

Chlorides in the Delaware River Basin:

Charting a Pathway Forward

Elaine Panuccio, Senior Water Resource Scientist Avery Lentini, Community Engagement Specialist

October 16, 2025 2025 Upper Delaware River Rendezvous

Salt pollution is rising in the non-tidal Delaware River

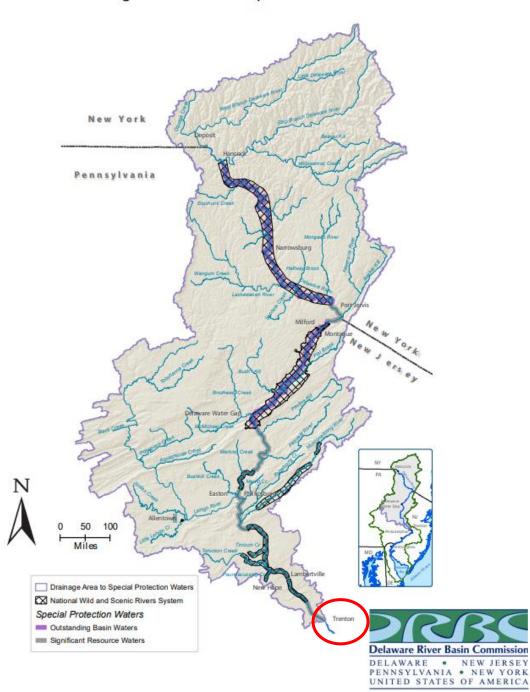
Upper Delaware trends and cumulative impacts

Why does this matter?

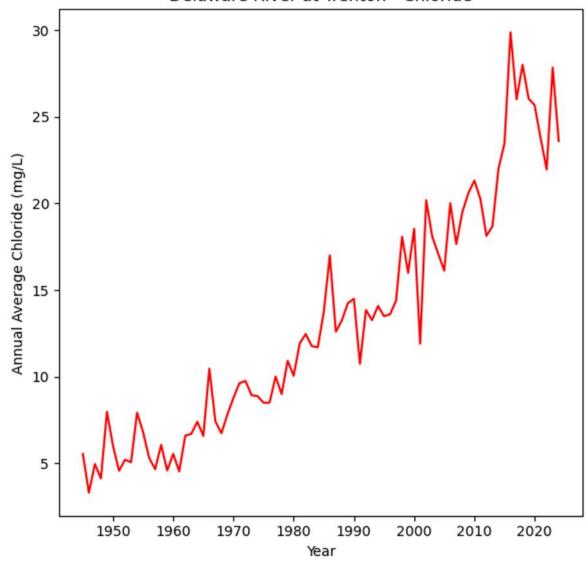
Why is this happening?

Special Protection Waters Program

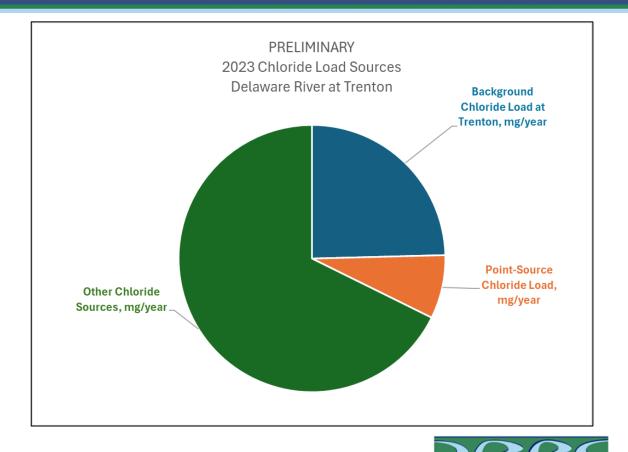
- Special Protection Waters (SPW) is an <u>antidegradation</u> policy:
 "Keep the clean water clean."
- SPW rules cover ~6,780 of the 13,800 mi² DRB watershed (197-mile stretch)
- Program managed through stricter point-source regulations



