# Nutrient Criteria Development in Pennsylvania

Bill Brown Pennsylvania Department of Environmental Protection February 2007

#### National Strategy for the Development of Regional Nutrient Criteria

- January 9, 2001 *Federal Register* notice called for Nutrient Criteria Development Plan by end of 2001
- November 14, 2001 memorandum from EPA OST extended due date to October 2002
- Plan to include
  - Strategy for criteria development
  - Detailed schedule ending with criteria adoption
- Pennsylvania's Plan agreed to by Region 3 in June 2002 - criteria adopted by 2009

#### **Concerns with EPA Proposed Method**

Not response-based



- Derived using data over all seasons and flow regimes
- Not related to Designated Use support
- EPA has strongly encouraged States to develop their own criteria

# Questions

- What constitutes a nutrient impairment?
  - Dissolved oxygen violations?
  - Excessive algae?
    - What is excessive?
    - Is there a level excessive enough to deem the stream impaired in the absence of a DO violation?





## Excessive algae?



### **Region 3 Periphyton Study**

- Periphyton exhibit rapid response to environmental conditions
- Data collected at 50 sites across Region 3 over two years including:
  - Full nutrient suite
  - Diurnal dissolved oxygen, pH, temperature and conductance over 48 hour period
  - Algae sampling
    - Chlorophyll-a
    - Ash-Free Dry Mass
  - Periphyton identification/assemblage composition
  - Relationship between nutrient concentrations, DO and algae (amount and type)

#### **Project Goals**

- Use DO, periphyton chlorophyll-*a* to define over-enrichment (effects-based approach)
- Assess periphyton communities
- Suggest nutrient criteria based on results of the work



### Pennsylvania Nutrient Criteria Work

- Sampling periphyton biomass, water column chemistry, field chemistry, algal species counts state-wide
- Eight fixed water quality monitoring stations sampled 2-3 times in each of our six regions and ≈ 100 TMDL related sites
- Nutrient releasing substrata study
- Macroinvertebrate work similar to Smith et al. (NY)

## **Periphyton Sample Sites**



## Algal Response to TP



#### R<sup>2</sup>=0.053, P=0.007

#### Distinguishing Differences Among Assemblages

Sensitive Taxa



Tolerant Taxa

#### Nutrient Releasing Substrata



- Controlled nutrient amount and rate release
- External variables minimized
- Data collection in 2007-2008

## Challenges

- Assessments/Listings
  - Listing for exceeding standards for "parameters without standards"
  - Definitions for "dense algal or macrophyte growth"
  - Rationale for listing stating that DO criteria need not be violated, interpreted to be WQS being met but water listed as impaired

#### **Application of Data**

- Models relate in-stream P (and N) concentrations to periphyton biomass (chl).
- Several studies have identified a range of conditions where periphyton achieve nuisance accumulations (as chlorophyll): 50 mg/m2: Low end prior to problems
  100 mg/m2: Nuisance algal accumulation.
  150 mg/m2: Extreme algal accumulation.
- If we have a known criterion for Chl-*a*, then we can use models to predict corresponding nutrient levels.

## Benthic chlorophyll-a endpoint

- 100 mg/m<sup>2</sup> chl-a not scientifically defensible
  - Welch based nuisance on fishermen foot traffic
  - No demonstration of impairment of aquatic life use
  - Dodds' equation changed

Example: Assuming chl a = 100 mg/m2,

If TP = 100 ug/L, then TN = 10 mg/L old

**TN = 2.5 mg/L new** 



## **Scientific Needs**

- Demonstration of aquatic life use impairment from excessive nutrients without DO violations
- Develop a better understanding of point vs. nonpoint contributions to impairments observed under critical conditions
- Determine impact of nutrient reductions to levels higher than K<sub>s</sub>