Appendix 2A Luzerne County DRAINAGE AREA DS_0.38_1 2.52 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 0.38_1 | 100 | 8.0 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 0.38_1 | 874 | FOREST | 0.084 | 0.73 | 19.98 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 32.89 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 0.38_1 | 1 | FOREST | 0.2 | 2.52 | 0.50 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 32.89 | 2.12 | 2.60 | 3.04 | 2.12 | 2.60 | 3.04 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.12 | 2.52 | 1.07 | 1.31 | 1.53 | | | | | | | | | | | | | | | | | ## STANDARD E&S WORKSHEET #11 Channel Design Data PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_0.38_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | T | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 2.52 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.07 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.22 | | | PROTECTIVE LINING ^{2,6} | | S75 | | | n (MANNING'S COEFFICIENT) ² | | 0.043 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.47 | | | $ au_{a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.44 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 6.67 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 6.67 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 3.33 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.83 | | | R (HYDRAULIC RADIUS) | | 0.22 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.014 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.052 | | | .7S _c | (FT/FT) | 0.037 | | | 1.3S _c | (FT/FT) | 0.068 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING® PERMISSIBLE VELOCITY (V) OR SHEAR STRESS | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.3 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.3 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. DRAINAGE AREA DS_0.38_2 3.72 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 0.38_2 | 100 | 8.0 | 0.040 | 13.60 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 0.38_2 | 975 | FOREST | 0.078 | 0.70 | 23.13 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c [*]
(minutes) | |--| | 36.73 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------
------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 0.38_2 | 1 | FOREST | 0.2 | 3.72 | 0.74 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 36.73 | 1.97 | 2.42 | 2.85 | 1.97 | 2.42 | 2.85 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 1.97 | 3.72 | 1.47 | 1.80 | 2.12 | | | | | | | | | | | | | | | | | #### **STANDARD E&S WORKSHEET #11 Channel Design Data** PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY DATE: 10/2019 PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_0.38_2 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 3.72 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.47 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.93 | | | PROTECTIVE LINING ^{2,6} | | P300 | | | n (MANNING'S COEFFICIENT) ² | | 0.034 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.44 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 2.62 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5.29 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 5.29 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.65 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.66 | | | R (HYDRAULIC RADIUS) | | 0.21 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.084 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.034 | | | .7S _c | (FT/FT) | 0.024 | | | 1.3S _c | (FT/FT) | 0.045 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING® PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.3 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.3 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. DRAINAGE AREA DS_0.38_3 2.02 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUN | TY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 0.38_3 | 100 | 8.0 | 0.090 | 11.26 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 0.38_3 | 384 | FOREST | 0.146 | 0.96 | 6.66 | · | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 17.91 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 0.38_3 | 1 | FOREST | 0.2 | 2.02 | 0.40 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 17.91 | 3.04 | 3.66 | 4.16 | 3.04 | 3.66 | 4.16 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 3.04 | 2.02 | 1.23 | 1.48 | 1.68 | | | | | | | | | | | | | | | | | #### **STANDARD E&S WORKSHEET #11 Channel Design Data** PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY PREPARED BY: DATE: 10/2019 DATE: 10/2019 CHECKED BY: KEK / JMB | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_0.38_3 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 2.02 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.48 | |
 Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.98 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.64 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.78 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 4.35 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 4.35 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.17 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.54 | | | R (HYDRAULIC RADIUS) | | 0.20 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.025 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.015 | | | .7S _c | (FT/FT) | 0.011 | | | 1.3S _c | (FT/FT) | 0.020 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.3 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.3 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. DRAINAGE AREA DS_1.61_1 2.79 ACRES | PROJECT NAME: | PENNEAST PIPELINE | PROJECT | | | |---------------|-------------------|---------|------------|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: | 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: | 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 1.61_1 | 100 | 0.8 | 0.060 | 12.37 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 1.61_1 | 100 | FOREST | 0.107 | 0.82 | 2.03 | | | 194 | SHORT GRASS | 0.062 | 1.73 | 1.87 | | | 892 | FOREST | 0.236 | 1.22 | 12.16 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |-------------------------| | (minutes) | | 28.43 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 1.61_1 | 1 | OPEN SPACE | 0.28 | 0.78 | 0.22 | 0.25 | | | 2 | INDUSTRIAL | 0.69 | 0.18 | 0.12 | | | | 3 | FOREST | 0.20 | 1.83 | 0.37 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 28.43 | 2.33 | 2.85 | 3.31 | 2.33 | 2.85 | 3.31 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.25 | 2.33 | 2.79 | 1.65 | 2.02 | 2.34 | | | | | | | | | | | | | | | | | ## STANDARD E&S WORKSHEET #11 Channel Design Data PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | |---|-----------------------------------|-----------|--| | CHANNEL OR CHANNEL SECTION | | DS_1.61_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 2.79 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.65 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.94 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 2.82 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.41 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 8.33 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 8.33 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 4.17 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.04 | | | R (HYDRAULIC RADIUS) | | 0.22 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.013 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.013 | | | .7S _c | (FT/FT) | 0.009 | | | 1.3S _c | (FT/FT) | 0.017 | | | STABLE FLOW? | (Y/N) | N | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | 0.50 | | | FREEBOARD BASED ON STABLE FLOW | (FT) | N/A | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING° PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | | | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. -
7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. DRAINAGE AREA DS_1.61_2 4.7 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | | |---------------|---------------------------|-------|------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | | PREPARED BY: | MDN | DATE: | 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: | 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 1.61_2 | 100 | 0.4 | 0.138 | 7.37 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 1.61_2 | 108 | FOREST | 0.120 | 0.87 | 2.07 | | | 62 | SHORT GRASS | 0.097 | 2.17 | 0.48 | | | 108 | PAVEMENT | 0.046 | 4.36 | 0.41 | | | 342 | FOREST | 0.210 | 1.15 | 4.94 | | | 480 | SHORT GRASS | 0.102 | 2.22 | 3.60 | ### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c* | |--------------| | (minutes) | | 18.86 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 1.61_2 | 1 | PASTURE | 0.50 | 2.30 | 1.15 | 0.38 | | | 2 | INDUSTRIAL | 0.69 | 0.29 | 0.20 | | | | 3 | FOREST | 0.20 | 2.11 | 0.42 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 18.86 | 2.96 | 3.57 | 4.06 | 2.96 | 3.57 | 4.06 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.38 | 2.96 | 4.70 | 5.24 | 6.32 | 7.20 | | | | | | | | | | | | | | | | | ## STANDARD E&S WORKSHEET #11 Channel Design Data PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_1.61_2 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 4.7 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 5.24 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 7.21 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.27 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.87 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 13.51 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 13.51 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 6.76 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.69 | | | R (HYDRAULIC RADIUS) | | 0.23 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.028 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.012 | | | .7S _c | (FT/FT) | 0.009 | | | 1.3S _c | (FT/FT) | 0.016 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING® PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 2.1 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 4 FPS FOR GRASS COVER TYPES. 2.1 FPS < 4.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. DRAINAGE AREA DS_2.59_1 0.74 ACRES | PROJECT NAME: | PENNEAST PIPI | PENNEAST PIPELINE PROJECT | | | | | | |---------------|----------------|---------------------------|------------|--|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | | | PREPARED BY: | MDN | DATE: | 10/15/2018 | | | | | | CHECKED BY: | KEK / JMB | DATE: | 10/15/2018 | | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 2.59_1 | 100 | 8.0 | 0.160 | 9.84 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_1 | 478 | FOREST | 0.123 | 0.88 | 9.03 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 18.87 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 2.59_1 | 1 | FOREST | 0.20 | 0.74 | 0.15 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 18.87 | 2.96 | 3.56 | 4.06 | 2.96 | 3.56 | 4.06 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.96 | 0.74 | 0.44 | 0.53 | 0.60 | | | | | | | | | | | | | | | | | #### STANDARD E&S WORKSHEET #11 **Channel Design Data** PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY BOTTOM WIDTH: FLOW DEPTH RATIO FREEBOARD BASED ON UNSTABLE FLOW DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS FREEBOARD BASED ON STABLE FLOW MINIMUM REQUIRED FREEBOARD4 A (CROSS-SECTIONAL AREA) R (HYDRAULIC RADIUS) d₅₀ STONE SIZE S (BED SLOPE)3,7 STABLE FLOW? $.7S_{c}$ 1.3S_c S_C (CRITICAL SLOPE) PREPARED BY: DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS 2.59 1 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 2 **ACRES** 0.74 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 0.437 Q (CALCULATED AT FLOW DEPTH d) (CFS) 1.06 PROTECTIVE LINING^{2,6} **EXISTING GRASS** n (MANNING'S COEFFICIENT)² 0.08 V_a (ALLOWABLE VELOCITY) (FPS) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 0.70 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 00 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 0.31 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 12.2 / 0 D (TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 12.20 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 6.10 (12:1 MAX) (SQ. FT) (FT/FT) (FT/FT) (FT/FT) (FT/FT) (Y/N) (FT) (FT) (FT) (IN) 0 N/A 1.52 0.23 0.01 0.165 0.115 0.214 Υ N/A 0.50 0.50 S - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.6 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. DRAINAGE AREA DS_2.59_2 1.01 ACRES | PROJECT NAME: | PENNEAST PIPE | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------|---------------------------|--|--|--|--| | LOCATION: | LUZERNE COUN | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 2.59_2 | 100 | 8.0 | 0.030 | 14.55 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_2 | 653 | FOREST | 0.120 | 0.87 | 12.49 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c [*]
(minutes) | | |--|--| | 27.04 | | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.59_2 | 1 | OPEN SPACE | 0.21 | 0.02 | 0.00 | 0.20 | | | 2 | FOREST | 0.20 | 0.99 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 27.04 | 2.41 | 2.93 | 3.40 | 2.41 | 2.93 | 3.40 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 2.41 | 1.01 | 0.49 | 0.59 | 0.69 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY PREPARED BY: DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS 2.59 2 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 2 **ACRES** 1.01 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 0.487 Q (CALCULATED AT FLOW DEPTH d) (CFS) 0.71 PROTECTIVE LINING^{2,6} **EXISTING GRASS** n (MANNING'S COEFFICIENT)² 0.08 V_a (ALLOWABLE VELOCITY) (FPS) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 0.68 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 00 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 0.31 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES
(H:V) 8.33 / 0 D (TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 8.33 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 4.17 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A d₅₀ STONE SIZE (IN) A (CROSS-SECTIONAL AREA) (SQ. FT) 1.04 R (HYDRAULIC RADIUS) 0.22 S (BED SLOPE)3,7 (FT/FT) 0.01 S_C (CRITICAL SLOPE) 0.174 (FT/FT) .7S_c (FT/FT) 0.121 1.3S_c (FT/FT) 0.226 STABLE FLOW? Υ (Y/N) FREEBOARD BASED ON UNSTABLE FLOW (FT) N/A FREEBOARD BASED ON STABLE FLOW (FT) 0.50 MINIMUM REQUIRED FREEBOARD4 (FT) 0.50 DESIGN METHOD FOR PROTECTIVE LINING 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. S - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. PERMISSIBLE VELOCITY (V) OR SHEAR STRESS - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.7 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.7 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_2.59_3 4.64 ACRES # STANDARD E&S WORKSHEET # 9 Time of Concentration | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 2.59_3 | 100 | 8.0 | 0.030 | 14.55 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet 0.5}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_3 | 653 | FOREST | 0.120 | 0.87 | 12.49 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c* | |--------------| | (minutes) | | 27.04 | #### **CHANNEL DIMENSIONS:** | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time ### STANDARD E&S WORKSHEET # 10 Rational Equation PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.59_3 | 1 | FOREST | 0.20 | 4.10 | 0.82 | 0.20 | | | 2 | OPEN SPACE | 0.21 | 0.54 | 0.11 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 27.04 | 2.41 | 2.93 | 3.40 | 2.41 | 2.93 | 3.40 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 2.41 | 4.64 | 2.25 | 2.74 | 3.17 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_2.59_3 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 4.64 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 2.25 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.63 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.14 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.97 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5.08 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 5.08 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.54 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.63 | | | R (HYDRAULIC RADIUS) | | 0.21 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.031 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.015 | | | .7S _c | (FT/FT) | 0.010 | | | 1.3S _c | (FT/FT) | 0.019 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING® PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:**
There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.8 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.8 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_2.59_4 1.47 ACRES # STANDARD E&S WORKSHEET # 9 Time of Concentration | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 2.59_4 | 100 | 8.0 | 0.040 | 13.60 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_4 | 498 | FOREST | 0.163 | 1.02 | 8.17 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c [*]