Results from Measurable Change Assessment (2009–2011)


																		/							
	Site Color Key		Dark Blue =Interstate Control Point (ICP) Dark Red =Pennsylvani						nnsylvania Tributary Boundary Control Point (BCP) Dark Green					=New Jersey Tributary Boundary Control Point (BCP)											
		Del. River	Del. River at	Pidcock	Delaware	Wicke-	Lockatong	Delaware	Pauna-	Tohickon	Tinicum	Nishi-	Del. River	Cooks	Musco-	Del. River	Pohat-cong	Lehigh	Del. River	Bushkill	Martins	Pequest	Del. River at	Paulins Kill	Del. River
		at Trenton	Washngtn Crossing	Creek, PA	River at Lambrtvlle	cheoke Creek, NJ	Creek, NJ	River at Bulls Island	cussing Creek, PA	Creek, PA	Creek, PA	sakawick Creek, NJ	at Milford	Creek, PA	netcong River, NJ	at Riegisvii	Creek, NJ	River, PA	at Easton	Creek, PA	Creek, PA	River, NJ	Belvidere	River, NJ	at Portland
	Parameter Site> Site Number>	1343 ICP	4440.000	1463 BCP	1487 ICP	4505 000	1540 BCP	1554 ICP	1556 BCP	1570 BCP	1616 BCP	1641 BCP	4677 100	1737 BCP	1746 BCP	1748 ICP	1774 BCP	1837 BCP	1838 ICP	4044 DOD	4007 000	1978 BCP	1978 ICP	2070 BCP	2074 ICP
	Dissolved Oxygen (DO) mg/l	1343 ICP	1418 ICP	1463 BCP	1487 ICP	1525 BCP	1540 BCP	1554 ICP	1556 BCP	1570 BCP	1616 BCP	1641 BCP	16// ICP	1/3/ BCP	1746 BCP	1/48 ICP	1774 BCP	1837 BCP	1838 ICP	1841 BCP	1907 BCP	1978 BCP	1978 ICP	2070 BCP	2074 ICP
	Dissolved Oxygen Saturation %											~													
Field	pH, units																								
	Water Temperature, degrees C																								
	Ammonia Nitrogen as N, Total mg/l																								
ts	Nitrate + Nitrite as N, Total mg/l																**								
Nutrients	Nitrogen as N, Total (TN) mg/l																**								
lut.	Nitrogen, Kjeldahl, Total (TKN) mg/l																								
_	Orthophosphate as P, Total mg/l																								
	Phosphorus as P, Total (TP) mg/l																								
ria	Enterococcus colonies/100 ml	~			~																				
acteria	Escherichia coli colonies/100 ml	**	**	**	**	**	**			**	**	**													
ä	Fecal coliform colonies/100 ml																								
	Alkalinity as CaCO3, Total mg/l																								
als	Hardness as CaCO3, Total mg/l											~													
ion	hloride, Total mg/l			**		**	**	**	**	**		**	**	**	**	**	**	**	~	**	**	**	**		**
ent	pecific Conductance μmho/cm			**		**	**	~	**	**	**	**	**	**	**	~	**	**	~	~	~	**	~		
onventionals	Total Dissolved Solids (TDS) mg/l																								
ŭ	Total Suspended Solids (TSS) mg/l																								
	Turbidity NTU																						(2	72	
	KEY		= No indication of	measurable ch	ange to EWQ				**	= Indication of	measurable wate	er quality change	toward more d	egraded status			~	= Weak indic	cation of mea	asurable wate	er quality cha	Delawai	re River E	Basin Con	nmission
																						DELAW		NEW	IED CEN

Non-tidal Drainage Area & SPW (Non-tidal)

