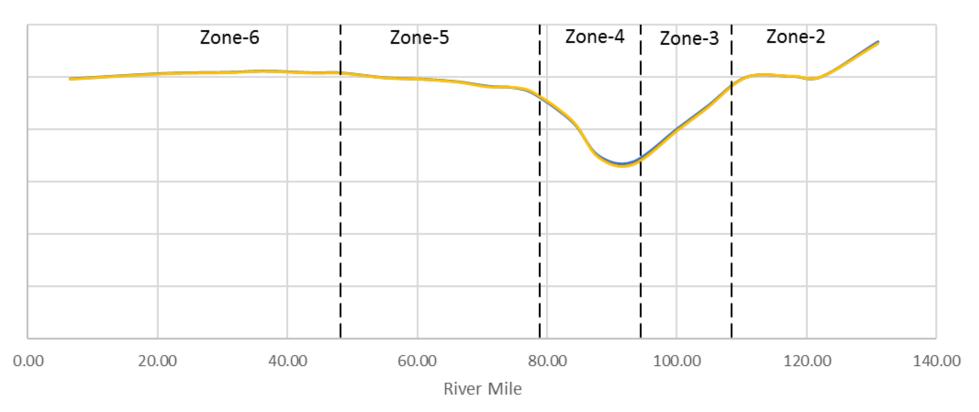
WASP8 Test Simulations for DO

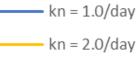

- * Zero loads (except DO)
 - * Re-aeration only
- * Oxygen consumption by NH4-N
 - * Point source loads only
 - * Tributary loads only

Zero Loading (Except DO) with Re-aeration

Base case

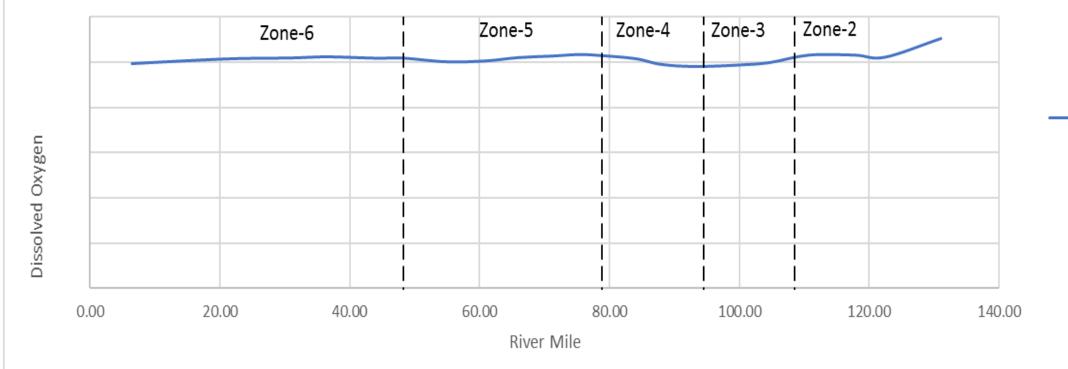
Average Dissolved Oxygen Saturation during July - August 2012


Dissolved Oxygen


Oxygen Consumption by NH₄

from point source loads only

Average Dissolved Oxygen Saturation during July - August 2012


Dissolved Oxygen

Oxygen Consumption by NH₄ from tributary loads only

kn = 1.0/dav

Path Forward

- Significant progress on model development and calibration since March, 2018
- Finalize calibration of EFDC hydrodynamic model
- Evaluate and resolve EFDC WASP8 linkage issues
- Develop and refine remaining model inputs to WASP8
- Begin calibration of WASP8
- Implement Expert Panel recommendations to monitoring program