(minutes) | |--| | 21.77 | #### **CHANNEL DIMENSIONS:** | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time ### STANDARD E&S WORKSHEET # 10 Rational Equation PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.59_4 | 1 | FOREST | 0.20 | 1.39 | 0.28 | 0.30 | | | 2 | OPEN SPACE | 0.21 | 0.80 | 0.17 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 21.77 | 2.73 | 3.31 | 3.80 | 2.73 | 3.31 | 3.80 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀ (cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|-----------------------| | | 0.30 | 2.73 | 1.47 | 1.22 | 1.48 | 1.69 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_2.59_4 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 1.47 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.22 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.60 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.31 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.06 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 4.83 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 4.83 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.42 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.60 | | | R (HYDRAULIC RADIUS) | | 0.20 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.034 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.015 | | | .7S _c | (FT/FT) | 0.010 | | | 1.3S _c | (FT/FT) | 0.019 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING [®] PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_2.59_5 0.65 ACRES # STANDARD E&S WORKSHEET # 9 Time of Concentration | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / IMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 2.59_5 | 100 | 0.8 | 0.030 | 14.55 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(sheet flow)}\right]^{0.4673}$$ | n | Type of Cover | | | |--------------------|---------------------|--|--| | 0.02 | smooth pavement | | | | 0.1 | bare parched soil | | | | 0.3 | poor grass cover | | | | 0.4 | average grass cover | | | | 8.0 | dense grass cover | | | | (L = 150' maximum) | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_5 | 160 | PASTURE | 0.056 | 1.65 | 1.62 | | | 417 | FOREST | 0.182 | 1.07 | 6.47 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------
-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 22.64 | #### **CHANNEL DIMENSIONS:** | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time ### STANDARD E&S WORKSHEET # 10 Rational Equation PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 2.59_5 | 1 | FOREST | 0.20 | 0.63 | 0.13 | 0.21 | | | 2 | PASTURE | 0.40 | 0.02 | 0.01 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 22.64 | 2.67 | 3.24 | 3.72 | 2.67 | 3.24 | 3.72 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.21 | 2.67 | 0.65 | 0.36 | 0.43 | 0.50 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|----------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_2.59_5 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 0.65 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.36 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.78 | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | n (MANNING'S COEFFICIENT) ² | | 0.06 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.22 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.62 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5.1 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 5.10 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.55 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.64 | | | R (HYDRAULIC RADIUS) | | 0.21 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.02 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.108 | | | .7S _c | (FT/FT) | 0.076 | | | 1.3S _c | (FT/FT) | 0.140 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING® PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_2.59_6 1.12 ACRES # STANDARD E&S WORKSHEET # 9 Time of Concentration | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUN | ITY | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 2.59_6 | 100 | 8.0 | 0.100 | 10.98 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet 0.5}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_6 | 344 | FOREST | 0.172 | 1.04 | 5.49 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 16.48 | #### **CHANNEL DIMENSIONS:** | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time ### STANDARD E&S WORKSHEET # 10 Rational Equation PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 2.59_6 | 1 | FOREST | 0.20 | 1.12 | 0.22 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 16.48 | 3.17 | 3.81 | 4.31 | 3.17 | 3.81 | 4.31 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------
-------------------------|-------------------------|--------------------------| | | 0.20 | 3.17 | 1.12 | 0.71 | 0.85 | 0.96 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_2.59_6 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 1.12 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.71 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.32 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.59 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.87 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 2.94 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 2.94 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 1.47 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.37 | | | R (HYDRAULIC RADIUS) | | 0.18 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.028 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.017 | | | .7S _c | (FT/FT) | 0.012 | | | 1.3S _c | (FT/FT) | 0.023 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.1 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.1 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_2.59_7 0.77 ACRES # STANDARD E&S WORKSHEET # 9 Time of Concentration | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 2.59_7 | 100 | 0.8 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_7 | 255 | SHORT GRASS | 0.106 | 2.27 | 1.88 | | | 284 | FOREST | 0.158 | 1.00 | 4.73 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | | | | | | |------------------|--|--|--|--|--| | (minutes) | | | | | | | 19.52 | | | | | | #### **CHANNEL DIMENSIONS:** | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time ### STANDARD E&S WORKSHEET # 10 Rational Equation PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 DETERMINE WATERSHED "C" VALUES | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.59_7 | 1 | FOREST | 0.20 | 0.64 | 0.13 | 0.21 | | | 2 | OPEN SPACE | 0.28 | 0.13 | 0.04 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 19.52 | 2.90 | 3.50 | 4.00 | 2.90 | 3.50 | 4.00 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.21 | 2.90 | 0.77 | 0.48 | 0.58 | 0.66 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | | |--|-----------------------------------|----------------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_2.59_7 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | ACRES | (AC) | 0.77 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.48 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.50 | | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | | n (MANNING'S COEFFICIENT) ² | | 0.06 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.10 | | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.56 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 3.64 / 0 | | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | | CHANNEL TOP WIDTH @ D | (FT) | 3.64 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 1.82 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.45 | | | | R (HYDRAULIC RADIUS) | | 0.19 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.018 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.120 | | | | .7S _c | (FT/FT) | 0.084 | | | | 1.3S _c | (FT/FT) | 0.155 | | | | STABLE FLOW? | (Y/N) | Y | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | |
 - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.8 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.8 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_2.59_8 0.3 ACRES # STANDARD E&S WORKSHEET # 9 Time of Concentration | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 2.59_8 | 100 | 0.8 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | <u>n</u> | Type of Cover | |----------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_8 | 287 | SHORT GRASS | 0.110 | 2.31 | 2.07 | | | 254 | FOREST | 0.158 | 1.00 | 4.23 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 19.22 | #### **CHANNEL DIMENSIONS:** | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time ### STANDARD E&S WORKSHEET # 10 Rational Equation PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.59_8 | 1 | FOREST | 0.20 | 0.12 | 0.02 | 0.25 | | | 2 | OPEN SPACE | 0.28 | 0.18 | 0.05 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 19.22 | 2.93 | 3.53 | 4.03 | 2.93 | 3.53 | 4.03 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.25 | 2.93 | 0.30 | 0.22 | 0.26 | 0.30 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHANNEL OR CHANNEL SECTION ⁷ | | DS_2.59_8a | DS_2.59_8b | | |---|-----------------------------------|------------|------------|--| | TEMPORARY OR PERMANENT? | (T OR P) | T | T | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | 2 | | | ACRES | (AC) | 0.3 | 0.3 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.22 | 0.22 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.22 | 0.42 | | | PROTECTIVE LINING ^{2,6} | (0.0) | C125 | SC150BN | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | 0.05 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.17 | 2.40 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | 2.10 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.82 | 2.08 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5 / 0 | 12.5 / 0 | | | D (TOTAL DEPTH) | (FT) | 0.67 | 0.67 | | | CHANNEL TOP WIDTH @ D | (FT) | 3.33 | 8.33 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | 0.17 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 0.83 | 2.08 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.07 | 0.17 | | | R (HYDRAULIC RADIUS) | | 0.07 | 0.08 | | | S (BED SLOPE) ³ | (FT/FT) | 0.079 | 0.20 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.021 | 0.093 | | | .7S _c | (FT/FT) | 0.015 | 0.065 | | | 1.3S _c | (FT/FT) | 0.027 | 0.121 | | | STABLE FLOW? | (Y/N) | Υ | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design methods is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. For this temporary channel, the percent slope changes along the diversion sock, therefore it was designed in two segments. The calculations above demonstrate that the shear stress and capacity were checked for both scenarios and the more conservative lining and diversion sock diameter were selected and implemented into the design. The table above shows both scenarios, and the column in bold is the more conservative design used to satisfy both scenarios. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR
DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_2.59_9 1.28 ACRES # STANDARD E&S WORKSHEET # 9 Time of Concentration | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUN | ITY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 2.59_9 | 100 | 8.0 | 0.040 | 13.62 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 2.59_9 | 676 | FOREST | 0.123 | 0.88 | 12.77 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 26.39 | #### **CHANNEL DIMENSIONS:** | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time ### STANDARD E&S WORKSHEET # 10 Rational Equation PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.59_9 | 1 | FOREST | 0.20 | 0.93 | 0.19 | 0.22 | | | 2 | OPEN SPACE | 0.28 | 0.35 | 0.10 | · | | | | | | | | | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 26.39 | 2.44 | 2.97 | 3.44 | 2.44 | 2.97 | 3.44 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.22 | 2.44 | 1.28 | 0.69 | 0.84 | 0.98 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_2.59_9 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 1.28 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.69 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.32 | | | PROTECTIVE LINING ^{2,6} | | S75 | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.77 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.06 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5.95 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 5.95 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.98 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.74 | | | R (HYDRAULIC RADIUS) | | 0.21 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.034 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.087 | | | .7S _c | (FT/FT) | 0.061 | | | 1.3S _c | (FT/FT) | 0.114 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING° PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 2.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 4 FPS FOR GRASS COVER TYPES. 2.6 FPS < 4.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_2.84_1 4.87 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | ## **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 2.84_1 | 100 | 0.8 | 0.040 | 13.60 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | |--------------------|---------------------|--|--| | 0.02 | smooth pavement | | | | 0.1 | bare parched soil | | | | 0.3 | poor grass cover | | | | 0.4 | average grass cover | | | | 8.0 | dense grass cover | | | | (L = 150' maximum) | | | | ## **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 2.84_1 | 551 | FOREST | 0.118 | 0.86 | 10.63 | | | 203 |
SHORT GRASS | 0.084 | 2.02 | 1.68 | | | | | | | | | | | | | | | ### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|--------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| ## TIME OF CONCENTRATION: | T _c* | |--------------| | (minutes) | | 25.91 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 ## **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.84_1 | 1 | FOREST | 0.20 | 4.10 | 0.82 | 0.21 | | | 2 | OPEN SPACE | 0.28 | 0.77 | 0.22 | ## **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 25.91 | 2.47 | 3.01 | 3.48 | 2.47 | 3.01 | 3.48 | ## DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.21 | 2.47 | 4.87 | 2.56 | 3.11 | 3.60 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | ONEONED BY: NERT OND | | | D/ (TE. | 10/2010 | |--|-----------------------------------|------------|----------------|---------| | CHANNEL OR CHANNEL SECTION ⁷ | | DS_2.84_1a | DS_2.84_1b | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | 2 | | | ACRES | (AC) | 4.87 | 4.87 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 2.56 | 2.56 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 8.29 | 4.17 | | | PROTECTIVE LINING ^{2,6} | | C125 | EXISTING GRASS | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | 0.06 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 6.64 | 1.70 | | | $ au_{a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | 1 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 2.18 | 1.00 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 10 / 0 | 19.61 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | 1.0 | | | CHANNEL TOP WIDTH @ D | (FT) | 10.00 | 19.61 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 5.00 | 9.80 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.25 | 2.45 | | | R (HYDRAULIC RADIUS) | | 0.23 | 0.24 | | | S (BED SLOPE) ³ | (FT/FT) | 0.07 | 0.032 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.013 | 0.089 | | | .7S _c | (FT/FT) | 0.009 | 0.062 | | | 1.3S _c | (FT/FT) | 0.017 | 0.116 | | | STABLE FLOW? | (Y/N) | Υ | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | s | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design methods is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. For this temporary channel, the percent slope changes along the diversion sock, therefore it was designed in two segments. The calculations above demonstrate that the shear stress and capacity were checked for both scenarios and the more conservative lining and diversion sock diameter were selected and implemented into the design. The table above shows both scenarios, and the column in bold is the more conservative design used to satisfy both scenarios. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 2.2 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 4 FPS FOR GRASS COVER TYPES. 2.2 FPS < 4.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_2.84_2 0.84 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | ## **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 2.84_2 | 100 | 0.8 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | ## **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 2.84_2 | 536 | FOREST | 0.104 | 0.81 | 11.01 | | | 276 | SHORT GRASS | 0.101 | 2.21 | 2.08 | | | | | | | | | | | | | | | ### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| ## TIME OF CONCENTRATION: | T _c* | |--------------| | (minutes) | | 26.00 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 2.84_2 | 1 | FOREST | 0.20 | 0.61 | 0.12 | 0.22 | | | 2 | OPEN SPACE | 0.28 | 0.23 | 0.06 | · | | | | | | | | | | | | | ## **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀
| |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 26.00 | 2.47 | 3.00 | 3.47 | 2.47 | 3.00 | 3.47 | ## DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.22 | 2.47 | 0.84 | 0.46 | 0.56 | 0.65 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | | |---|-----------------------------------|-----------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_2.84_2 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | ACRES | (AC) | 0.84 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.46 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.50 | | | | PROTECTIVE LINING ^{2,6} | | C125 | | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 2.25 | | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.34 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 16.13 / 0 | | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | | CHANNEL TOP WIDTH @ D | (FT) | 10.75 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.69 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.22 | | | | R (HYDRAULIC RADIUS) | | 0.08 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.033 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.018 | | | | .7S _c | (FT/FT) | 0.012 | | | | 1.3S _c | (FT/FT) | 0.023 | | | | STABLE FLOW? | (Y/N) | Y | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 2.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 4 FPS FOR GRASS COVER TYPES. 2.9 FPS < 4.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_3.41_1 2 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUN | TY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | ## **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 3.41_1 | 100 | 0.4 | 0.121 | 7.60 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | ## **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 3.41_1 | 577 | FOREST | 0.166 | 1.03 | 9.38 | ### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| ## TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 16.98 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 ## **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 3.41_1 | 1 | FOREST | 0.20 | 2.00 | 0.40 | 0.20 | ## **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 16.98 | 3.12 | 3.75 | 4.25 | 3.12 | 3.75 | 4.25 | ## DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 3.12 | 2.00 | 1.25 | 1.50 | 1.70 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY PREPARED BY: DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS 3.41 1 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 2 2 **ACRES** (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 1.25 Q (CALCULATED AT FLOW DEPTH d) (CFS) 1.91 PROTECTIVE LINING^{2,6} S150 n (MANNING'S COEFFICIENT)² 0.055 (FPS) V_a (ALLOWABLE VELOCITY) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 2.18 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 75 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 1.56 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 6.99 / 0 D (TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 6.99 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 3.50 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A 0.87 0.22 0.05 0.085 0.059 0.110 Υ N/A 0.50 0.50 S (IN) (SQ. FT) (FT/FT) (FT/FT) (FT/FT) (FT/FT) (Y/N) (FT) (FT) (FT) - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. d₅₀ STONE SIZE S (BED SLOPE)3,7 STABLE FLOW? .7S_c 1.3S_c S_C (CRITICAL SLOPE) A
(CROSS-SECTIONAL AREA) FREEBOARD BASED ON UNSTABLE FLOW DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS FREEBOARD BASED ON STABLE FLOW MINIMUM REQUIRED FREEBOARD4 R (HYDRAULIC RADIUS) - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.2 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.2 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_3.41_2 0.33 ACRES | PROJECT NAME: | PENNEAST PIPEL | LINE PROJECT | |---------------|----------------|------------------| | LOCATION: | LUZERNE COUNT | TY | | PREPARED BY: | MDN | DATE: 10/15/2018 | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | ## **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 3.41_2 | 100 | 0.4 | 0.070 | 8.63 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | ## **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 3.41_2 | 389 | FOREST | 0.227 | 1.20 | 5.41 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| ## TIME OF CONCENTRATION: | T _c* | |--------------| | (minutes) | | 14.04 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 ## **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 3.41_2 | 1 | FOREST | 0.20 | 0.33 | 0.07 | 0.20 | ## **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 14.04 | 3.41 | 4.09 | 4.59 | 3.41 | 4.09 | 4.59 | ## DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 3.41 | 0.33 | 0.23 | 0.27 | 0.30 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY MDN DATE: 10/2019 PREPARED BY: CHECKED BY: KEK / IMB DΔTF: 10/2010 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | | |---|-----------------------------------|-----------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_3.41_2 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | ACRES | (AC) | 0.33 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.23 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.28 | | | | PROTECTIVE LINING ^{2,6} | | C125 | | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.09 | | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.36 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 5/0 | | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | | CHANNEL TOP WIDTH @ D | (FT) | 3.33 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 0.83 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.07 | | | | R (HYDRAULIC RADIUS) | | 0.07 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.131 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.021 | | | | .7S _c | (FT/FT) | 0.015 | | | | 1.3S _c | (FT/FT) | 0.027 | | | | STABLE FLOW? | (Y/N) | Υ | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING° PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_3.41_3 0.4 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | | |---------------|---------------------------|------------------|--|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | | ## **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 3.41_3 | 100 | 0.4 | 0.129 | 7.48 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet 0.5}\right]^{0.4673}$$ | n | Type of Cover | | | | | | |--------------------|---------------------|--|--|--|--|--| | 0.02 | smooth pavement | | | | | | | 0.1 | bare parched soil | | | | | | | 0.3 | poor grass cover | | | | | | | 0.4 | average grass cover | | | | | | | 8.0 | dense grass cover | | | | | | | (L = 150' maximum) | | | | | | | ## **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|------------------|-----------------------------|---------------
--------------------------------------| | DS 3.41_3 | 296 | FOREST | 0.271 | 1.31 | 3.77 | ## **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| ## TIME OF CONCENTRATION: | T _c [*]
(minutes) | |--| | 11.25 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 ## **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 3.41_3 | 1 | FOREST | 0.20 | 0.40 | 0.08 | 0.20 | ## **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 11.25 | 3.75 | 4.46 | 4.96 | 3.75 | 4.46 | 4.96 | ## DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 3.75 | 0.40 | 0.30 | 0.36 | 0.40 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY MDN DATE: 10/2019 PREPARED BY: CHECKED BY: KEK / IMB DΔTF: 10/2010 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_3.41_3 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 0.4 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.3 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.33 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.79 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.87 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5/0 | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | CHANNEL TOP WIDTH @ D | (FT) | 3.33 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 0.83 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.07 | | | R (HYDRAULIC RADIUS) | | 0.07 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.18 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.021 | | | .7S _c | (FT/FT) | 0.015 | | | 1.3S _c | (FT/FT) | 0.027 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUN | TY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | ## **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 3.50 | 49 | 8.0 | 0.122 | 7.51 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | ## **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 3.50 | 237 | FOREST | 0.156 | 0.99 | 3.97 | · | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| ## TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | , , , , | | 11.49 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 ## **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 3.50 | 1 | FOREST | 0.20 | 0.27 | 0.05 | 0.26 | | | 2 | INDUSTRIAL | 0.69 | 0.04 | 0.03 | ## **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 11.49 | 3.72 | 4.43 | 4.93 | 3.72 | 4.43 | 4.93 | ## DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.26 | 3.72 | 0.31 | 0.30 | 0.36 | 0.40 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY MDN DATE: 10/2019 PREPARED BY: CHECKED BY: KEK / IMB DΔTF: 10/2010 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | | |---|-----------------------------------|----------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_3.50 | | | |
TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | ACRES | (AC) | 0.31 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.3 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.35 | | | | PROTECTIVE LINING ^{2,6} | | C125 | | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.52 | | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.94 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 7.14 / 0 | | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | | CHANNEL TOP WIDTH @ D | (FT) | 4.76 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 1.19 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.10 | | | | R (HYDRAULIC RADIUS) | | 0.07 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.09 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.019 | | | | .7S _c | (FT/FT) | 0.014 | | | | 1.3S _c | (FT/FT) | 0.025 | | | | STABLE FLOW? | (Y/N) | Υ | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.0 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.0 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. | PROJECT NAME: | PENNEAST PIPE | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------|---------------------------|--|--|--|--| | LOCATION: | LUZERNE COUN | ITY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | | ## **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 4.07 | 100 | 8.0 | 0.040 | 13.60 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet 0.5}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | ## **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 4.07 | 470 | FOREST | 0.077 | 0.70 | 11.22 | ### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| ## TIME OF CONCENTRATION: | T _c [*]
(minutes) | |--| | 24.82 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 ## **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 4.07 | 1 | FOREST | 0.20 | 0.66 | 0.13 | 0.20 | ## **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 24.82 | 2.53 | 3.08 | 3.55 | 2.53 | 3.08 | 3.55 | ## DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.53 | 0.66 | 0.33 | 0.41 | 0.47 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY PREPARED BY: DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS 4.07 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 2 **ACRES** 0.66 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 0.34 Q (CALCULATED AT FLOW DEPTH d) (CFS) 0.62 PROTECTIVE LINING^{2,6} C125 n (MANNING'S COEFFICIENT)² 0.022 (FPS) V_a (ALLOWABLE VELOCITY) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 1.77 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 2 25 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 0.21 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 25 / 0 D (TOTAL DEPTH) (FT) 0.67 CHANNEL TOP WIDTH @ D (FT) 16.67 d (CALCULATED FLOW DEPTH) (FT) 0.17 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 4.17 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A d₅₀ STONE SIZE (IN) A (CROSS-SECTIONAL AREA) (SQ. FT) 0.35 R (HYDRAULIC RADIUS) 0.08 S (BED SLOPE)3,7 (FT/FT) 0.02 S_C (CRITICAL SLOPE) 0.017 (FT/FT) .7S_c (FT/FT) 0.012 1.3S_c (FT/FT) 0.022 STABLE FLOW? (Y/N) Ν 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. (FT) (FT) (FT) 0.50 N/A 0.50 S - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. FREEBOARD BASED ON UNSTABLE FLOW DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS FREEBOARD BASED ON STABLE FLOW MINIMUM REQUIRED FREEBOARD4 - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow
concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.0 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.0 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_4.26_1 1.41 ACRES | PROJECT NAME: | PENNEAST PIPELINE I | PROJECT | | |---------------|---------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 4.26_1 | 83 | 0.4 | 0.097 | 7.33 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 4.26_1 | 20 | PAVEMENT | 0.150 | 7.87 | 0.04 | | | 163 | SHORT GRASS | 0.160 | 2.78 | 0.98 | | | 322 | FOREST | 0.109 | 0.83 | 6.46 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |-------------------------| | (minutes) | | 14.81 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 4.26_1 | 1 | FOREST | 0.20 | 1.24 | 0.25 | 0.22 | | | 2 | INDUSTRIAL | 0.69 | 0.05 | 0.03 | | | | 3 | OPEN SPACE | 0.28 | 0.12 | 0.03 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 14.81 | 3.33 | 3.99 | 4.50 | 3.33 | 3.99 | 4.50 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.22 | 3.33 | 1.41 | 1.05 | 1.26 | 1.42 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_4.26_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 1.41 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.05 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 3.99 | | | PROTECTIVE LINING ^{2,6} | | P300 | | | n (MANNING'S COEFFICIENT) ² | | 0.034 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.47 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 2.50 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 7.14 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 7.14 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 3.57 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.89 | | | R (HYDRAULIC RADIUS) | | 0.22 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.08 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.032 | | | .7S _c | (FT/FT) | 0.023 | | | 1.3S _c | (FT/FT) | 0.042 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_4.26_2 2.72 ACRES | PROJECT NAME: | PENNEAST PIPELINE P | PROJECT | | |---------------|---------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / .IMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 4.26_2 | 100 | 0.4 | 0.093 | 8.08 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 4.26_2 | 375 | FOREST | 0.120 | 0.87 | 7.17 | | | 326 | SHORT GRASS | 0.040 | 1.39 | 3.90 | | | 119 | FOREST | 0.092 | 0.76 | 2.60 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|--------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 21.75 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT
NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 4.26_2 | 1 | FOREST | 0.20 | 1.64 | 0.33 | 0.22 | | | 2 | INDUSTRIAL | 0.69 | 0.11 | 0.08 | | | | 3 | OPEN SPACE | 0.21 | 0.97 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 21.75 | 2.74 | 3.31 | 3.80 | 2.74 | 3.31 | 3.80 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.22 | 2.74 | 2.72 | 1.66 | 2.01 | 2.31 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.78 | | |---|-----------------------|----------|--| | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.67 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.25 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 4.76 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 4.76 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.38 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.60 | | | R (HYDRAULIC RADIUS) | | 0.20 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.04 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.015 | | | .7S _c | (FT/FT) | 0.010 | | | 1.3S _c | (FT/FT) | 0.019 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING® PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BV: | KEK / IMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 5.40 | 40 | 0.02 | 0.080 | 1.34 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | |--------------------|---------------------|--|--| | 0.02 | smooth pavement | | | | 0.1 | bare parched soil | | | | 0.3 | poor grass cover | | | | 0.4 | average grass cover | | | | 8.0 | dense grass cover | | | | (L = 150' maximum) | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 5.40 | 133 | SHORT GRASS | 0.120 | 2.41 | 0.92 | | | 301 | FOREST | 0.320 | 1.42 | 3.52 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |-------------------------| | (minutes) | | 5.79 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 ### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 5.40 | 1 | FOREST | 0.20 | 0.69 | 0.14 | 0.21 | | | 2 | INDUSTRIAL | 0.69 | 0.01 | 0.01 | | | | 3 | OPEN SPACE | 0.21 | 0.10 | 0.02 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 5.79 | 4.65 | 5.45 | 5.91 | 4.65 | 5.45 | 5.91 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.21 | 4.65 | 0.80 | 0.77 | 0.90 | 0.98 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_5.40 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 0.8 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.77 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.08 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.02 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.62 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 2.86 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 2.86 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 1.43 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.36 | | | R (HYDRAULIC RADIUS) | | 0.18 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.02 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.018 | | | .7S _c | (FT/FT) | 0.012 | | | 1.3S _c | (FT/FT) | 0.023 | | | STABLE FLOW? | (Y/N) | N | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | 0.50 | | | FREEBOARD BASED ON STABLE FLOW | (FT) | N/A | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for
Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. | PROJECT NAME: | PENNEAST PIPELINE P | PROJECT | |---------------|---------------------|------------------| | LOCATION: | LUZERNE COUNTY | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 7.67 | 100 | 0.4 | 0.020 | 11.57 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | |--------------------|---------------------|--|--| | 0.02 | smooth pavement | | | | 0.1 | bare parched soil | | | | 0.3 | poor grass cover | | | | 0.4 | average grass cover | | | | 8.0 | dense grass cover | | | | (L = 150' maximum) | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 7.67 | 184 | FOREST | 0.016 | 0.32 | 9.64 | | | 93 | SHORT GRASS | 0.150 | 2.70 | 0.57 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 21.78 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | PROJECT NAME: | PENNEAST PIPELINE PI | ROJECT | | | |---------------|----------------------|--------|------------|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: | 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATF: | 10/15/2018 | | ### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 7.67 | 1 | FOREST | 0.12 | 0.70 | 80.0 | 0.20 | | | 2 | OPEN SPACE | 0.28 | 0.75 | 0.21 | · · | | | | | | | | · · | | | | | #### DETERMINE RAINFALL INTENSITY: | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 21.78 | 2.73 | 3.31 | 3.80 | 2.73 | 3.31 | 3.80 | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | #### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.73 | 1.45 | 0.80 | 0.97 | 1.12 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | | |---|-----------------------------------|----------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_7.67 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | ACRES | (AC) | 1.45 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.8 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.05 | | | | PROTECTIVE LINING ^{2,6} | | S75 | | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.85 | | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.25 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 4.55 / 0 | | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | | CHANNEL TOP WIDTH @ D | (FT) | 4.55 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.27 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.57 | | | | R (HYDRAULIC RADIUS) | | 0.20 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.04 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.094 | | | | .7S _c | (FT/FT) | 0.065 | | | | 1.3S _c | (FT/FT) | 0.122 | | | | STABLE FLOW? | (Y/N) | Υ | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING° PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. | PROJECT NAME: | PENNEAST PIPELINE P | PROJECT | | |---------------|---------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 10.89 | 100 | 0.8 | 0.180 | 9.57 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 10.89 | 185 | FOREST | 0.043 | 0.52 | 5.91 | | | 93 | SHORT GRASS | 0.300 | 3.81 | 0.41 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------
-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |-------------------------| | (minutes) | | 15.89 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 10.89 | 1 | FOREST | 0.20 | 0.20 | 0.04 | 0.25 | | | 2 | OPEN SPACE | 0.28 | 0.30 | 0.08 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 15.89 | 3.22 | 3.87 | 4.37 | 3.22 | 3.87 | 4.37 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.25 | 3.22 | 0.50 | 0.40 | 0.48 | 0.54 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JIVIB | | | DAIL. | 10/2019 | |---|-----------------------------------|-----------------------|---------------------|-----------| | CHANNEL OR CHANNEL SECTION ⁷ | | DS_10.89a | DS_10.89a | DS_10.89b | | TEMPORARY OR PERMANENT? | (T OR P) | T | Т | T | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | 2 | 2 | | ACRES | (AC) | 0.5 | 0.5 | 0.5 | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | N/A | N/A | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.4 | 0.4 | 0.4 | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 5.34 | 5.34 | 1.12 | | PROTECTIVE LINING ^{2,6} | | P300
(Unvegetated) | P300
(Vegetated) | S150 | | n (MANNING'S COEFFICIENT) ² | | 0.034 | 0.034 | 0.055 | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | N/A | N/A | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 7.27 | 7.27 | 2.06 | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.00 | 8.00 | 1.75 | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 6.86 | 6.86 | 1.56 | | CHANNEL BOTTOM WIDTH | (FT) | 0 | 0 | 0 | | CHANNEL SIDE SLOPES | (H:V) | 5.88 / 0 | 5.88 / 0 | 4.35 / 0 | | D (TOTAL DEPTH) | (FT) | 1.00 | 1.00 | 1.00 | | CHANNEL TOP WIDTH @ D | (FT) | 5.88 | 5.88 | 4.35 | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | 0.50 | 0.50 | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.94 | 2.94 | 2.17 | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | 0 | 0 | | d ₅₀ STONE SIZE | (IN) | N/A | N/A | N/A | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.74 | 0.74 | 0.54 | | R (HYDRAULIC RADIUS) | | 0.21 | 0.21 | 0.20 | | S (BED SLOPE) ³ | (FT/FT) | 0.22 | 0.22 | 0.05 | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.033 | 0.033 | 0.095 | | .7S _c | (FT/FT) | 0.023 | 0.023 | 0.066 | | 1.3S _c | (FT/FT) | 0.044 | 0.044 | 0.123 | | STABLE FLOW? | (Y/N) | Υ | Υ | Υ | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | N/A | N/A | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | 0.50 | 0.50 | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | 0.50 | 0.50 | | DESIGN METHOD FOR PROTECTIVE LINING ³ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | s | S | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design methods is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. For this temporary channel, the percent slope changes along the diversion sock, therefore it was designed in two segments. The calculations above demonstrate that the shear stress and capacity were checked for both scenarios and the more conservative lining and diversion sock diameter were selected and implemented into the design. The table above shows both scenarios, and the column in bold is the more conservative design used to satisfy both scenarios. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_11.27_1 0.8 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 11.27_1 | 100 | 0.8 | 0.170 | 9.70 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 11.27_1 | 513 | FOREST | 0.180 | 1.07 | 8.01 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 17.71 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 11.27_1 | 1 | FOREST | 0.20 | 0.80 | 0.16 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 17.71 | 3.05 | 3.68 | 4.18 | 3.05 | 3.68 | 4.18 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 3.05 | 0.80 | 0.49 | 0.59 | 0.67 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY:
KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_11.27_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 0.8 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.49 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.74 | | | PROTECTIVE LINING ^{2,6} | | P300 | | | n (MANNING'S COEFFICIENT) ² | | 0.034 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.60 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 2.90 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 4.76 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 4.76 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.38 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.60 | | | R (HYDRAULIC RADIUS) | | 0.20 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.093 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.035 | | | .7S _c | (FT/FT) | 0.025 | | | 1.3S _c | (FT/FT) | 0.046 | | | STABLE FLOW? | (Y/N) | Y | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_11.27_2 0.5 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | | | |---------------|---------------------------|------------------|--|--|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 11.27_2 | 100 | 8.0 | 0.120 | 10.52 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{n}}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE
OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------------|-----------------------------|---------------|--------------------------------------| | DS 11.27_2 | 472 | FOREST | 0.190 | 1.10 | 7.17 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED PERIMETER (ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | v | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------|-----------------------------|----------------|---|---| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 17.70 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|---------------------------------|------------------------|----------------------| PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 11.27_2 | 1 | FOREST | 0.20 | 0.50 | 0.10 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 17.70 | 3.06 | 3.68 | 4.18 | 3.06 | 3.68 | 4.18 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 3.06 | 0.50 | 0.31 | 0.37 | 0.42 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_11.27_2 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 0.5 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.31 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.16 | | | PROTECTIVE LINING ^{2,6} | | P550 | | | n (MANNING'S COEFFICIENT) ² | | 0.041 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.31 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 4.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 3.90 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 4 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 4.00 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.00 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.50 | | | R (HYDRAULIC RADIUS) | | 0.20 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.125 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.054 | | | .7S _c | (FT/FT) | 0.038 | | | 1.3S _c | (FT/FT) | 0.070 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | s | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may
be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.6 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_11.36_1 2.55 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 11.36_1 | 100 | 0.8 | 0.250 | 8.87 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 11.36_1 | 494 | FOREST | 0.107 | 0.82 | 10.00 | | | 143 | SHORT GRASS | 0.140 | 2.60 | 0.91 | | | 76 | FOREST | 0.076 | 0.69 | 1.83 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c* | |--------------| | (minutes) | | 21.61 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 11.36_1 | 1 | FOREST | 0.20 | 1.98 | 0.40 | 0.22 | | | 2 | OPEN SPACE | 0.28 | 0.57 | 0.16 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 21.61 | 2.75 | 3.32 | 3.81 | 2.75 | 3.32 | 3.81 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.22 | 2.75 | 2.55 | 1.53 | 1.85 | 2.12 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | | |---|-----------------------------------|------------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_11.36_1 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | ACRES | (AC) | 2.55 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.53 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 5.14 | | | | PROTECTIVE LINING ^{2,6} | | P300 | | | | n (MANNING'S COEFFICIENT) ² | | 0.034 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 4.94 | | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.00 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 2.96 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 8.33 / 0 | | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | | CHANNEL TOP WIDTH @ D | (FT) | 8.33 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 4.17 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.04 | | | | R (HYDRAULIC RADIUS) | | 0.22 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.095 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.031 | | | | .7S _c | (FT/FT) | 0.022 | | | | 1.3S _c | (FT/FT) | 0.041 | | | | STABLE FLOW? | (Y/N) | Y | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING° PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. ### **CLEAN WATER DIVERSION** DRAINAGE AREA DS_11.36_2 0.87 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 11.36_2 | 100 | 0.8 | 0.160 | 9.84 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 11.36_2 | 49 | FOREST | 0.143 | 0.95 | 0.86 | | | 151 | SHORT GRASS | 0.112 | 2.33 | 1.08 | | | 76 | FOREST | 0.092 | 0.76 | 1.66 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 13.44 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow
Time | PROJECT NAME: PE | NNEAST PIPELINE PROJECT | |------------------|-------------------------| |------------------|-------------------------| LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 11.36_2 | 1 | FOREST | 0.20 | 0.58 | 0.12 | 0.23 | | | 2 | OPEN SPACE | 0.28 | 0.29 | 0.08 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 13.44 | 3.48 | 4.16 | 4.67 | 3.48 | 4.16 | 4.67 | #### DETERMINE PEAK RUNOFF RATES (Q = $C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.23 | 3.48 | 0.87 | 0.69 | 0.82 | 0.92 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHANNEL OR CHANNEL SECTION ⁷ | | DS_11.36_2a | DS_11.36_2b | DS_11.36_2b | |--|-----------------------------------|-------------|------------------------|----------------------| | TEMPORARY OR PERMANENT? | (T OR P) | Т | Т | Т | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | 2 | 2 | | ACRES | (AC) | 0.87 | 0.87 | 0.87 | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | N/A | N/A | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.69 | 0.69 | 0.69 | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.18 | 4.10 | 4.10 | | PROTECTIVE LINING ^{2,6} | | S150 | SC250
(Unvegetated) | SC250
(Vegetated) | | n (MANNING'S COEFFICIENT) ² | | 0.055 | 0.04 | 0.04 | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | N/A | N/A | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 2.07 | 7.21 | 7.21 | | $ au_{a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.75 | 3.00 | 10.00 | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.56 | 9.98 | 9.98 | | CHANNEL BOTTOM WIDTH | (FT) | 0 | 0 | 0 | | CHANNEL SIDE SLOPES | (H:V) | 4.55 / 0 | 4.55 / 0 | 4.55 / 0 | | D (TOTAL DEPTH) | (FT) | 1.00 | 1.00 | 1.00 | | CHANNEL TOP WIDTH @ D | (FT) | 4.55 | 4.55 | 4.55 | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | 0.50 | 0.50 | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.27 | 2.27 | 2.27 | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | 0 | 0 | | d ₅₀ STONE SIZE | (IN) | N/A | N/A | N/A | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.57 | 0.57 | 0.57 | | R (HYDRAULIC RADIUS) | | 0.20 | 0.20 | 0.20 | | S (BED SLOPE) ³ | (FT/FT) | 0.05 | 0.32 | 0.32 | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.094 | 0.049 | 0.049 | | .7S _c | (FT/FT) | 0.065 | 0.035 | 0.035 | | 1.3S _c | (FT/FT) | 0.122 | 0.064 | 0.064 | | STABLE FLOW? | (Y/N) | Υ | Υ | Υ | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | N/A | N/A | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | 0.50 | 0.50 | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | 0.50 | 0.50 | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | _ | S | S | s | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design methods is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. For this temporary channel, the percent slope changes along the diversion sock, therefore it was designed in two segments. The calculations above demonstrate that the shear stress and capacity were checked for both scenarios and the more conservative lining and diversion sock diameter were selected and implemented into the design. The table above shows both scenarios, and the column in bold is the more conservative design used to satisfy both scenarios. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.6 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 11.95 | 100 | 0.8 | 0.091 | 11.23 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | | |--------------------|---------------------|--|--|--|--| | 0.02 | smooth pavement | | | | | | 0.1 | bare parched soil | | | | | | 0.3 | poor grass cover | | | | | | 0.4 | average grass cover | | | | | | 8.0 | dense grass cover | | | | | | (L = 150' maximum) | | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 11.95 | 227 | FOREST | 0.221 | 1.18 | 3.20 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 14.43 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 11.95 | 1 | FOREST | 0.20 | 0.74 | 0.15 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 14.43 | 3.37 | 4.04 | 4.54 | 3.37 | 4.04 | 4.54 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 3.37 | 0.74 | 0.50 | 0.60 | 0.67 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION:
LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_11.95 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 0.74 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.5 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.76 | | | PROTECTIVE LINING ^{2,6} | | C350 | | | n (MANNING'S COEFFICIENT) ² | | 0.041 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.81 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.20 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 3.12 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 3.7 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 3.70 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 1.85 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.46 | | | R (HYDRAULIC RADIUS) | | 0.19 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.1 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.055 | | | .7S _c | (FT/FT) | 0.039 | | | 1.3S _c | (FT/FT) | 0.072 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_12.23_1 4 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 12.23_1 | 100 | 0.8 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 12.23_1 | 650 | FOREST | 0.257 | 1.28 | 8.49 | | | 106 | SHORT GRASS | 0.075 | 1.91 | 0.93 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |-------------------------| | (minutes) | | 22.33 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | PROJECT NAME: | PENNEAST PIPELINE PROJECT | |---------------|---------------------------| | | | | | | LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 12.23_1 | 1 | FOREST | 0.20 | 3.70 | 0.74 | 0.21 | | | 2 | OPEN SPACE | 0.28 | 0.30 | 0.08 | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 22.33 | 2.69 | 3.27 | 3.75 | 2.69 | 3.27 | 3.75 | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.21 | 2.69 | 4.00 | 2.22 | 2.69 | 3.09 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_12.23_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 4 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 2.22 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 4.37 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 6.29 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 2.18 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5.56 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 5.56 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.78 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.69 | | | R (HYDRAULIC RADIUS) | | 0.21 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.07 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.014 | | | .7S _c | (FT/FT) | 0.010 | | | 1.3S _c | (FT/FT) | 0.018 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | s | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings
without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.7 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.7 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_12.23_2 2.78 ACRES | PROJECT NAME: | PENNEAST PIPELINE P | ROJECT | | |---------------|---------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATF: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 12.23_2 | 100 | 0.8 | 0.060 | 12.37 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 12.23_2 | 726 | FOREST | 0.191 | 1.10 | 11.00 | | | 40 | SHORT GRASS | 0.125 | 2.46 | 0.27 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 23.65 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | FROJECT MAIVIE. FEMNEAST FIFELINE FROJECT | PROJECT NAME: | PENNEAST PIPELINE PROJECT | |---|---------------|---------------------------| |---|---------------|---------------------------| LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 12.23_2 | 1 | FOREST | 0.20 | 2.64 | 0.53 | 0.20 | | | 2 | OPEN SPACE | 0.28 | 0.14 | 0.04 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 23.65 | 2.61 | 3.17 | 3.64 | 2.61 | 3.17 | 3.64 | #### DETERMINE PEAK RUNOFF RATES (Q = $C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.61 | 2.78 | 1.48 | 1.80 | 2.07 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY PREPARED BY: DATE: 10/2019 OUEOVED DV IZEIZ / IMAD | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|----------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_12.23_2 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 2.78 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.48 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.80 | | | PROTECTIVE LINING ^{2,6} | | Existing Grass | | | n (MANNING'S COEFFICIENT) ² | | 0.06 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.58 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.94 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 9.09 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 9.09 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 4.55 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.14 | | | R (HYDRAULIC RADIUS) | | 0.22 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.03 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.096 | | | .7S _c | (FT/FT) | 0.067 | | | 1.3S _c | (FT/FT) | 0.125 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING®
PERMISSIBLE VELOCITY (V) OR SHEAR STRESS
(S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_12.86_1 0.33 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KEK / .IMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------
--------------------------------------| | DS 12.86_1 | 31 | 0.1 | 0.065 | 2.66 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 12.86_1 | 104 | FOREST | 0.097 | 0.78 | 2.21 | | | 92 | SHORT GRASS | 0.109 | 2.30 | 0.67 | | | 119 | FOREST | 0.168 | 1.03 | 1.92 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 7.46 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 12.86_1 | 1 | FOREST | 0.20 | 0.26 | 0.05 | 0.24 | | | 2 | OPEN SPACE | 0.28 | 0.05 | 0.01 | | | | 3 | INDUSTRIAL | 0.69 | 0.02 | 0.01 | · · | | | | | | | | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|-----------------------|--| | | 7.46 | 0.54 | 0.63 | 0.69 | 4.33 | 5.10 | 5.58 | #### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.24 | 4.33 | 0.33 | 0.35 | 0.41 | 0.45 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_12.86_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 0.33 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.35 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.44 | | | PROTECTIVE LINING ^{2,6} | | S75 | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.96 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.31 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5.88 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 5.88 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.94 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.74 | | | R (HYDRAULIC RADIUS) | | 0.21 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.042 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.088 | | | .7S _c | (FT/FT) | 0.061 | | | 1.3S _c | (FT/FT) | 0.114 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING® PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.1 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.1 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_12.86_2 0.54 ACRES PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 12.86_2 | 37 | 0.8 | 0.108 | 6.78 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet 0.5}\right]^{0.4673}$$ n Type of Cover 0.02 smooth pavement 0.1 bare parched soil 0.3 poor grass cover 0.4 average grass cover 0.8 dense grass cover (L = 150' maximum) #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 12.86_2 | 37 | SHORT GRASS | 0.135 | 2.56 | 0.24 | | | 113 | FOREST | 0.186 | 3.00 | 0.63 | | | 29 | PAVEMENT | 0.103 | 6.52 | 0.07 | | | 70 | FOREST | 0.100 | 0.80 | 1.47 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|--------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 9.19 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 12.86_2 | 1 | FOREST | 0.20 | 0.52 | 0.10 | 0.21 | | | 2 | OPEN SPACE | 0.28 | 0.02 | 0.01 | | | | 3 | INDUSTRIAL | 0.70 | 0.00 | 0.00
| · · | | | | | | | | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 9.19 | 0.62 | 0.73 | 0.81 | 4.05 | 4.79 | 5.28 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.21 | 4.05 | 0.54 | 0.45 | 0.53 | 0.59 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHANNEL OR CHANNEL SECTION ⁷ | | DS 12 06 26 | DS 12 06 2h | | |--|---|-------------|-------------|--| | | (T OD D) | DS_12.86_2a | DS_12.86_2b | | | TEMPORARY OR PERMANENT? | (T OR P) | T | T | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | 2 | | | ACRES | (AC)
(1.6, 2.25, OR 2.75) ¹ | 0.54 | 0.54 | | | MULTIPLIER ¹ | , | N/A | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.45 | 0.45 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.02 | 2.44 | | | PROTECTIVE LINING ^{2,6} | | C350 | S75 | | | n (MANNING'S COEFFICIENT) ² | | 0.041 | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.88 | 1.96 | | | $ au_{a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.20 | 1.55 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 3.12 | 1.19 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 4.17 / 0 | 10 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 4.17 | 10.00 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.08 | 5.00 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.52 | 1.25 | | | R (HYDRAULIC RADIUS) | | 0.20 | 0.23 | | | S (BED SLOPE) ³ | (FT/FT) | 0.1 | 0.038 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.053 | 0.080 | | | .7S _c | (FT/FT) | 0.037 | 0.056 | | | 1.3S _c | (FT/FT) | 0.069 | 0.104 | | | STABLE FLOW? | (Y/N) | Υ | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING DERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | s | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design methods is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. For this temporary channel, the percent slope changes along the diversion sock, therefore it was designed in two segments. The calculations above demonstrate that the shear stress and capacity were checked for both scenarios and the more conservative lining and diversion sock diameter were selected and implemented into the design. The table above shows both scenarios, and the column in bold is the more conservative design used to satisfy both scenarios. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.0 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.0 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_12.86_3 0.73 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 12.86_3 | 100 | 0.8 | 0.133 | 10.27 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 12.86_3 | 36 | FOREST | 0.310 | 1.40 | 0.43 | | | 57 | SHORT GRASS | 0.087 | 2.05 | 0.46 | | | 245 | FOREST | 0.102 | 0.80 | 5.08 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|--------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |-------------------------| | (minutes) | | 16.25 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | PROJECT NAME: | PENNEAST PIPELINE PROJECT | |---------------|---------------------------| | | | LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 12.86_3 | 1 | FOREST | 0.20 | 0.60 | 0.12 | 0.21 | | | 2 | OPEN SPACE | 0.28 | 0.13 | 0.04 | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|-----------------------|--| | | 16.25 | 0.86 | 1.04 | 1.17 | 3.19 | 3.83 | 4.33 | #### DETERMINE PEAK RUNOFF RATES (Q = $C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.21 | 3.19 | 0.73 | 0.50 | 0.60 | 0.68 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY CHANNEL OR CHANNEL SECTION PREPARED BY: DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 DS_12.86_3 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 2 **ACRES** 0.73 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 0.5 Q (CALCULATED AT FLOW DEPTH d) (CFS) 1.41 PROTECTIVE LINING^{2,6} S75 n (MANNING'S COEFFICIENT)² 0.055 (FPS) V_a (ALLOWABLE VELOCITY) N/A 1.96 V (CALCUALTED AT FLOW DEPTH d) (FPS) (LB/FT²) - $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 55 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 1.31 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 5.75 / 0 D
(TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 5.75 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 2.87 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A d₅₀ STONE SIZE (IN) A (CROSS-SECTIONAL AREA) (SQ. FT) 0.72 R (HYDRAULIC RADIUS) 0.21 S (BED SLOPE)3,7 (FT/FT) 0.042 S_C (CRITICAL SLOPE) 0.088 (FT/FT) .7S_c (FT/FT) 0.062 1.3S_c (FT/FT) 0.114 STABLE FLOW? Υ (Y/N) FREEBOARD BASED ON UNSTABLE FLOW (FT) N/A FREEBOARD BASED ON STABLE FLOW (FT) 0.50 MINIMUM REQUIRED FREEBOARD4 (FT) 0.50 DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS S - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.6 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_13.31_1 0.61 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 13.31_1 | 100 | 0.4 | 0.210 | 6.68 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet 0.5}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 13.31_1 | 352 | FOREST | 0.180 | 1.07 | 5.50 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 12.18 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 13.31_1 | 1 | FOREST | 0.20 | 0.61 | 0.12 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 12.18 | 0.74 | 0.88 | 0.98 | 3.63 | 4.33 | 4.83 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 3.63 | 0.61 | 0.44 | 0.53 | 0.59 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: | 10/2019 | |--|-----------------------------------|-----------------------|---------------------|-------------| | CHANNEL OR CHANNEL SECTION ⁷ | | DS_13.31_1a | DS_13.31_1a | DS_13.31_1b | | TEMPORARY OR PERMANENT? | (T OR P) | Т | Т | Т | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | 2 | 2 | | ACRES | (AC) | 0.61 | 0.61 | 0.61 | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | N/A | N/A | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.44 | 0.44 | 0.44 | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 5.23 | 5.23 | 0.67 | | PROTECTIVE LINING ^{2,6} | | P300
(Unvegetated) | P300
(Vegetated) | C125 | | n (MANNING'S COEFFICIENT) ² | | 0.034 | 0.034 | 0.055 | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | N/A | N/A | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 6.28 | 6.28 | 1.29 | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.00 | 8.00 | 2.25 | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 4.99 | 4.99 | 0.62 | | CHANNEL BOTTOM WIDTH | (FT) | 0 | 0 | 0 | | CHANNEL SIDE SLOPES | (H:V) | 6.67 / 0 | 6.67 / 0 | 4.17 / 0 | | D (TOTAL DEPTH) | (FT) | 1.00 | 1.00 | 1.00 | | CHANNEL TOP WIDTH @ D | (FT) | 6.67 | 6.67 | 4.17 | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | 0.50 | 0.50 | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 3.33 | 3.33 | 2.08 | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | 0 | 0 | | d ₅₀ STONE SIZE | (IN) | N/A | N/A | N/A | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.83 | 0.83 | 0.52 | | R (HYDRAULIC RADIUS) | | 0.22 | 0.22 | 0.20 | | S (BED SLOPE) ³ | (FT/FT) | 0.16 | 0.16 | 0.02 | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.033 | 0.033 | 0.096 | | .7S _c | (FT/FT) | 0.023 | 0.023 | 0.067 | | 1.3S _c | (FT/FT) | 0.042 | 0.042 | 0.125 | | STABLE FLOW? | (Y/N) | Υ | Y | Υ | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | N/A | N/A | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | 0.50 | 0.50 | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | 0.50 | 0.50 | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | s | S | ^{1.} Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or $\frac{1}{4}$ Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design methods is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. For this temporary channel, the percent slope changes along the diversion sock, therefore it was designed in two segments. The calculations above demonstrate that the shear stress and capacity were checked for both scenarios and the more conservative lining and diversion sock diameter were selected and implemented into the design. The table above shows both scenarios, and the