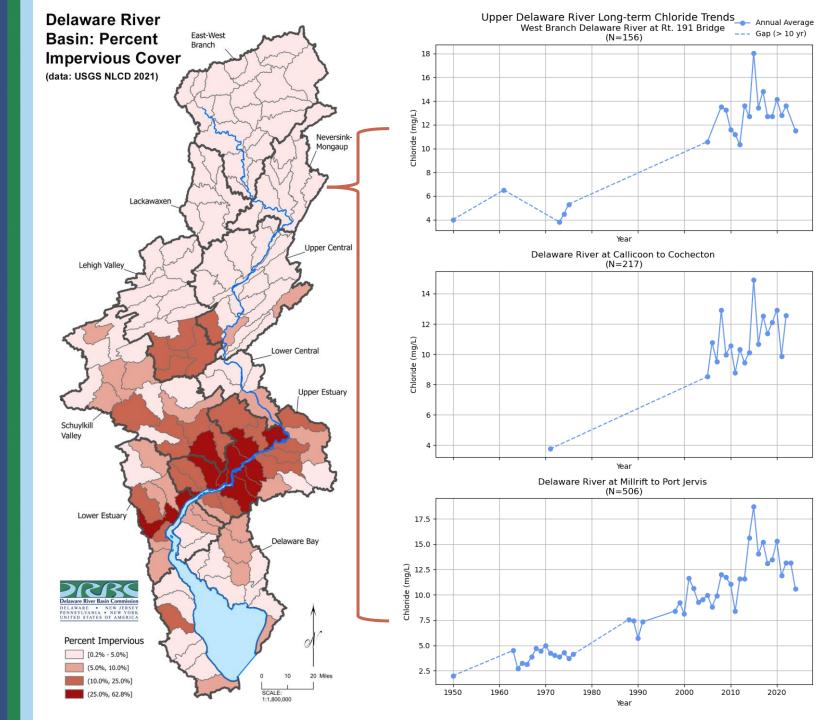

Drainage Area to DRBC's Special Protection Waters

Delaware River at Trenton - Chloride

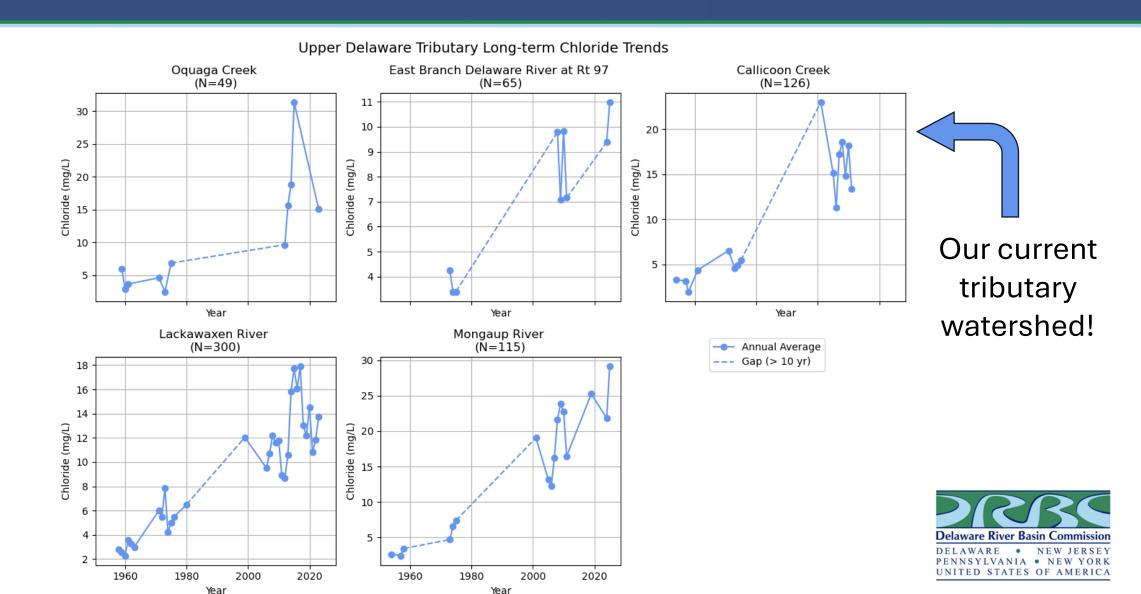
Chloride Trends and Source Attribution at Trenton

Salt pollution is rising in the non-tidal Delaware River

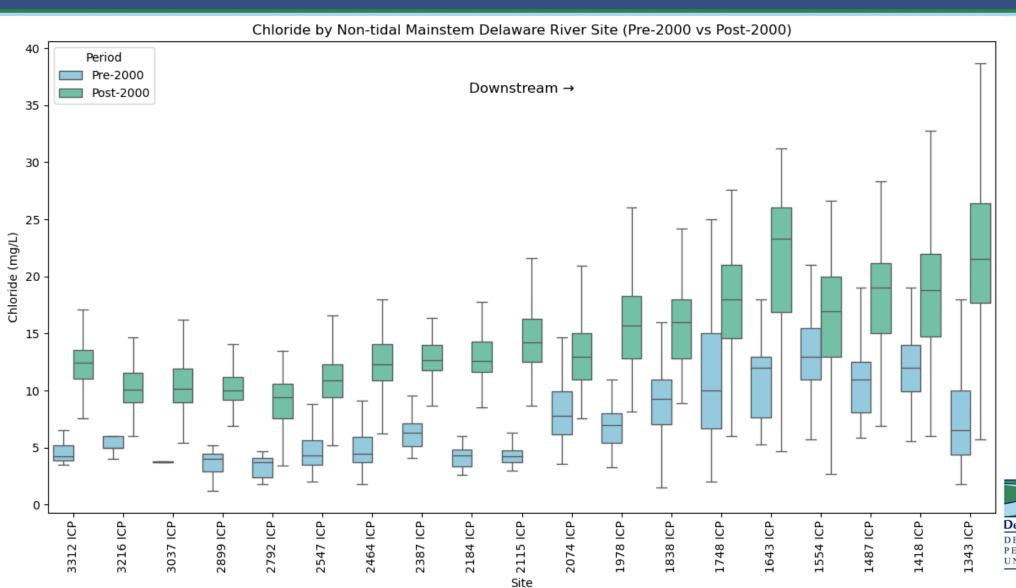
Upper Delaware trends and cumulative impacts

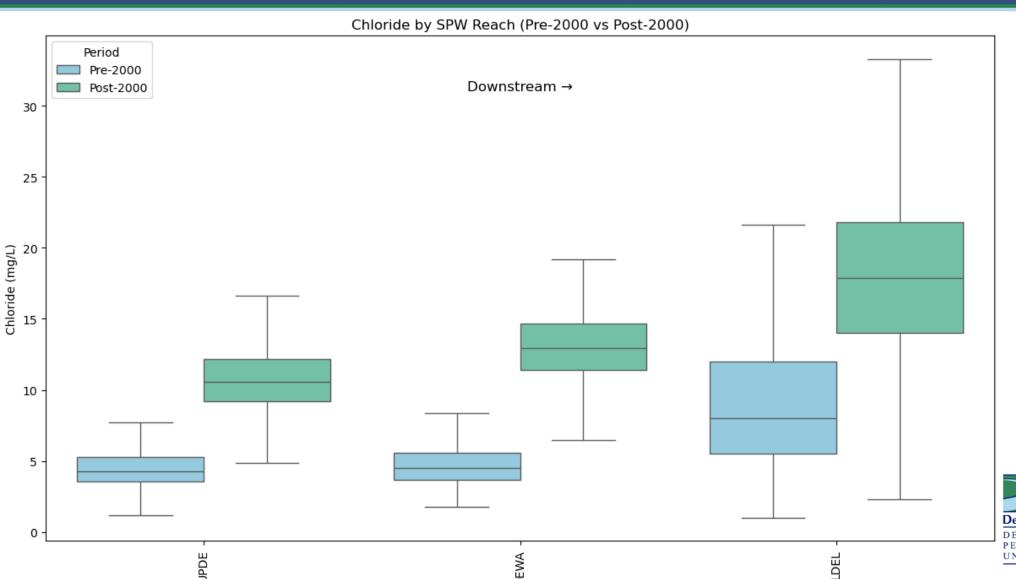


Why does this matter?