column in bold is the more conservative design used to satisfy both scenarios. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_13.31_2 1.16 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 13.31_2 | 100 | 8.0 | 0.135 | 10.24 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet 0.5}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 13.31_2 | 588 | FOREST | 0.145 | 0.96 | 10.23 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 20.47 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 13.31_2 | 1 | FOREST | 0.20 | 1.16 | 0.23 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 20.47 | 2.83 | 3.42 | 3.91 | 2.83 | 3.42 | 3.91 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.83 | 1.16 | 0.66 | 0.79 | 0.91 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 | CHECKED BY: KEK / JMB | | DATE: 10/2019 | | | | |---|-----------------------------------|-----------------------|---------------------|------------|--| | CHANNEL OR CHANNEL SECTION ⁷ | | DS_13.31_2a | DS_13.31_2a | DS_13.31_2 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | Т | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | 2 | 2 | | | ACRES | (AC) | 1.16 | 1.16 | 1.16 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | N/A | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.66 | 0.66 | 0.66 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.77 | 1.77 | 1.32 | | | PROTECTIVE LINING ^{2,6} | | P300
(Unvegetated) | P300
(Vegetated) | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.034 | 0.034 | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | N/A | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 5.67 | 5.67 | 3.69 | | | $ au_{a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 3.00 | 8.00 | 2.25 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 5.62 | 5.62 | 0.94 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | 0 | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 2.5 / 0 | 2.5 / 0 | 2.86 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | 1.00 | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 2.50 | 2.50 | 2.86 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | 0.50 | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 1.25 | 1.25 | 1.43 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | 0 | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | N/A | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.31 | 0.31 | 0.36 | | | R (HYDRAULIC RADIUS) | | 0.17 | 0.17 | 0.18 | | | S (BED SLOPE) ³ | (FT/FT) | 0.18 | 0.18 | 0.03 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.045 | 0.045 | 0.018 | | | .7S _c | (FT/FT) | 0.031 | 0.031 | 0.012 | | | 1.3S _c | (FT/FT) | 0.058 | 0.058 | 0.023 | | | STABLE FLOW? | (Y/N) | Υ | Υ | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | N/A | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | 0.50 | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | 0.50 | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | S | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design methods is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. For this temporary channel, the percent slope changes along the diversion sock, therefore it was designed in two segments. The calculations above demonstrate that the shear stress and capacity were checked for both scenarios and the more conservative lining and diversion sock diameter were selected and implemented into the design. The table above shows both scenarios, and the column in bold is the more conservative design used to satisfy both scenarios. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BV: | KEK / IMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 13.51 | 100 | 0.8 | 0.130 | 10.33 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 13.51 | 140 | FOREST | 0.150 | 0.97 | 2.39 | | | 60 | SHORT GRASS | 0.100 | 2.20 | 0.45 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |-------------------------| | (minutes) | | 13.18 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------
-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | PROJECT NAME: | PENNEAST PIPELINE PROJECT | |---------------|---------------------------| LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 13.51 | 1 | FOREST | 0.20 | 0.05 | 0.01 | 0.24 | | | 2 | OPEN SPACE | 0.28 | 0.05 | 0.01 | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 13.18 | 3.51 | 4.20 | 4.70 | 3.51 | 4.20 | 4.70 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.24 | 3.51 | 0.10 | 0.08 | 0.10 | 0.11 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: | 10/2019 | |---|-----------------------------------|----------------|-------|---------| | CHANNEL OR CHANNEL SECTION | | DS_13.51 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | ACRES | (AC) | 0.1 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.08 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.25 | | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | | n (MANNING'S COEFFICIENT) ² | | 0.05 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.42 | | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.73 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 12.5 / 0 | | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | | CHANNEL TOP WIDTH @ D | (FT) | 8.33 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.08 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.17 | | | | R (HYDRAULIC RADIUS) | | 0.08 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.07 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.093 | | | | .7S _c | (FT/FT) | 0.065 | | | | 1.3S _c | (FT/FT) | 0.121 | | | | STABLE FLOW? | (Y/N) | N | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | 0.50 | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | N/A | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATF: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 13.56 | 100 | 0.8 | 0.124 | 10.44 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 13.56 | 435 | FOREST | 0.186 | 1.09 | 6.68 | | | 26 | SHORT GRASS | 0.115 | 2.36 | 0.18 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | | | | |------------------|--|--|--| | (minutes) | | | | | 17.31 | | | | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | PROJECT NAME: | PENNEAST PIPELINE PROJECT | |---------------|---------------------------| | | | LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 13.56 | 1 | FOREST | 0.20 | 1.87 | 0.37 | 0.21 | | | 2 | OPEN SPACE | 0.28 | 0.16 | 0.04 | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 17.31 | 3.09 | 3.72 | 4.22 | 3.09 | 3.72 | 4.22 | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | #### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.21 | 3.09 | 2.03 | 1.29 | 1.56 | 1.77 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_13.56 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) |
2.03 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.29 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.50 | | | PROTECTIVE LINING ^{2,6} | | S75 | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.50 | | | $ au_{a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | $ au_{ m d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.72 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 8/0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 8.00 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 4.00 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.00 | | | R (HYDRAULIC RADIUS) | | 0.22 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.023 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.083 | | | .7S _c | (FT/FT) | 0.058 | | | 1.3S _c | (FT/FT) | 0.107 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY | KEK / IMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 13.81 | 100 | 0.8 | 0.080 | 11.57 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 13.81 | 929 | FOREST | 0.141 | 0.94 | 16.39 | | | 67 | SHORT GRASS | 0.044 | 1.46 | 0.76 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | | | | |------------------|--|--|--| | (minutes) | | | | | 28.72 | | | | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | PROJECT NAME: | PENNEAST PIPELINE PROJECT | |---------------|---------------------------| | | | LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 13.81 | 1 | FOREST | 0.20 | 1.58 | 0.32 | 0.20 | | | 2 | OPEN SPACE | 0.21 | 0.15 | 0.03 | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|-----------------------|--| | | 28.72 | 2.32 | 2.83 | 3.29 | 2.32 | 2.83 | 3.29 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.32 | 1.73 | 0.81 | 0.98 | 1.14 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY DATE: 10/2019 PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_13.81 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 1.73 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.81 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.95 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.06 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.62 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 22.22 / 0 | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | CHANNEL TOP WIDTH @ D | (FT) | 14.81 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 3.70 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.31 | | | R (HYDRAULIC RADIUS) | | 0.08 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.06 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.017 | | | .7S _c | (FT/FT) | 0.012 | | | 1.3S _c | (FT/FT) | 0.022 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.8 FPS (PER NOMOGRAPH)
PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.8 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 14.10 | 100 | 0.8 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 14.10 | 173 | FOREST | 0.283 | 1.34 | 2.15 | | | 62 | SHORT GRASS | 0.048 | 1.53 | 0.68 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|--------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 15.74 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time | PROJECT NAME: | PENNEAST PIPELINE PROJECT | |---------------|---------------------------| | | | | | | LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 14.10 | 1 | FOREST | 0.20 | 0.27 | 0.05 | 0.20 | | | 2 | OPEN SPACE | 0.21 | 0.14 | 0.03 | · | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|-----------------------|--| | | 15.74 | 3.24 | 3.89 | 4.39 | 3.24 | 3.89 | 4.39 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 3.24 | 0.41 | 0.27 | 0.32 | 0.37 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | | | |--|-----------------------------------|----------|---------------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_14.10 | | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | | | ACRES | (AC) | 0.41 | | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.27 | | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.28 | | | | | PROTECTIVE LINING ^{2,6} | | S75 | | | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.58 | | | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.08 | | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | | CHANNEL SIDE SLOPES | (H:V) | 12.8 / 0 | | | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | | | CHANNEL TOP WIDTH @ D | (FT) | 8.54 | | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.13 | | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.18 | | | | | R (HYDRAULIC RADIUS) | | 0.08 | | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.1043 | | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.112 | | | | | .7S _c | (FT/FT) | 0.078 | | | | | 1.3S _c | (FT/FT) | 0.145 | | | | | STABLE FLOW? | (Y/N) | N | | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | 0.50 | | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | N/A | | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ### CLEAN WATER DIVERSION DRAINAGE AREA DS_14.82_1 4.6 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUN | ITY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 14.82_1 | 100 | 8.0 | 0.040 | 13.60 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 14.82_1 | 1106 | FOREST | 0.080 | 0.71 | 25.90 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 39.51 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) |
LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 14.82_1 | 1 | FOREST | 0.20 | 4.60 | 0.92 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 39.51 | 1.88 | 2.31 | 2.72 | 1.88 | 2.31 | 2.72 | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 1.88 | 4.60 | 1.73 | 2.12 | 2.50 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|----------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_14.82_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 4.6 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.73 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 3.42 | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | n (MANNING'S COEFFICIENT) ² | | 0.08 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 0.78 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.36 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 35.09 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 35.09 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 17.54 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 4.39 | | | R (HYDRAULIC RADIUS) | | 0.24 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.0116 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.154 | | | .7S _c | (FT/FT) | 0.108 | | | 1.3S _c | (FT/FT) | 0.200 | | | STABLE FLOW? | (Y/N) | Y | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.6 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_14.82_2 3.17 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 14.82_2 | 100 | 8.0 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | | | | |--------------------|---------------------|--|--|--| | 0.02 | smooth pavement | | | | | 0.1 | bare parched soil | | | | | 0.3 | poor grass cover | | | | | 0.4 | average grass cover | | | | | 8.0 | dense grass cover | | | | | (L = 150' maximum) | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 14.82_2 | 1360 | FOREST | 0.071 | 0.67 | 33.81 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c* | |--------------| | (minutes) | | 46.72 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 14.82_2 | 1 | FOREST | 0.20 | 3.17 | 0.63 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 46.72 | 1.66 | 2.05 | 2.44 | 1.66 | 2.05 | 2.44 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 1.66 | 3.17 | 1.05 | 1.30 | 1.55 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY DATE: 10/2019 PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB | CHECKED BY: KEK / JMB | | | DATE: | 10/2019 | |---|-----------------------------------|----------------|-------|---------| | CHANNEL OR CHANNEL SECTION | | DS_14.82_2 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR)
| 2 | | | | ACRES | (AC) | 3.17 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.06 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.93 | | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | | n (MANNING'S COEFFICIENT) ² | | 0.07 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.08 | | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.56 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 14.29 / 0 | | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | | CHANNEL TOP WIDTH @ D | (FT) | 14.29 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 7.14 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.79 | | | | R (HYDRAULIC RADIUS) | | 0.23 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.0181 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.124 | | | | .7S _c | (FT/FT) | 0.087 | | | | 1.3S _c | (FT/FT) | 0.162 | | | | STABLE FLOW? | (Y/N) | Y | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.5 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.5 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_14.82_3 1.28 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 14.82_3 | 100 | 8.0 | 0.070 | 11.94 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}(0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 14.82_3 | 1083 | FOREST | 0.082 | 0.72 | 25.05 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 36.99 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 14.82_3 | 1 | FOREST | 0.20 | 1.28 | 0.26 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 36.99 | 1.96 | 2.41 | 2.83 | 1.96 | 2.41 | 2.83 | · | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 1.96 | 1.28 | 0.50 | 0.62 | 0.73 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 OUEOVED DV IZEIZ / IMAD | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |--|-----------------------------------|----------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_14.82_3 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 2 | | | ACRES | (AC) | 1.28 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.5 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.07 | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | n (MANNING'S COEFFICIENT) ² | | 0.07 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.11 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.59 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 14.93 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 14.93 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 7.46 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.87 | | | R (HYDRAULIC RADIUS) | | 0.23 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.019 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.124 | | | .7S _c | (FT/FT) | 0.087 | | | 1.3S _c | (FT/FT) | 0.161 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is
sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KEK / IMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 17.54 | 100 | 0.8 | 0.030 | 14.55 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (1 = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 17.54 | 331 | FOREST | 0.033 | 0.46 | 12.07 | | | 46 | PAVEMENT | 0.043 | 4.22 | 0.18 | | | 225 | SHORT GRASS | 0.058 | 1.68 | 2.24 | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | (IIIIIIules) | | 29.04 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LUZERNE COUNTY LOCATION: CHECKED BY: PREPARED BY: DATE: 10/15/2018 MDN DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** KEK / JMB | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 17.54 | 1 | FOREST | 0.20 | 1.16 | 0.23 | 0.23 | | | 2 | OPEN SPACE | 0.21 | 1.13 | 0.24 | | | | 3 | INDUSTRIAL | 0.69 | 0.11 | 0.08 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 29.04 | 2.30 | 2.81 | 3.27 | 2.30 | 2.81 | 3.27 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.23 | 2.81 | 2.40 | 1.26 | 1.53 | 1.78 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_17.54 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | ACRES | (AC) | 2.4 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.53 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.80 | | | PROTECTIVE LINING ^{2,6} | | S75 | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.95 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.15 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 11.49 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 11.49 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 5.75 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.44 | | | R (HYDRAULIC RADIUS) | | 0.23 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.037 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.079 | | | .7S _c | (FT/FT) | 0.055 | | | 1.3S _c | (FT/FT) | 0.102 | | | STABLE FLOW? | (Y/N) | Y | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. | PROJECT NAME: | PENNEAST PIPELINE PI | ROJECT | | |---------------|----------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / .IMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 18.62 | 100 | 0.8 | 0.020 | 16.00 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{n}}{3 \, \text{C}^{\text{0.5}}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 18.62 | 472 | FOREST | 0.070 | 0.67 | 11.82 | | | 110 | SHORT GRASS | 0.100 | 6.43 | 0.29 | | | 27 | PAVEMENT | 0.037 | 3.91 | 0.12 | | | 152 | SHORT GRASS | 0.046 | 1.49 | 1.70 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL TIME T _{ch} (minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|--| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes)
 | 29.91 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 18.62 | 1 | FOREST | 0.20 | 1.16 | 0.23 | 0.22 | | | 2 | OPEN SPACE | 0.21 | 0.87 | 0.18 | | | | 3 | INDUSTRIAL | 0.69 | 0.07 | 0.05 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 29.91 | 2.26 | 2.76 | 3.21 | 2.26 | 2.76 | 3.21 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.22 | 2.76 | 2.10 | 1.05 | 1.28 | 1.49 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT MDN LOCATION: LUZERNE COUNTY PREPARED BY: DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS 18.62 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 5 **ACRES** 2.15 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 1.28 Q (CALCULATED AT FLOW DEPTH d) (CFS) 2.60 PROTECTIVE LINING^{2,6} **EXISTING GRASS** n (MANNING'S COEFFICIENT)² 0.07 V_a (ALLOWABLE VELOCITY) (FPS) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 1.06 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 00 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 0.53 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 19.61 / 0 D (TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 19.61 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 9.80 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A d₅₀ STONE SIZE (IN) A (CROSS-SECTIONAL AREA) (SQ. FT) 2.45 R (HYDRAULIC RADIUS) 0.24 S (BED SLOPE)3,7 (FT/FT) 0.017 S_C (CRITICAL SLOPE) 0.121 (FT/FT) .7S_c (FT/FT) 0.085 1.3S_c (FT/FT) 0.158 STABLE FLOW? Υ (Y/N) FREEBOARD BASED ON UNSTABLE FLOW (FT) N/A FREEBOARD BASED ON STABLE FLOW (FT) 0.50 MINIMUM REQUIRED FREEBOARD4 (FT) 0.50 DESIGN METHOD FOR PROTECTIVE LINING 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. S - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. PERMISSIBLE VELOCITY (V) OR SHEAR STRESS - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.7 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.7 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_19.89_1 3.48 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 19.89_1 | 100 | 8.0 | 0.040 | 13.60 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{In}}{3 \, \text{C} \, \text{O.5}}\right]^{0.4673}$$ | n | Type of Cover | |--------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1 | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 19.89_1 | 1153 | FOREST | 0.118 | 0.86 | 22.23 | #### **CHANNEL FLOW:** | | | | | | | | | CHANNEL | |--------|--------|-----------|----------|-----------|-------------|-----------|----------|-----------------| | | | | AVERAGE | WETTED | HYDRAULIC | | | TIME | | | | | AVLINAGE | VVLIILD | IIIDIXAGEIC | | | | | PATH | LENGTH | AREA | SLOPE | PERIMETER | RADIUS | MANNING'S | V | T _{ch} | | NUMBER | (ft) | (sq. ft.) | (ft/ft) | (ft) | (ft) | n | (ft/sec) | (minutes) | #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 35.84 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|---------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 19.89_1 | 1 | FOREST | 0.20 | 3.48 | 0.70 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 35.84 | 2.01 | 2.46 | 2.89 | 2.01 | 2.46 | 2.89 | ### DETERMINE PEAK RUNOFF RATES (Q = $C \times I \times A$) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.46 | 3.48 | 1.40 | 1.71 | 2.01 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_19.89_1 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | ACRES | (AC) | 3.48 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.71 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 6.68 | | | PROTECTIVE LINING ^{2,6} | | S150 | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 2.35 | | | $
au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.75 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.59 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 22.73 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 22.73 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 11.36 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 2.84 | | | R (HYDRAULIC RADIUS) | | 0.24 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.051 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.074 | | | .7S _c | (FT/FT) | 0.052 | | | 1.3S _c | (FT/FT) | 0.096 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING SPERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | Ø | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_19.89_2 3.73 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 19.89_2 | 100 | 0.8 | 0.060 | 12.37 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{D}}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | <u>n</u> | Type of Cover | |----------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1 | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 19.89_2 | 1182 | FOREST | 0.096 | 0.78 | 25.27 | #### **CHANNEL FLOW:** | | | | AVERAGE | WETTED | HYDRAULIC | | | CHANNEL
TIME | |--------|--------|-----------|---------|-----------|-----------|-----------|----------|-----------------| | PATH | LENGTH | AREA | SLOPE | PERIMETER | RADIUS | MANNING'S | V | T _{ch} | | NUMBER | (ft) | (sq. ft.) | (ft/ft) | (ft) | (ft) | n | (ft/sec) | (minutes) | #### TIME OF CONCENTRATION: | T _c *
(minutes) | | |-------------------------------|--| | 37.64 | | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|---------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 19.89_2 | 1 | FOREST | 0.20 | 3.73 | 0.75 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 37.64 | 1.94 | 2.38 | 2.80 | 1.94 | 2.38 | 2.80 | ### DETERMINE PEAK RUNOFF RATES (Q = C x I x A) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.38 | 3.73 | 1.45 | 1.78 | 2.09 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | DATE: 10/2019 | | | | |--|-----------------------------------|----------------|--|--| | CHANNEL OR CHANNEL SECTION | | DS_19.89_2 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | | ACRES | (AC) | 3.73 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.78 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.32 | | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | | n (MANNING'S COEFFICIENT) ² | | 0.07 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.22 | | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.72 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 15.15 / 0 | | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | | CHANNEL TOP WIDTH @ D | (FT) | 15.15 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 7.58 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.89 | | | | R (HYDRAULIC RADIUS) | | 0.23 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.023 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.124 | | | | .7S _c | (FT/FT) | 0.087 | | | | 1.3S _c | (FT/FT) | 0.161 | | | | STABLE FLOW? | (Y/N) | Y | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered
shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_19.89_3 4.51 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 19.89_3 | 100 | 0.8 | 0.050 | 12.91 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{n}}{3 \, \text{C}^{\text{0..5}}}\right]^{0.4673}$$ | (L = 150' maximum) | | | | | | |--------------------|--|--|--|--|--| | | | | | | | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF
COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|------------------|-----------------------------|---------------|--------------------------------------| | DS 19.89_3 | 1139 | FOREST | 0.095 | 0.78 | 24.48 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---|--| #### TIME OF CONCENTRATION: | T _c [*]
(minutes) | |--| | 37.39 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|---------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 19.89_3 | 1 | FOREST | 0.20 | 4.51 | 0.90 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 37.39 | 1.95 | 2.39 | 2.81 | 1.95 | 2.39 | 2.81 | ### DETERMINE PEAK RUNOFF RATES (Q = $C \times I \times A$) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------|--------------------------| | | 0.20 | 2.39 | 4.51 | 1.76 | 2.16 | 2.54 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_19.89_3 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | ACRES | (AC) | 4.51 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 2.16 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.84 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 3.79 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.78 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 5.99 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 5.99 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 2.99 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.75 | | | R (HYDRAULIC RADIUS) | | 0.21 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.025 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.014 | | | .7S _c | (FT/FT) | 0.010 | | | 1.3S _c | (FT/FT) | 0.018 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.8 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.8 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_19.89_4 1.81 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | |---------------|---------------------------|------------------|--|--| | LOCATION: | LUZERNE COUNTY | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 19.89_4 | 100 | 8.0 | 0.075 | 11.75 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{n}}{3 \, \text{C}^{\text{0..5}}}\right]^{0.4673}$$ | n | Type of Cover | |--------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1 | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 19.89_4 | 538 | FOREST | 0.106 | 0.82 | 10.95 | #### **CHANNEL FLOW:** | | | | AVERAGE | WETTED | HYDRAULIC | | | CHANNEL
TIME | | |--------|--------|-----------|---------|-----------|-----------|-----------|----------|-----------------|--| | PATH | LENGTH | AREA | SLOPE | PERIMETER | RADIUS | MANNING'S | V | T _{ch} | | | NUMBER | (ft) | (sq. ft.) | (ft/ft) | (ft) | (ft) | n | (ft/sec) | (minutes) | #### TIME OF CONCENTRATION: | T _c * |
------------------| | (minutes) | | 22.69 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | | | | |----------------|-------------------------|-----------------------------|---------------------------------|------------------------|----------------------|--|--|--| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 19.89_4 | 1 | FOREST | 0.20 | 1.81 | 0.36 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 22.69 | 2.67 | 3.24 | 3.72 | 2.67 | 3.24 | 3.72 | ### DETERMINE PEAK RUNOFF RATES (Q = $C \times I \times A$) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 3.24 | 1.81 | 0.97 | 1.17 | 1.35 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_19.89_4 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | ACRES | (AC) | 1.81 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.17 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.11 | | | PROTECTIVE LINING ^{2,6} | | S150 | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 2.20 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.75 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.56 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 7.69 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 7.69 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 3.85 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.96 | | | R (HYDRAULIC RADIUS) | | 0.22 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.05 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.083 | | | .7S _c | (FT/FT) | 0.058 | | | 1.3S _c | (FT/FT) | 0.108 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.9 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.9 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_19.89_5 4.51 ACRES PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 19.89_5 | 100 | 0.8 | 0.030 | 14.55 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0..5}}\right]^{0.4673}$$ n Type of Cover 0.02 smooth pavement 0.1 bare parched soil 0.3 poor grass cover 0.4 average grass cover 0.8 dense grass cover (L = 150' maximum) #### SHALLOW CONCENTRATED FLOW: | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 19.89_5 | 1477 | FOREST | 0.085 | 0.73 | 33.56 | #### **CHANNEL FLOW:** | | | | AVERAGE | WETTED | HYDRAULIC | | | CHANNEL
TIME | |--------|--------|-----------|---------|-----------|-----------|-----------|----------|-----------------| | PATH | LENGTH | AREA | SLOPE | PERIMETER | RADIUS | MANNING'S | V | T _{ch} | | NUMBER | (ft) | (sq. ft.) | (ft/ft) | (ft) | (ft) | n | (ft/sec) | (minutes) | #### TIME OF CONCENTRATION: | T _c *
(minutes) | |-------------------------------| | 48.11 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|---------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 19.89_5 | 1 | FOREST | 0.20 | 4.51 | 0.90 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 48.11 | 1.63 | 2.01 | 2.39 | 1.63 | 2.01 | 2.39 | ### DETERMINE PEAK RUNOFF RATES (Q = $C \times I \times A$) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.01 | 4.51 | 1.47 | 1.81 | 2.16 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS_19.89_5 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 5 **ACRES** 4.51 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 1.82 Q (CALCULATED AT FLOW DEPTH d) (CFS) 1.93 PROTECTIVE LINING^{2,6} S75 n (MANNING'S COEFFICIENT)² 0.051 (FPS) V_a (ALLOWABLE VELOCITY) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 1.70 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 55 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH
d) 0.78 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 9.09 / 0 D (TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 9.09 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 4.55 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A d₅₀ STONE SIZE (IN) A (CROSS-SECTIONAL AREA) (SQ. FT) 1.14 R (HYDRAULIC RADIUS) 0.22 S (BED SLOPE)3,7 (FT/FT) 0.025 S_C (CRITICAL SLOPE) 0.070 (FT/FT) .7S_c (FT/FT) 0.049 1.3S_c (FT/FT) 0.090 STABLE FLOW? Υ (Y/N) 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. (FT) (FT) (FT) N/A 0.50 0.50 S - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. FREEBOARD BASED ON UNSTABLE FLOW DESIGN METHOD FOR PROTECTIVE LINING⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS FREEBOARD BASED ON STABLE FLOW MINIMUM REQUIRED FREEBOARD4 - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_19.89_6 4.98 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 19.89_6 | 100 | 8.0 | 0.060 | 12.37 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{n}}{3 \, \text{C}^{\text{0..5}}}\right]^{0.4673}$$ | n | Type of Cover | |--------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1 | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 19.89_6 | 1400 | FOREST | 0.065 | 0.64 | 36.38 | #### **CHANNEL FLOW:** | | | | AVERAGE | WETTED | HYDRAULIC | | | CHANNEL