Why is this happening?


Upper Delaware River Chloride Trends


Upper Delaware Tributary Chloride Trends

Chloride Concentrations at Mainstem Sites: Pre-2000 vs Post-2000

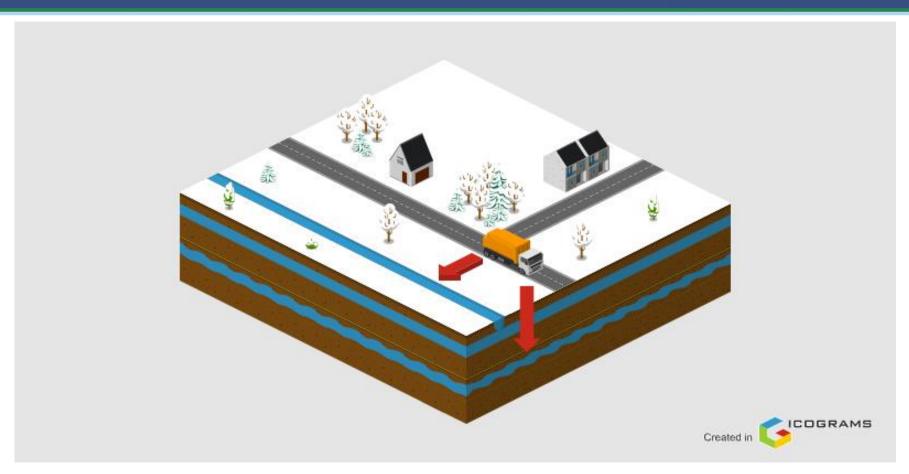
Chloride Concentrations by SPW Reach: Cumulative Impacts Over Time

Salt pollution is rising in the non-tidal Delaware River

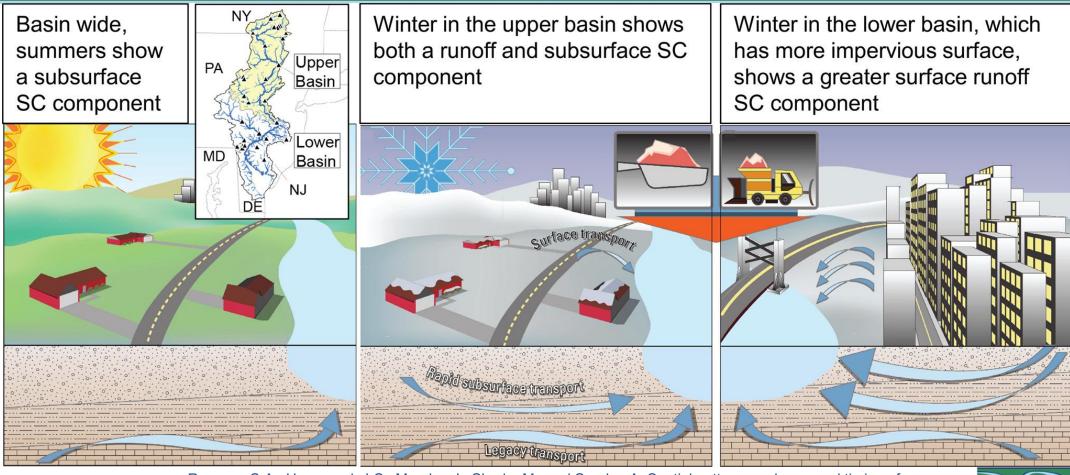
Upper Delaware trends and cumulative impacts