TIME | |--------|--------|-----------|---------|-----------|-----------|-----------|----------|-----------------| | PATH | LENGTH | AREA | SLOPE | PERIMETER | RADIUS | MANNING'S | V | T _{ch} | | NUMBER | (ft) | (sq. ft.) | (ft/ft) | (ft) | (ft) | n | (ft/sec) | (minutes) | #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 48.75 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|---------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 19.89_6 | 1 | FOREST | 0.20 | 4.98 | 1.00 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 48.75 | 1.61 | 1.99 | 2.37 | 1.61 | 1.99 | 2.37 | ### **DETERMINE PEAK RUNOFF RATES (Q = C x I x A)** | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 1.99 | 4.98 | 1.61 | 1.98 | 2.36 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|------------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_19.89_6 | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | ACRES | (AC) | 4.98 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 1.98 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 2.44 | | | PROTECTIVE LINING ^{2,6} | | S75 | | | n (MANNING'S COEFFICIENT) ² | | 0.055 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.96 | | | $ au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.55 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 1.19 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 10 / 0 | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | CHANNEL TOP WIDTH @ D | (FT) | 10.00 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 5.00 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.25 | | | R (HYDRAULIC RADIUS) | | 0.23 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.038 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.080 | | | .7S _c | (FT/FT) | 0.056 | | | 1.3S _c | (FT/FT) | 0.104 | | | STABLE FLOW? | (Y/N) | Υ | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | |---------------|---------------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 20.09 | 100 | 0.8 | 0.099 | 11.01 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C}(n)}{3 \, \text{C}^{0.5}}\right]^{0.4673}$$ | <u>n</u> | Type of Cover | |----------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 20.09 | 598 | FOREST |
0.045 | 0.53 | 18.67 | #### **CHANNEL FLOW:** | 311111111111111111111111111111111111111 | = = | | | | | | | | |---|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | #### TIME OF CONCENTRATION: | T _c [*]
(minutes) | |--| | 29.68 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|---------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|---------------|---------|-----------------|---------|----------------| | DS 20.09 | 1 | FOREST | 0.20 | 0.68 | 0.14 | 0.20 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 29.68 | 2.27 | 2.77 | 3.23 | 2.27 | 2.77 | 3.23 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | I
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.77 | 0.68 | 0.31 | 0.38 | 0.44 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: 10/2019 | |---|-----------------------------------|-----------|---------------| | CHANNEL OR CHANNEL SECTION | | DS_20.09 | | | TEMPORARY OR PERMANENT? | (T OR P) | T | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | ACRES | (AC) | 0.68 | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.38 | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 0.56 | | | PROTECTIVE LINING ^{2,6} | | C125 | | | n (MANNING'S COEFFICIENT) ² | | 0.022 | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 1.68 | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 2.25 | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.19 | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | CHANNEL SIDE SLOPES | (H:V) | 23.81 / 0 | | | D (TOTAL DEPTH) | (FT) | 0.67 | | | CHANNEL TOP WIDTH @ D | (FT) | 15.87 | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.17 | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 3.97 | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | d ₅₀ STONE SIZE | (IN) | N/A | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 0.33 | | | R (HYDRAULIC RADIUS) | | 0.08 | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.018 | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.017 | | | .7S _c | (FT/FT) | 0.012 | | | 1.3S _c | (FT/FT) | 0.022 | | | STABLE FLOW? | (Y/N) | N | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | 0.50 | | | FREEBOARD BASED ON STABLE FLOW | (FT) | N/A | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 1.1 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 1.1 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_21.16_1 1.68 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNT | Υ | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n"
VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|--------------|-------------------------------|--------------------------------------| | DS 21.16_1 | 100 | 8.0 | 0.010 | 18.81 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{In}}{3 \, \text{C} \, \text{O}.5}\right]^{0.4673}$$ | <u>n </u> | Type of Cover | |--|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | I50' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH (ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|-------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 21.16_1 | 833 | FOREST | 0.031 | 0.44 | 31.34 | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH
(ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | v | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|----------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---|---| #### TIME OF CONCENTRATION: | T _c * | | |------------------|--| | (minutes) | | | 50.15 | | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT
SIDE
SLOPE
(H:V) | RIGHT
SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|--------------------------------|---------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 21.16_1 | 1 | FOREST | 0.20 | 1.57 | 0.31 | 0.20 | | | 2 | OPEN SPACE | 0.21 | 0.11 | 0.02 | _ | | | | | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---
--| | | 50.15 | 1.58 | 1.95 | 2.32 | 1.58 | 1.95 | 2.32 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 1.95 | 1.68 | 0.53 | 0.66 | 0.78 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS_21.16_1 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 5 **ACRES** 1.68 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 0.66 Q (CALCULATED AT FLOW DEPTH d) (CFS) 1.56 PROTECTIVE LINING^{2,6} **EXISTING GRASS** n (MANNING'S COEFFICIENT)² 0.08 V_a (ALLOWABLE VELOCITY) (FPS) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 0.71 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 00 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 0.31 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 17.54 / 0 D (TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 17.54 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 8.77 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A d₅₀ STONE SIZE (IN) A (CROSS-SECTIONAL AREA) (SQ. FT) 2.19 R (HYDRAULIC RADIUS) 0.24 S (BED SLOPE)3,7 (FT/FT) 0.01 S_C (CRITICAL SLOPE) 0.160 (FT/FT) .7S_c (FT/FT) 0.112 1.3S_c (FT/FT) 0.207 STABLE FLOW? Υ (Y/N) FREEBOARD BASED ON UNSTABLE FLOW (FT) N/A FREEBOARD BASED ON STABLE FLOW (FT) 0.50 MINIMUM REQUIRED FREEBOARD4 (FT) 0.50 DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS S - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.6 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_21.16_2 2.60 ACRES | PROJECT NAME: | PENNEAST PIPELINE P | ROJECT | | |---------------|---------------------|------------------|--| | LOCATION: | LUZERNE COUNTY | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | CHECKED BY: | KEK / JMB | DATE: 10/15/2018 | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 21.16_2 | 100 | 0.8 | 0.010 | 18.81 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \bullet (n)}{3 \bullet (0.5)}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (1 = 1) | 150' maximum) | #### **SHALLOW CONCENTRATED FLOW:** | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 21.16_2 | 799 | FOREST | 0.031 | 0.44 | 30.06 | | | 41 | SHORT GRASS | 0.050 | 1.56 | 0.44 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c * (minutes) | |----------------------------| | (IIIIIates) | | 49.31 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 21.16_2 | 1 | FOREST | 0.20 | 2.47 | 0.49 | 0.20 | | | 2 | OPEN SPACE | 0.21 | 0.13 | 0.03 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 49.31 | 1.60 | 1.98 | 2.35 | 1.60 | 1.98 | 2.35 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 1.98 | 2.60 | 0.83 | 1.03 | 1.23 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 CHANNEL OR CHANNEL SECTION DS_21.16_2 TEMPORARY OR PERMANENT? (T OR P) Т **DESIGN STORM** (2, 5, OR 10 YR) 5 **ACRES** 2.6 (1.6, 2.25, OR 2.75)¹ MULTIPLIER1 N/A Q_r (REQUIRED CAPACITY) (CFS) 1.03 Q (CALCULATED AT FLOW DEPTH d) (CFS) 2.49 PROTECTIVE LINING^{2,6} **EXISTING GRASS** n (MANNING'S COEFFICIENT)² 0.08 V_a (ALLOWABLE VELOCITY) (FPS) N/A V (CALCUALTED AT FLOW DEPTH d) (FPS) 0.82 (LB/FT²) $au_{\rm a}$ (MAX ALLOWABLE SHEAR STRESS) 1 00 (LB/FT²) $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) 0.41 CHANNEL BOTTOM WIDTH (FT) 0 CHANNEL SIDE SLOPES (H:V) 24.39 / 0 D (TOTAL DEPTH) (FT) 1.00 CHANNEL TOP WIDTH @ D (FT) 24.39 d (CALCULATED FLOW DEPTH) (FT) 0.50 CHANNEL TOP WIDTH @ FLOW DEPTH d (FT) 12.20 BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX) 0 N/A d₅₀ STONE SIZE (IN) A (CROSS-SECTIONAL AREA) (SQ. FT) 3.05 R (HYDRAULIC RADIUS) 0.24 S (BED SLOPE)3,7 (FT/FT) 0.013 S_C (CRITICAL SLOPE) 0.156 (FT/FT) .7S_c (FT/FT) 0.109 1.3S_c (FT/FT) 0.203 STABLE FLOW? Υ (Y/N) FREEBOARD BASED ON UNSTABLE FLOW (FT) N/A FREEBOARD BASED ON STABLE FLOW (FT) 0.50 MINIMUM REQUIRED FREEBOARD4 (FT) 0.50 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. S - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. DESIGN METHOD FOR PROTECTIVE LINING⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product
equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.5 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.5 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED. ## CLEAN WATER DIVERSION DRAINAGE AREA DS_21.16_3 1.58 ACRES | PROJECT NAME: | PENNEAST PIPELINE PROJECT | | | | | |---------------|---------------------------|------------------|--|--|--| | LOCATION: | LUZERNE COUNTY | | | | | | PREPARED BY: | MDN | DATE: 10/15/2018 | | | | | CHECKED BY: | KFK / JMB | DATE: 10/15/2018 | | | | #### **OVERLAND FLOW:** | PATH
NUMBER | LENGTH
L
(ft) | "n" VALUE | AVERAGE
SLOPE
S (ft/ft) | TIME
T _{of}
(minutes) | |----------------|---------------------|-----------|-------------------------------|--------------------------------------| | DS 21.16_3 | 100 | 0.8 | 0.010 | 18.81 | | | | | | | | | | | | | | | | | | | $$T_{c(sheet flow)} = \left[\frac{2 \, \text{C} \, \text{n}}{3 \, \text{C}^{\text{D.5}}}\right]^{0.4673}$$ | n | Type of Cover | |---------|---------------------| | 0.02 | smooth pavement | | 0.1 | bare parched soil | | 0.3 | poor grass cover | | 0.4 | average grass cover | | 8.0 | dense grass cover | | (L = 1) | 150' maximum) | #### SHALLOW CONCENTRATED FLOW: | PATH
NUMBER | LENGTH
(ft) | TYPE OF COVER | AVERAGE
SLOPE
(ft/ft) | V
(ft/sec) | TIME
T _{sc}
(minutes) | |----------------|----------------|---------------|-----------------------------|---------------|--------------------------------------| | DS 21.16_3 | 610 | FOREST | 0.041 | 0.51 | 19.96 | | | 37 | SHORT GRASS | 0.050 | 1.56 | 0.40 | | | | | | | | | | | | | | | #### **CHANNEL FLOW:** | PATH
NUMBER | LENGTH (ft) | AREA
(sq. ft.) | AVERAGE
SLOPE
(ft/ft) | WETTED
PERIMETER
(ft) | HYDRAULIC
RADIUS
(ft) | MANNING'S
n | V
(ft/sec) | CHANNEL
TIME
T _{ch}
(minutes) | |----------------|-------------|-------------------|-----------------------------|-----------------------------|-----------------------------|----------------|---------------|---| #### TIME OF CONCENTRATION: | T _c * | |------------------| | (minutes) | | 39.16 | | PATH
NUMBER | BOTTOM
WIDTH
(ft) | LEFT SIDE
SLOPE
(H:V) | RIGHT SIDE
SLOPE
(H:V) | TOTAL
DEPTH
(ft) | TOP
WIDTH
(ft) | |----------------|-------------------------|-----------------------------|------------------------------|------------------------|----------------------| · | ^{*}Tc = Overland Flow Time + Shallow Concentrated Flow Time + Channel Flow Time PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/15/2018 CHECKED BY: KEK / JMB DATE: 10/15/2018 #### **DETERMINE WATERSHED "C" VALUES** | CHANNEL
NUMBER | DRAINAGE
AREA
NUMBER | TYPE OF
COVER | C VALUE | AREA
(acres) | (C X A) | C _w | |-------------------|----------------------------|------------------|---------|-----------------|---------|----------------| | DS 21.16_3 | 1 | FOREST | 0.20 | 1.47 | 0.29 | 0.20 | | | 2 | OPEN SPACE | 0.21 | 0.11 | 0.02 | #### **DETERMINE RAINFALL INTENSITY:** | CHANNEL
NUMBER | T _c | Rainfall
Depth
R ₂ | R ₅ | R ₁₀ | Rainfall
Intensity
I ₂ | Rainfall
Intensity
I ₅ | Rainfall
Intensity
I ₁₀ | |-------------------|----------------|-------------------------------------|----------------|-----------------|---|---|--| | | 39.16 | 1.89 | 2.32 | 2.73 | 1.89 | 2.32 | 2.73 | #### DETERMINE PEAK RUNOFF RATES ($Q = C \times I \times A$) | CHANNEL
NUMBER | C _w | l
(inches/hr) | A
(acres) | Q ₂
(cfs) | Q ₅
(cfs) | Q ₁₀
(cfs) | |-------------------|----------------|------------------|--------------|-------------------------|-------------------------|--------------------------| | | 0.20 | 2.32 | 1.58 | 0.60 | 0.74 | 0.87 | | | | | | | | | | | | | | | | | PROJECT NAME: PENNEAST PIPELINE PROJECT LOCATION: LUZERNE COUNTY PREPARED BY: MDN DATE: 10/2019 CHECKED BY: KEK / JMB DATE: 10/2019 | CHECKED BY: KEK / JMB | | | DATE: | 10/2019 | |--|-----------------------------------|----------------|-------|---------| | CHANNEL OR CHANNEL SECTION | | DS_21.16_3 | | | | TEMPORARY OR PERMANENT? | (T OR P) | Т | | | | DESIGN STORM | (2, 5, OR 10 YR) | 5 | | | | ACRES | (AC) | 1.58 | | | | MULTIPLIER ¹ | (1.6, 2.25, OR 2.75) ¹ | N/A | | | | Q _r (REQUIRED CAPACITY) | (CFS) | 0.74 | | | | Q (CALCULATED AT FLOW DEPTH d) | (CFS) | 1.30 | | | | PROTECTIVE LINING ^{2,6} | | EXISTING GRASS | | | | n (MANNING'S COEFFICIENT) ² | | 0.08 | | | | V _a (ALLOWABLE VELOCITY) | (FPS) | N/A | | | | V (CALCUALTED AT FLOW DEPTH d) | (FPS) | 0.70 | | | | $ au_{\mathrm{a}}$ (MAX ALLOWABLE SHEAR STRESS) | (LB/FT ²) | 1.00 | | | | $\tau_{\rm d}$ (CALC'D SHEAR STRESS AT FLOW DEPTH d) | (LB/FT ²) | 0.31 | | | | CHANNEL BOTTOM WIDTH | (FT) | 0 | | | | CHANNEL SIDE SLOPES | (H:V) | 14.71 / 0 | | | | D (TOTAL DEPTH) | (FT) | 1.00 | | | | CHANNEL TOP WIDTH @ D | (FT) | 14.71 | | | | d (CALCULATED FLOW DEPTH) | (FT) | 0.50 | | | | CHANNEL TOP WIDTH @ FLOW DEPTH d | (FT) | 7.35 | | | | BOTTOM WIDTH: FLOW DEPTH RATIO | (12:1 MAX) | 0 | | | | d ₅₀ STONE SIZE | (IN) | N/A | | | | A (CROSS-SECTIONAL AREA) | (SQ. FT) | 1.84 | | | | R (HYDRAULIC RADIUS) | | 0.23 | | | | S (BED SLOPE) ^{3, 7} | (FT/FT) | 0.01 | | | | S _C (CRITICAL SLOPE) | (FT/FT) | 0.162 | | | | .7S _c | (FT/FT) | 0.113 | | | | 1.3S _c | (FT/FT) | 0.211 | | | | STABLE FLOW? | (Y/N) | Υ | | | | FREEBOARD BASED ON UNSTABLE FLOW | (FT) | N/A | | | | FREEBOARD BASED ON STABLE FLOW | (FT) | 0.50 | | | | MINIMUM REQUIRED FREEBOARD ⁴ | (FT) | 0.50 | | | | DESIGN METHOD FOR PROTECTIVE LINING PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S) | | S | | | - 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets. - 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in seperate columns. - 3. Slopes may not be averaged. - 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater. - 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope. - 6. In cases where existing grass is sufficient for the channel lining, S75 RollMax lining or product equivalent can be used in its place. - 7. There is no significant percent slope change along the entire temporary channel, therefore the channel capacity and shear stress have been calculated based on the single bed slope value shown above. #### **Shallow Concentrated Flow** That portion of the flow path which is not channelized and cannot be considered sheet flow is considered shallow concentrated flow. The average velocity for shallow concentrated flow may be determined from Figure 5.1, in which average velocity is a function of slope and type of watercourse. **Note:** There is no maximum length for shallow concentrated flow in Pennsylvania. SHALLOW CONCENTRATED FLOW VELOCITY = 0.6 FPS (PER NOMOGRAPH) PER TABLE G.1 OF THE E&S MANUAL, THE ALLOWABLE VELOCITY FOR DOWNSLOPE COVERS FOR CHANNELIZED FLOW IS 2 FPS FOR FORESTED/MULCH COVER TYPES. 0.6 FPS < 2.0 FPS THEREFORE THE ALLOWABLE VELOCITY IS NOT EXCEEDED.