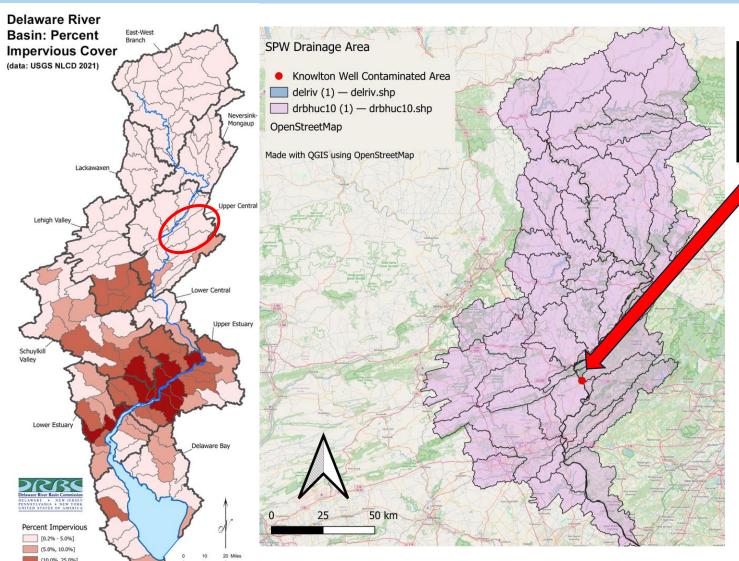
Why does this matter?

Why is this happening?


Freshwater Salinization Syndrome: Ecological and Infrastructure Impacts

- What is "freshwater salinization syndrome"?
 - A chronic increase in salt concentrations across freshwater systems driven by human activities
- Aquatic life: High chloride concentrations are toxic to aquatic life (USEPA Criteria: 230 mg/L)
 - At lower chloride levels:
 - Stresses sensitive taxa (mayflies, stoneflies)
 - Reduced biodiversity
- Infrastructure: Chloride is highly corrosive that can lead to costly repairs


Salt in Groundwater


USGS Study: Deicing salt drives specific conductance patterns in Delaware River

Rumsey, C.A., Hammond, J.C., Murphy, J., Shoda, M., and Soroka, A. Spatial patterns and seasonal timing of increasing riverine specific conductance from 1998 to 2018 suggest legacy contamination in the Delaware River Basin. *Science of the Total Environment*, 858(1), 159691 (2023). https://doi.org/10.1016/j.scitotenv.2022.159691

Salt Contaminated Wells in SPW

WARREN COUNTY

A town found the source of its contaminated wells: road salt. What's being done about it?

Updated: Feb. 27, 2019, 1:00 p.m. | Published: Feb. 27, 2019, 7:00 a.m.

ENVIRONMENT

Knowlton and Warren County to fund water filtration for Columbia residents

Bruce A Scruton

New Jersey Herald

Published 9:43 a.m. ET Jan. 27, 2023

Salt pollution is rising in the non-tidal Delaware River

Upper Delaware trends and cumulative impacts

Why does this matter?

Why is this happening?

Freshwater is getting saltier nationwide

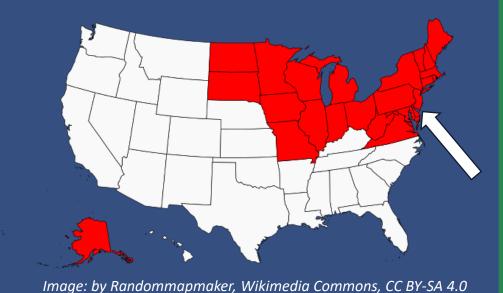
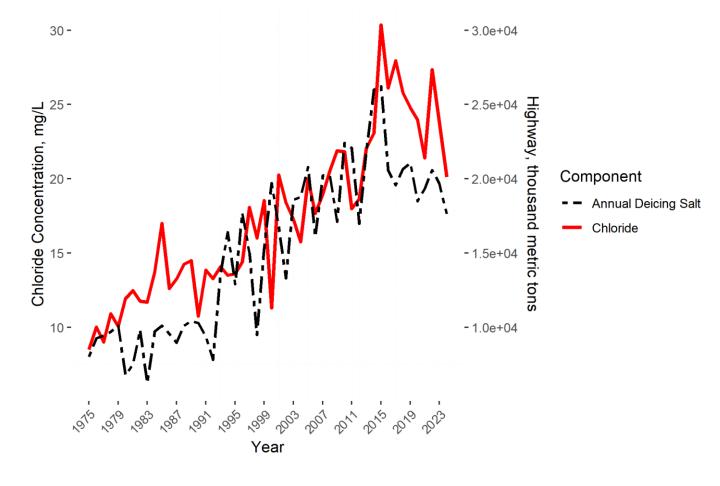


Image credit: Ryan Utz, Chatham University. Source: University of Maryland.

Image source: Clean Water Action, retrieved from https://cleanwater.org/2021/09/29/how-salt-gets-environment

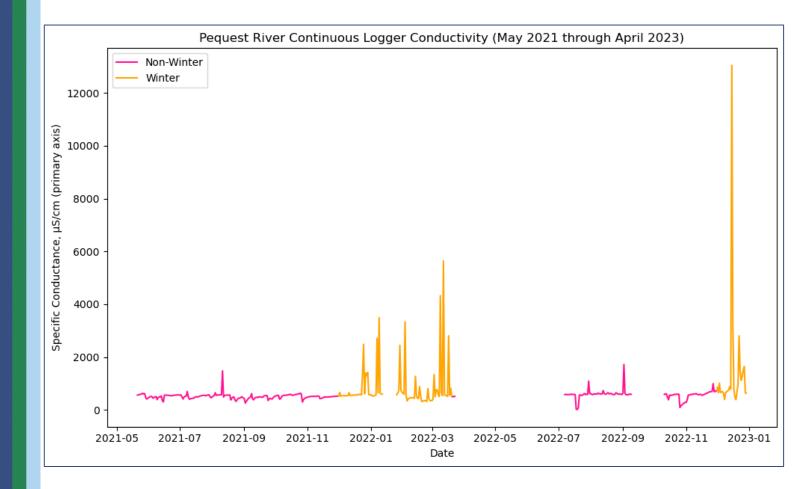

The Basin is located within the "Salt Belt"

Delaware River Basin Commission

DELAWARE • NEW JERSEY
PENNSYLVANIA • NEW YORK
UNITED STATES OF AMERICA

Annual U.S. Highway Deicing Salt Use and Average Annual Chloride Delaware River at Trenton

Oversalting and mismanagement


Open salt-pile

Elevated conductivity during winter

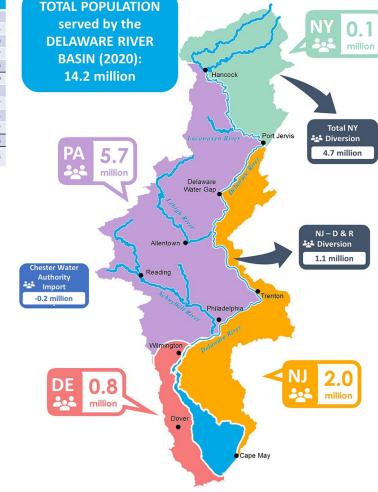
USGS Continuous Gages Capture Winter Salting Influence

Summary

- Freshwater is getting saltier over time in the non-tidal
 Delaware River despite Special Protection Waters policy
 - "Keep the clean water clean"
- Although below USEPA chronic aquatic life criterion (230 mg/L), <u>trends</u> are concerning
- Short and long-term impacts:
 - Conductivity spikes occur after winter deicing salt activities
 - Stored subsurface component contributes to elevated baseflow concentrations
- Management options are necessary to slow down trends

Paths Forward

DRBC helps manage a high quality, sustainable supply of water for the Delaware River's many uses.


 DRBC is federal-interstate agency formed in 1961 with a mission to manage a river system without regard to political boundaries.

Members:

- Four basin state governors: PA, DE, NJ, and NY
- The federal government: US Army Corps of Engineers
- Unified approach to protecting the Delaware River and its resources, a vital water supply for an estimated 14.2 million people.

	POPULATION (2020)
State	
Delaware	0.774
New Jersey	1.989
New York	0.117
Pennsylvania	5.749
Total DRB Population	8.629
Import/Export	
NJ – D & R Diversion	1.087
Total NY Diversion	4.664
CWA Import	-0.187
Total Import/Export	5.564
TOTAL ESTIMATED POPULATION SERVED	14.193

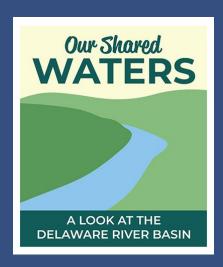
Total NY diversion includes NYC diversion and upstate NY communities. All values are in million people.

DRBC staff manages a wide range of programs, typically falling under two main categories.

FLOW

1

An adequate and sustainable supply of water


WATER QUALITY

2

Clean and healthy water resources

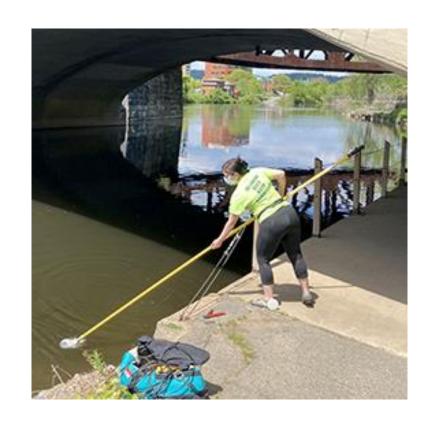
Leveraging Our Shared Waters, DRBC's partner network

CELEBRATING 100+ PARTNERS

Our Shared Waters connects policymakers and partners across all sectors, with membership from utilities, nonprofits, government, and businesses.

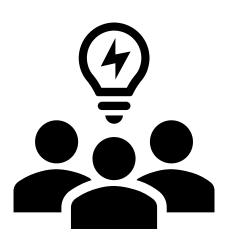
Is your organization interested in joining the initiative? Contact Elizabeth Brown@drbc.gov for more information.

The Academy of Natural Sciences



DRBC's Pilot Study:

Working with Municipalities to Implement Salt Reduction Measures


- Voluntary collaboration with municipalities to gather data and test out best management practices.
- Sharing of recent salt application records will serve as baseline data for future reductions
- Important considerations:
 - Liability concerns
 - Maximizing supplies budget
 - Limitations of voluntary approaches when working with municipalities (budget, staff capacity, etc.)
- Support for implementing BMPs without necessarily needing new equipment

What does it mean to be in the pilot study?

- Work cooperatively with Commission staff
- Baseline understanding of current practices
 - Sharing of salt application data
- Test out alternative salt reduction measures
- Training and education*
- Lessons learned

DRBC's role: gathering data to better understand the viability and environmental impact of alternative options

Challenge:

As far as we know, there are no municipal ordinances in the basin that restrict salt application. Salting practices handled on the local, typically municipal, level.

Challenge:

Mindset of more salt = more safety.

In reality, oversalting can have negative impacts on infrastructure and impacts can be costly down the line for municipalities.

Goal: Work collaboratively with municipalities to maintain public safety and implement best management practices to reduce road salt application loads

Addressing the issue of road salt overapplication is complicated and involves working with municipal employees in a voluntary setting.

The Delaware River Basin is HUGE!

...Coordinated partnerships can help gather important data.

Who can play role in chloride reduction?

- Nonprofits and grassroots organizations
 - Watershed groups
- Technical and scientific partners
- Government agencies
- DRBC's Salinity Impacts Freshwater Toxicity (SIFT) workgroup
- Public awareness efforts are the first step

Questions?

Elaine.Panuccio@drbc.gov Avery.Lentini@drbc.gov

DRBC.gov

https://tinyurl.com/DRBC-Chlorides

